
c© 2015 Zhentao Xu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158302278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PRICING EUROPEAN OPTIONS USING MONTE CARLO METHODS

BY

ZHENTAO XU

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Adviser:

Professor William Gropp

ABSTRACT

European-style options are quite popular nowadays. Calculating their theo-

retical price is not an easy task because there are many sources of uncertainty.

However, we can model these uncertainties with random numbers. In this pa-

per I discuss my implemention of two options-pricing programs using Monte

Carlo methods, one for a CPU and the other for a GPU. I also optimize them

to reduce their running time. Finally I compare the performance of those

two programs.

ii

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my advisor Prof.

Bill Gropp, for the continuous support of my Senior and Master’s Theses, for

his patience, motivation, enthusiasm and immense knowledge. I could not

have imagined having a better advisor and mentor for my study.

Besides my advisor, I would like to thank my family: my parents Jianping

Xu and Meijun Hua, for giving birth to me in the first place and supporting

me spiritually throughout my life.

iv

TABLE OF CONTENTS

LIST OF ABBREVIATIONS . vi

CHAPTER 1 BACKGROUND . 1
1.1 Financial Options . 1
1.2 Black-Scholes Model . 1
1.3 Monte Carlo Method . 2

CHAPTER 2 CPU ALGORITHM 3
2.1 Sequential Algorithm . 3
2.2 Parallel Algorithm . 5
2.3 Conclusion . 7

CHAPTER 3 GPU ALGORITHM 8
3.1 GPGPU . 8
3.2 The Algorithm . 9

CHAPTER 4 GPU VS. CPU . 14
4.1 Performance Comparison . 14
4.2 Conclusion . 16

REFERENCES . 17

v

LIST OF ABBREVIATIONS

GPU Graphics Processing Unit

CPU Central Processing Unit

PDE Partial Differential Equation

vi

CHAPTER 1

BACKGROUND

1.1 Financial Options

An option is a contract which gives the buyer the right, but not obligation,

to buy or sell an instrument at a specified strike price on or before a specified

date. There are two kinds of options: call option and put option. They give

the owner the right to buy and sell something at a specified price, repsectively.

European-style options is one of the most widely used type of options. It

is an kind of option that may only be exercised on expiration. One of the

most important problems in Finance is options pricing, that is, calculating

the theoretical price of an option. For an European-style call option, its price

usually depends on the following factors:

• S: asset value

• E: exercise price

• r: continuously compounded interest rate

• σ: market volatility

• T : expiry time of the option

1.2 Black-Scholes Model

In 1973, Fischer Black and Myron Scholes derived a PDE, which is now

called Black-Scholes model [1], to estimate the theoretical price of an option.

They made a few simplifying assumptions and came up with the following

formula [2]:

C(S, t) = S ·N(d1)− E · e−r(T−t) ·N(d2),

1

where

d1 =
log (S/E) + (r + 1

2
σ2)(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t.

and N(·) is Normal(0, 1) distribution function

N(x) =
1√
2π

∫ x

−∞
e−

s2

2 ds.

1.3 Monte Carlo Method

The Monte Carlo method [3] is a class of computational algorithms that use

repeated random sampling to obtain numerical results. Since the price of an

option will be impacted by various sources of uncertainty, it makes sense to

model such uncertainty using random numbers. In my experiment, I will use

Monte Carlo methods to price European-style call options. Specifically, I will

generate M random samples and then use the average value to estimate the

option price. However, the average value might not be the true option price.

Therefore, I will compute the standard deviation and use it to obtain a 95%

confidence interval. Mathematically speaking, let µ be the average value and

σ be the standard deviation. A 95% confidence interval would be

[µ− 1.96 · σ/
√
M,µ+ 1.96 · σ/

√
M].

2

CHAPTER 2

CPU ALGORITHM

2.1 Sequential Algorithm

Let M be the number of trials, Pi be the price at ith trial. The pseudocode

of the algorithm is listed as follows:

for i = 1 to M do

Si = S0e
(r− 1

2
σ2)T+σ

√
Tξi

Pi = e−rT max (Si − E, 0)

end for

µ = mean(P)

s = stddev(P, µ)

In the above code, ξi is the ith random number from Normal(0, 1) distribu-

tion.

2.1.1 Computing Standard Deviation

There are two simple ways to compute the standard deviation, namely,

s =

√√√√√ 1

n(n− 1)

n n∑
i=1

Pi
2 −

(
n∑
i=1

Pi

)2
 (2.1)

s =

√√√√ 1

n− 1

n∑
i=1

(Pi − µ)2 (2.2)

I implemented both algorithms, however, their results differ:

3

Table 2.1: Standard Deviation

Array Size (2.1) (2.2) Welford

100 0.904419 0.817973 0.813750

1000 1.014951 1.030125 1.029917

10000 1.000119 1.000029 1.000087

100000 0.999448 0.998896 0.998886

1000000 0.999972 0.999945 0.999994

I then implemented Welford Algorithm below, which is more stable according

to [4]:

U1 ← P1, V1 ← 0

for i = 1 to M do

Ui ← Ui−1 + (Pi − Ui−1)/i
Vi ← Vi−1 + (Pi − Ui−1) ∗ (Pi − Ui)

end for

s← VM/(M − 1)

It turns out that Welford Algorithm’s result is almost identical with (2.2). I

think the reason is cancellation: we lost more significant digits when using

(2.1). Although (2.2) is more accurate, it is slow because the array must be

scanned to compute the mean first. Therefore, I use Welford Algorithm to

compute the standard deviation in my sequential algorithm.

Below are the running time of my sequential algorithm:

Table 2.2: Running Time of Sequential Algorithm

Array Size Time in seconds

1× 106 0.0741999

2× 106 0.147027

5× 106 0.370285

1× 107 0.740026

2× 107 1.48209

5× 107 3.71825

1× 108 7.40798

4

2.2 Parallel Algorithm

Since the M trials are independent of each other, it is possible to parallelize

the algorithm using pthreads to make it run faster. To do this, I created an

array of size M to store the result of M trials. Then I divide the array into

n segments where n is the number of threads. Each thread will calculate the

Black-Scholes value in each array entry in its portion and sum them up. After

this I will add those partial sums up and compute the mean. In the end,

I will use the mean and the trial array to compute the standard deviation.

The pseudocode of the parallel algorithm is listed below:

Let n be the total number of threads, k be the current thread number.

start index← k(M/n),

end index← min (M, (k + 1) ∗ (M/n)),

partial sum← 0,

for i = start index to end index− 1 do

Si = S0e
(r− 1

2
σ2)T+σ

√
Tξi

Pi = e−rT max (Si − E, 0)

partial sum← partial sum+ Pi

end for

sum[k]← partial sum

Below are the running time of my program using two, three and four threads

respectively:

Table 2.3: Running Time Comparison

Array Size Two Threads Three Threads Four Threads

1× 106 0.0369596 0.0248208 0.0189137

2× 106 0.073669 0.049392 0.037178

5× 106 0.187248 0.127107 0.0959623

1× 107 0.378646 0.251982 0.191258

2× 107 0.749793 0.501524 0.380512

5× 107 2.15965 1.26027 0.944356

1× 108 4.50759 2.80522 1.89112

5

Figure 2.1: Running Time

0.0 0.2 0.4 0.6 0.8 1.0
Array Size 1e8

0

1

2

3

4

5

6

7

8

Ti
m

e
in

 S
ec

on
ds

one thread
two threads
three threads
four threads

Figure 2.2: Speed up

0.0 0.2 0.4 0.6 0.8 1.0
Array Size 1e8

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sp
ee

du
p

one thread
two threads
three threads
four threads

6

2.3 Conclusion

Let n be the number of threads of execution, B ∈ [0, 1] be the fraction of

algorithm that is strctly serial. According to Amdahl’s law [5], the theoretical

speed-up S(n) we can get by running the algorithm on n threads is

S(n) =
1

B + 1
n
(1−B)

.

In my program, B is small. The serial part of the algorithm merely parses ar-

guments and allocates/deallocates memory. Therefore, the theoretical speed-

up should be very close to the number of cores, as observed in the experi-

ments.

7

CHAPTER 3

GPU ALGORITHM

3.1 GPGPU

General-Purpose computing on Graphics Processing Units, or GPGPU, is

the utilization of GPU to perform computation in applications traditionally

handled by the CPU. GPU does extremely well in processing large amounts

of data. As such, I implemented the Black-Scholes model on GPU.

Different GPUs have different capabilities. My computer is equipped with

NVIDIA GT 750M. I can run the algorithm on it without many difficulties.

The architecture of a GPU is very different from that of a CPU. In a

GPU, there are a few multiprocessors, each of which contains some stream

processors. For example, my GPU has 2 multiprocessors and 384 stream pro-

cessors. Each processor can execute a sequential thread. However, the code

is actually executed in groups of 32 threads, which is called a warp. There

are a few facts [6] that should be taken into consideration when developing

programs for NVIDIA GPUs:

• Threads are grouped into blocks which are grouped into grids.

• Each thread and block has a unique local index in its block and grid,

respectively. These indices are usually used to compute array indices.

• If one or more threads in a warp is executing a different instruction

from others, the warp must be partitioned into groups of threads based

on instructions being executed. The groups of threads are executed one

after the other.

8

3.2 The Algorithm

3.2.1 Generating Random Numbers

In the CPU algorithm, each thread will generate a random number and

immediately use it to compute Black-Scholes value. On the GPU, however,

I am using the cuRAND library to generate all M random numbers from

a Normal(0, 1) distribution and store them in the array before calling the

kernel to compute the Black-Scholes value for each array element. Below is

the C code of the algorithm that shows how this is done:

Listing 3.1: Generate Random Numbers on GPU

double ∗ t r i a l s d ;

curandGenerator t gen ;

cudaMalloc ((void∗∗)& t r i a l s d , M ∗ s izeof (double)) ;

curandCreateGenerator(&gen , CURAND RNG PSEUDO DEFAULT) ;

curandSetPseudoRandomGeneratorSeed (gen , (int) time (NULL)) ;

curandGenerateNormalDouble (gen , t r i a l s d , M, 0 . 0 , 1 . 0) ;

3.2.2 Computing Black-Scholes Values

As I mentioned in the above section, threads should be grouped into blocks.

How they are grouped will impact the performance of the program. CUDA

supports 1D, 2D and 3D blocks. I am going to group the threads into 1D

blocks because I am using a 1D array to store the Black-Scholes values. Then

I will launch a kernel to compute Black-Scholes values. At this time, trial d

array has been filled with random numbers generated in the last section.

Listing 3.2: Launching Kernel

int number o f b locks = (M / th r ead pe r b l o ck) +

(M % thread pe r b l o ck == 0)? 0 : 1 ;

b l a c k s c h o l e s v a l u e<<<number of b locks ,

th r ead per b lock>>>

(t r i a l s d , S , E, r , sigma , T, M) ;

In black scholes value function, each thread will figure out the part of the

trials d array it has to process. Below is the CUDA code that does it. It

9

begins by calculating how many array entries each thread has to process.

Then it will figure out the start and end indices for the entire block and

thread. In the end, it uses a for loop to calculate Black-Scholes values.

Listing 3.3: Black Scholes Value

int idx ;

int e l ement s pe r th r ead = (M / (gridDim . x ∗ blockDim . x))

+ ((M % (gridDim . x ∗ blockDim . x) == 0)? 0 : 1) ;

int b l o c k s t a r t i n d e x = e l ement s pe r th r ead ∗ blockIdx . x

∗ blockDim . x ;

int b lock end index = min (e l ement s pe r th r ead ∗
(b lockIdx . x + 1) ∗ blockDim . x , M) ;

int t h r e a d s t a r t i n d e x = b l o c k s t a r t i n d e x

+ threadIdx . x ∗ e l ement s pe r th r ead ;

int thread end index = min (b l o c k s t a r t i n d e x +

(threadIdx . x + 1) ∗ e l ements per thread ,

b lock end index) ;

double c u r r e n t v a l u e ;

for (idx = t h r e a d s t a r t i n d e x ; idx < thread end index ;

idx++)

{
c u r r e n t v a l u e = S ∗ exp ((r − (sigma ∗ sigma) / 2 . 0)

∗ T + sigma ∗ s q r t (T) ∗ t r i a l s d [idx]) ;

t r i a l s d [idx] = exp(−r ∗ T) ∗
((c u r r e n t v a l u e − E < 0 . 0) ? 0 .0 :

c u r r e n t v a l u e − E) ;

}

The value of thread per block will impact the performance of the ker-

nel. Below are the results of the experiments I have done when setting

M = 100000:

10

Table 3.1: Different Values of thread per block

Thread Number Per Block Time in Milliseconds

1024 2.772768

512 2.492928

256 4.648800

128 5.181248

64 6.055808

32 6.478784

16 14.119616

8 23.309153

4 38.754753

The code is executed in groups of 32 threads, therefore, when the thread

number per block is less than 32, the performance is severely impacted.

3.2.3 Reduction

In the last chapter, I showed that there are three ways to calculate the

standard deviation. One of them is unstable. In the other two algorithms,

the Welford Algorithm computes the ith estimate of the standard deviation

based on (i− 1)th estimate, which cannot be easily adapted to run on GPU.

Therefore, I will use

s =

√√√√ 1

n− 1

M∑
i=1

(Pi − µ)2

to compute standard deviation.

The entire process can be decomposed into four steps:

1. sum the whole array and compute the mean

2. subtract mean from each array entry and square it

3. sum the whole array and compute the mean

4. divide by (M − 1) and then take the square root

The first step corresponds to computing µ; the second step corresponds to

computing (Pi − µ)2 for each array entry and the third step corresponds to

computing
M∑
i=1

(Pi − µ)2.

11

The second step is not difficult. Just like black scholes value, each

thread process a small portion of the entire array. The fourth step is straight

forward as well. The difficult part are steps one and three, which involve

reductions.

The maximum number of threads in a block is 1024. Therefore inside each

block I created an array of length 1024 in shared memory. The reason I use

shared memory is because I need to visit some array entries more than once,

visiting shared memory is much faster than visiting global memory. Then I

set all the entries to be 0. After that I use a for loop to reduce the whole

array. Below is the C code that does it.

Listing 3.4: Reduction

s h a r e d double sdata [1 0 2 4] ;

int t i d = threadIdx . x ;

/∗ each o f the 1024 threads w i l l sum a por t i on o f

the t r i a l s d array and s t o r e the r e s u l t in sdata

array ∗/
int shared memory entry number = /∗ ac t ua l number

o f array e n t r i e s in the sdata array ∗/ ;

for (int s t r i d e = shared memory entry number >> 1 ;

s t r i d e > 0 ; s t r i d e >>= 1 ,

shared memory entry number >>= 1)

{
i f (t i d < s t r i d e)

{
sdata [t i d] += sdata [t i d + s t r i d e] ;

}
i f (t i d == 0 && shared memory entry number & 1 == 1)

{
sdata [t i d] += sdata [shared memory entry number

− 1] ;

}
sync th r ead s () ;

}

In the code above, shared memory entry number is the actual number of

array entries in the sdata array, stride will be initialized to half of it. Each

12

array entry of sdata whose index idx is greater than stride will be added

to sdata[idx-stride]. If shared memory entry number is an odd number,

then the first thread will add the last array entry to the first entry. Each

iteration will reduce the length of the array by 50%. Therefore it is an

O(log n) algorithm.

13

CHAPTER 4

GPU VS. CPU

4.1 Performance Comparison

For the same array size M , the GPU actually performs a little worse than

CPU. This is reasonable because the GPU program spends a lot of time doing

reductions, which is memory intensive and does not utilize the computation

power of GPU.

Table 4.1: CPU vs. GPU 1

Array Size CPU Time GPU Time

1× 106 0.0189137 0.0262843

2× 106 0.037178 0.0574118

5× 106 0.0959623 0.1216183

1× 107 0.191258 0.2077592

2× 107 0.380512 0.4049033

5× 107 0.944356 1.0003793

14

Figure 4.1: CPU vs GPU 1

0 1 2 3 4 5
Array Size 1e7

0

200

400

600

800

1000

1200

Ti
m

e
in

 M
ill

is
ec

on
ds

CPU
GPU

If we only compare the time they use to calculate the Black-Scholes val-

ues, things are quite different:

Table 4.2: CPU vs. GPU 2

Array Size CPU Time GPU Time

1× 106 0.0177 0.00917

2× 106 0.035125 0.018541

5× 106 0.0912769 0.0450343

1× 107 0.1823 0.0898428

2× 107 0.360406 0.1793895

5× 107 0.921276 0.4482882

15

Figure 4.2: CPU vs GPU 2

0 1 2 3 4 5
Array Size 1e7

0

200

400

600

800

1000

Ti
m

e
in

 M
ill

is
ec

on
ds

CPU
GPU

4.2 Conclusion

The GPU performs very well in computationally intensive tasks. Calculating

Black-Scholes values requires a lot of floating-point operations but relatively

few memory operations. Hence GPU outperforms CPU. However, things are

different when calculating the mean and standard deviation. In this case,

the CPU does better. Sometime it makes sense to decompose the task into

different parts and run computationally intensive tasks and memory intensive

tasks on GPU and CPU, respectively.

16

REFERENCES

[1] Wikipedia, “Black-Scholes model - Wikipedia,
the free encyclopedia,” 2015. [Online]. Available:
http://en.wikipedia.org/wiki/Black%E2%80%93Scholes model

[2] D. J. Higham, “Black-Scholes Option Valuation for Scientific Computing
Students,” Computing in Science and Engineering, vol. 6, pp. 72–79,
2004.

[3] Wikipedia, “Monte Carlo methods for option pricing -
Wikipedia, the free encyclopedia,” 2015. [Online]. Available:
http://en.wikipedia.org/wiki/Monte Carlo methods for option pricing

[4] D. Knuth, The Art of Computer Programming, Vol 2, 3rd edition. Read-
ing, MA: Addison-Wesley, 1997.

[5] Wikipedia, “Amdahl’s law - wikipedia, the free encyclopedia,” 2015.
[Online]. Available: http://en.wikipedia.org/wiki/Amdahl%27s law

[6] M. Wolfe, “Understanding the CUDA data par-
allel threading model,” 2012. [Online]. Available:
https://www.pgroup.com/lit/articles/insider/v2n1a5.htm

17

