
c© 2015 Dhashrath Raguraman

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158302273?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DESIGN OF LOW COMPLEXITY FAULT TOLERANCE
FOR LIFE CRITICAL SITUATION AWARENESS SYSTEMS

BY

DHASHRATH RAGURAMAN

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Advisor:

Professor Lui Sha

ABSTRACT

In cyber-human-medical environments, coordinating supervisory medical sys-

tems and medical staff to perform treatment in accordance with best practice

is essential for patient safety. However, the dynamics of patient conditions

and the non-deterministic nature of potential side effects of treatment pose

significant challenges. This work covers my contribution to one such sys-

tem in development of its low complexity workflow which enhances situation

awareness and in the design and implementation of it fault tolerance.

In the first part of this document, we cover a validation protocol to en-

force the correct execution sequence of treatments, preconditions validation,

side effects monitoring and checking expected responses based on patho-

physiological models. The proposed protocol organizes the medical infor-

mation concisely and comprehensively to help medical staff validate treat-

ments.The proposed protocol dynamically adapts to the patient conditions

and side effects of treatments. A cardiac arrest scenario is used as a case

study to verify the safety properties of the proposed protocol.

In the second part of this document, we describe the integration of some well

understood fault tolerance strategies in context of safety critical systems.

We list out the requirements of our system and explore the traditional Ac-

tive/Standby in context of certain guiding design principles to fit our specific

requirement. Like any software engineering project, we design test suites to

ensure QOS1. We go a step further and try to make this design verifiable

using model checking tools like UPPAAL to demonstrate the correctness of

our system architecture under conditions of normal operation and failure.

1Quality of Service

ii

To Dharma Paati,my grandmother,you are sorely missed.

iii

ACKNOWLEDGMENTS

I would like to briefly thank a number of people who contributed to my suc-

cessful completion of this project. I am immensely grateful to Prof. Lui Sha,

my thesis advisor. His encouragement convinced me to pursue this project

and he offered much guidance along the way.

I am grateful to Dr. Jeonghwan Choi for indulging me with multiple brain-

storming sessions that helped me iron out some of the finer details.

Thanks also to Po−Liang, Min Young, Maryam and Andrew who mentored

me throughout the initial stages and bailed me out without a second thought

whenever I got stuck.

Special thanks to Dr. Berlin for his invaluable medical expertise during our

group meetings. I would also like to thank the other team of doctors, Dr.

White, Dr. Johnson and Dr. Hill for their useful insights on the requirements

of the project.

My parents and siblings also require much thanks for their patience, support,

and encouragement throughout my education. I would also like to thank

Sreedevi for her help in editing and proofreading this document. Finally, I

would like to thank all of my friends who have encouraged me to pull through

tough times and made my graduate experience enjoyable.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Cardiac Resuscitation System: Overview 2
1.2 Cardiac Resuscitation System: Requirements 3

CHAPTER 2 WORKFLOW MANAGER 7
2.1 Objective . 7
2.2 Controller Design . 8
2.3 Case Study . 12
2.4 Verification . 13

CHAPTER 3 FAULT TOLERANCE MANAGER 15
3.1 Introduction . 15
3.2 System Requirements . 22
3.3 System Overview & Design . 24
3.4 Verification . 28
3.5 Iterative Design: Combining Testing & Model Checking 33
3.6 Future Work . 35

CHAPTER 4 CONCLUSION . 36

REFERENCES . 37

APPENDIX A TEST SUITES . 40

APPENDIX B VERIFIED PROPERTIES 43

v

CHAPTER 1

INTRODUCTION

Improving the safety and efficacy of healthcare infrastructure is an important

issue for cyber-physical medical systems. Statistics indicate that the fraction

of preventable medical errors is highest in the ICU when compared to other

hospital units[1, 2]. Many preventable medical errors are result from concur-

rent and uncoordinated treatment actions leading to unintended deviations

from the best practice medical guidelines. This is primarily because medical

staff are under tremendous pressure and overloaded by the great amount of

unorganized information[3]. In order to reduce preventable medical errors,

treatment validation is an important aspect. In the first part of this work, we

focus on reducing preventable medical errors by validating treatments and

monitoring patient’s physiological responses based on the pathophysiologi-

cal models[4, 5]. Validation includes checking preconditions of the treatment,

monitoring potential side effects, and checking physiological responses.

On the whole, there is motivation to develop a comprehensive situation

awareness enhancement system that is central to the clinical production en-

vironment which aids doctors in reducing preventable medical errors. The

Cyber−Physical Systems group at University of Illinois, Urbana−Champaign

headed by Prof. Lui Sha, which I am part of, are working on one such project.

The Resuscitation System1 aims at improving patient care by introducing hu-

man in the loop automation. Introduction of automation in this space requires

a certain reliability of the system. This was our motivation in designing a

Fault Tolerance Manager that ensures reliable operation of the system2. My

thesis research deals primarily with the design and implementation of the

fault tolerance manager.

1The project in question
2With great power comes great responsibility

1

1.1 Cardiac Resuscitation System: Overview

1.1.1 Main UI

The MainUI acts as a integrated situation awareness display that is primarily

operated by the physicians enabling them to:

• Get information on important patient vitals giving doctors a holistic

idea of patient state.

• Get detailed visualization of actions taken till now as well as logging.

• Get risk oriented display which provides a prioritized display of infor-

mation based on the risk to the patient.

• Clustering information based on organ systems.

1.1.2 Workflow Manager(WM)

The workflow manager drives the user interface to help physicians follow the

resuscitation treatment guidelines and prevent safety hazards. In addition,

when patient adverse events occur, Workflow manager will highlight the next

steps to be taken[6].

1.1.3 Medical Order Manager(MOM)

The Medical order manager is the primary input device operated by the

nurses. It automates the process of data input and eases the ordering of

different actions issued by the nurse during patient care.

1.1.4 Fault Tolerance Manager(FM)

An auxiliary manager that handles distributed fault tolerance strategies and

enables correct and continuous operation of above three components.3

3The Main UI, MOM & WM are pre-existing software components that were indepen-
dently developed by members of my research group that I helped improve. My primary
contribution is towards the Fault Tolerance Manager.

2

1.2 Cardiac Resuscitation System: Requirements

To enable full potential, our research group built the Resuscitation System

for enhancing situation awareness in collaboration with Carle Foundation and

the MDPNP team heralded by the Massachusetts General Hospital(MGH).

The Resuscitation System has potential to be generalized to any organ system

model. This system is driven by the workflow that was described about in

the previous section.

Such systems need to meet some important requirements:

• Distributed

• Realtime

• Safety Critical

We will touch on each of these aspects before moving on to the later part

of my work which involves designing a fault tolerance strategy for the sys-

tem enabling it to become robust and deploy-able in real world life critical

situations.

1.2.1 Distributed Requirement

A useful summary of distributed computing concerns is included in Deutsch’s

Eight Fallacies of Distributed Computing[7]. All of these are useful to consider

in realtime system design; each is a departure point for essential design and

implementation concerns:

• The network is reliable

• Latency is zero

• Bandwidth is infinite

• The network is secure

• Topology doesn’t change

• There is one administrator

• Transport cost is zero

3

• The network is homogeneous

In our production environment, our system is designed to enhance situation

awareness of physicians during cardiac resuscitation. In such an environment,

we can realize how network reliability and latency are critical components

and fundamental requirements. Two such scenarios are elucidated below:

• To maintain patient privacy in compliance with HIPAA, it is essential

that all communication with in the system are secure.

• In our fault tolerance strategy, we deploy the active standby principle

which involves cut over to a backup system and introducing replicas.

This incurs partial topology changes in the system.

1.2.2 Realtime Requirement

A real-time system is a system in which the timeliness of operation comple-

tion is a part of the functional requirements and correctness measure of the

system. In reality, nearly all systems might be considered ’soft’ real-time, in

that there are usually unspoken requirements/expectations for the timeliness

of operations. We reserve the realtime term, for systems which are incorrect

when time constraints are not met. Note that many of the concerns sum-

marized in the fallacies above intersect with timeliness. In our system where

latency and failure are real and non-trivial factors, the explicit management

of computing and communication resources to effect timeliness and other de-

sign requirements becomes more important, and the separation of these two

dimensions becomes important. Consider the following scenario:

• During the operation of the Medical Order Manager and MainUI, mes-

saging latencies can cause incorrect logging of orders and risk the pa-

tient healthcare. Hence messaging must follow strict ordering and time

constraints.

1.2.3 Safety Critical Requirement

Safety-critical systems are those systems whose failure could result in loss

of life, significant property damage, or damage to the environment. There

4

are many well known examples in application areas such as medical devices,

aircraft flight control, weapons, and nuclear systems. The Boeing 777 is de-

scribed by Boeing as one of the most technologically advanced airplane in

the world. Many different technologies have contributed to the aircraft in-

cluding safety-critical computer systems. There are six primary flat-panel

displays and several other smaller displays in the cockpit. The aircraft has

several major computerized systems to aid the pilot including flight man-

agement and enhanced ground proximity warning. Much of the traditional

mechanical and hydraulic equipment is obviated by the use of a fly-by-wire

control system. Such systems require specific verifiable design requirements

and fault tolerance strategies. The field of medicine is no different. Comput-

ers are used in medicine far more widely than most people realize. The idea

of using a microprocessor to control an insulin pump is quite well known.

The fact that a pacemaker is largely a computer is less well known. The ex-

tensive use of computers in surgical procedures is almost unknown except by

specialists. Computerized equipment is making inroads in procedures such

as hip replacement, spinal surgery, and ophthalmic surgery. In all three of

these cases, computer controlled robotic devices are replacing the surgeons

traditional tools, and providing substantial benefits to patients. In our the

cardiac resuscitation project, we take this a step further. We make computers

human centric, aiding physician make decisions and avoid preventable med-

ical errors which puts the patient’s life is at risk. Hence correct, robust and

fault tolerant operation becomes the highest priority.

1.2.4 Composition of Realtime and Distributed

Listed below are some general guiding principles when dealing with such

composite systems.

• Explicit timeliness requirements: Representing the time constraints ex-

plicitly in the design and implementations, and detecting and recover-

ing from failures.

• Time synchronization: Requirements and mechanisms for achieving clock

synchrony. Many applications require only NTP.

• Synchrony requirements: This is connected to clock synchrony, but not

5

identical. Emphasis on partial event ordering.

• Design patterns for the requirements.

• Middleware: Encoding the distributed aspects of the system. Examples

include Real-Time CORBA.

• Time Constraints: Documentation, measurement and enforcement of

time constraints in the system.

• Partial Failure: A real-time system typically has reliability require-

ments. One of the unique aspects of distributed systems is the potential

for whole classes of failures called ’partial’ failures, due either to true

crash/communications failures or timeliness errors that must be treated

as failures.

• RTOS: Working with real time operating systems.

In the next chapter we go over the design of the Workflow Manager’s

Treatment Validation protocol[6]4 as well as the Fault Tolerance Manager

with these above mentioned aspects in mind. My main contribution and

focus has been towards the Fault Tolerance Manager. My first part of the

contribution was towards the Workflow Manager. This was much more as a

role to ramp me up to understand all the components of the system and its

design complexity. I next focused on designing and implementing the Fault

Tolerance Manager for the resuscitation system.

4This work was my initiation into the team and I worked with PHD Candidate
Po−Liang Wu on this

6

CHAPTER 2

WORKFLOW MANAGER

2.1 Objective

In cyber-physical-human medical environments, coordinating supervisory sys-

tems and medical staff to perform treatments in accordance with best practice

is essential for patient safety. However, the dynamics of patient conditions

and the non-deterministic nature of potential side effects of treatments pose

significant challenges. We model the system from previously and currently

researched systems[8, 9, 10, 11, 12, 13] and the controller design derived from

them is presented. We propose a validation protocol to enforce the correct

execution sequence of performing treatment, regarding preconditions vali-

dation, side effects monitoring, and expected responses checking based on

the pathophysiological models. The proposed protocol organizes the medi-

cal information concisely and comprehensively to help medical staff validate

treatments. Therefore, the proposed protocol dynamically adapts to the pa-

tient conditions and side effects of treatments. The protocol is only advisory

and can be overridden by the physician. During such an override the work-

flow manger readjusts the protocol to fit in the new requirements or overrides

specified by the medical personnel. A cardiac arrest scenario is used as a case

study to verify the safety and correctness properties of the proposed protocol.

7

2.2 Controller Design

Here is a hierarchical design of our preexisting controller[5, 4, 14, 15] on

which the algorithm is designed to work:

8

2.2.1 Resuscitation Workflow Algorithm

The following pseudocodes outline the algorithms involved in the

treatment validation protocol:

9

2.2.2 Protocol Design

• TPC Tree1[6] construction phase

The system receives a treatment from the medical staff and starts to

build a TPC tree in a breath-first manner. The system checks the pre-

conditions of the received treatment. If any precondition is not satisfied

or must be checked by the medical staff, the system sends the tree to the

medical staff and requests them to check the preconditions and spec-

ify the corrective treatments, as shown in the line 7-19 2 of Algorithm

III.1. After getting the input from the medical staff, the system checks

1Treatment Precondition and Correction - Formal name for the data structure used to
handle treatment validation

2Discussed in the previous subsection

10

if each unsatisfied precondition has a corresponding corrective treat-

ment. If the corrective treatments are incomplete, an exception is sent

to the medical staff, as shown in the line 21-24 of Algorithm III.1. The

system then adds the corrective treatments as child nodes to the TPC

tree. Since the corrective treatments may introduce a new set of pre-

conditions, the system checks the preconditions and expands the tree.

If there are no further preconditions to check or all the preconditions

are satisfied, TPC tree is sent to the medical staff for approval. If the

medical staff approves the TPC tree, the system enters the execution

and monitoring phase.

• Execution and monitoring phase

The system executes the treatments in the TPC tree in a post order.

In order to keep track of all the ongoing treatments, the system main-

tains an executing treatment list. Since patient conditions dynamically

change, the system checks the preconditions of the treatment again be-

fore performing it. If the preconditions are satisfied, the system inserts

the treatment into the executing list and requests the medical devices

to perform the treatment. The system needs to check the expected re-

sponse after a time interval, specified by the medical staff, as shown

in the line 8-15 of Algorithm III.2. The details of checking expected

responses will be explained in the next phase. In addition, the system

periodically monitors or requests the medical to check the potential

side effects of the treatments in the executing list. The side effects may

lead to the following situations:

1. The side effects of a treatment interfere the other ongoing treat-

ments. Specifically, the side effects cause the patients physiological

measurements changing in an opposite direction to the expected

responses of other treatments.

2. The side effects invalidate the previously satisfied preconditions

in the TPC tree.

In both cases, the system will highlight the interfered treatments and

the corresponding preconditions in the TPC tree and send an exception

to the medical staff, as shown in the line 22-25 of Algorithm III.2. The

medical staff can adjust the existing treatments, such as increasing or

11

decreasing the drug dosage, or specifying alternative treatments. The

system then updates the tree, as described in the previous phase. After

the system informs the side effects to the medical staff and updates

the TPC tree with their approval, the system restarts the post order

execution.

• Checking expected responses phase

As explained in the previous phases, the system must check patients

conditions against the expected responses of the treatment when the

timer fires. If the patient conditions are as expected, the system removes

the corresponding treatment node from the TPC tree and executes the

next treatments based on the post order of the TPC tree. If the patient

conditions do not improve as expected, the system highlights the un-

successful preconditions and the corresponding corrective treatments

on the TPC tree for the medical staff. The medical staff can specify an

alternative corrective treatment, and the system updates the TPC tree

accordingly and restarts the post order execution.

By following the above procedures, the system preforms the treatments

and corrects the preconditions in a bottom-up manner. Even if the side

effects adversely affect other treatments or invalidate the preconditions,

the system is capable of updating the TPC tree and let medical staff

change the treatments.

2.3 Case Study

Cardiac arrest is the abrupt loss of heart function and can lead to death

within minutes. The American Heart Association (AHA) provided resuscita-

tion guidelines for the urgent treatment of cardiac arrest [16]. The general

procedures of resuscitation consist of the following steps:

1. Cardiopulmonary resuscitation (CPR): The medical staff perform CPR

for at least two minutes. In the mean time, other medical staff try to

access intravenous vein (IV therapy) and inject drugs.

2. Check heart rhythm: The medical staff check the heart rhythm. If the

rhythm is non-shockable, the medical staff should keep performing CPR

12

and giving drugs, such as vasopressin and epinephrine. If the rhythm

is shockable, they proceed to the defibrillator step.

3. De-fibrillation: If the medical staff determine the heart rhythm is a

shockable one, they should activate a defibrillator to deliver electrical

energy to the heart to regulate the heart rhythm. If the patients heart

rhythm is still abnormal, the medical staff should perform CPR again

(back to step 1). Furthermore, the side effects of the treatments may

cause adverse interactions. Therefore, the medical staff should closely

monitor the patients conditions and preform alternative treatments if

the side effects occur.

2.4 Verification

We model the proposed protocol in UPPAAL[17, 18]. The system consists

of the following models: user interface, validation protocol, side effect moni-

tor, EKG monitor, defibrillator, IV Pump, blood pH monitor, and urine flow

rate sensor. The models communicate using UPPAAL synchronization chan-

nels and shared variables. The user interface models follows the three step

resuscitation procedure and contains a list of predefined preconditions and

treatments. The medical devices send the patients physiological measure-

ments, which are modeled as non-deterministic transitions, to the validation

protocol. In addition, the medical devices also receive the treatment requests

from the protocol and change the states accordingly.

The evaluation environment is shown in 2.1

The medical safety properties(tabulated above) capture the safety require-

ments of the resuscitation scenario, which are given by the medical staff. The

13

Model Checker UPPAAL 4.0.13

Processor Intel I7

RAM 4 GB

Parameters Number of hierarchical layers
and queue size

Metrics State space consumed, Verifi-
cation time

Table 2.1: Evaluation environment

Verified Properties

Safety

P1: Defibrillator is activated only if the EKG rhythm is
a shockable one and airway and breathing are normal
P2: Epinephrine is injected only if the blood PH value
is larger than 7.4 and urine flow rate is higher than 12
mL/s
P3: Sodium bicarbonate is injected only if calcium chlo-
ride is not currently being injected.
P4: If epinephrine does induce a shockable, the TPC
tree is updated with a new treatment node for injecting
vassopressin

Protocol

P5: There are no deadlock in the system
P6: A treatment is performed if and only if all its pre-
conditions are satisfied
P7: If side effect does not occur, the root node of the
TPC tree is added to the execution list
P8: If the side effects invalidate a precondition, the TPC
tree is updated and well formed

Table 2.2: Verified properties of the resuscitation scenario

protocol properties guarantee the correctness of the proposed protocol.

14

CHAPTER 3

FAULT TOLERANCE MANAGER

The following section outlines our primary work in designing and implement-

ing the Fault Tolerance Manager for the Resuscitation Project.

3.1 Introduction

Complex safety critical systems currently being designed and built are often

difficult multi-disciplinary undertakings. In order to ensure that these sys-

tems perform as specified, even under extreme conditions, it is important

to have a fault tolerant computing system. A number of recent trends, such

as harsh environments, novice users, larger and more complex systems, and

downtime costs etc. have accelerated interest in making general purpose com-

puter systems fault tolerant. The primary goals of fault tolerance are to avoid

downtime and to ensure correct operation even in the presence of faults. Sys-

tem performance, minimally defined to be the number of results per unit time

times the uninterrupted length of time of correct processing, should not be

compromised. In real systems, however, price/performance trade-offs must

be made; fault tolerance features will incur some costs in hardware, in per-

formance, or both. Fault-tolerant computing can hence be loosely defined as

the correct execution of a specified algorithm in the presence of defects. The

effect of defects can be overcome through the use of temporal redundancy

(repeated calculations) or spatial redundancy (extra hardware or software).

These systems are usually classified as either highly reliable or highly avail-

able. As in all system design, the system goals and specifications constrain

the design space and consequently the design techniques that may be used.

At the highest level of specification, fault tolerant systems are categorized as

either highly available or highly reliable.

• Availability A(t): The availability of a system as a function of time is

15

the probability that the system is operational at any instant of time t.

The limiting availability is the expected proportion of the time that the

system is available to run useful computations. Activities such as pre-

ventive maintenance and repair reduce the time the system is available

to the user.

• Reliability R(t): The reliability of a system as a function of time is

the conditional probability that the system has survived the interval

[0, t], given that it was operational at time t = 0. Reliability is used

to describe systems in which (1) repair cannot take place or is too

costly (e.g., a satellite computer); or (2) the computer is serving a

critical function and cannot be lost even for the duration of a repair

(e.g., a flight computer on board an aircraft, or the control of a power

distribution network).

Availability is frequently used as a figure of merit in systems for which service

can be delayed or denied for short periods without serious consequences. For

a system in which downtime costs tens of thousands of dollars per minute(e.g.

airline reservation system) an increase of only .1% availability makes a sub-

stantial difference. In general, highly available systems are easier to build than

highly reliable systems because of the more stringent requirements imposed

by the reliability definition. Our emphasis in incorporating fault tolerance

into the resuscitation project is exactly directed to the safety and life critical

aspects of the system and we are focused on building a reliable architecture.

In our system, reliability takes way more precedence than availability.

16

3.1.1 Background

To understand our approach lets first discuss the commonly used terms Fail-

ures,Faults and Errors.

1. Classification based on state of system.

• Failure: Changes in hardware that produce unacceptable results

or behaviors leading to requirement violations.

• Fault: Erroneous perceived state of hardware or software result-

ing from failures of components, physical interference from the

environment, operator error, or incorrect design.

• Error: Manifestation of a fault within a program or data structure.

The error may occur some distance from the fault site. Could be

by design.

2. Temporal classification applicable to each of above

• Permanent: Describes a failure, fault, or error that is continuous

and stable. In hardware, permanent failure reflects an irreversible

physical change. The word ’hard’ is used interchangeably with the

word permanent.

• Intermittent: Describes a fault or error that is only occasionally

present due to unstable hardware or varying hardware or software

states(e.g. as a function of load or activity).

• Transient: Describes a fault or error resulting from temporary en-

vironmental conditions. The word ’soft’ is used interchangeably

with transient.Transient faults and intermittent faults are the ma-

jor source of system errors. The distinguishment between these two

types of faults are ability of repair. We consider transient faults

are not repairable, and intermittent ones as repairable. The man-

ifestations of transient and intermittent faults and of incorrect

hardware or software design are much more difficult to determine

than permanent faults

.

17

Lets address these one at the time.

• In our system, errors typically would lead to incorrect medical infor-

mation being propagated. Main UI described in 1.1.1 is an integrated

situation awareness display that the doctors will rely on to make diag-

nosis. The whole point of the system is to reduce preventable medical

errors caused by physicians having wrong mental model of patient state.

If errors are allowed creep into such data, the purpose is defeated. To

prevent such errors there are well studied implementations in informa-

tion theory like Cyclic Redundancy Check codes (CRC) that guarantee

the absence of these errors. Over and above, the workflow can validate

abnormal values and flag them.

• We recognize faults and failures as very similar entities in the semantics

of our safety critical system. Since the system also has the real-time

and distributed properties, we chose to employ a human in the loop

active/standby system incorporating a human in the loop hot swap as

well to add more replica standbys later.

• Our system deals with at most one permanent failure. The system is

heterogeneous with the Medical Order Manager being used for issu-

ing treatment and logging by the nurses and being stateless while the

MainUI+Workflow are operated by doctor and is stateful. We care only

about recovering and failures involved with MainUI. The Fault Toler-

ance manager allows the hot swap of Medical Order Manager at any-

time. Hence we go with the architecture where the Medical Order Man-

ager can potentially become the hot standby for the MainUI+Workflow.

We use the hot swap feature provided by the Fault Tolerance manager

to deploy more replicas as need arises.

• Regarding Transient or Intermittent failures which we deal together as

partial failure scenarios, Our low complexity safety critical architecture

requires us to avoid dealing with specific partial failures. We will touch

base on this in the later sections.

18

3.1.2 Reliability Engineering and Analysis

Software Reliability Engineering is the practice of monitoring and managing

the reliability of a system. By collecting fault, error, and failure statistics

during development, testing, and field operation, monitoring and managing

the parameters of reliability and availability is possible. The Handbook of

Software Reliability Engineering[19] contains a number of articles on topics

related to Software Reliability Engineering. A useful reliability testing tech-

nique is Reliability Growth Modeling, which graphs the cumulative number

of faults corrected versus time. Prediction methods calculate the cumulative

number of faults expected, which enables comparison with the measured re-

sults. This, in turn, enables the determination of the number of faults remain-

ing in the system. Another widely used technique for predicting the reliability

of a system is Markov modeling. These models enable analysis of redun-

dancy techniques and prediction of MTTF1.Markov models are constructed

by defining the possible system states. Transitions between the states are

defined and are assigned a probability factor. The probability indicates the

likelihood that the transition will occur. An important aspect of the model is

that the probability of a state transition depends only on the current state;

history is not considered. Below fig shows a simple Markov model for a duplex

system in which either system may fail with probability (λ) and be restored

to service with probability (µ) and a coverage factor c. The failure rate, (λ) ,

is the inverse of the MTTF, and the repair rate ,(µ), is the inverse of MTTR2.

1Mean Time To Fail
2Mean Time To Repair

19

3.1.3 Low Complexity Requirement and the Fail-Fast Model

Complexity analysis is wide spread in algorithm design as well as software

system design. In very basic terms, if we compare two programs of same

size, the one with more decision-making statements will be more complex

as the control of program jumps frequently. From this basic definition to

more complex metrics like the Cyclomatic Complexity Number(CCN) and

corresponding Complexity Adjustment Factors (CAFs), there are in depth

studies to understand complexity. There are various benefits of having low

complexity. We will touch on some that are relevant to our cause. For a

safety critical system, design verification as well as source code verification

of the fault tolerance manager is very essential. Being able to say that our

system can be model checked and simulate faults enables us to create better

system designs. Low Complexity systems have this added advantage of be-

ing easier to verify as well as providing backward compatibility on updated

software version. To achieve this we incorporate the fail fast model. Under

the traditional development model,making your software robust by working

around problems automatically and setting up fail safe assertions leads to

the software ’failing slowly’. The program continues working right after an

error but fails in strange ways later on. The Fail-Fast paradigm addresses

20

partial failure tolerance from the viewpoint of design complexity. Under this

model, when a partial failure scenario is encountered, the system fails imme-

diately, visibly and quickly. Failing fast is a non-intuitive technique : ’failing

immediately and visibly’ sounds like it would make your software more frag-

ile, but it actually makes it more robust. Bugs are easier to find and fix, so

fewer go into production. In safety critical aspects its all the more important

to know exactly in what scenario the system would fail. Doing away with

partial failures, not only helps us avoid the state space explosion problem

which makes verification a difficult aspect of the module, but also makes the

software development phase more robust minimizing the iterative needs of

deploying hot fixes once in production. It also helps avoid unexpected corner

case behaviors that traditional testing and quality assurance practices do not

catch.

21

3.2 System Requirements

While setting out to build our fault tolerance strategy, we need to first list

out the requirements for our system.

1. Failure Detection:

• Failure detector should be pessimistic. By pessimistic we mean, it

may permitted to mis-predict a currently ’up’ process to be failed

due to reasons like message latencies(especially in Asynchronous

communication between Medical Order Manager and Main UI).

• Failure detector should be complete. This is a more important

factor than accuracy since you expect every failure to be caught.

• Heartbeat channel should be independent of Messaging Channel-

In our system we separate the functional message passing between

Medical Order Manager and Main UI by introducing a indepen-

dent third component on each of devices capable of monitoring

each of the processes. Hence it is essential that the heartbeat chan-

nel remains decoupled from the messaging channel.

• Intra Device Heartbeat- Another feature of the Failure detec-

tor which applies to partial failure is to be able to tell if indi-

vidual software components/processes (Main UI/Workflow Man-

ager/Medical Order Manager) monitored by the Fault Tolerance

Manager stop responding. For this purpose the Fault Tolerance

Manager maintains a internal heartbeat of each of the compo-

nents. We address this in the next section.

2. Reliable Wired vs unreliable Wireless network and input consistency.

3. State:

• Stable state storage: Our crash recovery model is based to ability

to recover from a saved state. This requires the process to log their

state after every action. There is necessity for these operations to

be atomic which we will call as a stable storage operation. We place

some restrictions for example, the medical order manager should

not process cannot store a variable in stable storage and then send

a message or issue an external output in a single atomic step. This

22

restriction is guiding principle and requirement for building each

stateful component that operate with Fault Tolerance Manager.

• State Sync: The state of the various processes should be recov-

erable the stable storage. Towards this end, the Fault tolerance

manager should be periodically be able to sync the state of sys-

tem from one device to another enabling crash recovery.

4. Misc Monitoring Functionality: In close relation to the state sync, the

Fault tolerance manager should be able to attribute the following func-

tionality

• Ability to Manually start/restart one or more processes on the

device.

• Ability to Manually terminate one or more processes on the device.

• Ability to Manually sync the state across the Active Device and

Standby device.

• Ability to Automatically restart one or more processes upon fail-

ure and restore state in case we are dealing with partial failures3.

5. Verification requirement: The fault tolerance manager model should be

verifiable.

In the next section we will see how each of these requirements are satisfied.

3Note: we choose not to deal with partial failures as we shall see in the later sections

23

3.3 System Overview & Design

The fault tolerance manager is the central service running on the distributed

components of the resuscitation system. Reliable continuous operation of our

system is crucial for safety critical requirements. The fault tolerance manager

ensures to satisfy QOS requirements for our system.

The Fault Tolerance Manager attributes the following functions in its imple-

mentation:

• Heartbeat

Heartbeat failure detectors and Heartbeat messages are a widely ac-

cepted method of checking if all the functioning components of the

system are alive or not. The Fault tolerance manager has a built in

heartbeat detector that detects the up-time for each component and

upon failure invokes the recovery module.

Heartbeating ensures two properties of the system[20]:

– Proof of liveliness property: Between our two Fault Tolerance

Manager Processes, each process p i receives a HEARTBEAT mes-

sage, upon receipt of which it increments the sequence in its own

book keeping (could be as simple as maintaining a hash table or

array with suitable inputs). If the heartbeat refuses to increase for

the TIMEOUT period, the detector marks the process as failed

and executes recovery routine.

– Proof of completeness property: In the safety critical environment,

we cannot leave things to chance. Once a process is suspected

of failure(whether it be device failure or latency in heartbeats),

the process is marked failed. Hence we avoid missing failure by

being over zealous in our definition of what is assumed to be failed

satisfying the completeness property i.e. all failures are potentially

detected.

The heartbeating property is verifiable using our UPPAAL model sat-

isfying the verification requirement. Moreover, the heartbeat channel

is independent of fault tolerance satisfying our other requirement men-

tioned in 3.2.

• Control Messages

24

The Fault Tolerance manager adds a layer of messaging between other

similarly functioning managers in other components, that helps process

control messages such as ’System Init’ and ’Start Recovery’.

• Process Control

The Fault tolerance manager has complete control of the various pro-

cesses and services running within the device, enabling it to check status

of every process and issue suitable actions. For ex: When it detects a

process is hung, it can either send out a control message to enable recov-

ery or kill the hung process and restart it with suitable configuration.

To implement this feature we have the following four checks:

1. Internal Heartbeat of each process with the Fault Tolerance Man-

ager. This could potentially detect partial failure but we treat

them as a complete failure to avoid verification overhead.

2. The Process.Responding [21] windows API call will indicate if a

process that is executing a windows message loop is responding or

not.

3. Poll the memory usage for the process at intervals and if it doesn’t

change after enough time, assume that it is hung. One can do

this with Process.WorkingSet64 API[22]. The drawback for this

method is it can generate false negatives which is compliant with

25

our completeness requirement for safety critical systems4.

• State Integrity Check

A critical aspect of state recovery in the Active/Standby model is that

the state recovered must be sane5. The fault tolerance manager incor-

porates validations(syntactic) that ensures the recovered state is not

gibberish. Further human in the loop validation is necessary to check

the semantics. Hence it helps in rollback/crash recovery.

• State Transfer

1. The Fault tolerance manager also attributes the periodic syncing

of state and logs from the active system to the standby system

over the wireless network. This state transfer channel operates

on the same channel as the control messaging channel which is

independent of the Application messaging channel and heartbeat

channel.

2. Since above network communication is wireless,it adds a certain

aspect of unreliability.to mitigate this, we add the writing of the

logs to a stable storage using atomic operations. This stable stor-

age in our system is a flash based plug and play storage that can be

introduced to the standby system upon resumption. The required

software hooks on the standby side would prioritize this over the

network relayed state. The state integrity checker should be ca-

pable of picking up the newer version based on the timestamps in

the logs 6.

3. Input consistency management:Though this is not available in the

current implication. The standby system can potentially have a

buffer that serializes messages with a sequence number. A missed

message is cached (i.e if the system sees a application layer mes-

sage sequence ’n’ and then one that’s greater than ’n+1’, it caches

it in the buffer) and flushed accordingly. At present we rely on the

human operator to catch any missed messages.

4Better safe than sorry
5In context of quality assurance sanity check
6This helps the standby come up to speed and handle any messaging latencies caused

during the state transfer

26

3.3.1 System Launch Flow

7

7Mom is Medical Order Manager

27

3.4 Verification

3.4.1 Introduction

Testing and verification are essential to the creation of fault tolerant com-

puting systems because they ensure that fault prevention and quality efforts

are successful. Testing and verification also provide the data needed by a

projects software reliability engineers to compute the expected reliability of

a system.

A useful kind of testing for fault tolerant systems is operational profile test-

ing. An operational profile describes the usage of the system in quantitative

terms and the most typical scenarios that the system will process. This infor-

mation helps define the most appropriate tests to be run, and how to focus

testing efforts. Operational profiles are the scenarios that are used in design,

development, and test. To test the reliability and performance of the system

the operational profile adds quantitative information to the descriptions of

typical scenarios

Software fault insertion testing is done by providing erroneous inputs to the

system. One way is to alter the normal input to determine the systems be-

havior to incorrect values. This is commonly called boundary testing. The

next level beyond this is to place hooks into the software, or use a debugging

tool, to enable internal values and state to be altered. Testers insert known

faults into the system and the systems behavior is monitored. This testing

serves the dual purpose of identifying faults in the systems error handling

processes and of providing data for the computation of coverage factors. Fault

insertion testing is the only way that a systems coverage factor can be deter-

mined8. Known faults are introduced into the system, which is then observed

to see if the system was able to handle the faults automatically. We explore

each of these aspects bundled with model checking using the UPPAAL model

checking tool.

8The coverage is computed as the percentage of cases in which recovery was successful

28

3.4.2 On Distributed Systems

Distributed systems have proven to be hard to understand, design, and reason

about due to their complexity and non-deterministic nature. They usually

involve subtle interactions of a number of components that have high level of

parallelism. This is why the correctness of these systems is difficult to ensure.

Several systems and protocols have been proven not to succeed in satisfying

their intended goals after they have been published[23]. One of the promising

solutions to this problem is the use of formal verification techniques such as

the model checking technique.

3.4.3 Verification nuances of the Fault Tolerance Manager

We use the model checking tool UPPAAL to generate timed automaton

model of our system. UPPAAL enables us to do a myriad of verification

profiles.

Simplified Model:

In the above model we have three components whose behavior is mirrored

based on the source code of the Fault Tolerance Manager. The communica-

tion network model can be tweaked to give us various failure testing scenarios

and simulate recovery.

29

The evaluation environment is shown in 3.1

Model Checker UPPAAL 4.1.20

Processor Intel I7

RAM 16 GB

Metrics Deadlocks,State space con-
sumed and verification time

Table 3.1: Evaluation environment

Components Modelled:

• Instance of Primary(Active)

• Instance of Secondary(Standby)

• Communication Network

30

Figure 3.1: Time series operational snapshot of Model

31

As depicted in 3.1, under normal operation, the states remain in(
Operational norm, Operational norm

)
and periodically enter the state

transfer phase
(
syncingLog, syncingProcess

)
. rMsq start is one of the

control messages that allows the system to launch as per a certain required

configuration ensuring synchronization. When heart beating fails, each of the

instance can enter ’SoloInit’ state and recover its state from the logs and en-

ter ’RecoveryMode’.

We have verified the system to be deadlock free and correctly operational

under simulated message packet drops in the communication model.

To simulate packet drops, we use probabilistic chance
(

state transitions
)

of

messages being dropped by controlling weights in the communication chan-

nel model. This essentially acts as a black box and we can completely take

down the channel at run time by parsing an array of inputs processed at

different time slices. We can also verify out of order messages to simulate

effect of latencies and our model
(
and in turn the source code

)
is capable of

handling such inputs. Complete device failure is simulated as subset of the

communication model failure since we do not deal with partial system failure

under our fast fail design.

More information on various testing profiles are tabulated in Appendix A.

More information on the verified UPPAAL Properties are tabulated in Ap-

pendix B.

32

3.5 Iterative Design: Combining Testing & Model

Checking

Our initial few testing suites and UPPAAL models revealed several flaws in

the source code implementations. The following list is not exhaustive but is

exemplary of some of bugs that we were able to catch at early testing stages

and fix.

1. Race Conditions

It is interesting to note that the Fault Tolerance manager handles in-

teraction between three distinct independent components of the system

that we described in section 1.1. It also provides a process control and

monitoring framework. When such loosely coupled systems interact,you

end up encountering race conditions. Our initial testing environment

helped us detect these race conditions and enabled us to add suitable

synchronization routine to help avoid race conditions. Here is a specific

scenario:

(a) Medical Order Managers attempts to communicate with the Main

UI with either the Main UI/Workflow not already running or run-

ning with misconfiguration. Upon detecting this design flaw, the

Fault Tolerance Manager was tweaked to incorporate a Control

Messaging Channel that would enable message passing between

the distributed FM9 entities and add a acknowledgement based

synchronization design into the system. This also makes each in-

stance of our system more stateful, helping the model checking

phase of the project10,11 .

(b) Our synchronization routine ensures that the Main UI and Work-

flow are connected before the Medical Order Manager connects.

2. Deadlocks

The initial few UPPAAL model based on the first few implementations

revealed several deadlocks in our system which we first fixed in the UP-

PAAL model and then extended the same design principle to the Fault

9FM short for Fault Tolerance Manager
10The revised architecture helps us create the UPPAAL model more intuitively
11Again the modelling semantics of UPPAAL alone would not help us catch this since

UPPAAL models by their very nature highly synchronous

33

Tolerance Manager source code. These deadlocks were rarely encoun-

tered during the testing phase. In safety critical systems it is essential

to be able to say ”NO” with high confidence. Thus an exhaustive state

space exploration via UPPAAL is one good way to do so which is what

we strive to achieve.

3. Towards real world communication networks

Our initial UPPAAL model did not model communication layer unreli-

ability as in the case with real-world wireless networks. We hence added

another component to probabilistically be able to simulate packet losses.

This component also enabled us to externally control input to each of

the instances.This is very powerful as it enabled us to manually insert

erroneous inputs and check the behavior of the system.

Hence this iterative design strategy helped both ways i.e. the UPPAAL model

helped in improvement of the source of implementation and understanding

the nature of the source code helped us improve the UPPAAL model. This ap-

proach essentially serves like a feedback control system improving the systems

overall design and implementation qualitatively. All of the above mentioned

design principles are not confined to our system alone. Our team is already

working on a general purpose system capable of handling other medical sce-

narios like Sepsis or critical care during patient transport and hope to follow

similar guidelines for their Fault Tolerance Strategy. In this futuristic world

that has started to move towards autonomous robotic systems such as self

driving cars, advanced avionics and even simple devices such as autonomous

vacuum cleaners, there will always be scope for a Fault Tolerance Manager.

We strive to create some best practice design principles that is generic enough

to apply to each of these field and our iterative testing/modelling approach

would also be advantageous to ensure error free design.

34

3.6 Future Work

1. In the current work, the implementation is specific to the Resuscitation

System. There scope to improve on this and make it generic enough to

be able to extend it and make it reusable towards other allied situation

awareness systems like the Sepsis System.

2. In the current system, the period of operation is in no way a limiting

factor as per design12. However, the reliability testing and the verifi-

cation model are time sensitive entities and might require additional

changes and modifications.

3. From a Software Engineering Effort aspect, a good update to have is to

be able to pickup testing scenarios via configuration files. In Software

Engineering there is a practice known as Continuous Integration Test-

ing. In this practice, every time a software modification is done, the

testing and verification suites are automatically triggered and re-run.

To enable such features later in the project encoding test cases into

configuration files would be very helpful.

4. We mentioned the Reliability Growth Modeling and Markov modelling

techniques for reliability testing in 3.1.2. There is potential to incor-

porate such testing strategies into our current implementation thereby

enabling us to make stronger claims of robustness and fault tolerance.

5. There is scope to improve the User Interface Design of the Fault Tol-

erance Manager. The current design is not tested against usability and

is purely functional in nature.

12Clinical procedures like resuscitation span minutes while treatment for severe sepsis
can span weeks

35

CHAPTER 4

CONCLUSION

In closing,this document gives a brief summary of my contribution towards

two essential components of the resuscitating project. A lot of the imple-

mentation details are beyond the scope of this document and the respective

documentation of each module can be found on the subversion host repository

of the project1. Both the Workflow Manager and Fault Tolerance Manager

strive to be low complexity entities that are verifiable as well as adhere to

design principles necessary in building safety critical systems.I am grateful

and delighted to have been presented with the opportunity to work on them

by Prof. Lui Sha who has guided me along every step.

1http://mdpnp.cs.illinois.edu/svn/ResuscitationProject/

36

REFERENCES

[1] D. J. Cullen, B. J. Sweitzer, D. W. Bates, E. Burdick, A. Edmondson,
and L. L. Leape, “Preventable adverse drug events in hospitalized pa-
tients: a comparative study of intensive care and general care units,”
Critical care medicine, vol. 25, no. 8, pp. 1289–1297, 1997.

[2] A. Latif, N. Rawat, A. Pustavoitau, P. J. Pronovost, and J. C. Pham,
“National study on the distribution, causes, and consequences of volun-
tarily reported medication errors between the icu and non-icu settings*,”
Critical care medicine, vol. 41, no. 2, pp. 389–398, 2013.

[3] L. T. Kohn, J. M. Corrigan, M. S. Donaldson et al., To err is human:
building a safer health system. National Academies Press, 2000, vol.
627.

[4] W. Kang, P. Wu, M. Rahmaniheris, L. Sha, R. B. B. Jr., and J. M. Gold-
man, “Towards organ-centric compositional development of safe net-
worked supervisory medical systems,” in Proceedings of the 26th IEEE
International Symposium on Computer-Based Medical Systems, Porto,
Portugal, June 20-22, 2013, 2013, pp. 143–148.

[5] M. Rahmaniheris, W. Kang, L. Lee, L. Sha, R. B. B. Jr., and J. M.
Goldman, “Modeling and architecture design of an mdpnp acute care
monitoring system,” in Proceedings of the 26th IEEE International Sym-
posium on Computer-Based Medical Systems, Porto, Portugal, June 20-
22, 2013, 2013, pp. 514–515.

[6] P. Wu, D. Raguraman, L. Sha, R. B. B. Jr., and J. M. Goldman,
“A treatment validation protocol for cyber-physical-human medical sys-
tems,” in 2014 40th EUROMICRO Conference on Software Engineering
and Advanced Applications, Verona, Italy, August 27-29, 2014, 2014, pp.
183–190.

[7] P. Deutsch, “The eight fallacies of distributed computing,” https://
blogs.oracle.com/jag/resource/Fallacies.html, 1991.

37

[8] P.-L. Wu, W. Kang, A. Al-Nayeem, L. Sha, R. B. Berlin Jr, and J. M.
Goldman, “A low complexity coordination architecture for networked
supervisory medical systems,” in Proceedings of the ACM/IEEE 4th In-
ternational Conference on Cyber-Physical Systems. ACM, 2013, pp.
89–98.

[9] A. L. King, L. Feng, O. Sokolsky, and I. Lee, “A modal specification
approach for on-demand medical systems,” in Proceedings of the 3rd
International Symposium on Foundations of Health Information Engi-
neering and Systems, 2013.

[10] W. Kang, P. Wu, L. Sha, R. B. Berlin, and J. M. Goldman,
“Towards safe and effective integration of networked medical devices
using organ-based semi-autonomous hierarchical control,” University of
Illinois at Urbana Champaign, Tech. Rep., 2012. [Online]. Available:
http://hdl.handle.net/2142/34774

[11] M. Pajic, R. Mangharam, O. Sokolsky, D. Arney, J. Goldman, and I. Lee,
“Model-driven safety analysis of closed-loop medical systems,” IEEE
TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2012.

[12] M. Pajic, Z. Jiang, I. Lee, O. Sokolsky, and R. Mangharam, “From ver-
ification to implementation: A model translation tool and a pacemaker
case study,” in Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2012 IEEE 18th. IEEE, 2012, pp. 173–184.

[13] R. Alur, D. Arney, E. Gunter, I. Lee, J. Lee, W. Nam, F. Pearce,
S. Van Albert, and J. Zhou, “Formal specifications and analysis of the
computer-assisted resuscitation algorithm (cara) infusion pump control
system,” International Journal on Software Tools for Technology Trans-
fer (STTT), vol. 5, no. 4, pp. 308–319, 2004.

[14] D. Arney, M. Pajic, J. Goldman, I. Lee, R. Mangharam, and O. Sokol-
sky, “Toward patient safety in closed-loop medical device systems,” in
Proceedings of the 1st ACM/IEEE ICCPS. ACM, 2010.

[15] J. Goldman, S. Whitehead, S. Weininger, and M. Rockville, “Eliciting
clinical requirements for the medical device plug-and-play (MD PnP)
interoperability program,” Anesthesia & Analgesia, vol. 102, pp. S1–54,
2006.

[16] J. M. Field, M. F. Hazinski, M. R. Sayre, L. Chameides, S. M. Schexnay-
der, R. Hemphill, R. A. Samson, J. Kattwinkel, R. A. Berg, F. Bhanji
et al., “Part 1: executive summary 2010 american heart association
guidelines for cardiopulmonary resuscitation and emergency cardiovas-
cular care,” Circulation, vol. 122, no. 18 suppl 3, pp. S640–S656, 2010.

38

[17] G. Behrmann, A. David, and K. Larsen, “A tutorial on uppaal,” Lecture
Notes in Computer Science, pp. 200–236, 2004.

[18] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on uppaal,” in
Formal Methods for the Design of Real-Time Systems: 4th International
School on Formal Methods for the Design of Computer, Communica-
tion, and Software Systems, SFM-RT 2004, ser. LNCS, M. Bernardo
and F. Corradini, Eds., no. 3185. Springer–Verlag, September 2004,
pp. 200–236.

[19] Michael R. Lyu, Handbook of Software Reliability Engineering. IEEE
Computer Society Press, 1996.

[20] Michel Raynal, Communication and Agreement Abstractions for Fault-
Tolerant Asynchronous Distributed Systems. Morgan and Claypool
Publishers, 2010-06-06.

[21] “MS Windows NT windows api dot net framework 4.5,”
https://msdn.microsoft.com/en-us/library/system.diagnostics.process.
responding.aspx, accessed: 2015-03-15.

[22] “MS Windows NT windows api dot net framework 4.5,”
https://msdn.microsoft.com/en-us/library/system.diagnostics.process.
workingset64.aspx, accessed: 2015-03-15.

[23] O. Al-Bataineh, T. French, and T. Woodings, “Formal modeling and
analysis of a distributed transaction protocol in uppaal,” in Temporal
Representation and Reasoning (TIME), 2012 19th International Sym-
posium on, Sept 2012, pp. 65–72.

39

APPENDIX A TEST SUITES

Testing ID Description Expected Result

SystemInit

1. Start the Fault Toler-
ance Manager

2. Press ”Start System”
button

1. Main UI, Medical Or-
der Manager, Workflow
Manager starts

2. These three programs
connects successfully

3. Heartbeat is available
on both the devices

ManStartProg

1. Start the Fault Toler-
ance Manager

2. • Press the Start
MainUI Only but-
ton

• Press the Start
Workflow Only

• Press the Start
MOM Only

1. Main UI starts

2. Workflow Manager
starts

3. Medical Order Manager
starts2

Table A.1

40

Testing ID Description Expected Result

ManKillProg

1. Start the Fault Toler-
ance Manager

2. Press ”Start System”
button

3. • Press the Kill
MainUI Only
button

• Press the Kill
Workflow Only

• Press the Kill
MOM Only

1. Main UI Terminates

2. Workflow Manager ter-
minates

3. Medical Order Manager
Terminates3

AutoProgFail

1. Start the Fault Toler-
ance Manager

2. Press ”Start System”
button

3. Kill one of three pro-
grams manually

1. Main UI, Medical Or-
der Manager, Workflow
Manager all start suc-
cessfully on standby

2. These three programs
connects successfully

3. State is recovered from
stable storage

4. Resumption flow is ini-
tiated upon restart

5. Physicians can continue
to operate on stand by
device

Table A.2

41

Testing ID Description Expected Result

FTHbFail

1. Start the Fault Toler-
ance Manager

2. Press ”Start System”
button

3. Kill network

1. Main UI, Medical Or-
der Manager, Workflow
Manager all start suc-
cessfully on standby

2. These three programs
connects successfully

3. State is recovered from
stable storage

4. Resumption flow is ini-
tiated upon restart

5. Physicians can continue
to operate on stand by
device

Table A.3

42

APPENDIX B VERIFIED PROPERTIES

Type Description

Safety Properties

P1: Medical Order Manager is active utmost on one in-
stance.
P2: WorkFlow Manager is active utmost on one instance
P3: Main UI is active utmost on one device
P4: Fault Tolerance Manager is active on both devices

Protocol properties

P5: There is no deadlock in the system
P6: Control Messages and Heartbeat are on different
communication channels
P7: When Active instance is in OperationalNorm
state(state of normal dual device operation), Standby
instance is also in OperationalNorm state
P8: When Active instance is syncingLog State, Standby
instance is in syncinProgress case and vice versa
P9: If Hearbeat Timeout > 10 units while in any dual
operation states4, either instance would be in SoloInit
state5

P10: Instance would go into RecoveryMode only after
successfully launching all three components
P11: Standby Instance would go into RecoveryMode
state implies previously active instance is in Failed state
and vice versa6

Table B.1

43

