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Abstract 

Sensing current across a sense resistor adds to the total power loss and decreases efficiency. 

This work demonstrates the use of a current sense amplifier that measures current across a 

length of wire so as to minimize power loss. Current Sense Amplifiers for solar photovoltaic 

applications require measuring a wide range of current (e.g. 1-10A), yet a high resolution is 

needed for certain applications such as maximum power point tracking (MPPT) and differential 

power processing (DPP). The windowing technique has been adopted in this work, so as to 

measure the current with high resolution and yet to be able to cover the entire range of current 

as well. The use of PSOC 4 by Cypress offers a cost effective one chip solution to all current 

sensing requirements for solar photovoltaic applications. This is achieved by having a nearly 

$4 cost reduction from previous methods, and yet attaining under 1% error in current 

measurements. 

 

Subject Keywords: Windowing, Photovoltaics, Current Sensing. 

  



iii 

 

Acknowledgements 

I would first like to thank Professor Robert Pilawa-Podgurski for his vision, technical insight 

and unwavering persistence for me to reach the end goal of this thesis. His guidance has helped 

prepare me for more advanced research as I am intending on pursuing a graduate degree. Huge 

thanks goes out to Christopher Barth who was always willing to lend a helping hand whenever 

I encountered problems with my project. Christopher’s valuable experience in research has 

kept the project moving whenever I got stuck at a problem. I would like to thank Enver Candan 

for letting me use his bench to perform high current sweeps, Shibin and Yutian for being always 

willing to give me their opinions on my methods or intentions. To the rest of the Pilawa-Group, 

thank you, it was an honor being the only undergraduate to attend the weekly group meetings, 

and being amongst such brilliant yet humble students was a real eye-opener for me. I look up 

to all of you. 

In the industry arena, I would like to thank Martin Krajci and Larry Sparling from Continental 

Automotive for imparting their knowledge and technical know-how onto me during my 

summer internship in 2014. I learnt so much from them during the summer that it has 

undoubtedly made me a technically strong undergraduate researcher. 

I would like to thank my parents for allowing me to do my undergraduate studies in the 

University of Illinois at Urbana-Champaign. Without them, I would not even be aware of the 

opportunities that I have seized since I am here.  

I would like to thank all my friends who have kept me sane and allowed me to de-stress 

whenever I was swamped with work. Lastly, I would like to thank Dana who has always given 

her undying support, college would have been utterly stressful without her.   



iv 

 

List of Tables 

Table 2.1. Initial Parameters ...................................................................................................... 7 

Table 2.2. Gain Values............................................................................................................... 8 

Table 2.3. Resistor Values ......................................................................................................... 9 

Table 5.1. Measurements for Initial Gain Debugging Circuit 1st Op-Amp ............................. 18 

Table 5.2. Measurements for Initial Gain Debugging Circuit 2nd Op-Amp ............................ 19 

Table 6.1. Measurements for Re-characterization of 2nd Op-Amp .......................................... 26 

Table 6.2. Resistor Values with Kscale ...................................................................................... 30 

Table 6.3. Gain Values with Kscale ........................................................................................... 30 

Table 8.1. Resistor Values for Optimized Circuit .................................................................... 44 

Table 8.2. Gain Values for Optimized Circuit ......................................................................... 44 

Table 9.1. Current Resolution Comparison ............................................................................. 50 

Table 9.2. Error Measurements ................................................................................................ 52 

Table 9.3. Cost Comparison..................................................................................................... 52 

  



v 

 

List of Figures 

Figure 1.1. Voltage Ripple ......................................................................................................... 2 

Figure 1.2. Amplified Signal ..................................................................................................... 3 

Figure 1.3. Scaled and Amplified Signal ................................................................................... 3 

Figure 2.1. Initial Circuit Design ............................................................................................... 6 

Figure 3.1. Circuit Diagram for DC Current Simulation in Matlab Simulink ......................... 10 

Figure 3.2. Voltage Output Plot vs DC Current Input for Matlab Simulink Simulation ......... 11 

Figure 3.3. Circuit Diagram for Current Ripple Simulation in Matlab Simulink .................... 12 

Figure 3.4. Voltage Output Plot (top) and Current Ripple Input (bottom) vs Time for Matlab 

Simulink Simulation ................................................................................................................ 12 

Figure 4.1. PSOC Creator Circuit Diagram ............................................................................. 13 

Figure 4.2. Flowchart of Code Algorithm ............................................................................... 16 

Figure 5.1. Test Circuit with Cypress Op-amps ...................................................................... 17 

Figure 5.2. Debugging Circuit for Initial Op-amp Stage ......................................................... 17 

Figure 5.3. LTSPICE Simulation of Circuit with OPA364 ..................................................... 20 

Figure 5.4. LTSPICE Simulation Plot of Circuit with OPA364 with DC Sweep of I4 Current 

Source from 23.5µA to 50µA at 1.2µA Intervals .................................................................... 20 

Figure 5.5. LTSPICE Simulation Plot of Circuit at Current Bias of 34.15µA ........................ 21 

Figure 5.6. Testing Circuit with External Op-amps ................................................................. 22 

Figure 5.7. Plots for OPA4330 for Current Measurements ..................................................... 23 

Figure 6.1. Input Offset Voltage Forcing Circuit .................................................................... 24 

Figure 6.2. Simulation Result for Voltage Offset Divider ....................................................... 25 

Figure 6.3. Cypress Workaround ............................................................................................. 26 

Figure 6.4. Input to Second Stage ............................................................................................ 27 

Figure 6.5. Decreasing Current Measurement Plots for Cypress Op-amps ............................. 28 



vi 

 

Figure 6.6. Increasing Current Measurement Plots for Cypress Op-amps .............................. 29 

Figure 7.1. Picture of PCB with Cypress Pioneer Kit Microcontroller ................................... 31 

Figure 7.2. Current Measurements for an Increasing Input Voltage Sweep ............................ 33 

Figure 7.3. Current Measurements for a Decreasing Input Voltage Sweep ............................ 33 

Figure 7.4. Current Measurements for an Input Ripple Voltage Sweep .................................. 34 

Figure 7.5. Zoomed in Current Measurements for Input Ripple Voltage Sweep .................... 35 

Figure 7.6. Circuit Diagram for Current Sweep Measurements .............................................. 36 

Figure 7.7. Current Measurement Comparison between Calculated Current and Actual Current

.................................................................................................................................................. 36 

Figure 7.8. Current Measurement Comparison between Calculated Current After Digital 

Calibration and Actual Current ................................................................................................ 37 

Figure 7.9. Circuit for Current Ripple Plots ............................................................................ 38 

Figure 7.10. Current Ripple Plots with Kiethley 2400 ............................................................ 39 

Figure 7.11. Current Ripple Plots after Digital Calibration ..................................................... 39 

Figure 7.12. Zoomed in Current Ripple Plots after Digital Calibration .................................. 40 

Figure 7.13. Current Ripple in Relation to the ADC Window ................................................ 41 

Figure 7.14. Current Ripple in Relation to the ADC Window ................................................ 42 

Figure 8.1.Circuit Diagram for Optimized Circuit Simulation ................................................ 45 

Figure 8.2. Simulation Results for Optimized Circuit at Max Current .................................... 45 

Figure 8.3. Current Ripple Sweep............................................................................................ 46 

Figure 8.4. Current Ripple Sweep After Digital Calibration ................................................... 46 

Figure 8.5. Current Ripple in Relation to Window Limits ...................................................... 47 

Figure 8.6. Enlarged Current Ripple ........................................................................................ 48 

Figure 8.7. 0-10A Current Sweep Current Plot Comparison ................................................... 49 

Figure 8.8. 0-10A Current Sweep Current Plot Comparison after Digital Calibration ........... 49 



vii 

 

Figure 9.1. Error Plot Comparison ........................................................................................... 51 

  



viii 

 

Contents 

Abstract ...................................................................................................................................... ii 

Acknowledgements .................................................................................................................. iii 

List of Tables ............................................................................................................................ iv 

List of Figures ............................................................................................................................ v 

Contents ................................................................................................................................. viii 

 Introduction ........................................................................................................................ 1 

1.1 The Need for Current Measurement in Solar Photovoltaic Applications ................... 1 

1.2 Windowing Technique ................................................................................................ 1 

1.3 Lossless Current Sensing ............................................................................................ 3 

1.4 One Chip Solution ....................................................................................................... 4 

 Initial Calculation ............................................................................................................... 6 

2.1 Circuit Design ............................................................................................................. 6 

2.2 Parameter Calculations ................................................................................................ 6 

2.3 Resistor Calculations ................................................................................................... 7 

 Simulations ....................................................................................................................... 10 

 Programming Cypress ...................................................................................................... 13 

4.1 Op-amp ...................................................................................................................... 13 

4.2 Analog-to-Digital Converter (ADC) ......................................................................... 14 

4.3 Current Digital-to-Analog Converter (IDAC)........................................................... 14 

4.4 . Pins .......................................................................................................................... 14 



ix 

 

4.5 LEDs.......................................................................................................................... 15 

4.6 UART ........................................................................................................................ 15 

4.7 Code Algorithm ......................................................................................................... 15 

 Initial Measurements and Debugging ............................................................................... 17 

5.1 Initial Debugging....................................................................................................... 17 

5.2 Using an External Op-amp ........................................................................................ 19 

5.3 Alternative External Op-amps ................................................................................... 21 

 Cypress Op-amp Workaround .......................................................................................... 24 

6.1 Creating a Fixed Offset through High Side Current Sensing .................................... 24 

6.2 Re-characterization of Cypress Op-amp 2 ................................................................ 25 

6.3 Creating the Workaround .......................................................................................... 26 

6.4 New Circuit Parameters ............................................................................................ 29 

 Printed Circuit Board (PCB) Implementation and Input Sweeps ..................................... 31 

7.1 Improvements in ADC parameters ............................................................................ 31 

7.2 Python Serial/UART Communication ...................................................................... 32 

7.3 Input DC Voltage Sweep........................................................................................... 32 

7.4 Input Voltage Ripple Sweep ..................................................................................... 34 

7.5 Input Current DC Sweep ........................................................................................... 35 

7.6 Input Current Ripple Sweep ...................................................................................... 37 

7.7 ADC Window in Relation to the Calculated Current Ripple .................................... 40 

7.8 ADC Ripple Analysis ................................................................................................ 41 



x 

 

 Optimization ..................................................................................................................... 43 

8.1 Simulation of Optimized Circuit ............................................................................... 44 

8.2 Ripple Sweep............................................................................................................. 45 

8.3 ADC Window in Relation to the Calculated Current Ripple .................................... 47 

8.4 ADC Optimized Analysis.......................................................................................... 47 

8.5 Full Range Current Sweep ........................................................................................ 48 

 Analysis ............................................................................................................................ 50 

9.1 Resolution Analysis................................................................................................... 50 

9.2 Error Analysis ........................................................................................................... 51 

9.3 Cost Analysis............................................................................................................. 52 

 Conclusion .................................................................................................................... 53 

 References ..................................................................................................................... 54 

Appendix A: PSOC4 C Code ................................................................................................... 56 

A1. Main File ....................................................................................................................... 56 

A.2 ADC Interrupt Handler ................................................................................................. 59 

Appendix B: PCB Schematic and Layout ................................................................................ 60 

B1. Eagle Schematic ............................................................................................................ 60 

B2. Board Layout ................................................................................................................. 61 

Appendix C: Python Codes ...................................................................................................... 62 

C1. DC Voltage Sweep ........................................................................................................ 62 

C2. Current Ripple Sweep ................................................................................................... 66 



xi 

 

C3. 10A Python Sweep ........................................................................................................ 71 

Appendix D: Matlab Code for Digital Calibration .................................................................. 76 

D1. 10A Current Sweep Digital Calibration ........................................................................ 76 

D2. Current Ripple Digital Calibration ................................................................................ 76 

 

 

 



1 

 

 

 Introduction 

1.1 The Need for Current Measurement in Solar Photovoltaic Applications 

Maximum power point tracking (MPPT) is dependent on accurate current and voltage 

measurements in order to effectively apply techniques such as the common perturb and 

observe, or dithering digital ripple correlation control [1], [2], [3]. They require high resolution 

power ripple measurements which involve high precision power processing components [1]. 

Also, in multilevel MPPT schemes that require partial processing dc-dc power converters, there 

is a need to detect and measure the monotocity in the current [4]. However, noise is a big factor 

in affecting the accuracy of current measurements [5]. More accurate current measurements in 

MPPT systems are made possible through various techniques such as current ripple 

minimization or system parameter optimization through noise analysis [5], [6]. This paves the 

way for the focus on the current sensing techniques themselves in this thesis. Another 

photovoltaic (PV) application that requires current measurements is differential power 

processing (DPP). In DPP for solar photovoltaic cells, current needs to be accurately measured 

in order to determine the power mismatch between PV cells and hence process that difference 

in power [7], [8].  

1.2 Windowing Technique 

PV current has a very wide range of current. For example, for a current range of 0 to 10A, the 

voltage range over a 1mΩ resistor would be 0 to 10mV. This wide range thus affects the 

resolution of the current measurement. Assuming an ADC resolution of 12 bits, then each bit, 

measures 2.44mA. However, if windowing were to be applied, then assuming a window of 2V, 

each bit measures 0.122mA, thus offering much higher (i.e. 20x) resolution in measurements.  
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Figures 1.1 to 1.3 gives a graphical overview of the benefits of the windowing technique. The 

sensed voltage ripple is very small since we are dealing with 0.125mV. Hence we need to scale 

this ripple. If we were to scale the ripple to fit half of a 3.3V ADC window (i.e. 1.65V) then 

the voltage ripple would be in the region of 6-7V which exceeds most ADC voltage ranges. 

Hence there is a need to shift this ripple back into the range of the ADC. This forms the crux 

of the need of the windowing technique as well as its merits where a high resolution on the 

voltage ripple can be attained. 

 

Figure 1.1. Voltage Ripple 
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Figure 1.2. Amplified Signal 

 

 

Figure 1.3. Scaled and Amplified Signal 

1.3 Lossless Current Sensing 

Sensing string current is needed in a variety of MPPT and DPP topologies [8], [9]. Windowing 

techniques have been implemented for PV MPPT techniques, however they introduce a sense 

resistor for low-side sensing [1]. This introduces series power loss into the design and hence 

affects the efficiency of the design. For example, a 10A current output would lead to a 1W 
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power loss if a 10mΩ resistor is used. There have been numerous lossless current sensing 

techniques being introduced lately, but they are mostly implemented in the IC level and are not 

fully suitable to measure string current in photovoltaic systems [10], [11]. Another technique 

capitalizes on the parasitic resistance of an inductor, but is only suited for relative and not 

absolute current measurements [12]. Another direction is to reduce the number of current 

sensing circuits in a given system using a distributed control algorithm in DPP, but string 

current measurement is nevertheless needed [13]. Hence in this work, voltage is measured 

across a length of wire found on the back of PV panels to eliminate the introduction of 

additional losses through current sensing. This ensures that absolute current can be measured 

accurately and yet remain in the integrated system level. Sensing over a length of wire requires 

a high precision op-amp to handle the high gain bandwidth as well as the low sense voltage. 

However, high precision op-amps cost typically in the range of $2-3, which is considered 

expensive. The decrease in non-panel costs has become increasingly important as falling panel 

installation costs have been largely attributed to the decrease in module costs [14]. Hence there 

is a need to find a cheap, yet accurate current sensing solution. 

1.4 One Chip Solution 

The integration of maximum power point tracking systems with power electronics have been 

proven to increase overall performance of the portable power generation system [12], [15]. 

Hence there is a need to incorporate the current sense circuit with the power electronics of a 

MPPT system. Windowing techniques require the use of a microcontroller to adjust the window 

as it tracks the current levels. They also require op-amps to amplify the voltage signals to 

achieve the right resolution in the ADC. The use of PSOC4 by Cypress Semiconductor allows 

an integration of the two yet remains cost-effective at $1.50 per PSOC4 chip. The 

programmable op-amps incorporated into the PSOC4 microcontroller unit, allow the entire 

current sense amplifier to be based on one chip, with just external resistors to set the gains. 
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However, these op-amps are not built to make high-precision measurements. Hence this 

dissertation also delineates the various workarounds and measures performed to get the 

Cypress op-amps to work to an optimal level; that is to make precise current measurements 

with the aid of digital calibration. Hence the term digitally-assisted is used.  
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 Initial Calculation 

2.1 Circuit Design 

Figure 2.1 shows the proposed circuit design for the current sense amplifier. It is similar to the 

circuit design in a previous windowed current sense amplifier by C. Barth et al [1].  

  

+

-

+

-

Current 
DAC

Rsense

R1
R2

R5 R3
R4

Vout

 

Figure 2.1. Initial Circuit Design 

 

Note that Rsense, is not actually a resistor, but a figure representation of the length of wire that 

is sensed across. This value was measured to be 1mΩ using a 4-wire measurement at the return 

path at the back of the solar panel for low-side sensing. The first op-amp provides the initial 

gain stage and the second stage provides the biasing signal for windowing. Further details on 

this can be found in subsequent sub-sections and in previous windowed current sense amplifiers 

[1]. 

2.2 Parameter Calculations 

The current ripple has to be scaled to fit the range of the ADC, with the DC value centered at 

the window. To determine the value of the resistors, the initial gain, as well as the bias gain 

need to be calculated. The following equations are taken from Equations 7 and 8 from [1]. 

𝐾𝑔𝑎𝑖𝑛 =
𝑠𝑟𝐴𝐷𝐶

𝑖𝑅𝑠𝑒𝑛𝑠𝑒
                                                            (2.1) 
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𝐾𝑏𝑖𝑎𝑠 =
𝑠𝑟𝐴𝐷𝐶𝐼𝑚𝑎𝑥

�̂�𝑉𝑏𝑖𝑎𝑠,𝑚𝑎𝑥
−

𝑟𝐴𝐷𝐶

2𝑉𝑏𝑖𝑎𝑠,𝑚𝑎𝑥
                                             (2.2) 

We configured the ADC to have an input range of 0 to 3.3V. A single-ended ADC was needed, 

since only positive current were to be measured. According to the Technical Reference Manual 

of the PSOC 4, this would pose the best signal-to-noise ratio for a single ended input. More on 

the ADC set up, as well as other software implementation will be explained in subsequent 

sections. The Table 2.1 below shows the value of the parameters to determine Kgain and Kbias.  

Table 2.1. Initial Parameters 

Parameter Value 

s 0.5 

rADC 3.3V 

Imax 10A 

Rsense 1mΩ 

𝑖̂ 0.25A 

 Ibias,max 306µA 

 

The parameter s refers to the proportion of the ADC range that the current ripple will be scaled 

to and i is the current ripple. As mentioned earlier, rADC is the range of ADC and is programmed 

to be 3.3V. The maximum current is the short circuit current as specified by the common solar 

PV panels. The maximum bias current, is programmed to be 306µA, which corresponds to the 

maximum bias current from the current DAC of the PSOC4.  

2.3 Resistor Calculations 

We calculated the values of the resistors using the parameters shown above, by first finding 

Kgain and Kbias through Equations 2.1 and 2.2. The values of Kgain and Kbias are shown in Table 

2.2 below.  
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Table 2.2. Gain Values 

Kgain 6600 

Kbias 42.05 

 

From the Kgain value, the gain of the initial gain stage, K1, is chosen to be around 68, which is 

approximately the square root of the entire gain, so as to split up both gains evenly. The initial 

gain cannot be too high so as to ensure that the Kbias has sufficient influence on the output 

voltage. We solved the op-amp configuration of figure 2.1 to obtain Equations 2.3 to 2.8. The 

initial gain is determined by the following equation: 

𝐾1 = 1 +
𝑅2

𝑅1
                                                             (2.3) 

We chose R1 arbitrarily to be 47Ω, and from K1, R2 can then be found to be 3160Ω. The second 

gain stage, without the bias, is found to be: 

𝐾2 =
𝑅4

𝑅3
+

𝑅4

𝑅5
+ 1                                                        (2.4) 

while Kbias is given by the following equation: 

𝐾𝑏𝑖𝑎𝑠 =
𝑅4

𝑅5
                                                             (2.5) 

From here, it becomes clear that another resistor value needs to be chosen arbitrarily. We 

decided to use R5 as the starting point, and it was chosen to be 5000Ω. This number is chosen 

in the region that allows Vbias to be a reasonable value close to the value found in [1] which is 

3V. Vbias,max is calculated by using the Thevenin equivalent of the current DAC and R5 and is 

thus found to be 1.53V. From Equation 2.2, Kbias is found to be 42.05 and from equation 2.5, 

R4 can then be calculated and is found to be 210kΩ. R3 can finally be found by the following 

equation: 
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𝑅3 =
𝑅4

𝐾2−𝐾𝑏𝑖𝑎𝑠−1
= 3918Ω                                                 (2.6) 

From the op-amp configurations, the expected output voltage can be found by: 

𝑉𝑜𝑢𝑡 = (
𝑅4

𝑅3
+

𝑅4

𝑅5
+ 1) (1 +

𝑅2

𝑅1
)((𝐼sense𝑅𝑠𝑒𝑛𝑠𝑒) − 𝑅4𝐼𝑏𝑖𝑎𝑠                     (2.7) 

Hence, through algebraic manipulation, the current that is sensed is calculated by: 

𝐼𝑠𝑒𝑛𝑠𝑒 =
𝑉𝑜𝑢𝑡+𝐼𝑏𝑖𝑎𝑠𝑅4 

(1+
𝑅2

𝑅1
)(

𝑅4

𝑅3
+

𝑅4

𝑅5
+1)𝑅𝑠𝑒𝑛𝑠𝑒

                                                   (2.8)  

A summary of the resistor values is shown in Table 2.3. 

Table 2.3. Resistor Values 

Resistor Value (Ω) 

R1 47 

R2 3160 

R3 3918 

R4 210294 

R5 5000 
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 Simulations 

For proof of concept, the circuit configuration and resistor values were simulated using ideal 

op-amps. From Equation 2.1, the amplified DC signal should fall in the middle of the input 

voltage range of the ADC, which is dependent on the value of Ibias. The ideal Ibias value can be 

calculated by first assuming that the output voltage will appear at 1.65V, which is the middle 

of the 0-3.3V ADC range. For example, assuming a current value of 1A, then, Ibias can be found 

by the following method: 

𝐼𝑏𝑖𝑎𝑠 =
𝐾𝑔𝑎𝑖𝑛𝐼𝑠𝑒𝑛𝑠𝑒𝑅𝑠𝑒𝑛𝑠𝑒−𝑉𝑜𝑢𝑡

𝑅4
= 23.54µ𝐴                                  (3.1) 

Hence, for every input current value, the corresponding bias current can be calculated. We used 

Matlab Simulink for the simulation where the input current was allowed to vary. The current 

bias was changed accordingly based on the following equation: 

∆𝐼𝑏𝑖𝑎𝑠 =
𝐾𝑔𝑎𝑖𝑛∆𝐼𝑠𝑒𝑛𝑠𝑒𝑅𝑠𝑒𝑛𝑠𝑒

𝑅4
                                                  (3.2) 

 

Figure 3.1. Circuit Diagram for DC Current Simulation in Matlab Simulink 

We built the system shown in Figure 3.1 to see if the voltage output would be centered at 1.65V 

throughout the input DC current range of 0 to 10A. It was simulated in Matlab Simulink, and 

a Matlab script was used to modify the values of k_in and k_bias at the beginning of each 
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simulation iteration. Figure 3.2 shows the output voltage of the second op-amp is clearly around 

1.65V. Due to rounding off error in the k_bias calculations, the DC output increases slightly 

from 1.653V to 1.664V from the input current of 1A to 10A. This proved that the resistor value 

calculations were indeed correct and that the op-amp configurations could measure current 

through the entire input current range through this windowing technique.  

 

Figure 3.2. Voltage Output Plot vs DC Current Input for Matlab Simulink Simulation 

We next sought to determine if current ripple was scaled to fit half of the ADC range, as well 

as follow the window set by the current bias. The system shown in Figure 3.3 was built in 

Simulink and then simulated. This time, a sine wave was placed at the input with a DC offset 

determined by the k_in parameter.  
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Figure 3.3. Circuit Diagram for Current Ripple Simulation in Matlab Simulink 

 

  

Figure 3.4. Voltage Output Plot (top) and Current Ripple Input (bottom) vs Time for Matlab Simulink 

Simulation 

The sine wave input had an amplitude of 0.125A which gives a ripple of 0.25A as specified in 

Table 2.1. The output voltage ranged from 0.847V to 2.498V, which amounts to 1.646V, which 

is about half of the input ADC range, as calculated in the earlier sections. The input current 

ripple was scaled and varied based on the current bias. We have shown through simulation that 

despite the increase in current, the voltage output remains in the window for the entire input 

current range.  
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 Programming Cypress 

The CYPRESS PSOC Creator gives the programmer the option of dragging and dropping 

components into a schematic as shown above in Figure 4.1. The parameters of each of the 

components can be specified using a GUI, hence reducing the use of C code to initialize 

registers. How each of the components behave is then determined by the main function and C 

code. The resistors cannot be programmed in the microcontroller, hence we needed to arrange 

the resistors on a breadboard. We then programmed the output pins of the microcontroller and 

wired them to the appropriate nodes accordingly.  

 

Figure 4.1. PSOC Creator Circuit Diagram 

4.1 Op-amp 

The PSOC4 boasts two highly configurable programmable op-amps. We needed high output 

current so as to be able to drive the output pins. The PSOC 4 could be programmed to output 

current at 1mA or 10mA. Hence we selected the 10mA option. We selected the op-amps to run 

at high power mode for high slew rates and a high gain bandwidth. A high slew rate is needed 

due to the ripple measurements the circuit is required to perform. The high gain bandwidth is 

needed since the gain of both op-amp configurations are large. We chose high stability, despite 

the slower speed, due to its high compensation which stabilizes the voltage output of both op-

amps.  
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4.2 Analog-to-Digital Converter (ADC) 

The PSOC4 also has a highly configurable analog-to-digital converter, with up to 4 channels. 

However, we only need one channel for our purposes. The ADC would only begin a conversion 

when needed and hence we programmed it to be hardware triggered. Based on the technical 

reference manual, for a single ended input ADC with a range that starts from 0V, having the 

single ended negative input connected to Vss and the voltage reference connected to an external 

voltage reference, which was set at 3.3V, would provide the ADC with the best signal-to-noise 

ratio. Initially, we chose a slow sample rate and high number of samples averaged, so as to 

ensure stability in readings, and the sampling rate will be optimized further at later stages. 

Hence a 1MHz sampling rate was chosen, with 256 samples averaged. We also lengthened the 

acquisition time to 500µs for greater stability. Finally, the ADC’s resolution was 11 bits which 

meant each bit change amounted to a 1.612mV change in output voltage, in turn translating to 

a 0.244mA change in current sensed.  

The ADC can generate interrupts based on window limits or if the ADC saturates. We set the 

window limits to 1.15 to 3.044V, which is about 200mV larger than 1.65V, the expected peak 

to peak scaled voltage output waveform. More about how the algorithm leverages on this limit 

interrupts will be explained in subsequent sections. 

4.3 Current Digital-to-Analog Converter (IDAC) 

To provide the bias, a current DAC was used. The DAC will be in parallel with R5 so as to 

create the Thevenin voltage bias so as to have the same bias equations as in [1]. We set the 

IDAC to a resolution of 8 bits which translates to 1.2µA per bit. 

4.4 . Pins 

All pins are programmed to be analog, as we are dealing completely with analog signals. 
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4.5 LEDs 

An RGB LED was programmed to indicate when the voltage signal exceeded the limits by 

lighting up in red. 

4.6 UART 

UART was programmed to have a baud rate of 9600bps. The buffer size is set to 8 bits (1 byte) 

with 1 stop bit. With the buffer size as such, the values of the bias and the converted ADC 

reading, mvolts must be sent to the first in first out buffer (FIFO) one byte at a time. We wrote 

some C code to ensure that only 1 byte is being sent to FIFO at a time and this can be viewed 

in the Appendix.  

4.7 Code Algorithm 

Figure 9.2 shows a flowchart of the code algorithm incorporated into the circuit. 
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Figure 4.2. Flowchart of Code Algorithm 

The ADC is hardware triggered, and hence, each loop begins with a function call to start the 

ADC conversion process. A buffer state is created to ensure that the ADC conversion process 

is completed before further code is executed. The code then calls a function that converts the 

ADC reading into millivolts so that we do not have to deal with hexadecimal interpretation. A 

flag will be generated if the ADC reading falls outside the window. If there is no flag, then the 

reading is sent to UART and the loop restarts. If there is however, then a simple “if” condition 

checks if either the upper or lower limit is reached and adjusts the bias current accordingly so 

as to shift the window. The bias is adjusted by only one bit, which equates to 1.2µA, and so 

that the window shift is as small as possible to ensure finer window adjustment.  
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 Initial Measurements and Debugging 

The circuit in Figure 5.1 was set up on a breadboard for initial measurements.  

+

-

+

-

Current 
DAC

Rsense

R1
R2

R5 R3
R4

Vout

DC Current
Source

 

Figure 5.1. Test Circuit with Cypress Op-amps 

A DC current source was used to bias the sense resistor. Rsense was initially a wire measured 

out to be approximately 1mΩ using a 4-wire measurement. However, after the circuit was set 

up, no voltage was registered at the output.  

5.1 Initial Debugging 

The Cypress op-amps were immediately suspected, as upon probing, the voltage output from 

the initial state was only 16mV, as compared to a 68mV expected output at 1A input current. 

To debug the cypress op-amps, the following circuit shown in Figure 5.2 was used. 

 

Figure 5.2. Debugging Circuit for Initial Op-amp Stage 

To rule out gain bandwidth issues, we decided to decrease the gain of the circuit by a factor of 

10, and hence the 3160Ω was switched out for a 270Ω resistor so that the gain would be 6.744. 

Table 5.1 below shows the results of varying the input from 1mV to 450mV. 
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Table 5.1. Measurements for Initial Gain Debugging Circuit 1st Op-Amp 

DC (V) Vout (V) GainCalculated GainIdeal Gain Error (%) 

0.001 0.003 2.920 6.745 382.47 

0.010 0.006 0.561 6.745 618.37 

0.020 0.068 3.416 6.745 332.87 

0.030 0.147 4.900 6.745 184.47 

0.040 0.225 5.612 6.745 113.29 

0.050 0.299 5.980 6.745 76.47 

0.060 0.374 6.232 6.745 51.30 

0.070 0.446 6.374 6.745 37.04 

0.080 0.518 6.469 6.745 27.59 

0.090 0.588 6.536 6.745 20.91 

0.100 0.658 6.579 6.745 16.57 

0.110 0.727 6.609 6.745 13.56 

0.150 1.000 6.667 6.745 7.80 

0.200 1.338 6.691 6.745 5.42 

0.310 2.077 6.699 6.745 4.56 

0.410 2.747 6.701 6.745 4.37 

0.450 3.015 6.700 6.745 4.51 

 

The voltage measurements for the input DC voltage of 1mV explains the issue of having no 

voltage amplification at the current input of 1A, since the voltage output was a mere 3mV. 

However, as the DC input voltage increases, we begin to see that the gain converges towards 

the correct value. However, the DC input in which the gain approaches an acceptable value, is 

in the region of 200mV, which corresponds to 200A of input current.   

The second op-amp was also tested using the same circuit and Table 5.2 shows the voltage 

measurements acquired. Note the difference in Gainideal because different resistors of the same 

value were used as it was done on a separate occasion.  

 

 

 



19 

 

Table 5.2. Measurements for Initial Gain Debugging Circuit 2nd Op-Amp 

DC (V) Vout (V) GainCalculated GainIdeal Gain Error (%) 

0.001 0.042 42.210 7.059 497.94 

0.002 0.048 24.200 7.059 242.81 

0.003 0.055 18.267 7.059 158.76 

0.004 0.061 15.350 7.059 117.45 

0.005 0.068 13.526 7.059 91.61 

0.010 0.100 10.000 7.059 41.66 

0.015 0.133 8.867 7.059 25.60 

0.020 0.166 8.300 7.059 17.58 

0.025 0.199 7.960 7.059 12.76 

0.035 0.267 7.629 7.059 8.07 

0.045 0.333 7.400 7.059 4.83 

0.055 0.400 7.273 7.059 3.02 

0.075 0.537 7.165 7.059 1.50 

0.100 0.710 7.100 7.059 0.58 

0.200 1.412 7.060 7.059 0.01 

0.300 2.117 7.057 7.059 -0.04 

0.400 2.823 7.058 7.059 -0.02 

 

The results shown for the second op-amp showed similar gain calculations, where they 

converged to the correct value as the input increased.  

5.2 Using an External Op-amp 

To ensure that the circuit design worked, and that the op-amps were the points of failure, 

external op-amps were used. As a starting point, we chose the op-amps used in [1] to replace 

the Cypress Op-amps which were the OPA4364. Initial simulations were also performed to 

ensure that the Op-amps could work at such a low sense resistor and high gain. The simulation 

of a model of OPA4364 was performed over LTSPICE and the circuit diagram of which is 

shown in Figure 5.3. 
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Figure 5.3. LTSPICE Simulation of Circuit with OPA364 

Since the op-amp model was not ideal, it was difficult to determine the correct current bias at 

a given current input. Hence a DC sweep of the current bias source was performed. We 

initialized I4 to be 23.5µA and varied by 1.2µA up to 50µA. After which, data cursor was used 

to determine the current bias value in which the output of the circuit was around 1.65V. With 

a slight error value, we determined that the current bias should be initialized to slightly below 

34.3µA.  

  

Figure 5.4. LTSPICE Simulation Plot of Circuit with OPA364 with DC Sweep of I4 Current Source from 

23.5µA to 50µA at 1.2µA Intervals 

Using the information obtained above, we initialized the current bias to 34.15µA to obtain a 

voltage output signal at 1.65V as shown in figure 5.5 below.  
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Figure 5.5. LTSPICE Simulation Plot of Circuit at Current Bias of 34.15µA 

We have proven that OPA364 could be used for our application and hence we proceeded to 

breadboard the op-amps with the same setup as in previous sections. However, the same issue 

occurred, where at 1A, no voltage output was detected at the initial gain stage. Hence, other 

factors were looked at. After further analysis, we then suspected that the minimum offset 

voltage of the op-amps could explain why at such low sense voltages, no output voltage was 

attained. It was discovered that the voltage offset of OPA364 was 0.5mV. Voltage offset can 

be viewed as the voltage across the inverting and non-inverting input to make the output voltage 

0V. Having a voltage offset of 0.5mV could prove too close to 1mV and hence the op-amps 

could ‘think’ that it was sensing 0V and hence not output anything. We then looked at the input 

offset voltage of the Cypress op-amps and discovered that it was 1mV which also explained 

the behavior in the previous instances. 

5.3 Alternative External Op-amps 

We were then aware that the input voltage offset proved to be a critical electrical characteristic 

of the op-amp amongst other factors, and so, eventually we settled on OPA330 as it had 

comparable electrical characteristics as OPA364, but a lower input offset voltage at 50µV.  
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Figure 5.6. Testing Circuit with External Op-amps 

As seen in Figure 5.6, the DC voltage input was allowed to vary from 1 to 10mV and the ADC 

readings were manually taken down at an input interval of 0.2mV. Measurements were only 

made when the current bias remains constant for three consecutive ADC readings. In this way, 

the ADC readings are the settled voltage output and not the intermediate sensed current 

measurements when the bias is adjusting while the signal is outside the window. Measurements 

were made for both increasing and decreasing current, and plots were made via Matlab to 

observe the trend in the ADC readings. Figure 5.7 shows the results of those measurements. 

The current calculated was based on Equation 2.8 and represents the y-axis. 

The solid line indicates the expected current plot in ideality and the scatter plot indicates actual 

data points measured and plotted at different input DC voltages. The key takeaway here is that 

both plots are monotonic. Digital calibration would be able to process the slight discrepancies 

between the real and the ideal current measurements.  

These plots proved that the code works, and that the resistor values chosen allowed current 

measured across the entire range. 
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Figure 5.7. Plots for OPA4330 for Current Measurements 
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 Cypress Op-amp Workaround 

The ultimate goal in this research was to use the Cypress op-amps. Hence, after proving that 

the code and resistor values worked, we needed to ensure the full-functioning of the circuit 

with the Cypress op-amps. 

6.1 Creating a Fixed Offset through High Side Current Sensing 

From previous sections, we showed that the input voltage offset was a problem, hence it was 

decided to attempt to force an offset at the input terminals of the op-amps. In order for this to 

be possible, we needed to sense current at the high side instead and hence, set up the circuit as 

shown in Figure 6.1. 

1m  

47k 68k 

22k 33k  

1.583V1.628V
+

-
47 

3160  

5VDC
5 

a b

  

Figure 6.1. Input Offset Voltage Forcing Circuit 

As proof of concept, we placed a 5V DC source to represent a panel, and placed a 5Ω resistive 

load so as to force 1A through the sense resistor. As seen in Figure 6.1, the expected voltages 

at nodes a and b were 1.628V and 1.583V respectively causing a difference of 45mV. However, 

both in simulation and on the breadboard, the inverting input forced the voltage difference to 

be 0.5mV. The simulation result is shown in Figure 6.2.  
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Figure 6.2. Simulation Result for Voltage Offset Divider 

It was suspected that the resistors values were too high and hence too little current could have 

flowed to the inputs of the op-amp. However, the resistor values were chosen in the tens of 

kiloOhms range so as to reduce power loss. Minimal effort was expended in debugging this 

circuit since this voltage divider added power more power loss (an added 0.6mW) to a current 

sense solution whose sole purpose was to sense virtually losslessly. Further, high side sensing 

would make the voltage dividers panel dependant which would hence alter the resistor values.   

6.2 Re-characterization of Cypress Op-amp 2 

The Cypress was re-plotted at the required gain as the data shown table 5.2 indicated that one 

of the op-amps could detect an input of 1mV. The measurements were done and are shown in 

Table 6.1. We noticed that if we subtracted the voltage at 0mV DC input, then our gain error 

falls to the region of 7%, which would not pose too much of a problem after digital calibration.  
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Table 6.1. Measurements for Re-characterization of 2nd Op-Amp 

DC (V) Vout (V) Vout-Voff GainCalculated Gainactual Gain_error(%) 

0 0.327 0 - - - 

0.001 0.394 0.067 67.300 72.083 6.64 

0.002 0.462 0.135 67.700 72.083 6.08 

0.003 0.529 0.202 67.467 72.083 6.40 

0.004 0.595 0.268 67.000 72.083 7.05 

0.005 0.662 0.335 66.960 72.083 7.11 

0.010 1.000 0.673 67.320 72.083 6.61 

0.015 1.339 1.012 67.480 72.083 6.39 

0.020 1.678 1.352 67.580 72.083 6.25 

0.025 2.013 1.686 67.448 72.083 6.43 

0.030 2.357 2.030 67.667 72.083 6.13 

0.040 3.045 2.718 67.953 72.083 5.73 

 

6.3 Creating the Workaround 
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Figure 6.3. Cypress Workaround 

From, the previous section and in the earlier chapters, we showed how the two op-amps 

behaved very differently despite the same setup. For the set of PSOC4 that we had at our 

disposal, we decided to leverage on the two very separate idiosyncrasies of the op-amps to 

make the circuit work. One op-amp only started amplifying at voltage inputs above 40mV, and 

the other op-amp amplified linearly, but had a 360mV offset. Hence, the initial gain stage was 

used for the op-amp with the voltage offset, and then scaled downwards using a voltage divider 
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to a reasonable value as an input to the second stage. As the same characteristics were observed 

in other Cypress op-amps, prima facie, it seemed like a viable option. 

With the new scale, the circuit will behave quite differently, and the relationship between the 

input and output of the initial gain stage is shown in Figure 6.4. 

  

Figure 6.4. Input to Second Stage 

From the graph above, it should be expected that the maximum biasing current should be less 

for the Cypress setup than for the OPA4330. Also, with the new scale, Equation 2.8 will be 

different and can be found by Equation 6.1 below. 

𝐼𝑠𝑒𝑛𝑠𝑒 =
𝑉𝑜𝑢𝑡+𝐼𝑏𝑖𝑎𝑠𝑅4 

(
𝑅7

𝑅7+𝑅8
)(1+

𝑅2

𝑅1
)(

𝑅4

𝑅3
+

𝑅4

𝑅5
+1)𝑅𝑠𝑒𝑛𝑠𝑒

−
𝑉𝑜𝑓𝑓

(1+
𝑅2

𝑅1
)(𝑅𝑠𝑒𝑛𝑠𝑒)

                               (6.1) 

The same measurements process as in the previous chapter was performed with this new set 

up. It should also be noted that a low-pass filter is placed at the input of the ADC as well as the 

input of the inverting terminal of the op-amp in the second stage. This was to filter out any 

noise inherent in the Cypress op-amps.  
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Figure 6.5 shows the plots of increasing and decreasing current using the Cypress op-amps. 

The y-axis shows the current calculated after the sweep using Equation 6.1. We recorded the 

values of the bias variable as well as the converted ADC reading, mvolts and we used these 

values to calculate the current. The bias current is calculated based on Equation 6.2 below. 

𝐼𝑏𝑖𝑎𝑠 =
𝑏𝑖𝑎𝑠

255
∗ 0.000306                                                  (6.2) 

255 is the maximum value bias can take since the DAC has an 8 bit resolution, and 0.000306 

is the maximum current output from the DAC.   

  

Figure 6.5. Decreasing Current Measurement Plots for Cypress Op-amps 
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Figure 6.6. Increasing Current Measurement Plots for Cypress Op-amps 

There was a lot more flutter in the ADC readings as compared to the OPA4330, indicating that 

the Cypress op-amps are not as stable as the OPA4330. However, the general trend follows 

very closely to the ideal case. Digital calibration can be performed to account for the flutter in 

ADC reading. Further, these measurements were performed on a circuit built on a breadboard 

which tend to introduce noise into signals.  

6.4 New Circuit Parameters 

With the added scale, the gain of the circuit changed and can be found by Equation 6.3 below: 

𝐾𝑔𝑎𝑖𝑛 = 𝐾1𝐾2𝐾𝑠𝑐𝑎𝑙𝑒                                                   (6.3) 

Where, 

𝐾𝑠𝑐𝑎𝑙𝑒 =
𝑅7

𝑅7 + 𝑅8
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The rest of the resistor values remained the same and are shown in Table 6.2 and the gain values 

are summarized in Table 6.3. 

Table 6.2. Resistor Values with Kscale 

Resistor Value (Ω) 

R1 46.5 

R2 3160 

R3 3920 

R4 221000 

R5 4990 

R7 22000 

R8 68000 

 

Table 6.3. Gain Values with Kscale 

Gain Value (V/V) 

K1 68.23 

K2 96.73 

Kscale 0.244 

Kgain 1610 

 

It is thus apparent that the scale decreases the gain of the circuit, which effectively increases 

the range of current that can be measured, but reduces the resolution of the measured signal. 

  



31 

 

 Printed Circuit Board (PCB) Implementation and Input Sweeps 

A 2-layer PCB was designed using Eagle in attempt to eliminate noise in signals and hence 

reduce ADC reading flutter. Both the circuit for the Cypress op-amps and the OPA2330 were 

built on the same board. Note that OPA2330 is a dual version of the quad package of OPA4330. 

The figure below shows the PCB connected to the Cypress microcontroller. The actual 

schematic and Eagle layout can be found in the appendix. The PCB was also characterised and 

we observed that the voltage offset from the first op-amp was 300mV at 0mV input.  

  

Figure 7.1. Picture of PCB with Cypress Pioneer Kit Microcontroller 

7.1 Improvements in ADC parameters 

Initial measurements showed that there was very little flutter in the ADC readings and hence 

we decided to quicken the acquisition and sampling rate for better processing since this current 

sense amplifier would eventually need to measure current ripple. The clock frequency was 

increased from 1Mhz to 15Mhz, with just two samples averaged per ADC conversion, further 

the acquisition time was reduced to 4 clock cycles, that is 266.67ns per acquisition and thus the 

conversion time is improved to 1.2µs. In this case, we are certain that a high frequency current 
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ripple can indeed be measured with high enough resolution with these acquisition and 

conversion times. 

7.2 Python Serial/UART Communication 

In order to generate voltage sweeps, we used Python code to communicate with a Kiethley 

2400 power sourcemeter through GPIB. Python was also used to set up serial communication 

using the UART protocol so that the bias and mvolts variables can be saved in a log file. We 

would then process these measurements to produce the current measurements digitally after 

the whole sweep was performed. An algorithm had to be set up such that the serial output from 

the microcontroller is sent only when the Python code is ready to receive the data. The python 

code of these sweeps can be found in Appendix C. 

7.3 Input DC Voltage Sweep 

The same set up shown in Figure 5.5 was used for the input voltage sweep, except that the 

sweep begun from 0mV and ended at10mV, with 0.1mV increments and then the input voltage 

was decreased from 10mV to 0mV. At each voltage input operating point, 10 ADC readings 

were taken to observe the flutter. Since an array of bias and mvolts were obtained, we could 

use those values to calculate the current measured using Equations 6.1 and 6.2 with mvolts 

converted to volts and used as the input to Vout in Equation 6.1.  The results of the experiment 

is shown in Figures 7.2 and 7.3. 
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Figure 7.2. Current Measurements for an Increasing Input Voltage Sweep 

  

Figure 7.3. Current Measurements for a Decreasing Input Voltage Sweep 

The results in Figures 7.2 and 7.3 show a vast improvement in ADC flutter as compared to the 

measurements performed on the breadboard. This can be attributed to the low pass filters as 



34 

 

well as the PCB. The slight difference in slope between the measured plot and the ideal plot 

could be eliminated through digital calibration which will be performed once actual current is 

swept through a sense resistor instead of an input voltage sweep. 

7.4 Input Voltage Ripple Sweep 

Since current ripple is intended to be measured with this current sense amplifier, a current 

ripple sweep was performed using the Kiethley 2400 power sourcemeter. A voltage ripple of 

0.250mV was generated by simply incrementing and decrementing the input voltage by 

0.005mV so that a triangle wave is generated and the sweep was induced by increasing the DC 

offset of this ripple. It should be noted that the minimum DC offset was set to 1mV. Only one 

ADC reading is taken per input voltage level. 

  

Figure 7.4. Current Measurements for an Input Ripple Voltage Sweep 

Figure 7.4 show that the calculated current follows the trend of the ideal current measurement 

very closely, with a slightly less steep slope for the entire input range.  
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Figure 7.5. Zoomed in Current Measurements for Input Ripple Voltage Sweep 

The zoomed in figure of the current ripple show that a 0.2A difference between the ideal and 

actual current at the 8A current level. Also, the calculated ripple shows a slightly different 

ripple pattern than the actual current, however, this was not too concerning as for DPP and 

MPPT, the change in current is more important than the absolute current level. Further, there 

was a slight timing issue in the Python Code at the time this measurement was taken, however, 

for the actual current ripple measurement shown in the succeeding sections, the bug was fixed 

and the pattern matched.   

7.5 Input Current DC Sweep 

The following set up shown in Figure 7.6 was used to sweep the current from 0.5 to 9.5A. A 

1Ω resistor load was used to draw the current based on a 0.5 to 9.5V DC voltage sweep using 

the Agilent 6674a power supply with 0.1V increments and decrements. It should be noted that 

current was only limited to 9.5A as the fuse rating of the ammeter was 10A and hence we 

sought to limit the current to 9.5A. 
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Figure 7.6. Circuit Diagram for Current Sweep Measurements 

Figure 7.7 below shows the results of the current sweep. The plot in red shows the current 

measured from the ammeter placed just before Rsense and the plot in blue shows the current 

calculated based on Equation 6.1.  

  

Figure 7.7. Current Measurement Comparison between Calculated Current and Actual Current 

As current increases, the difference between the calculated current and the actual current 

increased linearly. However, it is clear that the current measurement response is monotonic 
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which thus makes it easier to digitally calibrate and reliable especially for MPPT applications 

where the need to detect the change in current is more important than the absolute current 

levels. The Figure 7.8 below shows the effects of digital calibration. 

  

Figure 7.8. Current Measurement Comparison between Calculated Current After Digital Calibration and 

Actual Current 

The digital calibration was performed in Matlab, though the algorithm can be easily applied in 

C via the main microcontroller or even the PSOC4 chip to process the current values. The 

characteristic relationship between the calculated current and the actual current was exploited 

where there was a linear increase in the difference between the two currents and hence as 

current increased, the calculated current was increased by an amount that increases linearly 

with increase in current. Refer to Appendix D1 for the Matlab code. 

7.6 Input Current Ripple Sweep 

Since the current that this circuit was designed to be measuring was actually a current ripple, a 

Kiethley 2400 sourcemeter was programmed to generate a ripple current in a triangular 

waveform and was allowed to vary from 1 to 3A with a ripple amplitude of 0.125A and a DC 
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offset increment (and decrement) of 0.1A. The setup is shown in Figure 7.9, with a current 

source used instead of a voltage source, hence there was no need for a 1Ω load resistor. 
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Figure 7.9. Circuit for Current Ripple Plots 

The results of the sweep is shown in Figure 7.10. There is the same increase in the difference 

between the calculated current and the measured current, but in this case, the measured current 

is the reading from current output from the Kiethley 2400. There were some spikes in the 

calculated current that was not in the measured current, these spikes could be attributed to the 

transition where the errors occur as the bias is shifting and current is still being measured.  
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Figure 7.10. Current Ripple Plots with Kiethley 2400 

Clearly, the calculated current required digital calibration similar to the previous section and 

Figure 7.11 shows the effects of digital calibration. A slightly different algorithm was used this 

time, where the current was shifted by a predetermined number based on the current level. 

  

Figure 7.11. Current Ripple Plots after Digital Calibration 
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Figure 7.11 proves that once again, digital calibration is highly effective in matching the 

calculated current to the ideal current measurements. Figure 7.12 emphasises on this point 

where the current ripple after digital calibration follows the pattern of the current ripple 

produced by the current source very well. With the spikes attributed to the timespan during the 

changes in the ADC window. Digital calibration was performed on Matlab once again, though 

the algorithm can be easily implemented in C code and programmed into the microcontroller. 

Refer to Appendix D2 for the Matlab code. 

  

Figure 7.12. Zoomed in Current Ripple Plots after Digital Calibration 

7.7 ADC Window in Relation to the Calculated Current Ripple 

The current ripple was plotted in relation with the ADC window and is shown in Figure 7.13. 

The ADC window limits (i.e. 1.15V and 3.044V) were calculated via Equations 6.1 and 6.2 to 

see the ‘current level’ the ADC limit windows actually represent.  
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Figure 7.13. Current Ripple in Relation to the ADC Window 

Figure 7.13 shows that the peaks in the current ripple are responsible for the shifting up of the 

ADC window and the troughs of the current ripple are responsible for the shifting down of the 

ADC reading. This was deduced by observing that each shift in the ADC window is aligned 

with a peak or a trough. It is also clear that the ripple stays at the edge of the ADC window 

throughout the measurement which is a product of the bias code algorithm where the bias is 

only changed incrementally by 1.2µA each time the limit of the window is hit.  

7.8 ADC Ripple Analysis 

The scale down due to the DC voltage offset from the Cypress op-amps also scales the ripple 

amplitude of the ADC readings down to the region of 450mV instead of the calculated 1.65V. 

This is easy to see from Equation 7.1: 

𝐼𝑟𝑖𝑝𝑝𝑙𝑒 ∗ 𝑅𝑠𝑒𝑛𝑠𝑒 ∗ 𝑠𝑐𝑎𝑙𝑒 ∗ 𝐾𝑔𝑎𝑖𝑛 = 0.250 ∗ 0.001 ∗ 0.244 ∗ 6600 = 0.4026𝑉        (7.1) 
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Figure 7.14. Current Ripple in Relation to the ADC Window 

Figure 7.14 shows an enlarged version of the voltage ripple in relation to the ADC window 

where the ADC reading’s ripple amplitude is 0.463V which is expected from Equation 7.1. 

This does not fully utilize the capability of this current sense topology and hence we would 

need to make adjustments to the resistor values in order to counter this. This ripple can be 

scaled back up however and the next chapter will delineate how this process will be achieved.  
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 Optimization 

As seen from the previous chapter, the ripple did not fully utilise the capabilities of the circuit 

configuration. Hence we did a rethink on how to scale manipulate the gains such that the output 

ripple utilizes as many bits as possible.  

The first step was to increase s which is the portion of the ADC range to scale the ripple to 

from 0.5 to 1. That is, for the case of OPA4330, the ripple will fill the entire range of the ADC. 

In this way, all 11 bits of the ADC range will be used fully, which is, the peak of the ripple will 

ideally be at 204710 and the trough would be at 010. However, because of the scale down at the 

initial stage, it will be expected that the resultant ripple will be slightly smaller than the entire 

ADC range. 

Since the scale down occurred at the initial stage, we would only be able to change K2 for the 

scale up process. However, in K2 we could only change R3 since R4 and R5 affect Kbias. We 

first calculate the resistor values as per normal, but with s=1. We then set an equation to find 

the minimum value of R3 that we can have. This is achieved by corresponding the maximum 

current level that the circuit has to measure with the maximum bias the DAC can output and 

equating that to the maximum ADC reading. This is shown in Equation 8.1: 

(𝐼
max +

𝐼𝑟𝑖𝑝𝑝𝑙𝑒

2

) 𝑅𝑠𝑒𝑛𝑠𝑒𝐾1𝐾2𝐾𝑠𝑐𝑎𝑙𝑒 + 𝑉𝑜𝑓𝑓𝐾𝑠𝑐𝑎𝑙𝑒𝐾2 = 𝑟𝐴𝐷𝐶 + 𝑅4𝐼𝑏𝑖𝑎𝑠,𝑚𝑎𝑥         (8.1) 

Rearranging 8.1 to find the minimum R3 for the optimized circuit we have Equation 8.2: 

𝑅3𝑚𝑖𝑛 = 𝑅4 (
𝑟𝐴𝐷𝐶+𝑅4𝐼𝑏𝑖𝑎𝑠,𝑚𝑎𝑥

(𝐼
max +

𝐼𝑟𝑖𝑝𝑝𝑙𝑒
2

)𝑅𝑠𝑒𝑛𝑠𝑒𝐾1𝐾𝑠𝑐𝑎𝑙𝑒+𝑉𝑜𝑓𝑓𝐾𝑠𝑐𝑎𝑙𝑒

− 1 −
𝑅4

𝑅5
)

−1

= 914.9Ω      (8.2) 
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The minimum resistance value for R3 was found to be 914.9Ω at a 10A input current. Table 

8.1 below shows the new resistor values of the circuit based on the resistances measured that 

are implemented in the circuit.  

Table 8.1. Resistor Values for Optimized Circuit 

Resistor Value (Ω) 

R1 47 

R2 3160 

R3 932 

R4 421646 

R5 4990 

R7 22000 

R8 68000 

 

The new gain values are shown in Table 8.2 below. 

Table 8.2. Gain Values for Optimized Circuit 

Gain Value (V/V) 

K1 68.23 

K2 537.91 

Kscale 0.244 

Kgain 8955 

 

8.1 Simulation of Optimized Circuit 

To test the equations, simulations were performed on LTSPICE. The voltage input to the 

second op-amp was determined by Equation 8.3. This is to simulate the expected output from 

the initial gain stage after the scale down. 

𝐼𝑛𝑝𝑢𝑡 𝑡𝑜 𝑆𝑒𝑐𝑜𝑛𝑑 𝑂𝑝𝑎𝑚𝑝 = (𝐼𝑠𝑒𝑛𝑠𝑒𝑅𝑠𝑒𝑛𝑠𝑒𝐾1 + 𝑉𝑜𝑓𝑓)𝐾𝑠𝑐𝑎𝑙𝑒                  (8.3) 

In simulation, a sinuosoidal input with DC offset of 10A and an amplitude of 0.125A was put 

into Equation 8.3 to figure out the parameters of the voltage source, V1, in the simulation. 

These parameters are 0.2391V DC offset with a 0.0021V amplitude. The circuit diagram of the 

simulation and its result is shown in Figures 8.1 and 8.2. 
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Figure 8.1.Circuit Diagram for Optimized Circuit Simulation 

  

Figure 8.2. Simulation Results for Optimized Circuit at Max Current 

The simulation waveform shown in Figure 8.2 shows that at maximum current, the voltage 

ripple falls within the range of the ADC at the maximum bias output current. Also, the resultant 

voltage ripple’s peak to peak voltage is 2.874V which proves promising that we would have 

high enough resolution in the ripple.  

8.2 Ripple Sweep 

The ripple sweep similar to the one done in Section 7.4 was performed to see if the simulation 

results carried over to the hardware implementation. Figure 8.3 below compares the ripple 

output from the Kiethley 2400 and the calculated current with a sweep from 0-3A. The ADC 

window limits were set to between 0.4 and 3V to create a very tight bound on the ripple. 
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Figure 8.3. Current Ripple Sweep 

The general pattern of the ripples shown resembles that of Figure 7.10 with a similar deviation 

away as current increases. The current ripple was digitally calibrated, using the same Matlab 

code as before to prove consistency in readings and shown in Figure 8.4 below. 

  

Figure 8.4. Current Ripple Sweep After Digital Calibration 
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8.3 ADC Window in Relation to the Calculated Current Ripple 

The same plot as in Chapter 7.6 is performed to see how the window is shifted according to the 

changing current levels. From Figure 8.4 below, it becomes more apparent that the window 

shifts more as the current ripple peaks just meets the window limits of the ADC.  

 

 

Figure 8.5. Current Ripple in Relation to Window Limits 

The spikes in the ADC window limits corresponds heavily to the spikes in the current ripple 

which can be attributed to the transitions when the bias levels are changing. It can also be 

observed from the figure that the ripple fits very snugly within the window limits.  

8.4 ADC Optimized Analysis 

The ripple was enlarged in Matlab to view the actual peak to peak values measured by the ADC 

and is shown in Figure 8.6. 



48 

 

 

Figure 8.6. Enlarged Current Ripple 

From figure 8.6, we can see that the ripple peak to peak is around 2.26V which is far better 

than the 0.4V measured originally.  

8.5 Full Range Current Sweep 

By increasing the gain of the second stage, there is a small risk that the maximum current may 

fall outside the range of the current sense circuit. To ensure that the circuit can measure the 

entire range of current, a 0.5-10A DC sweep was performed using the HP 6674A DC Power 

Supply. Figure 8.7 shows a comparison between the current measured by a Fluke 45 Digital 

Multi-Meter (red line) and the current measured from the current sense circuit (blue line).  As 

seen before, the current measured from the current sense circuit deviates away from the 

measured current as current increases, with that difference changing linearly. Figure 8.8 shows 

the current measurements after digital calibration which indicates that the digitally calibrated 

measurements matches the current measurements very closely for the entire 0.5-10A range.  



49 

 

 

Figure 8.7. 0-10A Current Sweep Current Plot Comparison 

Using the same algorithm as in Section 7.4 to prove consistency in readings, the results of the 

current measurement can be digitally calibrated and is shown in Figure 8.8. 

  

Figure 8.8. 0-10A Current Sweep Current Plot Comparison after Digital Calibration 
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 Analysis 

9.1 Resolution Analysis 

We have seen that four different instances where the resolution has changed: a current sense 

without windowing, windowing circuit with OPA4330 with 1.65V window, windowing circuit 

with Cypress op-amps and the optimized windowing circuit with Cypress op-amps. Since an 

11bit ADC range was used since an external Vref was used the total number of bits is 2047. 

The resolution is found by Equation 9.1: 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
𝐼𝑟𝑖𝑝𝑝𝑙𝑒

𝑉𝑎𝑑𝑐,𝑟𝑖𝑝𝑝𝑙𝑒

𝑟𝐴𝐷𝐶
∗2047

[
𝑚𝐴

𝑏𝑖𝑡 𝑐ℎ𝑎𝑛𝑔𝑒
]                            (9.1) 

Vadc,ripple is the voltage ripple measured by the ADC. It should be noted that Kgain of the current 

sense amplifier without windowing is 325.9 since the maximum current has to coincide with 

the maximum range of the ADC, this makes Vadc,ripple 0.0814V. Table 9.1 shows the different 

current resolution for the different current sense amplifiers. 

Table 9.1. Current Resolution Comparison 

Current Sense Amplifier Current Resolution 

(mA/bit change) 

Without Windowing 4.96 

Windowing with 

OPA4330 

0.244 

Windowing with Cypress 

Op-amps 

1.001 

Windowing with Cypress 

Op-amps after 

optimization 

0.178 

 

 As expected, the current resolution for the circuit without windowing is only just under 5mA 

per bit. It is also apparent that the circuit with OPA4330 has the most potential as a 0.244mA 

per bit change resolution is achieved even though only 10 bits were used effectively. The 

optimized circuit offers better resolution than the circuit with OPA4330 as a larger window is 
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used. The optimization process improves the resolution of the current sense amplifier by 5.6 

times and the final circuit offers an improvement of 28 times compared to current sense 

amplifier without windowing thereby proving the benefits of the windowing technique.  

9.2 Error Analysis 

To analyse the effectiveness of digital calibration, the error was plotted as a before and after 

comparison. Figure 9.1 shows the error plot for current measurements from 0.5A to 10A. 

  

Figure 9.1. Error Plot Comparison 

From Figure 9.1 above, we can see that without digital calibration, the error converges to 

slightly under 20% as current exceeds 2A. With digital calibration, the current stays close to 

1% as current increases past 1A. We can thus conclude that the effective range of the current 

sense amplifier is from 1 to 10A. Table 9.2 shows the errors at every 10 data points in the 

measurement sweep. 
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Table 9.2. Error Measurements 

Current 

Measured 

(A) 

Current 

Calculated 

(A) 

Error (%) 

Current 

Calculated 

after Digital 

Calibration (A) 

Error (%) 

1.1755 0.8123 30.9 1.2145 -3.31 

2.0592 1.5972 22.44 2.1235 -3.12 

2.9565 2.3107 21.84 2.9612 -0.16 

3.8388 3.0377 20.87 3.8124 0.69 

4.7355 3.7846 20.08 4.6834 1.1 

5.6173 4.5523 18.96 5.5753 0.75 

6.4976 5.2795 18.75 6.4266 1.09 

7.3924 6.0465 18.21 7.3178 1.01 

8.27 6.8097 17.66 8.2052 0.78 

9.1596 7.5778 17.27 9.0975 0.68 

9.9938 8.3375 16.57 9.9814 0.12 

 

9.3 Cost Analysis 

Part of the reason why the Cypress op-amps were used was to reduce the cost of the current 

sense amplifier since high precision op-amps are expensive. Table 9.3 shows that this current 

sense solution proffers a nearly $4 reduction in price as compared to a high-precision op-amp 

with a TI low-power MCU. 

Table 9.3. Cost Comparison 

 Component Cost ($) 

Current Sense with 

OPA2330 and MSP430 

Chip 

MSP430FR5870 2.15 

OPA2330 3.05 

Total 5.20 

Current Sense with 

Cypress PSOC4 

CY8C4125AXI-473 1.34 

Total 1.34 
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 Conclusion 

This thesis has shown how high resolution lossless current sensing can be achieved through the 

windowing technique. We have proved that by optimising the circuit, we can achieve a high 

enough resolution on the current ripple for the entire current range specified. The windowing 

technique provides nearly 28 times the resolution than without it. The op-amps are not meant 

for such high measurements, hence we had to create workarounds and rely heavily on digital 

calibration to achieve accurate current sensing. Nevertheless we have shown how digital 

calibration helps achieve very accurate current measurements for the entire current range with 

errors very close to 1%. With that error, and at a much lower cost, the Cypress PSOC4 with its 

highly programmable in-built op-amps proves to be a cost-effective solution for the windowed 

current sense amplifier circuit.  
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Appendix A: PSOC4 C Code 

A1. Main File 

/* ======================================== 

 * 

 * Copyright Benedict Foo, University of Illinois Urbana-Champaign 

 * All Rights Reserved 

 * UNPUBLISHED, LICENSED SOFTWARE. 

 * 

 * CONFIDENTIAL AND PROPRIETARY INFORMATION 

 * WHICH IS THE PROPERTY OF University of Illinois Urbana-Champaign ECE 

Department 

 *  Date: 05/09/2015 

 * ======================================== 

*/ 

#include <project.h> 

 

/* Macro definitions */ 

#define LOW                 (0u) 

#define HIGH                (1u) 

#define CHANNEL_1           (0u) 

#define CLEAR_SCREEN        (0x0C) 

#define CONVERT_TO_ASCII    (0x30u) 

 

/* Global variables */ 

volatile uint32 windowFlag    = 0u; 

volatile uint8  dataReady     = 0u; 

volatile uint16 adcVal = 0u; 

volatile char shit; 

 

/* Interrupt prototypes */ 

CY_ISR_PROTO(ADC_ISR_Handler); 

 

 

/* Send the channel number and voltage to UART */ 

static void SendChannelVoltage(int16 mVolts, int32 bias); 

 

int main() 

{ 

    /* Place your initialization/startup code here (e.g. MyInst_Start()) */ 

   // clock_t start; 

    //time_t t1; 

    //Variable initializaions 

 

    int16 mVolts; 

    int32 bias = 91; //initial bias assuming 1A DC offset 

    int16 previousValue = 0; 

    char ready; 

    char start; 

    int readyCompare; 

    int startCompare = 0; 

     

    /* Start the Components */ 

    Opamp_1_Start(); 

    Opamp_2_Start(); 

    UART_1_Start(); 

    ADC_SAR_Seq_1_Start(); 
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    IDAC_1_Start(); 

    IDAC_1_SetValue(bias); 

     

   /* Start ISRs */ 

    CyGlobalIntEnable; /* Interrupt Enable*/ 

   /* ADC_SAR_Seq_1_IRQ_StartEx(ADC_ISR_Handler);*/ 

    ADC_SAR_Seq_1_IRQ_Enable(); 

   UART_1_SpiUartClearTxBuffer(); //ensures no junk gets in there 

   while  (startCompare != 1)       //infinite loop till python command 

says Go! 

    { 

       start = UART_1_UartGetChar(); 

       startCompare = start - '0'; 

        if (startCompare == 1) 

            break; 

    } 

    //Uncomment to measure time 

    //long i=0; 

    //double diff; 

    //start = clock(); 

    for(;;) 

    { 

 

        ADC_SAR_Seq_1_StartConvert();  

        while (dataReady == 0) /* Wait for ADC conversion, continues 

looping if there is no data */ 

        { 

            ; 

        } 

         

        mVolts = ADC_SAR_Seq_1_CountsTo_mVolts(0, adcVal); //converts adc 

reading to mV 

                         

        ready = UART_1_UartGetChar();  //Gets ascii character from Python 

        readyCompare = ready - '0';    //Converts ascii to int 

 

        if (readyCompare == 1) //Ensures that UART happens only when Python 

code is ready to receive 

        {   

            SendChannelVoltage(mVolts,bias); 

 

        } 

        /* Check for ADC window limit interrupt */ 

        if(windowFlag != 0u) 

        { 

            /* Turn ON the LED when input is outside the voltage window 

(1.15V - 3.044V) */ 

            LED_Write(LOW); 

            /* Increases/decreases bias depending on which limit it hits*/ 

            if (mVolts<2000) 

            { 

                bias = bias-0x1; 

                IDAC_1_SetValue(bias); 

            } 

             

            else 

            { 

                bias = bias+0x1; 

                IDAC_1_SetValue(bias); 

            } 
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            /* Note: If LED is active HIGH, then replace "LOW" with "HIGH" 

*/ 

        } 

        else 

        { 

            /* Turn OFF the LED when input is within the voltage window 

(4.5mV - 2.043V) */ 

            LED_Write(HIGH); 

             

            /* Note:If LED is active HIGH, then replace "HIGH" with "LOW" 

*/ 

        } 

                /* If ADC result or channel has been changed, send the data 

to UART */ 

         

        dataReady = 0u; 

     

    } 

//     diff = ((double)clock()-start)/CLOCKS_PER_SEC; 

 

}   

static void SendChannelVoltage(int16 mVolts, int32 bias) 

{ 

 

 

     

    /* Find the sign of the result */ 

    /*if(mVolts < 0)      //uncomment if measuring current the other way -> 

ADC needs to be reprogrammed to differential 

    { 

        UART_1_UartPutString("-"); 

        mVolts = -mVolts; 

    }*/ 

 

    /* Send voltage and bias to UART */ 

    UART_1_UartPutChar((mVolts/1000u) + CONVERT_TO_ASCII); 

    mVolts %= 1000u; 

    UART_1_UartPutChar((mVolts/100u) + CONVERT_TO_ASCII); 

    mVolts %= 100u; 

    UART_1_UartPutChar((mVolts/10u) + CONVERT_TO_ASCII); 

    mVolts %= 10u; 

    UART_1_UartPutChar(mVolts + CONVERT_TO_ASCII); 

    UART_1_UartPutChar(32); //space for Excel delimiter 

    UART_1_UartPutChar((bias/100u) + CONVERT_TO_ASCII); 

    bias %= 100u; 

    UART_1_UartPutChar((bias/10u) + CONVERT_TO_ASCII); 

    bias %= 10u; 

    UART_1_UartPutChar(bias + CONVERT_TO_ASCII); 

    UART_1_UartPutCRLF(32); //sends carriage return and new line 

 

    } 

 

/* [] END OF FILE */ 

 

 

 



59 

 

A.2 ADC Interrupt Handler 

CY_ISR( ADC_SAR_Seq_1_ISR ) 

    { 

        uint32 intr_status; 

 

        /* Read interrupt status register */ 

        intr_status = ADC_SAR_Seq_1_SAR_INTR_REG; 

 

        

/************************************************************************ 

        *  Custom Code 

        *  - add user ISR code between the following #START and #END tags 

        

*************************************************************************/ 

        /* `#START MAIN_ADC_ISR`  */ 

     

 

    /* Check for End of Scan interrupt */ 

    if((intr_status & ADC_SAR_Seq_1_EOS_MASK) != 0u) 

    { 

        adcVal=ADC_SAR_Seq_1_GetResult16(0); 

        /* Read range interrupt status and raise the flag */ 

        windowFlag = ADC_SAR_Seq_1_SAR_RANGE_INTR_MASKED_REG; //will not be 

a 0 if it is outside the range 

        //saturationFlag = ADC_SAR_Seq_1_SAR_SATURATE_INTR_MASKED_REG; 

         

        /* Clear range detect status */ 

        ADC_SAR_Seq_1_SAR_RANGE_INTR_REG = windowFlag; 

        dataReady = 1u; 

         

        /* `#END`  */ 

 

        /* Clear handled interrupt */ 

        ADC_SAR_Seq_1_SAR_INTR_REG = intr_status; 

    } 

 

#endif   /* End ADC_SAR_Seq_1_IRQ_REMOVE */ 

 

} 
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Appendix B: PCB Schematic and Layout 

B1. Eagle Schematic 

This schematic includes a circuit for OPA2330 for comparison. 
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B2. Board Layout 
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Appendix C: Python Codes 

C1. DC Voltage Sweep 

This code communicates with the Cypress PSOC4 for a 1 to 10mV sweep with ten points taken 

at each voltage input. 

__author__ = 'Benedict Foo' 

 

#This code implements PC-based control of the Cypress and 

Kiethley 2400 

#Also an example of file creation and write to file in Python. 

 

#=============================================================

============= 

# IMPORTS 

#=============================================================

============= 

 

 

from microcontroller_serial import * 

import serial 

import glob 

import time 

import os 

import os.path 

import inspect 

from datetime import datetime 

import sys 

from pilawa_instruments import * 

 

 

if __name__=="__main__": 

 

    #print sys.path 

    # Writing into a file 

    #skipLineFlag = True 

 

    debug = False 

    # t is a timestamp made by python. it records the year, 

month, and day in numerical form, in that order. 

    t = time.strftime('%Y%m%d') 

 

    #names a folder in the given path. the name of the folder 

is t, the timestamp. 

    foldername = 

"C:/Users/Benedict/PycharmProjects/Cypress_UART/InputVoltageSw

eep/%s" %t 
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    print(foldername) 

 

 

    #checks if the folder 'foldername' exists 

    if not os.path.exists(foldername): 

        print "I Should Be Here" 

        #this command actually creates the folder named above 

given that it does not already exist 

        os.makedirs(foldername) 

        print "Folder Created" 

        # i is a file counter. if directory has been created 

then counter = 0 

        i = 0 

 

    else: 

        # glob.glob returns a list with the file name of each 

file in the specified directory with the specified file name 

similarity. the similarity must contain a * character 

substituting the part that changes, in this case substituting 

the counter. 

        txtList = 

glob.glob("C:/Users/Benedict/PycharmProjects/Cypress_UART/Inpu

tVoltageSweep/%s/test*.txt" %t) 

 

        #if directory exists, then counter = number of files 

named test*.txt 

        i = len(txtList) 

        i = i+1 

 

 

        #specifies the path to the file and changes the 

filename on each iteration (after completing the number of 

batches per file). %s (string) is replaced by t as the 

timestamp specifying the selected folder. %d (integer) is 

replaced by i as the number of the file. 

        filename = 

"C:/Users/Benedict/PycharmProjects/Cypress_UART/InputVoltageSw

eep/%s/test%d.txt" %(t,i) 

 

        #opens the file or creates a new one if not found. 'w' 

specifies the file is to be written on, erasing anything 

originally in. 

        readf = open(filename,"w") 

        stamp = datetime.now().strftime('%H:%M:%S') 

        #writes at the top of the file what each column data 

is 

        readf.write("ADC Bias") 

        #starts a new line for the data measurements 

        readf.write("\n Time:") 

        readf.write(stamp) 
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        readf.write("\n") 

        if debug: print "File created and open" 

 

    #create an instance of the microcontroller class. 

    if debug: print "Initializing Micro Instance" 

    cypress = microcontroller_serial( port = 6 , baud = 9600, 

debug = False, timeout =6 ) 

 

    if(debug): print "Initialize GPIB" 

    gpib  = prologix_serial( port = 4, baud=9600, debug=False, 

timeout=5) 

 

    if(debug): print "Initialize Sourcemeter" 

    sourcemeter    = prologix_2400(prologix=gpib, addr=06, 

debug=False) 

 

    sourcemeter.setSource('VOLT', 0.001)  #Set output to 1mV 

    time.sleep(0.1) 

    sourcemeter.activate() 

    print "Enter '1' to begin everything" 

    userinput = raw_input('--> ') 

    cypress.write(userinput) 

    cnt = 0.000 #Cnt is the 'current' going through Rsense, 

which in this case is Vsense 

    inner_loop = 0 

    maxim = 0.010 

    while cnt <= 0.01: #sweep up 

 

        sourcemeter.setSource ('VOLT',cnt ) 

        time.sleep(0.1)     #sets a delay to allow bias to 

converge to correct value 

        while inner_loop < 10: #inner_loop indicates how many 

readings taken at each current level 

 

            cypress.write("1")               # Ensures that 

data is only read when Python Code is ready 

                                             # Also clears the 

buffer so new data can be sent 

            #time.sleep (0.5) 

            read = cypress.readline()        # Read data from 

micro until newline is sent 

            read = read.rstrip(' \r\n') 

            #print adc                       # Print the value 

received from the micro 

            #readf.write(adc)                # Write onto the 

open file 

            #bias = cypress.readline() 

            #readf.write(" ") 

            readf.write("%s %s\n" %(read, cnt)) 

            #print bias 

            print read 
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            inner_loop = inner_loop + 1 

        #time.sleep(0.3) 

        cnt = cnt + 0.0001   #increments 'current' by 0.1A 

        inner_loop = 0 

 

 

    while cnt >= 0.000: #sweep down 

 

        sourcemeter.setSource ('VOLT',cnt ) 

        time.sleep(0.1)     #sets a delay to allow bias to 

converge to correct value (digital calibration) 

        while inner_loop < 10: #inner_loop indicates how many 

readings taken at each current level 

 

            cypress.write("1")               # Ensures that 

data is only read when Python Code is ready 

                                             # Also clears the 

buffer so new data can be sent 

            #time.sleep (0.5) 

            read = cypress.readline()        # Read data from 

micro until newline is sent 

            read = read.rstrip(' \r\n') 

            #print adc                       # Print the value 

received from the micro 

            #readf.write(adc)                # Write onto the 

open file 

            #bias = cypress.readline() 

            #readf.write(" ") 

            readf.write("%s %s\n" %(read, cnt)) 

            #print bias 

            print read 

            inner_loop = inner_loop + 1 

        #time.sleep(0.3) 

        cnt = cnt - 0.0001   #decrements 'current' by 0.1A 

        inner_loop = 0 

 

    #Close connection to microprocessor when user exits. 

    #sourcemeter.deactivate() 

    cypress.terminate() 

    readf.close()  #closes file so that data can be written 

from io buffer 
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C2. Current Ripple Sweep 

This is the Python Code that generates a ripple current on the Kiethley 2400. 

_author__ = 'Benedict Foo' 

 

#This code implements PC-based control of the Cypress and 

Kiethley 2400 

#Also an example of file creation and write to file in Python. 

 

#=============================================================

============= 

# IMPORTS 

#=============================================================

============= 

 

 

from microcontroller_serial import * 

import serial 

import glob 

import time 

import os 

import os.path 

import inspect 

from datetime import datetime 

import sys 

from pilawa_instruments import * 

 

 

if __name__=="__main__": 

 

    #print sys.path 

    # Writing into a file 

    #skipLineFlag = True 

 

    debug = False 

    # t is a timestamp made by python. it records the year, 

month, and day in numerical form, in that order. 

    t = time.strftime('%Y%m%d') 

 

    #names a folder in the given path. the name of the folder 

is t, the timestamp. 

    foldername = 

"C:/Users/Benedict/PycharmProjects/Cypress_UART/InputCurrentRi

ppleSweep/%s" %t 

 

    print(foldername) 

    #Suck a dick 

 

    #checks if the folder 'foldername' exists 
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    if not os.path.exists(foldername): 

        #this command actually creates the folder named above 

given that it does not already exist 

        os.makedirs(foldername) 

        print "Folder Created" 

        # i is a file counter. if directory has been created 

then counter = 0 

        i = 0 

 

    else: 

        # glob.glob returns a list with the file name of each 

file in the specified directory with the specified file name 

similarity. the similarity must contain a * character 

substituting the part that changes, in this case substituting 

the counter. 

        txtList = 

glob.glob("C:/Users/Benedict/PycharmProjects/Cypress_UART/Inpu

tCurrentRippleSweep/%s/test*.txt" %t) 

 

        #if directory exists, then counter = number of files 

named test*.txt 

        i = len(txtList) 

        i = i+1 

 

 

        #specifies the path to the file and changes the 

filename on each iteration (after completing the number of 

batches per file). %s (string) is replaced by t as the 

timestamp specifying the selected folder. %d (integer) is 

replaced by i as the number of the file. 

        filename = 

"C:/Users/Benedict/PycharmProjects/Cypress_UART/InputCurrentRi

ppleSweep/%s/test%d.txt" %(t,i) 

 

        #opens the file or creates a new one if not found. 'w' 

specifies the file is to be written on, erasing anything 

originally in. 

        readf = open(filename,"w") 

        stamp = datetime.now().strftime('%H:%M:%S') 

        #writes at the top of the file what each column data 

is 

        readf.write("ADC Bias") 

        #starts a new line for the data measurements 

        readf.write("\n Time:") 

        readf.write(stamp) 

        readf.write("\n") 

        if debug: print "File created and open" 

 

    #create an instance of the microcontroller class. 

    if debug: print "Initializing Micro Instance" 

    cypress = microcontroller_serial( port = 6 , baud = 9600, 
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debug = False, timeout =6 ) 

 

    if(debug): print "Initialize GPIB" 

    gpib  = prologix_serial( port = 4, baud=9600, debug=False, 

timeout=5) 

 

    if(debug): print "Initialize Sourcemeter" 

    sourcemeter    = prologix_2400(prologix=gpib, addr=06, 

debug=False) 

 

    sourcemeter.setSource('CURR', 1)  #Set output to 1mV 

    time.sleep(0.1) 

    sourcemeter.activate() 

    #print "Enter '1' to begin everything" 

    #userinput = raw_input('--> ') 

    #cypress.write("1") 

    minim = 0.000 #Cnt is the 'current' going through Rsense, 

which in this case is Vsense 

 

    maxim = 0.03 

    offset = 1 #offset starts at 1A 

    peak = offset + 0.125 #0.250mA ripple 

    trough = offset - 0.125 

    cycles = 0.000 

    level=trough 

 

    print "Enter '1' to begin everything" #starts the ADC 

readings 

    userinput = raw_input('--> ') 

    cypress.write(userinput) 

 

    #measure loop time 

    t0 = time.clock() 

 

    while offset <= 2.8: #sweep up 

        while cycles < 2: #2 cycles per offset 

            while level<=peak: 

                sourcemeter.setSource('CURR',level) 

                time.sleep(0.00001)              # waits 10us 

                cypress.write("1")               # Ensures 

that data is only read when Python Code is ready 

                                                 # Also clears 

the buffer so new data can be sent 

                read = cypress.readline()        # Read data 

from micro until newline is sent 

                read = read.rstrip(' \r\n') 

                #print adc                       # Print the 

value received from the micro 

                #readf.write(adc)                # Write onto 

the open file 

                #bias = cypress.readline() 
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                #readf.write(" ") 

                tdiff =  time.clock()-t0 

                readf.write("%s %s %s\n" %(read, level,tdiff)) 

                #print bias 

                print read 

                #print level 

                level = level + 0.001 

            while level>=trough: 

                sourcemeter.setSource('CURR',level) 

                time.sleep(0.00001)              # waits 10us 

                cypress.write("1")               # Ensures 

that data is only read when Python Code is ready 

                read = cypress.readline()        # Read data 

from micro until newline is sent 

                read = read.rstrip(' \r\n') 

                #print adc                       # Print the 

value received from the micro 

                #readf.write(adc)                # Write onto 

the open file 

                #bias = cypress.readline() 

                #readf.write(" ") 

                readf.write("%s %s %s\n" %(read, level,tdiff)) 

                #print bias 

                print read 

                #print level 

                level = level - 0.001 

            cycles = cycles + 1 

        offset = offset + 0.1 

        peak = offset + 0.125 #0.250mA ripple 

        trough = offset - 0.125 

        cycles = 0 

 

 

    while offset >= 1: #sweep down 

        while cycles < 2: #2 cycles per offset 

            while level<=peak: 

                sourcemeter.setSource('CURR',level) 

                time.sleep(0.00001)              # waits 10us 

                cypress.write("1")               # Ensures 

that data is only read when Python Code is ready 

                                                 # Also clears 

the buffer so new data can be sent 

                read = cypress.readline()        # Read data 

from micro until newline is sent 

                read = read.rstrip(' \r\n') 

                #print adc                       # Print the 

value received from the micro 

                #readf.write(adc)                # Write onto 

the open file 

                #bias = cypress.readline() 

                #readf.write(" ") 
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                tdiff =  time.clock()-t0 

                readf.write("%s %s %s\n" %(read, level,tdiff)) 

                #print bias 

                print read 

                #print level 

                level = level + 0.001 

            while level>=trough: 

                sourcemeter.setSource('CURR',level) 

                time.sleep(0.00001)              # waits 10us 

                cypress.write("1")               # Ensures 

that data is only read when Python Code is ready 

                read = cypress.readline()        # Read data 

from micro until newline is sent 

                read = read.rstrip(' \r\n') 

                #print adc                       # Print the 

value received from the micro 

                #readf.write(adc)                # Write onto 

the open file 

                #bias = cypress.readline() 

                #readf.write(" ") 

                readf.write("%s %s %s\n" %(read, level,tdiff)) 

                #print bias 

                print read 

                #print level 

                level = level - 0.001 

            cycles = cycles + 1 

        offset = offset - 0.1 

        peak = offset + 0.125 #0.250mA ripple 

        trough = offset - 0.125 

        cycles = 0 

 

 

    #Close connection to microprocessor when user exits. 

    #sourcemeter.deactivate() 

 

    cypress.terminate() 

    readf.close()  #closes file so that data can be written 

from io buffer 
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C3. 10A Python Sweep 

This is the code for a 0.5 to 10A DC current sweep with the HP6674A DC Power Supply 

__author__ = 'Benedict Foo' 

 

#This code implements PC-based control of the Cypress and 

HP6674A and Fluke 45 DMM 

#Also an example of file creation and write to file in Python. 

 

#=============================================================

============= 

# IMPORTS 

#=============================================================

============= 

 

 

from microcontroller_serial import * 

import serial 

import glob 

import time 

import os 

import os.path 

import inspect 

from datetime import datetime 

import sys 

from pilawa_instruments import * 

 

 

if __name__=="__main__": 

 

    #print sys.path 

    # Writing into a file 

    #skipLineFlag = True 

 

    debug = False 

    # t is a timestamp made by python. it records the year, 

month, and day in numerical form, in that order. 

    t = time.strftime('%Y%m%d') 

 

    #names a folder in the given path. the name of the folder 

is t, the timestamp. 

    foldername = 

"C:/Users/Benedict/PycharmProjects/Cypress_UART/InputCurrentSw

eep/%s" %t 

 

    print(foldername) 

    #Suck a dick 

 

    #checks if the folder 'foldername' exists 
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    if not os.path.exists(foldername): 

        #this command actually creates the folder named above 

given that it does not already exist 

        os.makedirs(foldername) 

        print "Folder Created" 

        # i is a file counter. if directory has been created 

then counter = 0 

        i = 0 

 

    else: 

        # glob.glob returns a list with the file name of each 

file in the specified directory with the specified file name 

similarity. the similarity must contain a * character 

substituting the part that changes, in this case substituting 

the counter. 

        txtList = 

glob.glob("C:/Users/Benedict/PycharmProjects/Cypress_UART/Inpu

tCurrentSweep/%s/test*.txt" %t) 

 

        #if directory exists, then counter = number of files 

named test*.txt 

        i = len(txtList) 

        i = i+1 

 

 

        #specifies the path to the file and changes the 

filename on each iteration (after completing the number of 

batches per file). %s (string) is replaced by t as the 

timestamp specifying the selected folder. %d (integer) is 

replaced by i as the number of the file. 

        filename = 

"C:/Users/Benedict/PycharmProjects/Cypress_UART/InputCurrentSw

eep/%s/test%d.txt" %(t,i) 

 

        #opens the file or creates a new one if not found. 'w' 

specifies the file is to be written on, erasing anything 

originally in. 

        readf = open(filename,"w") 

        stamp = datetime.now().strftime('%H:%M:%S') 

        #writes at the top of the file what each column data 

is 

        readf.write("ADC Bias") 

        #starts a new line for the data measurements 

        readf.write("\n Time:") 

        readf.write(stamp) 

        readf.write("\n") 

        print "File created and open" 

    #print sys.path 

    # Writing into a file 

    #skipLineFlag = True 
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    debug = False 

 

    if(debug): print "Initialize GPIB" 

    gpib  = prologix_serial( port = 7, baud=9600, debug=False, 

timeout=5) 

 

    if(debug): print "Initialize Sourcemeter" 

    sourcemeter    = prologix_6674a(prologix=gpib, addr=9, 

debug=False) 

 

    #if(debug): print "Initialize GPIB" 

    #gpib1  = prologix_serial( port = 4, baud=9600, 

debug=False, timeout=5) 

 

    if(debug): print "Initialize Fluke" 

    fluke  = prologix_FLUKE45(prologix=gpib, addr=2, 

debug=False) 

 

    #create an instance of the microcontroller class. 

    if debug: print "Initializing Micro Instance" 

    cypress = microcontroller_serial( port = 6 , baud = 9600, 

debug = False, timeout =6 ) 

 

    meter_addrs = [2] 

     #set fluke to DC ammeter mode 

 

    #time.sleep (0.5) 

 

 

    sourcemeter.activate() 

    sourcemeter.setCurrent(12)  #Set max current to 12A 

 

    sourcemeter.setVoltage(0.2)   #set voltage to 1V 

 

    print "Enter '1' to begin everything" #starts the ADC 

readings 

    userinput = raw_input('--> ') 

    cypress.write(userinput) 

 

    #measure loop time 

    t0 = time.clock() 

    fluke.setMode('ADC') 

    #time.sleep(5)               #wait 5s to read the data 

    #gpib1.trigger_devices(meter_addrs) 

    #read = fluke.readData() 

    #read = sourcemeter.readCurrent() 

    volt = 0.5 #Cnt is the 'current' going through Rsense, 

which in this case is Vsense 

    inner_loop = 0 

    time.sleep (0.5) 

    #fluke.waitForTrigger() 
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    #gpib1.trigger_devices(meter_addrs) 

    readv = fluke.getMeasurement() 

    print readv 

    readv = 0 

 

    while volt <= 11.6: #sweep up 

 

        sourcemeter.setVoltage (volt) 

        #time.sleep(0.00001)     #sets a delay to allow bias 

to converge to correct value 

        while inner_loop < 1: #inner_loop indicates how many 

readings taken at each current level 

 

            cypress.write("1")               # Ensures that 

data is only read when Python Code is ready 

                                             # Also clears the 

buffer so new data can be sent 

            #time.sleep (0.5) 

            read = cypress.readline()        # Read data from 

micro until newline is sent 

            read = read.rstrip(' \r\n') 

            time.sleep(0.3) 

            readv = fluke.getMeasurement() 

            tdiff =  time.clock()-t0 

            readf.write("%s %s %s %s\n" %(read, volt, tdiff, 

readv)) 

            #print bias 

            print readv 

            inner_loop = inner_loop + 1 

        #time.sleep(0.3) 

        volt = volt + 0.1   #increments 'current' by 0.1A 

        inner_loop = 0 

 

 

    while volt>= 0.500: #sweep down 

 

        sourcemeter.setVoltage (volt) 

        #time.sleep(0.000010)     #sets a delay to allow bias 

to converge to correct value (digital calibration) 

        while inner_loop < 1: #inner_loop indicates how many 

readings taken at each current level 

 

            cypress.write("1")               # Ensures that 

data is only read when Python Code is ready 

                                             # Also clears the 

buffer so new data can be sent 

            #time.sleep (0.5) 

            read = cypress.readline()        # Read data from 

micro until newline is sent 

            read = read.rstrip(' \r\n') 

            time.sleep(0.3) 
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            readv = fluke.getMeasurement() 

            tdiff =  time.clock()-t0 

            readf.write("%s %s %s %s\n" %(read, volt, tdiff, 

readv)) 

            #print bias 

            print readv 

            inner_loop = inner_loop + 1 

        #time.sleep(0.3) 

        volt = volt - 0.1   #decrements 'current' by 0.1A 

        inner_loop = 0 

 

    #Close connection to microprocessor when user exits. 

    sourcemeter.deactivate() 

    cypress.terminate() 

    readf.close()  #closes file so that data can be written 

from io buffer 
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Appendix D: Matlab Code for Digital Calibration 

D1. 10A Current Sweep Digital Calibration 

This is a portion of the Matlab code used to digitally calibrate the current measurements 

% Author: Benedict Foo 

old = ten(1:192,5); %Extract Data for processing 

diff_end = max(ten(:,4))-max(ten(:,5)); %find the maximum 

difference 

  

diff_start = min(ten(1:192,4))-min(ten(1:192,5)); %find the 

min difference 

change = linspace(diff_start,diff_end,98); %create a vector 

for difference 

change_t = transpose(change); 

  

for n = 1:98 %%add based on current level since difference 

varies linearly 

    new(n) = old(n)+change_t(n); 

end 

  

for n = 99:192 

    new(n) = old(n)+change_t(195-n); 

end 

 

D2. Current Ripple Digital Calibration 

The portion of code that helps digitally calibrate the current ripple measurements, this is the 

less robust (and accurate) but more efficient digital calibration method. 

%% Current current ripple post processing Author: Benedict Foo 

  

current_new = current(:,4); 

top = length(current_new); 

for i=1:top 

    if current_new(i)<1.0 

        current_new(i) = current_new(i)+0.4; 

         

    elseif current_new(i)<1.2 

        current_new(i) = current_new(i)+0.5; 

        

    elseif current_new(i)<2.0 

        current_new(i) = current_new(i)+0.57;         
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    elseif current_new(i)<2.3 

        current_new(i) = current_new(i)+0.63; 

      

    elseif current_new(i)<2.9 

        current_new(i) = current_new(i)+0.72; 

        

    end 

end 

 

 

 

 


