

© Benedict Foo

Lossless Digitally-Assisted Windowed

 Current Sensing for Solar Photovoltaic

Applications

Senior Thesis in Electrical Engineering

University of Illinois at Urbana-Champaign

Advisor: R. C. N. Pilawa-Podgurski

Adsdasd

Advisor: Robert Pilawa-Podgurski
May 2015

By

Benedict Foo

ii

Abstract

Sensing current across a sense resistor adds to the total power loss and decreases efficiency.

This work demonstrates the use of a current sense amplifier that measures current across a

length of wire so as to minimize power loss. Current Sense Amplifiers for solar photovoltaic

applications require measuring a wide range of current (e.g. 1-10A), yet a high resolution is

needed for certain applications such as maximum power point tracking (MPPT) and differential

power processing (DPP). The windowing technique has been adopted in this work, so as to

measure the current with high resolution and yet to be able to cover the entire range of current

as well. The use of PSOC 4 by Cypress offers a cost effective one chip solution to all current

sensing requirements for solar photovoltaic applications. This is achieved by having a nearly

$4 cost reduction from previous methods, and yet attaining under 1% error in current

measurements.

Subject Keywords: Windowing, Photovoltaics, Current Sensing.

iii

Acknowledgements

I would first like to thank Professor Robert Pilawa-Podgurski for his vision, technical insight

and unwavering persistence for me to reach the end goal of this thesis. His guidance has helped

prepare me for more advanced research as I am intending on pursuing a graduate degree. Huge

thanks goes out to Christopher Barth who was always willing to lend a helping hand whenever

I encountered problems with my project. Christopher’s valuable experience in research has

kept the project moving whenever I got stuck at a problem. I would like to thank Enver Candan

for letting me use his bench to perform high current sweeps, Shibin and Yutian for being always

willing to give me their opinions on my methods or intentions. To the rest of the Pilawa-Group,

thank you, it was an honor being the only undergraduate to attend the weekly group meetings,

and being amongst such brilliant yet humble students was a real eye-opener for me. I look up

to all of you.

In the industry arena, I would like to thank Martin Krajci and Larry Sparling from Continental

Automotive for imparting their knowledge and technical know-how onto me during my

summer internship in 2014. I learnt so much from them during the summer that it has

undoubtedly made me a technically strong undergraduate researcher.

I would like to thank my parents for allowing me to do my undergraduate studies in the

University of Illinois at Urbana-Champaign. Without them, I would not even be aware of the

opportunities that I have seized since I am here.

I would like to thank all my friends who have kept me sane and allowed me to de-stress

whenever I was swamped with work. Lastly, I would like to thank Dana who has always given

her undying support, college would have been utterly stressful without her.

iv

List of Tables

Table 2.1. Initial Parameters .. 7

Table 2.2. Gain Values... 8

Table 2.3. Resistor Values ... 9

Table 5.1. Measurements for Initial Gain Debugging Circuit 1st Op-Amp 18

Table 5.2. Measurements for Initial Gain Debugging Circuit 2nd Op-Amp 19

Table 6.1. Measurements for Re-characterization of 2nd Op-Amp .. 26

Table 6.2. Resistor Values with Kscale .. 30

Table 6.3. Gain Values with Kscale ... 30

Table 8.1. Resistor Values for Optimized Circuit .. 44

Table 8.2. Gain Values for Optimized Circuit ... 44

Table 9.1. Current Resolution Comparison ... 50

Table 9.2. Error Measurements .. 52

Table 9.3. Cost Comparison... 52

v

List of Figures

Figure 1.1. Voltage Ripple ... 2

Figure 1.2. Amplified Signal ... 3

Figure 1.3. Scaled and Amplified Signal ... 3

Figure 2.1. Initial Circuit Design ... 6

Figure 3.1. Circuit Diagram for DC Current Simulation in Matlab Simulink 10

Figure 3.2. Voltage Output Plot vs DC Current Input for Matlab Simulink Simulation 11

Figure 3.3. Circuit Diagram for Current Ripple Simulation in Matlab Simulink 12

Figure 3.4. Voltage Output Plot (top) and Current Ripple Input (bottom) vs Time for Matlab

Simulink Simulation .. 12

Figure 4.1. PSOC Creator Circuit Diagram ... 13

Figure 4.2. Flowchart of Code Algorithm ... 16

Figure 5.1. Test Circuit with Cypress Op-amps .. 17

Figure 5.2. Debugging Circuit for Initial Op-amp Stage ... 17

Figure 5.3. LTSPICE Simulation of Circuit with OPA364 ... 20

Figure 5.4. LTSPICE Simulation Plot of Circuit with OPA364 with DC Sweep of I4 Current

Source from 23.5µA to 50µA at 1.2µA Intervals .. 20

Figure 5.5. LTSPICE Simulation Plot of Circuit at Current Bias of 34.15µA 21

Figure 5.6. Testing Circuit with External Op-amps ... 22

Figure 5.7. Plots for OPA4330 for Current Measurements ... 23

Figure 6.1. Input Offset Voltage Forcing Circuit .. 24

Figure 6.2. Simulation Result for Voltage Offset Divider ... 25

Figure 6.3. Cypress Workaround ... 26

Figure 6.4. Input to Second Stage .. 27

Figure 6.5. Decreasing Current Measurement Plots for Cypress Op-amps 28

vi

Figure 6.6. Increasing Current Measurement Plots for Cypress Op-amps 29

Figure 7.1. Picture of PCB with Cypress Pioneer Kit Microcontroller 31

Figure 7.2. Current Measurements for an Increasing Input Voltage Sweep 33

Figure 7.3. Current Measurements for a Decreasing Input Voltage Sweep 33

Figure 7.4. Current Measurements for an Input Ripple Voltage Sweep 34

Figure 7.5. Zoomed in Current Measurements for Input Ripple Voltage Sweep 35

Figure 7.6. Circuit Diagram for Current Sweep Measurements .. 36

Figure 7.7. Current Measurement Comparison between Calculated Current and Actual Current

.. 36

Figure 7.8. Current Measurement Comparison between Calculated Current After Digital

Calibration and Actual Current .. 37

Figure 7.9. Circuit for Current Ripple Plots .. 38

Figure 7.10. Current Ripple Plots with Kiethley 2400 .. 39

Figure 7.11. Current Ripple Plots after Digital Calibration ... 39

Figure 7.12. Zoomed in Current Ripple Plots after Digital Calibration 40

Figure 7.13. Current Ripple in Relation to the ADC Window .. 41

Figure 7.14. Current Ripple in Relation to the ADC Window .. 42

Figure 8.1.Circuit Diagram for Optimized Circuit Simulation .. 45

Figure 8.2. Simulation Results for Optimized Circuit at Max Current 45

Figure 8.3. Current Ripple Sweep.. 46

Figure 8.4. Current Ripple Sweep After Digital Calibration ... 46

Figure 8.5. Current Ripple in Relation to Window Limits .. 47

Figure 8.6. Enlarged Current Ripple .. 48

Figure 8.7. 0-10A Current Sweep Current Plot Comparison ... 49

Figure 8.8. 0-10A Current Sweep Current Plot Comparison after Digital Calibration 49

vii

Figure 9.1. Error Plot Comparison ... 51

viii

Contents

Abstract .. ii

Acknowledgements .. iii

List of Tables .. iv

List of Figures .. v

Contents ... viii

 Introduction .. 1

1.1 The Need for Current Measurement in Solar Photovoltaic Applications 1

1.2 Windowing Technique .. 1

1.3 Lossless Current Sensing .. 3

1.4 One Chip Solution ... 4

 Initial Calculation ... 6

2.1 Circuit Design ... 6

2.2 Parameter Calculations .. 6

2.3 Resistor Calculations ... 7

 Simulations ... 10

 Programming Cypress .. 13

4.1 Op-amp .. 13

4.2 Analog-to-Digital Converter (ADC) ... 14

4.3 Current Digital-to-Analog Converter (IDAC)... 14

4.4 . Pins .. 14

ix

4.5 LEDs.. 15

4.6 UART .. 15

4.7 Code Algorithm ... 15

 Initial Measurements and Debugging ... 17

5.1 Initial Debugging... 17

5.2 Using an External Op-amp .. 19

5.3 Alternative External Op-amps ... 21

 Cypress Op-amp Workaround .. 24

6.1 Creating a Fixed Offset through High Side Current Sensing 24

6.2 Re-characterization of Cypress Op-amp 2 .. 25

6.3 Creating the Workaround .. 26

6.4 New Circuit Parameters .. 29

 Printed Circuit Board (PCB) Implementation and Input Sweeps 31

7.1 Improvements in ADC parameters .. 31

7.2 Python Serial/UART Communication .. 32

7.3 Input DC Voltage Sweep... 32

7.4 Input Voltage Ripple Sweep ... 34

7.5 Input Current DC Sweep ... 35

7.6 Input Current Ripple Sweep .. 37

7.7 ADC Window in Relation to the Calculated Current Ripple 40

7.8 ADC Ripple Analysis .. 41

x

 Optimization ... 43

8.1 Simulation of Optimized Circuit ... 44

8.2 Ripple Sweep... 45

8.3 ADC Window in Relation to the Calculated Current Ripple 47

8.4 ADC Optimized Analysis.. 47

8.5 Full Range Current Sweep .. 48

 Analysis .. 50

9.1 Resolution Analysis... 50

9.2 Error Analysis ... 51

9.3 Cost Analysis... 52

 Conclusion .. 53

 References ... 54

Appendix A: PSOC4 C Code ... 56

A1. Main File ... 56

A.2 ADC Interrupt Handler ... 59

Appendix B: PCB Schematic and Layout .. 60

B1. Eagle Schematic .. 60

B2. Board Layout ... 61

Appendix C: Python Codes .. 62

C1. DC Voltage Sweep .. 62

C2. Current Ripple Sweep ... 66

xi

C3. 10A Python Sweep .. 71

Appendix D: Matlab Code for Digital Calibration .. 76

D1. 10A Current Sweep Digital Calibration .. 76

D2. Current Ripple Digital Calibration .. 76

1

 Introduction

1.1 The Need for Current Measurement in Solar Photovoltaic Applications

Maximum power point tracking (MPPT) is dependent on accurate current and voltage

measurements in order to effectively apply techniques such as the common perturb and

observe, or dithering digital ripple correlation control [1], [2], [3]. They require high resolution

power ripple measurements which involve high precision power processing components [1].

Also, in multilevel MPPT schemes that require partial processing dc-dc power converters, there

is a need to detect and measure the monotocity in the current [4]. However, noise is a big factor

in affecting the accuracy of current measurements [5]. More accurate current measurements in

MPPT systems are made possible through various techniques such as current ripple

minimization or system parameter optimization through noise analysis [5], [6]. This paves the

way for the focus on the current sensing techniques themselves in this thesis. Another

photovoltaic (PV) application that requires current measurements is differential power

processing (DPP). In DPP for solar photovoltaic cells, current needs to be accurately measured

in order to determine the power mismatch between PV cells and hence process that difference

in power [7], [8].

1.2 Windowing Technique

PV current has a very wide range of current. For example, for a current range of 0 to 10A, the

voltage range over a 1mΩ resistor would be 0 to 10mV. This wide range thus affects the

resolution of the current measurement. Assuming an ADC resolution of 12 bits, then each bit,

measures 2.44mA. However, if windowing were to be applied, then assuming a window of 2V,

each bit measures 0.122mA, thus offering much higher (i.e. 20x) resolution in measurements.

2

Figures 1.1 to 1.3 gives a graphical overview of the benefits of the windowing technique. The

sensed voltage ripple is very small since we are dealing with 0.125mV. Hence we need to scale

this ripple. If we were to scale the ripple to fit half of a 3.3V ADC window (i.e. 1.65V) then

the voltage ripple would be in the region of 6-7V which exceeds most ADC voltage ranges.

Hence there is a need to shift this ripple back into the range of the ADC. This forms the crux

of the need of the windowing technique as well as its merits where a high resolution on the

voltage ripple can be attained.

Figure 1.1. Voltage Ripple

3

Figure 1.2. Amplified Signal

Figure 1.3. Scaled and Amplified Signal

1.3 Lossless Current Sensing

Sensing string current is needed in a variety of MPPT and DPP topologies [8], [9]. Windowing

techniques have been implemented for PV MPPT techniques, however they introduce a sense

resistor for low-side sensing [1]. This introduces series power loss into the design and hence

affects the efficiency of the design. For example, a 10A current output would lead to a 1W

4

power loss if a 10mΩ resistor is used. There have been numerous lossless current sensing

techniques being introduced lately, but they are mostly implemented in the IC level and are not

fully suitable to measure string current in photovoltaic systems [10], [11]. Another technique

capitalizes on the parasitic resistance of an inductor, but is only suited for relative and not

absolute current measurements [12]. Another direction is to reduce the number of current

sensing circuits in a given system using a distributed control algorithm in DPP, but string

current measurement is nevertheless needed [13]. Hence in this work, voltage is measured

across a length of wire found on the back of PV panels to eliminate the introduction of

additional losses through current sensing. This ensures that absolute current can be measured

accurately and yet remain in the integrated system level. Sensing over a length of wire requires

a high precision op-amp to handle the high gain bandwidth as well as the low sense voltage.

However, high precision op-amps cost typically in the range of $2-3, which is considered

expensive. The decrease in non-panel costs has become increasingly important as falling panel

installation costs have been largely attributed to the decrease in module costs [14]. Hence there

is a need to find a cheap, yet accurate current sensing solution.

1.4 One Chip Solution

The integration of maximum power point tracking systems with power electronics have been

proven to increase overall performance of the portable power generation system [12], [15].

Hence there is a need to incorporate the current sense circuit with the power electronics of a

MPPT system. Windowing techniques require the use of a microcontroller to adjust the window

as it tracks the current levels. They also require op-amps to amplify the voltage signals to

achieve the right resolution in the ADC. The use of PSOC4 by Cypress Semiconductor allows

an integration of the two yet remains cost-effective at $1.50 per PSOC4 chip. The

programmable op-amps incorporated into the PSOC4 microcontroller unit, allow the entire

current sense amplifier to be based on one chip, with just external resistors to set the gains.

5

However, these op-amps are not built to make high-precision measurements. Hence this

dissertation also delineates the various workarounds and measures performed to get the

Cypress op-amps to work to an optimal level; that is to make precise current measurements

with the aid of digital calibration. Hence the term digitally-assisted is used.

6

 Initial Calculation

2.1 Circuit Design

Figure 2.1 shows the proposed circuit design for the current sense amplifier. It is similar to the

circuit design in a previous windowed current sense amplifier by C. Barth et al [1].

+

-

+

-

Current
DAC

Rsense

R1
R2

R5 R3
R4

Vout

Figure 2.1. Initial Circuit Design

Note that Rsense, is not actually a resistor, but a figure representation of the length of wire that

is sensed across. This value was measured to be 1mΩ using a 4-wire measurement at the return

path at the back of the solar panel for low-side sensing. The first op-amp provides the initial

gain stage and the second stage provides the biasing signal for windowing. Further details on

this can be found in subsequent sub-sections and in previous windowed current sense amplifiers

[1].

2.2 Parameter Calculations

The current ripple has to be scaled to fit the range of the ADC, with the DC value centered at

the window. To determine the value of the resistors, the initial gain, as well as the bias gain

need to be calculated. The following equations are taken from Equations 7 and 8 from [1].

𝐾𝑔𝑎𝑖𝑛 =
𝑠𝑟𝐴𝐷𝐶

𝑖𝑅𝑠𝑒𝑛𝑠𝑒
 (2.1)

7

𝐾𝑏𝑖𝑎𝑠 =
𝑠𝑟𝐴𝐷𝐶𝐼𝑚𝑎𝑥

�̂�𝑉𝑏𝑖𝑎𝑠,𝑚𝑎𝑥
−

𝑟𝐴𝐷𝐶

2𝑉𝑏𝑖𝑎𝑠,𝑚𝑎𝑥
 (2.2)

We configured the ADC to have an input range of 0 to 3.3V. A single-ended ADC was needed,

since only positive current were to be measured. According to the Technical Reference Manual

of the PSOC 4, this would pose the best signal-to-noise ratio for a single ended input. More on

the ADC set up, as well as other software implementation will be explained in subsequent

sections. The Table 2.1 below shows the value of the parameters to determine Kgain and Kbias.

Table 2.1. Initial Parameters

Parameter Value

s 0.5

rADC 3.3V

Imax 10A

Rsense 1mΩ

𝑖̂ 0.25A

 Ibias,max 306µA

The parameter s refers to the proportion of the ADC range that the current ripple will be scaled

to and i is the current ripple. As mentioned earlier, rADC is the range of ADC and is programmed

to be 3.3V. The maximum current is the short circuit current as specified by the common solar

PV panels. The maximum bias current, is programmed to be 306µA, which corresponds to the

maximum bias current from the current DAC of the PSOC4.

2.3 Resistor Calculations

We calculated the values of the resistors using the parameters shown above, by first finding

Kgain and Kbias through Equations 2.1 and 2.2. The values of Kgain and Kbias are shown in Table

2.2 below.

8

Table 2.2. Gain Values

Kgain 6600

Kbias 42.05

From the Kgain value, the gain of the initial gain stage, K1, is chosen to be around 68, which is

approximately the square root of the entire gain, so as to split up both gains evenly. The initial

gain cannot be too high so as to ensure that the Kbias has sufficient influence on the output

voltage. We solved the op-amp configuration of figure 2.1 to obtain Equations 2.3 to 2.8. The

initial gain is determined by the following equation:

𝐾1 = 1 +
𝑅2

𝑅1
 (2.3)

We chose R1 arbitrarily to be 47Ω, and from K1, R2 can then be found to be 3160Ω. The second

gain stage, without the bias, is found to be:

𝐾2 =
𝑅4

𝑅3
+

𝑅4

𝑅5
+ 1 (2.4)

while Kbias is given by the following equation:

𝐾𝑏𝑖𝑎𝑠 =
𝑅4

𝑅5
 (2.5)

From here, it becomes clear that another resistor value needs to be chosen arbitrarily. We

decided to use R5 as the starting point, and it was chosen to be 5000Ω. This number is chosen

in the region that allows Vbias to be a reasonable value close to the value found in [1] which is

3V. Vbias,max is calculated by using the Thevenin equivalent of the current DAC and R5 and is

thus found to be 1.53V. From Equation 2.2, Kbias is found to be 42.05 and from equation 2.5,

R4 can then be calculated and is found to be 210kΩ. R3 can finally be found by the following

equation:

9

𝑅3 =
𝑅4

𝐾2−𝐾𝑏𝑖𝑎𝑠−1
= 3918Ω (2.6)

From the op-amp configurations, the expected output voltage can be found by:

𝑉𝑜𝑢𝑡 = (
𝑅4

𝑅3
+

𝑅4

𝑅5
+ 1) (1 +

𝑅2

𝑅1
)((𝐼sense𝑅𝑠𝑒𝑛𝑠𝑒) − 𝑅4𝐼𝑏𝑖𝑎𝑠 (2.7)

Hence, through algebraic manipulation, the current that is sensed is calculated by:

𝐼𝑠𝑒𝑛𝑠𝑒 =
𝑉𝑜𝑢𝑡+𝐼𝑏𝑖𝑎𝑠𝑅4

(1+
𝑅2

𝑅1
)(

𝑅4

𝑅3
+

𝑅4

𝑅5
+1)𝑅𝑠𝑒𝑛𝑠𝑒

 (2.8)

A summary of the resistor values is shown in Table 2.3.

Table 2.3. Resistor Values

Resistor Value (Ω)

R1 47

R2 3160

R3 3918

R4 210294

R5 5000

10

 Simulations

For proof of concept, the circuit configuration and resistor values were simulated using ideal

op-amps. From Equation 2.1, the amplified DC signal should fall in the middle of the input

voltage range of the ADC, which is dependent on the value of Ibias. The ideal Ibias value can be

calculated by first assuming that the output voltage will appear at 1.65V, which is the middle

of the 0-3.3V ADC range. For example, assuming a current value of 1A, then, Ibias can be found

by the following method:

𝐼𝑏𝑖𝑎𝑠 =
𝐾𝑔𝑎𝑖𝑛𝐼𝑠𝑒𝑛𝑠𝑒𝑅𝑠𝑒𝑛𝑠𝑒−𝑉𝑜𝑢𝑡

𝑅4
= 23.54µ𝐴 (3.1)

Hence, for every input current value, the corresponding bias current can be calculated. We used

Matlab Simulink for the simulation where the input current was allowed to vary. The current

bias was changed accordingly based on the following equation:

∆𝐼𝑏𝑖𝑎𝑠 =
𝐾𝑔𝑎𝑖𝑛∆𝐼𝑠𝑒𝑛𝑠𝑒𝑅𝑠𝑒𝑛𝑠𝑒

𝑅4
 (3.2)

Figure 3.1. Circuit Diagram for DC Current Simulation in Matlab Simulink

We built the system shown in Figure 3.1 to see if the voltage output would be centered at 1.65V

throughout the input DC current range of 0 to 10A. It was simulated in Matlab Simulink, and

a Matlab script was used to modify the values of k_in and k_bias at the beginning of each

11

simulation iteration. Figure 3.2 shows the output voltage of the second op-amp is clearly around

1.65V. Due to rounding off error in the k_bias calculations, the DC output increases slightly

from 1.653V to 1.664V from the input current of 1A to 10A. This proved that the resistor value

calculations were indeed correct and that the op-amp configurations could measure current

through the entire input current range through this windowing technique.

Figure 3.2. Voltage Output Plot vs DC Current Input for Matlab Simulink Simulation

We next sought to determine if current ripple was scaled to fit half of the ADC range, as well

as follow the window set by the current bias. The system shown in Figure 3.3 was built in

Simulink and then simulated. This time, a sine wave was placed at the input with a DC offset

determined by the k_in parameter.

12

Figure 3.3. Circuit Diagram for Current Ripple Simulation in Matlab Simulink

Figure 3.4. Voltage Output Plot (top) and Current Ripple Input (bottom) vs Time for Matlab Simulink

Simulation

The sine wave input had an amplitude of 0.125A which gives a ripple of 0.25A as specified in

Table 2.1. The output voltage ranged from 0.847V to 2.498V, which amounts to 1.646V, which

is about half of the input ADC range, as calculated in the earlier sections. The input current

ripple was scaled and varied based on the current bias. We have shown through simulation that

despite the increase in current, the voltage output remains in the window for the entire input

current range.

13

 Programming Cypress

The CYPRESS PSOC Creator gives the programmer the option of dragging and dropping

components into a schematic as shown above in Figure 4.1. The parameters of each of the

components can be specified using a GUI, hence reducing the use of C code to initialize

registers. How each of the components behave is then determined by the main function and C

code. The resistors cannot be programmed in the microcontroller, hence we needed to arrange

the resistors on a breadboard. We then programmed the output pins of the microcontroller and

wired them to the appropriate nodes accordingly.

Figure 4.1. PSOC Creator Circuit Diagram

4.1 Op-amp

The PSOC4 boasts two highly configurable programmable op-amps. We needed high output

current so as to be able to drive the output pins. The PSOC 4 could be programmed to output

current at 1mA or 10mA. Hence we selected the 10mA option. We selected the op-amps to run

at high power mode for high slew rates and a high gain bandwidth. A high slew rate is needed

due to the ripple measurements the circuit is required to perform. The high gain bandwidth is

needed since the gain of both op-amp configurations are large. We chose high stability, despite

the slower speed, due to its high compensation which stabilizes the voltage output of both op-

amps.

14

4.2 Analog-to-Digital Converter (ADC)

The PSOC4 also has a highly configurable analog-to-digital converter, with up to 4 channels.

However, we only need one channel for our purposes. The ADC would only begin a conversion

when needed and hence we programmed it to be hardware triggered. Based on the technical

reference manual, for a single ended input ADC with a range that starts from 0V, having the

single ended negative input connected to Vss and the voltage reference connected to an external

voltage reference, which was set at 3.3V, would provide the ADC with the best signal-to-noise

ratio. Initially, we chose a slow sample rate and high number of samples averaged, so as to

ensure stability in readings, and the sampling rate will be optimized further at later stages.

Hence a 1MHz sampling rate was chosen, with 256 samples averaged. We also lengthened the

acquisition time to 500µs for greater stability. Finally, the ADC’s resolution was 11 bits which

meant each bit change amounted to a 1.612mV change in output voltage, in turn translating to

a 0.244mA change in current sensed.

The ADC can generate interrupts based on window limits or if the ADC saturates. We set the

window limits to 1.15 to 3.044V, which is about 200mV larger than 1.65V, the expected peak

to peak scaled voltage output waveform. More about how the algorithm leverages on this limit

interrupts will be explained in subsequent sections.

4.3 Current Digital-to-Analog Converter (IDAC)

To provide the bias, a current DAC was used. The DAC will be in parallel with R5 so as to

create the Thevenin voltage bias so as to have the same bias equations as in [1]. We set the

IDAC to a resolution of 8 bits which translates to 1.2µA per bit.

4.4 . Pins

All pins are programmed to be analog, as we are dealing completely with analog signals.

15

4.5 LEDs

An RGB LED was programmed to indicate when the voltage signal exceeded the limits by

lighting up in red.

4.6 UART

UART was programmed to have a baud rate of 9600bps. The buffer size is set to 8 bits (1 byte)

with 1 stop bit. With the buffer size as such, the values of the bias and the converted ADC

reading, mvolts must be sent to the first in first out buffer (FIFO) one byte at a time. We wrote

some C code to ensure that only 1 byte is being sent to FIFO at a time and this can be viewed

in the Appendix.

4.7 Code Algorithm

Figure 9.2 shows a flowchart of the code algorithm incorporated into the circuit.

16

Figure 4.2. Flowchart of Code Algorithm

The ADC is hardware triggered, and hence, each loop begins with a function call to start the

ADC conversion process. A buffer state is created to ensure that the ADC conversion process

is completed before further code is executed. The code then calls a function that converts the

ADC reading into millivolts so that we do not have to deal with hexadecimal interpretation. A

flag will be generated if the ADC reading falls outside the window. If there is no flag, then the

reading is sent to UART and the loop restarts. If there is however, then a simple “if” condition

checks if either the upper or lower limit is reached and adjusts the bias current accordingly so

as to shift the window. The bias is adjusted by only one bit, which equates to 1.2µA, and so

that the window shift is as small as possible to ensure finer window adjustment.

Start

Conversion

Is

Conversion

done?

No

Yes

Convert to

Millivolts

Outside

specified

window?

Send reading

to UART

No

LED ON

Is the

reading

less than

2V?

1. Decrease

Bias

2. Set IDAC

1. Increase

Bias

2. Set IDAC

No

17

 Initial Measurements and Debugging

The circuit in Figure 5.1 was set up on a breadboard for initial measurements.

+

-

+

-

Current
DAC

Rsense

R1
R2

R5 R3
R4

Vout

DC Current
Source

Figure 5.1. Test Circuit with Cypress Op-amps

A DC current source was used to bias the sense resistor. Rsense was initially a wire measured

out to be approximately 1mΩ using a 4-wire measurement. However, after the circuit was set

up, no voltage was registered at the output.

5.1 Initial Debugging

The Cypress op-amps were immediately suspected, as upon probing, the voltage output from

the initial state was only 16mV, as compared to a 68mV expected output at 1A input current.

To debug the cypress op-amps, the following circuit shown in Figure 5.2 was used.

Figure 5.2. Debugging Circuit for Initial Op-amp Stage

To rule out gain bandwidth issues, we decided to decrease the gain of the circuit by a factor of

10, and hence the 3160Ω was switched out for a 270Ω resistor so that the gain would be 6.744.

Table 5.1 below shows the results of varying the input from 1mV to 450mV.

18

Table 5.1. Measurements for Initial Gain Debugging Circuit 1st Op-Amp

DC (V) Vout (V) GainCalculated GainIdeal Gain Error (%)

0.001 0.003 2.920 6.745 382.47

0.010 0.006 0.561 6.745 618.37

0.020 0.068 3.416 6.745 332.87

0.030 0.147 4.900 6.745 184.47

0.040 0.225 5.612 6.745 113.29

0.050 0.299 5.980 6.745 76.47

0.060 0.374 6.232 6.745 51.30

0.070 0.446 6.374 6.745 37.04

0.080 0.518 6.469 6.745 27.59

0.090 0.588 6.536 6.745 20.91

0.100 0.658 6.579 6.745 16.57

0.110 0.727 6.609 6.745 13.56

0.150 1.000 6.667 6.745 7.80

0.200 1.338 6.691 6.745 5.42

0.310 2.077 6.699 6.745 4.56

0.410 2.747 6.701 6.745 4.37

0.450 3.015 6.700 6.745 4.51

The voltage measurements for the input DC voltage of 1mV explains the issue of having no

voltage amplification at the current input of 1A, since the voltage output was a mere 3mV.

However, as the DC input voltage increases, we begin to see that the gain converges towards

the correct value. However, the DC input in which the gain approaches an acceptable value, is

in the region of 200mV, which corresponds to 200A of input current.

The second op-amp was also tested using the same circuit and Table 5.2 shows the voltage

measurements acquired. Note the difference in Gainideal because different resistors of the same

value were used as it was done on a separate occasion.

19

Table 5.2. Measurements for Initial Gain Debugging Circuit 2nd Op-Amp

DC (V) Vout (V) GainCalculated GainIdeal Gain Error (%)

0.001 0.042 42.210 7.059 497.94

0.002 0.048 24.200 7.059 242.81

0.003 0.055 18.267 7.059 158.76

0.004 0.061 15.350 7.059 117.45

0.005 0.068 13.526 7.059 91.61

0.010 0.100 10.000 7.059 41.66

0.015 0.133 8.867 7.059 25.60

0.020 0.166 8.300 7.059 17.58

0.025 0.199 7.960 7.059 12.76

0.035 0.267 7.629 7.059 8.07

0.045 0.333 7.400 7.059 4.83

0.055 0.400 7.273 7.059 3.02

0.075 0.537 7.165 7.059 1.50

0.100 0.710 7.100 7.059 0.58

0.200 1.412 7.060 7.059 0.01

0.300 2.117 7.057 7.059 -0.04

0.400 2.823 7.058 7.059 -0.02

The results shown for the second op-amp showed similar gain calculations, where they

converged to the correct value as the input increased.

5.2 Using an External Op-amp

To ensure that the circuit design worked, and that the op-amps were the points of failure,

external op-amps were used. As a starting point, we chose the op-amps used in [1] to replace

the Cypress Op-amps which were the OPA4364. Initial simulations were also performed to

ensure that the Op-amps could work at such a low sense resistor and high gain. The simulation

of a model of OPA4364 was performed over LTSPICE and the circuit diagram of which is

shown in Figure 5.3.

20

Figure 5.3. LTSPICE Simulation of Circuit with OPA364

Since the op-amp model was not ideal, it was difficult to determine the correct current bias at

a given current input. Hence a DC sweep of the current bias source was performed. We

initialized I4 to be 23.5µA and varied by 1.2µA up to 50µA. After which, data cursor was used

to determine the current bias value in which the output of the circuit was around 1.65V. With

a slight error value, we determined that the current bias should be initialized to slightly below

34.3µA.

Figure 5.4. LTSPICE Simulation Plot of Circuit with OPA364 with DC Sweep of I4 Current Source from

23.5µA to 50µA at 1.2µA Intervals

Using the information obtained above, we initialized the current bias to 34.15µA to obtain a

voltage output signal at 1.65V as shown in figure 5.5 below.

21

Figure 5.5. LTSPICE Simulation Plot of Circuit at Current Bias of 34.15µA

We have proven that OPA364 could be used for our application and hence we proceeded to

breadboard the op-amps with the same setup as in previous sections. However, the same issue

occurred, where at 1A, no voltage output was detected at the initial gain stage. Hence, other

factors were looked at. After further analysis, we then suspected that the minimum offset

voltage of the op-amps could explain why at such low sense voltages, no output voltage was

attained. It was discovered that the voltage offset of OPA364 was 0.5mV. Voltage offset can

be viewed as the voltage across the inverting and non-inverting input to make the output voltage

0V. Having a voltage offset of 0.5mV could prove too close to 1mV and hence the op-amps

could ‘think’ that it was sensing 0V and hence not output anything. We then looked at the input

offset voltage of the Cypress op-amps and discovered that it was 1mV which also explained

the behavior in the previous instances.

5.3 Alternative External Op-amps

We were then aware that the input voltage offset proved to be a critical electrical characteristic

of the op-amp amongst other factors, and so, eventually we settled on OPA330 as it had

comparable electrical characteristics as OPA364, but a lower input offset voltage at 50µV.

22

+

-

+

-

Current
DAC

R1
R2

R5 R3
R4

Vout

DC Voltage
Source:

1mV-10mV

Figure 5.6. Testing Circuit with External Op-amps

As seen in Figure 5.6, the DC voltage input was allowed to vary from 1 to 10mV and the ADC

readings were manually taken down at an input interval of 0.2mV. Measurements were only

made when the current bias remains constant for three consecutive ADC readings. In this way,

the ADC readings are the settled voltage output and not the intermediate sensed current

measurements when the bias is adjusting while the signal is outside the window. Measurements

were made for both increasing and decreasing current, and plots were made via Matlab to

observe the trend in the ADC readings. Figure 5.7 shows the results of those measurements.

The current calculated was based on Equation 2.8 and represents the y-axis.

The solid line indicates the expected current plot in ideality and the scatter plot indicates actual

data points measured and plotted at different input DC voltages. The key takeaway here is that

both plots are monotonic. Digital calibration would be able to process the slight discrepancies

between the real and the ideal current measurements.

These plots proved that the code works, and that the resistor values chosen allowed current

measured across the entire range.

23

Figure 5.7. Plots for OPA4330 for Current Measurements

24

 Cypress Op-amp Workaround

The ultimate goal in this research was to use the Cypress op-amps. Hence, after proving that

the code and resistor values worked, we needed to ensure the full-functioning of the circuit

with the Cypress op-amps.

6.1 Creating a Fixed Offset through High Side Current Sensing

From previous sections, we showed that the input voltage offset was a problem, hence it was

decided to attempt to force an offset at the input terminals of the op-amps. In order for this to

be possible, we needed to sense current at the high side instead and hence, set up the circuit as

shown in Figure 6.1.

1m

47k 68k

22k 33k

1.583V1.628V
+

-
47

3160

5VDC
5

a b

Figure 6.1. Input Offset Voltage Forcing Circuit

As proof of concept, we placed a 5V DC source to represent a panel, and placed a 5Ω resistive

load so as to force 1A through the sense resistor. As seen in Figure 6.1, the expected voltages

at nodes a and b were 1.628V and 1.583V respectively causing a difference of 45mV. However,

both in simulation and on the breadboard, the inverting input forced the voltage difference to

be 0.5mV. The simulation result is shown in Figure 6.2.

25

Figure 6.2. Simulation Result for Voltage Offset Divider

It was suspected that the resistors values were too high and hence too little current could have

flowed to the inputs of the op-amp. However, the resistor values were chosen in the tens of

kiloOhms range so as to reduce power loss. Minimal effort was expended in debugging this

circuit since this voltage divider added power more power loss (an added 0.6mW) to a current

sense solution whose sole purpose was to sense virtually losslessly. Further, high side sensing

would make the voltage dividers panel dependant which would hence alter the resistor values.

6.2 Re-characterization of Cypress Op-amp 2

The Cypress was re-plotted at the required gain as the data shown table 5.2 indicated that one

of the op-amps could detect an input of 1mV. The measurements were done and are shown in

Table 6.1. We noticed that if we subtracted the voltage at 0mV DC input, then our gain error

falls to the region of 7%, which would not pose too much of a problem after digital calibration.

26

Table 6.1. Measurements for Re-characterization of 2nd Op-Amp

DC (V) Vout (V) Vout-Voff GainCalculated Gainactual Gain_error(%)

0 0.327 0 - - -

0.001 0.394 0.067 67.300 72.083 6.64

0.002 0.462 0.135 67.700 72.083 6.08

0.003 0.529 0.202 67.467 72.083 6.40

0.004 0.595 0.268 67.000 72.083 7.05

0.005 0.662 0.335 66.960 72.083 7.11

0.010 1.000 0.673 67.320 72.083 6.61

0.015 1.339 1.012 67.480 72.083 6.39

0.020 1.678 1.352 67.580 72.083 6.25

0.025 2.013 1.686 67.448 72.083 6.43

0.030 2.357 2.030 67.667 72.083 6.13

0.040 3.045 2.718 67.953 72.083 5.73

6.3 Creating the Workaround

+

-

+

-

68k

22k
Initial Gain

Vin

2nd Gain Stage and
Biasing Gain

368mV + VsenseK1

Scale*(368mV +
VsenseK1)

Vout

Figure 6.3. Cypress Workaround

From, the previous section and in the earlier chapters, we showed how the two op-amps

behaved very differently despite the same setup. For the set of PSOC4 that we had at our

disposal, we decided to leverage on the two very separate idiosyncrasies of the op-amps to

make the circuit work. One op-amp only started amplifying at voltage inputs above 40mV, and

the other op-amp amplified linearly, but had a 360mV offset. Hence, the initial gain stage was

used for the op-amp with the voltage offset, and then scaled downwards using a voltage divider

27

to a reasonable value as an input to the second stage. As the same characteristics were observed

in other Cypress op-amps, prima facie, it seemed like a viable option.

With the new scale, the circuit will behave quite differently, and the relationship between the

input and output of the initial gain stage is shown in Figure 6.4.

Figure 6.4. Input to Second Stage

From the graph above, it should be expected that the maximum biasing current should be less

for the Cypress setup than for the OPA4330. Also, with the new scale, Equation 2.8 will be

different and can be found by Equation 6.1 below.

𝐼𝑠𝑒𝑛𝑠𝑒 =
𝑉𝑜𝑢𝑡+𝐼𝑏𝑖𝑎𝑠𝑅4

(
𝑅7

𝑅7+𝑅8
)(1+

𝑅2

𝑅1
)(

𝑅4

𝑅3
+

𝑅4

𝑅5
+1)𝑅𝑠𝑒𝑛𝑠𝑒

−
𝑉𝑜𝑓𝑓

(1+
𝑅2

𝑅1
)(𝑅𝑠𝑒𝑛𝑠𝑒)

 (6.1)

The same measurements process as in the previous chapter was performed with this new set

up. It should also be noted that a low-pass filter is placed at the input of the ADC as well as the

input of the inverting terminal of the op-amp in the second stage. This was to filter out any

noise inherent in the Cypress op-amps.

28

Figure 6.5 shows the plots of increasing and decreasing current using the Cypress op-amps.

The y-axis shows the current calculated after the sweep using Equation 6.1. We recorded the

values of the bias variable as well as the converted ADC reading, mvolts and we used these

values to calculate the current. The bias current is calculated based on Equation 6.2 below.

𝐼𝑏𝑖𝑎𝑠 =
𝑏𝑖𝑎𝑠

255
∗ 0.000306 (6.2)

255 is the maximum value bias can take since the DAC has an 8 bit resolution, and 0.000306

is the maximum current output from the DAC.

Figure 6.5. Decreasing Current Measurement Plots for Cypress Op-amps

29

Figure 6.6. Increasing Current Measurement Plots for Cypress Op-amps

There was a lot more flutter in the ADC readings as compared to the OPA4330, indicating that

the Cypress op-amps are not as stable as the OPA4330. However, the general trend follows

very closely to the ideal case. Digital calibration can be performed to account for the flutter in

ADC reading. Further, these measurements were performed on a circuit built on a breadboard

which tend to introduce noise into signals.

6.4 New Circuit Parameters

With the added scale, the gain of the circuit changed and can be found by Equation 6.3 below:

𝐾𝑔𝑎𝑖𝑛 = 𝐾1𝐾2𝐾𝑠𝑐𝑎𝑙𝑒 (6.3)

Where,

𝐾𝑠𝑐𝑎𝑙𝑒 =
𝑅7

𝑅7 + 𝑅8

30

The rest of the resistor values remained the same and are shown in Table 6.2 and the gain values

are summarized in Table 6.3.

Table 6.2. Resistor Values with Kscale

Resistor Value (Ω)

R1 46.5

R2 3160

R3 3920

R4 221000

R5 4990

R7 22000

R8 68000

Table 6.3. Gain Values with Kscale

Gain Value (V/V)

K1 68.23

K2 96.73

Kscale 0.244

Kgain 1610

It is thus apparent that the scale decreases the gain of the circuit, which effectively increases

the range of current that can be measured, but reduces the resolution of the measured signal.

31

 Printed Circuit Board (PCB) Implementation and Input Sweeps

A 2-layer PCB was designed using Eagle in attempt to eliminate noise in signals and hence

reduce ADC reading flutter. Both the circuit for the Cypress op-amps and the OPA2330 were

built on the same board. Note that OPA2330 is a dual version of the quad package of OPA4330.

The figure below shows the PCB connected to the Cypress microcontroller. The actual

schematic and Eagle layout can be found in the appendix. The PCB was also characterised and

we observed that the voltage offset from the first op-amp was 300mV at 0mV input.

Figure 7.1. Picture of PCB with Cypress Pioneer Kit Microcontroller

7.1 Improvements in ADC parameters

Initial measurements showed that there was very little flutter in the ADC readings and hence

we decided to quicken the acquisition and sampling rate for better processing since this current

sense amplifier would eventually need to measure current ripple. The clock frequency was

increased from 1Mhz to 15Mhz, with just two samples averaged per ADC conversion, further

the acquisition time was reduced to 4 clock cycles, that is 266.67ns per acquisition and thus the

conversion time is improved to 1.2µs. In this case, we are certain that a high frequency current

32

ripple can indeed be measured with high enough resolution with these acquisition and

conversion times.

7.2 Python Serial/UART Communication

In order to generate voltage sweeps, we used Python code to communicate with a Kiethley

2400 power sourcemeter through GPIB. Python was also used to set up serial communication

using the UART protocol so that the bias and mvolts variables can be saved in a log file. We

would then process these measurements to produce the current measurements digitally after

the whole sweep was performed. An algorithm had to be set up such that the serial output from

the microcontroller is sent only when the Python code is ready to receive the data. The python

code of these sweeps can be found in Appendix C.

7.3 Input DC Voltage Sweep

The same set up shown in Figure 5.5 was used for the input voltage sweep, except that the

sweep begun from 0mV and ended at10mV, with 0.1mV increments and then the input voltage

was decreased from 10mV to 0mV. At each voltage input operating point, 10 ADC readings

were taken to observe the flutter. Since an array of bias and mvolts were obtained, we could

use those values to calculate the current measured using Equations 6.1 and 6.2 with mvolts

converted to volts and used as the input to Vout in Equation 6.1. The results of the experiment

is shown in Figures 7.2 and 7.3.

33

Figure 7.2. Current Measurements for an Increasing Input Voltage Sweep

Figure 7.3. Current Measurements for a Decreasing Input Voltage Sweep

The results in Figures 7.2 and 7.3 show a vast improvement in ADC flutter as compared to the

measurements performed on the breadboard. This can be attributed to the low pass filters as

34

well as the PCB. The slight difference in slope between the measured plot and the ideal plot

could be eliminated through digital calibration which will be performed once actual current is

swept through a sense resistor instead of an input voltage sweep.

7.4 Input Voltage Ripple Sweep

Since current ripple is intended to be measured with this current sense amplifier, a current

ripple sweep was performed using the Kiethley 2400 power sourcemeter. A voltage ripple of

0.250mV was generated by simply incrementing and decrementing the input voltage by

0.005mV so that a triangle wave is generated and the sweep was induced by increasing the DC

offset of this ripple. It should be noted that the minimum DC offset was set to 1mV. Only one

ADC reading is taken per input voltage level.

Figure 7.4. Current Measurements for an Input Ripple Voltage Sweep

Figure 7.4 show that the calculated current follows the trend of the ideal current measurement

very closely, with a slightly less steep slope for the entire input range.

35

Figure 7.5. Zoomed in Current Measurements for Input Ripple Voltage Sweep

The zoomed in figure of the current ripple show that a 0.2A difference between the ideal and

actual current at the 8A current level. Also, the calculated ripple shows a slightly different

ripple pattern than the actual current, however, this was not too concerning as for DPP and

MPPT, the change in current is more important than the absolute current level. Further, there

was a slight timing issue in the Python Code at the time this measurement was taken, however,

for the actual current ripple measurement shown in the succeeding sections, the bug was fixed

and the pattern matched.

7.5 Input Current DC Sweep

The following set up shown in Figure 7.6 was used to sweep the current from 0.5 to 9.5A. A

1Ω resistor load was used to draw the current based on a 0.5 to 9.5V DC voltage sweep using

the Agilent 6674a power supply with 0.1V increments and decrements. It should be noted that

current was only limited to 9.5A as the fuse rating of the ammeter was 10A and hence we

sought to limit the current to 9.5A.

36

+

-

+

-

68k

22k
Initial Gain

2nd Gain Stage and Biasing Gain

DC Voltage
Source:
0.5-9.5V

Rsense

1

Figure 7.6. Circuit Diagram for Current Sweep Measurements

Figure 7.7 below shows the results of the current sweep. The plot in red shows the current

measured from the ammeter placed just before Rsense and the plot in blue shows the current

calculated based on Equation 6.1.

Figure 7.7. Current Measurement Comparison between Calculated Current and Actual Current

As current increases, the difference between the calculated current and the actual current

increased linearly. However, it is clear that the current measurement response is monotonic

37

which thus makes it easier to digitally calibrate and reliable especially for MPPT applications

where the need to detect the change in current is more important than the absolute current

levels. The Figure 7.8 below shows the effects of digital calibration.

Figure 7.8. Current Measurement Comparison between Calculated Current After Digital Calibration and

Actual Current

The digital calibration was performed in Matlab, though the algorithm can be easily applied in

C via the main microcontroller or even the PSOC4 chip to process the current values. The

characteristic relationship between the calculated current and the actual current was exploited

where there was a linear increase in the difference between the two currents and hence as

current increased, the calculated current was increased by an amount that increases linearly

with increase in current. Refer to Appendix D1 for the Matlab code.

7.6 Input Current Ripple Sweep

Since the current that this circuit was designed to be measuring was actually a current ripple, a

Kiethley 2400 sourcemeter was programmed to generate a ripple current in a triangular

waveform and was allowed to vary from 1 to 3A with a ripple amplitude of 0.125A and a DC

38

offset increment (and decrement) of 0.1A. The setup is shown in Figure 7.9, with a current

source used instead of a voltage source, hence there was no need for a 1Ω load resistor.

+

-

+

-

68k

22k
Initial Gain

2nd Gain Stage and
Biasing Gain

Ripple Current
Source:
0.5-3A

Rsense

Figure 7.9. Circuit for Current Ripple Plots

The results of the sweep is shown in Figure 7.10. There is the same increase in the difference

between the calculated current and the measured current, but in this case, the measured current

is the reading from current output from the Kiethley 2400. There were some spikes in the

calculated current that was not in the measured current, these spikes could be attributed to the

transition where the errors occur as the bias is shifting and current is still being measured.

39

Figure 7.10. Current Ripple Plots with Kiethley 2400

Clearly, the calculated current required digital calibration similar to the previous section and

Figure 7.11 shows the effects of digital calibration. A slightly different algorithm was used this

time, where the current was shifted by a predetermined number based on the current level.

Figure 7.11. Current Ripple Plots after Digital Calibration

40

Figure 7.11 proves that once again, digital calibration is highly effective in matching the

calculated current to the ideal current measurements. Figure 7.12 emphasises on this point

where the current ripple after digital calibration follows the pattern of the current ripple

produced by the current source very well. With the spikes attributed to the timespan during the

changes in the ADC window. Digital calibration was performed on Matlab once again, though

the algorithm can be easily implemented in C code and programmed into the microcontroller.

Refer to Appendix D2 for the Matlab code.

Figure 7.12. Zoomed in Current Ripple Plots after Digital Calibration

7.7 ADC Window in Relation to the Calculated Current Ripple

The current ripple was plotted in relation with the ADC window and is shown in Figure 7.13.

The ADC window limits (i.e. 1.15V and 3.044V) were calculated via Equations 6.1 and 6.2 to

see the ‘current level’ the ADC limit windows actually represent.

41

Figure 7.13. Current Ripple in Relation to the ADC Window

Figure 7.13 shows that the peaks in the current ripple are responsible for the shifting up of the

ADC window and the troughs of the current ripple are responsible for the shifting down of the

ADC reading. This was deduced by observing that each shift in the ADC window is aligned

with a peak or a trough. It is also clear that the ripple stays at the edge of the ADC window

throughout the measurement which is a product of the bias code algorithm where the bias is

only changed incrementally by 1.2µA each time the limit of the window is hit.

7.8 ADC Ripple Analysis

The scale down due to the DC voltage offset from the Cypress op-amps also scales the ripple

amplitude of the ADC readings down to the region of 450mV instead of the calculated 1.65V.

This is easy to see from Equation 7.1:

𝐼𝑟𝑖𝑝𝑝𝑙𝑒 ∗ 𝑅𝑠𝑒𝑛𝑠𝑒 ∗ 𝑠𝑐𝑎𝑙𝑒 ∗ 𝐾𝑔𝑎𝑖𝑛 = 0.250 ∗ 0.001 ∗ 0.244 ∗ 6600 = 0.4026𝑉 (7.1)

42

Figure 7.14. Current Ripple in Relation to the ADC Window

Figure 7.14 shows an enlarged version of the voltage ripple in relation to the ADC window

where the ADC reading’s ripple amplitude is 0.463V which is expected from Equation 7.1.

This does not fully utilize the capability of this current sense topology and hence we would

need to make adjustments to the resistor values in order to counter this. This ripple can be

scaled back up however and the next chapter will delineate how this process will be achieved.

43

 Optimization

As seen from the previous chapter, the ripple did not fully utilise the capabilities of the circuit

configuration. Hence we did a rethink on how to scale manipulate the gains such that the output

ripple utilizes as many bits as possible.

The first step was to increase s which is the portion of the ADC range to scale the ripple to

from 0.5 to 1. That is, for the case of OPA4330, the ripple will fill the entire range of the ADC.

In this way, all 11 bits of the ADC range will be used fully, which is, the peak of the ripple will

ideally be at 204710 and the trough would be at 010. However, because of the scale down at the

initial stage, it will be expected that the resultant ripple will be slightly smaller than the entire

ADC range.

Since the scale down occurred at the initial stage, we would only be able to change K2 for the

scale up process. However, in K2 we could only change R3 since R4 and R5 affect Kbias. We

first calculate the resistor values as per normal, but with s=1. We then set an equation to find

the minimum value of R3 that we can have. This is achieved by corresponding the maximum

current level that the circuit has to measure with the maximum bias the DAC can output and

equating that to the maximum ADC reading. This is shown in Equation 8.1:

(𝐼
max +

𝐼𝑟𝑖𝑝𝑝𝑙𝑒

2

) 𝑅𝑠𝑒𝑛𝑠𝑒𝐾1𝐾2𝐾𝑠𝑐𝑎𝑙𝑒 + 𝑉𝑜𝑓𝑓𝐾𝑠𝑐𝑎𝑙𝑒𝐾2 = 𝑟𝐴𝐷𝐶 + 𝑅4𝐼𝑏𝑖𝑎𝑠,𝑚𝑎𝑥 (8.1)

Rearranging 8.1 to find the minimum R3 for the optimized circuit we have Equation 8.2:

𝑅3𝑚𝑖𝑛 = 𝑅4 (
𝑟𝐴𝐷𝐶+𝑅4𝐼𝑏𝑖𝑎𝑠,𝑚𝑎𝑥

(𝐼
max +

𝐼𝑟𝑖𝑝𝑝𝑙𝑒
2

)𝑅𝑠𝑒𝑛𝑠𝑒𝐾1𝐾𝑠𝑐𝑎𝑙𝑒+𝑉𝑜𝑓𝑓𝐾𝑠𝑐𝑎𝑙𝑒

− 1 −
𝑅4

𝑅5
)

−1

= 914.9Ω (8.2)

44

The minimum resistance value for R3 was found to be 914.9Ω at a 10A input current. Table

8.1 below shows the new resistor values of the circuit based on the resistances measured that

are implemented in the circuit.

Table 8.1. Resistor Values for Optimized Circuit

Resistor Value (Ω)

R1 47

R2 3160

R3 932

R4 421646

R5 4990

R7 22000

R8 68000

The new gain values are shown in Table 8.2 below.

Table 8.2. Gain Values for Optimized Circuit

Gain Value (V/V)

K1 68.23

K2 537.91

Kscale 0.244

Kgain 8955

8.1 Simulation of Optimized Circuit

To test the equations, simulations were performed on LTSPICE. The voltage input to the

second op-amp was determined by Equation 8.3. This is to simulate the expected output from

the initial gain stage after the scale down.

𝐼𝑛𝑝𝑢𝑡 𝑡𝑜 𝑆𝑒𝑐𝑜𝑛𝑑 𝑂𝑝𝑎𝑚𝑝 = (𝐼𝑠𝑒𝑛𝑠𝑒𝑅𝑠𝑒𝑛𝑠𝑒𝐾1 + 𝑉𝑜𝑓𝑓)𝐾𝑠𝑐𝑎𝑙𝑒 (8.3)

In simulation, a sinuosoidal input with DC offset of 10A and an amplitude of 0.125A was put

into Equation 8.3 to figure out the parameters of the voltage source, V1, in the simulation.

These parameters are 0.2391V DC offset with a 0.0021V amplitude. The circuit diagram of the

simulation and its result is shown in Figures 8.1 and 8.2.

45

Figure 8.1.Circuit Diagram for Optimized Circuit Simulation

Figure 8.2. Simulation Results for Optimized Circuit at Max Current

The simulation waveform shown in Figure 8.2 shows that at maximum current, the voltage

ripple falls within the range of the ADC at the maximum bias output current. Also, the resultant

voltage ripple’s peak to peak voltage is 2.874V which proves promising that we would have

high enough resolution in the ripple.

8.2 Ripple Sweep

The ripple sweep similar to the one done in Section 7.4 was performed to see if the simulation

results carried over to the hardware implementation. Figure 8.3 below compares the ripple

output from the Kiethley 2400 and the calculated current with a sweep from 0-3A. The ADC

window limits were set to between 0.4 and 3V to create a very tight bound on the ripple.

46

Figure 8.3. Current Ripple Sweep

The general pattern of the ripples shown resembles that of Figure 7.10 with a similar deviation

away as current increases. The current ripple was digitally calibrated, using the same Matlab

code as before to prove consistency in readings and shown in Figure 8.4 below.

Figure 8.4. Current Ripple Sweep After Digital Calibration

47

8.3 ADC Window in Relation to the Calculated Current Ripple

The same plot as in Chapter 7.6 is performed to see how the window is shifted according to the

changing current levels. From Figure 8.4 below, it becomes more apparent that the window

shifts more as the current ripple peaks just meets the window limits of the ADC.

Figure 8.5. Current Ripple in Relation to Window Limits

The spikes in the ADC window limits corresponds heavily to the spikes in the current ripple

which can be attributed to the transitions when the bias levels are changing. It can also be

observed from the figure that the ripple fits very snugly within the window limits.

8.4 ADC Optimized Analysis

The ripple was enlarged in Matlab to view the actual peak to peak values measured by the ADC

and is shown in Figure 8.6.

48

Figure 8.6. Enlarged Current Ripple

From figure 8.6, we can see that the ripple peak to peak is around 2.26V which is far better

than the 0.4V measured originally.

8.5 Full Range Current Sweep

By increasing the gain of the second stage, there is a small risk that the maximum current may

fall outside the range of the current sense circuit. To ensure that the circuit can measure the

entire range of current, a 0.5-10A DC sweep was performed using the HP 6674A DC Power

Supply. Figure 8.7 shows a comparison between the current measured by a Fluke 45 Digital

Multi-Meter (red line) and the current measured from the current sense circuit (blue line). As

seen before, the current measured from the current sense circuit deviates away from the

measured current as current increases, with that difference changing linearly. Figure 8.8 shows

the current measurements after digital calibration which indicates that the digitally calibrated

measurements matches the current measurements very closely for the entire 0.5-10A range.

49

Figure 8.7. 0-10A Current Sweep Current Plot Comparison

Using the same algorithm as in Section 7.4 to prove consistency in readings, the results of the

current measurement can be digitally calibrated and is shown in Figure 8.8.

Figure 8.8. 0-10A Current Sweep Current Plot Comparison after Digital Calibration

50

 Analysis

9.1 Resolution Analysis

We have seen that four different instances where the resolution has changed: a current sense

without windowing, windowing circuit with OPA4330 with 1.65V window, windowing circuit

with Cypress op-amps and the optimized windowing circuit with Cypress op-amps. Since an

11bit ADC range was used since an external Vref was used the total number of bits is 2047.

The resolution is found by Equation 9.1:

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
𝐼𝑟𝑖𝑝𝑝𝑙𝑒

𝑉𝑎𝑑𝑐,𝑟𝑖𝑝𝑝𝑙𝑒

𝑟𝐴𝐷𝐶
∗2047

[
𝑚𝐴

𝑏𝑖𝑡 𝑐ℎ𝑎𝑛𝑔𝑒
] (9.1)

Vadc,ripple is the voltage ripple measured by the ADC. It should be noted that Kgain of the current

sense amplifier without windowing is 325.9 since the maximum current has to coincide with

the maximum range of the ADC, this makes Vadc,ripple 0.0814V. Table 9.1 shows the different

current resolution for the different current sense amplifiers.

Table 9.1. Current Resolution Comparison

Current Sense Amplifier Current Resolution

(mA/bit change)

Without Windowing 4.96

Windowing with

OPA4330

0.244

Windowing with Cypress

Op-amps

1.001

Windowing with Cypress

Op-amps after

optimization

0.178

 As expected, the current resolution for the circuit without windowing is only just under 5mA

per bit. It is also apparent that the circuit with OPA4330 has the most potential as a 0.244mA

per bit change resolution is achieved even though only 10 bits were used effectively. The

optimized circuit offers better resolution than the circuit with OPA4330 as a larger window is

51

used. The optimization process improves the resolution of the current sense amplifier by 5.6

times and the final circuit offers an improvement of 28 times compared to current sense

amplifier without windowing thereby proving the benefits of the windowing technique.

9.2 Error Analysis

To analyse the effectiveness of digital calibration, the error was plotted as a before and after

comparison. Figure 9.1 shows the error plot for current measurements from 0.5A to 10A.

Figure 9.1. Error Plot Comparison

From Figure 9.1 above, we can see that without digital calibration, the error converges to

slightly under 20% as current exceeds 2A. With digital calibration, the current stays close to

1% as current increases past 1A. We can thus conclude that the effective range of the current

sense amplifier is from 1 to 10A. Table 9.2 shows the errors at every 10 data points in the

measurement sweep.

52

Table 9.2. Error Measurements

Current

Measured

(A)

Current

Calculated

(A)

Error (%)

Current

Calculated

after Digital

Calibration (A)

Error (%)

1.1755 0.8123 30.9 1.2145 -3.31

2.0592 1.5972 22.44 2.1235 -3.12

2.9565 2.3107 21.84 2.9612 -0.16

3.8388 3.0377 20.87 3.8124 0.69

4.7355 3.7846 20.08 4.6834 1.1

5.6173 4.5523 18.96 5.5753 0.75

6.4976 5.2795 18.75 6.4266 1.09

7.3924 6.0465 18.21 7.3178 1.01

8.27 6.8097 17.66 8.2052 0.78

9.1596 7.5778 17.27 9.0975 0.68

9.9938 8.3375 16.57 9.9814 0.12

9.3 Cost Analysis

Part of the reason why the Cypress op-amps were used was to reduce the cost of the current

sense amplifier since high precision op-amps are expensive. Table 9.3 shows that this current

sense solution proffers a nearly $4 reduction in price as compared to a high-precision op-amp

with a TI low-power MCU.

Table 9.3. Cost Comparison

 Component Cost ($)

Current Sense with

OPA2330 and MSP430

Chip

MSP430FR5870 2.15

OPA2330 3.05

Total 5.20

Current Sense with

Cypress PSOC4

CY8C4125AXI-473 1.34

Total 1.34

53

 Conclusion

This thesis has shown how high resolution lossless current sensing can be achieved through the

windowing technique. We have proved that by optimising the circuit, we can achieve a high

enough resolution on the current ripple for the entire current range specified. The windowing

technique provides nearly 28 times the resolution than without it. The op-amps are not meant

for such high measurements, hence we had to create workarounds and rely heavily on digital

calibration to achieve accurate current sensing. Nevertheless we have shown how digital

calibration helps achieve very accurate current measurements for the entire current range with

errors very close to 1%. With that error, and at a much lower cost, the Cypress PSOC4 with its

highly programmable in-built op-amps proves to be a cost-effective solution for the windowed

current sense amplifier circuit.

54

 References

[1] C. B. Barth and R. C. N. Pilawa-Podgurski, "Dithering Digital Ripple Correlation Control

with Digtally-Assisted Windowed Sensing for Sloar Photovoltaic MPPT," in Applied

Power Electronics Conference (APEC), Fort Worth, 2014.

[2] C. B. Barth and R. C. N. Pilawa-Podgurski, "Dithering Digital Ripple Correlation Control

for Photovoltaic Maximum Power Point Tracking," IEEE Transactions on Power

Electronics, vol. 30, no. 8, pp. 4548-4559, 2015.

[3] C. B. Barth and R. C. N. Pilawa-Podgurski, "Implementation of Dithering Digital Ripple

Correlation Control for PV Maximum Power Point Tracking," in IEEE Workshop on

Control and Modeling for Power Electronics (COMPEL), Salt Lake City, 2013.

[4] C. Schaef and J. T. Stauth, "Multilevel Power Point Tracking for Partial Power

Processing Photovoltaic Converters," IEEE Journal of Emerging and Selected Topics in

Power Electronics, vol. 2, no. 4, pp. 859-869, 2014.

[5] A. M. Latham, R. C. N. Pilawa-Podgurski, K. M. Odame and C. R. Sullivan, "Analysis

and Optimization of Maximum Power Point Tracking Algorithms in the Presence of

Noise," IEEE Transactions on Power Electronics, vol. 28, no. 7, pp. 3479-3493, 2013.

[6] M. Schuck and R. C. N. Pilawa-Podgurski, "Ripple Minimization Through Harmonic

Elimination in Asymmetric Interleaved Multiphase dc-dc Converters," IEEE

Transactions, vol. PP, no. 99, 2015.

[7] S. S. Pradeep, K. A. Kim, B. B. Johnson and P. T. Krein, "Differential Power Processing

for Increased Energy Production and Reliability of Photovoltaic Systems," IEEE

Transactions, vol. 28, no. 6, pp. 2968-2979, 2013.

[8] R. Bell and R. C. N. Pilawa-Podgurski, "Asynchronous and Distributed Maximum Power

Point Tracking of Series-Connected Photovoltaic Sub-Modules Using Differential Power

Processing," in Control and Modeling for Power Electronics (COMPEL), Santander,

2014.

[9] S. Qin, A. J. Morrison and R. C. N. Pilawa-Podgurski, "Enhancing Micro-inverter Energy

Capture with Sub-module Differential Power Processing," in Applied Power Electronics

Conference and Exposition (APEC), Fort Worth, 2014.

[10] L. Ng, S. Prawira, L. S. Ng and Y. Y. H. Lam, "Analysis of Lossless Current Sensing

Techniques with High Accuracy and Linearity," in International Conference on

Communications, Circuits and Systems (ICCCAS), Kokura, 2007.

[11] E. Dallago and M. Passoni, "Lossless Current Sensing in Low-Voltage High-Current

DC/DC Modular Supplies," IEEE Transactions on Industrial Electronics, vol. 47, no. 6,

pp. 1249-1252, 2000.

[12] R. C. N. Pilawa-Podgurski, W. Li, I. Celanovic and D. J. Perreault, "Integrated CMOS

DC-DC Converter with Digital Maximum Power Point Tracking for a Portable

55

Thermophotovoltaic Power Generator," in Energy Conversion Congress and Exposition

(ECCE), Phoenix, 2011.

[13] S. Qin, S. T. Cady, A. D. Dominguez-Garcia and R. C. N. Pilawa-Podgurski, "A

Distributed Approach to Maximum Power Point Tracking for Photovoltaic Sub-Module

Differential Power Processing," IEEE Transactions on Power Electronics, vol. 30, no. 4,

pp. 2024-2040, 2015.

[14] G. Barbose, N. Darghouth, S. Weaver and R. Wiser, "Tracking the Sun VI - An Historical

Summary of the Installed Price of Photovoltaics in the United States from 1998 to 2012,"

July 2013. [Online]. Available: http://emp.lbl.gov/sites/all/files/lbnl-6350e.pdf.

[Accessed 09 May 2015].

[15] R. C. N. Pilawa-Podgurski and D. J. Perreault, "Sub-Module Integrated Distributed

Maximum Power Point Tracking for Solar Photovoltaic Applications," IEEE

Transactions on Power Electronics , vol. 28, no. 6, 2013.

56

Appendix A: PSOC4 C Code

A1. Main File

/* ==

 *

 * Copyright Benedict Foo, University of Illinois Urbana-Champaign

 * All Rights Reserved

 * UNPUBLISHED, LICENSED SOFTWARE.

 *

 * CONFIDENTIAL AND PROPRIETARY INFORMATION

 * WHICH IS THE PROPERTY OF University of Illinois Urbana-Champaign ECE

Department

 * Date: 05/09/2015

 * ==

*/

#include <project.h>

/* Macro definitions */

#define LOW (0u)

#define HIGH (1u)

#define CHANNEL_1 (0u)

#define CLEAR_SCREEN (0x0C)

#define CONVERT_TO_ASCII (0x30u)

/* Global variables */

volatile uint32 windowFlag = 0u;

volatile uint8 dataReady = 0u;

volatile uint16 adcVal = 0u;

volatile char shit;

/* Interrupt prototypes */

CY_ISR_PROTO(ADC_ISR_Handler);

/* Send the channel number and voltage to UART */

static void SendChannelVoltage(int16 mVolts, int32 bias);

int main()

{

 /* Place your initialization/startup code here (e.g. MyInst_Start()) */

 // clock_t start;

 //time_t t1;

 //Variable initializaions

 int16 mVolts;

 int32 bias = 91; //initial bias assuming 1A DC offset

 int16 previousValue = 0;

 char ready;

 char start;

 int readyCompare;

 int startCompare = 0;

 /* Start the Components */

 Opamp_1_Start();

 Opamp_2_Start();

 UART_1_Start();

 ADC_SAR_Seq_1_Start();

57

 IDAC_1_Start();

 IDAC_1_SetValue(bias);

 /* Start ISRs */

 CyGlobalIntEnable; /* Interrupt Enable*/

 /* ADC_SAR_Seq_1_IRQ_StartEx(ADC_ISR_Handler);*/

 ADC_SAR_Seq_1_IRQ_Enable();

 UART_1_SpiUartClearTxBuffer(); //ensures no junk gets in there

 while (startCompare != 1) //infinite loop till python command

says Go!

 {

 start = UART_1_UartGetChar();

 startCompare = start - '0';

 if (startCompare == 1)

 break;

 }

 //Uncomment to measure time

 //long i=0;

 //double diff;

 //start = clock();

 for(;;)

 {

 ADC_SAR_Seq_1_StartConvert();

 while (dataReady == 0) /* Wait for ADC conversion, continues

looping if there is no data */

 {

 ;

 }

 mVolts = ADC_SAR_Seq_1_CountsTo_mVolts(0, adcVal); //converts adc

reading to mV

 ready = UART_1_UartGetChar(); //Gets ascii character from Python

 readyCompare = ready - '0'; //Converts ascii to int

 if (readyCompare == 1) //Ensures that UART happens only when Python

code is ready to receive

 {

 SendChannelVoltage(mVolts,bias);

 }

 /* Check for ADC window limit interrupt */

 if(windowFlag != 0u)

 {

 /* Turn ON the LED when input is outside the voltage window

(1.15V - 3.044V) */

 LED_Write(LOW);

 /* Increases/decreases bias depending on which limit it hits*/

 if (mVolts<2000)

 {

 bias = bias-0x1;

 IDAC_1_SetValue(bias);

 }

 else

 {

 bias = bias+0x1;

 IDAC_1_SetValue(bias);

 }

58

 /* Note: If LED is active HIGH, then replace "LOW" with "HIGH"

*/

 }

 else

 {

 /* Turn OFF the LED when input is within the voltage window

(4.5mV - 2.043V) */

 LED_Write(HIGH);

 /* Note:If LED is active HIGH, then replace "HIGH" with "LOW"

*/

 }

 /* If ADC result or channel has been changed, send the data

to UART */

 dataReady = 0u;

 }

// diff = ((double)clock()-start)/CLOCKS_PER_SEC;

}

static void SendChannelVoltage(int16 mVolts, int32 bias)

{

 /* Find the sign of the result */

 /*if(mVolts < 0) //uncomment if measuring current the other way ->

ADC needs to be reprogrammed to differential

 {

 UART_1_UartPutString("-");

 mVolts = -mVolts;

 }*/

 /* Send voltage and bias to UART */

 UART_1_UartPutChar((mVolts/1000u) + CONVERT_TO_ASCII);

 mVolts %= 1000u;

 UART_1_UartPutChar((mVolts/100u) + CONVERT_TO_ASCII);

 mVolts %= 100u;

 UART_1_UartPutChar((mVolts/10u) + CONVERT_TO_ASCII);

 mVolts %= 10u;

 UART_1_UartPutChar(mVolts + CONVERT_TO_ASCII);

 UART_1_UartPutChar(32); //space for Excel delimiter

 UART_1_UartPutChar((bias/100u) + CONVERT_TO_ASCII);

 bias %= 100u;

 UART_1_UartPutChar((bias/10u) + CONVERT_TO_ASCII);

 bias %= 10u;

 UART_1_UartPutChar(bias + CONVERT_TO_ASCII);

 UART_1_UartPutCRLF(32); //sends carriage return and new line

 }

/* [] END OF FILE */

59

A.2 ADC Interrupt Handler

CY_ISR(ADC_SAR_Seq_1_ISR)

 {

 uint32 intr_status;

 /* Read interrupt status register */

 intr_status = ADC_SAR_Seq_1_SAR_INTR_REG;

/**

 * Custom Code

 * - add user ISR code between the following #START and #END tags

***/

 /* `#START MAIN_ADC_ISR` */

 /* Check for End of Scan interrupt */

 if((intr_status & ADC_SAR_Seq_1_EOS_MASK) != 0u)

 {

 adcVal=ADC_SAR_Seq_1_GetResult16(0);

 /* Read range interrupt status and raise the flag */

 windowFlag = ADC_SAR_Seq_1_SAR_RANGE_INTR_MASKED_REG; //will not be

a 0 if it is outside the range

 //saturationFlag = ADC_SAR_Seq_1_SAR_SATURATE_INTR_MASKED_REG;

 /* Clear range detect status */

 ADC_SAR_Seq_1_SAR_RANGE_INTR_REG = windowFlag;

 dataReady = 1u;

 /* `#END` */

 /* Clear handled interrupt */

 ADC_SAR_Seq_1_SAR_INTR_REG = intr_status;

 }

#endif /* End ADC_SAR_Seq_1_IRQ_REMOVE */

}

60

Appendix B: PCB Schematic and Layout

B1. Eagle Schematic

This schematic includes a circuit for OPA2330 for comparison.

61

B2. Board Layout

62

Appendix C: Python Codes

C1. DC Voltage Sweep

This code communicates with the Cypress PSOC4 for a 1 to 10mV sweep with ten points taken

at each voltage input.

__author__ = 'Benedict Foo'

#This code implements PC-based control of the Cypress and

Kiethley 2400

#Also an example of file creation and write to file in Python.

#===

=============

IMPORTS

#===

=============

from microcontroller_serial import *

import serial

import glob

import time

import os

import os.path

import inspect

from datetime import datetime

import sys

from pilawa_instruments import *

if __name__=="__main__":

 #print sys.path

 # Writing into a file

 #skipLineFlag = True

 debug = False

 # t is a timestamp made by python. it records the year,

month, and day in numerical form, in that order.

 t = time.strftime('%Y%m%d')

 #names a folder in the given path. the name of the folder

is t, the timestamp.

 foldername =

"C:/Users/Benedict/PycharmProjects/Cypress_UART/InputVoltageSw

eep/%s" %t

63

 print(foldername)

 #checks if the folder 'foldername' exists

 if not os.path.exists(foldername):

 print "I Should Be Here"

 #this command actually creates the folder named above

given that it does not already exist

 os.makedirs(foldername)

 print "Folder Created"

 # i is a file counter. if directory has been created

then counter = 0

 i = 0

 else:

 # glob.glob returns a list with the file name of each

file in the specified directory with the specified file name

similarity. the similarity must contain a * character

substituting the part that changes, in this case substituting

the counter.

 txtList =

glob.glob("C:/Users/Benedict/PycharmProjects/Cypress_UART/Inpu

tVoltageSweep/%s/test*.txt" %t)

 #if directory exists, then counter = number of files

named test*.txt

 i = len(txtList)

 i = i+1

 #specifies the path to the file and changes the

filename on each iteration (after completing the number of

batches per file). %s (string) is replaced by t as the

timestamp specifying the selected folder. %d (integer) is

replaced by i as the number of the file.

 filename =

"C:/Users/Benedict/PycharmProjects/Cypress_UART/InputVoltageSw

eep/%s/test%d.txt" %(t,i)

 #opens the file or creates a new one if not found. 'w'

specifies the file is to be written on, erasing anything

originally in.

 readf = open(filename,"w")

 stamp = datetime.now().strftime('%H:%M:%S')

 #writes at the top of the file what each column data

is

 readf.write("ADC Bias")

 #starts a new line for the data measurements

 readf.write("\n Time:")

 readf.write(stamp)

64

 readf.write("\n")

 if debug: print "File created and open"

 #create an instance of the microcontroller class.

 if debug: print "Initializing Micro Instance"

 cypress = microcontroller_serial(port = 6 , baud = 9600,

debug = False, timeout =6)

 if(debug): print "Initialize GPIB"

 gpib = prologix_serial(port = 4, baud=9600, debug=False,

timeout=5)

 if(debug): print "Initialize Sourcemeter"

 sourcemeter = prologix_2400(prologix=gpib, addr=06,

debug=False)

 sourcemeter.setSource('VOLT', 0.001) #Set output to 1mV

 time.sleep(0.1)

 sourcemeter.activate()

 print "Enter '1' to begin everything"

 userinput = raw_input('--> ')

 cypress.write(userinput)

 cnt = 0.000 #Cnt is the 'current' going through Rsense,

which in this case is Vsense

 inner_loop = 0

 maxim = 0.010

 while cnt <= 0.01: #sweep up

 sourcemeter.setSource ('VOLT',cnt)

 time.sleep(0.1) #sets a delay to allow bias to

converge to correct value

 while inner_loop < 10: #inner_loop indicates how many

readings taken at each current level

 cypress.write("1") # Ensures that

data is only read when Python Code is ready

 # Also clears the

buffer so new data can be sent

 #time.sleep (0.5)

 read = cypress.readline() # Read data from

micro until newline is sent

 read = read.rstrip(' \r\n')

 #print adc # Print the value

received from the micro

 #readf.write(adc) # Write onto the

open file

 #bias = cypress.readline()

 #readf.write(" ")

 readf.write("%s %s\n" %(read, cnt))

 #print bias

 print read

65

 inner_loop = inner_loop + 1

 #time.sleep(0.3)

 cnt = cnt + 0.0001 #increments 'current' by 0.1A

 inner_loop = 0

 while cnt >= 0.000: #sweep down

 sourcemeter.setSource ('VOLT',cnt)

 time.sleep(0.1) #sets a delay to allow bias to

converge to correct value (digital calibration)

 while inner_loop < 10: #inner_loop indicates how many

readings taken at each current level

 cypress.write("1") # Ensures that

data is only read when Python Code is ready

 # Also clears the

buffer so new data can be sent

 #time.sleep (0.5)

 read = cypress.readline() # Read data from

micro until newline is sent

 read = read.rstrip(' \r\n')

 #print adc # Print the value

received from the micro

 #readf.write(adc) # Write onto the

open file

 #bias = cypress.readline()

 #readf.write(" ")

 readf.write("%s %s\n" %(read, cnt))

 #print bias

 print read

 inner_loop = inner_loop + 1

 #time.sleep(0.3)

 cnt = cnt - 0.0001 #decrements 'current' by 0.1A

 inner_loop = 0

 #Close connection to microprocessor when user exits.

 #sourcemeter.deactivate()

 cypress.terminate()

 readf.close() #closes file so that data can be written

from io buffer

66

C2. Current Ripple Sweep

This is the Python Code that generates a ripple current on the Kiethley 2400.

_author__ = 'Benedict Foo'

#This code implements PC-based control of the Cypress and

Kiethley 2400

#Also an example of file creation and write to file in Python.

#===

=============

IMPORTS

#===

=============

from microcontroller_serial import *

import serial

import glob

import time

import os

import os.path

import inspect

from datetime import datetime

import sys

from pilawa_instruments import *

if __name__=="__main__":

 #print sys.path

 # Writing into a file

 #skipLineFlag = True

 debug = False

 # t is a timestamp made by python. it records the year,

month, and day in numerical form, in that order.

 t = time.strftime('%Y%m%d')

 #names a folder in the given path. the name of the folder

is t, the timestamp.

 foldername =

"C:/Users/Benedict/PycharmProjects/Cypress_UART/InputCurrentRi

ppleSweep/%s" %t

 print(foldername)

 #Suck a dick

 #checks if the folder 'foldername' exists

67

 if not os.path.exists(foldername):

 #this command actually creates the folder named above

given that it does not already exist

 os.makedirs(foldername)

 print "Folder Created"

 # i is a file counter. if directory has been created

then counter = 0

 i = 0

 else:

 # glob.glob returns a list with the file name of each

file in the specified directory with the specified file name

similarity. the similarity must contain a * character

substituting the part that changes, in this case substituting

the counter.

 txtList =

glob.glob("C:/Users/Benedict/PycharmProjects/Cypress_UART/Inpu

tCurrentRippleSweep/%s/test*.txt" %t)

 #if directory exists, then counter = number of files

named test*.txt

 i = len(txtList)

 i = i+1

 #specifies the path to the file and changes the

filename on each iteration (after completing the number of

batches per file). %s (string) is replaced by t as the

timestamp specifying the selected folder. %d (integer) is

replaced by i as the number of the file.

 filename =

"C:/Users/Benedict/PycharmProjects/Cypress_UART/InputCurrentRi

ppleSweep/%s/test%d.txt" %(t,i)

 #opens the file or creates a new one if not found. 'w'

specifies the file is to be written on, erasing anything

originally in.

 readf = open(filename,"w")

 stamp = datetime.now().strftime('%H:%M:%S')

 #writes at the top of the file what each column data

is

 readf.write("ADC Bias")

 #starts a new line for the data measurements

 readf.write("\n Time:")

 readf.write(stamp)

 readf.write("\n")

 if debug: print "File created and open"

 #create an instance of the microcontroller class.

 if debug: print "Initializing Micro Instance"

 cypress = microcontroller_serial(port = 6 , baud = 9600,

68

debug = False, timeout =6)

 if(debug): print "Initialize GPIB"

 gpib = prologix_serial(port = 4, baud=9600, debug=False,

timeout=5)

 if(debug): print "Initialize Sourcemeter"

 sourcemeter = prologix_2400(prologix=gpib, addr=06,

debug=False)

 sourcemeter.setSource('CURR', 1) #Set output to 1mV

 time.sleep(0.1)

 sourcemeter.activate()

 #print "Enter '1' to begin everything"

 #userinput = raw_input('--> ')

 #cypress.write("1")

 minim = 0.000 #Cnt is the 'current' going through Rsense,

which in this case is Vsense

 maxim = 0.03

 offset = 1 #offset starts at 1A

 peak = offset + 0.125 #0.250mA ripple

 trough = offset - 0.125

 cycles = 0.000

 level=trough

 print "Enter '1' to begin everything" #starts the ADC

readings

 userinput = raw_input('--> ')

 cypress.write(userinput)

 #measure loop time

 t0 = time.clock()

 while offset <= 2.8: #sweep up

 while cycles < 2: #2 cycles per offset

 while level<=peak:

 sourcemeter.setSource('CURR',level)

 time.sleep(0.00001) # waits 10us

 cypress.write("1") # Ensures

that data is only read when Python Code is ready

 # Also clears

the buffer so new data can be sent

 read = cypress.readline() # Read data

from micro until newline is sent

 read = read.rstrip(' \r\n')

 #print adc # Print the

value received from the micro

 #readf.write(adc) # Write onto

the open file

 #bias = cypress.readline()

69

 #readf.write(" ")

 tdiff = time.clock()-t0

 readf.write("%s %s %s\n" %(read, level,tdiff))

 #print bias

 print read

 #print level

 level = level + 0.001

 while level>=trough:

 sourcemeter.setSource('CURR',level)

 time.sleep(0.00001) # waits 10us

 cypress.write("1") # Ensures

that data is only read when Python Code is ready

 read = cypress.readline() # Read data

from micro until newline is sent

 read = read.rstrip(' \r\n')

 #print adc # Print the

value received from the micro

 #readf.write(adc) # Write onto

the open file

 #bias = cypress.readline()

 #readf.write(" ")

 readf.write("%s %s %s\n" %(read, level,tdiff))

 #print bias

 print read

 #print level

 level = level - 0.001

 cycles = cycles + 1

 offset = offset + 0.1

 peak = offset + 0.125 #0.250mA ripple

 trough = offset - 0.125

 cycles = 0

 while offset >= 1: #sweep down

 while cycles < 2: #2 cycles per offset

 while level<=peak:

 sourcemeter.setSource('CURR',level)

 time.sleep(0.00001) # waits 10us

 cypress.write("1") # Ensures

that data is only read when Python Code is ready

 # Also clears

the buffer so new data can be sent

 read = cypress.readline() # Read data

from micro until newline is sent

 read = read.rstrip(' \r\n')

 #print adc # Print the

value received from the micro

 #readf.write(adc) # Write onto

the open file

 #bias = cypress.readline()

 #readf.write(" ")

70

 tdiff = time.clock()-t0

 readf.write("%s %s %s\n" %(read, level,tdiff))

 #print bias

 print read

 #print level

 level = level + 0.001

 while level>=trough:

 sourcemeter.setSource('CURR',level)

 time.sleep(0.00001) # waits 10us

 cypress.write("1") # Ensures

that data is only read when Python Code is ready

 read = cypress.readline() # Read data

from micro until newline is sent

 read = read.rstrip(' \r\n')

 #print adc # Print the

value received from the micro

 #readf.write(adc) # Write onto

the open file

 #bias = cypress.readline()

 #readf.write(" ")

 readf.write("%s %s %s\n" %(read, level,tdiff))

 #print bias

 print read

 #print level

 level = level - 0.001

 cycles = cycles + 1

 offset = offset - 0.1

 peak = offset + 0.125 #0.250mA ripple

 trough = offset - 0.125

 cycles = 0

 #Close connection to microprocessor when user exits.

 #sourcemeter.deactivate()

 cypress.terminate()

 readf.close() #closes file so that data can be written

from io buffer

71

C3. 10A Python Sweep

This is the code for a 0.5 to 10A DC current sweep with the HP6674A DC Power Supply

__author__ = 'Benedict Foo'

#This code implements PC-based control of the Cypress and

HP6674A and Fluke 45 DMM

#Also an example of file creation and write to file in Python.

#===

=============

IMPORTS

#===

=============

from microcontroller_serial import *

import serial

import glob

import time

import os

import os.path

import inspect

from datetime import datetime

import sys

from pilawa_instruments import *

if __name__=="__main__":

 #print sys.path

 # Writing into a file

 #skipLineFlag = True

 debug = False

 # t is a timestamp made by python. it records the year,

month, and day in numerical form, in that order.

 t = time.strftime('%Y%m%d')

 #names a folder in the given path. the name of the folder

is t, the timestamp.

 foldername =

"C:/Users/Benedict/PycharmProjects/Cypress_UART/InputCurrentSw

eep/%s" %t

 print(foldername)

 #Suck a dick

 #checks if the folder 'foldername' exists

72

 if not os.path.exists(foldername):

 #this command actually creates the folder named above

given that it does not already exist

 os.makedirs(foldername)

 print "Folder Created"

 # i is a file counter. if directory has been created

then counter = 0

 i = 0

 else:

 # glob.glob returns a list with the file name of each

file in the specified directory with the specified file name

similarity. the similarity must contain a * character

substituting the part that changes, in this case substituting

the counter.

 txtList =

glob.glob("C:/Users/Benedict/PycharmProjects/Cypress_UART/Inpu

tCurrentSweep/%s/test*.txt" %t)

 #if directory exists, then counter = number of files

named test*.txt

 i = len(txtList)

 i = i+1

 #specifies the path to the file and changes the

filename on each iteration (after completing the number of

batches per file). %s (string) is replaced by t as the

timestamp specifying the selected folder. %d (integer) is

replaced by i as the number of the file.

 filename =

"C:/Users/Benedict/PycharmProjects/Cypress_UART/InputCurrentSw

eep/%s/test%d.txt" %(t,i)

 #opens the file or creates a new one if not found. 'w'

specifies the file is to be written on, erasing anything

originally in.

 readf = open(filename,"w")

 stamp = datetime.now().strftime('%H:%M:%S')

 #writes at the top of the file what each column data

is

 readf.write("ADC Bias")

 #starts a new line for the data measurements

 readf.write("\n Time:")

 readf.write(stamp)

 readf.write("\n")

 print "File created and open"

 #print sys.path

 # Writing into a file

 #skipLineFlag = True

73

 debug = False

 if(debug): print "Initialize GPIB"

 gpib = prologix_serial(port = 7, baud=9600, debug=False,

timeout=5)

 if(debug): print "Initialize Sourcemeter"

 sourcemeter = prologix_6674a(prologix=gpib, addr=9,

debug=False)

 #if(debug): print "Initialize GPIB"

 #gpib1 = prologix_serial(port = 4, baud=9600,

debug=False, timeout=5)

 if(debug): print "Initialize Fluke"

 fluke = prologix_FLUKE45(prologix=gpib, addr=2,

debug=False)

 #create an instance of the microcontroller class.

 if debug: print "Initializing Micro Instance"

 cypress = microcontroller_serial(port = 6 , baud = 9600,

debug = False, timeout =6)

 meter_addrs = [2]

 #set fluke to DC ammeter mode

 #time.sleep (0.5)

 sourcemeter.activate()

 sourcemeter.setCurrent(12) #Set max current to 12A

 sourcemeter.setVoltage(0.2) #set voltage to 1V

 print "Enter '1' to begin everything" #starts the ADC

readings

 userinput = raw_input('--> ')

 cypress.write(userinput)

 #measure loop time

 t0 = time.clock()

 fluke.setMode('ADC')

 #time.sleep(5) #wait 5s to read the data

 #gpib1.trigger_devices(meter_addrs)

 #read = fluke.readData()

 #read = sourcemeter.readCurrent()

 volt = 0.5 #Cnt is the 'current' going through Rsense,

which in this case is Vsense

 inner_loop = 0

 time.sleep (0.5)

 #fluke.waitForTrigger()

74

 #gpib1.trigger_devices(meter_addrs)

 readv = fluke.getMeasurement()

 print readv

 readv = 0

 while volt <= 11.6: #sweep up

 sourcemeter.setVoltage (volt)

 #time.sleep(0.00001) #sets a delay to allow bias

to converge to correct value

 while inner_loop < 1: #inner_loop indicates how many

readings taken at each current level

 cypress.write("1") # Ensures that

data is only read when Python Code is ready

 # Also clears the

buffer so new data can be sent

 #time.sleep (0.5)

 read = cypress.readline() # Read data from

micro until newline is sent

 read = read.rstrip(' \r\n')

 time.sleep(0.3)

 readv = fluke.getMeasurement()

 tdiff = time.clock()-t0

 readf.write("%s %s %s %s\n" %(read, volt, tdiff,

readv))

 #print bias

 print readv

 inner_loop = inner_loop + 1

 #time.sleep(0.3)

 volt = volt + 0.1 #increments 'current' by 0.1A

 inner_loop = 0

 while volt>= 0.500: #sweep down

 sourcemeter.setVoltage (volt)

 #time.sleep(0.000010) #sets a delay to allow bias

to converge to correct value (digital calibration)

 while inner_loop < 1: #inner_loop indicates how many

readings taken at each current level

 cypress.write("1") # Ensures that

data is only read when Python Code is ready

 # Also clears the

buffer so new data can be sent

 #time.sleep (0.5)

 read = cypress.readline() # Read data from

micro until newline is sent

 read = read.rstrip(' \r\n')

 time.sleep(0.3)

75

 readv = fluke.getMeasurement()

 tdiff = time.clock()-t0

 readf.write("%s %s %s %s\n" %(read, volt, tdiff,

readv))

 #print bias

 print readv

 inner_loop = inner_loop + 1

 #time.sleep(0.3)

 volt = volt - 0.1 #decrements 'current' by 0.1A

 inner_loop = 0

 #Close connection to microprocessor when user exits.

 sourcemeter.deactivate()

 cypress.terminate()

 readf.close() #closes file so that data can be written

from io buffer

76

Appendix D: Matlab Code for Digital Calibration

D1. 10A Current Sweep Digital Calibration

This is a portion of the Matlab code used to digitally calibrate the current measurements

% Author: Benedict Foo

old = ten(1:192,5); %Extract Data for processing

diff_end = max(ten(:,4))-max(ten(:,5)); %find the maximum

difference

diff_start = min(ten(1:192,4))-min(ten(1:192,5)); %find the

min difference

change = linspace(diff_start,diff_end,98); %create a vector

for difference

change_t = transpose(change);

for n = 1:98 %%add based on current level since difference

varies linearly

 new(n) = old(n)+change_t(n);

end

for n = 99:192

 new(n) = old(n)+change_t(195-n);

end

D2. Current Ripple Digital Calibration

The portion of code that helps digitally calibrate the current ripple measurements, this is the

less robust (and accurate) but more efficient digital calibration method.

%% Current current ripple post processing Author: Benedict Foo

current_new = current(:,4);

top = length(current_new);

for i=1:top

 if current_new(i)<1.0

 current_new(i) = current_new(i)+0.4;

 elseif current_new(i)<1.2

 current_new(i) = current_new(i)+0.5;

 elseif current_new(i)<2.0

 current_new(i) = current_new(i)+0.57;

77

 elseif current_new(i)<2.3

 current_new(i) = current_new(i)+0.63;

 elseif current_new(i)<2.9

 current_new(i) = current_new(i)+0.72;

 end

end

