
 
 
 
 

STUDY OF PHENOTYPIC AND GENE EXPRESSION RESPONSE TO BACTERIAL 
CHALLENGE 

 
 
 
 
 
 

BY 
 

SCOTT E. NIXON 
 
 
 
 
 
 

 
 

DISSERTATION 
 

Submitted in partial fulfillment of the requirements 
for the degree of Doctor of Philosophy in Informatics 

in the Graduate College of the 
University of Illinois at Urbana-Champaign, 2015 

 
 
 
 

Urbana, Illinois 
 

 
Doctoral Committee: 
 
 Professor Sandra Rodriguez-Zas, Chair 
 Professor Gustavo Caetano-Anolles 
 Assistant Professor Xiaohui Chen 
 Professor Emeritus Keith Kelley 



Abstract 

In the mouse model of Bacillus Calmette-Guérin (BCG)-induced inflammation, focus is placed 

upon phenotypic and gene-expression responses to the original challenge. Studies of the 

phenotypic response to BCG involves several behavior indicators, categorized as representing an 

initial period of sickness response, and a set of depression-like behaviors that can endure for 

several weeks. Little is known about the impact of relationships among indicators on these studies, 

as most analyses have treated indicators independently. Gene-expression studies have also been 

small in scale, limiting what is known about gene-expression during these behavioral changes. 

With the availability of Next-Generation Sequencing platforms, the scale of transcriptome analysis 

can be greatly increased. This study aims to address these previous limitations, characterizing 

behavioral and gene-expression responses to BCG-induced inflammation. 
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CHAPTER I: Literature review 

1.1 Inflammation and depression 

Impact of depression on the population 

Depression is a large burden upon society, as the leading cause of disability and more than 350 

million cases worldwide (WHO, 2012). The 4th edition Diagnostic and Statistical Manual of 

Mental Disorders defines major depressive disorder as expression of at least five of nine symptoms 

for greater than two weeks (Dedic et al., 2011). The burden of depression extends beyond the 

disease itself.  Successful treatment often still leaves residual symptoms and depression shares co-

morbidity with other diseases including an increased mortality risk (Lépine and Briley, 2011). A 

potential linkage between depression and co-morbid diseases may be inflammation, due to the 

extensive interactions with inflammatory pathways (Raison and Miller, 2011). The limited 

effectiveness of current options motivates continued searching for treatment options. While the 

most widely used class of drugs for the treatment of depression are described as selective-

serotonin-reuptake inhibitors, the antidepressant effects appear to operate less directly than 

originally believed (Gartside et al., 1995; Angoa-Pérez et al., 2014). A greater understanding of 

the mechanisms underlying depression is needed to identify and develop treatments with better 

performance.  

 

Inflammation-induced depression and microglia 

The immune system, and specifically dysregulation of the inflammatory response, has been linked 

to several diseases and neurodegenerative disorders (Frank-Cannon et al., 2009; Wyss-Coray and 

Mucke, 2002). A common factor within these disorders is neuroinflammation, when an 

inflammatory response develops within the central nervous system (CNS). Several 
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neurodegenerative disorders are themselves comorbid with depression (Rosenblatt, 2007; 

Aarsland et al., 2012; Aznar and Knudsen, 2011), which itself has been linked to inflammation 

(Dantzer et al., 2011). However while the link between depression and inflammation is established, 

the understanding of their complex relationship continues to evolve. Neuroinflammation itself 

involves the activation of microglia in the CNS, a mediator of both the physiological and 

behavioral responses of inflammatory inducers (McGeer and McGeer, 2011). As the principal 

resident immune cells of the brain, microglia are studied for their relation to other mononuclear 

phagocytes like macrophages and their involvement in immune signaling within the CNS. Profile 

comparisons between microglia and other cell types including macrophages are available 

(Hickman et al., 2013; Gautier et al., 2012), yet their varied response profiles have not been fully 

explored. Microglia constantly survey their surrounding environment, resulting in a variety of 

priming states and phenotypes that can have neuroprotective or neurotoxic effects. These response 

profiles can not only be unique to the inducer, but also adapt over time as a part of the total immune 

response. The comparison of gene-expression profiles between microglia and related macrophages 

during an inflammatory response may identify unique characteristics of the role of microglia in 

neuroinflammation. 

 

The interactions between the immune system and the central nervous system are major areas of 

focus, based upon the impact of neuroinflammatory signaling centrally and peripherally (Eyre and 

Baune, 2012). Microglia, the resident macrophage of the brain, is particularly interesting for its 

rapid activation and responsive release of inflammatory mediators in response to challenge 

(García-Bueno et al., 2008). Constantly dynamically active when the CNS is healthy, microglia 

shift from a state of scanning to an active response once a challenge is detected (Hanisch and 
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Kettenmann, 2007).  Microglia provide a unique expression profile of interest to researchers, and 

are known for strong involvement in cytokine signaling (Beutner et al., 2013; Hickman et al., 2013; 

Hanisch, 2002). The interaction between the immune system and brain, and the role of cytokines 

therein, makes microglia a group of interest for investigations of inflammation-induced depression 

(Miller et al., 2009; Kreisel et al., 2014). For instance, stress is another inducer utilized for stress-

induced models of depression (Lee et al., 2013). The stress model can cause proliferation, 

activation, and apoptosis in microglia prior to depression-like behaviors, yet the behaviors can be 

reversed by lipopolysaccharide (LPS) exposure despite its function as an inflammatory-inducer of 

depression (Kreisel et al., 2014; O’Connor et al., 2009b). However, unpredictable chronic mild 

stress can also serve as an inducer of neuroinflammation (Farooq et al., 2013). To summarize, 

microglia are capable of diverse responses which can result in protective or harmful responses for 

the CNS environment, with both signal directions involving cytokines (Hanisch and Kettenmann, 

2007; Hanisch, 2002). 

 

Microglia are typically isolated from other cell populations in the brain by taking advantage of cell 

markers dotting their exterior, or separating them via a density gradient with centrifugation 

(Nikodemova and Watters, 2012). Methods utilizing cell markers bind an antigen to the cell 

surface marker CD-11b. The anti-CD-11b antigen can conjugate to a magnetic bead for separation 

in a magnetic field (Nikodemova and Watters, 2012). Microglia can also be dual-marked with 

antigens for CD-11b and CD-45, and both antigens conjugating to fluorescent markers for profiling 

via flow cytometry (CD-11b+/CD-45low) and isolated by fluorescence-activated cell sorting 

(Hickman et al., 2013). 
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Association between transcriptome profile and depression 

Gene expression is clearly involved in the interactions between inflammation and depression, yet 

exploration has been limited in scale (Blume et al., 2011). The expression of individual 

inflammatory markers overlap between depressed and non-depressed populations, and 

functionally operate in a networked capacity to other depression-associated systems (Raison and 

Miller, 2011). Modeling depression within animals provides more direct opportunities to study the 

biological underpinnings of the phenotype (Dedic et al., 2011). Models inducting depression after 

immunological challenge have identified key players in the progression of the phenotype (Moreau 

et al., 2005; O’Connor et al., 2009a). The scale of studies limits the understanding of the 

mechanisms coinciding with depressive-like behaviors. 

 

Mycobacterium and macrophages 

Studies on the induction of depression-like behaviors following cytokine triggering often use LPS 

as an acute inflammatory inducer (Lestage et al., 2002). As bacterial cell wall components, LPS 

triggers the initial immune responses to bacterial challenge with detectable depressive-like 

behaviors following (Yirmiya, 1996). However, the entire episode of the immune response and 

depressive-like behaviors are within a 48 hours period, limiting the utility for modeling chronic 

immune activation (Frenois et al., 2007). Bacille Calmette-Guérin (BCG), an attenuated 

Mycobacterium strain, is useful as an inducer for chronic models of immune activation and 

depressive-like behaviors (Moreau et al., 2008). As a first-responder to infection, macrophage 

activation and signaling initiates the response tailored to the form of attack involving 

transcriptomic modifications (Ehrt et al., 2001; Keller et al., 2004). Macrophages and 

Mycobacterium strains interact in a complex manner, with impacts upon the particular signaling 
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of both populations (Schnappinger et al., 2006). When Mycobacterium successfully infects a 

macrophage cell, gene expression in the macrophage is modified to promote apoptosis and occurs 

at a higher rate when infected by an avirulent strain compared to a virulent one (Danelishvili et al., 

2003). As macrophages kill Mycobacterium released from an apoptotic cell, apoptosis appears to 

limit the growth of infection while uncontrolled necrosis correlates with infection progression 

(Fratazzi et al., 1997). In comparison to the process of necrosis, the programmed cell death of 

apoptosis is an energy-intensive process that is limited by ATP availability, with a critical 

importance of energy metabolism for host defense (Buttgereit et al., 2000; Danelishvili et al., 2003; 

Danelishvili et al., 2010). However host defense involving apoptosis can be interrupted if the 

pathogen hijacks particular regulators of cell-cycling, a capability attributed to intracellular 

pathogens including some Mycobacteria (Iwai et al., 2007; Oswald et al., 2005). Appropriately 

named “mitotic catastrophe,” the simultaneous signaling to a cell for mitosis and apoptosis can 

result in a failed combination of the two pathways (Castedo et al., 2004; Svoboda et al., 2007). 

Along with the direct impacts of mitotic catastrophe on host defense against a pathogen, 

dysregulation of cell-cycling can also be associated with neurodegenerative conditions when it 

occurs in microglia (Bonda et al., 2010). 

 

1.2 Transcriptomics 

Gene expression and transcript levels 

Gene expression is the synthesis of gene products from a gene within the DNA. The DNA genome 

is identical among all cells in an organism, making gene expression the first step towards 

differentiating actions and roles of cells and their responses (Morozova et al., 2009). Gene 

expression can follow many routes, the two most common resulting in functional RNA or protein 
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with RNA mediation (Ball, 2013). The genes in DNA are ‘written’ in the nucleotide alphabet of 

Adenosines, Cytosines, Guanines, and Thymines. As a first step towards expression, a gene in the 

DNA is transcribed by using the gene’s complementary DNA (cDNA) strand as a template to 

produce an RNA copy of the strand containing the gene. The sequence of nucleotides should thus 

be identical between the DNA template and the RNA copy, excepting that Thymines are instead 

replaced by Uracil in RNA strands (Krebs et al., 2009). A single gene can contain multiple regions 

of coding separated by non-coding sections that must be spliced out. Assembly of the remaining 

coding regions can either result in a single product or several combinations, termed alternative 

splicing. The first step to deciding the end-product for an RNA copy is processing by a 

spliceosome, which removes the non-coding sections (introns) while assembling the coding 

sections (exons) in the appropriate order. This reassembled RNA strand, once modified with a 5’ 

cap and 3’ poly-adenosine tail, comprises a messenger-RNA (mRNA) strand, an individual 

transcript from the DNA gene. These mRNA strands are the target of gene expression analysis, 

and the following workflow. 

 

Before analyzing RNA samples for transcriptomic studies, it is important for the input samples to 

be uncontaminated, pure, and high quality (Nagalakshmi et al., 2010). Methods for extraction of 

RNA are varied, including methods based on phenol extraction, spin columns, and hybridization 

of the two (Chomczynski and Sacchi, 2006; Morse et al., 2006; Reno et al., 1997; Tan and Yiap, 

2009). Regardless of the extraction procedure, high quality RNA benefits downstream methods 

and is quantified by the RIN quality which scores samples based upon degradation in the form of 

RNA fragmentation (Schroeder et al., 2006). 
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Platforms available for transcriptomic studies 

Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR) is not itself a high-

throughput method. Examining the expression levels of individual genes and validating high-

throughput methodologies is a popular use of RT-qPCR thanks to high sensitivity with well-

established protocols (VanGuilder et al., 2008; Wang et al., 2014). Measurement of gene 

expression with RT-qPCR first requires producing cDNA from the available RNA. The cDNA is 

then exponentially amplified by several cycles of PCR, with a fluorescent probe-sequence that is 

detectable once bound to the cDNA target (VanGuilder et al., 2008). Measurements using RT-

qPCR are thus based on the count of cycles before fluorescence reaches a threshold, specifically 

the difference in count between conditions for relative abundance. However, counting the 

difference in cycles assumes a doubling of produced cDNA targets each cycle, requiring PCR 

cycles are 100% efficient and not limited by available substrates (Livak and Schmittgen, 2001). 

House-keeping genes and measured additions of non-native control genes can measure the count 

stability across samples. The design of RT-qPCR also requires specific primer and probe 

sequences for every tested gene, limiting exploratory analysis (VanGuilder et al., 2008).  It is thus 

mentioned here due to its use in many gene expression studies and popularity as a standard by 

which to compare other transcriptomic platforms. 

 

Microarrays are a common high-throughput platform for the identification and quantification of 

labeled nucleic acids in samples. A DNA microarray simultaneously measures thousands of pre-

selected oligonucleotides or cDNAs of interest as probes to see if they bind to complementary 

sequences within a fluorescently-labeled sample, profiling samples for all of the oligonucleotide 

sequences. Studies are limited to annotated strains and closely homogenous sequences, as the pre-
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selected nature of the microarray probes is strongly dependent upon annotation quality (Levy et 

al., 2007; Wang et al., 2009). Additionally when using this platform to examine alternative 

splicing, there is a demonstrated technical bias from sequence features of the probes (Gaidatzis et 

al., 2009).  

 

The direct sequencing of nucleic acids on a large scale has developed into a high-throughput 

platform, RNA-Seq (Wang et al., 2009). Although multiple platforms are available, all are termed 

flow cell sequencers based upon the use of a multi-lane flow cell for massive parallelization and 

increased capacity (Holt and Jones, 2008). Samples are applied to the RNA-Seq flow cell for 

sequencing to occur. Instead of labeling sample nucleic acid and identifying which probes will 

hybridize, a library of cDNA fragments is produced from the RNA samples prior to sequencing. 

Several methods are available for library preparation with continual focus upon high-throughput 

methods to avoid a choke-point in the sample pipeline (Quail et al., 2008; Nagalakshmi et al., 

2010; Wilhelm et al., 2010; Zhong et al., 2011; Wang et al., 2011; Kumar et al., 2012). Fragments 

are mixed with random short adapters which can attach as a primer for sequencing (Wang et al., 

2009). Sequencing of the original RNA is determined via complementary pairing to the cDNA 

once primers attach. Only one nucleotide attaches at a time by utilizing nucleotides with reversible 

blockers at the 3’ end. The four DNA nucleotides are uniquely labeled with a fluorescent dye. The 

dye associated with the attached nucleotide is identified by the system before removing the blocker 

and repeating this cycle until the appropriate sequencing length is achieved, producing millions of 

reads. The output reads from RNA-Seq are dependent upon the specific sequencing technology, 

but can range from 30-400 base pairs in length (Wang et al., 2009). Experiments in RNA-Seq are 

further organized into those using single-end sequencing, or paired-end sequencing. During cDNA 
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template sequencing, single-end sequencing attaches primers to one end of each template to 

produce reads while paired-end methods attach primers to both ends and sequence in towards the 

middle. While paired-end experiments cause some additional complexity to downstream tool 

choices, paired-end data provides more information for exploring isoform- and splicing-level 

expression (Salzman et al., 2011). For a read to carry any information on alternative splicing within 

a gene, the read must overlap an alternatively spliced exon or the junctions between exons. So if 

the produced reads are length r while investigating a gene of length L, the probability P of the read 

providing information about an alternatively spliced exon of length l is (Salzman et al., 2011): 

𝑃𝑃 =
𝑙𝑙 + 𝑟𝑟
𝐿𝐿 − 𝑟𝑟

 

While paired-end experiments do not increase read length, an increase in the number of reads and 

their sequencing from both ends results in more reads providing information at the isoform-level 

(Salzman et al., 2011). Along with avoiding dependence upon prior knowledge of the sequences 

to be examined, this also avoids non-biological biases associated with sequence features of the 

probes found in arrays when studies involve splicing used (Gaidatzis et al., 2009). Careful 

utilization of data processing can result in high concordance between microarrays and RNA-Seq 

platforms (Bottomly et al., 2011). Normalized, log-transformed RNA-Seq data correlates well with 

the current ‘gold standard’ of RT-qPCR and log-transformed microarray data when comparison 

does not expose differences in low-expression accuracy between platforms (Mortazavi et al., 2008; 

Wang et al., 2014).  

 

RNA-Seq data processing and normalization 

Gene expression data from RNA-Seq involves converting the set of short sequence reads from a 

sample into measurable mRNA expression. Several platforms are currently available for the 
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production of RNA-Seq data (Liu et al., 2012). This review of processing steps centers on the 

Illumina HiSeq2000 platform (Illumina, San Diego, CA). 

 

Reads from sample sequencing are stored as FASTQ files, a FASTA-derived format containing 

the raw nucleotide sequence and a paired quality score for each nucleotide site (Cock et al., 2010). 

The FASTQ file format is not yet standardized, encompassing three separate standards based upon 

encoding and quality score. The quality score is most often calculated as a QPHRED value based 

upon the log-transformed estimated probability of error (Pe) where a greater value is a more trusted 

estimate (Cock et al., 2010). As an example, QPHRED values of 10, 20, and 30 would result in error 

probabilities of 0.01, 0.001, and 0.0001 respectively. A similar QSOLEXA score is also used, with 

the two quality scores calculated as: 

𝑄𝑄𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = −10 𝑥𝑥 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑃𝑃𝑒𝑒) 

𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆 = −10 𝑥𝑥 𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝑃𝑃𝑒𝑒

1 − 𝑃𝑃𝑒𝑒
� 

Three related but unique formats share the FASTQ file suffix: FASTQ-Sanger (QPHRED, stored in 

ASCII characters 33-126), FASTQ-Solexa (QSOLEXA, stored in ASCII characters 59-126), and 

FASTQ-Illumina (QPHRED, stored in ASCII characters 64-126), which are incompatible (Cock et 

al., 2010). The incompatibilities between the FASTQ formats requires downstream programs are 

manually or automatically capable of format identification. The quantitative value associated with 

each base position is important to identify potential substitution errors, a common issue with 

Illumina sequencing data (Yang et al., 2013). The substitution errors and associated poor quality 

values tend to concentrate at the 3’ end of reads (Liu et al., 2012). The accumulation of lower 

quality values and associated errors at the 3’ end are suggested to be the result of dephasing 

(Metzker, 2010). Dephasing occurs when the several copies of the original cDNA template fail to 
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remain synchronized for each sequencing cycle, resulting in more than one site being sequenced 

during a cycle. Dephasing consequently results in unclear signaling during a sequence cycle 

because multiple sites are being reported simultaneously. Substitution errors occur when the signal 

intensities of more than one nucleotide are similar, correlating with lower QPHRED values 

(Nakamura et al., 2011). To avoid the effects of poor quality data on later analysis, pre-processing 

the raw reads uses the quality value to filter data. 

 

Prior to any analytical steps, pre-processing reads involves the removal of the adaptor sequences, 

evaluation of read quality, and filtering reads based upon quality. Downstream analysis can result 

in incorrect and missing alignments, incorrect construction, and an overall increase in 

computational resources to handle the increased complexity when poor quality data is not removed 

beforehand (Del Fabbro et al., 2013). Read filtering can include complete removal of a read from 

the dataset, or trimming of poor quality sections. While trimming a read section for single-end 

reads is comparatively straightforward, any modifications to a read in paired-end data requires 

complementary modification of the mate read so they remain complementary. Read trimming tools 

are classified based on: the algorithm utilized; capable of working with compressed files; can work 

with paired-end data; automatic detection of the quality score format; and if one or both ends of a 

read are trimmed (Del Fabbro et al., 2013). However, there is debate whether trimming reads is 

beneficial to the sequenced transcriptome. Read trimming improves precision and reduces 

computational load during later alignment (Del Fabbro et al., 2013). However, trimming can 

severely impact coverage when combined with typically stringent (QPHRED > 20) cutoff levels 

(MacManes, 2014). Whole removal of reads can involve filtering based upon the overall quality 
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and read length (Minoche et al., 2011). As with all filtering methods, care must be taken as overly-

stringent processing can result in information loss. 

 

When the genome and annotation information is available for a source organism, the first step 

performed towards analyzing data is mapping the reads. Because of the short length of the reads 

output by the RNA-Seq platform, mapping reads against a reference sequence provides positional 

data for reassembly into the originating biologically-relevant transcripts. However, large numbers 

(millions of reads) of comparatively short length reads searched against the large space of the 

genome and transcriptome causes alignment and computational problems. Efficiency thus 

becomes a necessity, and solutions found for when reads map ambiguously to multiple sites. 

Alignment algorithms are categorized as seed-based alignment or a Burrows-Wheeler 

transformation based upon their source of search efficiency (Burrows and Wheeler, 1994; Grant 

et al., 2011; Garber et al., 2011). Seed methods work by taking a small sequence of the read, the 

seed, and attempting a match to the reference which reduces the search space for full-length 

matching (Garber et al., 2011). Aligners like BWA and Bowtie use Burrows-Wheeler 

transformation as part of a Full-text, Minute space index called the FM-index (Li and Durbin, 

2009; Langmead et al., 2009; Burrows and Wheeler, 1994; Ferragina and Manzini, 2001). As an 

example of Burrows-Wheeler transformation, a string (‘preliminary proposal’) to be transformed 

receives a character prefix ($) that sorts ahead of the sequence characters. A set of rows equal to 

the length of the string is produced, with each row being one cyclic step ahead of the above row. 

Finally, the rows are sorted alphabetically to produce a matrix M with the last column (L) being 

the transformed sequence: 
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Cycle 
$ b a n a n a 
a $ b a n a n 
n a $ b a n a 
a n a $ b a n 
n a n a $ b a 
a n a n a $ b 
b a n a n a $ 

 

Sort (M matrix) 
F  L 
$ b a n a n a 
a $ b a n a n 
a n a $ b a n 
a n a n a $ b 
b a n a n a $ 
n a $ b a n a 
n a n a $ b a 

The transformation is easily reversible, and the strings of the same letter make for a more 

efficiently compressed design than the original sequence when there are several letters as is the 

case for nucleotide sequences. Importantly for the FM-index, the output transformation follows 

particular traits based upon using the First (Fi) and Last (Li) columns. If c is an element of the 

sequence; C[c] is the count of characters alphabetically smaller than c; Occ[c,k] is the count of 

characters alphabetically smaller than c in L to position k; T[i’] is the original position of character 

at position L(i); LF(i) is the Last-to-First column mapping (Ferragina and Manzini, 2001): 

𝐿𝐿𝐿𝐿(𝑖𝑖) = 𝐶𝐶�𝐿𝐿[𝑖𝑖]� + 𝑂𝑂𝑂𝑂𝑂𝑂(𝐿𝐿[𝑖𝑖], 𝑖𝑖) 

𝑇𝑇[𝑖𝑖′ − 1] = 𝐿𝐿[𝐿𝐿𝐿𝐿(𝑖𝑖)] 

The Occ[c,k] function becomes an important part of the FM-index. When checking large 

references like a genome, the entire string is transformed and then partitioned into superbuckets 

that are further partitioned into buckets. Each superbucket and bucket presents a header describing 

the occurrence count for each character until the start of the current partition. Instead of 

compressing the entirety of the reference in a single unit, the portion of the reference within each 

bucket is compressed independently. A Occ[c,k] call would search the headers of superbuckets 

and buckets to find where the position k is stored, uncompress only the bucket containing L[k], 

count the occurrences c within this bucket, add the sum of the character count from preceding 

buckets within the superbucket, and finally add the character count from preceding superbuckets 
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(Ferragina and Manzini, 2001). The index can then be searched for a query sequence because of 

strong relations between the matrix used to transform the original string and the suffix array 

(Ferragina and Manzini, 2000). 

 

Beyond efficiently searching a massive search-space on the scale of a genome, a transcriptome 

assembler often requires the capability to handle the splicing characteristics of mRNA strands, 

specifically the gaps and reorganized nature of mRNA when compared to the DNA genome. These 

sequence inconsistencies when comparing mature mRNA to the DNA genome complicates 

alignment, especially for Burrows-Wheeler methods that search for perfect matches. To deal with 

splicing concerns, programs such as Tophat are designed (Kim et al., 2013). Tophat operates by 

using Bowtie for aligning reads without splicing concerns. Tophat then fragments reads that failed 

to map and repeats the search to test if the fragments align near junctions. Regardless of splicing 

concerns for alignment, reads must afterwards be assembled into units of biological transcription. 

Comparing expression levels in RNA-Seq data can be performed at the level of the genes, gene 

isoforms, or even individual exons (Rapaport et al., 2013; Trapnell et al., 2010; Anders and Huber, 

2010; Trapnell et al., 2012; Anders et al., 2012). Knowledge of the genome and annotations can 

guide all levels of read assembly from mapping; if annotations are less robust assembly can occur 

independently (Garber et al., 2011). This review will use the assembly unit of ‘transcript’ to discuss 

methods. 

 

Statistical analysis of any RNA-Seq data first requires correcting for variations introduced from 

the platform method and identifying an effective, quantifiable unit of measure for comparisons. 

Raw read counts can reflect technical bias based upon variations between overall sample 
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expression and the behavior of individual lanes on the flow cell. Normalizing read count data by 

scaling to the library size, or a factor therein, can account for these technical biases (Dillies et al., 

2013). One of the common normalization methods is converting read count to Fragments Per 

Kilobase of exon per Million fragments mapped (FPKM) which accounts for differences in 

transcript length (Trapnell et al., 2010). Upper-quartile normalization orders the population of 

transcripts by the count of reads aligning to each transcript, then splits the population into quartiles. 

To calculate the median, upper-quartile methods use only the upper-quartile transcripts, those with 

high numbers of alignments, instead of the total population including the potentially large number 

of transcripts with no alignment data from the experiment. Upper-quartile normalization corrects 

the uninformative nature of the transcript median when including transcripts with zero expression 

data (Bullard et al., 2010). Combining the FPKM and upper-quartile normalization methods avoids 

variations in precision for transcripts with lower expression values 

(http://cufflinks.cbcb.umd.edu/manual.html; Dillies et al., 2013). The combination of FPKM and 

upper-quartile normalization modifies the denominator of FPKM, as the rate of fragments per 

million fragments mapped would instead be counted based only on the upper-quartile of the 

population instead of the total count of all fragments. Once the read values are appropriately 

normalized for a sample, comparison between samples requires additional consideration. 

Comparison across profiles also involves comparisons across sequencing runs, necessitating 

library-size normalization beyond the previous within-library steps taken. High-expression 

transcripts can account for a large portion of the total read population, and any difference in their 

expression between libraries of equal size would correlate with changes to the read counts for other 

transcripts (Trapnell et al., 2013). The impact on the total population can be rescued by removing 

the upper-quartile of transcripts from library size calculations, not to be confused with normalizing 
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by the upper-quartile within libraries (Bullard et al., 2010). Adjusting the data by the median of 

the ratio of observed read counts between samples is a popular method suggested during the 

development of DESeq and edgeR; this adjustment was subsequently adopted by other programs 

as a standard (Anders and Huber, 2010; Robinson and Oshlack, 2010; Trapnell et al., 2013).  

 

The statistical calculation of differences between transcripts from RNA-Seq data evolves as the 

underlying complexity gains appreciation (Soneson and Delorenzi, 2013). When considering the 

number of reads that can align (count) towards a transcript, the value is bounded by zero and an 

upper limit as the total number of reads sequenced. The goal of these methods is to output the 

parameter which represents the mean read count aligning to a gene, so that log-likelihood or similar 

tests can compare the mean between conditions. The difficulty in finding the mean is described 

below, as the model and resultant estimates of variance become more complex (Robinson et al., 

2010; Soneson and Delorenzi, 2013; Trapnell et al., 2013). The discrete nature of read counts and 

low variance among technical replicates first lead to the discrete Poisson distribution for modeling 

purposes (Marioni et al., 2008). Given a single parameter λ as the expected rate of reads mapping 

p to the individual transcript by the total population of reads produced n; k number of reads counted 

for a transcript, the Poisson distribution is (Hogg and Tanis, 2009): 

𝑃𝑃(𝑋𝑋 = 𝑘𝑘) =
(𝑂𝑂𝑐𝑐)𝑘𝑘𝑒𝑒−(𝑐𝑐𝑐𝑐)

𝑘𝑘!
 

Where P is the probability, and e is Euler’s number. In actual modeling of RNA-Seq data, the null 

hypothesis is λ remains constant across samples and conditions, and the c represents the total read 

production for a sample (Marioni et al., 2008). As λc=µ for Poisson distributions, the null 

hypothesis Ho of differential expression between conditions A and B, which would have means µA 

and µB respectively, can also be written as: 
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𝐻𝐻𝑆𝑆: 𝜇𝜇𝑆𝑆 = 𝜇𝜇𝐵𝐵 

The alternative hypothesis: 

𝐻𝐻𝑆𝑆: 𝜇𝜇𝑆𝑆 ≠ 𝜇𝜇𝐵𝐵  

The hypothesis can be tested with a Χ2 test (Srivastava and Chen, 2010). Despite the Poisson 

distribution effectively modeling data from early studies, later discussion suggests it was based on 

the low variance among technical replicates (Soneson and Delorenzi, 2013). However, if the λ 

parameter of the Poisson is treated as a random variable which follows a Gamma distribution, then 

the count data instead follows a Negative Binomial distribution (Robles et al., 2012). The greater 

variance range among biological replicates motivated future differential expression programs to 

utilize the Negative Binomial distribution (Anders and Huber, 2010; Robinson and Oshlack, 2010; 

Trapnell et al., 2013). Given the K counted number of reads aligning to a transcript, and the 

abundance of the transcript in a particular library is R (Robles et al., 2012): 

𝐸𝐸(𝑅𝑅) = 𝑞𝑞,𝑉𝑉𝑉𝑉𝑟𝑟(𝑅𝑅) = 𝑣𝑣 

Given the expectation that the observed read count r represents an accurate observation of R, then 

the distribution of K is proportional to a Poisson (Robles et al., 2012): 

𝐾𝐾|(𝑅𝑅 = 𝑟𝑟)~𝑃𝑃𝑙𝑙𝑖𝑖𝑃𝑃(𝑐𝑐𝑟𝑟) 

𝐸𝐸(𝐾𝐾|𝑅𝑅 = 𝑟𝑟) = 𝑐𝑐𝑟𝑟, 𝑉𝑉𝑉𝑉𝑟𝑟(𝐾𝐾|𝑅𝑅 = 𝑟𝑟) = 𝑐𝑐𝑟𝑟 

Here in comparison to the Marioni et al. Poisson example (2008), λ would be a normalization 

factor based upon the read production of a lane. Also, because of the relationship between R, r, 

and K and allowing for a dispersion factor ϕ based upon higher technical variation or variation 

among biological replicates (Robles et al., 2012): 

𝐸𝐸(𝐾𝐾) = 𝜇𝜇,𝑉𝑉𝑉𝑉𝑟𝑟(𝐾𝐾) = 𝜇𝜇(1 + 𝜙𝜙𝜇𝜇) 

Where 
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𝜇𝜇 = 𝑐𝑐𝑞𝑞, 𝜙𝜙 = 𝑣𝑣
𝑞𝑞2

 

Finally, if R was a random variable that follows a Gamma distribution (Robles et al., 2012): 

𝑅𝑅~𝐺𝐺𝑉𝑉𝐺𝐺𝐺𝐺𝑉𝑉(𝑞𝑞, 𝑣𝑣) and 𝑐𝑐𝑅𝑅~𝐺𝐺𝑉𝑉𝐺𝐺𝐺𝐺𝑉𝑉�𝜇𝜇, 𝜇𝜇(1 + 𝜙𝜙𝜇𝜇)� 

Then 

𝐾𝐾~𝑁𝑁𝑒𝑒𝑙𝑙𝑉𝑉𝑁𝑁𝑖𝑖𝑣𝑣𝑒𝑒 𝐵𝐵𝑖𝑖𝐵𝐵𝑙𝑙𝐺𝐺𝑖𝑖𝑉𝑉𝑙𝑙(𝜇𝜇, 𝜇𝜇(1 + 𝜙𝜙𝜇𝜇)) 

As the expected dispersion ϕ approaches zero, the mean and variance become equal, and the 

Negative Binomial collapses back down to a Poisson. While methods such as DESeq and edgeR 

both use the Negative Binomial to model overdispersion in the read count data, the methods differ 

in generation of an overdispersion estimate (Robles et al., 2012; Soneson and Delorenzi, 2013). 

EdgeR attempts to estimate a singular common dispersion parameter among samples for each 

gene, and estimate raw variance with quantile-adjusted conditional maximum likelihood, 

(Robinson et al., 2010). DESeq instead attempts to model a mean-dependent local regression to 

estimate the dispersion parameter and raw variance through linear scaling to correct for differing 

library size (Anders and Huber, 2010). Both edgeR and DESeq then look for differential 

expression for each gene with a test analogous to Fisher’s Exact test which uses read counts and 

overdispersed-tolerant Negative Binomial probabilities instead of Hypergeometric (Robinson and 

Smyth, 2007). As models increase in complexity to consider uncertainty in fragment counts as 

well as biological variability, the mixing of several Negative Binomial distributions can combine 

into a singular Beta Negative Binomial model as with Cuffdiff2 (Trapnell et al., 2013). Cuffdiff2 

considers fragments instead of reads, but utilizes the same design as DESeq for modeling the count 

for an individual transcript with a Negative Binomial and a local regression to estimate dispersion. 

The test statistic used to determine significance of differential expression is based upon the log-

transformed ratio of expression, divided by its variance of the transformed ratio to follow a normal 
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distribution (Trapnell et al., 2010; Trapnell et al., 2013). Where Cuffdiff2 more drastically departs 

from the other differential expression designs is utilizing an additional Negative Binomial to 

consider the uncertainty in fragment counts, which is based on a fragment ambiguously mapping 

to several transcripts based upon high similarity (Trapnell et al., 2013). This additional level of 

complexity is considered necessary by the authors to explore beyond the scale of genes to their 

isoforms, the differential splicing between isoforms, and variation in transcriptional start sites 

(Trapnell et al., 2013). The Beta distribution with parameters α and β is described as having (Hogg 

and Tanis, 2009): 

𝜇𝜇 =
𝛼𝛼

𝛼𝛼 + 𝛽𝛽
 

Modified for notational simplicity in Cuffdiff2 descriptions, the term changes to (Trapnell et al., 

2013):  

𝜇𝜇 =
𝛼𝛼 − 1

𝛼𝛼 + 𝛽𝛽 − 1
 

And a Beta Negative Binomial is described with parameters r, α, and β such that: 

𝑋𝑋~𝐵𝐵𝑁𝑁𝐵𝐵(𝑟𝑟,𝛼𝛼,𝛽𝛽) 

Where 

𝑋𝑋|𝑝𝑝~𝑁𝑁𝐵𝐵(𝑟𝑟,𝑝𝑝) and 𝑝𝑝~𝐵𝐵(𝛼𝛼,𝛽𝛽), 

Then if VE(N) is an obtained function that outputs predicted variance for condition E when given 

the mean counts N; Xg which is the abundance of transcripts at the locus containing the tested 

transcript; 𝛾𝛾�𝑡𝑡is the estimated probability that a fragment from the locus originated from transcript 

t, the parameters for the Beta Negative Binomial can be solved by the equations (Trapnell et al., 

2013): 

𝐴𝐴 = 𝑋𝑋𝑔𝑔𝛾𝛾�𝑡𝑡; 𝐵𝐵 = 𝑉𝑉𝑃𝑃�𝑋𝑋𝑔𝑔�𝛾𝛾�𝑡𝑡 
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1(1−𝑝𝑝)
𝑝𝑝

= 𝐴𝐴; 1(1−𝑝𝑝)
𝑝𝑝2

= 𝐵𝐵; 𝑟𝑟 = 𝑆𝑆2

𝐵𝐵−𝑆𝑆
; 𝑝𝑝 = 𝑆𝑆

𝐵𝐵
 

So that r must be greater than zero, and assuming that B > A since it implies that there is 

overdispersion in the data (Trapnell et al., 2013). If B = A, then variance across replicates equals 

the mean which collapses the distribution back to a singular Negative Binomial. If there is no 

uncertainty in the read counting, then the model also collapses to a Negative Binomial, akin to the 

model design of edgeR and DESeq. While this additional model term increases the complexity, it 

is also needed to address the ambiguous fragment counting so that quantification can occur at the 

sub-gene level (Trapnell et al., 2013). The scale of output produced from Cuffdiff2 analysis 

produces the more common analysis of differential expression at the read level, while including 

tests for differential expression of gene isoforms, differences in the how often conditions are 

observed to use transcription start sites for those isoforms, and thus allows analysis of alternative 

splicing based upon considering differential expression among the population of isoforms that 

represent a gene (Trapnell et al., 2012; Trapnell et al., 2013).  

 

Like any other platform, RNA-Seq data can contain technical and biological bias not addressed by 

normalization. Variation from RNA-Seq platforms can involve unequal distribution of available 

binding sites combined with the potential for primers to bind unevenly to the sites (Hansen et al., 

2010). Reads originating from regions with high similarity may be indiscernible and result in 

multiple mapping sites. If the mappings sites split between transcripts that express at different 

levels, assigning reads to the assembled transcripts for quantification purposes must account for 

these differences (Mortazavi et al., 2008). Reads can be mapped uniformly before re-estimating 

the counts. The probability of observing C reads on an L length transcript with X number of copies 

in N tries over a transcriptome of length T is calculated as (Mortazavi et al., 2008): 
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𝐶𝐶
𝑁𝑁

=
𝑋𝑋𝐿𝐿
𝑇𝑇

 

By distributing multi-mapped reads based upon the uniformly-mapped count to get the read 

estimate R, a new distribution can be calculated: 

𝑋𝑋 =
𝐶𝐶
𝑁𝑁𝐿𝐿

𝑇𝑇 =
𝑅𝑅

109
𝑇𝑇 

Available analytical pipelines include methods to address these biases based upon the above 

calculations (http://cufflinks.cbcb.umd.edu/howitworks.html). In my studies, corrections were 

implemented with Tophat (splice-tolerant alignment using genome and transcriptome annotations 

using Bowtie with the FM-Index) at the mapping level (Kim et al., 2013). Transcript assembly, as 

well as the normalizations and corrections at that stage (transcript assembly guided by reference 

annotations while implementing fragment bias corrections, multi-read corrections, and upper-

quartile normalization to FPKM calculation), were handled by Cufflinks (Trapnell et al., 2010). 

Finally, normalization among libraries (DESeq method) and differential tests were handled by 

Cuffdiff (Trapnell et al., 2013). 

 

1.3 Functional and network analysis 

Categories and gene sets 

Comparing transcriptomic profiles involving thousands of differentially expressed genes demands 

efficient interpretation that scales beyond the individual gene to evaluate functional roles and 

network interaction (Dopazo, 2009). Mining particular genes are still effective, but the importance 

of individual genes becomes a singular part of examining the interactivity and sum effect of groups. 

Functional analysis focuses upon analyzing categories and gene sets constructed from knowledge 

of shared characteristics. The gene ontology catalogue is widely accessed as a source of functional 

information (Ashburner et al., 2000). Designed as a directed acyclic graph, individual terms are 
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organized with broader terms serving as parents to more specific terms, with terms capable of 

belonging to more than one parent term. The Kyoto Encyclopedia of Genes and Genomes (KEGG) 

Pathways is an integrated database of 15 main databases with systems, genomic, chemical, and 

health information (Kanehisa et al., 2002; Kanehisa et al., 2014). KEGG maps and modules are 

generalized so that information entered on a specific organism can be adapted for analysis across 

other species. Reactome is somewhat related to KEGG by design, and is a manually curated 

database that classifies biological units based upon their reactions, which are then networked by 

pathways and assembled into a biological process-based hierarchy (Croft et al., 2014). Shared 

characteristics can be based upon function, pathway, or other traits; many of the category designs 

are interconnected by integrated knowledgebases and linked database IDs (Huang et al., 2009b; 

Drăghici et al., 2006). However despite the relationships between databases, consensus is limited 

due to differences in structure and curation (Stobbe et al., 2011). Yet until the databases can be 

effectively integrated, parallel analyses using several databases can provide a broader, albeit 

fragmented, understanding of functional relationships. 

 

Cutoff and non-cutoff based approaches 

When testing a subset gene list of the transcriptome profile such as those meeting a particular 

significance level, the subset selection method is termed cutoff-based approach. Also described as 

Class I tools, many utilize similarly performing tests (Huang et al., 2009a; Rivals et al., 2007). As 

a representative test of cutoff-based tools, the hypergeometric test is a popular and computationally 

straightforward method of determining whether a gene set is enriched. The total number of genes 

tested is N. Within the number of tested genes, the number in the significant list is K. The 

hypergeometric distribution describes in a subsample of n genes belonging to a gene set, the 
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probability that k number of genes P(X=k) would be in the significant list. Given a size to test 

without replacement, there are: �𝑁𝑁𝐵𝐵� are the possible subsamples; �𝐾𝐾𝑘𝑘� possible subsamples of 

significant genes in a gene set; and �𝑁𝑁 − 𝐾𝐾
𝐵𝐵 − 𝑘𝑘 � ways to fill the remaining spaces in the subsample 

where�𝐾𝐾𝑘𝑘� = 𝐾𝐾!
𝑘𝑘!−(𝐾𝐾−𝑘𝑘)!

. The hypergeometric probability is the likelihood that the level of 

enrichment observed could occur due to random choice based upon the size of the gene set and 

genes tested in the experiment (Rodriguez-Zas, 2013): 

𝑃𝑃(𝑋𝑋 = 𝑘𝑘) =
�𝐾𝐾𝑘𝑘� �

𝑁𝑁 − 𝐾𝐾
𝐵𝐵 − 𝑘𝑘 �

�𝑁𝑁𝐵𝐵�
 

The application of the hypergeomtric distribution for gene set analysis can be found in (Boyle et 

al., 2004). A popular derivative of the hypergeometric distribution is the scoring method originally 

from Expression Analysis Systematic Explorer (EASE), a one-tailed jackknifed Fisher exact test 

which provides a conservative adjustment of the standard probability (Hosack et al., 2003). 

Jackknifing removes a single point from k to penalize gene sets. The Database for Annotation, 

Visualization and Integrated Discovery (DAVID) Knowledgebase is a popular online set of 

bioinformatics tools that utilizes the EASE score (http://david.abcc.ncifcrf.gov; Huang et al., 

2009b). The DAVID knowledgebase is built upon several non-redundant database sources (Table 

1.1), web-accessible, and tests themes from Gene Ontology (GO) categories, the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) Pathways, and several others (Table 1.2) (Maglott 

et al., 2005; Apweiler et al., 2004; Ashburner et al., 2000; Kanehisa et al., 2002; Huang et al., 

2009b). Enriched functional categories can be clustered in DAVID by using a fuzzy heuristic 

partition algorithm on the gene list to cluster categories based upon highly related genes 

(http://david.abcc.ncifcrf.gov/helps/functional_classification.html). Fuzzy heuristic partition uses 
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the underlying list of genes enriching the categories. Genes are mapped with proximity related to 

shared annotation terms. The pairwise relationship between all genes is calculated as a kappa score, 

based upon the degree of relationship in sharing categories. Each gene can initiate a cluster, filtered 

for sufficient neighbors with a high enough kappa score. Clusters are then merged based upon 

sharing more than half of their member genes, until only less similar clusters remain. The 

sensitivity of cutoff-based approaches, combined with a user-defined list of significant genes based 

upon an arbitrary cutoff level can result in artifacts. These artifacts, in the genes and gene sets 

deemed significant based upon the inclusion or exclusion of genes near the cutoff, can complicate 

downstream interpretation. A false discovery rate adjustment to the individual significance values 

helps limit the impact upon results.  

 

Non-cutoff based approaches including Gene Set Enrichment Analysis (GSEA) are an alternative 

to cutoff based approaches, using the entire gene list output by a platform (Subramanian et al., 

2005). Instead of categorically splitting the list, genes are ranked based upon their correlation to 

the compared conditions; highly correlated genes receive high absolute values. Gene sets receive 

Enrichment Scores (ES), a Kolmogorov-Smirnov based statistic that can be normalized for gene 

set size among all gene sets tested. The ES determines if the gene set is preferentially 

overrepresented by genes that correlate to one condition. The ES is based on working stepwise 

through the ranked list of genes in order, with the ES becoming the greatest absolute value reached. 

If the rank order of N genes tested in the experiment to form a list L of genes. The jth gene in L has 

a correlation score r(gj) = rj in relation to a particular condition. The gj is considered a “hit” if it is 

a member of the gene set S which has the number of genes NH, and is elsewise considered a “miss”. 

The ES score is calculated as (Subramanian et al., 2005): 
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(𝑁𝑁)𝐸𝐸𝐸𝐸 = 𝑃𝑃𝑠𝑠𝑝𝑝𝑟𝑟𝑒𝑒𝐺𝐺𝑠𝑠𝐺𝐺|𝑃𝑃ℎ𝑖𝑖𝑡𝑡(𝐸𝐸, 𝑖𝑖) − 𝑃𝑃𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚(𝐸𝐸, 𝑖𝑖)| 

𝑃𝑃ℎ𝑖𝑖𝑡𝑡(𝐸𝐸, 𝑖𝑖) = �
�𝑟𝑟𝑗𝑗�

𝑝𝑝

𝑁𝑁𝑃𝑃𝑔𝑔𝑗𝑗∈𝑆𝑆
𝑗𝑗≤𝑖𝑖

 

𝑁𝑁𝑃𝑃 = ��𝑟𝑟𝑗𝑗�
𝑝𝑝

𝑔𝑔𝑗𝑗∈𝑆𝑆

 

𝑃𝑃𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚(𝐸𝐸, 𝑖𝑖) = �
1

(𝑁𝑁 − 𝑁𝑁𝑃𝑃)
𝑔𝑔𝑗𝑗∉𝑆𝑆
𝑗𝑗≤𝑖𝑖

 

The ES can then be normalized (NES) by permutation to account for differences in gene set sizes 

and correlation between gene sets and the gene list data (Subramanian et al., 2005). The difference 

in the above calculations between the ES and the original Kolmogorov-Smirnov equation is the 

binary parameter p∈{0,1}. When p=0, the ES collapses to Kolmogorov-Smirnov, while when p=1, 

genes are weighted by their correlations with a normalization based upon the sum of gene set 

correlations (Subramanian et al., 2005). The GSEA method detects gene sets where member genes 

express at a lower level in comparison to the relatively higher individual expression required for 

detection by cutoff-based approaches (Subramanian et al., 2005).  

 

When analyzing gene expression data at the level of gene sets, testing methods are separated based 

upon their null hypothesis definition, and the sampling model (Goeman and Bühlmann, 2007). The 

most popular null hypotheses are described as (Goeman and Bühlmann, 2007; Nam and Kim, 

2008): 

1. Competitive null hypothesis (Q1): The genes in the gene-set are at most as often 

differentially expressed as the complementary set; 

2. Self-contained null hypothesis (Q2): No genes in the gene-set are differentially expressed;  
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3. and (Q3): None of the gene sets considered is associated with the phenotype.  

The sampling model provides two possible categories (Goeman and Bühlmann, 2007): 

1. Subject-sampling: Given n number of sample subjects; each subject is measured for the 

fixed set of genes m; each subject belongs to a tested condition Y. The ith sample is thus 

represented by Xi, the m–dimensional vector of expression measurements, and Yi as the 

condition such that : 

(𝑋𝑋1,𝑌𝑌1),⋯ , (𝑋𝑋𝑛𝑛,𝑌𝑌𝑛𝑛) 

2. Gene-sampling: Each subject sample consists of a set of observations of the m genes; if the 

ith gene is part of the gene set A is recorded as Ai and whether it is a member of the 

differentially expressed gene list B is recorded as Bi; each subject sample provides thus 

provides the observation set: 

(𝐴𝐴1,𝐵𝐵1),⋯ , (𝐴𝐴𝑚𝑚,𝐵𝐵𝑚𝑚) 

Subject-sampling assumes independence between subjects with the possibility of gene expression 

correlations; gene-sampling assumes the independence of all gene expression observations 

(Goeman and Bühlmann, 2007). The correlation among genes within a gene set violates the 

assumptions of independence among genes in the gene-sampling approach. Hypergeometric 

approaches categorize as using a competitive null hypothesis and a gene-sampling model. The 

GSEA method will at times be uniquely categorized as Q3 (Nam and Kim, 2008; Wang et al., 

2011). However, GSEA is typically categorized as using a competitive null hypothesis and a 

subject-sampling model (Goeman and Bühlmann, 2007; Dinu et al., 2008; Tarca et al., 2013; 

Maciejewski, 2014). Gene set analysis methods violating the assumption of sampling 

independence are expected to suffer from a high false-positive rate (Goeman and Bühlmann, 

2007). However, the hypergeometric-based methods have demonstrated effective control of false-
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positives (Tarca et al., 2013). Resampling methods such as GSEA are more debatable, with reports 

that resampling can or cannot control the rate of false-positives (Gatti et al., 2010; Tarca et al., 

2013). 

 

Network construction and visualizations 

Genes do not impact the phenotypic level individually in a vacuum, nor as a listed category, but 

as a unit of complex networks (Wu and Chan, 2012). To increase our understanding and 

consequently identify more appropriate routes of diagnosis and treatment, it is potentially more 

beneficial to represent the transcriptomic data in a more biologically-valid network design. Basic 

network construction represents members of a set (genes; gene sets; pathways; etc.) as nodes and 

their relationships as edges. Networks can be parameterized based upon the number of nodes, 

edges, and their distribution within the network (Doncheva et al., 2012). For example, 

categorization by degree distribution is defined by how edges are distributed among nodes, or the 

degree distributions of the nodes (Barabási and Oltvai, 2004). One of the degree distribution 

categories is scale-free, a design that models many biological networks (Barabási and Oltvai, 2004; 

Albert, 2005). If the number of edges connecting to a particular node is k, then the probability of 

a node in a scale-free network possessing being of degree k is (Barabási and Oltvai, 2004): 

𝑃𝑃(𝑘𝑘)~𝑘𝑘−𝛾𝛾 

Where γ is the degree exponent and (Doncheva et al., 2012): 

2 < 𝛾𝛾 < 3 

Networks can also be parameterized based upon the shortest path between nodes as the number of 

edges traveled to connect two nodes, and evaluation of the connectedness within “neighborhoods” 

or sub-networks of a network based upon the average k for all neighbor nodes of a particular node 
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(Doncheva et al., 2012). A parameterized network provides quantifiable traits that can thus be 

compared among networks, and used to compare networks based upon their metrics (Assenov et 

al., 2008). 

 

Cytoscape (http://www.cytoscape.org/) is an open-source platform for calculating and visualizing 

networks, capable of providing publication-ready visualizations (Killcoyne et al., 2009). Designed 

to accept multiple data input formats, the platform can read in data from standard network formats, 

XML based formats, delimited text files or Excel workbook files, and the output files from 

annotation programs to construct networks from the relationship data 

(http://www.cytoscape.org/what_is_cytoscape.html). As an openly accessible Java application, 

Cytoscape handles diverse data and interaction networks. Several plugins are available for 

customized functions, the most popular being designed to work with functional analysis data (Saito 

et al., 2012). The most popular plugin, BiNGO displays enriched terms from the GO database in a 

hierarchical fashion (Maere et al., 2005). The Enrichment Map plugin is designed to display 

enriched gene sets as nodes in a network linked by an overlap of enriching genes (Merico et al., 

2010). The overlap in enriching genes is quantified from zero (no overlapping genes) to one when 

there is a complete overlap of enriching genes. This overlap is quantified by the Jaccard coefficient 

(JC) if gene sets are similar in size (Merico et al., 2010): 

𝐽𝐽𝐶𝐶 =
|𝐴𝐴 ∩ 𝐵𝐵|
|𝐴𝐴 ∪ 𝐵𝐵| 

or the overlap coefficient (OC) when dissimilar in size (Merico et al., 2010): 

𝑂𝑂𝐶𝐶 =
|𝐴𝐴 ∩ 𝐵𝐵|

𝑀𝑀𝑖𝑖𝐵𝐵(|𝐴𝐴|, |𝐵𝐵|) 
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When the goal is to integrate several networks together, Cytoscape comes pre-installed with 

AdvancedNetworkMerge and NetworkAnalyzer. While AdvancedNetworkMerge allows for basic 

set operations (union, intersection, difference) on multiple networks, available plugins offer 

additional utility (Saito et al., 2012). NetworkAnalyzer calculates topological network parameters 

for multiple networks so that they can be quantifiably compared (Assenov et al., 2008). Multiple 

plugins are available for producing Venn or Euler diagrams of shared network traits. Integrating 

networks and exploring the resultant design is possible with CABIN, albeit primarily designed for 

protein data (Singhal and Domico, 2007). The open-accessibility for plugin-design and support of 

several import/export file formats are designed to customize the network visualization aspects as 

needed (Smoot et al., 2011). 

 

Thesis motivation 

The goal of my studies is to characterize behavioral and unique transcriptomic characteristics in 

the BCG model of inflammation. Statistical modeling of the behavioral indicators that considers 

relationships among the indicators can identify relationships not apparent when analyzed 

independently. Large-scale gene expression analysis utilizing high-throughput platforms and 

network construction from the functional categories enriched by the gene expression profiles can 

identify the unique pathways for the biological conditions. Shared pathways and branching points 

to unique network traits can be examined for changes in expressed genes or gene expression levels 

for further analysis and exploration. 
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1.5 Tables 

Table 1.1 DAVID knowledgebase database sources 
(from list at http://david.abcc.ncifcrf.gov/content.jsp?file=Acknowledgement.htm)  
Primary – gene clustering 
 NCBI Entrez Gene http://www.ncbi.nlm.nih.gov/Entrez 
 UniProt and UniRef100 http://www.uniprot.org 
 PIR NREF and iProClass http://pir.georgetown.edu  
Secondary – additional annotation information 
 Affymetrix Probeset 

Mapping: NetAffx; TIGR 
http://www.netaffx.com; http://www.tigr.org/tdb  

 Ontologies http://www.ncbi.nlm.nih.gov/Entrez; http://pir.georgetown.edu/iproclass; 
http://www.uniprot.org; http://www.ebi.ac.uk/GOA; 
http://www.pantherdb.org; http://www.geneontology.org  

 Entrez Gene; PIR iProClass; 
UniProt; GOA; Panther 
Ontology; Gene Ontology 

 Protein Domains http://www.ncbi.nlm.nih.gov/Entrez; http://pir.georgetown.edu/iproclass; 
http://www.uniprot.org; http://www.ebi.ac.uk/interpro; 
http://www.sanger.ac.uk/Software/Pfam; 
http://www.ncbi.nlm.nih.gov/COG/new; http://blocks.fhcrc.org; 
http://smart.embl-heidelberg.de; http://www.rcsb.org/pdb; 
http://protein.toulouse.inra.fr/prodom/current/html/home.php; 
http://au.expasy.org/prosite; http://www.tigr.org/TIGRFAMs/index/shtml; 
http://www.bioinf.man.ac.uk/dbbrowser/PRINTS; http://www.pantherdb.org; 
http://scop.mrc-lmb.cam.ac.uk/scop   

 Entrez Gene; PIR iProClass; 
UniProt; InterPro; Pfam; 
COG/KOG; Blocks; SMART; 
PDB; ProDom; PROSITE; 
TIGRFAMS; PRINTS; Panther 
Family; SCOP 

 Pathways http://www.genome.jp/kegg; 
http://cgap.nci.nih.gov/Pathways/BioCart_Pathways; 
http://www.biocarta.com/genes/index.asp; http://bbid.grc.nia.nih.gov; 
http://pid.nci.nih.gov; http://www.pantherdb.org; http://www.reactome.org  

 KEGG Pathways, Reaction, 
and Compound; CGAP 
BioCarta; Pathways; Biocarta; 
BBID; PID; Panther Pathway; 
REACTOME 

 General Annotation http://www.ncbi.nlm.nih.gov/Entrez; http://pir.georgetown.edu/iproclass; 
http://www.uniprot.org  Entrez Gene; PIR iProClass; 

UniProt 

 Functional Categories http://www.ncbi.nlm.nih.gov/Entrez; http://pir.georgetown.edu/iproclass; 
http://www.uniprot.org; http://www.ncbi.nlm.nih.gov/COG/new  Entrez Gene; PIR iProClass; 

UniProt; COG/KOG 

 Protein Interactions http://www.ncbi.nlm.nih.gov/Entrez; 
http://www.ncbi.nlm.nih.gov/RefSeq/HIVInteractions; 
http://ncicb.nci.nih.gov; http://www.clueprint.org/bind/bind.php; 
http://mint.bio.uniroma2.it/mint; http://www.hprd.org; http://dip.doe-
mbi.ucla.edu; http://www.reactome.org  

 HIV Interactions (Entrez and 
RefSeq); NCICB caPathway; 
Bind; Mint; HPRD; DIP; 
REACTOME 

 Literature http://www.ncbi.nlm.nih.gov/Entrez; http://pir.georgetown.edu/iproclass; 
http://www.uniprot.org;  PubMedIDs (Entrez Gene, PIR 

iProClass, UniProt) 
GeneRIF (Entrez Gene) 

 Disease http://geneticassociationdb.nih.gov; http://www.ncbi.nlm.nih.gov/Entrez; 
http://www.ncbi.nlm.nih.gov/omim   Genetic Association Database 

OMIM Phenotype (Entrez 
Gene and OMIM) 

 Tissue Expression http://wombat.gnf.org/index.html; http://cgap.nci.nih.gov/SAGE; 
http://cgap.nci.nih.gov/Tissues; 
ftp://ftp.ncbi.nih.gov/repository/UniGene/Homo_sapiens  

 GNF Microarray; CGAP 
SAGE; CGAP Tissue EST; 
NCBI Unigene EST Profile 

 Other Data Sources http://www.ncbi.nlm.nih.gov/homologene  
 Homologene 
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Table 1.2 Annotation Categories in DAVID 
Type of Category Categories 
Ontology GO_BIOLOGICAL PROCESS 

GO_MOLEDCULAR FUNCTION 
GO_CELLULAR COMPONENT 
PANTHER_BIOLOGICAL PROCESS 
PANTHER_MOLECULAR FUNCTION 
COG_KOG_ONTOLOGY 

Protein Domain/Family BLOCKS_ID 
COG_KOG_NAME 
INTERPRO_NAME 
PDB_ID 
PFAM_NAME 
PIR_ALN 
PIR_HOMOLOGY_DOMAIN 
PIR_SUPERFAMILY_NAME 
PRINTS_NAME 
PRODOM_NAME 
PROSITE_NAME 
SCOP_ID 
SMART_NAME 
TIGRFAMS_NAME 
PANTHER_SUBFAMILY 
PATHER_FAMILY 

Sequence Features ALIAS_GENE_SYMBOL 
CHROMOSOME 
CYTOBAND 
GENE_NAME 
GENE_SYMBOL 
HOMOLOGOUS_GENE 
ENTREZ_GENE_SUMMARY 
OMIM_ID 
PIR_SUMMARY 
PROTEIN_MW 
REFSEQ_PRODUCT 
SEQUENCE_LENGTH 
SP_COMMENT 

P-P Interaction BIND 
DPI 
MINT 
NCICB_CAPATHWAY 
TRANSFAC_ID 
HIV_INTERACTION 
HIV_INTERACTION_CATEGORY 
HPRD_INTERACTION 
REACTOME_INTERACTION 

Disease Association GENETIC_ASSOCIATION_DB 
OMIM_DISEASE 

Literature GENERIF_SUMMARY 
PUBMED_ID 
HIV_INTERACTION_PUBMED_ID 

Pathways BioCarta 
KEGG_PATHWAY 
PANTHER_PATHWAY 
PID 
BBID 
KEGG_REACTION 

Functional Category PIR_SEQ_FEATURE 
SP_COMMENT_TYPE 
SP_PIR_KEYWORDS 
UP_SEQ_FEATURE 

Gene Tissue Expression GNF Microarray 
UNIGENE EST 
CGAP SAGE 
CGAP EST 

 

(Source: Huang et al., 2009b supplement) 
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CHAPTER II: Exploring the effect of covariates on univariate modeling of murine 

behavior after Bacillus Calmette-Guérin challenge 

 

2.1 Abstract 

In the mouse model of Bacille Calmette Guérin (BCG)-induced inflammation, individual and 

independent analysis of behavioral indicators is common. Model design can benefit from 

considering the established relationships among indicators in the model design, but no study has 

explored the improvement upon univariate analysis of these behavioral indicators. The objectives 

of this study were: (1) to characterize the individual response of behavioral indicators in the BCG-

induced inflammation model, and (2) to characterize the impact of covariates on the univariate 

analysis of behavior indicators. Adult male mice were injected with BCG at a level of 10 mg, 5 

mg, or a saline control. Daily body weights were measured with weight loss from Day 0 to Day 2 

(p-value < 0.01) followed by weight recovery that became non-significant between Day 4 and Day 

5 (p-value < 0.01). On Day 6, the sickness indicators of locomotor activity and rearing were 

measured as well as the depression-like indicators of increased immobility forced swim test and 

tail suspension test, and finally sucrose preference testing on Day 7. The modeling of all behavior 

indicators was determined by significant (𝛸𝛸2 < 0.05) reduction in log likelihood ratios, combined 

with the consideration of Akaike’s and Bayesian Information Criteria. A significant improvement 

in log likelihood was found for sucrose preference and tail suspension test data by including 

covariates in the model when compared to a model without covariates. Including age as a covariate 

with a cubic relationship in sucrose preference identified a significant treatment effect (p-value < 

0.05). Similarly, including body weight recovery from Day 2 to Day 5 as a covariate with a cubic 

relationship when modeling tail suspension test immobility identified a borderline significant 
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treatment effect (p-value = 0.055) that was not identified by models lacking covariates. Body 

weight differences between treatment groups were identified when the model included no 

covariates, while including Day -1 body weight as a linear covariate identified a significant 

difference between the two BCG treatment levels at Day 2 (p-value = 0.0007). Rearing and 

locomotor activity were sensitive to covariate inclusion with significant treatment effects arising, 

while forced swim results showed no significant treatment effect regardless of covariate inclusion 

in the model. Univariate analysis can effectively capture the treatment level effects on body weight, 

mobility-based indicators, and sucrose preference with the inclusion of covariates. 

 

2.2 Introduction 

The immune system response to stimuli involves the ability to ellicit symptoms of sickness 

response, and a less understood association to depression (Jones and Thomsen, 2013). As an 

animal model of chronic immune activation, Bacille Calmette-Guérin (BCG) administration in 

mice results in persistent mycobacterial dissemination throughout the body (Tsenova et al., 1999) 

and a long-lived inflammatory response with detectable difference found four weeks post-

challenge (Moreau et al., 2005). Systemic challenges induced by BCG include an initial sickness 

response involving anorexia, weight-loss, and lethargy, and depression-like behaviors including 

anhedonia and learned-helplessness which can last for up to 3 weeks post-challenge (Moreau et 

al., 2008). However studies on the behavioral response following BCG-treatment remain focused 

on a measurement subset which includes body weight, locomotor activity, anhedonia, and despair 

(Moreau et al., 2008; O’Connor et al., 2009; Kelley et al., 2013; Painsipp et al., 2013; Saleh et al., 

2014; Rodriguez-Zas et al., 2015). Previous studies of the behavioral response to infection have 

analyzed response metrics with no or minimal covariates (Moreau et al., 2008; Painsipp et al., 
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2011; Schmuckermair et al., 2013). The objectives of this study were: (1) to characterize the 

individual response of behavioral indicators in the BCG-induced inflammation model, and (2) to 

characterize the impact of covariates on the univariate analysis of behavior indicators. 

 

2.3 Materials and Methods 

Experiment 

Male adult C57Bl/6J mice (n=19) were selected for the experiment, ranging from 91 – 107 days 

old with a median age of 96 days. Access to water and chow (Teklad 8640, Harlan Laboratories, 

Indianapolis, IN, USA) were provided ad libitum. Mice were individually housed in a temperature- 

(23° C) and humidity-controlled (45%) room maintained on a 12-hour reverse light/dark cycle, 

and handled daily for at least 7 days prior to experimentation for acclimation purposes.  Only male 

adult mice were used to avoid behavioral variations associated with hormonal changes from the 

estrous cycle (Ellacott et al., 2010).  

 

For immune challenge, fresh solutions were prepared by dispersing lyophilized cultures of BCG 

(TICE, Organon USA Inc., USA) into sterile endotoxin-free isotonic saline on the day of injection. 

Lyophilized cultures were 50 mg wet weight, containing 1 to 8 x 108 colony forming units (cfu). 

Three treatment levels were evaluated: 1) intraperitoneal (i.p.) administration of a 10 mg dose of 

BCG, between 2 x 107 and 1.6 x 108 cfu (High BCG, n=6); 2) a 5 mg dose, between 1 x 107 and 8 

x 107 cfu (Low BCG, n=6); and 3) i.p. administration of saline (control, n=7). All administrations 

were a standardized 0.3 mL volume. Measurements of sickness and depression-like behaviors were 

taken across time in an immune-response experiment that spanned a week after the injection 

(Figure 2.1).  All experiments were conducted in accordance with the Animal Care and Use of 
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Laboratory Program approved by the Institutional Animal Care and Use Committee at the 

University of Illinois. 

 

Measurements of Sickness Behaviors 

Measuring body weight encompasses a broad spectrum of sickness effects, involving anorexia and 

modifications to metabolic homeostasis (Ellacott et al., 2010). Body weight was recorded daily at 

the beginning of the dark cycle, with all records in grams (g). Recordings began the day before 

treatment (Day -1) for a baseline, immediately before treatment (Day 0), and continued afterwards 

for one week (Day 7). On Day 6 immediately following the daily body weight measurement, 

locomotor activity was used to measure the impact of sickness on exploratory behavior and 

mobility (Gould et al., 2009). Following O’Connor et al. (2009), each mouse was place in a 

standard acrylic housing cage with opaque walls. A 5-minute test session was video recorded and 

analyzed by a trained observer blind to treatment. The cage was divided into virtual sectors and 

locomotor activity measured as the number of line-crossings between quadrants while rearing was 

measured as the number of times the mice stood on their hind paws. Four mice could be tested 

simultaneously and the group order was recorded. 

 

Measurements of Depression-like Behaviors 

Three measures of depression-like behavior were measured: the forced swim and tail suspension 

tests measured behavioral despair while sucrose preference served as an anhedonic measure 

(Castagné et al., 2011; Dedic et al., 2011). Forced swim testing was performed after locomotor 

activity testing on Day 6 (O’Connor et al., 2009). Mice were placed into an opaque cylinder with 

water maintained at approximately 23°C, with activity recorded for 6 minutes. Time spent 
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immobile was recorded during the last five minutes by a trained observer blind to treatment, with 

tail suspension following after the forced swim testing (O’Connor et al., 2009). During the Tail 

Suspension Test (TST), mice were suspended by their tails to a computerized strain gauge that 

collects the movement data for each mouse. Depression was interpreted as learned helplessness 

when the duration of immobility increases compared to the control group of mice (Steru et al., 

1985). Following O’Connor et al (2009), the test was conducted for 10 minutes with time spent 

immobile recorded using the Mouse Tail Suspension Package software (MED-TSS-MS; Med 

Associates). Program settings were:  

1) integration on;  

2) resolution (data acquisition rate) 10 milliseconds; 

3) gain (voltage signal amplification for animal weight): 4 input/output ratio;  

4) start trigger (necessary load to begin recording): 20% of maximum (50 g load cell).  

Settings were determined according to the manufacturer’s instructions with consideration of the 

weight of the mouse strain. The lower threshold setting for the load cell, which was the user-

defined load-cell detection cutoff determining if time was recorded as mobile activity or 

immobility, was adjusted manually based upon measurement of immobile periods for each mouse 

individually. Time spent motionless between 3 and 8 minutes after original suspension were 

analyzed. Similar to the locomotor activity recording, only 4 mice could be recorded at a time in 

the TST and the testing order was recorded. Consumption of a sucrose solution was used as a 

measurement of anhedonic behavior, a popular non-invasive method of measurement (Moreau et 

al., 2008; Steensland et al., 2010; Dedic et al., 2011; Kelley et al., 2013). Following Lawson et al. 

(2013), mice were provided two bottles in the home cage, containing water and 1% sucrose 

solution, respectively. The bottles were weighed after a 24-hour period, and the difference in 
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weight was attributed to consumption. Sucrose and water were preliminarily measured before 

treatment (Day -1), and after activity measurements (Day 6). Timing of measurement was 

immediately following the body weight measurement, at the beginning of the dark cycle. The 

position of the two bottles was switched throughout training and during the experiment to avoid 

positional preferences. Sucrose preference was expressed as sucrose / (sucrose + water) * 100. 

Switching the bottle positions and use of the sucrose preference measurement controlled for the 

potential confounds of side preference and high variability among mice on liquid intake volume, 

respectively (Strekalova et al., 2011). 

 

Statistical Analysis 

Univariate linear models describe the response of a single dependent variable, here the specific 

behavioral indicator to be modeled, as it relates to one or more independent variables. Prior 

investigations include the fixed effect of treatment (BCG versus control), time (days) when 

repeated measures are performed, and testing for interaction between the effects (Moreau et al., 

2008; Painsipp et al., 2011; Kelley et al., 2013; Schmuckermair et al., 2013). Treatment, time, and 

their interactions were treated as fixed effects due to interest in examining specific levels.  

 

Body weight (Day 0 to Day 2; Day 2 to Day 5) models 

Preliminary analysis determined that there were no differences from Day 5 to Day 7, within or 

between treatment groups (p-value > 0.1). As the maximum weight loss following BCG-treatment 

occurred on Day 2, analysis of body weights was split to more specifically model the body weight 

loss from Day 0 to Day 2, and body weight recovery from Day 2 to Day 5. 
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The model for body weight measurements from Day 0 to Day 2 and Day 2 to Day 5 without 

covariates was: 

𝑌𝑌𝑖𝑖𝑗𝑗𝑘𝑘 = 𝜇𝜇 + 𝑇𝑇𝑖𝑖 + 𝐷𝐷𝑗𝑗 + 𝑇𝑇𝐷𝐷𝑖𝑖𝑗𝑗 + 𝑒𝑒𝑖𝑖𝑗𝑗𝑘𝑘                  I 

Yijk = Body weight measurement of the kth mouse in the ith treatment (Ti); µ = The overall body 

weight mean across all mice; Ti = The ith fixed effect of treatment; Dk = The fixed effect of the jth 

day over which body weight was measured; TDij = The fixed effect of the interaction between ith 

treatment and jth day; eijk = The residual associated with the measurement Yijk. 

The full model, combining all tested covariates was: 

𝑌𝑌𝑖𝑖𝑗𝑗𝑘𝑘 =  𝜇𝜇 + 𝑇𝑇𝑖𝑖 + 𝐷𝐷𝑗𝑗 + 𝑇𝑇𝐷𝐷𝑖𝑖𝑗𝑗 + 𝑏𝑏1�𝐵𝐵𝑖𝑖𝑗𝑗𝑘𝑘 − 𝐵𝐵�� + 𝑏𝑏2�𝐿𝐿𝑖𝑖𝑗𝑗𝑘𝑘 − 𝐿𝐿�� + 𝑏𝑏3�𝑈𝑈𝑖𝑖𝑗𝑗𝑘𝑘 − 𝑈𝑈�� + 𝑏𝑏4�𝐸𝐸𝑖𝑖𝑗𝑗𝑘𝑘 − 𝐸𝐸̅� +

𝑏𝑏5�𝐴𝐴𝑖𝑖𝑗𝑗𝑘𝑘 − �̅�𝐴� + 𝑒𝑒𝑖𝑖𝑗𝑗𝑘𝑘                            II 

Yijk = Body weight measurement of the kth mouse in the ith treatment (Ti); µ = The overall body 

weight mean across all mice; Ti = The ith fixed effect of treatment; Dk = The fixed effect of the jth 

day over which body weight was measured; TDij = The fixed effect of the interaction between ith 

treatment and jth day; b1 = The regression coefficient for the linear covariate of body weight on 

Day -1 (Bijk); b2 = The regression coefficient for the linear covariate of forced swim measurement 

(Fijk); b3 = The regression coefficient for the linear covariate of tail suspension test immobility 

measurement (Uijk); b4 = The regression coefficient for the linear covariate of sucrose preference 

measurement (Sijk); b5 = The regression coefficient for the linear covariate of age (Aijk); eijk = The 

residual associated with the measurement Yijk. 
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Locomotor activity models 

The model for locomotor activity without covariates was: 

𝑌𝑌𝑖𝑖𝑗𝑗 =  𝜇𝜇 + 𝑇𝑇𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑗𝑗                  III 

Yij = The number of line-crossings in the jth mouse in the ith treatment (Ti); µ = The overall mean 

of line-crossings across all mice; Ti = The fixed effect of treatment; eij = The residual associated 

with the measurement Yij. 

The full locomotor activity model, combining all tested covariates was: 

𝑌𝑌𝑖𝑖𝑗𝑗 =  𝜇𝜇 + 𝑇𝑇𝑖𝑖 + 𝑏𝑏1�𝑂𝑂𝑖𝑖𝑗𝑗 −  𝑂𝑂�� + 𝑏𝑏2�𝐵𝐵𝑖𝑖𝑗𝑗 −  𝐵𝐵�� + 𝑏𝑏3�𝐿𝐿𝑖𝑖𝑗𝑗 −  𝐿𝐿�� + 𝑏𝑏4�𝐿𝐿𝑖𝑖𝑗𝑗 −  𝐿𝐿��
2

+ 𝑏𝑏5�𝑈𝑈𝑖𝑖𝑗𝑗 −  𝑈𝑈�� +

𝑏𝑏6�𝐸𝐸𝑖𝑖𝑗𝑗 −  𝐸𝐸̅� + 𝑏𝑏7�𝐴𝐴𝑖𝑖𝑗𝑗 −  �̅�𝐴� + 𝑒𝑒𝑖𝑖𝑗𝑗                     IV 

Yij = Number of line-crossings from the jth mouse in the ith treatment (Ti); µ = The overall mean of 

line-crossings across all mice; Ti = The fixed effect of treatment; b1 = The regression coefficient 

for the covariate of the testing order (Oij); b2 = The regression coefficient for the covariate of body 

weight measurement on Day -1 (Bij); b3, b4 = The regression coefficients for the linear and 

quadratic covariates of forced swim test measurement (Fij), respectively; b5 = The regression 

coefficient for the covariate of tail suspension test immobility measurement (Uij); b6 = The 

regression coefficient for the covariate of the sucrose preference measurement (Sij); b7 = The 

regression coefficient for the covariate of age (Aij); eij = The residual associated with the 

measurement Yij. 
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Rearing models 

The model for rearing without covariates was: 

𝑌𝑌𝑖𝑖𝑗𝑗 =  𝜇𝜇 + 𝑇𝑇𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑗𝑗                   V 

Yij = Number of rearings in the jth mouse in the ith treatment (Ti); µ = The overall mean of rearings 

across all mice; Ti = The fixed effect of treatment; eij = The residual associated with the 

measurement Yij. 

The full rearing model, combining all tested covariates was: 

𝑌𝑌𝑖𝑖𝑗𝑗 =  𝜇𝜇 + 𝑇𝑇𝑖𝑖 + 𝑏𝑏1�𝑂𝑂𝑖𝑖𝑗𝑗 −  𝑂𝑂�� + 𝑏𝑏2�𝐵𝐵𝑖𝑖𝑗𝑗 −  𝐵𝐵�� + 𝑏𝑏3�𝐿𝐿𝑖𝑖𝑗𝑗 −  𝐿𝐿�� + 𝑏𝑏4�𝑈𝑈𝑖𝑖𝑗𝑗 −  𝑈𝑈�� + 𝑏𝑏5�𝐸𝐸𝑖𝑖𝑗𝑗 −  𝐸𝐸̅� +

𝑏𝑏6�𝐴𝐴𝑖𝑖𝑗𝑗 −  �̅�𝐴� + 𝑏𝑏7�𝐴𝐴𝑖𝑖𝑗𝑗 −  �̅�𝐴�
2

+ 𝑒𝑒𝑖𝑖𝑗𝑗                      VI 

Yij = Number of rearings from the jth mouse in the ith treatment (Ti); µ = The overall mean of 

rearings across all mice; Ti = The fixed effect of treatment; b1 = The regression coefficient for the 

covariate of the testing order (Oij); b2 = The regression coefficient for the covariate of body weight 

measurement on Day -1 (Bij); b3 = The regression coefficient for the covariate of forced swim test 

measurement (Fij); b4 = The regression coefficient for the covariate of tail suspension test 

immobility measurement (Uij); b5 = The regression coefficient for the covariate of the sucrose 

preference measurement (Sij); b6, b7 =The regression coefficients for the linear and quadratic 

covariates of age (Aij), respectively; eij = The residual associated with the measurement Yij. 

 

  

62 
 



Forced swim test models 

The model for forced swim test without covariates was: 

𝑌𝑌𝑖𝑖𝑗𝑗 =  𝜇𝜇 + 𝑇𝑇𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑗𝑗                VII 

Yij = Forced swim test immobility measurement in the jth mouse in the ith treatment (Ti); µ = The 

overall mean of forced swim test immobility across all mice; Ti = The fixed effect of treatment; eij 

= The residual associated with the measurement Yij. 

The full forced swim test model, combining all tested covariates was: 

𝑌𝑌𝑖𝑖𝑗𝑗 =  𝜇𝜇 + 𝑇𝑇𝑖𝑖 + 𝑏𝑏1�𝐵𝐵𝑖𝑖𝑗𝑗 −  𝐵𝐵�� + 𝑏𝑏2�𝐸𝐸𝑖𝑖𝑗𝑗 −  𝐸𝐸�� + 𝑏𝑏3�𝑃𝑃𝑖𝑖𝑗𝑗 −  𝑃𝑃�� + 𝑏𝑏4�𝐿𝐿𝑖𝑖𝑗𝑗 −  𝐿𝐿�� + 𝑏𝑏5�𝑅𝑅𝑖𝑖𝑗𝑗 −  𝑅𝑅�� +

𝑏𝑏6�𝐴𝐴𝑖𝑖𝑗𝑗 −  �̅�𝐴� + 𝑒𝑒𝑖𝑖𝑗𝑗               VIII 

Yij = Forced swim test immobility measurement from the jth mouse in the ith treatment (Ti); µ = The 

overall mean; Ti = The ith fixed effect of treatment; b1 = the regression coefficient for the covariate 

of body weight measurement on Day -1 (Bij); b2 = the regression coefficient for the covariate of 

body weight loss between Day 0 and Day 2 (Eij); b3 = the regression coefficient for the covariate 

of recovering body weight between Day 2 and Day 5 (Pij); b4 = the regression coefficient for the 

covariate of the locomotor activity measurement (Lij); b5 = the regression coefficient for the 

covariate of rearing measurement (Rij); b6 = the regression coefficient for the covariate of age (Aij); 

eij = the residual associated with the measurement Yij. 
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Tail suspension test models 

The model for tail suspension test without covariates was: 

𝑌𝑌𝑖𝑖𝑗𝑗 =  𝜇𝜇 + 𝑇𝑇𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑗𝑗                 XI 

Yij = Tail suspension test immobility measurement in the jth mouse in the ith treatment (Ti); µ = The 

overall mean of tail suspension test immobility across all mice; Ti = The fixed effect of treatment; 

eij = The residual associated with the measurement Yij. 

The full tail suspension test model, combining all tested covariates was: 

𝑌𝑌𝑖𝑖𝑗𝑗 =  𝜇𝜇 + 𝑇𝑇𝑖𝑖 + 𝑏𝑏1�𝐵𝐵𝑖𝑖𝑗𝑗 − 𝐵𝐵�� + 𝑏𝑏2�𝐸𝐸𝑖𝑖𝑗𝑗 −  𝐸𝐸�� + 𝑏𝑏3�𝑃𝑃𝑖𝑖𝑗𝑗 − 𝑅𝑅�� + 𝑏𝑏4�𝑃𝑃𝑖𝑖𝑗𝑗 − 𝑃𝑃��
2

+ 𝑏𝑏5�𝑃𝑃𝑖𝑖𝑗𝑗 − 𝑃𝑃��
3

+

𝑏𝑏6�𝐿𝐿𝑖𝑖𝑗𝑗 −  𝐿𝐿�� + 𝑏𝑏7�𝑅𝑅𝑖𝑖𝑗𝑗 −  𝑅𝑅�� + 𝑏𝑏8�𝐴𝐴𝑖𝑖𝑗𝑗 −  �̅�𝐴� + 𝑒𝑒𝑖𝑖𝑗𝑗               X 

Yij = Tail suspension immobility measurement from the jth mouse in the ith treatment (Ti); µ = The 

overall mean of tail suspension test immobility across all mice; Ti = the ith fixed effect of treatment; 

b1 = the regression coefficient for the covariate of body weight measurement on Day -1 (Bij); b2 = 

the regression coefficient for the covariate of body weight loss between Day 0 and Day 2 (Eij); b3, 

b4, b5  = the regression coefficients for the linear, quadratic, and cubic covariates of recovering 

body weight between Day 2 and Day 5 (Pij), respectively; b6 = the regression coefficient for the 

covariate of the locomotor activity measurement (Lij); b7 = the regression coefficient for the 

covariate of rearing measurement (Rij); b8 = the regression coefficient for the covariate of age (Aij); 

eij = the residual associated with the measurement Yij. 
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Sucrose preference models 

The model for sucrose preference test without covariates was: 

𝑌𝑌𝑖𝑖𝑗𝑗 =  𝜇𝜇 + 𝑇𝑇𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑗𝑗                 XI 

Yij = Sucrose preference test measurement in the jth mouse in the ith treatment (Ti); µ = The overall 

mean of sucrose preference test measurement across all mice; Ti = The fixed effect of treatment; 

eij = The residual associated with the measurement Yij. 

The full sucrose preference test model, combining all tested covariates was: 

𝑌𝑌𝑖𝑖𝑗𝑗 =  𝜇𝜇 + 𝑇𝑇𝑖𝑖 + 𝑏𝑏1�𝐵𝐵𝑖𝑖𝑗𝑗 −  𝐵𝐵�� + 𝑏𝑏2�𝐼𝐼𝑖𝑖𝑗𝑗 −  𝐼𝐼�̅ + 𝑏𝑏3�𝐸𝐸𝑖𝑖𝑗𝑗 −  𝐸𝐸�� + 𝑏𝑏4�𝑃𝑃𝑖𝑖𝑗𝑗 −  𝑃𝑃�� + 𝑏𝑏5�𝐿𝐿𝑖𝑖𝑗𝑗 −  𝐿𝐿�� +

𝑏𝑏6�𝑅𝑅𝑖𝑖𝑗𝑗 −  𝑅𝑅�� + 𝑏𝑏7�𝐴𝐴𝑖𝑖𝑗𝑗 −  �̅�𝐴� + 𝑏𝑏8�𝐴𝐴𝑖𝑖𝑗𝑗 −  �̅�𝐴�
2

+ 𝑏𝑏9�𝐴𝐴𝑖𝑖𝑗𝑗 −  �̅�𝐴�
3

+ 𝑒𝑒𝑖𝑖𝑗𝑗         XII 

Yij = Sucrose preference measurement from the jth mouse in the ith treatment (Trti); µ = The overall 

mean for sucrose preference measurements across all mice; Ti = The fixed effect of treatment; b1 

= the regression coefficient for the covariate of body weight measurement on Day -1 (Bij); b2 = the 

regression coefficient for the covariate of sucrose preference measurements on Day -1 (Iij); b3  = 

the regression coefficient for the covariate of body weight loss between Day 0 and Day 2 (Eij); b4  

= the regression coefficient for the covariate of recovering body weight between Day 2 and Day 5 

(Pij); b5 = the regression coefficient for the covariate of the locomotor activity measurement (Lij); 

b6 = the regression coefficient for the covariate of rearing measurement (Rij);  b7, b8, b9 = The 

regression coefficients for the linear, quadratic, and cubic regression coefficients for the covariate 

of age (Aij), respectively; eij = The residual associated with the measurement Yij. 
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Model Comparisons 

For each indicator, a model without covariates was first tested (Eq. I, III, V, VII, IX, XI). To 

determine the order of the relationship between a tested indicator and each covariate, covariate 

terms were preliminarily tested for a linear, quadratic, or cubic relationship. The full models listed 

(Eq. II, IV, VI, VIII, X, and XII) include all covariate terms at the order of their best performing 

relationship. Residuals were calculated from each model. Comparison of nested models relied 

upon the log likelihood ratio, Akaike’s Information Criteria (AIC; Akaike, 1974), the corrected 

AIC (AICC), and the Bayesian Information Criterion (BIC; Schwarz, 1978) in combination 

(Anderson, 2008). Improvement was determined as the reduction in value of the likelihood ratio 

and criteria. Significance of a likelihood ratio reduction was tested with a Chi-square distribution, 

with the degrees of freedom calculated as the difference in parameterization between the models. 

While differences in the information criteria cannot be tested against a known distribution for 

significance, their comparisons are important to avoiding the tendency in log likelihood 

comparisons for over-parameterization (Anderson, 2008). Instead, the comparing nested models 

by the values of their metric criteria followed qualitative descriptions (Raftery, 1996). All 

combinations were tested, although no combination of more than three covariates demonstrated 

model improvement for an indicator. All covariates were nested within the BCG-treatment group, 

with differences between observed and predicted values used for tests of normality and 

homogeneity of variance. Model designs for each indicator were compared in PROC MIXED 

using maximum likelihood estimates, with REML estimates used when testing for significant 

terms within models (SAS Institute, Cary, NC). Model residuals (from the REML estimates) were 

checked for normality with a Kolmogorov-Smirnov test using PROC UNIVARIATE, and for 

homogeneity of variance using the Brown-Forsythe test with PROC GLM. For the repeated 
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measurements of body weight, the repeated statement in PROC MIXED was used. For repeated 

measures, the non-zero covariance among measures can be represented and thus modeled with the 

inclusion of an appropriate structure (Kaps and Lamberson, 2004). To model the covariance 

structure in the repeated measurements, structures studied included: Variance Components; 

Banded; Unstructured; Autoregressive 1; Heterogeneous Autoregressive 1; and Compound 

Symmetry. A Chi-squared test was used to test for homogeneity of variance in repeated structures 

once an appropriate model and structure were selected. 

 

2.4 Results 

Initial measurements of Body weight and sucrose preference on Day -1 were not significantly 

different between treatment groups (BW: p-value = 0.78; SP: p-value = 0.39). The same set of 

covariates were tested for preliminary measurements of body weight and sucrose preference as in 

modeling of later measurements of body weight and sucrose preference, which also found no 

significant treatment effect. The repeated structure of the body weight measurements was 

adequately modeled by an autoregressive order 1 structure. 

 

Sickness indicators 

Body weight loss results from Day 0 to Day 2 remained stable in regards to treatment effect across 

the tested models (Eq. I; Eq. II). The inclusion of body weight at Day -1 as a linear covariate (Eq. 

XIII) significantly improved log likelihood (𝛸𝛸12 < 0.01), with a strong improvement in all three 

criteria (Table 2.1). No fuller model including additional covariates demonstrated significant 

likelihood ratio improvement over the Day -1 body weight model. All other models without Day 
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-1 body weight, whether a single covariate or in combinations, showed no significant improvement 

in likelihood ratio improvement over the basic model (Eq. I). The model including Day -1 body 

weights satisfied homogeneity of variance (𝛸𝛸42 > 0.1). There was a significant interaction between 

treatment and time (approximate R2 = 0.96; p-value < 0.0001) with High BCG treated mice losing 

the most weight from Day 0 to Day 2 at 3.01 g ± 0.22 g. Over the same time, Low BCG treated 

mice lost 1.62 g ± 0.20 g, while the control treatment showed a non-significant gain of 0.35 g ± 

0.19 g. One notable change with the inclusion of covariates into the model, was the detection of a 

significant post-hoc difference between High BCG and Low BCG body weights at Day 2 (p-value 

= 0.0007) which was not detectable in the basic model (p-value = 0.68).  

𝑌𝑌𝑖𝑖𝑗𝑗𝑘𝑘 =  𝜇𝜇 + 𝑇𝑇𝑖𝑖 + 𝐷𝐷𝑗𝑗 + 𝑇𝑇𝐷𝐷𝑖𝑖𝑗𝑗 + 𝑏𝑏1�𝐵𝐵𝑖𝑖𝑗𝑗𝑘𝑘 − 𝐵𝐵�� + 𝑒𝑒𝑖𝑖𝑗𝑗𝑘𝑘           XIII 

Yijk = Body weight measurement of the kth mouse in the ith treatment (Ti); µ = The overall body 

weight mean across all mice; Ti = The ith fixed effect of treatment; Dk = The fixed effect of the jth 

day over which body weight was measured; TDij = The fixed effect of the interaction between ith 

treatment and jth day; b1 = The regression coefficient for the linear covariate of body weight on 

Day -1 (Bijk); eijk = The residual associated with the measurement Yijk. 

 

When modeling later body weights from Day 2 to Day 5 (Table 2.2), the time by treatment 

interaction was found significant regardless of covariates (Eq. I; p-value < 0.05). Modeling also 

followed a similar trend for fit improvement, with the inclusion of Day -1 body weights as a linear 

covariate (Eq. XIII) providing a significant improvement in likelihood ratio (𝛸𝛸42 > 0.1) and strong 

improvement across all three information criteria (Table 2.2). As with measuring body weight 

from Day 0 to Day 2, no other covariates individually or in combination showed an improvement 

68 
 



over their nested reduced models. Where likelihood ratios and the information criteria did not 

agree, however, was in determination of homogeneity of variance. The model for body weights 

from Day 2 to Day 5 (Eq. XIII) showed significant improvement in likelihood ratio by considering 

homogeneity of variance by treatment (approximate R2 = 0.82; 𝛸𝛸42 < 0.05) and a positive 

improvement in the AIC. However, the BIC showed a very weak improvement with a difference 

of only 0.5 while the AICC showed a weak worsening of the model. Interaction of time and 

treatment was significant under both structures (p-value < 0.01), and both BCG treatment levels 

showed significant (p-value < 0.01) increases in weight between days with High BCG mice gaining 

0.68 g between Day 2 and Day 3. Body weight differences became non-significant by Day 4 to 

Day 5 (p-value > 0.1). Over the same period, no changes to body weight were found in the Control 

mice (p-value > 0.1). 

 

Locomotor activity showed no significant effect of BCG treatment when modeled without 

covariates (Eq. III; p-value > 0.1). Model fit significantly improved as determined by log 

likelihood ratio with the addition of forced swim test in a quadratic relationship (𝛸𝛸22 < 0.05), and 

was improved further by including age in a linear relationship (𝛸𝛸12 < 0.01; Eq. XIV; Table 2.3). 

This model identified a significant effect of treatment (approximate R2 = 0.71; p-value < 0.01) 

based upon a reduction of 15 line-crossings in locomotor activity in the High BCG treatment group 

compared to the control group over the test period (p-value < 0.01). 

𝑌𝑌𝑖𝑖𝑗𝑗 =  𝜇𝜇 + 𝑇𝑇𝑖𝑖 + 𝑏𝑏1�𝐿𝐿𝑖𝑖𝑗𝑗 −  𝐿𝐿�� + 𝑏𝑏2�𝐿𝐿𝑖𝑖𝑗𝑗 −  𝐿𝐿��
2

+ 𝑏𝑏3�𝐴𝐴𝑖𝑖𝑗𝑗 −  �̅�𝐴� + 𝑒𝑒𝑖𝑖𝑗𝑗       XIV 

Yij = Number of line-crossings from the jth mouse in the ith treatment (Ti); µ = The overall mean of 

line-crossings across all mice; Ti = The fixed effect of treatment; b1, b2 = The regression 
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coefficients for the linear and quadratic covariates of forced swim test measurement (Fij), 

respectively; b3 = The regression coefficient for the covariate of age (Aij); eij = The residual 

associated with the measurement Yij. 

 

Rearing showed a borderline treatment effect when modeled without any covariates (p-value = 

0.06). Including a quadratic covariate of age was the best fitting model with a single covariate, 

strongly improving all three criteria as well as significant difference in likelihood ratio (𝛸𝛸22 < 0.01; 

Table 2.4). Including the age covariate resulted in a significant treatment effect (p-value < 0.05). 

Larger models continued to improve up to including the quadratic age, forced swim test, and 

sucrose preference test covariates (approximate R2 = 0.77; Eq. XV). Using this model, control 

mice on average performed 11 more rearings than High BCG mice over the test period (p-value < 

0.01). The AICC criterion did show a weak penalty for the additional terms, but weak improvement 

for both the AIC and BIC, as well as a significant difference in likelihood ratio. All of the models 

including covariates maintained the significant treatment effect (p-value < 0.05). 

𝑌𝑌𝑖𝑖𝑗𝑗 =  𝜇𝜇 + 𝑇𝑇𝑖𝑖 + 𝑏𝑏1�𝐿𝐿𝑖𝑖𝑗𝑗 −  𝐿𝐿�� + 𝑏𝑏2�𝐸𝐸𝑖𝑖𝑗𝑗 −  𝐸𝐸̅� + 𝑏𝑏3�𝐴𝐴𝑖𝑖𝑗𝑗 −  �̅�𝐴� + 𝑏𝑏4�𝐴𝐴𝑖𝑖𝑗𝑗 −  �̅�𝐴�
2

+ 𝑒𝑒𝑖𝑖𝑗𝑗       XV 

Yij = Number of rearings from the jth mouse in the ith treatment (Ti); µ = The overall mean of 

rearings across all mice; Ti = The fixed effect of treatment; b1 = The regression coefficient for the 

covariate of forced swim test measurement (Fij); b2 = The regression coefficient for the covariate 

of the sucrose preference measurement (Sij); b3, b4 =The regression coefficients for the linear and 

quadratic covariates of age (Aij), respectively; eij = The residual associated with the measurement 

Yij. 
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Depression-like behavior indicators 

Regardless of the exclusion (Eq. VII) or inclusion (Eq. VIII) of covariates in the model, no 

significant effect of treatment was found in forced swim testing (p-value > 0.1). Including rearing 

data in a linear relationship was the best single covariate for the model by likelihood ratio (Eq. 

XVI; 𝛸𝛸12 < 0.05), with no significant improvements over this model from including additional 

covariates (Table 2.5). However the criteria scores for the model were only moderately improved, 

with only weak change to AICC and positive improvements to both the AIC and BIC (approximate 

R2 = 0.04).  

𝑌𝑌𝑖𝑖𝑗𝑗 =  𝜇𝜇 + 𝑇𝑇𝑖𝑖 + 𝑏𝑏1�𝑅𝑅𝑖𝑖𝑗𝑗 −  𝑅𝑅�� + 𝑒𝑒𝑖𝑖𝑗𝑗            XVI 

Yij = Forced swim test immobility measurement from the jth mouse in the ith treatment (Ti); µ = The 

overall mean of forced swim test immobility; Ti = The ith fixed effect of treatment; b1 = the 

regression coefficient for the covariate of rearing measurement (Rij); eij = the residual associated 

with the measurement Yij. 

 

Tail suspension data also showed no significant treatment effect when the model did not include 

covariates (Eq. XI; p-value > 0.1), while model residuals also indicated a borderline deviation 

from normality in the residuals (Kolmogorov-Smirnov p-value = 0.0605). However including 

body weight from Day 2 to Day 5 as a cubic covariate (Eq. XVII) improved the model by all 

measurements against the model without covariates (Eq. XI), with a significant reduction in the 

log likelihood ratio (𝛸𝛸32 < 0.05) while reporting the lowest criteria of all tested models (Table 2.6). 

By including body weights from Day 2 to Day 5 as a cubic covariate (Eq. XVII), the model 

detected a borderline significant effect of treatment while rescuing residual normality, with High 
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BCG mice spending an additional 58 seconds immobile than control mice over the test period 

(approximate R2 = 0.53; p-value = 0.055; KS p-value > 0.1).  

𝑌𝑌𝑖𝑖𝑗𝑗 =  𝜇𝜇 + 𝑇𝑇𝑖𝑖 + 𝑏𝑏1�𝑃𝑃𝑖𝑖𝑗𝑗 − 𝑅𝑅�� + 𝑏𝑏2�𝑃𝑃𝑖𝑖𝑗𝑗 − 𝑃𝑃��
2

+ 𝑏𝑏3�𝑃𝑃𝑖𝑖𝑗𝑗 − 𝑃𝑃��
3

+ 𝑒𝑒𝑖𝑖𝑗𝑗       XVII 

Yij = Tail suspension immobility measurement from the jth mouse in the ith treatment (Ti); µ = The 

overall mean of tail suspension test immobility across all mice; Ti = the ith fixed effect of treatment; 

b1, b2, b3 = the regression coefficients for the linear, quadratic, and cubic covariates of recovering 

body weight between Day 2 and Day 5 (Pij), respectively; eij = the residual associated with the 

measurement Yij. 

 

No treatment effect was found in sucrose preference when modeled without covariates (Eq. XI; 

p-value > 0.1). However when mouse age was included as a cubic covariate (Eq. XVIII), 

likelihood ratio was significantly improved (𝛸𝛸32 < 0.01). While all criteria agreed that there was 

some improvement by including age as a cubic covariate, it was a very weak improvement to AICC 

compared to the model without covariates (Eq. XI), a strong improvement in AIC, and a positive 

improvement to BIC (Table 2.7). The inclusion of the cubic age covariate also identified a 

significant effect of treatment (approximate R2 = 0.59; p-value < 0.05). Among the treatments in 

the model including the cubic covariate of age, there was a greater difference between the High 

BCG and control groups, a difference of 0.12 in sucrose preference (p-value < 0.03) with a smaller 

difference when comparing Low BCG to control (p-value < 0.05). Residuals from all reported 

models of sucrose preference displayed normality and homogeneity of variance (data not shown). 
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𝑌𝑌𝑖𝑖𝑗𝑗 =  𝜇𝜇 + 𝑇𝑇𝑖𝑖 + 𝑏𝑏1�𝐴𝐴𝑖𝑖𝑗𝑗 − �̅�𝐴� + 𝑏𝑏2�𝐴𝐴𝑖𝑖𝑗𝑗 − �̅�𝐴�
2

+ 𝑏𝑏3�𝐴𝐴𝑖𝑖𝑗𝑗 − �̅�𝐴�
3

+ 𝑒𝑒𝑖𝑖𝑗𝑗     XVIII 

Yij = Sucrose preference measurement from the jth mouse in the ith treatment (Trti); µ = The overall 

mean for sucrose preference measurements across all mice; Ti = The fixed effect of treatment; b1, 

b2, b3 = The regression coefficients for the linear, quadratic, and cubic regression coefficients for 

the covariate of age (Aij), respectively; eij = The residual associated with the measurement Yij. 

 

2.5 Discussion 

When modeling body weight changes from Day 0 to Day 2 by treatment and time, the estimates 

of treatment effect were not greatly impacted by inclusion of covariates in the model. Still, the 

criteria of model fit were improved with a subsequent sensitivity that enabled identification of 

differences between the BCG treatment levels at Day 2. For modeling later body weight changes, 

the inclusion of Day -1 body weights is recommended (Table 2.2). This model reinforced that 

body weights increased in both BCG treatment levels from Day 2 to Day 5, as opposed to no 

change over the same period when given saline (p-value > 0.1). Univariate modeling of locomotor 

activity and rearing presents some complexities, as previous studies have indicated no significant 

(Kwon et al., 2012; Kelley et al., 2013), significant (O’Connor et al., 2009), or borderline 

significant (Painsipp et al., 2013) treatment effects in locomotory measurements at Day 7. The 

inclusion of covariates appears to expose several underlying relationships between locomotor 

measurements and the other indicators, with implications to the use of locomotor activity as a proof 

of separation between sickness and depression behaviors (Vijaya Kumar et al., 2014). No 

significant effect of treatment was found in forced swim testing, with or without covariates 

included in the model (p-value > 0.1). Including rearing in a linear relationship was the best model 

by likelihood ratio with varying improvements to criteria (Table 2.5). The effect of BCG treatment 
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upon forced swim testing has varied among univariate studies (Moreau et al., 2008; O’Connor et 

al., 2009). However the exploration of the underlying relationships between locomotor activity, 

rearing, and other indicators is perhaps better suited to multivariate studies. 

 

Tail suspension data was perhaps more affected by the inclusion of covariates, improving model 

fit while also identifying a previously unidentified borderline significant effect of treatment (Table 

2.6; p-value = 0.055). Despite the forced swim and tail suspension tests measuring the same 

behavior (Dedic et al., 2011) and clustering together in multivariate studies (Rodriguez-Zas et al., 

2015), their respective optimum models did not share the same covariates. In fact, the tail 

suspension test was the only mobility-based indicators that did not benefit from including other 

mobility-based indicators as covariates (Table 2.6). Thus, including mobility-based indicators as 

covariates during the modeling of tail suspension is discouraged, while including weight recovery 

data is instead recommended. 

 

Sucrose preference was clearly benefitted by the inclusion of covariates (Eq. XVIII), significantly 

improving the log likelihood ratio the criteria, although the AICC showed only very weak 

improvement (Table 2.7). Additionally, including age as a covariate with a cubic relationship 

detected a significant treatment effect (p-value < 0.05) that was not found without the age 

covariate. Previous univariate studies did not identify significant treatment effects in sucrose 

preference following BCG treatment, although covariation was not examined or focused upon the 

impact of behavioral indicators (Moreau et al., 2008; Rodriguez-Zas et al., 2015). Age can 

significantly impact changes in sucrose preference (Kelley et al., 2013), a behavioral measurement 
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sensitive to disruption without sufficient internal control (Strekalova et al., 2011). Age-matching 

is a common control in behavioral studies, yet the strength of this covariation suggests controlling 

for even small age differences among mice can greatly improve the sensitivity of sucrose 

preference testing. In addition to the consideration of covariates, multivariate analysis is an 

additional approach that can provide complementary information to the univariate analysis 

presented in this study (Rodriguez-Zas et al., 2015). 

 

In conclusion, univariate modeling of behavioral indicators is a historically popular method of 

analysis. Mice treated with BCG displayed a reduction in body weight by Day 2 post-treatment, 

with changes in body weight between days becoming non-significant by Day 5. There was a 

borderline significant effect of BCG treatment on tail suspension immobility at Day 6, and a 

significant effect of BCG on sucrose preference at Day 7. Several sickness and depression 

indicators have a detectable treatment effect when univariate modeling is improved by including 

covariates. Modeling sucrose preference can be improved by including mouse age, while a 

covariate of body weight recovery after treatment can improve the modeling of tail suspension 

data. For measurements that have much stronger signaling, the benefit of covariates was limited 

to model fit rather than a change in significance. The interaction between time and treatment in 

body weight modeling were an example, with the same set of effects found significant across all 

model designs. Locomotor and rearing were not strongly benefited by inclusion of the other tested 

indicators as covariates. Univariate models can benefit from the inclusion of covariate terms. 
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2.7 Figures 

 
Figure 2.1. Timeline of measurement for behavioral indicators and body weight 
Timeline indicating the order of experimental measurements in relation to treatment. 
Body Weight was measured daily at the beginning of the dark cycle, starting with one 
day before treatment (Day -1). A preliminary measurement of sucrose and water 
consumption was also measured on Day -1. The mobility-based sickness and depression 
indicators of locomotor activity (LMA), rearing, tail suspension test (TST), and forced 
swim test (FST) were measured on Day 6. For the schedule of Day 6, mice were weighed 
at the beginning of the dark cycle as usual, with LMA and rearing measured immediately 
after. Upon their completion, FST was performed on all mice followed shortly thereafter 
by TST. Consumption of sucrose and water were measured on Day 7 with animal 
weights for the sucrose preference indicator. 
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2.8 Tables 

Table 2.1 Models of mouse body weight from Day 0 to Day 2, from 
simplest (no covariates included) to fullest. Higher order relationships 
(quadratic or cubic) for covariates included all lower order relationships. 
Model rows demonstrating improvement over lower complexity designs 
are in white, with the final model selection in bold. 

Covariates included in the model  Model criteria 
IBW FST TST SP Age DF AIC AICC BIC -2 LL 

- - - - - 40 151.1 156.9 161.5 129.1 
IBW - - - - 39 118.7 125.8 130.1 94.7 
IBW2 - - - - 38 120.5 129 132.8 94.5 
IBW3 - - - - 37 122.1 132.1 135.3 94.1 

- FST - - - 39 153 160.1 164.3 129 
- FST2 - - - 38 154 162.4 166.2 128 
- FST3 - - - 37 155.8 165.8 169 127.8 
- - TST - - 39 152 159.1 163.3 128 
- - TST2 - - 38 152.7 161.2 165 126.7 
- - TST3 - - 37 152 162 165.2 124 
- - - SP - 39 153.1 160.2 164.4 129.1 
- - - SP2 - 38 154.7 163.2 167 128.7 
- - - SP3 - 37 156.5 166.5 169.7 128.5 
- - - - Age 39 150.7 157.8 162 126.7 
- - - - Age2 38 151.6 160 163.8 125.6 
- - - - Age3 37 153.5 163.5 166.8 125.5 

IBW FST - - - 38 120.7 129.2 133 94.7 
IBW - TST - - 38 120.7 129.2 133 94.7 
IBW - - SP - 38 120.1 128.6 132.4 94.1 
IBW - - - Age 38 120.7 129.2 133 94.7 

- FST TST - - 38 154 162.5 166.3 128 
- FST - SP - 38 155 163.5 167.3 129 
- FST - - Age 38 152.7 161.1 165 126.7 
- - TST SP - 38 154 162.4 166.3 128 
- - TST - Age 38 150.8 159.2 163 124.8 
- - - SP Age 38 152.6 161 164.9 126.6 

 

IniBW: body weight at Day -1; FST: Forced swim test; TST: Tail suspension test; SP: 
Sucrose preference at Day 7; DF: Error degrees of freedom; AIC: Akaike Information 
Criterion; AICC: corrected AIC; BIC: Bayesian Information Criterion; -2 LL: -2 Log 
Likelihood. 

 

  

82 
 



Table 2.2 Models of mouse body weight from Day 2 to Day 5, from 
simplest (no covariates included) to fullest. Higher order relationships 
(quadratic or cubic) for covariates included all lower order relationships. 
Model rows demonstrating improvement over lower complexity designs 
are in white, with the final model selection in bold. 
Covariates included in the model  Model criteria 
IBW FST TST SP Age DF AIC AICC BIC -2 LL 

- - - - - 55 133.1 140 146.3 105.1 
IBW - - - - 54 114.3 122.3 128.4 84.3 
IBW2 - - - - 53 116.2 125.5 131.4 84.2 
IBW3 - - - - 52 118.2 128.7 134.2 84.2 

- FST - - - 54 135.1 143.1 149.2 105.1 
- FST2 - - - 53 134.8 144 149.9 102.8 
- FST3 - - - 52 136.6 147.2 152.7 102.6 
- - TST - - 54 133.7 141.7 147.8 103.7 
- - TST2 - - 53 132.9 142.1 148 100.9 
- - TST3 - - 52 133 143.5 149 99 
- - - SP - 54 135.1 143.1 149.2 105.1 
- - - SP2 - 53 137 146.2 152.1 105 
- - - SP3 - 52 138.9 149.5 155 104.9 
- - - - Age 54 133.6 141.6 147.8 103.6 
- - - - Age2 53 135.3 144.5 150.4 103.3 
- - - - Age3 52 137.3 147.8 153.3 103.3 

IBW FST - - - 53 116.1 125.3 131.2 84.1 
IBW - TST - - 53 116 125.2 131.1 84 
IBW - - SP - 53 115.5 124.7 130.6 83.5 
IBW - - - Age 53 116.2 125.5 131.4 84.2 

- FST TST - - 53 135.6 144.8 150.7 103.6 
- FST - SP - 53 137.1 146.3 152.2 105.1 
- FST - - Age 53 135.6 144.8 150.7 103.6 
- - TST SP - 53 135.7 144.9 150.8 103.7 
- - TST - Age 53 133.4 142.6 148.5 101.4 
- - - SP Age 53 135.6 144.8 150.7 103.6 

 

IBW: body weight at Day -1; FST: Forced swim test; TST: Tail suspension test; SP: 
Sucrose preference at Day 7; DF: Error degrees of freedom; AIC: Akaike Information 
Criterion; AICC: corrected AIC; BIC: Bayesian Information Criterion; -2 LL: -2 Log 
Likelihood. 
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Table 2.3 Models of mouse locomotor activity, from simplest (no 
covariates included) to fullest. Higher order relationships (quadratic or 
cubic) for covariates included all lower order relationships. Model rows 
demonstrating improvement over lower complexity designs are in white, 
with the final model selection in bold. 
Covariates included in the model  Model criteria 
O IBW FST TST SP Age DF AIC AICC BIC -2 LL 
- - - - - - 15 150.3 153.2 154.1 142.3 
O - - - - - 14 151.7 156.3 156.4 141.7 
- IBW - - - - 14 149.9 154.5 154.6 139.9 
- IBW2 - - - - 13 151.7 158.7 157.4 139.7 
- IBW3 - - - - 12 153.1 163.3 159.7 139.1 
- - FST - - - 14 151 155.6 155.8 141 
- - FST2 - - - 13 146.1 153.1 151.7 134.1 
- - FST3 - - - 12 146.3 156.5 152.9 132.3 
- - - TST - - 14 152.1 156.7 156.8 142.1 
- - - TST2 - - 13 153.8 160.8 159.4 141.8 
- - - TST3 - - 12 151.2 161.4 157.8 137.2 
- - - - SP - 14 152 156.6 156.8 142 
- - - - SP2 - 13 153.9 160.9 159.6 141.9 
- - - - SP3 - 12 155.9 166.1 162.5 141.9 
- - - - - Age 14 150.5 155.1 155.2 140.5 
- - - - - Age2 13 152.4 159.4 158.1 140.4 
- - - - - Age3 12 154.4 164.6 161 140.4 
O IBW - - - - 13 151.7 158.7 157.3 139.7 
O - FST2 - - - 12 138.1 148.3 144.7 124.1 
O - - TST - - 13 153.6 160.6 159.3 141.6 
O - - - SP - 13 153.5 160.5 159.2 141.5 
O - - - - Age 13 151.9 158.9 157.5 139.9 
- IBW FST2 - - - 12 144.9 155.1 151.5 130.9 
- IBW - TST - - 13 151 158 156.7 139 
- IBW - - SP - 13 151.4 158.4 157.1 139.4 
- IBW - - - Age 13 151.1 158.1 156.8 139.1 
- - FST2 TST - - 12 148 158.1 154.6 134 
- - FST2 - SP - 12 147.7 157.9 154.3 133.7 
- - FST2 - - Age 12 138.3 148.5 144.9 124.3 
- - - TST SP - 13 153.8 160.8 159.4 141.8 
- - - TST - Age 13 152.4 159.4 158.1 140.4 
- - - - SP Age 13 152.4 159.4 158 140.4 

 

O: Order of testing; IBW: Body weight at Day -1; FST: Forced swim test; TST: Tail 
suspension test; SP: Sucrose preference at Day 7; DF: Error degrees of freedom; AIC: 
Akaike Information Criterion; AICC: corrected AIC; BIC: Bayesian Information 
Criterion; -2 LL: -2 Log Likelihood. 
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Table 2.4 Models of mouse rearing, from simplest (no covariates included) 
to fullest. Higher order relationships (quadratic or cubic) for covariates 
included all lower order relationships. Model rows demonstrating 
improvement over lower complexity designs are in white, with the final 
model selection in bold. 
Covariates included in the model  Model criteria 
O IBW FST TST SP Age DF AIC AICC BIC -2 LL 
- - - - - - 15 150.3 153.2 154.1 142.3 
O - - - - - 14 151.7 156.3 156.4 141.7 
- IBW - - - - 14 149.9 154.5 154.6 139.9 
- IBW2 - - - - 13 151.7 158.7 157.4 139.7 
- IBW3 - - - - 12 153.1 163.3 159.7 139.1 
- - FST - - - 14 123.7 128.4 128.5 113.7 
- - FST2 - - - 13 125.7 132.7 131.4 113.7 
- - FST3 - - - 12 126.5 136.7 133.2 112.5 
- - - TST - - 14 128.9 133.5 133.6 118.9 
- - - TST2 - - 13 130.5 137.5 136.2 118.5 
- - - TST3 - - 12 130.5 140.7 137.1 116.5 
- - - - SP - 14 125.3 130 130.1 115.3 
- - - - SP2 - 13 126 133 131.7 114 
- - - - SP3 - 12 128 138.1 134.6 114 
- - - - - Age 14 128.7 133.3 133.5 118.7 
- - - - - Age2 13 121.7 128.7 127.3 109.7 
- - - - - Age3 12 123 133.2 129.6 109 
O IBW - - - - 13 130.4 137.4 136.1 118.4 
O - FST - - - 13 125.7 132.7 131.4 113.7 
O - - TST - - 13 130.9 137.9 136.5 118.9 
O - - - SP - 13 127.3 134.3 132.9 115.3 
O - - - - Age2 12 123.5 133.7 130.1 109.5 
- IBW FST - - - 13 125.5 132.5 131.1 113.5 
- IBW - TST - - 13 130.4 137.4 136 118.4 
- IBW - - SP - 13 127 134 132.7 115 
- IBW - - - Age2 12 123 133.2 129.6 109 
- - FST TST - - 13 125.1 132.1 130.7 113.1 
- - FST - SP - 13 119.1 126.1 124.7 107.1 
- - FST - - Age2 12 117.6 127.8 124.2 103.6 
- - - TST SP - 13 127.3 134.3 133 115.3 
- - - TST - Age2 12 123.6 133.8 130.2 109.6 
- - - - SP Age2 12 121.9 132.1 128.5 107.9 
- - FST - SP Age2 11 115.2 129.6 122.7 99.2 

 

O: Order of testing; IBW: Body weight at Day -1; FST: Forced swim test; TST: Tail 
suspension test; SP: Sucrose preference at Day 7; DF: Error degrees of freedom; AIC: 
Akaike Information Criterion; AICC: corrected AIC; BIC: Bayesian Information 
Criterion; -2 LL: -2 Log Likelihood. 
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Table 2.5 Models of forced swim test immobility, from simplest (no covariates) to 
fullest. Higher order relationships (quadratic, cubic) for covariates include all lower 
order relationships. Models demonstrating improvement are in white, final model is in 
bold. 

Covariates included in the model  Model criteria 
IBW BW0-2 BW2-5 LMA Rear Age DF AIC AICC BIC -2 LL 

- - - - - - 15 199.2 202.1 203 191.2 
IBW - - - - - 14 201 205.6 205.8 191 
IBW2 - - - - - 13 202.5 209.5 208.2 190.5 
IBW3 - - - - - 12 204.5 214.7 211.1 190.5 

- BW0-2 - - - - 14 201.2 205.8 205.9 191.2 
- BW0-22 - - - - 13 202.5 209.5 208.2 190.5 
- BW0-23 - - - - 12 202.4 212.6 209 188.4 
- - BW2-5 - - - 14 200.2 204.8 204.9 190.2 
- - BW2-52 - - - 13 201.5 208.5 207.1 189.5 
- - BW2-53 - - - 12 202.4 212.6 209 188.4 
- - - LMA - - 14 199.9 204.6 204.7 189.9 
- - - LMA2 - - 13 201.7 208.7 207.3 189.7 
- - - LMA3 - - 12 198.9 209.1 205.5 184.9 
- - - - Rear - 14 196.1 200.7 200.8 186.1 
- - - - Rear2 - 13 195.9 202.9 201.6 183.9 
- - - - Rear3 - 12 197.5 207.7 204.1 183.5 
- - - - - Age 14 200.8 205.4 205.5 190.8 
- - - - - Age2 13 202.3 209.3 207.9 190.3 
- - - - - Age3 12 201.8 212 208.4 187.8 

IBW BW0-2 - - - - 11 203 210 208.7 191 
IBW - BW2-5 - - - 11 202.2 209.2 207.9 190.2 
IBW - - LMA - - 11 201.1 208.1 206.8 189.1 
IBW - - - Rear - 11 198.1 205.1 203.7 186.1 
IBW - - - - Age 11 202.7 209.7 208.4 190.7 

- BW0-2 BW2-5 - - - 11 202.1 209.1 207.8 190.1 
- BW0-2 - LMA - - 11 201.9 208.9 207.6 189.9 
- BW0-2 - - Rear - 11 198.1 205.1 203.8 186.1 
- BW0-2 - - - Age 11 202.7 209.7 208.4 190.7 
- - BW2-5 LMA - - 11 201.4 208.4 207.1 189.4 
- - BW2-5 - Rear - 11 198.1 205.1 203.7 186.1 
- - BW2-5 - - Age 11 201.6 208.6 207.3 189.6 
- - - LMA Rear  11 197.8 204.8 203.4 185.8 
- - - LMA - Age 11 200.8 207.8 206.4 188.8 
- - - - Rear Age 11 197.2 204.2 202.8 185.2 

 

IBW: Body weight at Day -1; BW0-2: Body weight change from Day 0 to Day 2; BW2-5: Body weight 
change from Day 2 to Day 5; LMA: Locomotor activity; Rear: Rearing; DF: Error degrees of freedom; 
AIC: Akaike Information Criterion; AICC: corrected AIC; BIC: Bayesian Information Criterion; -2 LL: 
-2 Log Likelihood. 
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Table 2.6 Models of tail suspension test immobility, from simplest (no covariates) to fullest. 
Higher order relationships (quadratic, cubic) for covariates include all lower order 
relationships. Models demonstrating improvement are in white, final model is in bold. 

Covariates included in the model  Model criteria 
IBW BW0-2 BW2-5 LMA Rear Age DF AIC AICC BIC -2 LL 

- - - - - - 15 218.4 221.3 222.2 210.4 
IBW - - - - - 14 219.2 223.8 223.9 209.2 
IBW2 - - - - - 13 219.6 226.6 225.3 207.6 
IBW3 - - - - - 12 219.1 229.3 225.7 205.1 

- BW0-2 - - - - 14 220.4 225.1 225.2 210.4 
- BW0-22 - - - - 13 221.2 228.2 226.9 209.2 
- BW0-23 - - - - 12 221.4 231.6 228 207.4 
- - BW2-5 - - - 14 219.7 224.3 224.4 209.7 
- - BW2-52 - - - 13 221.3 228.3 227 209.3 
- - BW2-53 - - - 12 215.3 225.5 221.9 201.3 
- - - LMA - - 14 220.2 224.8 224.9 210.2 
- - - LMA2 - - 13 222.1 229.1 227.8 210.1 
- - - LMA3 - - 12 217.4 227.6 224.1 203.4 
- - - - Rear - 14 220.4 225.1 225.2 210.4 
- - - - Rear2 - 13 222.3 229.3 228 210.3 
- - - - Rear3 - 12 220.8 231 227.4 206.8 
- - - - - Age 14 220 224.6 224.7 210 
- - - - - Age2 13 221.9 228.9 227.6 209.9 
- - - - - Age3 12 223.8 234 230.4 209.8 

IBW BW0-2 - - - - 13 221.1 228.1 226.8 209.1 
IBW - BW2-53 - - - 11 215.6 230 223.1 199.6 
IBW - - LMA - - 13 220.3 227.3 225.9 208.3 
IBW - - - Rear - 13 221.1 228.1 226.8 209.1 
IBW - - - - Age 13 219.7 226.7 225.3 207.7 

- BW0-2 BW2-53 - - - 11 217.2 231.6 224.8 201.2 
- BW0-2 - LMA - - 13 222.2 229.2 227.9 210.2 
- BW0-2 - - Rear - 13 222.4 229.4 228.1 210.4 
- BW0-2 - - - Age 13 221.9 228.9 227.6 209.9 
- - BW2-53 LMA - - 11 217.2 231.6 224.7 201.2 
- - BW2-53 - Rear - 11 217.3 231.7 224.8 201.3 
- - BW2-53 - - Age 11 217.2 231.6 224.7 201.2 
- - - LMA Rear - 13 222.2 229.2 227.9 210.2 
- - - LMA - Age 13 221.9 228.9 227.5 209.9 
- - - - Rear Age 13 221.9 228.9 227.6 209.9 

 

IBW: Body weight at Day -1; BW0-2: Body weight change from Day 0 to Day 2; BW2-5: Body weight change 
from Day 2 to Day 5; LMA: Locomotor activity; Rear: Rearing; DF: Error degrees of freedom; AIC: Akaike 
Information Criterion; AICC: corrected AIC; BIC: Bayesian Information Criterion; -2 LL: -2 Log Likelihood. 
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Table 2.7 Sucrose preference, from simplest (no covariates) to fullest. Higher order 
relationships (quadratic, cubic) for covariates include all lower order relationships. Models 
demonstrating improvement are in white, final model is in bold. 

Covariates included in the model  Model criteria 
IBW ISP BW0-2 BW2-5 LMA Rear Age DF AIC AICC BIC -2 LL 

- - - - - - - 15 -26.1 -23.2 -22.3 -34.1 
IBW - - - - - - 14 -24.2 -19.6 -19.5 -34.2 
IBW2 - - - - - - 13 -22.3 -15.3 -16.6 -34.3 
IBW3 - - - - - - 12 -20.7 -10.5 -14.1 -34.7 

- ISP - - - - - 14 -24.1 -19.5 -19.4 -34.1 
- ISP 2 - - - - - 13 -22.1 -15.1 -16.5 -34.1 
- ISP 3 - - - - - 12 -20.1 -10 -13.5 -34.1 
- - BW0-2 - - - - 14 -24.1 -19.5 -19.3 -34.1 
- - BW0-22 - - - - 13 -22.1 -15.1 -16.4 -34.1 
- - BW0-23 - - - - 12 -20.1 -9.9 -13.5 -34.1 
- - - BW2-5 - - - 14 -25.9 -21.3 -21.2 -35.9 
- - - BW2-52 - - - 13 -24.1 -17.1 -18.4 -36.1 
- - - BW2-53 - - - 12 -22.1 -11.9 -15.5 -36.1 
- - - - LMA - - 14 -24.3 -19.7 -19.6 -34.3 
- - - - LMA2 - - 13 -22.6 -15.6 -16.9 -34.6 
- - - - LMA3 - - 12 -20.8 -10.6 -14.2 -34.8 
- - - - - Rear - 14 -27.6 -23 -22.9 -37.6 
- - - - - Rear2 - 13 -27.6 -20.6 -21.9 -39.6 
- - - - - Rear3 - 12 -27 -16.8 -20.4 -41 
- - - - - - Age 14 -24.5 -19.8 -19.7 -34.5 
- - - - - - Age2 13 -24.1 -17.1 -18.5 -36.1 
- - - - - - Age3 12 -33.7 -23.5 -27 -47.7 

 

IBW: Body weight at Day -1; ISP: Sucrose preference at Day -1; BW0-2: Body weight change from Day 0 to 
Day 2; BW2-5: Body weight change from Day 2 to Day 5; LMA: Locomotor activity; Rear: Rearing; DF: Error 
degrees of freedom; AIC: Akaike Information Criterion; AICC: corrected AIC; BIC: Bayesian Information 
Criterion; -2 LL: -2 Log Likelihood. 
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CHAPTER III: Analytical workflow profiling gene expression in murine macrophages1 

S. E. Nixon, D. González-Peña, M. A. Lawson, R. H. McCusker, A. G. Hernandez, J. C. 

O’Connor, R. Dantzer, K. W. Kelley, and S. L. Rodriguez-Zas 

 

3.1 Abstract 

Comprehensive and simultaneous analysis of all genes in a biological sample is a capability of 

RNA-Seq technology. Analysis of the entire transcriptome benefits from summarization of genes 

at the functional level. As a cellular response of interest not previously explored with RNA-Seq, 

peritoneal macrophages from mice under two conditions (control and immunologically 

challenged) were analyzed for gene expression differences. Quantification of individual transcripts 

modeled RNA-Seq read distribution and uncertainty (using a Beta Negative Binomial 

distribution), then tested for differential transcript expression (False Discovery Rate-adjusted p-

value < 0.05). Enrichment of functional categories utilized the list of differentially expressed 

genes. A total of 2,079 differentially expressed transcripts representing 1,884 genes were detected. 

Enrichment of 92 categories from Gene Ontology Biological Processes and Molecular Functions, 

and KEGG pathways were grouped into 6 clusters. Clusters included defense and inflammatory 

response (Enrichment Score = 11.24) and ribosomal activity (Enrichment Score = 17.89). Our 

work provides a context to the fine detail of individual gene expression differences in murine 

peritoneal macrophages during immunological challenge with high throughput RNA-Seq. 

  

1 This chapter has been published as an open-access manuscript in the Journal of Bioinformatics and Computational 
Biology (13). The rights to reprint were retained by the authors. 
Nixon, S.E., González-Peña, D., Lawson, M.A., McCusker, R.H., Hernandez, A.G., O’Connor, J.C., Dantzer, R., 
Kelley, K.W., Rodriguez-Zas, S.L. (2015). Analytical workflow profiling gene expression in murine macrophages. 
Journal of Bioinformatics and Computational Biology, 13(2): 1550010. 
http://dx.doi.org/10.1142/S0219720015500109  
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3.2 Introduction 

Identification and analysis of an individual gene may offer limited insights.  While genes serve as 

one of the smallest units by which biological change can be measured, critical information comes 

from considering the sum of their individual effects. Expanding the “snapshot view” available for 

differential expression motivates a drive towards the enlargement of analyses from single gene 

studies with quantitative real-time PCR to microarrays, and more recently RNA-Seq (Oshlack et 

al., 2010). 

 

The range of tools available for RNA-Seq analysis, as well as the tools themselves, undergoes a 

rapid pace of modification. These changes demand a thorough understanding of how the tools 

operate to choose appropriate settings for a particular experiment. Without a singular accepted 

method or settings to address all applications, transcriptomics relies upon the validation of data 

quality and controls (Van Verk et al., 2013). TopHat, Cufflinks, and Cuffdiff comprise a set of 

tools for analyzing RNA-Seq datasets (Trapnell et al., 2012). These tools have gained popularity 

for the capability to handle intron-spanning reads, and options to address various biological- and 

technical-biases that are of concern during analysis (Trapnell et al., 2013).  

 

Mapping RNA reads to an annotated genome is one of the popular and well-established methods 

for differential expression testing between treatments in model organisms (Garber et al., 2011).  

With the potential to detect thousands of differentially expressed genes, organizing these 

differences into more interpretable groups becomes the purpose of downstream tools. One 

possibility that is explored here involves grouping the gene information into groups based upon 
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their functional actions, a form of gene set enrichment (Huang et al., 2009). This study examines 

the capability of an RNA-Seq based workflow to evaluate transcriptomic changes. Efficient 

identification of differentially expressed genes and the functions they impact elucidates their 

modification of the biological state between treatments. The novelty of this experiment is in the 

application of RNA-Seq and the associated algorithms to a particular biological model, the analysis 

of peritoneal macrophages from Bacille Calmette-Guérin (BCG)-challenged mice compared to 

those receiving a saline control (Moreau et al., 2005). This challenge has been associated with 

substantial changes in sickness and depression-like indicators (Rodriguez-Zas et al., 2015). The 

characterization of the transcriptome during immunological resolution and behavioral transition 7 

days after initial challenge is of interest. RNA-Seq has yet to be applied to characterize the 

transcriptome at this time point (Moreau et al., 2008; O’Connor et al., 2009; Platt et al., 2013).  

The application of RNA-Seq and downstream methods to analyze changes in transcriptomics in 

this model has not been reported, providing a new level of capability in constructing an 

inflammation-induced immunological response profile. Transcript profiles were further studied 

and interpreted using functional enrichment analyses to uncover categories that may be over-

represented among particular profiles. 

 

3.3 Materials and Methods 

RNA-Seq technology was used to study changes in gene expression in macrophages taken from 

mice following a previously established immune-challenge model (O’Connor et al., 2009). Male 

adult (~22 weeks of age; n=6/group) C57BL/6J mice were injected into the peritonium with TICE 

strain BCG (Organon USA Inc., USA) or equal volume (10mg) physiological saline (Control). 

Utilizing the same inbred strain as used for the Mouse Genome Project minimizes genetic 
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variations that could hinder mapping (Levy et al., 2007). RNA was isolated from macrophages 

collected from the peritoneal cavity 7 d post-challenge (Reno et al., 1997; Zhang et al., 2008). This 

timing of collection was selected to capture transcriptome changes during a period of 

immunological and behavioral transitions (Platt et al., 2013; Rodriguez-Zas et al., 2015). 

 

Library Sequencing and Abundance Quantification 

The workflow of RNA-Seq data analysis is presented in Fig. 3.1. Transcriptomic analysis with 

RNA-Seq involves producing libraries of reads that represent gene transcripts from the samples 

for quantitative comparison. Individual mouse RNA-Seq libraries were sequenced using Illumina 

HiSeq2000 (Illumina, San Diego, CA) to produce paired-end 100-bp reads, summarized as “left” 

and “right” reads. One library of reads per biological sample was examined for sequencing errors 

prior to mapping to genome and transcriptome features. Quality control of sequence reads used 

FastQC (Babraham Institute, 2013; Fig. 3.2). Quality was determined by the reported score at each 

base position (> 30), a Qphred quality value which is the negative logarithmic transformation of 

the estimated probability of error (Eq. 1; Cock et al., 2010). 

𝑄𝑄𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = −10 𝑥𝑥 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑃𝑃𝑒𝑒) 

Reads were mapped to the mouse genome (GRCm38) and assembled using TopHat2 (TopHat 

v2.0.9) and Cufflinks and analyzed using Cuffmerge, and Cuffdiff 2 (v2.1.1; Trapnell et al., 2012; 

Fig. 1).  TopHat2 maps reads via the use of Bowtie2, the core read-alignment program, while 

TopHat2 deals with splicing concerns from mapping intron-spanning RNA reads to a DNA 

genome (Trapnell et al., 2012).  Due to the computational scale of mapping millions of reads to 

large genomes, Bowtie2 implements Burrows-Wheeler transformation to efficiently scan the 
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genome during mapping (Langmead and Salzberg, 2012). TopHat2 was chosen for its two-step 

method to deal with spliced alignments and preferential alignment of reads onto real genes from 

an annotation (Kim et al., 2013). 

 

Reads were assembled based upon mapping information into gene transcripts, with transcripts 

quantified by condition for differential comparison as elaborated in Trapnell et al. (2012). The 

Cufflinks program (http://cufflinks.cbcb.umd.edu/) takes the mapping information from TopHat2, 

and assembles the reads back into the biologically-relevant transcripts that would have produced 

them. Cufflinks offers optional assembly methods that correct for biological and technical biases, 

including biases in Illumina’s read-creation process (Hansen et al., 2010). Options to correct for 

fragment bias during transcription priming with random hexamers  and estimation of appropriate 

counting for those reads that can map to multiple sites were used (Mortazavi et al., 2008; Roberts 

et al., 2011). Upper Quartile normalization was enabled for its superior performance compared to 

the default Total Count method available in Cufflinks (Dillies et al., 2013). 

 

Cuffdiff 2 (referred to from here on simply as “Cuffdiff”) performs differential expression testing 

between conditions by checking if each gene follows a beta negative binomial distribution. The 

beta negative binomial distribution can account for potential overdispersion between groups or 

uncertainty in read counts that may otherwise be ignored by simpler models (Trapnell et al., 2013).  

Before any testing for significance, all loci in the genome first needed a minimum number of 

fragment alignments (10 fragments; Test Status “OK”). Genes within a locus could be analyzed 

for significance after this minimum alignment (MA) within Cuffdiff was satisfied. Of those genes 
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in locations with > 10 fragment alignments, a list of genes exhibiting significant differential 

expression between conditions (False Discovery Rate or FDR-adjusted p-value < 0.05) was 

obtained. The genes were named based upon annotation available from the UCSC database 

(Karolchik et al., 2014; www.genome.ucsc.edu). 

 

Functional Analysis 

Two complementary approaches were used to identify functional categories among transcript 

profiles. Enrichment based on the hypergeometric test applied to a list of differentially abundant 

transcript isoforms and gene set enrichment analysis (GSEA) of all transcript isoforms based on 

the Kolmogorov-Smirnov statistics were evaluated (Subramanian et al., 2005).  Gene Ontological 

(GO; Ashburner et al., 2000; www.geneontology.org) terms related to Biological Process (BP) and 

Molecular Function (MF) were tested, along with the Kyoto Encyclopedia of Genes and Genomes 

(KEGG)-Pathway database (Kanehisa et al., 2008; http://www.genome.jp/kegg). For the 

hypergeometric test, functional category enrichment and functional annotation clustering were 

performed in the Database for Annotation, Visualization, and Integrated Discovery (DAVID; 

Huang et al., 2009). Specifically the GO FAT categories within DAVID were tested, a filter of GO 

categories to minimize repetition of general categories and to focus on more specific term 

identification. Individual categories in DAVID are deemed enriched by using a one-tailed 

jackknifed Fisher exact test, the EASE score (Hosack et al., 2003). The downstream functional 

annotation clustering of these categories used Enrichment Score, calculated as the –log scale 

geometric mean of the EASE scores of member categories (Serão et al., 2013). 
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For the purposes of clustering, DAVID by default considers categories individually by their EASE 

score (EASE ≤ 0.1) without concern for experiment-wide false-detection (Hosack et al., 2003). To 

avoid errors related to multiple tests, categories were only considered enriched if they were 

significant at FDR-adjusted EASE score based p-value < 0.1 (Delfino and Rodriguez-Zas, 2013). 

Cluster Enrichment Scores were re-calculated to reflect the remaining member categories 

(Enrichment Score > 4). The GSEA methodology was implemented using the software package 

GSEA-P and enrichment was tested against the functional categories present in the Molecular 

Signature Database (MSigDB, (Subramanian et al., 2005). The recommended GSEA FDR-

adjusted p-value < 0.25 threshold was used in agreement with the statistical testing implemented 

(Subramanian et al., 2005). Categories consistent between the hypergeometric and GSEA 

approaches are reported and discussed. These results are robust to differences in assumptions and 

methodologies between the approaches. 

 

Network Visualization 

Network designs can offer information on relationships between categories, within and across 

clusters. Using the categories enriched in both DAVID and GSEA methods as input, networks 

were created with the Enrichment Map plugin (Merico et al., 2010) for Cytoscape 

(http://www.cytoscape.org; Killcoyne et al., 2009). In the networks, enriched categories are 

represented by nodes and relationships between categories as edges. An edge between two node 

categories required at least a 50% overlap in enriching member genes from the Cuffdiff output 

gene list (similarity coefficient > 0.5). Node size represented a greater number of enriching 

member genes, while edge thickness represented the range of overlap coefficients from 0.5 to 1. 

Finally, nodes were colored by the direction of enrichment for member genes. Red nodes had at 
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least 60% of enriching member genes over-expressed in the BCG treatment versus control. Blue 

nodes had at least 60% of enriching member genes under-expressed in the BCG treatment versus 

control, and nodes were grey if enriching member genes were split between over-expression and 

under-expression. 

 

3.4 Results 

The quality control was evaluated for every sample. No evidence of low quality reads was observed 

within the samples, with quality scores greater than 30 across the entire length of the reads. Quality 

scores were similarly high across both Control and BCG groups (Fig 3.2). Scores ranged between 

30 and 40, indicating accuracies between 99.9% and 99.99% for the bases at those positions. Based 

upon the observed quality of the sample data as well as the read filtering internal to TopHat2, 

trimming was not needed. 

 

The RNA-Seq reads produced 54 ± 8.5 million reads and 64 ± 6 million paired-end reads of 100 

bp in length per sample for Control and BCG, respectively. On average 91% of total reads mapped 

to the genome for both Control and BCG. The percentage of reads per sample that successfully 

mapped to the genome ranged from 74% to 95%, the same range as the percentage of reads that 

produced aligning pairs (Table 3.1). 

 

Following evaluation of read quality, their assembly into transcripts produced over 60,000 

transcripts among all samples. Prior to differential testing between the groups, these transcripts 
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were filtered based upon sufficient alignment coverage and experiment-wide significance cut-offs. 

The number of differentially expressed transcripts between Control and BCG groups was 2,079 

(Table 3.2; 1,373: FDR p-value < 0.01; 706: 0.01 < FDR p-value < 0.05), representing 1,884 

genes. 

 

Among the differentially expressed genes, 802 were under-expressed in BCG versus control, 

indicating similar quantity of up- and down-regulated genes post-challenge. However, there was 

a predominance of genes over-expressed in BCG relative to Control among the most significant 

profiles. The most significantly differentially expressed genes (FDR p-value < 0.01) are listed 

separately for those over- (Table 3.3) and under- (Table 3.4) expressed in BCG versus Control, 

together with supporting references when previously associated with macrophage populations 

and their immunological response profile. 

 

Functional categorization of the gene list resulted in 92 significantly enriched terms (BP: 69 terms; 

MF: 20 terms; KEGG: 3 terms; FDR p-value < 0.1; not listed). Clustering the enriched terms 

further reduced the list to 6 highly enriched clusters (Enrichment Score > 4), listed by score in 

Table 3.5. Clusters were dominated by GO Biological Process terms as they were the majority of 

the significantly enriched term list, with terms in the clusters underscoring the activation and 

regulation of the immune system following challenge. These clusters accounted for 24 of the 

significantly enriched terms. Constructing a network from the clustered terms and any connected 

(overlap coefficient > 0.5) enriched terms, neither Clusters 1 or 4 had any external connections 
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while the other clusters were directly or indirectly connected along with 8 additional non-clustered 

terms (Figure 3.3). 

 

3.5 Discussion 

Quality control of the input reads is an important step to successful downstream mapping.  Once 

the reads were determined to be of high quality, the filtering controls implemented by TopHat2 

prior to mapping  made additional trimming of the reads unnecessary (Table 3.1; Trapnell et al., 

2009). Percentages of mapped reads were similar to those reported in previous high-stringency 

methods, and approached the percentages seen when previously tested on simulated error-free data 

(Mende et al., 2012; Kim et al., 2013). The mapping capability of aligners like TopHat2 is 

dependent upon the genome and annotation, meaning unmapped reads may include those 

associated with transcripts not yet represented in the annotation. Findings from these RNA-Seq 

confirmed several results from previous studies that used similar models and quantitative real-time 

PCR or microarray technologies and uncovered additional profiles and enriched categories.  This 

study centered on one type of peripheral macrophage, collected at one time point and using a 

specific collection method on macrophage activation status.  A longitudinal study of additional 

macrophage populations using alternative collection methods is necessary for extrapolation of our 

findings to wider conditions. 

 

The workflow described here effectively identifies genes that are differentially expressed during 

an immunological challenge and clusters these results based upon functionality. Significantly 

differentially expressed genes illustrated the extended expression response after BCG-challenge. 
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Among the over-expressed genes, the most over-expressed gene S100a9 works as a heterodimer 

with S100a8, also found to be in the over-expressed list (Table 3.3). As both are associated with 

inflammatory events and are inducible in mature macrophages, their presence after BCG-challenge 

is expected (Ehrchen et al., 2009). The over-expression of CCL5 and CXCL10 (Table 3.3) was 

also unsurprising, considering the inhibitory action of IL-10 upon both, and that reduced IL-10 

levels were associated with increased resistance to intracellular pathogens (Moore et al., 2001) 

such as BCG (Il10, Table 3.4). The overexpression of Arg1 in the BCG group is consistent with 

previous work studying the effect of this challenge in macrophages (Speranza et al., 2010). Along 

with the most under-expressed gene in BCG compared to Control, Retnla, these indicate under-

expression of Th2-associated genes due to the classic Th1-response to BCG (Gordon and Martinez, 

2010; Pesce et al., 2009). It is interesting to find Mt1 and Il10 together in the under-expressed 

category. Although studies were previously performed in T cells, Mt1/Mt2-deficient mice were 

found to produce increased levels of Il10 following an immune challenge with anti-CD3/CD28 

(Wu et al., 2013). Still, the role of metallothionein genes during immune challenges and 

inflammation are not fully elucidated, and low expression of Mt1 supports the proinflammatory 

nature of the response at the measured time-point (Inoue et al., 2009). Direct association in the 

literature between macrophages and the under-expressed gene Ptprcap was less clear, although it 

has been found in the monocyte precursors to macrophages (Thamilarasan et al., 2013). However, 

Ptprcap is known as a CD45-associate, regulating the interaction of CD45 with other proteins. As 

CD45 regulates apoptosis, this may explain the relationship to immune-challenge (Dupéré-Minier 

et al., 2010). Although the number of differentially expressed genes were similarly split between 

over-expressed and under-expressed in the BCG relative to the control group, a more stringent 

significance cutoff found a predominance of genes over-expressed in the BCG group. These results 
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are consistent with other reports of over-expression in the microglia of genes associated with 

inflammation response in response to an inflammatory challenge (Lee et al., 2014; Przanowski et 

al., 2014). 

 

Table 3.5 summarizes the enriched functional categories consistently detected by the 

hypergeometric test and GSEA approaches. Enrichment analysis highlighted the biological 

response of macrophages to an immunological challenge (Inflammation-based defense responses; 

clusters 2 and 3 in Table 5). Clustering was effective at identifying cytokine and chemokine 

activity in immune cells that are typically associated with activation of macrophages (Mantovani 

et al., 2004) and apoptosis as a part of the response to intracellular pathogens including 

Mycobacteria (Danelishvili et al., 2010). Additional terms related to the regulation of cytokine 

production (GO:0001817) and their binding (GO:0019955), the interaction of cytokines with their 

receptors (KEGG mmu04060) and chemokine signaling (KEGG mmu04062) were not clustered, 

but enriched and connected to clustered terms (Figure 3.3). While not identified by the cluster 

method, GO categories related to the immune response (GO:0006955) and adaptive immune 

response (GO:0002250; GO:0002460) were connected in the network visualization and served as 

a link between apoptotic and inflammation-based cateogires. Categories previously associated 

with similar immune challenges (Marquis et al., 2011) were clustered to better clarify the 

transcriptomic differences between experimental groups. Several genes that were over-expressed 

in BCG relative to Control (Table 3.3) are affiliated to regulation of locomotion (Table 3.5) 

including Xcl1, Cxcl13, Cxcr2, Cxcl10, and Ccl5. These associations could be related to the typical 

amelioration of sickness behaviors and higher activity observed in mice 7 days post-challenge 

(O’Connor et al., 2009; Rodriguez-Zas et al., 2015). A ribosomal cluster (cluster 1) dominating 
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the list is expected, as protein regulation is at the core of immunological response (Mantovani et 

al., 2004). However network visualization showed that both the ribosomal cluster and 

carbohydrate-based binding clusters possessed enriching member genes that were unique when 

compared to the other immunologically based categories (Figure 3.3). The gene lists and resulting 

clusters from RNA-Seq technology allows for analysis based upon the shared and unique genes. 

In future studies, this response profile of immunologically-challenged peritoneal macrophages can 

be compared to similar constructed profiles of other cell populations or challenges to identify 

profile characteristics unique to each combination. 
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3.7 Figures 

 
Figure 3.1 RNA-Seq workflow, showing the analysis of each sample individually 
by Tophat and Cufflinks (inset) before the collective analysis of all samples in 
Cuffdiff to test for differential expression between conditions  
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Figure 3.2 Sample quality box-and-whisker graphs via FastQC illustrating 
quality scores across the read length from left to right  
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Figure 3.3 Network constructed from clustered terms and any connected (overlap 
coefficient > 0.5) enriched terms, with clusters from Table 3.5 circled and 
numbered 
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3.8 Tables 

Table 3.1 Read count of the paired-end (left/right) 
sample data 

Group Sample Reads1 Direction Mapped 
(%) 

Aligned 
Pairs 
(%) 

Ctrl 

1 48137202 Left 78 77 48137202 Right 81 

2 54465049 Left 94 92 54465049 Right 93 

3 50384929 Left 95 94 50384929 Right 95 

4 58747069 Left 95 94 58747069 Right 95 

5 68739003 Left 95 93 68739003 Right 94 

6 45314712 Left 92 88 45314712 Right 89 

BCG 

1 64092232 Left 75 74 64092232 Right 77 

2 72364837 Left 94 92 72364837 Right 94 

3 67524327 Left 95 94 67524327 Right 95 

4 61335634 Left 95 94 61335634 Right 95 

5 54744239 Left 94 93 54744239 Right 94 

6 62302008 Left 92 89 62302008 Right 90 
 

1 Number of reads for the sample, for each of the paired runs 
(direction) 
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Table 3.2 Transcript and gene counts within 
Cuffdiff 
 Total 

Tested 
MA > 
101 

Significant 
(FDR p-
value < 
0.05) 

Named 
Genes2 

Transcript 62490 29844 2258 2079 
Gene 23274 12009 1885 1884 

 

1 MA: minimum alignment; a locus (ie transcripts) 
needs at least this many fragments aligned before 
significance testing will be performed 
2 Named genes were determined using the UCSC 
database 
(http://genome.ucsc.edu) 
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Table 3.3 Twenty five genes showing the greatest differential over-expression 
in BCG relative to control (FDR p-value < 0.01) 

Gene Name1 Gene ID Log2 
(BCG/Control) 

Ref* 

S100a9 20202 10.08 Hickman 
Ly6i 57248 9.50 Martinez 
Asprv1 67855 9.44 Sohn, Stables 
Il1f9 215257 8.19 Ramadas, Stables 
Spon1 233744 8.02 Magee 
Nos2 18126 8.01 Ehrt, MacMicking 
S100a8 20201 7.69 Ehrt, Hickman 
Ccl8 20307 7.58 Liu 2013, Hickman 
Cxcr2 12765 7.50 Hickman 
Fcgr1 14129 6.03 Hickman 
Xcl1 16963 5.49 Stables, Kim 2004 
AW112010 107350 4.98 de Oliveira 
Lst1 16988 4.80 Mulcahy 
Oas3 246727 4.77 Kota 
Rsad2 58185 4.72 Magee 
Smpdl3b 100340 4.52 Osorio y Fortea 
Gbp2 14469 4.38 Ehrt, Beutner 
AA467197 433470 4.26 Gundra 
Ccl5 20304 3.99 Stables, Liu 2013 
Cxcl10 15945 3.81 Hickman 
Chi3l3 12655 3.81 Hickman 
Acsl1 14081 3.59 Magee 
Isg15 100038882 3.38 Magee 
Ifi27l2a 76933 2.65 Uhrin 
Arg1 11846 3.35 Hickman, Stables 

1 AA467197: expressed sequence AA467197; Acsl1: Acyl-CoA synthetase 
long-chain family member 1; Arg1: Arginase 1; Asprv1: Aspartic peptidase, 
retroviral-like 1; AW112010: Expressed sequence AW112010; Ccl5: 
Chemokine (C-C motif) ligand 5; Ccl8: Chemokine (C-C motif) ligand 8; 
Chi3l3: Chitinase-like 3; Cxcr2: Chemokine (C-X-C motif) receptor 2; 
Cxcl10: Chemokine (C-X-C motif) ligand 10; Fcgr1: Fc receptor, IgG, high 
affinity I; Gbp2: Guanylate binding protein 2; Ifi27l2a: Interferon, alpha-
inducible protein 27 like 2A; Il1f9: Interleukin 1 family, member 9; Isg15: 
ISG15 ubiquitin-like modifier; Lst1: Leukocyte specific transcript 1; Ly6i: 
Lymphocyte antigen 6 complex, locus I; Nos2: Nitric oxide synthase 2, 
inducible; Oas3: 2'-5' oligoadenylate synthetase 3; Rsad2: Radical S-adenosyl 
methionine domain containing 2; Smpdl3b: Sphingomyelin 
phosphodiesterase, acid-like 3B; Spon1: Spondin 1; S100a8: S100 calcium 
binding protein 8; S100a9: S100 calcium binding protein 9; Xcl1: Chemokine 
(C motif) ligand 1. 
*Literature associating the listed gene with a macrophage population 
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Table 3.4 Twenty five genes showing the greatest differential under-expression in 
BCG relative to control (FDR p-value < 0.01) 

Gene 
Name1 

Gene ID Log2 
(BCG/Control) 

Ref* 

Retnla 57262 -4.90 Pesce, Hickman 
Cxcl13 55985 -4.67 Magee, Stables, Hickman 
Cd209a 170786 -4.42 Stables 
Pf4 56744 -4.07 Hickman, Magee 
Fcrls 80891 -3.90 Hickman 
Adm 11535 -3.51 Hickman, Magee 
Lyve1 114332 -3.41 Schmieder 
Vsig4 278180 -3.19 Magee, Vogt 
Bank1 242248 -3.07 Gladue 
Il10 16153 -3.01 Hickman, Magee, Moore, Stables 
Cd83 12522 -2.87 Magee 
Faim3 69169 -2.79 Sigruener 
Blk 12143 -2.79 Magee 
Pou2af1 18985 -2.78 Magee 
Mmd 67468 -2.71 Liu 2012, Magee 
Cd79b 15985 -2.66 Hickman 
Bcar3 29815 -2.62 Osorio y Fortea 
Cd2 12481 -2.55 Magee 
Fabp4 11770 -2.43 Hickman, Magee 
Gimap6 231931 -2.36 Magee 
F13a1 74145 -2.35 Hickman 
Ptprcap 19265 -2.34 - 
Phgdh 236539 -1.94 Gundra 
Mt1 17748 -1.70 Espejo et al., 2005 
Wfdc17 100034251 -1.22 Karlstetter 

 

1 Adm: Adrenomedullin; Bank1: B cell scaffold protein with ankyrin repeats 1; 
Bcar3: Breast cancer anti-estrogen resistance 3; Blk: B lymphoid kinase; Cd2: Cd2 
antigen; Cd209a: Cd209a antigen; Cd79b: Cd79b antigen; Cd83: CD83 antigen; 
Cxcl13: Chemokine (C-X-C motif) ligand 13; Fabp4: Fatty acid binding protein 4, 
adipocyte; Faim3: Fas apoptotic inhibitory molecule 3; Fcrls: Fc receptor-like S, 
scavenger receptor; F13a1: Coagulation factor XIII, A1 subunit; Gimap6: GTPase, 
IMAP family member 6; Il10: Interleukin 10; Lyve1: Lymphatic vessel endothelial 
hyaluronan receptor 1; Mmd: Monocyte to macrophage differentiation-associated; 
Mt1: Metallothionein 1; Pf4: Platelet factor 4; Phgdh: 3-phosphoglycerate 
dehydrogenase; Pou2af1: POU domain, class 2, associating factor 1; Ptprcap: 
Protein tyrosine phosphatase, receptor type, C polypeptide-associated protein; 
Retnla: Resistin like alpha; Wfdc17: WAP four-disulfide core domain 17; Vsig4: 
V-set and immunoglobulin domain containing 4. 
*Literature associating the listed gene with a macrophage population 
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Table 3.5 List of member terms for each functional cluster  
(Enrichment Score > 4) 

Cluster 
Identifier 

ES 

(Genes)1 
Identifier  
(Genes)2 
 

Term Name 

1 17.89 
(98) 

GO:0006412 (69) Translation 
GO:0003735 (59) Structural Constituent of Ribosome 
GO:0005198 (85) Structural Molecule Activity 
Mmu03010 (60) Ribosome 

2 11.24 
(118) 

GO:0009611 (80) Response to Wounding 
GO:0006952 (92) Defense Response 
GO:0006954 (54) Inflammatory Response 

3 7.15 
(66) 

GO:0042330 (35) Taxis 
GO:0006935 (35) Chemotaxis 
GO:0007626 (46) Locomotory Behavior 
GO:0008009 (17) Chemokine Activity 
GO:0042379 (17) Chemokine Receptor Binding 
GO:0005125 (38) Cytokine Activity 

4 5.89 
(67) 

GO:0030246 (67) Carbohydrate Binding 
GO:0030247 (30) Polysaccharide Binding 
GO:0001871 (30) Pattern Binding 
GO:0005539 (27) Glycosaminoglycan Binding 

5 5.83 
(83) 

GO:0006915 (79) Apoptosis 
GO:0012501 (79) Programmed Cell Death 
GO:0008219 (83) Cell Death 
GO:0016265 (83) Death 

6 5.45 
(88) 

GO:0042981 (88) Regulation of Apoptosis 
GO:0043067 (88) Regulation of Programmed Cell Death 
GO:0010941 (88) Regulation of Cell Death 

 

1 ES: Enrichment Score; Listed below the ES is the number of genes enriching the 
cluster 
2 Member terms of the cluster, with the number of genes enriching that term in 
parentheses 
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CHAPTER IV: Differential gene expression and networks in murine microglia and 

peritoneal macrophages challenged with Bacillus Calmette-Guérin 

 

4.1 Abstract 

Transcriptomic studies have compared the resting profiles of several cell types, including 

microglia and peritoneal macrophages. However the exploration of transcriptome responses to 

immune-challenge are limited, despite being the primary role of immune cells. Bacille Calmette 

Guérin (BCG) is an inducer in mice for modeling chronic inflammation, resulting in acute sickness 

behaviors and chronic depressive-like behaviors. Brain microglia mediate behavioral changes in 

response to BCG, however the relationship between microglia and peripheral macrophage 

responses is incompletely understood. The objective of this study was to characterize the 

transcriptome profile of microglia and peritoneal macrophages one week after a peripheral BCG 

challenge, coinciding with depressive-like behavior changes, relative to saline-challenged 

controls. Profiles were then compared between microglia and peritoneal macrophages for unique 

and shared patterns of gene set enrichment which were visualized in networks. Using Cuffdiff, 

adequate read coverage (minimum read alignment > 10) was identified for 14,046 genes in 

microglia and 12,352 genes in peritoneal macrophages. The genes with adequate read coverage 

were tested for differential expression (False Discovery Rate-adjusted p-value < 0.05, log2 fold-

change > 1.5) between BCG and saline control treatments, with 11,738 of the genes tested in both 

cell types. In microglia, 147 genes showed significant differential expression, all over-expressed 

in the BCG versus control group. Peritoneal macrophages had 655 over-expresseed and 355 under-

expressed genes. The top 5 significantly over-expressed genes, BCG versus control, in microglia 

were Serum amyloid A3 (Saa3; fold-change 5.90), Cell adhesion molecule 3 (Cadm3; fold-change 
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5.14), Carbonic anhydrase 6 (Car6; fold-change 5.01), STEAP family member 4 (Steap4; fold-

change: 4.89), and Selectin, endothelial cell (Sele; fold-change: 4.80). While no genes met the 

fold-change cutoff for under-expression in microglia, the most under-expressed genes were 

Coiled-coil domain containing 162 (Ccdc162; fold-change: -1.21), Titin-cap (Tcap; fold-change: 

-1.15), Hemoglobin alpha, adult chain 1 (Hba-a1; fold-change: -1.10) and 2 (Hba-a2; fold-change: 

-1.09), and Resistin like alpha (Retnla; fold-change: -1.00). The most over-expressed genes for 

peritoneal macrophages were S100 calcium binding protein A9 (S100A9; fold-change: 10.11), 

MAS-related GPR, member A2a (Mrgpra2a; fold-change: 1.10), Stefin A2 like 1 (Stfa2l1; fold-

change: 10.03), Lymphocyte antigen 6 complex, locus I (Ly6i; fold-change: 9.42), and Aspartic 

peptidase, retroviral-like 1 (Asprv1; fold-change: 9.15). Top under-expressed genes in peritoneal 

macrophages were Protease, serine 37 (Prss37; fold-chagne: -3.49), Mucin-like 1 (Mucl1; fold-

change: -3.09), Reprimo, TP53 dependent G2 arrest mediator candidate (rprm; fold-chagne: -3.07), 

SRY (sex determining region Y)-box 7 (Sox7; fold-change: -3.01), with Retnla being the fifth 

most under-expressed gene for peritoneal macrophages (fold-change: -2.89) as well as microglia. 

All genes with adequate coverage were then entered into GSEA, testing for enriched gene sets in 

the Molecular Signature Database. Categories were tested separately, resulting in 3 analyses: GO 

Biological Processes and Molecular Functions, KEGG pathways, and REACTOME pathways. 

Across the tested categories, 60 gene sets (including 2,407 genes) were enriched (FDR-adjusted 

p-value < 0.05) in both microglia and peritoneal macrophages. Of the gene sets enriched in both 

cell types, 27 gene sets (including 287 genes) were enriched but exhibited opposing differential 

expression in microglia and peritoneal macrophages. Of the 27 gene sets, 15 over-expressed the 

BCG treatment group compared to the control group in microglia and under-expressed in 

macrophages. These 15 gene sets (including 123 genes) had a singular gene set (REACTOME 
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GPCR Downstream Signaling, REACT_14797) that did not share enriching member genes with 

the other 14, which were GO and REACTOME gene sets related to ribosomal activity, RNA 

metabolism, and protein synthesis sharing several genes from the Ribosomal protein S (Rps) and 

Ribosomal protein L (Rpl) families. The remaining 12 gene sets (including 164 genes) were over-

expressed in the BCG treatment versus control in peritoneal macrophages, included respiratory 

electron transport chain gene sets (REACTOME) sharing several enriching gene members with 

KEGG gene sets related to neurodegenerative disorders, and REACTOME gene sets related to the 

regulation of cell-cycle, Ornithine Decarboxylase, APOBEC3G, and cross-presentation. This 

indicates a simultaneous over-expression of genes in BCG treatment versus control associated with 

apoptosis, energy metabolism, and cell-cycle regulation, primary macrophage methods of 

controlling intracellular pathogens that are also under-expressed in microglia to maintain a 

neuroprotective state. 

 

4.2 Introduction 

Macrophages are a heterogeneous group of resident immune cell in tissues (Gordon and 

Plűddemann, 2013). Among these groups, macrophage-like brain microglia and peritoneal 

macrophages share the common role as first-responders and communicators during immunological 

challenge (Davies et al., 2013). However microglia are considered to be primarily tasked with 

maintenance of normal functions in the central nervous system, greatly impacting their ability to 

respond to inflammatory events compared to macrophages (Prinz and Priller, 2014; London et al., 

2013). This perhaps helps explain the identification of a core gene-expression profile signature 

shared among macrophage populations and microglia, as well as unique expression characteristics 

to each cell type (Gautier et al., 2012; Gautier et al., 2014). Shared and differentiating 
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transcriptome profiles between macrophage populations enable the understanding of common and 

unique activities (Hickmann et al., 2013). 

 

Bacille Calmette Guérin (BCG) is an attenuated Mycobacterium strain and an effective inducer for 

chronic modeling of immune activation and behavioral impacts in mice (Moreau et al., 2005; 

Moreau et al., 2008; Rodriguez-Zas et al., 2015). Studies of the profile of individual genes in 

response to BCG have demonstrated that the proinflammatory response of macrophages is 

dependent upon Toll-like receptor (TLR)-2, with TLR2 and TLR4 both regulating the adaptive 

immune response (Heldwein et al., 2003) while BCG itself can inhibit parts of the immune 

response (Master et al., 2008; Danelishvili et al., 2010). While the murine depressive-like 

behavioral response to BCG is dependent upon interferon (IFN)-γ signaling, which in combination 

with tumor necrosis factor (TNF)-α induces indoleamine 2,3-dioxygenase (IDO) expression in 

microglia, the proinflammatory cytokine and immune response are independent of IFN-γ 

(O’Connor et al., 2009). However, the profile of the murine transcriptome in response to BCG 

relative to resting state within and across macrophage cell groups has yet to be completely 

characterized.  

 

Functional Gene Set Enrichment Analysis (GSEA), which considers the profiles of all transcripts 

simultaneously regardless of significance level, enabled the identification of gene sets enriched 

within and across profiles (Subramanian et al., 2005). As the gene sets indicate relationships 

among genes, genes shared between gene sets can also be treated as relationships to construct gene 

set networks (Saito et al., 2012). Visualization of relationships between enriched terms based on 
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treatment groups within and between cell types is expected to provide a more complete profile of 

immune response bacterial challenge (Merico et al., 2010).  

 

The objective of this study was to characterize the gene expression response of microglia and 

peritoneal macrophagesto BCG challenge relative to a saline control, coinciding with behavioral 

changes in the murine host (Rodriguez-Zas et al., 2015). Genes that differ in expression between 

BCG and control groups were identified and compared between microglial and macrophage cells. 

Functional analysis identified enriched categories within cell types and networks of categories 

were identified. Comparison of networks and gene expression profiles enables the identification 

of unique and shared patterns between microglia and peritoneal macrophages. 

 

4.3 Materials and Methods 

All animal experiments were done in accordance with the NIH Policies for Animal Care and Use 

of Laboratory Animals, and approved by the Institutional Animal Care and Use Committee at the 

University of Illinois. Microglia and peritoneal macrophages were collected from adult (~22 weeks 

old) male C57Bl/6J mice sourced from Charles River Laboratories. Mice were housed individually 

in cages under a 12:12 hr light/dark cycle with controlled temperature and humidity at 23° C and 

45%, respectively. Water and food (Teklad 8640 chow, Harlan Laboratories, Indianapolis, IN, 

USA) were available ad libitum. 

 

Mice received a dose of TICE BCG (10 mg; Organon USA Inc., USA) or saline solution as a 

peritoneal injection and each treatment included 12 mice. Prior to treatment, a BCG vial (50 mg 

wet weight of lyophilized culture, 1x108 colony forming units per vial) was reconstituted in sterile 
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saline, with both BCG and saline (Ctrl) treatments a 0.3 ml/mouse injection volume. Brains and 

peritoneal cells were collected from mice one week after injection for the isolation of microglia 

and peritoneal macrophages, respectively. The isolations of peritoneal macrophages (Zhang et al., 

2008) and microglia (Nikodemova and Watters, 2012) were modified from previously published 

methods. 

 

Peritoneal cells were harvested by peritoneal lavage with 10 mL of cold HBSS (without Ca2+ or 

Mg2+) before spinning them down at 400g at room temperature for 10 minutes. The peritoneal cells 

were then resuspended in DMEM supplemented with 10 mM glutamine, 100 µg/mL of penicillin 

and streptomycin, plated and incubated at 37° C under 5% CO2 for 2 hours. Pre-plating 

examination with flow cytometry verified the population distributions previously indicated in the 

literature for peritoneal cells (Zhang et al., 2008). To isolate the peritoneal macrophages, the plates 

were washed gently with warm PBS, leaving macrophages as the surviving cells attached to the 

plate for further extraction. The macrophages were stored in Trizol at -80° C until ready for RNA 

extraction. 

 

Microglial collection immediately followed peritoneal lavage. Mice were perfused with ice-cold 

PBS + 2 mM EDTA, and the brain dissected. Brains were digested enzymatically using the 

Miltenyi Neural Tissue Dissociation Kit (Miltenyi Biotec, Germany). Cell debris was removed by 

passage of the resulting solution through a 40 µm filter, followed by myelin removal via 

resuspension and centrifugation in 30% Percoll (GE Healthcare, Princeton, NJ). Cells were then 

magnetically labeled with anti-CD11b Miltenyi MicroBeads and separated in a magnetic field with 

MS columns (Miltenyi Biotec, Germany). The resulting Cd-11b+ fraction was spun down and 
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resuspended in Trizol for storage at -80° C until ready for RNA extraction. Separate tissue samples 

were used to verify the enrichment of Cd-11b+ cells after column separation by flow cytometry 

(Fenn et al., 2014). No study has shown monocytes to migrate past the blood-brain barrier at this 

time-point following a peripheral BCG challenge, minimizing concern that migrating monocytes 

are responsible for the microglial responses listed here (Sirén et al., 2001). 

 

Flow Cytometry 

Cells were stained with primary fluorescent antibodies for two primary markers for macrophages 

and microglia: CD-11b and CD-45 (Fenn et al., 2014; Henry et al., 2009). Briefly, Fc receptors 

were blocked by incubation with anti-CD16/CD32 antibody before incubation with anti-CD-11b 

and anti-CD-45 antibodies (eBioscience, CA). Surface receptor expression was identified using a 

Biosciences LSR II Flow Cytometry Analyzer with BD FACSDiva software. Antibody gating was 

determined using isotype-stained controls.  

 

RNA Extraction 

Following tissue storage in Trizol, RNA was extracted based upon the Tri-spin method (Reno et 

al., 1997) with modifications. Briefly, the Trizol-immersed samples were thawed to room 

temperature and and homogenized before being mixed with chloroform (0.2 ml chloroform : 1 ml 

Trizol) and incubated for 3 min. A phase separation was achieved by centrifuging for 15 min at 

15000 g at room temperature, then transferring the aqueous layer to mix with acid phenol (0.6 ml 

acid phenol : 1 ml Trizol) to repeat the phase separation. The aqueous layer was then mixed with 

ethanol (1 : 1 ratio) before spinning through an extraction column from the E.Z.N.A. Total RNA 

Kit (Omega Biotek, Norcross, GA). The optional DNase step was included to eliminate potential 

129 
 



DNA contamination. Purity and quantity of RNA was measured on a Nanodrop (Nanodrop 

Products, Wilmington, DE, USA). RNA integrity was determined with the Agilent 2100 

Bioanalyzer with RNA Pico chip (Agilent Technologies, Palo Alto, CA) for RNA Integrity 

Numbers (RIN). All RIN values were > 7, with 90% of all samples > 9. 

 

Library Sequencing and Abundance Quantification 

Individual samples from each mouse were used to obtain libraries that were sequenced using an 

Illumina HiSeq 2000 (Illumina, San Diego, CA, USA), producing paired reads 100 base-pairs in 

length. Quality determination of reads and processing for testing of differential abundance between 

treatments was performed as previously published (Nixon et al., 2015). Briefly, reads were quality-

checked using FastQC (Babraham Institute, 2013). Reads were then mapped to the mouse genome 

and annotations as available through the Illumina iGenomes package (mm10; 

http://support.illumina.com/sequencing/sequencing_software/igenome.html). Options designed to 

address biological and technical biases were enabled throughout the workflow (Nixon et al., 2015). 

Mapping utilized the gene annotations as a guide (argument –G) in Tophat2 (v 2.0.8) before 

assembly of reads into transcripts in Cufflinks (v2.1.1). The calculation of the transcript median in 

Cufflinks utilized Upper Quartile Normalization (argument –N) to avoid skewed results based on 

transcripts not expressed in the dataset (Dillies et al., 2013). Biases from reads mapping to multiple 

sites and unequal site availability for read creation were corrected with multi-read correction 

(argument –u) and fragment bias correction (argument –b), respectively (Roberts et al., 2011; 

Mortazavi et al., 2008). Individual sample assemblies were then merged with Cuffmerge before 

differential expression between both treatment groups within cell type was tested in Cuffdiff2 by 

modeling read distribution and uncertainty with a Beta Negative Binomial distribution (Trapnell 
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et al., 2013). Multi-read and fragment bias corrections were enabled in Cuffdiff as well. 

Differential expression was evaluated on all genes with minimum alignment count > 10. The 

Cuffdiff output test-statistic was calculated, accounting for expression variance while relating 

greater differential expression between groups in terms of a larger absolute value. Genes exhibiting 

False Discovery Rate or FDR-adjusted p-value < 0.05 between the BCG and control groups within 

cell type and a log2 fold-change greater than 1.5 were considered differentially expressed. 

 

Functional Analysis 

Within cell type, functional analysis considered all genes using GSEA-PreRanked analysis 

(Subramanian et al., 2005; http://www.broadinstitute.org/gsea/index.jsp). To identify enriched 

functional categories within the gene expression profiles of the tested treatments (BCG or control), 

the genes were entered with their Cuffdiff test statistic. The list of genes was sorted by their 

Cuffdiff test statistic, resulting in an ordered list from those genes most over-expressed to those 

most under-expressed in the BCG treatment compared to Control. The gene list was tested against 

gene sets, determining enrichment as member genes of the gene set being overrepresented near the 

top or bottom of the gene list. Each gene set is given a normalized enrichment score (NES), 

normalizing the enrichment score by permutation to account for differences in gene set sizes and 

correlation between gene sets and the gene list data (Subramanian et al., 2005; 

http://www.broadinstitute.org/gsea/doc/GSEAUserGuideTEXT.htm). The ranked list of genes 

were tested against the Molecular Signature Database (MSigDB; Liberzon et al., 2011) that 

includes the following terms: Gene Ontology (GO) Biological Processes and Molecular Functions 

(1,221 tested gene sets; Ashburner et al., 2000), Kyoto Encyclopedia of Genes and Genomes 

pathways (KEGG; 186 tested gene sets; Kanehisa et al., 2002), and pathways from the 
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REACTOME knowledgebase (674 tested gene sets; Matthews et al., 2009). Despite KEGG and 

REACTOME overlapping in their focus, their designs and methods of annotations produce limited 

consensus with benefits to using both databases (Stobbe et al., 2011). 

 

Visualization 

Typically, relationships among terms enriched by a dataset are defined by overlapping members 

from the gene list used in enrichment testing (Huang et al., 2009; Merico et al., 2011), or the 

cumulative functional relationships of member genes (Wang et al., 2011). Clustering methods 

identify relationships among all member terms above the established cutoff, assembling 

independent groups of terms. Network designs offer information on relationships between terms 

within and across such groupings to further relate groups of terms and improve identification of 

relationships (Newman, 2012). Using the GSEA results as input, networks were created with the 

Enrichment Map plugin (Merico et al., 2010) for Cytoscape (http://www.cytoscape.org; Killcoyne 

et al., 2009) as a visualization plugin specifically designed to work with funcational analysis data 

and GSEA results. In the networks, enriched gene sets were represented by nodes with 

relationships between gene sets defined by sufficient overlap in member genes from the Cuffdiff 

output gene list (similarity coefficient > 0.5) as edges. Networks visualized within-cell type 

(microglia or peritoneal macrophages) comparisons between BCG and control groups. 

 

4.4 Results 

Adequate read coverage as per Cuffdiff default settings of  >10 reads was tested for 26,773 genes 

in microglia and 25,767 genes in peritoneal macrophages. Differential expression was evaluated 

for 14,046 and 12,352 genes with adequate read coverage in the respective cell types. Among the 
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genes tested for differential expression, 11,738 genes were tested in both cell types; 2,307 were 

tested only in microglia; and 613 were tested only in peritoneal macrophages. Over-expressed 

genes in BCG versus control dominated the list of significantly differentially expressed genes in 

peritoneal macrophages (FDR-adjusted p-value < 0.05; log2 fold-change > 1.5), with a greater 

number of genes and greater observed fold changes in expression level relative to under-expressed 

genes. In microglia when comparing the BCG treatment group versus control, 147 genes showed 

significant differential expression, and all were over-expressed (FDR-adjusted p-value < 0.05; log2 

fold-change > 1.5). In peritoneal macrophages 655 over-expressed and 355 under-expressed genes 

(FDR-adjusted p-value < 0.05; log2 fold-change > 1.5) were identified. The top 20 genes are listed 

for over-expressed (BCG versus control) in microglia are listed in Table 4.1, with fold-changes 

ranging from 5.90 – 2.99. As no under-expressed genes in microglia met both significance 

requirements, the top 20 genes meeting only the p-value requirement (FDR-adjusted p-value < 

0.05) were considered (Table 4.2) with fold-changes ranging from 1.21 – 0.69. Over-expressed 

genes (Table 4.3, fold-changes from 10.11 – 6.27) and under-expressed genes (Table 4.4, fold-

changes from 3.49 – 2.49) in peritoneal macrophages were listed based upon meeting both 

requirements (FDR-adjusted p-value < 0.05; log2 fold-change > 1.5).  

 

Of the genes differentially over-expressed in microglia from BCG versus control mice, the largest 

difference in expression was observed in Serum amyloid A3 (Saa3; fold-change: 5.90; FDR-

adjusted p-value < 0.01), followed by Cell adhesion molecule 3 (Cadm3; fold-change: 5.14), 

Carbonic anhydrase 6 (Car6; fold-change: 5.01), STEAP family member 4 (Steap4; fold-change: 

4.89), and Selectin, endothelial cell (Sele; fold-change: 4.80; Table 4.1). When considering genes 

under-expressed in BCG versus control groups in microglia, the most differentially under-
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expressed gene was Coiled-coil domain containing 162 (Ccdc162; fold-change: -1.21) followed 

by Titin-cap (Tcap; fold-change: -1.15), Hemoglobin alpha, adult chain 1 (Hba-a1; fold-change: -

1.10), Hemoglobin alpha, adult chain 2 (Hba-a2; fold-change: -1.09), and Resistin like alpha 

(Retnla; fold-change: -1.00; Table 4.2). The S100 calcium binding protein A9 (S100A9) gene was 

the most over-expressed gene in peritoneal macrophages (fold-change: 10.11; FDR-adjusted p-

value < 0.01), followed by MAS-related GPR, member A2A (Mrgpra2a; fold-change: 1.10), Stefin 

A2 like 1 (Stfa2l1; fold-change: 10.03), Lymphocyte antigen 6 complex, locus I (Ly6i; fold-

change: 9.42), and Aspartic peptidase, retroviral-like 1 (Asprv1; fold-change: 9.15; Table 4.3). 

The S100A9 heterodimer partner, S100A8, was the 14th most over-expressed genes in peritoneal 

macrophages (fold-change: 7.15). S100A9 and S100A8 were not significant in microglia when 

considering fold-change requirements (Fold-change: 1.49). The IFN-γ gene, Ifng (6.45 fold-

change; FDR-adjusted p-value < 0.01; Table 4.3), was significantly over-expressed in peritoneal 

macrophage, although no differential expression was detected in microglia (0.92 fold-change; 

FDR-adjusted p-value = 0.06). IL-1β was significantly over-expressed in both microglia (fold-

change: 1.60) and peritoneal macrophages (fold-change: 1.97). TNFα did not meet the fold-change 

requirements for significant differential expression in peritoneal macrophages (1.29 fold-change; 

FDR-adjusted p-value < 0.01) or microglia (0.14 fold-change; FDR-adjusted p-value > 0.1). The 

most under-expressed gene in the BCG group versus control comparison in peritoneal 

macrophages was Protease, serine 37 (Prss37; fold-change: -3.49; FDR-adjusted p-value < 0.05), 

followed by Mucin-like 1 (Mucl1; fold-change: -3.09), Reprimo, TP53 dependent G2 arrest 

mediator candidate (Rprm; fold-change: -3.07), SRY (sex determining region Y)-box 7 (Sox7; 

fold-change: -3.01), with the fifth most under-expressed gene being Retnla as in microglia (fold-

change: -2.89; Table 4.4). Krüppel-like factor 15 (klf15) was also under-expressed in peritoneal 
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macrophages when comparing the BCG treatment group versus control (-2.68 fold-change; FDR-

adjusted p-value < 0.01; Table 4.4). The klf15 gene was previously found to be expressed in 

macrophages, though no study has involved challenge states to determine the expression response 

in an inflammation model (Nagare et al., 2011). Of note, the classic M2 indicator IL-10 (Martinez 

et al., 2008) was also found to be under-expressed in peritoneal macrophages (fold-change: -1.56; 

FDR-adjusted p-value < 0.05). 

 

Within the GO BP and MF analysis, 113 gene sets were enriched in microglia or peritoneal 

macrophages (FDR-adjusted p-value < 0.05), with 104 of these gene sets connected to at least one 

other gene set (overlap coefficient > 0.5), and 21 total (regardless of connectivity) gene sets 

enriched in both cell types. For instance, the GO BP gene sets Apoptosis (GO:0006915) and 

Programmed Cell Death (GO:0012501) were enriched in both microglia and peritoneal 

macrophages, with enriching member genes over-expressed in the BCG treatment group versus 

control (Table 4.5). These gene sets were linked (overlap coefficient > 0.5) to gene sets that were 

enriched in microglia or peritoneal macrophages. For example, the GO BP gene set enriched in 

peritoneal macrophages with member genes over-expressed in the BCG treatment versus control, 

Apoptotic Program (GO:0008632) was linked to the shared Apoptosis gene set and involves the 

signaling cascade for cells triggered to undergo apoptosis. Meanwhile in microglia with member 

genes over-expressed in BCG treatment versus control, a link connected the GO BP gene sets 

Apoptosis (GO:0006915) and Anti-Apoptosis (GO:0006916), which were both further connected 

to Negative Regulation of Apoptosis (GO:0043066) and negative Regulation of Programmed Cell 

death (GO:0043069) (Figure 4.1). The KEGG pathway Toll-like Receptor Signaling Pathway 

(hsa04620) was enriched in both microglia and peritoneal macrophages, with enriching member 
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genes over-expressed in the BCG treatment versus control. Only enriched in microglia with 

member genes over-expressed in the BCG group versus control, the NOD-like receptor signaling 

pathway (hsa04621, FDR-adjusted p-value < 0.01) involves the inflammasome response. The 

associated REACTOME pathways of Activated TLR4 Signaling (REACT_6890) and Toll 

Receptor Cascades (REACT_6966) were also found to be enriched with member genes over-

expressed in BCG treatment versus control, although only in peritoneal macrophages (Figure 4.3). 

GSEA identified 13 gene sets with negative enrichment scores in microglia, meaning their 

enrichment was based upon genes under-expressed in BCG versus control (Table 4.4; Table 4.5). 

The largest cluster of networked GO gene sets involved 14 gene sets enriched in both cell types 

connected to a unique microglia response of 46 gene sets and a comparatively smaller unique 

peritoneal macrophage response of 4 gene sets (Figure 4.1). Three of the gene sets enriched in 

both cell types exhibited opposing direction of enrichment: Structural Constituent of Ribosome 

(GO MF, GO:0003735, 76 enriched member genes), Structural Molecule Activity (GO MF, 

GO:0005198, 133 enriched member genes), and Translation (GO BP, GO:0006412, 130 enriched 

member genes). The majority of enriching member genes in microglia were not significant when 

analyzed at the gene level, with less than 5% of genes in any category found significant (FDR-

adjusted p-value < 0.05). The enriching member genes in peritoneal macrophages were better 

represented, with 50-75% of genes identified as significant. These 3 gene sets were directly and 

highly connected to each other (Overlap Coefficient > 0.98), with all enriching member genes 

over-expressing genes in microglia, while all enriching member genes were under-expressing 

genes in peritoneal macrophages. Across all enriched gene sets in the GO BP and MF analysis, 65 

gene sets were connected (Overlap Coefficient > 0.5) together in a cluster, with 8 additional 

clusters ranging in size from 13 to 2 gene sets (Figure 4.1). A portion of the large cluster included 
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a well-connected group of gene sets related to defense responses (Cellular Defense Response; 

Defense Response; Response to Wounding; Inflammatory Response; Response to External 

Stimulus) which included a strong connection (Overlap Coefficient = 1) to Locomotory Behavior 

and Behavior (Figure 4.1). The analysis of KEGG gene sets across both microglia and peritoneal 

macrophages produced 15 enriched gene sets (Table 4.6). Of the 8 gene sets that were enriched in 

both cell types, 4 enriched in both cell populations by member genes over-expressed in the BCG 

treatment versus control, involving Extracellular matrix receptor interactions (hsa04512), the TLR 

signaling pathway (hsa04620), as well as T-cell receptor signaling pathways (hsa04660) and 

natural killer cell mediated cytotoxicity (hsa04650) (Table 4.6). The remaining 4 gene sets 

enriched in both microglia and peritoneal macrophages had member genes exhibiting opposing 

direction of enrichment between cell types: in BCG treatment versus control, the genes were under-

expressed in microglia while over-expressed genes in peritoneal macrophages (Figure 4.2). These 

gene sets were related to neurodegenerative diseases, and oxidative phosphorylation. The 

REACTOME analysis produced 111 enriched gene sets with 31 enriched in both cell types (Table 

4.7). Additionally, REACTOME pathway gene sets did not all display the same direction of change 

between cell types (12 over-expressed in BCG treatment versus control in microglia versus under-

expressed in BCG versus control in peritoneal macrophages; 8 gene sets under-expressed in 

microglia versus over-expressed in peritoneal macrophages). A single large cluster was produced 

containing 89 gene sets, with 5 more clusters ranging between 8 to 2 connected gene sets (Overlap 

Coefficient > 0.5; Figure 4.3). Regarding the top 5 most differentially over- and under-expressed 

genes in microglia and peritoneal macrophages, it is interesting to note that only S100a9 was an 

enriching member of any of the enriched gene sets across GO, KEGG, and REACTOME. S100a9 

was an enriching member of the GO BP terms Defense Response (GO:0006952), Inflammatory 
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Response (GO:0006954), Response to External Stimulus (GO:0009605), Response to Wounding 

(GO:0009611), and the GO MF term Cation Binding (GO:0043169). If considering the top 20 

genes for over- and under-expression in each cell type (Tables 4.1-4.4), 13 genes were members 

of 38 enriched gene sets. 

 

Gene sets demonstrating opposing direction of enrichment between cell-types were found in all 

tested collections. However, only the REACTOME collection possessed gene sets showing both 

(BCG treatment versus control) over-expression in microglia and under-expression in peritoneal 

macrophages, as well as the opposite (Table 4.8). Across the analyses of GO, Kegg, and 

REACTOME, the 27 gene sets split into 15 over-expressed in BCG treatment versus control in 

microglia and under-expressed in peritoneal macrophages with the remaining 12 reversed in the 

expression pattern of their enriching member genes. Across the 15 gene sets over-expressed in the 

BCG treatment in microglia while the BCG treatment was under-expressed in peritoneal 

macrophages, 123 enriched member genes were present in both cell types with 88 of those shared 

among more than one gene set. Overlap Coefficients were calculated between all 15 gene sets 

(Table 4.9). Almost all of the gene sets were connected (Overlap Coefficient > 0.5), but for “GPCR 

Downstream Signaling” (REACT_14797) which shared no enriching member genes with any of 

the other gene sets. There was also a low Overlap Coefficient (< 0.5) between Translation (GO 

BP, GO:0006412) and the two REACTOME pathways REACT_1258 or REACT_1079 (Table 

4.9). Ribosomal protein L (Rpl) and Ribosomal protein S (Rps) were the primarily shared gene 

families among these gene sets. The Rps family genes were members of all the gene sets (Table 

4.9) but the REACTOME pathway “GPCR Downstream Signaling” (REACT_14797). The Rpl 

family genes possessed similar membership as Rps genes, additionally not members of 
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REACT_1258, and REACT_1079. The 12 gene sets under-expressed in BCG treatment versus 

control in microglia and over-expressed in peritoneal macrophages represented a total of 164 

enriching member genes across both cell types, with 102 genes shared by more than one gene set. 

The gene sets were sharply divided based upon enriching member genes, creating two completely 

separate groups of gene sets (Overlap Coefficient =0) with each group containing connected 

(Overlap Coefficient > 0.5) gene sets (Table 4.10). 

 

4.5 Discussion 

It is interesting to note that none of the top 5 genes over-expressed in microglia when comparing 

the BCG treatment group versus control have been previously associated with the microglial BCG 

model (Table 4.1). The most over-expressed gene, Saa3, is an acute-phase reactant that is over-

expressed in the brain during peripheral inflammatory events (Thomson et al., 2014). Previous 

studies have demonstrated that Saa3 is expressed in microglia (Hickman et al., 2013), can be 

induced 12-fold in the inflammatory profile of microglia (Baker and Manuelidis, 2003), and that 

its expression can be induced by Mycobacterium in macrophage populations (Keller et al., 2004). 

The expression of S100A8 and S100A9 have been found to induce Saa3 expression in an 

inflammation-like state in studies of tumor recruitment (Hiratsuka et al., 2008). Reports on Cadm3 

indicate that this gene is associated other inflammatory models in the brain (Kyan et al., 2014) and 

with BCG response in the lung of guinea pigs (Jain et al., 2012). The coded protein for the Car6 

gene is expressed in the murine macrophage 264.7 cell line, yet was under-expressed 2 hours after 

exposure to lipopolysaccharide (LPS) in vitro (Das et al., 2013) in comparison to over-expression 

in this study (Table 4.1). Steap4 is expressed in microglia (Chiu et al., 2013) and inducible in 

macrophages by more than 8-fold with LPS (Fleming, 2014). Sele was over-expressed in BCG 
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versus control groups in microglia (4.80 fold-change; Table 4.1) and is over-expressed during the 

resolution-phase of murine macrophages compared to M1 activated macrophages (Stables et al., 

2011). However as the previous study compared resolution-phase and activated macrophages, 

there is limited value in comparison of fold-changes. The most under-expressed gene in microglia, 

Ccdc162, has only recently been characterized in some gene studies with no relationship to the 

current model (Lin et al., 2013; Zhang et al., 2014; Hudson et al., 2014). Tcap, as the second most 

under-expressed gene (BCG versus control) in microglia, has previously found in microglia to be 

over-expressed 13-fold in an Alzheimer’s Disease model (Orre et al., 2014). Both Hba-a1 and 

Hba-a2 can be expressed in activated macrophages, although in brain they are more typically 

associated with the activation of astrocytes (Orre et al., 2014). However several markers for other 

brain cell types are expressed in microglia (Solga et al., 2015), which may motivate new 

exploration of these genes in microglia. The under-expression of Retnla in both cell types, a marker 

of M2 activation in macrophages (Pesce et al., 2009) and microglia (Tada et al., 2014), matched 

fold-change reductions in the previous studies and suggests an M1 state of activation. As IFN-γ 

and IL-1β are classic indicators of M1 activated macrophages (Martinez et al., 2008) induced by 

BCG exposure, a pro-inflammatory state would be expected based upon their over-expression in 

peritoneal macrophages in this study (Gordon and Martinez, 2010; O’Connor et al., 2009).  

Mrgpra2a and Stfa2l1 are both typically associated with neutrophils, although some non-

neutrophil populations can also express them (Ericson et al., 2014). However, their relationship to 

macrophages is otherwise unexplored. In comparison, the relationship of Ly6i over-expression to 

the current study is well-established, as Ly6 genes are suggested to impact host defense against 

Mycobacterium tuberculosis infection (Martinez et al., 2013). Asprv1 and Interleukin 1 family 

member 9 (Il1f9) are both over-expressed in the BCG group versus control in peritoneal 
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macrophages (fold-changes: 9.15, 7.66; Table 4.3) and associated with pro-inflammatory events 

(Stables et al., 2011). These genes were also over-expressed (BCG vs control groups) in microglia, 

though with smaller fold-changes (fold-changes: 2.94, 2.37; FDR-adjusted p-value < 0.01). Little 

information is available regarding Prss37, the most under-expressed gene in BCG versus control 

groups in peritoneal macrophages, and has been suggested to have tumor suppressor activity based 

on loss-of-function truncated variants in colorectal cancer studies (Gylfe et al., 2013). Mucl1 is 

shown to over-express in macrophages upon exposure to a combination of IFN-γ and LPS, albeit 

during in vitro studies meant to examine more immediate responses (Zollbrecht et al., 2013). The 

effect of under-expressed Rprm in macrophages after BCG challenge is less clear, although the 

Myocyte enhance factor-2 family of transcription factors are linked to host response to bacterial 

pathogens (McKinsey et al., 2002) and also represses Rprm (Yu et al., 2015). However, a more 

focused analysis would be necessary to clarify the relationship. Sox7 also has limited association 

with macrophages, although macrophage-derived cells have been shown to express the gene (Hall 

et al., 2012) as well as microglia (Solga et al., 2015). Information is lacking on klf15 response in 

macrophages to inflammatory challenge, but the loss of klf15 in insulin-resistance models suggest 

an anti-inflammatory role (Jung et al., 2013). The inflammatory cytokine interleukin (IL)-17 is 

also known to inhibit klf15 (Ahmed and Gaffen, 2013). Although IL-17 is induced by BCG in 

mice (Gopal et al., 2012), it did not meet significance thresholds within this study 7 days after 

challenge. Further study within macrophages would be necessary to determine the contextual role 

of klf15 within the macrophage response. While the Complement component 1 s subcomponent 

itself has not previously been associated with macrophage expression, other C1 components are 

known to be inducible in macrophages (Martinez and Gordon, 2014). The gene expression patterns 

of peritoneal macrophages supported previously reported response to BCG challenge , including 
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Resistin like alpha (Retnla), the CD209a antigen, Platelet factor 4 (Nixon et al., 2015). Of interest 

was Mucl1, one of the most under-expressed gene in BCG groups versus control, in peritoneal 

macrophages (-3.09 fold-change; Table 4.4). Previous in vitro studies indicated macrophage up-

regulation of Mucl1 following treatment with inflammatory stimulators, suggesting a need for 

further study of this relationship (Zollbrecht et al., 2013).  

 

The most differentially-expressed genes between treatments, as determined by fold-change, appear 

to have a minimal contribution to findings at the gene set and network level. Of the top 20 genes 

over- or under-expressed in BCG versus control groups in microglia and peritoneal macrophages 

respectively, 3 genes (Table 4.1), no genes (Table 4.2), 6 genes (Table 4.3) and 4 genes (Table 

4.4) were members of enriched gene sets. The focus of GSEA analysis is towards the discovery of 

gene sets that are enriched through a broad number of member genes with consistent profiles 

(Subramanian et al., 2005).  

 

 

Enrichment by over-expressing genes across both microglia and peritoneal macrophages involved 

immunological response, apoptosis, and intracellular signaling cascades (Tables 4.5-4.7). 

However where the apoptosis-related gene sets enriched in peritoneal macrophages were related 

to inducing apoptosis, those enriched in microglia were associated with the negative regulation 

and control of apoptosis. (Figure 4.1). The 4 gene sets with switching enrichment across cell types 

from KEGG involved Alzheimer’s Disease (hsa05010), Huntington’s Disease (hsa05016), 

Parkinson’s Disease (hsa05012), and Oxidative Phosphorylation (hsa00190). The induction of the 

inflammatory immune system response has been coupled to oxidative stress, with associations to 
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depression and neurodegenerative disorders (Anderson et al., 2014). The connections between 

them primarily highlights the metabolic dysfunctions connecting these neurodegenerative 

disorders (Federico et al., 2012). In the remaining 11 gene sets, immunological signaling exhibited 

over-expression of genes across cell types (Table 4.6) and identified relationships like the NOD-

like receptor signaling pathway’s inflammasome activity working in concert with the Toll-like 

receptor signaling pathway as a proinflammatory response (Figure 4.2; Kumar et al., 2009). While 

inflammasome-related genes like Il1f9, S100a9, and S100a8 (Novikov et al., 2011) were enriched 

in peritoneal macrophages (Table 4.3), the inflammasome related pathway (hsa04621) was only 

enriched in microglia (Figure 4.2). The lack of inflammasome-related gene set enrichment in 

peritoneal macrophages may be the result of inhibition by BCG, a method of avoiding host 

defenses utilized by Mycobacterium and other pathogens (Master et al., 2008; Taxman et al., 

2010). The larger number of gene sets with switching enrichment across cell types in REACTOME 

involved several clusters involving metabolic regulation, (Figure 4.3). The REACTOME gene 

sets enriched in the same direction in both cell types involved cell cycling and DNA replication, 

as well as interferon and cytokine signaling (Table 4.7) which are to be expected following BCG 

challenge (Castedo et al., 2004; Moreau et al., 2005; Svoboda et al., 2007). The differences in scale 

of and limited consensus between KEGG and REACTOME can be partially attributed to the 

difference in scale between their curated gene set lists in MSigDB (186 gene sets in KEGG 

compared to 674 gene sets listed for REACTOME) as well as differences between their annotation 

methods resulting in limited consensus (Stobbe et al., 2011).  

 

When considering the gene sets that were over-expressed in BCG treated groups versus Control in 

microglia while under-expressed in peritoneal macrophages (Table 4.8), their shared ribosomal 

genes have previously been associated with the human innate immune system’s inflammatory 
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response (Calvano et al., 2005). In considering how member genes were shared among the gene 

sets with enriched member genes under-expressed in microglia and over-expressed in peritoneal 

macrophages in BCG treatment groups versus control (Table 4.10), two profiles developed across 

the KEGG and REACTOME pathways. The first profile of shared genes were among the 4 KEGG 

gene sets, and REACTOME gene sets for respiratory electron transport (REACT_22393, 

REACT_6305) and TCA cycle (REACT_111083) (49 genes; Table 4.10). This first profile 

included Cox genes and mitochondrial complex units associated with ATP production. Previous 

studies indicated mitochondrial oxidative phosphorylation and protein synthesis are important to 

the ongoing inflammatory response of macrophages, and in their transition towards resolution as 

part of the overall immune response (Hall et al., 2014).  Such cellular resource allocation is part of 

the larger immunological response, potentially involving reallocation of energy resources 

throughout the organism (Straub et al., 2010). Early reallocation of energy from other tissues 

including the brain to immune functions may include the modification of behaviors (Straub et al., 

2010). The opposing direction of enrichment between translation and protein synthesis associated 

gene sets compared to the ATP synthesizing gene sets suggests an alteration of energetic trends, 

which may suggest cellular phase modification (Hall et al., 2014) and is possibly reflected in 

similarly timed changing behavioral patterns (Rodriguez-Zas et al., 2015).  The second profile of 

shared member genes among gene sets under-expressed in microglia and over-expressed in 

peritoneal macrophages in BCG treatment groups versus control involved several proteasome 

genes from the alpha, beta, and 26S subunits. These genes were shared among the REACTOME 

pathways associated with cell-cycle regulation (REACT_6785, REACT_6821), cross-presentation 

(REACT_111056), Ornithine Decarboxylase regulation (REACT_13565, and degradation of 

Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G (APOBEC3G; 
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REACT_9453) (Table 4.10). An enriched gene set for cross-presentation of antigens 

(REACT_111056) is important to the macrophage defense response against intracellular bacteria 

(Rock and Shen, 2005), although  Several enriched gene sets were associated with cellular control 

of mitotic stages including Early mitotic inhibitor (Emi)-1 degradation by the complex of S-phase 

kinase-associated protein 1, Cullin 1, and the F-box protein β-transducin repeat-containing protein 

(SCF-βTrCP; Silverman et al., 2012) and  Cadherin (Cdh)1 degradation by the anaphase-

promoting complex/cytosome (APC/C) during G1 and G0 in several species including mouse 

(Margottin-Goguet et al., 2003; Guardavaccaro et al., 2003). There is also speculation that these 

mitotic regulators are causally involved in mitotic catastrophe in microglial cell lines (Castedo et 

al., 2004; Svoboda et al., 2007). Other macrophage-infecting pathogens have demonstrated 

methods of controlling the APC regulation system (Iwai et al., 2007), including a secreted toxin 

from a Mycobacterium impacting cell-cycle control and apoptosis (Oswald et al., 2005). The re-

balancing of energy needs, as well as modifying and regulating cell stages are also associated with 

programmed cell death, with ATP availability impacting whether cells can proceed with the more 

energy-intensive apoptosis rather than necrosis (Buttgereit and Brand, 1995; Buttgereit et al., 

2000). As apoptosis is necessary to macrophages successfully controlling Mycobacterium 

challenges while necrosis allows disease progression, regulation is critically important to host 

defense (Danelishvili et al., 2003; Danelishvili et al., 2010). The simultaneous under-expression 

of BCG treated groups compared to control in microglia could be a neuroprotective effect, 

prohibiting the cell-cycle reentry associated with neurodegenerative conditions like Alzheimer’s 

Disease (Bonda et al., 2010).  
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In conclusion, RNA-seq analysis of murine microglia and peritoneal macrophages identified 

several highly differentially-expressed genes between BCG-treated and control groups 7 days after 

challenge. The response of peritoneal macrophages primarily involved over-expression of genes 

associated with the classic macrophage activation state. Microglia also showed high differential 

expression in some resolution-phase genes. The GSEA identified enrichment of several gene sets 

across cell-types. Visual comparison of enriched lists indicated that both cell types shared 

enrichment by over-expressed genes of terms relating to cell cycle, apoptosis, and immunological 

signaling. Gene sets similarly enriched in both cell types also connected to networks of gene sets 

unique to each.  When gene sets were assembled into networks, those enriched by under-expressed 

genes in microglia were primarily related by cellular metabolism. Enrichment in peritoneal 

macrophages involved over-expressed genes and were only a subset of the gene sets enriched by 

opposing directions of expression between cell types. This switch in enrichment involved gene 

sets associated with cell cycle and protein synthesis regulation. Reflecting the shared 

immunological purpose of microglia and macrophages in their respective regions, these shared 

areas of switching enrichment may indicate points of gene expression regulating the divergent 

response to BCG of peritoneal macrophages and microglia. This primarily seems to translate as 

the direct defensive measures of peritoneal macrophages to BCG through apoptosis signaling and 

control of bacterial targets for cell-cycle regulators, while microglia negatively regulate the same 

to maintain a neuroprotective roles and avoid dysregulation associated with neurodegenerative 

scenarios. 
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4.7 Figures 

 
Figure 4.1 Immunologically enriched Gene Ontology gene set network in microglia and 
peritoneal macrophages 
Network of gene sets from Gene Ontology Biological Process and Molecular Function. Node 
color corresponds to significant up- (Red) or down- (Blue) regulation in BCG compared to Ctrl 
(nominal p-value < 0.001; FDR-adjusted p-value < 0.05). Non-significant tissue results (Grey) 
are also indicated. The color of the node center indicates response in microglia while the node 
border indicates response in peritoneal macrophages. Edges indicate that the enriching genes for 
gene sets in microglia (Green) or peritoneal macrophages (Blue) are shared (similarity coefficient 
> 0.5). Node size reflects the number of enriching genes in the set, and edge width corresponds to 
the number of genes overlapping between the two nodes. 
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Figure 4.2 Immunologically enriched Kyoto Encyclopedia of Genes and Genomes gene set 
network in microglia and peritoneal macrophages 
Network of gene sets from Kyoto Encyclopedia of Genes and Genomes. Node color corresponds 
to significant up- (Red) or down- (Blue) regulation in BCG compared to Ctrl (nominal p-value < 
0.001; FDR-adjusted p-value < 0.05). Non-significant tissue results (Grey) are also indicated. The 
color of the node center indicates response in microglia while the node border indicates response 
in peritoneal macrophages. Edges indicate that the enriching genes for gene sets in microglia 
(Green) or peritoneal macrophages (Blue) are shared (similarity coefficient > 0.5). Node size 
reflects the number of enriching genes in the set, and edge width corresponds to the number of 
genes overlapping between the two nodes. 
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Figure 4.3 Immunologically enriched REACTOME gene set network in microglia and peritoneal 
macrophages 
Network of gene sets from Kyoto Encyclopedia of Genes and Genomes. Node color corresponds 
to significant up- (Red) or down- (Blue) regulation in BCG compared to Ctrl (nominal p-value < 
0.001; FDR-adjusted p-value < 0.05). Non-significant tissue results (Grey) are also indicated. The 
color of the node center indicates response in microglia while the node border indicates response 
in peritoneal macrophages. Edges indicate that the enriching genes for gene sets in microglia 
(Green) or peritoneal macrophages (Blue) are shared (similarity coefficient > 0.5). Node size 
reflects the number of enriching genes in the set, and edge width corresponds to the number of 
genes overlapping between the two nodes. 
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4.8 Tables 

Table 4.1 Top 20 genes by fold-change, over-expressed in BCG relative to control 
groups in microglia (FDR-adjusted p-value < 0.05) 

Gene 
Name1 

Gene ID 
(NCBI) 

Log2 Fold-Change 
(BCG/Control) 

P-value Ref 

Saa3 20210 5.90 0.002 Baker and Manuelidis, 2003; 
Hickman et al., 2013 

Cadm3 94332 5.14 0.002 - 
Car6 12353 5.01 0.044 Das et al., 2013 
Steap4 117167 4.89 0.002 Chiu et al., 2013; Fleming, 

2014 
Sele 20339 4.80 0.002 Stables et al., 2011 
Cxcr1 227288 4.03 0.002 Hickman et al., 2013; Flynn et 

al., 2003 
Ifitm1 68713 3.72 0.002 Hickman et al., 2013 
Irg1 16365 3.66 0.002 Thomas et al., 2006 
Lrg1 76905 3.57 0.002 - 
Prok2 50501 3.48 0.002 - 
Cldn4 12740 3.44 0.030 Hickman et al., 2013 
Cfb 14962 3.39 0.002 Chiu et al., 2013 
Slfn4 20558 3.33 0.002 Chiu et al., 2013 
Nxpe5 381680 3.29 0.002 - 
Ly6i 57248 3.29 0.002 Martinez et al., 2013 
Oas3 246727 3.27 0.002 Kota et al., 2006 
Ifi205 226695 3.15 0.002 Thomas et al., 2006 
Stfa1 20861 3.12 0.002 Stables et al., 2011 
Plac8 231507 3.09 0.002 Zollbrecht et al., 2013 
Tarm1 245126 2.99 0.002 - 

 

1 Cadm3: Cell adhesion molecule 3; Car6: Carbonic anhydrase 6; Cfb: Complement factor B; 
Cldn4: Claudin 4; Cxcr1: Chemokine (C-X-C motif) receptor 1; Ifi205: Interferon activated gene 
205; Ifitm1: Interferon induced transmembrane protein 1; Irg1: Immunoresponsive gene 1; Lrg1: 
Leucine-rich alpha-2-glycoprotein 1; Ly6i: Lymphocyte antigen 6 complex, locus I; Nxpe5: 
Neurexophilin and PC-esterase domain family, member 5; Oas3: 2'-5' oligoadenylate synthetase 3; 
Plac8: Placenta-specific 8; Prok2: Prokineticin 2; Saa3: Serum amyloid A3; Sele: Selectin, 
endothelial cell; Slfn4: Schlafen 4; Steap4: STEAP family member 4; Stfa1: Stefin A1; Tarm1: T 
cell-interacting, activating receptor on myeloid cells 1. 
Log2 FC: Log2-based Fold-change 
P-value: False Detection Rate-adjusted p-value 
References indicate previous identification in microglia or in a macrophage inflammation model 
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Table 4.2 Top 20 genes by fold-change, under-expressed in BCG relative to control 
groups in microglia (FDR-adjusted p-values < 0.05) 

Gene 
Name1 

Gene ID Log2 Fold-Change 
(BCG/Control) 

P-value Ref 

Ccdc162 72002 -1.21 0.0021 - 
Tcap 21393 -1.15 0.0302 Chiu et al., 2013; 

Orre et al., 2014 

Hba-a1 
15122 -1.10 0.0021 de Oliveira et al., 

2008 

Hba-a2 
110257 -1.09 0.0021 de Oliveira et al., 

2008 
Retnla 57262 -1.00 0.0447 Pesce et al., 2009 
Bcas1 76960 -0.96 0.0266 - 
Mobp 17433 -0.95 0.0122 Solga et al., 2015 
Tnfrsf17 21935 -0.88 0.0021 Chiu et al., 2011 
D7Ertd443e 71007 -0.87 0.0166 - 
Olig1 50914 -0.84 0.0202 Nonaka et al., 2009 
Sema4b 20352 -0.84 0.0021 Chiu et al., 2011 
Sec16b 89867 -0.82 0.0091 - 
S100b 20203 -0.81 0.0190 Adami et al., 2001 
Klhdc8b 78267 -0.81 0.0021 - 
Plekhb1 27276 -0.77 0.0166 Solga et al., 2015 
Cldn11 18417 -0.77 0.0091 Solga et al., 2015 
Gpr37 14763 -0.77 0.0266 Ebert et al., 2012 
Tmem88b 320587 -0.76 0.0290 - 
Hbb-bs 100503605 -0.71 0.0021 - 
Upk1b 22268 -0.69 0.0021 Orre et al., 2014 

 

1 Bcas1: Breast carcinoma amplified sequence 1; Ccdc162: Coiled-coil domain containing 162; Cldn11: 
Claudin 11; D7Ertd443e: DNA segment, Chr 7, ERATO doi 443, expressed; Gpr37: G protein-coupled 
receptor 37; Hba-a1: Hemoglobin alpha, adult chain 1; Hba-a2: Hemoglobin alpha, adult chain 2; Hbb-
bs: Hemoglobin, beta adult S chain; Klhdc8b: Kelch domain containing 8B; Mobp: Myelin-associated 
oligodendrocytic basic protein; Olig1: Oligodendrocyte transcription factor 1; Plekhb1: Pleckstrin 
homology domain containing, family B (evectins) member 1; Retnla: Resistin like alpha; S100b: S100 
protein, beta polypeptide, neural; Sec16b: SEC16 homolog B (S. cerevisiae); Sema4b: Sema domain, 
immunoglobulin domain (Ig), transmembrane domain (TM) and short cytoplasmic domain, 
(semaphoring) 4B; Tcap: Titin-cap; Tmem88b: Transmembrane protein 88B; Tnfrsf17: Tumor necrosis 
factor receptor superfamily, member 17; Upk1b: Uroplakin 1B. 
Log2 FC: Log2-based Fold-change 
P-value: False Detection Rate-adjusted p-value 
References indicate previous identification in microglia or in a macrophage inflammation model 
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Table 4.3 Top 20 genes by fold-change, over-expressed in BCG relative to 
control groups in peritoneal macrophages (FDR-adjusted p-value < 0.05) 
Gene 
Name1 

Gene ID Log2 FC 
(BCG/Control) 

P-value Ref 

S100a9 20202 10.11 0.0004 Hickman et al., 2013 
Mrgpra2a 668727 10.10 0.0004 - 
Stfa2l1 268885 10.03 0.0009 - 
Ly6i 57248 9.42 0.0003 Martinez et al., 2013 
Asprv1 67855 9.15 0.0003 Stables et al., 2011 
Gm5483 433016 9.12 0.0025 Fleming, 2014 
Wfdc21 66107 8.87 0.0025 Hickman et al., 2013 
Ly6c2 100041546 7.92 0.0004 Takikawa et al., 1996 
Nos2 18126 7.69 0.0004 Ehrt et al., 2001; 

MacMicking et al., 1997 
Il1f9 215257 7.66 0.0004 Stables et al., 2011 
Ccl8 20307 7.45 0.0004 Liu et al., 2013  
2010002M12Rik 112419 7.32 0.0004 Fensterl and Sen, 2015 
Spon1 233744 7.23 0.0004 Magee et al., 2012 
S100a8 20201 7.15 0.0004 Ehrt et al., 2001; 

Hickman et al., 2013 
Entpd3 215446 7.03 0.0078 Zanin et al., 2012 
Cxcr2 12765 7.02 0.0004 Hickman et al., 2013 
A530046M15Rik 328190 6.96 0.0012 - 
Ifng 15978 6.45 0.0004 Stables et al., 2011 
Cxcl9 17329 6.40 0.0004 Hickman et al., 2013 
Col5a3 53867 6.27 0.0234 - 

 

 
1 2010002M12Rik: RIKEN cDNA 2010002M12 gene; A530046M15Rik: RIKEN cDNA 
A530046M15 gene; Asprv1: Aspartic peptidase, retroviral-like 1; Ccl8: Chemokine (C-C motif) 
ligand 8; Col5a3: Collagen, type V, alpha 3; Cxcl9: Chemokine (C-X-C motif) ligand 9; Cxcr2: 
Chemokine (C-X-C motif) receptor 2; Entpd3: Ectonucleoside triphosphate diphosphohydrolase 
3; Gm5483: Predicted gene 5483; Ifng: Interferon gamma; Il1f9: Interleukin 1 family, member 9; 
Ly6c2: Lymphocyte antigen 6 complex, locus C2; Ly6i: Lymphocyte antigen 6 complex, locus I; 
Mrgpra2a: MAS-related GPR, member A2A; Nos2: Nitric oxide synthase 2, inducible; S100a8: 
S100 calcium binding protein A8 (calgranulin A); S100a9: S100 calcium binding protein A9 
(calgranulin B); Spon1: Spondin 1, (f-spondin) extracellular matrix protein; Stfa2l1: Stefin A2 
like 1; Wfdc21: WAP four-disulfide core domain. 
Log2 FC: Log2-based Fold-change 
P-value: False Detection Rate-adjusted p-value 
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Table 4.4 Top 20 genes by fold-change, under-expressed in BCG relative to 
control groups in peritoneal macrophages (FDR-adjusted p-value < 0.05) 

Gene 
Name1 

Gene ID Log2 Fold-
Change 

(BCG/Control) 

P-value Ref 

Prss37 67690 -3.49 0.0341 - 
Mucl1 20771 -3.09 0.0041 Zollbrecht et al., 2013 
Rprm 67874 -3.07 0.0004 - 
Sox7 20680 -3.01 0.0017 Hall et al., 2012; 

Solga et al., 2015 
Retnla 57262 -2.89 0.0004 Pesce et al., 2009; 

Hickman et al., 2013 
Cyp26a1 13082 -2.84 0.0004 - 
Cd209b  -2.76 0.0106 Cheong et al., 2010 
Cd209f 69142 -2.73 0.0020 Stables et al., 2011 
A4galt 239559 -2.70 0.0004 - 
Klf15 66277 -2.68 0.0015 Nagare et al., 2011 
Cd209a 170786 -2.66 0.0004 Stables et al., 2011 
1810046K07Rik 69809 -2.61 0.0004 Hickman et al., 2013 
Fcrls 80891 -2.60 0.0004 Stables et al., 2011 
Frmpd1 666060 -2.57 0.0385 - 
Pf4 56744 -2.56 0.0004 Stables et al., 2011 
Tpsab1 100503895 -2.54 0.0004 - 
Ccl24 56221 -2.53 0.0004 Chiu et al., 2013 
Gna14 14675 -2.53 0.0015 - 
Kcne3 57442 -2.50 0.0004 - 
Artn 11876 -2.49 0.0025 - 

 

 
1 1810046K07Rik: RIKEN cDNA 1810046K07 gene; A4galt: Alpha 1,4-galactosyltransferase; Artn: Artemin; Ccl24: 
Chemokine (C-C motif) ligand 24; Cd209a: Cd209a antigen; Cd209b: Cd209b antigen; Cd209f: Cd209f antigen; Cyp26a1: 
Cytochrome P450, family 11, subfamily a, polypeptide 1; Fcrls: Fc receptor-like S, scavenger receptor; Frmpd1: FERM 
and PDZ domain containing 1; Gna14: Guanine nucleotide binding protein, alpha 14; Kcne3: Potassium voltage-gated 
channel, Isk-related subfamily, member 3; Klf15: Kruppel-like factor 15; Mucl1: Mucin-like 1; Pf4: Platelet factor 4; 
Prss37: Protease, serine 37; Retnla: Resistin like alpha; Rprm: Reprimo, TP53 dependent G2 arrest mediator candidate; 
Sox7: SRY (sex determining region Y)-box 7; Tpsab1: Tryptase alpha/beta 1. 
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Table 4.5 Gene Ontology Biological Process (BP) and Molecular Functions (MF) gene 
sets enriched in both microglia and peritoneal macrophages (FDR-adjusted p-value < 0.05) 
GO Gene Set 
(GO Identifier) 

Microglia Macrophage 
Genes NES FDR Genes NES FDR 

BP: Apoptosis (GO:0006915) 325 3.23 > 0.001 311 2.60 2.27E-03 
BP: Cation Homeostasis (GO:0055080) 58 3.03 > 0.001 61 2.28 8.90E-03 
BP: Cellular Defense Response 
(GO:0006968) 

35 2.48 1.87E-03 38 3.13 > 0.001 

BP: Defense Response (GO:0006952) 149 4.41 > 0.001 148 4.46 > 0.001 
BP: Immune Response (GO:0006955) 153 4.05 > 0.001 155 3.19 > 0.001 
BP: Immune System Process 
(GO:0002376) 

221 4.31 > 0.001 218 3.19 > 0.001 

BP: Inflammatory Response (GO:0006954) 79 3.55 > 0.001 74 2.63 1.99E-03 
BP: Intracellular Signaling Cascade 
(GO:0007242) 

478 3.63 > 0.001 439 2.26 9.46E-03 

BP: Ion Homeostasis (GO:0050801) 65 2.88 > 0.001 68 2.34 6.75E-03 
BP: Locomotory Behavior (GO:0007626) 58 3.18 > 0.001 59 2.02 0.030 
BP: Multi-Organism Process 
(GO:0051704) 

79 2.64 > 0.001 70 2.25 9.80E-03 

BP: Programmed Cell Death (GO:0012501) 326 3.25 > 0.001 312 2.60 2.17E-03 
MF: Receptor Activity (GO:0004872) 313 2.95 > 0.001 253 3.90 > 0.001 
BP: Regulation of Developmental Process 
(GO:0050793) 

320 2.72 > 0.001 299 2.22 0.011 

BP: Response to External Stimulus 
(GO:0009605) 

185 3.85 > 0.001 174 2.36 6.57E-03 

BP: Response to Other Organism 
(GO:0051707) 

43 2.81 > 0.001 42 2.79 > 0.001 

BP: Response to Wounding (GO:0009611) 114 2.96 > 0.001 107 2.12 0.018 
MF: Structural Constituent of Ribosome 
(GO:0003735) 

77 5.55 > 0.001 76 -6.72 > 0.001 

MF: Structural Molecule Activity 
(GO:0005198) 

165 5.17 > 0.001 141 -4.97 > 0.001 

BP: Translation (GO:0006412) 138 2.89 > 0.001 134 -3.52 > 0.001 
MF: Transmembrane Receptor Activity 
(GO:0004888) 

204 2.34 4.34E-03 161 4.16 > 0.001 
 

Genes: # of genes in the gene set represented in the expression list; NES: Normalized Enrichment Score; 
FDR: The gene set enrichment FDR-adjusted p-value. 
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Table 4.6 Kyoto Encyclopedia of Genes and Genomes pathways enriched in both 
microglia or peritoneal macrophages (FDR-adjusted p-value < 0.05) 
Gene Set 
(KEGG hsa Identifier) 

Microglia Macrophage 
Genes NES FDR Genes NES FDR 

Acute Myeloid Leukemia (05221) 52 2.42 1.51E-03 NE NE NE 
Alzheimer’s Disease (05010) 132 -2.40 4.32E-03 124 3.68 > 0.001 
Chemokine Signaling Pathway (04062) 145 3.23 > 0.001 NE NE NE 
ECM-Receptor Interaction (04512) 61 2.64 > 0.001 45 2.64 > 0.001 
Focal Adhesion (04510) 153 2.64 > 0.001 NE NE NE 
Huntington’s Disease (05016) 140 -3.17 > 0.001 137 3.83 > 0.001 
Natural Killer Cell-Mediated Cytotoxicity 
(04650) 

82 3.36 > 0.001 80 2.63 > 0.001 

NOD-Like Receptor Signaling Pathway 
(04621) 

43 2.47 1.02E-03 NE NE NE 

Oxidative Phosphorylation (00190) 98 -3.81 > 0.001 95 3.99 > 0.001 
Parkinson’s Disease (05012) 97 -3.84 > 0.001 91 3.66 > 0.001 
Pathways in Cancer (05200) 248 2.27 4.30E-03 NE NE NE 
RigI-Like Receptor Signaling Pathway 
(04622) 

NE NE NE 47 2.71 > 0.001 

Small Cell Lung Cancer (05222) 75 2.22 4.88E-03 NE NE NE 
T-Cell Receptor Signaling Pathway 
(04660) 

89 2.90 > 0.001 97 2.50 > 0.001 

Toll-Like Receptor Signaling Pathway 
(04620) 

82 2.67 > 0.001 80 2.62 > 0.001 
 

Genes: # of genes in the gene set represented in the expression list; NES: Normalized Enrichment Score; 
FDR: The gene set enrichment FDR-adjusted p-value; 
NE: Not enriched, gene set is only enriched in microglia or peritoneal macrophages, not both. 
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Table 4.7 REACTOME pathways enriched in both microglia and peritoneal macrophages 
(FDR-adjusted p-value < 0.05) 
Gene Set 
(REACT Identifier) 

Microglia Macrophage 
Genes NES FDR Genes NES FDR 

3’ UTR-Mediated Translational Regulation 
(1762) 

86 7.18 > 0.001 84 -7.67 > 0.001 

Activation of mRNA upon binding Cap-
Binding Complex, eIFs, and to 43S (1258) 

39 4.63 > 0.001 38 -4.53 > 0.001 

Autodegradation of Cdh1 by Cdh1:APC/C 
(6785) 

56 -2.31 0.019 56 4.04 > 0.001 

Cell Cycle (115566) 319 2.64 > 0.001 306 3.20 > 0.001 
Cell Cycle, Mitotic (152) 265 2.20 0.007 266 3.53 > 0.001 
Cross-Presentation of Soluble Exogenous 
Antigens (Endosomes) (111056) 

44 -2.30 0.017 43 4.14 > 0.001 

Cytokine Signaling in Immune System 
(75790) 

203 4.72 > 0.001 198 3.08 > 0.001 

DNA Replication (383) 162 2.33 0.003 163 3.40 > 0.001 
Formation of the Ternary Complex, and the 
43S Complex (1079) 

33 4.33 > 0.001 32 -5.11 > 0.001 

GPCR Downstream Signaling (19184) 233 2.51 > 0.001 205 -2.39 0.003 
Immunoregulatory Interactions, Lymphoid, 
non-Lymphoid Cells (11152) 

34 3.62 > 0.001 36 3.58 > 0.001 

Influenza Life Cycle (6145) 125 5.25 > 0.001 125 -5.76 > 0.001 
Influenza Viral RNA Transcription and 
Replication (6152) 

93 5.99 > 0.001 92 -7.14 > 0.001 

Hemostasis 335 3.10 > 0.001 282 2.35 0.002 
Innate Immune System (6802) 158 2.78 > 0.001 159 3.06 > 0.001 
Interferon Alpha/Beta Signaling (25162) 37 3.69 > 0.001 36 4.09 > 0.001 
Interferon Gamma Signaling (25078) 40 2.69 > 0.001 38 3.46 > 0.001 
Interferon Signaling (25229) 112 3.94 > 0.001 108 3.56 > 0.001 
Metabolism of mRNA (20605) 193 3.81 > 0.001 192 -3.93 > 0.001 
Metabolism of RNA (21257) 234 3.13 > 0.001 232 -3.64 > 0.001 
Nonsense-Mediated Decay, Enhanced by 
the Exon Junction Complex (75822) 

98 6.31 > 0.001 95 -6.70 > 0.001 

Peptide Chain Elongation (1404) 79 7.10 > 0.001 76 -8.11 > 0.001 
Regulation of Ornithine Decarboxylase 
(ODC) (13565) 

48 -2.41 0.013 47 4.16 > 0.001 

Respiratory Electron Transport (22393) 60 -4.01 > 0.001 60 3.50 > 0.001 
Respiratory Electon Transport, ATP 
Synthesis by Chemiosmotic Coupling, and 
Heat Production (6305) 

72 -4.04 > 0.001 73 3.99 > 0.001 

Rig-I/MDA5 Mediated Induction of IFN 
Alpha/Beta Pathways (25359) 

48 2.69 > 0.001 47 2.62 > 0.001 

SCF-beta-TrCP Mediated Degradation of 
Emi1 (6821) 

48 -2.23 0.021 48 3.68 > 0.001 

SRP-Dependent Cotranslational Protein 
Targeting to Membrane (115902) 

100 5.73 > 0.001 98 -7.04 > 0.001 

TCA Cycle and Respiratory Electron 
Transport (111083) 

105 -3.72 > 0.001 104 3.53 > 0.001 

Translation (1014) 122 5.54 > 0.001 119 -6.67 > 0.001 
VIF-Mediated Degradation of APOBEC3G 
(9453) 

48 -2.35 0.015 48 4.19 > 0.001 
 

Genes: # of genes in the gene set represented in the expression list; NES: Normalized Enrichment Score; 
FDR: The gene set enrichment FDR-adjusted p-value. 
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Table 4.8 Gene sets with enriched gene members in opposite direction (BCG versus control 
groups) of enrichment between microglia and peritoneal macrophages 

Collection Gene Set Direction of 
Enrichment in 
Microglia 
 
(BCG vs Ctrl) 

Direction of 
Enrichment in 
Peritoneal 
Macrophages 
(BCG vs Ctrl) 

GO MF Structural Constituent of Ribosome (GO:0003735) Over Under 
GO MF Structural Molecule Activity (GO:0005198) Over Under 
GO BP Translation (GO:0006412) Over Under 
KEGG Alzheimer’s Disease (05010) Under Over 
KEGG Huntington’s Disease (05016) Under Over 
KEGG Oxidative Phosphorylation (00190) Under Over 
KEGG Parkinson’s Disease (05012) Under Over 

REACTOME 3’-UTR-Mediated Translational Regulation (1762) Over Under 
REACTOME Activation of mRNA Upon Binding Cap-Binding 

Complex, eIFs, and Subsequent Binding to 43S 
(1258) 

Over Under 

REACTOME Autodegradation of Cdh1 by Cdh1:APC/C (6785) Under Over 
REACTOME Cross-Presentation of Soluble Exogenous Antigens 

(Endosomes) (111056) 
Under Over 

REACTOME Formation of the Ternary Complex, and 
Subsequently, the 43S Complex (1079) 

Over Under 

REACTOME GPCR Downstream Signaling (19184) Over Under 
REACTOME Influenza Life Cycle (6145) Over Under 
REACTOME Influenza Viral RNA Transcription and Replication 

(6152) 
Over Under 

REACTOME Metabolism of mRNA (20605) Over Under 
REACTOME Metabolism of RNA (21257) Over Under 
REACTOME Nonsense-Mediated Decay Enhanced by the Exon 

Junction Complex (EJC) (75822) 
Over Under 

REACTOME Peptide Chain Elongation (1404) Over Under 
REACTOME Regulation of Ornithine Decarboxylase (ODC) 

(13565) 
Under Over 

REACTOME Respiratory Electron Transport (22393) Under Over 

REACTOME Respiratory Electon Transport, ATP Synthesis by 
Chemiosmotic Coupling, and Heat Production by 
Uncoupling Proteins (6305) 

Under Over 

REACTOME SCF-beta-TrCP Mediated Degradation of Emi1 
(6821) 

Under Over 

REACTOME SRP-Dependent Cotranslational Protein Targeting 
to Membrane (115902) 

Over Under 

REACTOME TCA Cycle and Respiratory Electron Transport 
(111083) 

Under Over 

REACTOME Translation (1014) Over Under 
REACTOME VIF-Mediated Degradation of APOBEC3G (9453) Under Over 
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Table 4.9 Overlap Coefficient among enriched gene sets with enriching gene members over-
expressed (BCG treatment versus control) in microglia, under-expressed in peritoneal 
macrophages 

 GO REACTOME 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 1.00 0.98 0.78 1.00 0.77 0.75 0 1.00 1.00 0.85 0.98 1.00 1.00 0.98 1.00 
2  1.00 0.78 0.95 0.96 0.93 0 0.95 0.95 0.83 0.95 0.95 0.95 0.95 0.95 
3   1.00 0.82 0.35 0.36 0 0.84 0.80 0.67 0.84 0.82 0.80 0.78 0.82 
4    1.00 1.00 0.96 0 0.99 1.00 0.97 0.97 0.99 1.00 1.00 1.00 
5     1.00 1.00 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
6      1.00 0 1.00 0.96 0.96 0.96 0.96 0.96 0.96 0.96 
7       1.00 0 0 0 0 0 0 0 0 
8        1.00 1.00 0.97 0.92 1.00 1.00 1.00 0.96 
9         1.00 0.97 0.97 1.00 1.00 1.00 1.00 
10          1.00 1.00 0.97 0.97 0.97 0.97 
11           1.00 0.97 0.97 1.00 0.95 
12            1.00 1.00 1.00 0.99 
13             1.00 1.00 1.00 
14              1.00 1.00 
15               1.00 

Gene Sets 
Gene Ontology 
1) Structural Constituent of Ribosome (GO MF, GO:0003735); 
2) Structural Molecule Activity (GO MF, GO:0005198); 
3) Translation (GO BP, GO:0006412). 
Reactome 
4) 3’-UTR-Mediated Translational Regulation (REACT_1762); 
5) Activation of mRNA Upon Binding of the Cap-Binding Complex and eIFs, and Subsequently, Binding to 
43S (REACT_1258); 
6) Formation of the Ternary Complex, and Subsequently, the 43S Complex (REACT_1079); 
7) GPCR Downstream Signaling (REACT_14797); 
8) Influenza Life Cycle (REACT_6145); 
9) Influenza Viral RNA Transcription and Replication (REACT_6152); 
10) Metabolism of mRNA (REACT_20605); 
11) Metabolism of RNA (REACT_21257); 
12) Nonsense Mediated Decay (NMD) Enhanced by the Exon Junction Complex (EJC) (REACT_75822); 
13) Peptide Chain Elongation (REACT_1404); 
14) SRP-Dependent Cotranslational Protein Targeting to Membrane (REACT_115902); 
15) Translation (REACT_1014). 
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Table 4.10 Overlap Coefficient among enriched gene sets with enriching gene 
members under-expressed (BCG treatment versus control) in microglia, over-
expressed in peritoneal macrophages 

 KEGG REACTOME 
 1 2 3 4 5 6 7 8 9 10 11 12 
1 1.00 0.85 0.67 0.73 0 0 0 0.81 0.71 0 0.75 0 
2  1.00 0.80 0.95 0 0 0 0.86 0.86 0 0.75 0 
3   1.00 0.82 0 0 0 0.76 0.82 0 0.80 0 
4    1.00 0 0 0 0.76 0.79 0 0.79 0 
5     1.00 1.00 0.88 0 0 0.97 0 0.91 
6      1.00 1.00 0 0 0.97 0 1.00 
7       1.00 0 0 0.97 0 0.94 
8        1.00 1.00 0 1 0 
9         1.00 0 1 0 
10          1.00 0 0.97 
11           1.00 0 
12            1.00 

Gene Sets 
KEGG 
1) Alzheimer's Disease (hsa05010) 
2) Huntington's Disease (hsa05016) 
3) Oxidative Phosphorylation (hsa00190) 
4) Parkinson's Disease (hsa05012) 
REACTOME 
5) Autodegradation of Cdh1 by Cdh1:APC/C (REACT_6785) 
6) Cross-Presentation of Soluble Exogenous Antigens (Endosomes) (REACT_111056) 
7) Regulation of Ornithine Decarboxylase (ODC) (REACT_13565) 
8) Respiratory Electron Transport (REACT_22393) 
9) Respiratory Electon Transport, ATP Synthesis by Chemiosmotic Coupling, and Heat Production 
by Uncoupling Proteins (REACT_6305) 
10) SCF-beta-TrCP Mediated Degradation of Emi1 (REACT_6821) 
11) TCA Cycle and Respiratory Electron Transport (REACT_111083) 
12) VIF-Mediated Degradation of APOBEC3G (REACT_9453) 
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