
FPGA IMPLEMENTATION OF A RESTRICTED BOLTZMANN
MACHINE FOR HANDWRITING RECOGNITION

BY

TIAN XIA

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Adviser:

Assistant Professor Shobha Vasudevan

ABSTRACT

Despite the recent success of neural network in the research field, the num-

ber of resulting applications for non-academic settings is very limited. One

setback for its popularity is that neural networks are typically implemented

as software running on a general-purpose processor. The time complexity

of the software implementation is usually O(n2). As a result, neural net-

works are inadequate to meet the scalability and performance requirements

for commercial or industrial uses. Several research works have dealt with

accelerating neural networks on Field-Programmable Gate Arrays (FPGAs),

particularly for Restricted Boltzmann Machines (RBMs) — a very popular

and hardware-friendly neural network model. However, when using their

implementations for handwriting recognition, there are two major setbacks.

First, the implementations assume that the sizes of the neural networks are

symmetric, while the size of RBM model for handwriting recognition is in

fact highly asymmetric. Second, these implementations cannot fit a model

with a visible layer larger than 512 nodes on a single FPGA. Thus, they are

highly inefficient when apply to handwriting recognition application.

In this thesis, a new framework was proposed for an RBM with asymmetric

weights optimizing for handwriting recognition. The framework is tested on

an Altera Stratix IV GX(EP4SGX230KF40C2) FPGA running at 100 MHz.

The resources support a complete RBM model of 784 by 10 nodes. The

experimental results show the computational speed of 4 billion connection-

update-per-second and a speed-up of 134 fold with I/O time and a speed-

up of 161 fold without I/O time compared with an optimized MATLAB

implementation running on a 2.50 GHz Intel processor. Compared with

previous works, our implementation is able to achieve a much higher speed-

up while maintaining comparable resources used.

ii

To my family and friends, for their love and support

iii

ACKNOWLEDGMENTS

I am taking this opportunity to express my gratitude to everyone who sup-

ported me throughout the course of my master’s study. I am thankful for

their guidance and advice during the project. I am sincerely grateful to them

for sharing their truthful and illuminating views on a number of issues related

to my study, my research, and my thesis.

Foremost, I would like to express my deepest gratitude to my advisor,

Professor Shobha Vasudevan, for her continuous support and encouragement

for my graduate study and research. When I started my graduate study, I

knew almost nothing about research. Prof. Vasudevan was very encouraging

when I was exploring different research project. I am sincerely thankful to

her for giving me this opportunity to work on this project, a project that

I am truly passionate about. Her inspiring talk during the group meetings

motivated all of us not only to study the topics that are directly related to

our research, but also to learn a different variety of subjects to widen our

knowledge. Throughout my two years of master’s study, I learned a great

deal from her professionalism and dedication toward her research. Without

her, this thesis would would not be possible.

I would like to particularly express my appreciation to Sai Ma for countless

inspiring discussions about FPGA implementation. I sincerely thank her for

listening to my problems and giving me wise suggestions and encouragement.

I would also like to thank Jiayi for his patient explanation of neural networks

concepts when I was first introduced to this topic. I would also like to express

my heartfelt thankfulness to my wonderful colleagues, friends, and family,

who supported me to overcome challenges that I faced. In the end, I would

like to thank Alter University Program for donating the DE4 board that I

needed for this thesis.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Artificial Neural Network . 1
1.2 Accelerating Neural Network 6
1.3 Motivation . 13
1.4 Contribution . 15

CHAPTER 2 PRELIMINARIES . 18
2.1 Restricted Boltzmann Machine 18
2.2 FPGA Implementation of RBM with Symmetric Weight . . . 27

CHAPTER 3 OUR IMPLEMENTATION OF RBM WITH
ASYMMETRIC WEIGHT . 31
3.1 RBM Core . 32
3.2 Control Units . 33
3.3 Stochastic Node Selection Design 37
3.4 Memory Core . 40
3.5 Matrix Multiplication Core . 42
3.6 Visible Nodes . 44
3.7 Hidden Nodes . 45
3.8 I/O Interface . 45

CHAPTER 4 OPTIMIZATION . 46
4.1 Independent Multiplier vs. Two-Multiplier Adder Mode 46
4.2 Activation Function . 48

CHAPTER 5 EXPERIMENTAL RESULTS 52
5.1 Metrics . 53
5.2 Resource Utilization . 54
5.3 Performance Comparison . 54
5.4 Platform Comparison . 55
5.5 Scalability . 57

CHAPTER 6 CONCLUSION . 61
6.1 Conclusion . 61
6.2 Future Work . 62

v

REFERENCES . 64

vi

CHAPTER 1

INTRODUCTION

1.1 Artificial Neural Network

Artificial Neural Networks (ANNs) are computational modeling tools that

are used to solve complex various real-world problems. Inspired by biolog-

ical neural networks, ANNs are massively parallel computing systems that

consist of numerous adaptive yet simple processing nodes that are densely in-

terconnected [1]. Although ANN is an abstraction of the biological networks

of the human brain, it is not a computational model which can duplicate the

operations of biological neural networks. It is only a computational struc-

ture that models the known functionality of the biological neural networks

for solving complicated problems. Similar to biological networks, ANNs have

remarkable data processing and generalization characteristics such as mas-

sive parallelism, nonlinearity, robustness, fault tolerance, learning ability,

generalization ability, and the ability to handle fuzzy information [2]. These

characteristics are very desirable because of the following aspects [3]. First,

nonlinearity allows the model to better fit data when it is complicated. Sec-

ond, noise-insensitivity can provide an accurate prediction when data uncer-

tainty, measurement errors, and outliers are presented in the training sample

data. Third, high parallelism in the model can lead to fast data processing

since multiple data sets can be processed simultaneously. Massive parallelism

can also provide failure-tolerance in the system which can still provide an ac-

curate prediction when part of the system failed. Last but not least, the

learning ability and the adaptivity allow the system to update its internal

structure in response to environmental changes, while generalizations enable

applications to learn the underlying features of the given data

ANNs are abstractions of the biological neural networks and the biological

neurons are the basic building blocks of the nervous system. The operation of

1

neurons will be briefly explained for understanding the operation of artificial

neurons and the analogy between ANNs and biological neural networks.

A neuron, as shown in Fig. 1.1, is a special biological cell that acts as a

basic information processing unit for the nervous system. It is composed of

a cell body and two types of out-reaching tree-shaped branches: dendrites

and axons. The dendrites of one neuron is connected to then axons of other

neuron. The cell body, or soma, contains information about the heredity

traits, plasma, and molecular equipment used for producing the material

required for the neuron to function. The dendrites receive signals form the

surrounding neurons and pass them to the soma. The soma collects all

the signals it receives from the dendrites of its neighboring neurons, and

transmits the signals through its axons to its surrounding neurons. This

basic mechanism of signal transfer establishes the fundamental step of early

neurocomputing and the operation of basic building units of the ANNs.

Figure 1.1: Schematic of biological neuron

The analogy between artificial neurons and biological neurons is the con-

nection between the nodes that represents the connection between dendrites

and axons. The connection weight represents the strength of the signal re-

ceived from the dendrites and the threshold function approximates the activ-

ity of soma. Figure 1.2 illustrates n biological neurons with various signals

strength x with connection strength w feeding into the soma with a thresh-

old of b resulting in a signal y that is transmitted to other neurons through

axons, and the equivalent artificial neuron system.

2

Figure 1.2: Signal interaction from neurons and is analogous to signal
summing in ANN

An artificial neuron is a device, often called a node, with multiple inputs

and one output. It receives its inputs from other nodes or an external source,

and each input has an associated weight that can be adjusted through a

learning process. Each neuron has two modes of operations: learning and

using. During the learning mode, neurons can be trained to fire according to

its firing rule which is often modeled by an activation function. During the

using mode, the neurons decide to fire using the trained connection weights

and its activation function.

The learning ability is a fundamental feature of intelligence, and the abil-

ity to learn automatically from given examples makes ANNs both attractive

and impressive. Instead of following a set of rules specified by experts, ANNs

appear to learn underlying rules from a given set of training examples. Al-

though the precise definition for learning is difficult to define, the learning

process of ANNs can be viewed as the process of updating the internal rep-

resentation of the network in response to external stimuli so that it can be

trained to efficiently perform a specific task. This is done iteratively by

modifying the network architecture by adjusting the connection weights ac-

cording to the input training data. The performance improves over time as

the weights adjusts gradually.

3

1.1.1 Classification of ANNs

According to one or more relevant characteristics of ANNs, they can be

classified in many different ways [3]. Generally, classification is based on the

function that the ANN is designed to serve (e.g., pattern association, cluster-

ing), the degree of connectivity (partial/full) of the neurons in the networks,

the direction of flow of the information within the networks (recurrent and

nonrecurrent), and the type of learning algorithms. The ANNs can also be

classified based on the learning rule of the networks (the driving engine of the

learning algorithm) and the degree of learning supervision needed for ANN

training. Supervised learning involved training of ANN with the target value

for each input data, and using the error between the ANN solution and the

corresponding target values to adjust the weights accordingly. Unsupervised

learning does not require a correct answer for the training inputs. It learns by

exploring the underlying structure in the data and correlates them between

various data, organizing the examples into clusters based on their similarity

or dissimilarity.

As examples of classification, Lippmann [4] classified ANNs according to

their degree of learning supervision needed into two categories (supervised

vs. unsupervised). Simpson [5] classified ANNs according to the flow of

data in the networks (feedforward vs. feedback). Maren [6] proposed a

hierarchical categorization based on structure followed by dynamics, then

learning. Jain and Mao [2] introduced a four-level classification based on the

degree of learning supervision, the learning rule, data flow in the ANN and

the learning algorithm.

1.1.2 Application of ANNs

Generally, ANNs are more robust and often can provide better performance

compared to other computational tools in solving a variety of challenging

problems from the following seven categories.

1. Pattern classification is used to assign an unknown input pattern to

one of several pre-specified classes. ANNs can solve such a classification

problem with supervised learning by assigning proper class labels based

on one or more properties that characterized a given class, as shown

in Fig. 1.3(a). Classification applications that use ANNs range from

4

Figure 1.3: Application of ANNs: (a) pattern classification, (b) clustering,
(c) function approximation, (d) forecasting, (e) association

microbiology characteristics [7], [8], [9] to areas of computer vision and

signal processing such as handwriting and speech recognition [10], [11].

2. Unlike pattern classification, clustering is performed using unsuper-

vised learning. ANNs can be trained with data with unknown class

labels by exploring the similarity and dissimilarity between the neigh-

boring data. The network can then assign similar patterns to the same

cluster as shown in Fig. 1.3(b).

3. Function approximation includes training an ANN on input-output

data so that the ANN can approximate the underlying rules or func-

tions between inputs and outputs, as shown in Fig. 1.3(c). This is

5

extremely helpful in cases where there is no theoretical model for ob-

served data available. It can also be useful when theoretical models

are difficult to compute or analyze. Multilayer ANNs are considered

to be the universal approximators that can approximate any arbitrary

function to any degree of precision [1].

4. Prediction involves training an ANN on a set of samples representing a

certain phenomenon at a given scenario at a certain time. The trained

ANN is then used to predict the behavior for other scenarios at sub-

sequent times. For example, as shown in Fig. 1.3(d) the ANN will be

trained using data from t(1) and t(4). The ANN is then used to predict

behavior of the model form t(n) to t(n+ 1).

5. Optimization is finding the best solution to maximize or minimize an

objective function subject to a set of constraints. Optimization prob-

lems are a well-established field in mathematics. However, ANNs such

as the Hopfield network [12] were found to be able to solve complicated

and nonlinear optimization problems [13] more efficiently.

6. Association involves training a pattern associated ANN using noise-

free training data. The well-trained ANN is then used to classify noisy

or corrupted data. The associated neural networks should be able to

reconstruct the corrupted or incomplete data. As shown in Fig. 1.3(e),

the image of the bird was able to be reconstructed from the incomplete

input image data. ANNs such as Hopfield and Hamming networks

[4] are widely used for this application. A multilayer backpropagation

ANN trained with identical input and output patterns can serve similar

purposes [14].

1.2 Accelerating Neural Network

Although many existing ANN applications are usually developed as soft-

ware, there are specific applications that demand high volume adaptive real-

time processing, large data-set training done in reasonable time, and usage

of energy-efficiency needed. To fulfill these requires, the ANN applications

needed to be implemented in hardware since hardware can truly take advan-

6

tage of inherent parallelism in ANN architecture to achieve those require-

ments. Hardware devices that are specifically designed to model ANN archi-

tecture and associated learning algorithm can especially provide true parallel

processing. These hardware devices are referred to as hardware neural net-

works or HNNs. Overall, HNNs can offer the following three advantages

[15].

• Speed: Specialized hardware can offer a large amount of computational

power, thus it can obtain several orders of speed-up, especially in the

neural network system where parallelism and distributed computing

are inherently involved. For instance, very large-scale integration im-

plementation for cellular neural networks can obtain speed-ups to sev-

eral teraflops [16]. This speed is very high for conventional DSPs, PCs,

or even workstations.

• Cost: A hardware implementation of ANN provides the possibility for

reducing system cost by lowering the total number of components and

decreasing the power usage. This can be extremely crucial in high-

volume processing applications, such as ubiquitous consumer-products

for real-time image processing, which is price-sensitive.

• Graceful degradation: A fundamental limitation of any sequential uni-

processor based application is its extreme vulnerability to malfunction

due to failure in the system. The primary reason for this limitation

is lack of redundancy in the system architecture. As recent research

indicates [17], even with modern multi-core processor architectures, the

demand for effective fault-tolerant mechanisms still exits. Unlike the

sequential processors, HNNs have parallel and distrusted architectures

which allow the applications to continue to function while a small part

of the system has failed.

1.2.1 GPUs

Recently, General Purpose Graphical Processing Units (GP-GPUs) have been

identified as an intriguing technology to accelerate numerous data-parallel

algorithms. ANN, on the other hand, embraces massive threads and data

parallelism, which matches perfectly with GPUs. There are several attempts

7

to accelerate ANN training with GPUs [18], [19]. Liu and Guo [20] have pro-

posed an approach which used CUDA programming model to train multilayer

neural networks with back-propagation algorithm. Their implementation ex-

ploits the computing power of GPUs to accelerate the training process. The

experimental results have shown that their approach can achieve up to 7

times the speed-up over its CPU counterpart. Similarly, Sierra-Canto et

al. [21] proposed an implementation of the back-propagation algorithm on

CUDA. They used a CDUA implementation of the Basic Linear Algebra

Subprograms (CUBLAS) library to simplify the training process. Their im-

plementation was able to achieve 63 times faster speed than its sequential

version. On the other hand, Yan Zhang and Saizheng Zhang [22] introduced

an optimized deep learning architecture with flexible layer structures and fast

matrix operation kernels on parallel computing platform. Their fast matrix

operation kernels are implemented deep in the architecture’s propagation

process which can save up to 70% of time on average compared with the

kernels in CUBLAS library.

Recently, there was a study done Gu et al. [23] comparing the speed-up

when using CPUs, GPUs and APUs. They implemented a multi-layer pre-

ceptron and an auto-encoder on various GPUs and APUs from mainstream

processor manufactures. Evaluation results have shown that GPUs are faster

than APUs at the cost of burning much more power, while APUs can give

better performance per watt. Around the same time, there was another

study [24] done to compare performance among multi-core CPUs, GP-GPUs

and Field-Programmable Gate Arrays (FPGAs) for accelerating ANN. The

results have shown that FPGAs can provide highest performance but needed

multiple FPGA boards to fit the entire neural network. GP-GPUs on the

other hand, are able to provide flexible solution with reasonably high perfor-

mance.

1.2.2 FPGAs

In FPGA implementations of ANNs, the connection weights can be stored

in registers, latches, or memories. Memory storage alternatives include dy-

namic RAM or static RAM [25]. Adders, subtracters, and multipliers are

available on FPGAs for performing matrix multiplications. Nonlinear acti-

8

vation functions can be implemented using look-up tables or using adders,

multipliers, etc. The FPAG implementations of ANNs entail advantages such

as simplicity, low noise, flexibility and cheap fabrication [26].

Reconfigurable FPGAs provide an effective programmable hardware re-

source allowing different design choices to be evaluated very quickly. The

cost for modifying the design is very low and it can provide the speed of

hardware and the flexibility of software. In contrast to custom VLSI, FPGAs

are readily available at a reasonable price and have a reduced hardware de-

velopment cycle. Moreover, FPGA-based systems can be tailored to specific

ANN configuration. However, the resource density on a single FPGA is still

low which limits the size of neural networks that can be implemented on a

single FPGA to be thousands of neurons.

The first successful FPGA implementation [27] of artificial neural net-

works was published a little over two decades ago. Since then, there have

been many attempts to accelerate different ANN architectures using FPGAs

[28], [29], [30], [31], [32], [33], [34], [35] for different applications ranging from

speech recognition to simple classification. These proposed approaches try

to optimized their design with different objectives such as speed, resource

utilization, area etc. For instance, Krips et al. [36] presented an FPGA

implementation of a neural network meant for designing a real-time hand

detection and tracking system applied to video images. Their approaches

tried to achieve reasonable processing time so that it could be useful for

real-time application. Similarly, Rice et al. [37] report that a FPGA-based

implementation of a neocortex inspired cognitive model can provide an aver-

age throughput gain of 75 times more than the software implementation on a

full Cray XD1 supercomputer. They used the hierarchical Bayesian network

model based on the neocortex developed by George and Hawkins [38].

From all different FPGA implementations, there are three typical aspects

that designers will try to explore with different options to optimize their

designs [39].

1. Data Representation: There are multiple research works that indicate

training ANNs with integer weights is possible. If weights are rep-

resented as integers instead of floating points, the multipliers can be

implemented more efficiently. There are a few attempts to implement

ANNs with floating-points, but no successful implementation has been

9

reported up to the present. Nichols et al. [40] showed that despite

continuing advances in FPGA technology, it is still impractical to im-

plement ANNs on FPGA with weights represented with floating points.

Another approach is to use a special learning logarithm [41] which uses

powers-of-two integers as connection weights. The advantage of this is

to simplify multipliers with series of bit shift operations.

2. Weight Precision: Selecting weight precision is one of the most impor-

tant choices when implementing ANNs on FPGAs. Implementation

with high weight precision will increase the implementation cost and

decrease the computational speed. If weight precision is low, then it

might compromise the functionality of the ANNs. The trade-off can

be resolved if the minimum precision is determined. Holt and Baker

[42] studied this problem by simulating using software with a set of

benchmark classification problems. Their results indicate that a 16-bit

fixed-point is the minimum precision without diminishing the learning

ability of ANNs.

3. Transfer Function Implementation: The direct implementation of non-

linear sigmoid transfer function can be very costly. There are two

practical approaches to approximate the sigmoid function with FPGAs:

piece-wise linear approximation or the look-up table. Piece-wise linear

approximation is an approximate sigmoid function with a set of straight

lines in the form of y = ax+ b. If the coefficients for the lines are cho-

sen to be power of 2, then the sigmoid function can be implemented

using shift and add operations, which decrease the implementation cost

further. The second method is to use a look-up table. The data used

in the loop-up table are uniformly sampled from the sigmoid function.

However, there is a trade-off with sample size and accuracy. A large

sample size requires more memory which increases the implementation

cost, while a small sample size leads to lower accuracy which might

compromise the learning ability of the ANNs.

Besides all the detailed design choices, an important challenge that design-

ers face when implementing ANN on FPGAs is to select an appropriate ANN

model for a specific application so that the utilization of hardware resources

can be optimal. Simon Jothson and others provide an inspiring insight on

10

this problem [43] by carrying out a comparative study on different ANN ar-

chitectures. They implemented four different ANNs on FPGAs and analyzed

the hardware requirements for each ANN structure on a benchmark classifi-

cation problem. Even though their results are limited due to the number of

ANN architectures they included in their study, their work provides a insight

into HNNs with FPGAs.

1.2.3 Analog

Analog implementations of ANNs are usually more efficient in terms of chip

area and processing speed, but this comes at the price of limited accuracy

of the network component. The digital implementation, on the other hand,

ensures the accuracy of the network component but with higher area cost

and power consumption [44].

In analog implementations, the synaptic weights are typically stored using

resistors [45], charge-coupled devices [46], capacitors [47], and floating-gate

EEPROMs [48]. In VLSI, a variable resistor as a connection weight can be

implemented as a circuit with two MOSFETs [49]. However, discrete values

of channel length and width of the MOS transistors may cause a quantiza-

tion effect in the weight value. The scalar product and subsequent nonlinear

mapping are performed by a summing amplifier with saturation [50]. Un-

like the digital implementation, the characteristics of the nonlinear activation

function can be captured directly as a current that operates above saturation

levels or as the voltage characteristics of transistors. In analog implemen-

tation, signals are usually represented by currents [51] and/or voltages [49].

Current flow is preserved at each junction point by Kirchhoff current law, and

during multiplication various resistance values can be used for the matrix.

Thus a network of resistors can simulate the necessary network conventions

and their resistances are the adaptive weight needed for learning. Overall,

analog neuron implementations benefit by exploiting simple physical effects

to carry out some of the network functions [52]. For instance, the accu-

mulator can be a common output line to sum currents. Analog elements

are usually smaller and simpler than their digital counterparts. However,

obtaining a consistently precise analog circuit, especially to compensate for

variations in temperate and control voltages, requires sophisticated design

11

and fabrication.

There has been much work done to use analog circuits to model ANNs.

Ortiz and Ocasio [53] presented a discrete analog hardware model for the

morphological neural networks. They replaced the classical operations of

multiplication and addition with addition and maximum or minimum opera-

tions. By doing so, they are able to simplify their hardware implementation.

Milev and Hristov [54] presented an analog-signal synapse model using MOS-

FETs to analyze the effect of the synapse’s inherent quadratic nonlinearity

on learning convergence and on the optimization of vector direction. The

synapse design is then used in a VLSI architecture for a finger-print feature

extraction application. Similarity, Brown et al. [55] described an implemen-

tation of a signal processing circuits for a continuous-time recurrent neural

network using sub-threshold analog VLSI in a mixed mode approach. In

their implementation, each state variable is represented as a voltage while

the neural signals are represented as currents. The use of currents allows the

accuracy of the signals to be maintained over long distances, which made

this implementation robust and scalable.

1.2.4 Mixed Signal

Mixed signal implementations of neural networks are designed to combine

the digital and analog technologies in an attempt to get the best of both.

For instance, analog implementation can be used for internal processing for

speed while connection weights are stored digitally. The work done by the

Mesa Research Institute at University of Twente [56] used 70 analog inputs,

six hidden nodes, and one analog output with 5-bit digital weights to achieve

the feed-forward processing rate of 20 GCPS. The final output of the neural

network had no transfer function, so that multiple chips could be added to

increase the number of hidden units. Similarly, a mixed signal architecture

with on-chip learning has been presented in [57]. The overall architecture is

divided into two parts, analog and digital. The analog ANN unit executes

the neural function processing using a charged-based circuit structure, while

the units for error correction, circuit control and clock generation are kept

purely digital.

12

1.3 Motivation

When neural networks are implemented as software running on general-

purpose processors, the algorithm complexity is generally O(n2). As a result,

neural networks are unable to provide the performance and scalability re-

quired in non-academic settings. There have been many attempts to design

hardware implementations to speed up the performance of neural networks

[58], [59]. Although a variety of approaches, from analog to VLSI systems,

have been pursued, they have not resulted in widely used hardware. These

attempts are typically flawed with a lack of resolution, limited neural network

size, and an absence of software interfaces.

Additionally to the difficulties with the hardware implementations, another

common issue is the choice of the neural network architectures. This is

due to the fact that most of the neural networks are not well suited for

hardware systems. For instance, one of the most common types of neural

networks is the multilayer perception with back-propagation architectures

[60], [61]. Although this type of neural network is very popular and used for a

variety of applications, the processing elements require massive real number

arithmetic as well as great deal of resource intensive components such as

multipliers and accumulators. Furthermore, the transfer function for this

type of neural network is also very complicated. Consequently, the hardware

implementation requires a significantly greater amount of resources, which

limits the scalability of the hardware. The typically solution is to introduce

a pipeline to obtain parallelism. However, this approach does not result in

enough parallelism and speed-up to justify the cost and effort of using such

systems [28].

1.3.1 Introduction of Restricted Boltzmann Machines

A Restricted Boltzmann Machines (RBM) is a generative stochastic artificial

neural network model. It is able to learn the probability distribution over

a given set of inputs. It was originally invented under the name Harmoium

by Paul Smolensky [62] in 1986. It did not become popular until Hinton et

al. [63] introduced the fact learning algorithm for RBMs. RBMs are widely

used in applications such as dimensionality reduction [64], classification [65],

and feature abstractions.

13

In comparison with other ANN models, RBMs have hardware-friendly ar-

chitectures, well suited for hardware implementation. RBMs can use data

types that map well to hardware since the node states are binary-values. As

a result, binary arithmetic ensures that operations can be done with simple

logic gates instead of resource intensive multipliers. In some cases, the node

probability is used instead of the binary-valued node state. When this hap-

pens, the value for each node can only takes values from 0 to 1, and RBM

does not require high precision, the node can be represented using fixed-

point numbers, and the fixed-point arithmetic units can be used to decrease

resource utilization and increase processing speed. The simplicity in RBM

architecture allows more scalability and parallelism in hardware design.

Implementation of RBMs on FPGAs has several advantages over other

hardware implementation methods for normal RBM architecture.

• One big drawback of the software implementation is that the complex-

ity of the matrix multiplication needed for the learning algorithm is

O(n2). If the learning algorithm is implemented with a FPGA, the

fine-grain parallelism of the FPGA can be utilized for speed up matrix

multiplication.

• RBMs have a hardware-friendly structure since the data can be repre-

sented using a fixed-point data type. Several previous research works

have shown that only 18, or even a presentation with fewer bits is suffi-

cient enough to represent the training data and the connection weights

for the neural network to function correctly [66], [42], [67]. On the

other hand, FPGAs have abundant embedded 18-bit by 18-bit multi-

pliers available for speeding up the matrix multiplication process.

• FPGAs are rapidly growing. In addition to the raw fabric, FPGAs have

various hardware components, such as on-board RAMs, DSP blocks,

I/O transceivers and even processors. This allows the entire system to

be implemented on the single board.

• The most important aspect of an FPGA is its ability to reconfigure.

The topology of the network defines its application. The organization

of processing units will define the capabilities and behavior of the neural

network. Being able to implement on a reconfigurable system allows

14

hardware to be generated to suit the exact required topology, thus

optimizing performance without sacrificing adaptability.

1.3.2 Previous Implementations of the RBMs

Recently, there have been work that introduced couple FPGA implemen-

tations for training RBMs, and the handwriting recognition was used as a

benchmark to compare their results with the software implementations [67],

[68], [69]. The first work that tried to implement an RBM on FPAG is

done by Ly and Chow [69]. They implemented a high performance RBM for

general use, but their implementation did not scale well. Thus, Kim et al.

[67] proposed a highly scalable implementation for RBMs. However, there

are two major drawbacks in their implementations. First, all of their im-

plementations are based on the assumption that connection weights have a

symmetric structure and the network has the same number of visible nodes

and hidden nodes. However, if their implementations are used for training

the entire RBM network for handwriting recognition, their implementations

would simply not work or would be highly inefficient since the visible layer is

much larger than the hidden layer for a RBM trained for handwriting recog-

nition application. One possible solution is to zero pad the hidden nodes

to be the same size as the visible nodes. However, once the hidden layer

is zero padded, the overall size of the neural network is too large for the

implementations to fit the entire system on a single FPGA. Although us-

ing multiple FPGAs to train one large RBM is possible [70], it is extremely

inefficient when the problem can be solved using just one single FPGA. In

this thesis, we proposed a new implementation called RAW, which stands for

Restricted Boltzmann machine with Asymmetric Weight. Compared with

previous works, RAW is optimized for handwriting recognition and is able

to perform the training process very efficiently.

1.4 Contribution

The new architecture, RAW, that we proposed in this thesis is able to train

RBMs on FPGA efficiently. The implementation is also optimized for the

handwriting recognition application. In RAW, we introduced a new method

15

to avoid the weight transpose problem. We stored each row of the weight

matrix on a separate on-chip RAM, which allows the matrix multiplications

to be processed in parallel. Furthermore, RAW used DSP blocks with four-

multiplier adder mode to maximize the number of embedded multipliers avail-

able for matrix multiplications. As a result, we reordered multiplication and

addition operations used for the matrix. We also introduced a shift regis-

ter structure to the node selection module to reduce the hardware resources

needed for this implementation. As shown in Fig. 1.4, we implemented RAW

on Altera Stratix IV GX that ran at 100 MHz. The results were compared

with a MATLAB implementation for RBMs. The experimental results in-

dicate that RAW is able to achieve a speed-up of 134 fold with I/O time

and a speed-up of 160 fold without I/O time. Compared to previous works,

RAW is able to achieve a much higher speed-up while the hardware resources

needed are very comparable with previous works. The main reason that it is

much faster is that RAW is able to calculate the matrix multiplication with

more parallelism due to the structure difference in the network and imple-

mentation. We also modified RAW implementation so it can be trained using

different input sizes. The experimental results show that our implementation

also scales well.

Figure 1.4: A picture of the Altera Stratix IV GX

The rest of the thesis is organized as follows.

• Chapter 2 provides preliminaries of the restricted Boltzmann machine

16

and two previous FPGA implementations with symmetric weights.

• Chapter 3 describes the FPGA implementation of the restricted Boltz-

mann machine with asymmetric weights.

• Chapter 4 describes the optimization made for the implementation.

• Chapter 5 presents experimental results with speed-up, area, and scal-

ability comparisons.

• Chapter 6 concludes the thesis with a brief discussion of possible future

work.

17

CHAPTER 2

PRELIMINARIES

2.1 Restricted Boltzmann Machine

This section briefly discuss the terminology, mathematical background and

training procedures involved in the mechanics of Restricted Boltzmann Ma-

chine (RBMs). Additional details, including the historical development and

statistical motivation can be found in [71], [72]. An RBM is a generative,

stochastic neural network architecture. It is used to model the statistical

behavior of a given set of training data.

The restricted Boltzmann machine is a generative, stochastic, and unsu-

pervised learning neural network architecture. It uses statistical behaviors

to model a particular set of data. Given a series of training input vectors,

the network will be able to build an internal model based on the statistical

distribution of the given data. Based on the training data set, the network is

able to abstract the underlying properties of the input vector. The internal

architecture can be used to detect whether an arbitrary data point belongs

to the original input data.

The RBM is generative because the internal structure allows the network

to produce new data which is consistent with the distribution. The RBM is

also stochastic because it uses a probabilistic approach to model the input

data. To capture statistical properties on the training data, the RBM de-

termines the probability distribution of a given set with the help of random

processes. These two properties, generative and stochastic, makes RMBs a

unique artificial neural networks architecture.

Like all ANNs, the RBM is capable of learning. The internal structure of

the RBM is mathematically defined by numerous independent parameters.

Due to the state explosion of the parameter space, finding a correct set of

parameters is a non-trivial task. To find the optimal parameters, the RBM

18

processes a set of training data, and applies the learning rules iteratively.

The RBM repeatedly processes training data until it can generate desired

output. Once the RBM is well trained, a new set of unexposed data, called

the test data, can be used to verify its behavior.

Figure 2.1: A schematic diagram of a restricted Boltzmann machine

In neural networks, the processing units are often called nodes. The nodes

in the RBM have binary states: on or off. As shown in the Fig. 2.1, the

RBM consists of two layers of nodes, a hidden layer and a visible layer. The

visible layer is used for input access while the hidden layer acts as an internal

representation of the data for the networks. There are connections between

every node in the two different layers, but no connections exist between nodes

in the same layer. Each of these connections has an associated weight, which

is the parameter that the RBM tries to optimize at each training iteration.

As shown in Fig. 2.1, vi and hj are the binary states of the ith and jth

nodes in the visible and hidden layers respectively. wi,j is the weight for the

connection between vi and hj.

2.1.1 Alternating Gibbs Sampling

Alternating Gibbs sampling (AGS) is the training operating process for the

RBM. It is the fundamental rule for generating node states and learning op-

timal connection weights [73]. AGS is divided into two phases: construction

and reconstruction phases. During the construction phase, the visible layer

19

is used to determine the node state and the probability of the hidden layer.

During the reconstruction phase, the hidden layer is used to generate the

node state and the probability of the visible layer. The change in the weights

is calculated in the last AGS phase. To begin the process, an initial data

vector is loaded into the visible layer and phases are operated in an alternat-

ing manner starting with the construction phase. To differentiate the nodes

between different phases, the node state will be label with the phase number

as its superscript. Figure 2.2 is a representation of the AGS process.

Figure 2.2: A schematic diagram of the alternating Gibbs sampling for
three phases

In order to understand how the node states are determined, the concept

of global energy must be introduced first. The global energy can be simply

treated as a numeric value that determines the operation and the behavior

of an RBM. The global energy is defined in Eq. (2.1).

E = −
∑
i,j

wi,jvi, hj (2.1)

Since the weight connections only exits between nodes in different layers,

the energy function can be redefined as a sum of two partial engergies. De-

pending on which AGS phase is being computed, the partial energy will be

calculated using different equations. The construction phase uses Eq. (2.2),

20

and the reconstruction phase uses Eq. (2.3).

E = −
∑
i

vi(
∑
j

wi,jhj) = −
∑
i

viEi (2.2)

E = −
∑
j

hj(
∑
i

wi,jvi) = −
∑
j

hjEj (2.3)

The equations for calculating the partial energies have show that the global

energies can be calculated by using just the node states and the partial

energy. Since the partial energy is independent of related node state, they

can be calculated concurrently to speed up the calculation of the global

energy. Using the statistical approach of defining probability with respect

to energy functions, the node states have a cumulative distribution function

of a sigmoid function. The probability for a visible or a hidden node to be

turned on is expressed in Eq. (2.4) and Eq. (2.5).

p(vi = 1) =
1

1 + e−Ei
(2.4)

p(hj = 1) =
1

1 + e−Ej
(2.5)

Figure 2.3: A plot of a sigmoid function and a threshold function

To determine the node state from the sigmoid function, a uniformly ran-

21

dom variable must be sampled. Sometime, when the probabilistic approach

is undesired, a deterministic, first-order approximation threshold function

expressed in Eq. (2.6) and Eq. (2.7) is used. A comparison plot between the

sigmoid function and the threshold function is shown in Fig. 2.3.

vi =

{
0, Ei < 0

1, Ei ≥ 0
(2.6)

hj =

{
0, Ej < 0

1, Ej ≥ 0
(2.7)

2.1.2 Learning

One of the primary reasons for neural networks to be attractive is their ability

to learn, and as result, the learning rules of RBMs are generating great

interest [74], [75]. In the learning rules of RBMs, the connection weights

are parameters used to determine the energies and node state for next AGS

phase. To model a given data set, the connection weights have to be adjusted

at each iteration so that the energy generated from the RBM for the entire

set of training data is minimum. To find the minimum energy, the differential

equation of E with respected to the individual connection weight is expressed

in Eq. (2.8).
∂E

∂wi,j

= ε(〈vihj〉1 − 〈vihj〉∞) (2.8)

In this equation, the 〈· · · 〉X represents the expected values of Xth AGS

phase. ε is the learning rate of the network that is defined by the user. The

node states are calculated by an iterative process of AGS. As a result, the

derivative of the energy function indicates the direction vector of steepest

descent in the weight space to reach the minima. Therefore, the weights

must be adjusted according to the derivative at the end of every training set.

This formulation raises three important points. First, the expected values

of the node interactions are required over the entire set of training data

to calculate the gradient descend properly. This is called batch learning.

However, if the batches are large, the calculations will require a significant

amount of time. One way to resolve this is to divide the batches into smaller

groups. The weights will be updated with each smaller batch. This is called

22

mini-batch learning. If the mini-batch is still undesired, the batches can be

divided into each individual input vector, and this is called on-line learning.

Second, according to Eq. (2.8), the formal definition of the gradient descent

requires the node state values from the infinite AGS and that is impractical

to implement. Thus researchers have found that the infinite AGS phase can

be replace with a small finite number. For RBMs, the lowest possible AGS

phase to train the model correctly is 3.

Last, the learning rate is an independent parameter which defines the step

size for each weight update. A larger learning rate leads to a faster learning

process, while a smaller learning rate ensures convergence. Therefore the

designers need to carefully choose the learning rate due to this trade off.

Some studies suggest that the learning rate can be modified between batches

to achieve a convergent solution quickly. This is called simulated annealing

[75], [74].

Although these learning algorithm shortcuts deviate from the formal def-

inition of gradient descent, they enhance operational speed and are widely

adapted. The learning algorithm for weight update now can be defined as

shown in Eq. (2.9) and Eq. (2.10), where k is the number of batches, and L

is the number of data vectors in one batch.

wi,j[k + 1] = wi,j[k]− ε(〈vihj〉1 − 〈vihj〉X) (2.9)

〈vihj〉X =
1

L

l∑
l=0

vXi h
X
j (2.10)

In order to make the learning algorithm easier to understand and compute,

Eq. (2.1) to Eq. (2.10) can be reformulated using matrix expression. For an

RBM with i visible nodes and j hidden nodes, the visible and hidden layers

can be expressed in Eq. (2.11) and Eq. (2.12) respectively.

vXl = [vX0 · · · vXi−1]B1×i (2.11)

hXl = [hX0 · · ·hXj−1]B1×j (2.12)

23

The connection weights can be reformulated as Eq. (2.13).

W [k] =

w0,0[k] · · · w0,j[k]

...
. . .

...

wi,0 · · · wi,j[k]

 ∈ Ri×j (2.13)

Then, the Eq. (2.1) to Eq. (2.10) can be reformulate as:

V X+1 =

V 0, X = 0

f(EX
v), X is odd

V X , X is even

(2.14)

HX+1 =

{
f(EX

h), X is even

HX , X is odd
(2.15)

EX
v = (HX)W T ,∈ Rl×i (2.16)

EX
h = (V X)W,∈ Rl×j (2.17)

W [k + 1] = W [k] +
ε

l
((V 1)TH1 + (V X)THX) (2.18)

Here f(·) is the sigmoid or the threshold transfer function applied element-

wise to the matrix.

2.1.3 Complexity Analysis

To understand the reason that a software implementation of the RBM run-

ning on a sequential processor is not desired, the algorithm for it needs to be

analyzed. The pseudo code for the software implementation of the RBM is

presented in Algorithm 1. In order to make the analysis easier, we are going

to assume that the RBM will have symmetric layers, where the hidden layer

and visible layer have the same size (i = j = n). The algorithm for training

the RBM is divided into three code block: node select, energy computation,

and weight update. A detailed complexity analysis is shown in Table 2.1. As

indicated in Table 2.1, the complexity of overall the algorithm is O(n2).

24

Algorithm 1 pseudo-code of RBM training algorithm

1: for every batch in the training data do
2: visible []= get datavector(batch);
3: for every AGS phase do
4: if AGS phase is odd then

/* Engery computer Eq. (2.17) - 2 loops −→ O(n2) */
5: for every hidden node do
6: for every visible node do
7: energy[j]+=visible[i]weight[i][j]
8: end for
9: end for

/* Node Select Eq. (2.15) - 1 loop −→ O(n) */
10: for every hidden node do
11: hidden[j] = transfer function(energy[j])
12: end for
13: else

/* Energy Compute Eq. (2.16) - 2 loop −→ O(n2) */
14: for every visible node do
15: for very hidden node do
16: energy[i] += hidden[i]*weight[i][j]
17: end for
18: end for

/* Node Select Eq. (2.14) - 1 loop −→ O(n) */
19: for every visible node do
20: visible[i] = transfter function(energy[i])
21: end for
22: end if

/* Weight update Eq. (2.18) - 2 loops −→ O(n2) */
23: if AGS phase == 1 then
24: for every visible node do
25: for every hidden node do
26: weight update[i][j] += visible[i]*hidden[j]
27: end for
28: end for
29: else if AGS phase == AGS limit then
30: for every visible node do
31: for every hidden node do
32: weight update[i][j]-=visible[i]*hidden[j]
33: end for
34: end for
35: end if
36: end for
37: end for

/* Weight update Using Eq. (2.18) - 2 loops −→ O(n2) */
38: for every visible node do
39: for every hidden node do
40: weight[i][j]+=learning rate/batch*weight update[i][j]
41: end for
42: end for

25

Table 2.1: The complexity analysis for each code block of the RBM
algorithm

Procedure Complexity Equation
Node select O(n) (2.14), (2.15)
Energy computer O(n2) (2.16), (2.17)
Weight update O(n2) (2.18)

2.1.4 Layered Networks

A single RBM only has one layer of visible nodes and one layer of hidden

nodes. As a result, the RBM can only model first-order statistics. This limits

the modeling ability of the RBM to learn when given training data with

underlying properties that require higher orders of statistics for complete

description. Although a single RBM has limited modeling ability, we can

stack multiple RBMs together to increase its modeling ability as long as the

number of nodes matches up [63]. As shown in Fig. 2.4, the hidden layer

Figure 2.4: A schematic diagram of a double-layered RBM

of one RBM will acts like the visible layer of another RBMs. The stacking

is indefinite as long as there are enough resources to support the stacked

RBMs. The operations and learning algorithm are changed slightly for the

stacked RBMs. The individual RBMs still operate the same way, but there

is a macro-algorithm to organize how the layers operate with respected to

each other. More detailed description can be found in [63].

26

2.2 FPGA Implementation of RBM with Symmetric

Weight

Although there have been many attempts to design hardware implementa-

tion of various neural network architectures, there is a growing interest in

hardware-accelerated restricted the Boltzmann machine due to the popular-

ity of deep belief nets applications. When implementing RBMs on FPGAs,

one of the major issues is the weight storage. Depending on different AGS

phases, Wor W T will be needed to calculate the partial energy. In order to

speed up the matrix multiplication operation, a row or a column needs to be

accessed at the same time so that the multiplication can proceed in parallel.

Thus the distribution of the weights in a non-trivial problem is due to the

transpose operation that occurs during the reconstruction phase. There are

two hardware RBM implementations that have interesting ways to solve this

issue, and they are the main interest to this thesis.

2.2.1 BRAM-Based Distribution for Memory Core

The first implementation is done by Ly and Chow [68]. They implemented

their design on Xilinx Virtex II-Pro XC2VP70 FPGA running at 100 MHz.

The resources support an RBM up to 128 × 128 nodes. Their solution to

solve the weight distribution problem is that they distributed the connec-

tion weights onto different BRAMs in a way that no embedded RAM will

simultaneously read out two or more elements from the same row with the

same address, and no embedded RAM will contain two or more elements

of the same column. Then by using a carefully designed address scheme, a

column or row of the matrix is read out from the memory each cycles and no

communication is required for the transpose. This distributed BRAM-based

matrix data structure is illustrated in Fig. 2.5 with n = 4. Their architecture

uses binary-valued visible node states, which reduce the resource utilization

greatly without using any multipliers for multiplication. Since the node states

are binary values, the matrix multiplication operations are implemented with

a series of AND gates and a binary tree adder to calculate the partial ener-

gies. To further simplify their implementation, they use a threshold function

for node selection.

Their results were compared with an optimized C program implementation

27

Figure 2.5: (a) Typical weight matrix organization with BRAM addresses
added, (b) weight assigned to BRAMs, (c) weights access by row, (d)
weights access by column

of an RBM running on a 2.8 GHz Intel processor. Their implementation was

able to achieve computational speed of 1.02 billion connection-updates per

second and a speed-up of 35 fold compare to a software implementation.

2.2.2 Sub-Row Memory Core

The second implementation is done by Kim et al. [67], where they designed a

highly scalable RBM on FPGA. They implemented their RMB architecture

on an Altera Stratix III EP3SL340 FPGA with a DDR2 SDRAM interface.

The Altera Nios II soft-processor is also used and running at 100 MHz while

the RBM module ran at 200 MHz. Unlike the first implementation, their

work was capable of supporting both real-valued and binary-valued visible

node states. At high level, their RBM module has an array of weights and

neurons that are fed into an array of multipliers and adders to perform matrix

multiplication. At the lower level, their RBM module is segmented into

several groups, with each group consisting of an array of multipliers, adders,

28

embedded RAM, and logic components. The weights and neurons are also

distributed across the network. This implementation makes the design highly

scalable since a group can be easily added to the RBM module to increase

the size of the RBM model.

Their architecture used 16-bit fixed-point numbers to represent the weight

and node probability, which is capable of training RBM without affecting

its learning ability. They treated matrix multiplication in several different

ways. A matrix multiplication shown in Eq. (2.19) can be considered as

multiple linear combinations of vectors, multiple vector inner products, and

as a sum of vector outer products as shown in Eq. (2.20), Eq. (2.21), and

Eq. (2.22). They achieved performance acceleration by implementing groups

of multipliers, adders and embedded RAM. Each group stores a row of the

weights stored on separated local memory. The computation hardware is then

selected on the type of energy that is being generated using the DSP units.

Multiply-and-accumulate logic generates the visible energies while an adder

tree is used for the hidden energies. This allows both types of energies to be

generated using the identical memory access to avoid the weight transpose

problem.

C = A ·B where A ε Rm×k, B ε Rk×n (2.19)
C1,j

C2,j

· · ·
Cm,j

 =
k∑

i=1

Bi,j

A1,i

A2,i

· · ·
Am,i

 (2.20)

Ci,j =
[
Ai,1 Ai,2 · · · Ai,k

]
·

B1,j

B2,j

· · ·
Bk,j

 (2.21)

C =
k∑

i=1

A1,i

A2,i

· · ·
Am,i

×
[
Bi,1 Bi,2 · · · Bi,n

]
 (2.22)

For node selection, a piecewise linear approximation of a nonlinear function

was used to create a sigmoid function, which only requires a minimal number

of addition and shift operations [76]. The random number generator uses a

29

combination of a 43-bit Linear Feedback Shift Register (LFSR) and 37-bit

Cellular Automata Shift Register (CASR), which provides good statistical

properties and a cycle length of 280, which is sufficient for RBM application.

They compared their implementation to the MATLAB code provided by

Hinton et al. [1] using a 2.4 GHz Intel Core2 processor implemented in a

single thread. Implementing network sizes of 256 × 256, 512 × 512, and 256

× 1024. They achieved speed-up of 25 fold compared to a single-precision

MATLAB implementation and 30-fold for a double-precision MATLAB im-

plementation.

30

CHAPTER 3

OUR IMPLEMENTATION OF RBM WITH
ASYMMETRIC WEIGHT

The objective of this thesis is to implement an RBM architecture on FPGA

optimized for handwriting recognition. Due to the nature of this application,

the neural networks used to train the input data will have very asymmetric

connection weights. Each input data vector represents an handwriting image,

where each node presents a pixel in the image. The hidden nodes on the

other hand represent the 10-bit label of each image, which each hidden node

presents 1 bit. As a result, the number of nodes in the visible layer is going

to be much larger than the number of nodes in the hidden layer. Initially, the

implementation is optimized for the MNIST benchmark where each image is

28 by 28 pixels and the labels for each image is represented using a 10-bit

vector. Later in the implementation stage, the architecture is change so the

visible layer size can scale to different sizes to train different input image

sizes.

Our implementation is capable of supporting both real-valued and binary-

valued visible node states. We used 18-bit fixed-point to represent node

probabilities and connection weights. There are two reasons for choosing 18-

bit fixed-point numbers to be our data type. First, studies have been shown

that RBMs can be trained with a minimum of 16-bits. Second, the FPGA

that we used for this implementation has abundant 18 ×18 bit embedded

multipliers.

To make the implementation simpler, we decide to use ε that is a negative

power of 2 so that the multiplication operations for calculating the delta

weight can be implemented by shift operations instead of resource intense

multipliers.

Our overall design breaks down into seven big modules: control unit, node

selection core, matrix multiplication core, memory core, visible nodes mod-

ule, hidden nodes module, and I/O interface. This chapter will discuss the

design of each module in great detail.

31

3.1 RBM Core

RBM is the top-level entity of the entire design. It consists of seven modules.

1. Control Unit: This module made up by two state machines, one for the

RBM computation, and one for fetching input data from the SRAM.

The state machine for RBM computation keeps track of the AGS

phases. Depending on the AGS phases, the control unit will gener-

ate different control signals to other modules.

2. Node Selection Core: This module computes the probability of a node

state to be turned on for a visible and hidden node using a sigmoid

function and the partial energy of the hidden layer or visible layer.

3. Matrix Multiplication Core: This core is responsible for any matrix

multiplication operation needed for the RBM algorithm. It consists of

an array of multipliers and numerous full bit adders.

4. Memory Core: This core has all the connection weights stored on sev-

eral individual on-chip memories. Each row of the weight matrix is

stored on a separated RAM block. The implementation is designed in

a way that no more than two connection weights in the same column

will be access at the same time.

5. Visible Node: This module contains the node probability values for the

visible layer at the first and Xth AGS phases. It also contains an array

of shift registers that are used as temporary storage for the next input

training vector.

6. Hidden Node: This module contains the node probability values for the

hidden layer at the first and Xth AGS phases.

7. I/O Interface: This module is responsible for fetching the next input

training data from the SRAM while the RBM core is performing com-

putation on the current input data. It gives the control unit a signal

when data is ready.

The overall architecture and data flow of the entire design are shown in

Fig. 3.1. The control units and their outputs are highlighted in red. As

shown in Fig. 3.1, the control signals control all other modules. The outputs

32

the of weight block, visible node, and hidden node are all inserted into the

Matrix Mult module with two multiplexers. The outputs of Matrix Mult

either feed into the weight block to update the connection weights or feed

into the node select module and update the values in visible or hidden layer.

Figure 3.1: A top-level diagram of the RBM core

3.2 Control Units

The controlunits module consists of two control units, one for the RBM

computation running at 100 MHz and another one for the I/O interface

running at 200 MHz. The control unit for RBM computation has seven

states as shown in Fig. 3.2.

33

Figure 3.2: The state machine of RBM computation

1. When the state machine starts or whenever the reset signal is one, the

state machine will go to Idel 1 state. The state machine will stay on

this state until the start signal is one, and then to move on the Idle 2

state.

2. In Idle 2 state, the RBM computation core is waiting for the I/O in-

terface to finish fetching one input data vector. Once the dataready

from another control unit is one, the state machine will move on to the

start state.

3. During the start state, the data that stored in the shift registers will

be loaded into registers that hold the values for visible nodes. At the

same time, the control unit sent the I/O interface control unit a fetch

signal, so that the I/O interface will start fetching the next input data

vector from the SRAM to the shift registers while the computational

core is processing the current input data. Without any additional input

signals, the state machine will move on to the next state.

4. During first construction phase, the computational core is calculating

34

the node values for the first AGS phase using Eq. (2.14), Eq. (2.15),

and Eq. (2.17). As shown in Fig. 3.3, the connection weights and

visible node values are fed into the matrix multiplication core. At each

clock cycle, a partial energy Eh is calculated and its value is fed into

the Node selection Eh module. Once the Node selection Eh module

calculates the sigmoid function of the given partial energy, the hidden

node will be updated with the new values.

Figure 3.3: A data flow diagram for the construction phase

5. Once the construction phase is finished, the state machine will move to

the reconstruction phase. During this state, the computational core is

calculating the node value for the second AGS phase using Eq. (2.14),

Eq. (2.15), and Eq. (2.16). As shown in Fig. 3.4, the connection weights

and the hidden node are fed into the matrix multiplication core. Once

all the partial energies E v are calculated, their values will be fed into

the node selection Ev module to compute the sigmoid function. After

that, the visible layer will update its node values.

6. Once the reconstruction phase is done, the state machine will move to

the second construction phase which calculates the third AGS phase.

In this phase, the data flow is exactly the same as the first construction

phase.

7. After the second construction phase is finished, the state machine will

move to the weight update phase. As shown in Fig. 3.5, the visible

35

Figure 3.4: A data flow diagram for the reconstruction phase

node and hidden node values from both the first and third AGS phases

will be feed into the matrix multiplication core to perform the multi-

plication operations using Eq. (2.18). The weights are also fed into the

matrix multiplication core to calculated the new weights. Once the new

weights are calculated, weight block will update its memory contents

accordingly.

Figure 3.5: A data flow diagram for the weight update phase

Unlike the control unit for computational core, the state machine for I/O

interface is much simpler. As shown in Fig. 3.6, the state machine only

consists of two states, Idle and ReadData. The state machine starts with

the Idle state, and spins on that state until the fetch signal is high. During

36

the ReadData state, the control unit will generate the address for the data

to be read, and store incoming data into a shift register. Each input vector

contains 784 of 8-bit words and the I/O bandwidth is only 16 bits, therefore

state machine will be spinning on Read Data for at least 392 cycles. Once

the input vector is ready, it will generate a dataready signal, and move back

to the Idle state waiting for another fetch signal.

Figure 3.6: The state machine of I/O interface

3.3 Stochastic Node Selection Design

This module calculates the node value and node state using a sigmoid func-

tion and a random number generator. To implement the sigmoid function

is very difficult in hardware. A naive approach requires both exponential

functions and division, and these two operations are very expensive to im-

plement using hardware. However, the sigmoid function is amenable for

hardware implementations. First, the range of the function is bounded in

the interval (0, 1). As a result, floating-point representation is not required

and can be replace with fixed-point representation. Second, the function has

odd symmetry. Thus, computing half of the domain is sufficient to generate

the remainder of the domain.

37

3.3.1 Piecewise Linear Interpolator

Originally, a ROM-based look-up table implementation was used. It is an

efficient method to provide reasonable approximation for bounded transfer

function. The values for the function are precomputed. Then function is

then evenly sampled and the sampled data is stored in an on-chip ROM.

This is efficient, but it only provides limited resolution. For a 2 kB on-chip

ROM with 32-bit output, can only have 512 sampled entries, meaning there

is only 9-bit resolution for input values.

To increase the resolution, we implemented the an interpolation that was

proposed by Ly and Chow [68] to increase the resolution by operates on the

two boundary outputs of a look-up table. The implementation uses linear

interpolator as shown in Eq. (3.1), where (u, v) represent the desired point

between points (x0, y0) and (x1, y1).

v =

(
y1 − y0
x1 − x0

)
(u− x0) + y0 (3.1)

The naive hardware implementation of Eq. (3.1) requires both division

and multiplication which utilized significant amount of hardware resources.

Thus, rather than calculating the interpolation exactly, a recursive piecewise

implementation was used. Knowing the midpoint, which can be found by

adding the endpoints and right shift by one, the search point is iteratively

compared with the midpoints. This implementation gives a good approxi-

mation while using little hardware overhead. Furthermore, the design can be

easily pipelined.

This hardware implementation is called the kth Stage Piecewise Linear

Interpolator (PLIk), where each successive stage does one iteration of a

binary search for the desired point. A comparison of PLI2 and LI and

corresponding error is shown in Fig. 3.7. A detailed schematic diagram of

the PLIk architecture is shown in Fig. 3.8.

Using the ROM-based look-up table and PLIk, a pipelined, high-precision,

and resource efficient sigmoid transfer function was implemented. Using

fixed-point input data, the sigmoid function is defined as a piecewise imple-

mentation using Eq. (3.2). A comparison between the ideal sigmoid function

38

Figure 3.7: Comparison and error residuals of LI and PLI2 [68]

the piecewise implementation and the error residuals are shown in Fig. 3.9.

f ′(x) =

0, x ≤ −8

1− PL, I3(LUT (−x)), −8 < x ≤ 0

PLI3(LUT (x)), 0 < x ≤ 8

1, x > 8

(3.2)

Finally, the results of the sigmoid transfer function is compared with a

random number to select the final node state. There are many efficient FPGA

implementations of uniform random number generators [77], [78]. A Linear

Feedback Shift Register (LFSR) is implemented for this RBM architecture

due to its simplicity. The block diagram for the node select module for

computing the hidden node states is shown in Fig. 3.10.

Although the node select module for computing visible nodes is very similar

to the module used for the hidden nodes, it is much larger compared to the

node select module for the hidden nodes. This is due to the fact when

partial energies for hidden nodes are computed, the RBM computational

core outputs one Eh every clock cycle. Since the node select module for Eh is

pipelined, thus only one piecewise sigmoid function core is need. When the

39

Figure 3.8: A schematic diagram of the PLIk [68]

partial energies for visible nodes are calculated, 784 of them are computed

in parallel. As a result, the node selected module for Eh contains 784 of the

piecewise sigmoid function core. This implementation is later optimized, and

will be discussed more in detail in Chapter 4.

3.4 Memory Core

To understand how our implementation resolve weight transpose problem,

the key observation required is that matrix multiplications can be viewed as

multiple linear combinations of vectors, multiple vectors inner products, or as

40

Figure 3.9: A schematic diagram of the PLIk [68]

a sum of vector outer products. If the construction phase (VW) is viewed as

vector inner products, then each row of V and each column of W is multiplied

element-wise, followed by a sum reduction. This suggests that each row of

W should be placed in separate on-chip RAMs so that all of these elements

can be read simultaneously, as shown in Fig. 3.11(a). For the reconstruction

phase, HW T , consider the transposed matrix operation (WHT), and view

the operation as linear summation of vectors. This requiers that the jth

column vector of W is multiplied by the jth element in a column vector of

HT . This gives the structure of Fig. 3.11(b), which compute multiple visible

neurons in parallel. Since at each cycles we only need to read a column

vector of W for both phases, the memory layout for the weights can remain

the same, and it requires no communication for a transpose operation. In

work done be Kim et al. [67], they have a similar implementation to store the

connection weights. They placed each column of W onto separated on-chip

RAMs while our implementation placed each row of W onto separated on-

chip RAMs. Even though the difference between the implementations seems

to be insignificant, it makes a huge difference on performance. When Kim

et al. [67] designed their implementation, they mostly consider for neural

networks with symmetric size. Thus, storing a row or a column of their

41

Figure 3.10: A schematic diagram of the node select module for computing
hidden node

implementation does not make a difference. However, for our design, we are

dealing mostly with asymmetric neural networks, where the visible layer is

much larger than the hidden layer. Suppose we are storing each column of W

onto separate on-chip RAMs, we are only able to process ten multiplication

operations in parallel. But if we are storing each row of W onto different on-

chip RAMs, we are able to process 784 multiplication operations in parallel,

that is more than 78 times faster.

3.5 Matrix Multiplication Core

The matrix multiplication core consists of two components: array of multi-

pliers and array of adders. Since we are trying to process 784 multiplication

operations in parallel, we will need 784 of 18-bit multipliers. Depending on

AGS phase, the input multiplexer will select appropriate input from con-

nection weight, hidden layer, and visible layers to perform multiplication

operations. Once the multiplication operation is performed, the output from

the multiply will be feed into array of adders to either perform sum reduction

or linear summation of vectors.

42

Figure 3.11: (a) Matrix multiplication for computing hidden nodes, (b)
matrix multiplication for computing visible nodes

3.5.1 Tree Adder and Accumulator

In order to perform the sum reduction and linear summation of vectors, a

tree adder and accumulator are need. To perform a sum reduction of 784

numbers, ten levels of tree adders are needed. On the other hand, to perform

a linear summation of vectors with 784 elements, 784 of 18-bit accumulators

are needed. To have the tree adders and accumulator adders implemented

separately, a significant number of full adders are need from the FPGAs.

Since the tree adder and accumulator are needed for different AGS phases,

they will never be used in the same cycles. Thus one solution to decrease

the number of adders needed is to combine the first level of tree adders with

the accumulator adders. The those adders will have multiplexers at one of

their inputs. The control signal for the multiplexers will decide which mode

the adder will perform. By combining two adders together, we are able to

save 392 full adders. The block diagram for tree adders and accumulators is

43

shown in Fig. 3.12.

Figure 3.12: A schematic diagram for combined the tree adders and
accumulators

3.6 Visible Nodes

The visible node module contain three components, a shift register and two

registers. The shift register has a width of 8 bits and depth of 784 operating

at 200 MHz. It serves as a temporary storage for reading the next input data

from the SRAM. Once the shift register contains one input vector, bit-wise

operation will be performed on its value to match the data type in the RBM

computational core and then loaded into the other two registers. The other

two register are exactly the same size, 18 bits in width and 784 in depth.

Unlike the shift register, they are running at 100 MHz. One is used to store

the visible node value at the first AGS phase and another is used to store the

44

visible node value at the Xth AGS phases. Instead of storing the temporary

∆W at first AGS phase, we decided to store V 1 and H1 so that the ∆W can

be calculated at once during the weight update phase. This way, we can save

a lot of memory for temporary storage.

3.7 Hidden Nodes

Similar to the visible node module, the hidden node module also contain

three components, that is, three registers. The first two registers are similar

to the registers used for the visible node. They have 18 bits of widths, and

10 in depth. Since the label for each handwriting image is represented by a

10-bit vector, there are only 10 nodes in the hidden layer. These two registers

are used to store the hidden node values at the first AGS phase and the Xth

AGS phases. The third register has 1 bit in width and 10 in depth. It is

used to store the final state (0 or 1) of each hidden node when RBM is used

to testing against untrained data.

3.8 I/O Interface

I/O interface is responsible for reading input data from the SRAM. The

control unit for I/O interface running at 200 MHz will generate the address

for the SRAM. Since the input data for each pixel image is 8 bits, and the

bandwidth of the SRAM is 16 bits, thus we are able to read two pixels of data

every clock cycles. At each clock cycle, the 16-bit data from the SRAM will

be shifted into a shift register that has 784 8-bit registers connected together.

After reading all 784 pixels data from the SRAM, the shift register will load

its values into the visible node module. The I/O interface is also responsible

to write the final connection weight values from the on-chip memory to the

SRAM after the training is done.

45

CHAPTER 4

OPTIMIZATION

There are two major optimizations done to the implementation to minimize

the hardware resource utilization without diminishing the performance.

4.1 Independent Multiplier vs. Two-Multiplier Adder

Mode

During the construction phase, the visible layer is multiplied by each column

of weight element-wise; during the reconstruction size, the jth element in

the hidden layer is multiplied with the jth column in the weight; during the

weight update phase each hidden node is multiplied with a vector of visible

node. As a result, to achieve the maximum performance we need 784 18-bit

by 18-bit multipliers. However, as indicated by the data sheet as shown in

Fig. 4.1, we do not have enough independent 18×18 bit embedded multipliers

on FPGA to support this implementation. The board is only able to support

Figure 4.1: Data sheet for Altera Stratix IV GX230

46

644 of independent 18×18 bit embedded multipliers, which is not enough to

process 784 nodes at the same time. However, if we switch to four-multiplier-

adder mode, it can support 1288 embedded multipliers. The reason for this

shown in Fig. 4.2. Both Fig. 4.2(a) and (b) represent half of the DSP block,

but with different operation mode. The output of two multipliers connect to

an adder, and there is no output port that directly outputs the value from

the multipliers. As a result, when the DSP block operates at independent

multiplier mode, half of the multipliers on the DSP block are not used in

order to propagate the value from the multiplier through the adder. When

DSP operates at four-multiplier adder mode, we are able to utilized all the

embedded multipliers. But since the multiplier has a extra adder, the order

of operation will need to be modified accordingly. Since all independent

Figure 4.2: (a) Independent multipliers and (b) four-multiplier adder mode

multipliers are replaced with four-multiplier-adders, matrix multiplication

for each AGS phase needs to be modified accordingly.

• Construction phase: The original implementation was to have the visi-

ble node multiply by each column of weight in a element-wise manner,

and then perform a sum reduction with a 10-level of tree adders. Now

having an extra adder that sums up the output of two multipliers in

pairs, the tree adder only need to be adjust from ten levels to nine

levels. Then the construction phase should behavior correctly.

• Reconstruction phase: The original implementation was to have the jth

element of the hidden nodes multiply with the jth column of weights.

Now with the extra adder, we reorder the matrix multiplication so that

47

at each clock cycle, the jth and (j + 1)th element of the hidden node

multiply with the jth and (j + 1)th column of the weights. Then sum

the products if the weights from both column belong to the same row.

Since we only have 784 multipliers, we have only half jth and (j+ 1)th

column multiply and adding with jth and (j + 1)th element of the

hidden node in parallel. Originally, 784 partial energies for the visible

nodes are calculated simultaneously, and after ten clock cycles, the

partial energies are ready. Now with a extra adder attached multipliers,

392 of partial energy for visible node is calculated simultaneously, and

after 5 clock cycles, 392 of partial energies are ready. Thus overall

cycles for reconstruction phase still stays the same. In order to make

this implementation works, the RAM for store connection weight need

to be change to dual ports since we are reading two connection on the

same row.

• Weight update phase: In order to calculate the ∆W , the hidden node

and the visible node from the first AGS phase feed into one multiplier,

while the corresponding hidden and visible node from the third AGS

phase feed into the second multiplier in the same DSP block. Since

the ∆W is the difference between the two products instead of the sum-

mation, we could simply negate the hidden node value from the third

AGS phase, or simply store the negation of the hidden node value into

the hidden layer during the second construction phase. This way 392

of ∆W can be calculated every cycles. To further optimized the im-

plementation, the connection weight can be read out at the same time

∆W is calculated. Then the first level of tree adder can be use to find

the new weight and write back the next cycle. Since the RAMs for

storing connection weights are now modified to have dual ports, one

port can be use for read, while another port can be used for writing in

the new connection weights.

4.2 Activation Function

Since the partial energy for visible nodes are calculated as linear summation

of vectors, the partial energy for each visible node is processed simultaneously.

48

As a result, 392 of the partial energies are ready at the same cycle. In order

to find the sigmoid function of all of them in parallel, a naive approach is to

instantiate the same node select module for Eh 392 times. Since the random

number generator is not needed for finding the new visible node states, that

part of hardware can be removed to save hardware utilization. After removing

all other unnecessary hardware, a module called activation function, which

calculates only the sigmoid function, is shown in Fig. 4.3. After optimizing

Figure 4.3: A schematic diagram of the activation function

the hardware usage, the activation function module is instantiated it 392

times. The block diagram of node select for Ev with naive approach is shown

in Fig. 4.4. However, even after removing all the unnecessary hardware, the

node selection for Ev module still requires about 180,000 logic elements in

total. This naive approach takes about 81% total logic elements of the entire

board, which makes the entire implementation impossible to fit on one FPGA

board.

In order to reduce the total resource of the node select module for visible

nodes, two shift registers are introduced, one at front and another one at

back of the activation modules. A shift register with parallel loads, as shown

in Fig. 4.5, is added in front of the activation function module. The shift

register is four words in depth, and each word is 18 bits wide. When partial

energies are calculated, they will be grouped into 98 groups with four partial

energies in each group. The partial energies in each group will be loaded into

the shift register using parallel load. Then, each partial energy will be shifted

into the activation function one by one at every clock cycles to calculates its

49

Figure 4.4: A schematic diagram of node select with activation function
module

corresponding sigmoid function value. Since the activation function module

is pipelined, it is able to handle a new input at every clock cycle. Similarly,

a shift register with the same depth and width without any parallel load, as

shown in Fig. 4.6, is also added at the end of the activation module. It is

used to store the visible node value until all four values are outputted by the

activation function modules. Then the values stored in the shift register will

be loaded into the visible node module simultaneously.

Figure 4.5: Shift register with a parallel load

With these two structures added for the activation function modules, we

are able to reuse each activation function module four times. As a result, only

98 activation function modules are needed for the node selection module for

calculating the partial energies of the visible layer. With the optimization,

we are able to reduce the logic element by 80,000 for this module and only

50

Figure 4.6: Shift register without a parallel load

adding eight clock cycles to the entire AGS phase. The final schematic of

the node selection for visible node is shown in Fig. 4.7.

Figure 4.7: A schematic diagram of the optimized node selection module for
Ev

51

CHAPTER 5

EXPERIMENTAL RESULTS

Due to the fact that different FPGA development boards and neural net-

work architectures used across different research studies, there is a lack of

a standardized benchmark for comparing FPGA implementations. At the

same time, a majority of hardware accelerated platforms are designed for a

specific application in mind. As a result, an in-house application is usually

used as a point of comparison.

Since the previous works used the MATLAB implementation as a baseline,

we used the same MATLAB implementation of the RBM from Hinton et al.

[63] to compare the performance of our implementation. The benchmark used

in the experiments is a very popular handwritten digit recognition database

called MINIST. It has a training set of 60,000 examples, and a test set of

10,000 examples. It is a subset of a larger set available from the NIST. All

the digits in the training set have been size-normalized and centered in a 28

× 28 pixel image. A few sample images from the MNIST data set are shown

in Fig. 5.1.

In this chapter, we tested our implementation with different AGS limits

and different network sizes. We record the training performance with and

without I/O time. The results are compared with the MATLAB implemen-

tation and previous works. The hardware recourse needed for this implemen-

tation are also reported in detail and compared with previous works. The

rest of the chapter is organized as follows.

• The different metrics that used to measure the performance of RAW

will be described.

• The resource utilization of the implementation will be reported.

• The performance comparison with the MATLAB implementation will

be presented.

52

• The performance comparison between different platform will be dis-

cussed.

• The result of scalability test of RAW will be provided.

Figure 5.1: Sample training input images from the MNIST dataset

5.1 Metrics

For performance, the lack of standard neural networks metrics raises some

issues. Although an absolute measure of performance is desired, there are no

metrics that can account for the difference in neural network architectures.

An effective metric for comparing computational performance of a single

type of neural networks is Connection-Update-Per-Second (CUPS) [59]. It

measures the rate of weight changes during the learning process. It also

measures how fast a system is able to perform input-output mappings. For

an RBM architecture, CUPS is defined as the number of weights divided

by the periods for one complete AGS cycle, T. The equation for symmetric

networks is in Eq. (5.1), where n is the size of visible and hidden layer. The

equation for asymmetric networks size is in Eq. (5.2), where m is the size for

the visible layer and k is the size for hidden layer.

CUPS =
n2

T
(5.1)

53

CUPS =
m× k
T

(5.2)

For comparing two different implementations of the same neural network

architecture, the update period is also a powerful metric to compare the

performance. It measures the time that the implementation takes to complete

a single batch of data. Thus, the higher the update period value is, the slower

the implementation performs.

Another simple and effective metric is the speed-up. This measures the

ratio between the times to complete training neural networks using different

implementations. The equation for calculating the speed-up between the

software implementation and the hardware implementation is given in Eq.

(5.3), where S represents the speed-up, Tsw represents the update period for

the software implementation, and Thw represents the update period for the

hardware implementation.

S =
Tsw
Thw

(5.3)

5.2 Resource Utilization

The entire implementation contains 11 entities. The resources that used for

each entity are reported in Table 5.1. Among all the entities, thematrix mult

and node select ev require the most number of combination ALUTs. The is

because that complicated logic is used for the PLI inside the node select ev

and a large number of multiplexers are used for selecting signals for multi-

pliers and adders inside the matrix mult module. The node select ev and

weight block use the majority of memory bits needed for this design. This is

because that the large number of RAMs and ROMs used for storing connec-

tion weights and the sigmoid function look-up table. On the other hand, the

matrix mult module used all the DSP blocks needed for the design since all

the multiplication is done inside the matrix mult module.

5.3 Performance Comparison

The benchmark implemented on Altera Stratix IV GX(EP4SGX230KF40C2)

FPGA with the computational core running at 100 MHz and I/O interface

54

Table 5.1: The resource utilization for different modules

Entity
Combinational
ALUTs

Registers Memory Bits
DSP
blocks

RBM control 229 48 0 0
hidden node0 0 10 0 0
hidden probs0 7 7 0 0
hidden probsx 0 11 0 0
matrix mult 52,935 10,638 0 784
node select eh 417 322 9,216 0
node select ev 36,652 43,806 903,168 0
visible data0 0 6,272 0 0
visible node0 0 3,136 0 0
visible nodex 0 14,125 0 0
weight block 3 0 225,792 0
Total 94,174 78,375 1,138,176 784

running at 200 MHz. The performance measurements are done in compari-

son against the MATLAB implementation trained on an Intel Core i5 CPU

running at 2.5 GHz with a double-threaded version of the RBM application.

When the AGS limit is 3 and the size of the visible layer is 784, the speed-up

for pure CPU time is 161, while the speed-up with I/O time considered is

134. The difference between two speed-ups is due to the fact that the time

for computing one data vector is faster than the time for reading out one

data vector from the SRAM. The computational core has to halt and wait

for the I/O interface to finish reading the next input vector. A graph of the

speed-up vs. AGS limits to train each data vector is shown in Fig. 5.2. Three

data points in the figure correspond to AGS limit 3, 5, and 7. As shown in

Fig. 5.2, the marginal gain of speed-up decreases as the number of AGS

increases for each input data vector. This is because after certain AGS limit,

the I/O interface are able to fetch the next data before the computational

core finishing processing the current data.

5.4 Platform Comparison

The resource comparisons between our implementation and previous works

are reported in Table 5.2. Ly and Chow used the fewest number of registers

and zero DPS block. This is due to the fact that their implementation only

55

Figure 5.2: The comparison of speed-up between different AGS limits; the
marginal gain of speed-up decreases as the number of AGS limits increases

Table 5.2: The resource utilization between different implementations

Design Register
Combinational
ALUTs

Block
Memory

DSP
blocks

Kim [67]
160,996
(60%)

107,097
(53%)

9,560,288
(57%)

288
(100%)

Ly [68]
29,885
(45%)

30,403
(45%)

4,626,000
(78%)

0
(0%)

RAW
78,374
(43%)

94,174
(52%)

1,138,176
(8%)

784
(61%)

works with binary data type, but does not support real-value data, which

allows their implementation to replace multiplication operations with AND

and add operations. Our implementation uses the highest number of DSP

blocks due to the high level of parallelism that we can achieve. As a result, we

are able to obtain a higher speed-up and CUPS compared to their reported

results. Our implementation also uses the fewest number of memory blocks.

The reason for this is that instead of storing the intermediate values for ∆W ,

we stored the intermediate values for the visible and hidden nodes, which

saves about 90% of the memory blocks. Overall, RAW uses less memory

blocks, while using comparable hardware resources in other categories.

The speed-up comparisons between our implementation and previous works

are reported in Table 5.3. Kim et al. [67] and our work both use the MAT-

56

Table 5.3: The comparison of various RBM implementations

Design Ly [68] Ly [68] Ly [68] Kim [67] RAW

Platform 1 FPGA 4 FPGAs
Virtualized
FPFGA

1 FPGA 1 FPGA

Network Size 128×128 256×256 256×256 256× 256 784×10
Clock Speed 100 MHz 100 MHz 100 MHz 200 MHz 100 MHz
Absolute
Performance
(CUPS)

1.58 G 3.13 G 725 M - 4G

Relative
Performance

61× 145× 32× 35× 160×

Baseline
Platform

C C C MATLAB MATLAB

LAB implementation as the baseline, and our implementation is able to

achieve 3 times more speed-up compared to their result. When compar-

ing our results with Ly and Chow [68], the speed-up of our implementation

is still higher. Even though the C implementation might run faster than the

MATLAB implementation and comparing the relative performance might

not be accurate, our implementation is still able to achieve a much better

absolute performance. Our implementation with only one FPGA is able to

achieve a better performance compared with the implementation of Ly and

Chow [68] with four FPGAs. As a result, our implementation is optimized

for handwriting recognition in terms of speed compared to previous works.

5.5 Scalability

The resource utilization is a good metric to measure the scalability of the

architecture. To show the scalability of our design in terms, we adjusted our

implementation so that it is able to train the inputs with different network

sizes. The hardware resources needed for each network size are reported

in Table 5.4. The percentages of the resource utilization for combinational

ALUTs, registers, memory bits, and DSP blocks are shown in Fig. 5.3. As

the size of the visible layer increases, the number of registers needed for

the implementation increases linearly, while the combinational ALUTs grow

linearly too but at a smaller rate. The number of required DSP blocks leveled

off when the size of the visible layer is equal to 784. This is due the fact that

57

the implementation for the matrix multiplications is pipelined. Thus, the

DSP blocks can be easily reused as the size of the visible layer increases. On

the other hand, the memory bits that are needed for this implementation

increase gradually, only 1 percent increased as the size of the visible layer

doubled.

Table 5.4: The resource utilization for different network sizes

Network
size

Combinational
ALUTs

Register Memory Bits
DSP
Blocks

1568×10 127,103 (69%) 130,154 (71%) 1,363,968 (9%) 784
784×10 94,174 (52%) 78,375 (43%) 1,138,176 (8%) 784
392×10 71,450 (39%) 52,497 (29%) 1,025,280 (7%) 392

To show scalability of our implementation in terms of the update period

and the speed-up, we ran the benchmark on different sizes of neural networks

and compared the result with the runtime of the MATLAB implementation.

Figure 5.4 shows the update period for both software implementation and

FPGA implementation. As the size of the visible layer increases, the update

period for software implementation increases in an exponential manner, while

the update period for FPGA implementation barely increases.

Figure 5.3: The resource utilization for different network sizes; the resource
utilization is able to scale well as the network size increases

Figure 5.5 shows the speed-up comparision between the FPGA and the

58

Figure 5.4: The update period comparison for different visible layer sizes;
the networks size affects the update period of the software implementation
greatly while it barely affects the update period of RAW implementation

MATLAB implementation for different sizes of the visible layers. As the size

of the visible layer increases, the speed-up grows almost exponentially.

59

Figure 5.5: Speed-up for single FPGA platform with different visible layer
sizes compared to the software implementations; the speed-up increases
exponentially as the network size increases

60

CHAPTER 6

CONCLUSION

6.1 Conclusion

The goal of this thesis was to implement a high-performance restricted Boltz-

mann machine optimized for handwriting recognition application on FPGA

to accelerate the training performance of RBM. Even though there have

been many attempts to design hardware implementation of various neural

networks architectures, work done by Ly and Chow [68] and Kim et al. [67]

are the main interest to this thesis. When implementating RBMs on FPGAs,

one of the major issue is the weight storage. Depending on different AGS

phases, Wor W T will be needed to calculated the partial energies. In order

to speed up the matrix multiplication operation, a row and a column need

to be accessed at the same time so that the multiplication can be done in

parallel. Thus the distribution of the weights is a non-trivial problem due

to the transpose operation that occurs during the reconstruction phase. Ly

[68] and Kim [67] proposed two interesting implementations to resolve the

weight transpose problem. However, there are two major setbacks in their

implementations used for handwriting application. First, their implementa-

tions are based on the assumption that connection weights have a symmetric

structure and the network has the same number of visible nodes and hidden

nodes. However, in the case of handwriting recognition where the visible

layer is much larger than the hidden layer in size. Thus, their implemen-

tations would simply not work or would be highly inefficient. Thus in this

thesis, we proposed a different solution based on Kim’s work to solve the

weight transpose problem.

In addition, the hardware implementation of each module was described in

great detail. To further improve the resource utilization and computational

performance, the four-multiplier-adder mode was used to replace the inde-

61

pendent 18×18 bit multipliers. The shift register structure is also introduced

to the node selection module for the visible layer to reduce the hardware

utilization by approximately 80,000 logic elements while only adding eight

additional clock cycles to the entire design.

The implementation was compare to the MATLAB implementation run-

ning on a 2.5 GHz Intel i5 Processor. The popular database of handwriting

digits called MNIST is used as the benchmark to preform the experiments.

The experimental results show that our implementations are able to achieve

4 billion CUPS resulting in a speed-up of 134 fold compared to the soft-

ware implementation when considering I/O time, and it is able to achieve

161 times speed-up without the I/O. These results are much higher when

compared with previous works, while the area needed is very comparable

with theirs. Therefore, RAW is more optimized for handwriting recognition

application.

6.2 Future Work

For future works, we need to further improve the scalability of our design,

adding real-time recognition features and extending the implementation to

other applications.

6.2.1 Improving Scalability

Right now, the designs are implemented in a way that is very difficult to

scale to different sizes. Instead of having a big block of modules, the design

should be divided into smaller modules so that the size of the network can

be easily modified. The maximum size that can be implemented on a single

FPGA is still very limited. If we can extend our current implementation

into multiple-FPGAs implementation, that would improve the scalability of

the implementation significantly. In order to have the RBM implemented on

multiple FPGAs, we will need to come up with a systematic way to break

down the networks so that each section can run on different boards simul-

taneously. The communication between each FPGA board is also needed to

be minimized in order to achieve maximum speed up.

Instead of increasing the size of the hidden layer and visible layer to make

62

the overall network bigger, we could also scale the network work by stacking

multiple asymmetric RBM together to increase its learning ability. If we are

able to train multiple stacked RBM together on a single FPGA, we are able

to train data with more complicated statistic properties

6.2.2 Extension to Other Applications

Right now the application is only for handwriting recognition, since the input

image size it can handle is small and it only has one layer of RBM. If our

implementation can be of a larger input image size, we might be able to

train the network for other application such as face detection or picture

classification.

Our current implementation has a fast processing time, thus it is also

possible to make it into a real-time handwriting recognition tool. A camera

module can be easily added to the FPGA. If we can implement a real-time

image processing unit that can parse the digits out into 28 × 28 pixel images,

and feed those images into the RBM network, then our RBM will be able to

recognize handwriting digits in real time.

63

REFERENCES

[1] R. Hechit-Nielsen, Neurocomputing. Addison-Wesley Publishing Com-
pany, 1990.

[2] A. K. Jain and J. Mao, “Artificial nerual networks: A tutorial,” in IEEE
Computer Society. IEEE, 1996, pp. 31–44.

[3] I. Basheer and M. Hajmeer, “Artificial neural networks: Fundamentals,
computing, design, and application,” Journal of Microbiological Meth-
ods, vol. 43, no. 1, pp. 3–31, 2000.

[4] R. Lippmann, “An introduction to computing with neural nets,” ASSP
Magazine, vol. 4, no. 2, pp. 4–22, 1987.

[5] P. Simpson, Artificial Neural Systems: Foundations, Paradigms, Appli-
cations, and Implementations. Pergamon Press, 1990.

[6] A. Maren, “A logical topology of neural networks,” in Second Workshop
on Neural Networks. WNN-AIND, 1991, p. 91.

[7] A. Garth, D. Rollins, J. Zhu, and V. Chen, “Evalutation of model dis-
crimination techniques in artificial neural networks with application to
grain drying,” Artificial Neural Networks in Engineering, vol. 6, no. 1,
pp. 939–950, 1996.

[8] J. Chun, E. Atalana, S.-B. Kima, H.-J. Kima, M. E. Hamida, M. E.
Trujilloa, J. G. Mageeb, G. P. Manfioa, A. C. Warda, and M. Goodfel-
low, “Rapid identification of streptomycetes by artificial neural network
analysis of pyrolysis mass spectra,” FEMS Microbiology Letters, vol.
114, no. 1, pp. 115–119, 1993.

[9] J. Chun, A. C. Warda, and M. Goodfellow, “Artificial neural network
analysis of pyrolysis mass spectrometric data in the identification of
streptomyces strains,” FEMS Microbiology Letters, vol. 107, no. 2–3,
pp. 321–325, 1993.

[10] S.-B. Cho, “Neural-network classifiers for recognizing totally uncon-
strained handwritten numerals,” Nerual Networks, vol. 8, no. 1, pp.
43–53, 2002.

64

[11] G. Hinton, D. Li, Y. Dong, G. Dahl, A. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury, “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” Signal Processing Magazine, vol. 29, no. 6, pp.
82–97, 2012.

[12] J. J. Hopfield and D. W. Tank, “Computing with nerual circuits: A
model,” Science, vol. 233, no. 4764, pp. 625–633, 1986.

[13] P. D.T and P. D.T.N, “Artificial intelligence in engineering,” Interna-
tional Journal of Machine Tools and Manufacture, vol. 39, no. 6, pp.
937–949, 1999.

[14] L. Fu, Neural Networks in Computer Intelligence. Mcgraw-Hill, 1995.

[15] C. S. Lindsey and T. Lindblad, “Review of hardware neural networks:
A user’s perspective,” in Proceeding of Third Workshop on Neural Net-
works. IEEE, 1994, pp. 195–202.

[16] H. Martin, Cellular Neural Networks: Analysis, Design, and Optimiza-
tion. Springer, 2000.

[17] L. Zhang, Y. Han, and X. Li, “Fault tolerance mechanism in chip many-
core processors,” Tsinghua Science & Technology, vol. 12, no. 1, pp.
169–174, 2007.

[18] V. K. Pallipuram, M. Bhuiyan, and M. C. Smith, “A comparative study
of GPU programming models and architectures using neural networks,”
The Journal of Supercomputing, vol. 61, no. 3, pp. 673–718, 2011.

[19] K.-S. Oh, “GPU implementation of neural networks,” Pattern Recogni-
tion, vol. 37, no. 4, pp. 1311–1314, 2004.

[20] J. Liu and G. Lei, “Implementation of neural network backpropagation
in CUDA,” in Intelligence Computation and Evolutionary Computation.
Springer, 2013, pp. 1021–1027.

[21] X. Sierra-Canto, F. Madera-Ramirez, and V. Uc-Cetina, “Parallel train-
ing of a back-propagation neural network using CUDA,” in Machine
Learning and Applications. IEEE, 2010, pp. 307–312.

[22] Y. Zhang and S. Zhang, “Optimized deep learning architectures with fast
matrix operation kernels on parallel platform,” in Tools with Artificial
Intelligence. IEEE, 2013, pp. 71–78.

[23] J. Gu, M. Zhu, Z. Zhou, F. Zhang, Z. Lin, Q. Zhang, and M. Breter-
nitz, “Implementation and evaluation of deep neural networks (DNN) on
mainstream heterogeneous systems,” in Proceedings of 5th Asia-Pacific
Workshop on Systems. ACM, 2014, pp. 1–7.

65

[24] B. Essen, M. Macaraeg, C. Gokhale, and R. Prenger, “Accelerating
a random forest classifier: multi-core, GP-GPU, or FPGA,” in Inter-
national Symposium on Field-Programmable Custom Computing Ma-
chines. IEEE, 2012, pp. 232–239.

[25] M. Glesner, Neurocomputers: An Overview of Neural Networks in VLSI.
Chapman & Hal, 1994.

[26] D. Chen, Design Automation for Microelectronics. Springer, 2009.

[27] C. Cox and E. Blanz, “GangLion: A fast field programmable gate ar-
ray implementation of a connectionist classifier,” Journal of Solid-State
Circuits, vol. 28, no. 3, pp. 288–299, 1992.

[28] R. G. Girones, R. C. Palero, J. C. Boluda, and A. S. Cortes, “FPGA im-
plementation of a pipelined on-line backpropagation,” Journal of VLSI
Signal Processing, vol. 40, no. 1, pp. 189–213, 2005.

[29] V. Nambiar, M. Khalil-Hani, R. Sahnoun, and M. Marsono, “Hard-
ware implementation of evolvable block-based neural networks utilizing
a cost efficient sigmoid-like activation function,” Neurocomputing, vol.
140, no. 1, pp. 228–241, 2014.

[30] S.-T. Pan and M.-L. Lan, “An efficient hybrid learning algorithm for
neural network-based speech recognition systems on FPGA chip,” in
Neural Computing & Application. Springer, 2012, pp. 1879–1885.

[31] N. Yildiz, K. Cesur, E. Kayaer, V. Tavsanoglu, and M. Alpay, “Architec-
ture of a fully pipelined real-time cellular neural network emulator,” in
IEEE Transactions on Circuits and Systems. IEEE, 2014, pp. 130–138.

[32] E. Ordonez-Cardenas and R. Romero-Troncoso, “MLP neural network
and on-line backpropagation learning implementation in a low-cost
FPGA,” in Proceedings of the 18th ACM Great Lakes Symposium on
VLSI. ACM, 2008, pp. 333–338.

[33] E. Won, “A hardware implementation of artificial neural networks using
field programmable gate arrays,” Nuclear Instruments & Methods in
Physics Research, vol. 581, no. A, pp. 816–820, 2007.

[34] Z. Lin, Y. Dong, Y. Li, and T. Watansbe, “A hybrid architecture for
efficient FPGA-based implementation of multilayer neural network,” in
Circuits and Systems. IEEE, 2010, pp. 616–619.

[35] S. Himavathi, D. Anitha, and D. Muthuramalingam, “Feed forward
neural network implementation in FPGA using layer multiplexing for
effective resource utilization,” IEEE Transactions on Neural Networks,
vol. 18, no. 3, pp. 880–888, 2007.

66

[36] M. Krips, T. Lammert, and A. Kummert, “FPGA implementation of a
neural network for a real-time hand tracking system,” in First IEEE
International Workshop on Electronic Design Test and Applications.
IEEE, 2002, pp. 313–317.

[37] K. L. Rice, T. M. Taha, and C. N. Vutsinas, “Scaling analysis of a
neocortex inspired cognitive model on the Cray XD1,” Journal of Su-
percomputing, vol. 47, no. 1, pp. 21–43, 2009.

[38] D. George and J. Hawkins, “A hierarchical Bayesian model of invariant
pattern recognition in the visual cortex,” in IEEE International Joint
Conference on Neural Networks. IEEE, 2005, pp. 1812–1817.

[39] J. Zhu and P. Sutton, “FPGA implementation of neural networks: A
survey of a decade of progress,” in Field Programmable Logic and Ap-
plication. Springer, 2003, pp. 1062–1066.

[40] K. R. Nichols, M. A. Moussa, and S. M. Areibi, “Feasibility of floating-
point arithmetic in FPGA based artificial neural networks,” in In
CAINE, 2002, pp. 8–13.

[41] M. Marchesi, “Fast neural networks without multipliers,” Transactions
on Neural Networks, vol. 4, no. 1, pp. 53–62, 1993.

[42] J. Holt and T. Baker, “Back propagation simulation using limited pre-
cision calculations,” in International Joint Conference on Neural Net-
works. IEEE, 1991, pp. 121–126.

[43] S. Johnston, G. Prasad, and L. Maguire, “Comparative investiga-
tion into classical and spiking neuron implementations on FPGAs,” in
ICANN. Springer, 2005, pp. 269–274.

[44] J. Misra and I. Saha, “Artificial neural networks in hardware: A survey
of two decades of progress,” in Neurocomputing. Elsevier B.V., 2010,
pp. 239–255.

[45] H. Graf, L. Jackel, R. Howard, B. Straughn, J. Denker, W. Hubbard,
D. Tennant, and D. Schwartz, “VLSI implementation of a neural net-
work memory with several hundreds of neurons,” in Neural Networks
for Computing. American Institute of Physics, 1987, pp. 182–187.

[46] A. Agranat and C. Neugebauer, “A CCD based neural network inte-
grated circuit with 64K analog programmable synapses,” in Interna-
tional Joint Conference on Neural Networks. IEEE, 1990, pp. 551–555.

[47] T. Morishita, Y. Tamura, T. Otsuki, and G. Kano, “A BiCMOS analog
nerual network with dynamically updated weights,” IEICE Transactions
on Electronics, vol. 75, no. 3, pp. 297–302, 1992.

67

[48] M. Holler, S. Tam, and H. Castro, “An electrically trainable artificial
neural network (ETANN) with 10240 “floating gate” synapses,” in Com-
puter Society Neural Networks Technology series. IEEE, 1990, pp. 50–
55.

[49] B. Wilamowski, J. Binfet, and M. Kaynak, “VLSI implementation of
neural networks,” International Journal of Neural Systems, vol. 10,
no. 3, pp. 191–197, 2000.

[50] J. Zurada, “Analog implementation of neural networks,” IEEE Tarns-
actions on Nerual Networks, vol. 7, no. 2, pp. 36–41, 1996.

[51] M. Verleysen and L. Luc Voz, “An analog processor architecture for a
neural network classifier,” IEEE Micro, vol. 14, no. 1, pp. 16–28, 1994.

[52] C. Mead, VLSI and Neural System. Addison-Wesley, 1989.

[53] J. Ortiz and C. Ocasio, “Analog hardware model for morphological
neural networks,” in International Conference on Neural Networks and
Computational Intelligence. ACTA Press, 2003, pp. 40–44.

[54] M. Milev and M. Hristov, “Analog implementation of ANN with inherent
quadratic nonlinearity of the synapses,” Transaction on neural networks,
vol. 14, no. 5, pp. 1187–1200, 2003.

[55] B. Brown, X. Yu, and S. Grverick, “Mixed-mode analog VLSI
continuous-time recurrent neural network,” in International Conference
on Circuits, Signals, and Systems. ACTA Press, 2004, pp. 104–108.

[56] P. Masa, K. Hoen, and H. Wallinga, “A high-speed analog neural pro-
cessor,” Micro, IEEE, vol. 14, no. 3, pp. 40–50, 2002.

[57] A. Schmid, Y. Leblebici, and D. Mlynek, “A mixed analog digital ar-
tificial neural network with on chip learning,” in Circuits, Devices and
Systems. IEEE, 1991, p. 345.

[58] C. Lindsey and T. Lindblad, “Survey of neural network hardware,” in
Applications and Science of Artificial Neural Networks. IEEE, 1995,
pp. 1194–1205.

[59] Y. Liao, “Neural networks in hardware: A survey,” Santa Cruz, Techni-
cal Report, 2001.

[60] P. Ferreira, R. P., A. Antunes, and F. M. Dias, “A high bit resolution
FPGA implementation of a FNN with a new algorithm for the activation
function,” Neruocomputing, vol. 71, no. 1, pp. 71–77, 2007.

68

[61] D. Shen, L. Jin, and X. Ma, “FPGA implementation of feature extrac-
tion and neural network classifier for handwritten digit recognition,”
Advance in Neural Networks, vol. 3173, no. 1, pp. 988–995, 2004.

[62] P. Smolensky, “Information processing in dynamical system: Founda-
tions of harmony theory,” Parallel Distributed Processing: Explorations
in the Microstructure of Cognition, vol. 1, no. 1, pp. 194–281, 1986.

[63] G. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep
belief nets,” in Neural Computation. MIT, 2006, pp. 1527–1554.

[64] G. Hinton and R. Salakhudinov, “Reducing the dimensionality of data
with neural networks,” in Science. AAAS, 2006, pp. 504–507.

[65] H. Larochelle and Y. Bengio, “Classifcation using discriminative re-
stricted Boltzmann machines,” in Inernational Conference on Machine
Learning. ACML, 2008, p. 536.

[66] L. Zadeh, “Fuzzy logic neural networks and soft computing,” Commu-
nications of the ACM, vol. 37, no. 3, pp. 77–84, 1994.

[67] S. K. Kim, L. C. McAfee, P. L. McMahon, and K. Olukotun, “A highly
scalable restricted Boltzmann machine FPGA implementation,” in Field
Programmable Logic and Applications. IEEE, 2009, pp. 367–372.

[68] D. L. Ly and P. Chow, “High-performance reconfigurable hardware ar-
chitecture for restricted Boltzmann machines,” Transaction on neural
networks, vol. 21, no. 11, pp. 1780–1792, 2010.

[69] D. L. Ly and P. Chow, “A high-performance reconfigurable hardware
architecture for restricted Boltzmann machines,” in FPGA. ACM,
2009, pp. 73–82.

[70] D. L. Ly and P. Chow, “A multi-FPGA architecture of stochastic re-
stricted Boltzmann machines,” in Field Programmable Logic and Appli-
cations. IEEE, 2009, pp. 168–173.

[71] P. Smolensky, “Information processing in dynamical systems: Founda-
tions of harmony theory,” 1986.

[72] Y. Freund and D. Haussler, Unsupervised learning of distributions of bi-
nary vectors using two layer networks. Computer Research Laboratory,
1994.

[73] D. Geman and S. Geman, “Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images,” IEEE Transcation onf Pattern
Analysis and Machine Intelligence, vol. 6, no. 6, pp. 721–741, 1984.

69

[74] D. Ackley, G. Hinton, and T. Sejnowski, “A learning algorithm for Boltz-
mann machines,” Cognitive Scinece, vol. 9, no. 1, pp. 147–169, 1985.

[75] G. Hinton and T. Sejnowski, “Learning and relearning in Boltzmann
machines,” Parallel Distributed Processing, vol. 1, no. 1, pp. 282–371,
1986.

[76] H. Amin, K. Curtis, and B. Hayes-Gill, “Piecewise linear approximation
applied to nonlinear function of a neural network,” Circuits Devices
System, vol. 144, no. 6, pp. 313–317, 1997.

[77] T. Tkacik, “A hardware random number generator,” in Cryptographic
Hardware and Embedded Systems. IEEE, 2003, pp. 450–453.

[78] P. L’Ecuyer, “Maximally equidistributed combined Tausworthe genera-
tors,” Math. Comput, vol. 65, no. 213, pp. 203–213, 1996.

70

	CHAPTER 1 Introduction
	Artificial Neural Network
	Classification of ANNs
	Application of ANNs

	Accelerating Neural Network
	GPUs
	FPGAs
	Analog
	Mixed Signal

	Motivation
	Introduction of Restricted Boltzmann Machines
	Previous Implementations of the RBMs

	Contribution

	CHAPTER 2 Preliminaries
	Restricted Boltzmann Machine
	Alternating Gibbs Sampling
	Learning
	Complexity Analysis
	Layered Networks

	FPGA Implementation of RBM with Symmetric Weight
	BRAM-Based Distribution for Memory Core
	Sub-Row Memory Core

	CHAPTER 3 Our Implementation Of RBM With Asymmetric Weight
	RBM Core
	Control Units
	Stochastic Node Selection Design
	Piecewise Linear Interpolator

	Memory Core
	Matrix Multiplication Core
	Tree Adder and Accumulator

	Visible Nodes
	Hidden Nodes
	I/O Interface

	CHAPTER 4 Optimization
	Independent Multiplier vs. Two-Multiplier Adder Mode
	Activation Function

	CHAPTER 5 Experimental Results
	Metrics
	Resource Utilization
	Performance Comparison
	Platform Comparison
	Scalability

	CHAPTER 6 Conclusion
	Conclusion
	Future Work
	Improving Scalability
	Extension to Other Applications

	REFERENCES

