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ABSTRACT 

Defective, leaky vasculature is characteristic of a wide variety of diseases, including 

arthritis, cancer, and cardiovascular disease. The ability to locally highlight vascular defects via 

medical imaging may therefore provide a way to improve diagnosis and treatment of some of the 

most significant diseases worldwide. As magnetic resonance imaging (MRI) provides the highest 

spatial resolution and best soft tissue contrast among common imaging techniques, it remains an 

appealing approach to vascular imaging. MRI, however, has relatively low sensitivity to its 

contrast agents compared to other clinical modalities, which limits its use in targeted 

applications. To address this issue, this thesis investigates the use of polymer materials to control 

the size, morphology, spatial organization, and surface properties of MR imaging probes to 

improve their relaxivity and accumulation at sites of interest. 

The first part of this thesis focuses on the design and development of gadolinium-based 

contrast agents. Chapter 2 describes the synthesis of a polymeric fastener to anchor gadolinium 

to the surface of a liposome through electrostatic and hydrophobic interactions. As a result, the 

probe provided greater contrast per dose than gadolinium chelates used clinically, and was able 

to beacon areas of vascular damage in in vivo models of ischemia. The strategy was then adapted 

to rapidly label stem cells for applications in cell tracking, as described in Chapter 3. 

Secondly, methods to improve the in vivo performance of superparamagnetic iron oxide 

nanoparticle (SPION) contrast agents are investigated. Chapter 4 explores the use of 

hyperbranched polyglycerol (HPG) in assembling SPIONs in the form of spherical clusters. By 

controlling the cluster size and molecular architecture of the polymer coating, optimal relaxivity 

of the SPIONs was achieved for sensitive imaging. In Chapter 5, the SPION clusters are further 

improved with the incorporation of targeting ligands and by inducing a wormlike morphology. 



 iii 

This allowed for greater accumulation in areas of defective vasculature. Overall, this work 

contributes to a better understanding of contrast agent design and may serve to expedite efforts to 

improve the diagnosis and treatment of vascular diseases. 
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CHAPTER 1 

INTRODUCTION 

1.1 Cardiovascular Disease 

 According to the World Health Organization, cardiovascular disease (CVD) remains the 

leading cause of death worldwide. With aging populations, as well as increasing rates of risk 

factors such as obesity and air pollution levels, CVD will continue to represent a great challenge 

to human health. Furthermore, as CVD refers to the dysfunction of the heart or any of the 

numerous blood vessels throughout the body, it can manifest itself in a variety of ways, including 

stroke, aneurysm, myocardial infarction, chronic kidney disease, and limb ischemia. Most 

commonly, CVD develops from atherosclerosis, in which plaque builds up on arterial walls to 

restrict the flow of blood through the vessel. 

An inflammatory process,1,2 atherosclerosis is initiated by damage to the endothelial 

lining of a blood vessel, for example as a result of smoking, hypertension, or high levels of low-

density lipoproteins (LDL). This induces inflammation, in which endothelial cells upregulate the 

expression of cellular adhesion molecules to bind leukocytes within the blood stream,3 

concomitant with increased vascular permeability as a result of the loss of endothelial tight 

junctions.4,5 Plaque, consisting of cholesterol, lipids, dead cells, and calcified materials, then 

begins to build up below the endothelium. Given sufficient progression, the plaque can 

eventually reach a critical size at which point blood flow through the artery is significantly 

reduced. The effect is further exacerbated with the potential formation of a thrombus, which can 

ultimately occlude the blood vessel. Such blockage results in tissue ischemia, necrosis, and 

eventually loss of organ function and death. As such, it is of great importance to diagnose 

atherosclerotic conditions early during disease progression. Beyond the cost of human life, by 
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most recent estimates the United States has spent over $300 billion in a single year on the 

treatment and diagnosis of cardiovascular disease.6 There are therefore great needs to improve 

current methods of diagnosis and treatment of CVD. 

Commonly used clinical diagnostic methods of CVD are generally limited to late stages 

of disease progression, or do not provide spatially localized diagnostic information.7 For 

example, analysis of a patient’s blood for certain factors may indicate whether the patient is at 

risk of suffering a cardiovascular event,8 or may be able to indicate whether the patient has 

experienced a heart attack, but likely would not be able to pinpoint areas of vascular dysfunction. 

To visualize perfusion of blood through arteries, catheter angiography has been the gold 

standard. In recent years, computed tomography (CT) angiography has also emerged as a non-

invasive alternative that also allows for assessment of arterial calcification. However, while 

advantageous in locating areas of vascular occlusion, such techniques are limited to arteries 

already displaying significant stenosis or late stage calcification. 

A promising strategy to interrogate the status of damaged vasculature is to use targeted or 

bioresponsive contrast agents to locally highlight areas of interest. For example, magnetic 

resonance imaging (MRI) contrast agents can be modified to adhere to thrombi or atherosclerotic 

plaques in order to locally assess the molecular status of the disease, as well as determine 

whether the plaque is stable or prone to rupture.9,10 Others have created MRI contrast agents that 

respond to the oxidative stress present in atherosclerotic lesions.11 To probe the inflammatory 

state, such probes can be targeted to inflamed endothelial cells12 or the macrophages present at 

sites of inflammation.13,14 MRI in particular is being investigated for its use in MR angiography15 

due to its superior resolution and soft tissue contrast among other clinical imaging modalities.16 

Its limitless penetration depth and non-ionizing radiation also make it an attractive choice for the 
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application. MRI, however, is marked by its low sensitivity to its imaging probes, necessitating 

high levels of accumulation at a target site in order to see any contrast effect.17 Therefore, 

contrast agent formulation strategies that enhance sensitivity, as well as accumulation during 

early stages of inflammation, remain a promising area of investigation. Furthermore, as the leaky 

blood vessels characteristic of vascular inflammation are a hallmark of various other diseases, 

including chronic lung injuries,18 rheumatoid arthritis,19 and cancer,20 such a probe could be 

broadly applicable in a wide range diagnostic applications. 

 

1.2 Magnetic Resonance Imaging and Its Contrast Agents 

 MRI operates on principles of nuclear relaxation. In the presence of an externally applied 

magnetic field, unpaired nuclear spins produce a net alignment. Due to the abundance of 

hydrogen in the human body, most commonly in the form of water, its alignment and relaxation 

are the focus of most clinical MRI exams. In a typical MR sequence, an applied radio frequency 

(RF) pulse flips the proton alignment 90° or 180° out of plane with the magnetic field. 

Subsequent proton realignment after removal of the RF pulse produces signal, which is the basis 

for image generation. This longitudinal relaxation is termed a T1 relaxation process (Figure 1.1a). 

Simultaneously, the proton undergoes precession about its axis. Initially, upon excitation with 

the RF pulse, the proton precessional rates are aligned. However, as they relax to their 

equilibrium state, the protons dephase as a result of local field inhomogeneities in what is termed 

T2 relaxation (Figure 1.1b). Since T1 and T2 relaxation rates depend on the local tissue 

environment, MRI can be used to visually distinguish anatomical features in a scan. 

Additionally, to highlight particular areas of interest by enhancing or diminishing MR signal, 

contrast media that affects the relaxation of water protons can be used. 
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 It is estimated that approximately 35% of all MR scans employ contrast media.21 These 

take the form of either positive, T1 contrast agents, or negative, T2 contrast agents. The former is 

typically based on chelated gadolinium (Gd) complexes, as gadolinium is highly paramagnetic 

due to its seven unpaired electrons. This allows gadolinium to readily interact with water through 

a metal coordination bond that effectively reduces the T1 relaxation time of the water protons 

(Figure 1.2a). This type of interaction, known as the inner sphere, represents the primary mode 

of gadolinium interaction with water to enhance the relaxation rate. Other, weaker, interactions 

arise from water hydrogen bonded to the chelate, termed second sphere coordination, or water 

experiencing the paramagnetic effects of gadolinium without coordination in what is termed the 

outer sphere.22  

 In the design of gadolinium-based contrast agents, recent efforts have focused on 

methods to enhance signal in areas of interest by improving targetability and molar relaxivity. 

For example, gadolinium chelates have been conjugated to polymer backbones or incorporated 

with nanoparticles containing binding motifs such as peptides, antibodies, or folic acid to bring 

gadolinium to tissues of interest.23-26 In many such cases, the relaxivity is also increased due to 

the lengthening of the rotational correlation time upon conjugating the gadolinium chelate to a 

high molecular weight species, thus enhancing the time over which gadolinium interacts with a 

given water molecule.27 Others have also focused on methods of changing relaxivity in the 

presence of stimuli, such as pH, calcium levels, or enzymatic activity, to probe the local tissue 

environment.28-30 Overall, a common theme in the design of gadolinium probes for alteration of 

relaxivity is to develop ways of controlling the interaction with surrounding water, and this 

remains an active area of research. 
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 The most commonly used T2 contrast agents are superparamagnetic iron oxide 

nanoparticles (SPIONs), which consist of a metallic core and a hydrophilic coating that imparts 

biocompatibility and colloidal stability. Unlike gadolinium-based contrast agents that rely on 

direct coordination with water as the primary means of relaxation, SPIONs produce stronger 

paramagnetic effects to locally perturb the magnetic field (Figure 1.2b). This results in loss of 

signal as the protons’ precessional motion quickly becomes dephased. 

 Due to their size, SPIONs lend themselves well to passive targeting of leaky vasculature 

through the enhanced permeability and retention (EPR) effect.31-33 Additionally, SPIONs can be 

functionalized with active targeting moieties, either by direct surface conjugation through ligand 

exchange or by encapsulation with an adsorbing material.34 As with gadolinium chelates, MRI is 

known to have low sensitivity to SPION contrast agents. Therefore relaxivity enhancement is an 

area of great interest. Current approaches focus on accomplishing this by controlling size,35 

composition,36 or morphology37,38 of the nanoparticles to heighten their saturation magnetization. 

Additionally, relaxivity can be enhanced by organizing SPIONs into controlled aggregate 

clusters.39-41 This provides the basis for methods of stimulus-responsive contrast enhancement. 

For example, SPIONs have been functionalized to assemble in the presence of matrix 

metalloproteinase-2 (MMP-2)42 or calcium ions43 such that relaxivity is greatly enhanced in the 

presence of the analyte. In all cases, the behavior and performance of the SPION formulations 

with regards to relaxivity, targetability, and responsiveness is intrinsically related to the design of 

the nanoparticle coating material. 
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1.3 Project Overview 

This thesis seeks to improve the diagnostic capability of commonly used MRI contrast 

agents and leverage them in the localized evaluation of vascular defects characteristic of 

cardiovascular disease. To do so, polymer systems are employed to control the size, morphology, 

spatial organization, and water accessibility of gadolinium and SPION nanocarriers to enhance 

both relaxivity and targetability. Chapter 2 introduces a strategy to coat nano- and microparticles 

post fabrication with chelated gadolinium using a polymeric fastener to augment the interaction 

between gadolinium and bulk water. This material is adopted in Chapter 3 as a cellular coating to 

efficiently label stem cells commonly used in cellular therapies for cardiovascular disease. 

Chapter 4 investigates the role of polymer molecular architecture in relaxivity optimization of 

controlled SPION clusters for sensitive imaging of tissue ischemia. Chapter 5 then explores the 

morphogenic properties of the SPION coating material to induce wormlike assemblies of SPION 

clusters for improved active targeting of inflammation. Overall, the results of this work will be 

broadly useful in nanocarrier design and will serve to elevate the diagnostic capability of MRI in 

the evaluation of CVD and other inflammatory diseases. 
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1.4 Figures 

Figure 1.1 Nuclear relaxation processes. (a) T1 longitudinal relaxation, in which the orientation 

of the nuclear spin returns to equilibrium orientation in a magnetic field after removal of an RF 

pulse. (b) T2 transverse relaxation, in which the precession of the nuclear spins become dephased 

after an initial perturbation by an RF pulse. 

  

a b 
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Figure 1.2 Commonly used MRI contrast agents. (a) Chelated gadolinium, a T1 contrast agent, 

interacts primarily with water through direct coordination in the inner sphere. To a lesser extent, 

water experiences the relaxive properties of gadolinium in the second coordination sphere and 

outer sphere. (b) SPIONs, a class of T2 contrast agent, affect the relaxation rates of water protons 

through paramagnetic interactions. Images are not drawn to scale. 
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CHAPTER 2 

A POLYMERIC FASTENER CAN EASILY FUNCTIONALIZE LIPOSOME 

SURFACES WITH GADOLINIUM FOR ENHANCED 

MAGNETIC RESONANCE IMAGING 
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2.1 Introduction 

Although the clinical use of nanoparticles for the diagnosis or treatment of disease has 

been under development since the 1960s, a new generation of particles seeks to combine 

multiple functionalities within a single construct.1-4 This strategy provides a promising way of 

noninvasively monitoring biodistribution of therapeutics, while simultaneously treating and 
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tracking disease progression. Additionally, numerous imaging agents may be combined to allow 

for orthogonal methods of diagnosis in a single dosing.5-7 Such a method of co-administration is 

often accomplished by co-encapsulation of multiple components during the fabrication of nano- 

or microparticles.8-11 These encapsulation approaches, however, may influence functionality of 

imaging contrast agents. For example, encapsulating a magnetic resonance imaging (MRI) 

contrast agent into a particle’s interior may limit its interaction with water in surrounding tissues 

and significantly reduce its relaxivity.12 Additionally, co-encapsulation of imaging probes and 

drug molecules may result in undesirable interactions between the two components. Some 

studies have reported that contrast agents, such as gadolinium chelates, can form noncovalent 

associations with various proteins, which would have deleterious effects on the efficacy of 

biomacromolecular therapies.13-15  

Therefore, efforts are increasingly made to localize imaging contrast agents on particle 

surfaces. One popular approach is chemical conjugation of micelle-forming molecules or 

surfactants with contrast agents or their ligands.16-18 However, these methods may interfere with 

particle formation and reduce the loading efficiency of drug molecules. Other approaches have 

therefore focused on chemically modifying the particle surface postfabrication,19,20 but the 

accompanying chemical reaction and purification steps raise concerns about the retention and 

bioactivity of molecules loaded within the carriers.21 Therefore, there is still a need to exploit an 

advanced approach that decouples the control of particle assembly from contrast agent loading 

on the surface, while circumventing concerns regarding additional chemical surface modification 

steps.  

Previously, several biological studies discovered that many biomolecules and pathogens 

utilize an electrostatic and hydrophobic association to stably associate with a host cell. For 
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example, transmembrane proteins present positively charged amino acid residues and 

hydrophobic alkyl chains to facilitate association with lipid molecules of a cell membrane.22-24 

Additionally, various viruses associate with cell membranes through similar electrostatic and 

hydrophobic associations to facilitate intracellular invasion.25-27 This study presents a strategy to 

harness these biological interactions in the design of carriers coated with MRI contrast agents 

using a polymeric fastener. A fastener is defined as a functional unit that physically joins two 

objects together. In this way, we propose a method to join gadolinium, an MRI contrast agent, 

with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes as a model carrier. 

Chitosan conjugated with octadecyl chains and diethylenetriaminepentaacetic acid (DTPA), 

termed DTPA-chitosan-g-C18, was synthesized as a polymeric fastener to immobilize chelated 

gadolinium on the liposome surface via electrostatic and hydrophobic assembly (Figure 2.1). We 

examined the role of chitosan structure in liposomal surface loading and subsequent 

enhancement of MRI contrast, as well as the thermodynamics of association between chitosan 

and liposome using isothermal titration calorimetry (ITC). Outcomes were compared to 

traditional methods of gadolinium loading, such as encapsulation of gadolinium into the 

liposome, which have been developed to enhance retention in vivo.28 Overall, the results of this 

study enable decoupled control of particle assembly and gadolinium loading, offering 

considerable potential to improve bioimaging quality, as well as to advance the methods used for 

assembly of multifunctional nano- and microcarriers. 
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2.2 Results 

2.2.1 Synthesis and characterization of DTPA-chitosan-g-C18 

 Chitosan capable of binding with both liposome and gadolinium was synthesized by 

chemically conjugating a controlled number of hydrophobically associating octadecyl chains and 

gadolinium-binding DTPA to the polymer backbone. The modification of chitosan was 

performed through a two-step process as depicted in Figure 2.2a. First, chitosan, consisting of 

95.5% deacetylated glucosamine subunits, was conjugated with octadecyl chains through the 

reaction between the amine groups of chitosan and carbodiimide-activated stearic acid.29 

According to the 2,4,6-trinitrobenzene sulfonic acid (TNBS) assay, the degree of substitution of 

octadecyl chains linked to a chitosan molecule (DSC18) was varied from 0 to 2.3 to 4.2% by 

altering the molar ratio between stearic acid and glucosamine (see Table 2.1). The resulting 

alkyl-substituted chitosan, termed as chitosan-g-C18, remained soluble in water at pH 4.7. 

Next, the chitosan-g-C18, as well as unmodified chitosan, was further conjugated with 

DTPA through the carbodiimide-mediated reaction between amine groups of chitosan and 

carboxylates of DTPA.30 The resulting DTPA-chitosan-g-C18 was readily dissolved in 

physiologically relevant and neutral media. Chitosan coupled with DTPA successfully chelated 

gadolinium, as demonstrated by the retention of yellow color of xylenol orange added to the 

mixture of DTPA-chitosan-g-C18 and GdCl3 (Figure 2.2b). Note that xylenol orange presents a 

pink color upon complexation with free gadolinium ions in solution. The active association 

between DTPA grafted to chitosan and gadolinium was also verified by examining the ratio of 

absorbance peak heights at 573 and 433 nm31 (Figure 2.2c). In the presence of DTPA-chitosan or 

DTPA-chitosan-g-C18, this ratio did not change as compared to the pure xylenol orange solution. 

However, without the chelate, there was a dramatic change in the absorbance spectrum, with a 3-
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fold increase in the ratio of absorbances at 573 and 433 nm. As confirmed by the xylenol orange 

assay, we could tune the degree of substitution of DTPA to chitosan with the molar ratio between 

1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and glucosamine unit of chitosan. In this 

study, the molar ratio between DTPA and EDC was kept constant at 5:1, to circumvent the 

potential cross-linking reaction between DTPA conjugated to the chitosan molecules. This 

degree of DTPA substitution was kept constant at approximately 15% for all conditions (Table 

2.1). 

 

2.2.2 Modification of the liposome surface using DTPA-chitosan-g-C18  

Liposomes coated with DTPA-chitosan or DTPA-chitosan-g-C18 were prepared by 

mixing premade liposomes and chitosan molecules in aqueous media. Liposomes with an 

average diameter of 4.6 ± 2 µm, characterized with phase contrast microscopic images, were first 

formed by film hydration, and then mixed with DTPA-chitosan or DTPA-chitosan-g-C18 with 

DSC18 varied from 2.3 to 4.2% (Figure 2.3 and Figure 2.4). The liposome surface was fully 

saturated with modified chitosan by mixing the two components at a 4:1 molar ratio between 

glucosamine unit and exposed lipid. To examine the resulting liposome-chitosan association, 

DTPA-chitosan and DTPA-chitosan-g-C18 were labeled with the amine-reactive rhodamine-B 

isothiocyanate (Figure 2.5). Within 10 min, the liposome showed positive red fluorescence on its 

surface, according to cross-sectional images captured with a confocal microscope (Figure 2.6a). 

The ring-like appearance of Figure 2.6a-(i) is in direct contrast to the confocal image of a 

liposome encapsulating fluorescent DTPA-chitosan-g-C18, formed by hydration of lipids in the 

presence of the modified chitosan (Figure 2.6a-(ii)). This visually indicated the surface 

localization of the chitosan fastener on preformed liposomes. By quantitatively measuring the 
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fluorescence intensity of liposomes after centrifugation, as well as the free chitosan in the 

supernatant, we found that the number of chitosan molecules bound with the liposome surface 

was indeed independent of DSC18. These results therefore demonstrate that both DTPA-chitosan 

and DTPA-chitosan-g-C18 readily adsorb onto the liposome surface (Figure 2.6b). The chitosan 

associated with liposome remained stable for at least 24 h even after transfer of the liposome 

particles to chitosan-free phosphate buffered saline (PBS). 

However, according to the thermodynamic analysis conducted using ITC, the octadecyl 

chains grafted to chitosan significantly augmented the association of the chitosan molecules with 

liposome surface (Figure 2.7). In this analysis, liposomes were formed by film hydration of 

DPPC lipids and titrated with solutions of DTPA-chitosan or DTPA-chitosan-g-C18 with varied 

DSC18. Similar to the fluorescence assay presented in Figure 2.6b, the number of glucosamine 

units of chitosan bound to the liposome at saturation (N) was approximately equal to the number 

of lipids in the outer leaflet, independent of DSC18 (Table 2.2). In contrast, the equilibrium 

binding constant, K, increased with increasing DSC18. The binding constant is defined as32 

                                                                      (2.1)      

where Cfree is the concentration of unbound glucosamine repeat unit, and Θ is the fraction of 

exposed lipids bound by modified chitosan. Cfree is further expanded and related to the total 

chitosan concentration and saturation binding stoichiometry, N: 

                                                         (2.2) 

where L is the concentration of lipids in the outer leaflet of the liposome and assumed to be half 

of the total lipid concentration. Accordingly, the change in Gibbs free energy (ΔG) of the 

K =
!

(1"!)Cfree

Cfree =Ctotal ! N"L
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liposome-chitosan mixture, calculated from K using Eq. (2.3), presented negative values for all 

conditions.   

                                                            (2.3) 

These negative values of ΔG indicate that the association of chitosan with liposome is 

thermodynamically favorable. Interestingly, ΔG decreased linearly with DSC18 (Figure 2.8). 

ΔG was further related to the additive contributions of ΔG for the octadecyl chain (ΔGC18) 

and ΔG for other glucosamine units (ΔGglucosamine), through Eq. (2.4): 

                                        (2.4)  

The ΔGC18 calculated from the slope and y-intercept of the linear regression curve in Figure 2.8 

is approximately -10.8 kcal/mol. Note that the free energy for transfer of a hydrocarbon chain 

into a micelle or bilayer has previously been reported as approximately -0.7 kcal per mol per 

methylene group.33 Therefore, it is suggested that most methylene units of the octadecyl chain 

grafted to chitosan are inserted into the liposome bilayer via hydrophobic assembly, thus further 

stabilizing DTPA-chitosan-g-C18 on the liposome surface. 

Changes in enthalpy, (ΔH), were calculated by relating it to the total heat of the solution 

(Q) measured with ITC, as shown in Eq. (2.5) 

                                                              (2.5) 

where V0 is the total volume of the sample cell. In all cases, ΔH was positive, which suggests that 

the association between liposome and chitosan was endothermic for all conditions. This result is 

similar to previous studies for the association of unmodified chitosan with zwitterionic lipids.34 

!G = "RT ln K( )

!G = DSC18 !GC18( )+ 1"DSC18( ) !Gglucosamine( )
= !Gglucosamine + !GC18

"!Gglucosamine( )DSC18

Q = N!V0L"H
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Additionally, the change in entropy (ΔS), calculated from ΔH and ΔG using Eq. (2.6) also 

presented positive values for all conditions.  

         
!S = !H "!G

T                                                       (2.6) 

Interestingly, ΔS increased with DSC18 of DTPA-chitosan-g-C18 (Table 2.2). 

Taken together, we interpret that the increase in entropy is responsible for the 

thermodynamically favorable association between liposome and modified chitosan molecules. 

The positive ΔS is likely due to the release of counterions and water molecules bound with 

chitosan and liposome surfaces, as electrostatic interactions are established between charged 

chitosan subunits and exposed lipids. It is also likely that the octadecyl chains grafted to chitosan 

molecules confer an additional increase in ΔS with increasing DSC18 of DTPA-chitosan-g-C18 

due to desolvation upon insertion into the bilayer. These different association mechanisms and 

thermodynamic contributions between DTPA-chitosan and DTPA-chitosan-g-C18 significantly 

influenced the amount of gadolinium loaded on the liposome surface, as will be demonstrated in 

the subsequent section. 

 

2.2.3 Loading gadolinium on a liposome surface 

As expected, liposomes associated with either DTPA-chitosan or DTPA-chitosan-g-C18 

of varying DSC18 could immobilize gadolinium on their surfaces. In this study, coated liposome 

particles were mixed with GdCl3 to saturate the conjugated DTPA (Figure 2.9a). Complete 

chelation was verified by the xylenol orange assay. Liposomes coated by DTPA-modified 

chitosan were able to associate with gadolinium and produce the same spectrum as pure xylenol 

orange solution (Figure 2.9b). Conversely, in the absence of chitosan, bare liposomes mixed with 

gadolinium showed a three-fold increase in the ratio of absorbances at 573 and 433 nm. These 
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results clearly confirm that gadolinium is stably immobilized on the liposome surface through 

the adsorption of DTPA-chitosan or DTPA-chitosan-g-C18. 

Interestingly, however, the amount of gadolinium immobilized on the liposome surface 

was significantly dependent on whether the DTPA-chitosan was modified by octadecyl chains. 

According to the quantitative fluorescence assay to determine the number of rhodamine-labeled 

chitosan molecules remaining on the liposome surface after addition of GdCl3, complexation of 

gadolinium with DTPA triggered 30% of the DTPA-chitosan to desorb from the liposome 

surface (Figure 2.9c). In contrast, DTPA-chitosan-g-C18 showed minimal desorption. Therefore, 

as a result, the gadolinium surface loading was approximately 1.4 times larger with DTPA-

chitosan-g-C18. These results suggest that the gadolinium bound to DTPA-chitosan destabilize 

the electrostatic association between chitosan molecules and liposome surface. In contrast, 

octadecyl chains of the DTPA-chitosan-g-C18, which hydrophobically associated with alkyl 

chains of lipid molecules, likely act as an anchor to mitigate the tendency of gadolinium to 

electrostatically separate chitosan from the liposome surface. 

 

2.2.4 Evaluation of gadolinium-loaded liposome contrast capability 

The ability of gadolinium-loaded liposomes to enhance MRI contrast was evaluated using 

a 3 T clinical MRI scanner. MR phantom images were acquired using an inversion recovery 

turbo spin echo (IR-TSE) pulse sequence to evaluate spin-lattice relaxation time (T1). Molar 

relaxivity was then determined by linear regression of the longitudinal relaxation rate (R1 = 1/T1) 

versus gadolinium concentration. Gadolinium loaded on the liposome modified by DTPA-

chitosan-g-C18 significantly enhanced MR signal, compared to the liposome modified with 

DTPA-chitosan (Figure 2.10a). At a given liposome concentration, R1 of the suspension was 
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increased with DTPA-chitosan-g-C18. However, the molar relaxivity of immobilized gadolinium 

was nearly the same across samples, regardless of DSC18 (Figure 2.10b and Figure 2.11). 

Therefore, we interpret that the enhancement of R1 attained with DTPA-chitosan-g-C18 is due 

solely to the higher loading of gadolinium on the liposome surface, noting that 30% of the 

DTPA-chitosan was desorbed upon exposure to GdCl3 as shown in Figure 2.9c. 

Additionally, at a given gadolinium concentration, the gadolinium-loaded liposomes 

assembled through sequential addition of DTPA-chitosan-g-C18 and GdCl3 to preformed vesicles 

enhanced MR signal more significantly than gadolinium encapsulated in situ during liposome 

formation. In the analysis shown in Figure 2.12a, the gadolinium concentration was kept constant 

at 70 µM for both conditions according to ICP-OES analysis. Noting that the amount of 

gadolinium per liposome was greater in the case of loading both in the interior and on the surface 

as compared to surface loading only, the number of liposomes per MR phantom sample was 

greater for liposomes loading gadolinium on their surfaces. Interestingly, the longitudinal 

relaxation rate (R1) and the corresponding signal intensity of the phantom made with gadolinium 

localized on the outer leaflet were significantly greater than that made by encapsulation. This can 

be attributed to the greater total number of gadolinium ions anchored to the liposome surface. As 

such, the molar relaxivity of surface-bound gadolinium was twice that of gadolinium 

incorporated via in situ encapsulation (Figure 2.12b). 

This boost in relaxivity, and subsequent MR signal enhancement, are likely derived from 

enhanced contact with free water in surrounding media, in contrast to the limited interaction 

available to gadolinium within the liposome interior. Therefore, these results systematically 

rationalize the necessity to load gadolinium exclusively on particle surfaces for enhancing MR 
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images. Furthermore, the relaxivity was enhanced beyond that of the clinically used 

unconjugated DTPA-gadolinium complex with a molar relaxivity of 4.85 mM-1s-1 (Figure 2.11). 

 

2.2.5 Stability analysis of gadolinium-loaded liposomes in serum-supplemented media 

We further analyzed the stability of the association between DTPA-chitosan-g-C18 and 

liposome surfaces by incubating the liposome particles in media supplemented with 10% human 

serum at 37 °C, which is conventionally used to assess structural stability of nanoparticle 

formulations. Stability was monitored over the course of an hour to match the in vivo incubation 

period presented in the following sections. According to measurements of fluorescence intensity 

from liposomes after centrifugation to remove free chitosan molecules, more than 60% of the 

initially adsorbed DTPA-chitosan-g-C18 remained on the liposome surface (Figure 2.13). We 

interpret that the desorption of chitosan from liposomes may result in part from the intrinsic 

instability of liposome particles in circulation, as characterized by an increase in liposome 

permeability and structural disintegration.35,36 We therefore propose that further optimization of 

the liposome itself to enhance stability in future studies would minimize the loss of DTPA-

chitosan-g-C18 from the liposome surface. Additionally, the liposomes did not aggregate over the 

course of one-hour incubation according to optical images, and the average diameter changed 

minimally (Figure 2.14). However, there was an observable reduction in the number of 

liposomes following incubation in the serum-supplemented media. 

Despite detachment, DTPA-chitosan-g-C18 was able to retain its association with 

gadolinium in the presence of serum. The resulting complex of gadolinium and DTPA-chitosan-

g-C18 was minimally toxic to cells, as evaluated with an MTT assay widely used to evaluate 

cytotoxicity. Endothelial cells incubated with gadolinium loaded on the liposome surface, as well 



	
   24 

as those incubated with gadolinium bound to free DTPA-chitosan-g-C18, retained their metabolic 

activity, similar to untreated cells (Figure 2.15). In contrast, half of the cells incubated with 

unchelated gadolinium over 24 h were no longer metabolically active. 

 

2.2.6 In vivo performance of gadolinium-loaded liposomes 

To evaluate the capability of the gadolinium-coated liposomes to highlight target tissues 

of interest in vivo, two separate animal experiments were conducted using murine models with 

occlusive blood flow in femoral or renal arteries. First, an ischemic injury was induced in the left 

hindlimb of male BALB/c mice using a suture to occlude the femoral artery.37 Such a model is 

often used to study peripheral vascular diseases that result in reduced or blocked blood flow to 

limbs, and ultimately limb infarction if not diagnosed and treated early. These vascular defects 

are caused by vascular occlusion, rupture, or leakage, characteristic of atherosclerosis, vascular 

leak syndrome, and other cardiovascular diseases.38,39 Through the tail vein, mice were either 

injected with gadolinium loaded on liposome surfaces using DTPA-chitosan-g-C18 (DSC18 = 

4.2%), or with unconjugated DTPA-gadolinium, as a control. The dosage of gadolinium was 

kept constant at 0.04 mmol/kg. 

One hour after injection, mice were imaged with a 14.1 T MR scanner to examine 

whether the injected liposome particles could enhance imaging of the occluded artery. Based on 

serum stability studies, we expected gadolinium would sufficiently remain on the liposome 

surfaces over the course of the experiment. In comparison to a mouse that received the ischemic 

injury but no injection of gadolinium, both the liposome-bound and free gadolinium chelates 

provided signal enhancement in the hindlimbs (Figure 2.16). However, only in the case of 

gadolinium loaded on the liposome surface, the occluded artery was illustrated by greater area 
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and intensity of the highlighted region than that of the uninjured right hindlimb. We therefore 

suggest that the liposomes were better able to accumulate in the occluded area than free DTPA-

gadolinium. In this way, the gadolinium adsorbed to the liposome surface could locally enhance 

the relaxation rate in the extravascular tissue and subsequently provide contrast. Such 

discrimination between ischemic and nonischemic limbs was not observed with the free DTPA-

gadolinium, which emphasized the advantage of binding gadolinium to the liposome surface in 

the diagnosis of peripheral vascular diseases. 

To further underscore the applicability of gadolinium-adsorbed liposomes in vivo, the 

system was administered in a rat model of renal ischemic injury. MR imaging is commonly used 

to diagnose renal diseases based on changes in anatomical structure, however, the use of 

gadolinium-based contrast agents may be limited due to lack of corticomedullary 

differentiation.40 A major reason for this is the rapid transport of small gadolinium chelates from 

cortex to medulla during renal excretion. 

First, renal arteries were clamped for 45 min to induce an ischemic state in the kidney. 

Saline, gadolinium in the form of free DTPA chelate, or gadolinium anchored to liposomes was 

injected into the left kidney through the renal artery. Five minutes after injection, kidneys 

displayed enhanced signal compared to the saline-injected control (Figure 2.17). However, in the 

case of the kidney injected with free DTPA chelate, medulla was not as readily delineated from 

cortex, as expected. The contrast agent appeared unevenly distributed throughout the kidney. 

Conversely, the gadolinium-loaded liposomes were localized within the cortex and were able to 

clearly differentiate cortex from medulla, as confirmed by near-infrared (NIR) fluorescence 

images of liposomes labeled with CellVue NIR815 dye (Figure 2.18). 
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2.3 Discussion 

These results clearly underscore the utility of DTPA-chitosan-g-C18 in imbuing a 

liposome with MRI contrast capabilities due to (1) the higher loading of gadolinium on the 

liposome surface provided by hydrophobic stabilization and (2) enhanced molar relaxivity 

through surface localization. We envision that the contrast enhancement provided by this 

fabrication strategy can be further improved by modifying the chemical structure of DTPA-

chitosan-g-C18. For example, coating of the liposome surface with chitosan-g-C18 substituted 

with a greater amount of DTPA would significantly increase gadolinium loading on the liposome 

and heighten the liposome’s ability to increase MR contrast.  

Additionally, this process facilitates separation of secondary imaging contrast agents or 

drug molecules from gadolinium by incorporating them inside the liposome, so as to circumvent 

potential interaction between gadolinium and other functional molecules. Moreover, we propose 

that this process has benefits beyond MRI. For example, chitosan-g-C18 could be modified with 

peptides capable of binding with target pathological tissues. This strategy represents another way 

in which the efficiency of the functional unit is improved when localized on the liposome 

surface. Furthermore, though chitosan has been shown to demonstrate stealth properties in some 

cases,41,42 the chitosan fastener may be further modified with poly(ethylene glycol) to reduce 

potential opsonization and enhance in vivo retention. Separately, the liposome composition and 

particle size may be optimized for the particular application. Overall, our process of coating 

liposomes postfabrication with the chitosan fastener should be advantageous to decoupling the 

particle assembly from the particle surface modification for independent tunability of functional 

units. 
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2.4 Conclusion 

Overall, this study demonstrates a simple, yet unreported method to functionalize 

liposome surfaces with gadolinium, an MRI contrast agent, using DTPA-chitosan-g-C18. Upon 

mixing premade liposomes with the DTPA-chitosan-g-C18 fastener, octadecyl chains were 

inserted into the lipid membrane via hydrophobic association, as confirmed by ITC. 

Subsequently, the octadecyl chains minimized desorption of chitosan molecules from the 

liposome triggered by chelation of gadolinium with DTPA. Therefore, liposomes loaded with 

gadolinium on their surfaces via DTPA-chitosan-g-C18 displayed a greater capacity to enhance 

MR contrast than liposomes modified by alkyl-free DTPA-chitosan. Additionally, this sequential 

assembly process to localize gadolinium on the exterior of the liposome greatly enhanced the 

molar relaxivity of gadolinium and subsequently MRI contrast, as compared to methods that 

incorporate gadolinium inside the liposome. Using in vivo models, we were also able to 

demonstrate the utility of the gadolinium-loaded liposomes in detecting and imaging ischemic 

sites. Taken together, this assembly strategy using a chitosan fastener will be broadly useful not 

only for functionalizing liposome surfaces with a wide array of imaging, targeting, and 

therapeutic modalities, and but also for spatially organizing them.  

 

2.5 Materials and Methods 

2.5.1 Synthesis of DTPA-chitosan-g-C18 

Chitosan (Sigma-Aldrich) was dissolved in a 50 mM aqueous HCl solution heated to 70 

°C. Additional HCl was added to adjust the pH to 4.7 after chitosan was completely dissolved. 

Separately, varying amounts of stearic acid (Sigma-Aldrich)—2% or 5% with respect to 

glucosamine repeat unit of chitosan— were dissolved in ethanol at 70 °C. After dissolution of 
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stearic acid, the solution was brought to room temperature and 1-ethyl-3- (3-

dimethylaminopropyl) carbodiimide (EDC, Sigma-Aldrich) was added at a molar ratio of 5:1 

EDC to stearic acid. The stearic acid/EDC solution was then added to the dissolved chitosan and 

reacted at 70 °C. The volume ratio between ethanol and HCl solution was kept constant at 1:2 for 

all conditions. After 24 h, the temperature was gradually reduced to room temperature, and the 

mixture continued to stir for another 24 h. 

Then, ethanol was removed by precipitation in NaOH and the chitosan-g-C18 was 

resuspended in HCl. Briefly, 50 mM NaOH was added to the solution of chitosan-g-C18, 

followed by centrifugation for 10 min at 4000 rpm. The supernatant was removed, and the 

precipitate was redissolved in 50 mM HCl aqueous solution at 70 °C. This 

precipitation/dissolution process was repeated twice to ensure removal of ethanol. 

Next, diethylenetriaminepentaacetic acid (DTPA, Sigma-Aldrich) was dissolved in 

deionized water. Tetramethylethylenediamine (TEMED, Sigma-Aldrich) was added to the DTPA 

solution to adjust the pH of the mixture to 4.7. The DTPA solution was then further mixed with 

EDC dissolved in 50 mM HCl aqueous solution. The molar ratio between DTPA and EDC was 

kept constant at 5:1, to minimize cross-linking between glucosamine units of chitosan and the 

multiple carboxylate groups of DTPA. The DTPA/EDC mixture was finally added to the 

chitosan or chitosan-g-C18 solutions and allowed to react for 24 h at 70 °C, followed by another 

24 h at room temperature. The resulting DTPA-chitosan and DTPA-chitosan-g-C18 were purified 

by dialysis (MWCO 6000-8000 regenerated cellulose tubing, Fisher Scientific) against 0.1 M 

NaCl for two days. The product was then further dialyzed in deionized water for one day. The 

purified product was then lyophilized, and kept in powder form before use. 
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2.5.2 Characterization of DTPA-chitosan and DTPA-chitosan-g-C18 

The degree of substitution of octadecyl chains to chitosan was determined by a 2,4,6-

trinitrobenzene sulfonic acid (TNBS, Sigma-Aldrich) assay, which quantifies the amount of 

unreacted amines on chitosan. Briefly, modified chitosan samples were dissolved in an 0.1 M 

acetate buffer at pH 5.0 and mixed with 0.1% (w/v) TNBS at 37 °C. After incubation for 5 h, the 

absorbance of each mixture was measured at 335 nm with a microplate reader (Tecan Infinite 

200 PRO, Tecan AG, Switzerland).  

The degree of substitution of DTPA grafted to chitosan was quantified by the xylenol 

orange assay. A GdCl3 (GdCl3�6H2O, Sigma-Aldrich) solution was added incrementally to a 

solution of DTPA-chitosan or DTPA-chitosan-g-C18. After each addition, an aliquot was mixed 

with xylenol orange tetrasodium salt (Sigma Aldrich) in acetate buffer (50 mM, pH 5.80) to 

determine whether any gadolinium remained unchelated, as indicated by a change in the ratio of 

the absorbances at 573 and 433 nm. The amount of gadolinium required to cause a change in the 

absorbance ratio was used to calculate the DS of DTPA. 

 

2.5.3 Liposome preparation 

Liposomes were prepared by a film hydration method followed by sonication. 1,2-

Dipalmitoyl-sn-glycero-3-phosphocholine (Avanti Polar Lipids) was dissolved in chloroform 

(Fisher Scientific) and placed in a round-bottom flask. Chloroform was removed by rotary 

evaporation to yield an evenly distributed film. The film was then hydrated with deionized water 

at 50 °C, which is above the transition temperature of DPPC. The lipid concentration was kept 

constant at 1 mg/mL. Following hydration, liposome suspension was placed on an ice bath and 

sonicated for 15 min. For microscopy, liposomes were imaged with a Leica D-LUX 3 CCD 
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camera mounted to a Leica DMIL inverted microscope (Leica Microsystems, Wetzlar, 

Germany). For experiments involving in situ encapsulation of gadolinium and DTPA-chitosan-g-

C18 in the liposome, DTPA-chitosan-g-C18 was first complexed with GdCl3. The lipid film, 

formed as described above, was then hydrated with the aqueous mixture of gadolinium and 

DTPA-chitosan-g-C18. 

 

2.5.4 Analysis of chitosan on the liposome surface  

To quantitate the association between modified chitosans and liposomes, chitosan 

molecules were first labeled with rhodamine. DTPA-chitosan or DTPA-chitosan-g-C18 were 

dissolved in neutral deionized water and reacted overnight with rhodamine-B isothiocyanate 

(Sigma-Aldrich), in which the isothiocyanate functional moiety reacted with the primary amine 

groups of the chitosan backbone (Figure 2.5). Then, chitosan solutions were dialyzed against 0.1 

M NaCl solution followed by deionized water to remove any unreacted rhodamine. Finally, the 

labeled chitosan molecules were lyophilized and kept dried until use. The rhodamine-labeled 

chitosans were adsorbed to preformed liposomes by stirring them together at room temperature 

for 10 min or 12 h, followed by centrifugation at 4000 rpm for 10 min. The supernatant, 

containing excess chitosan molecules, was then removed, and the pelleted liposomes were 

resuspended in deionized water. Concentrations of rhodamine-labeled chitosan in supernatant 

and resuspended liposome were analyzed by exciting the samples at 535 nm and measuring 

fluorescence intensity at 595 nm using a microplate reader (Tecan Infinite 200 PRO, Tecan AG, 

Switzerland). A standard curve was developed by serial dilution of the chitosan/liposome 

solution prior to centrifugation. For analysis, four replicates were prepared for each condition. 

Statistical significance between each sample set was determined from a two-tailed, unpaired 
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Student’s t test in Microsoft Excel, in which differences were considered significant for p < 0.05. 

Additionally, chitosan adsorption onto liposomes was visualized using a laser scanning confocal 

microscope (LSM 700, Carl Zeiss Microimaging, GmbH, Germany). 

 

2.5.5 Loading and analysis of gadolinium on the liposome surface 

A 7.56 mM GdCl3 solution was added to the aqueous suspension of liposomes modified 

by DTPA-chitosan or DTPA-chitosan-g-C18 at a 1:1 ratio of gadolinium to DTPA. Complete 

chelation was verified by xylenol orange assay. To quantify the amount of modified chitosan 

adsorbed to the liposome after gadolinium addition, fluorescently labeled DTPA-chitosan and 

DTPA-chitosan-g-C18 were used as described in the previous section. After incubation with 

gadolinium for 12 h, samples were centrifuged for 10 min at 4000 rpm. The concentrations of 

chitosan in both supernatant and resuspended liposomes were determined using the Tecan 

Infinite 200 PRO microplate reader as described. Again, four replicates were made per condition 

and analyzed for significance using a two-tailed, unpaired Student’s t test. 

 

2.5.6 Thermodynamic analysis of association between chitosan and liposome by isothermal 

titration calorimetry  

Isothermal titration calorimetry (ITC) analysis was performed at 25 °C with a MicroCal 

VP-ITC calorimeter (MicroCal, Northampton, MA). The 1.45 mL sample cell was filled with an 

aqueous liposome suspension at a total lipid concentration of 0.4 mM. The cell was titrated with 

28 injections of 10 µL chitosan solution (5 mM glucosamine unit concentration). Each injection 

was performed over 17.1 s with a delay of 300 s between injections while stirring at 310 rpm. 

Data analysis was performed with Origin 5.0 software from MicroCal to yield thermodynamic 
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binding parameters such as the binding constant, change in enthalpy, and change in entropy by 

fitting data to a single-site binding model.32 The first data point was not included in the analysis. 

 

2.5.7 T1 Relaxivity measurements 

Measurements and imaging of MRI phantoms were performed with a head coil on a 3 T 

Siemens Magnetom Allegra MR scanner (Siemens AG, Erlangen, Germany). Images were 

produced with an inversion recovery turbo spin echo (IR-TSE) pulse sequence. The sequence 

used a repetition time (TR) of 2500 ms and an echo time (TE) of 10 ms. The inversion time (TI) 

was varied from 100 to 1700 ms to determine T1 by nonlinear least-squares curve fitting to Eq. 

(2.7): 

                         S(TI ) = S0[1! (1! k)e
!TI /T1 ]                                                (2.7) 

where S(TI) is the signal intensity measured by ImageJ software, S0 is the signal at thermal 

equilibrium, and k is a constant related to the flip angle and magnetization of the system.43 

Relaxation rate, R1 was then calculated as the inverse of relaxation time (1/T1). 

Longitudinal relaxivity, r1, was found by linear regression of the plot of R1 versus 

gadolinium concentration according to Eq. (2.8): 

             1/T1 =1/T1,water + r1[Gd]                                 (2.8) 

where T1,water is the longitudinal relaxation time of gadolinium-free media and [Gd] is the total 

gadolinium concentration within a sample. For these measurements, gadolinium concentration 

was determined by inductively coupled plasma optical emission spectroscopy (ICP-OES, Perkin-

Elmer Optima 2000 DV, Norwalk, CT) after digestion of samples in a concentrated nitric acid 

solution. 
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2.5.8. Serum stability of chitosan-coated liposomes 

 Liposomes coated with rhodamine-labeled DTPA-chitosan-g-C18 with DSC18 = 4.2% 

were incubated in PBS supplemented with 10% type AB human serum off the clot (PAA 

Laboratories Inc.) at 37 °C. At each time point, liposomes were centrifuged at 4000 rpm for 10 

min and resuspended to determine the amount of modified chitosan remaining on the liposome 

surface by analysis of fluorescence intensity. Images of the liposomes were also captured with a 

Zeiss Axiovert 200M microscope (Carl Zeiss, Oberkochen, Germany). 

 

2.5.9. MTT assay for cellular viability 

 C166 endothelial cells were seeded on a 96-well plate at 5x103 cells per well. Cells were 

incubated for 24 h with unchelated gadolinium, or with gadolinium chelated by DTPA-chitosan-

g-C18 (DSC18 = 4.2%) that was either adsorbed to liposomes or free in solution. In each case, 

gadolinium was kept at a 100 µM concentration, matching that of the highest level used for 

relaxivity determination of coated liposomes (blue curves in Figure 2.11). MTT reagent ((3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, ATCC) was added to the cell culture 

media, and its reduction to formazan dye by metabolically active cells was evaluated by 

measuring absorbance at 570 nm (Tecan Infinite 200 PRO, Tecan AG, Switzerland). 

 

2.5.10 Assessment of gadolinium-loaded liposome using a hindlimb ischemia model 

 The surgery to induce hindlimb ischemia was performed in accordance with the protocol 

approved by the Illinois Institutional Animal Care and Use Committee. The mice used were male 

BALB/c mice (Jackson Laboratories, ME) weighing approximately 30 g. Prior to surgery, mice 

were anesthetized with an intraperitoneal injection of a xylazine (10 mg/kg) and ketamine 
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hydrochloride (100 mg/kg) cocktail. Hair was removed from the left hindlimb and a small 

incision was made on the upper thigh to expose the femoral artery and vein. The artery and vein 

were then ligated with 5-0 Ethilon sutures (Johnson & Johnson, NJ) to prevent blood flow to the 

limb. For mice receiving injection, 0.04 mmol/kg of gadolinium was then administered via tail 

vein. 

 Mice were imaged 1 h after injection with a 14.1 T Varian microimager consisting of a 

Unity/Inova 600 MHz NMR spectrometer (Varian, CA) equipped with a custom-made adjustable 

radio frequency coil.44 T1-weighted Coronal images of the mouse hindlimbs were acquired using 

a spin-echo multislice (SEMS) pulse sequence with the following parameters: slice thickness, 0.5 

mm; TR, 350 ms; TE, 10 ms; matrix size, 256 × 256. 

 

2.5.11 Evaluation of gadolinium-loaded liposome using a renal ischemia model 

 Procedures to induce renal ischemia were carried out according to the protocol approved 

by the Mayo Clinic Institutional Animal Care and Use Committee. The rats used were Sprague-

Dawley rats (Jackson Laboratories, ME) weighing 300-400 g. Rats were anesthetized via 

intraperitoneal injection of xylazine (20 mg/kg) and ketamine hydrochloride (200 mg/kg). 

Anesthesia was maintained with intraperitoneal pentobarbital (20-40 mg/kg). An abdominal 

incision was then made and the renal arteries were clamped bilaterally for 45 min. Kidneys were 

then injected via the renal artery with gadolinium-DTPA, liposomes loaded with gadolinium via 

DTPA-chitosan-g-C18 (DSC18 = 4.2%), or saline. Kidneys injected with contrast agent received 

gadolinium doses of 0.3 µmol. Five minutes after injection, kidneys were removed for MR 

imaging. 
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 Images were acquired with a 3 T Siemens MR scanner (AG, Erlangen, Germany). A 

three-dimensional spoiled gradient recalled (3D SPGR) sequence produced T1-weighted images 

using the following parameters: slice thickness, 2 mm; TR, 7.3 ms; TE, 3.2 ms; flip angle, 15°; 

matrix size 352 × 224. 

The coated liposomes used in this experiment were also fluorescently labeled with 

CellVue NIR815 dye and were formed by hydration of a lipid film with a solution of NIR815, 

followed by removal of unincorporated dye by centrifugation. Imaging of frozen tissue sections 

cut at 30 µm was performed with a LI-COR Odyssey scanner (LI-COR Biosciences, Lincoln, 

NE) and analyzed with 680 and 780 excitation channels. 
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2.6 Figures and Tables 

Figure 2.1 Schematic diagram of association between a pre-formed liposome and DTPA-

chitosan-g-C18. 
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Figure 2.2 Synthesis and characterization of DTPA-chitosan-g-C18. (a) Synthesis of DTPA-

chitosan-g-C18 formed by the sequential reaction of stearic acid and DTPA with glucosamine 

units of chitosan. (b) Color of xylenol orange in media without any GdCl3 (first vial), media with 

free GdCl3 (second vial), and a mixture of GdCl3 chelated by DTPA-chitosan (third vial). (c) The 

UV absorbance spectra of xylenol orange in media without GdCl3 (I), media with free GdCl3 (II), 

and the mixture of GdCl3 chelated by DTPA-chitosan-g-C18 (III). 
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Table 2.1 Characterization of degree of substitution of octadecyl chains (DSC18) and DTPA 

(DSDTPA) to chitosan using TNBS and xylenol orange assays. 

stoichiometric DSC18 DSC18 DSDTPA 

(mol %) (mol %) (mol %) 

0 - 15.3 

2 2.3 15.9 

5 4.2 15.4 

 

 

 

 

Figure 2.3 Size analysis of liposome particles. (a) Phase contrast microscope image taken with a 

Leica D-LUX 3 CCD camera. (b) Size distribution of liposomes was characterized by ImageJ 

software from microscope images. The average diameter of 176 particles was 4.6 ± 2 µm. 
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Figure 2.4 Schematic depiction of the process to coat the outer liposome leaflet. 

 

 

 

Figure 2.5 Fluorescent labeling of modified chitosan with rhodamine B isothiocyanate. R 

represents the chitosan backbone. The reaction took place in water at room temperature. 
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Figure 2.6 Fluorescence analysis of liposomes associated with DTPA-chitosan-g-C18. (a) A 

confocal microscopic image of rhodamine-labeled DTPA-chitosan-g-C18 anchored to the 

liposome surface (i), and encapsulated within the liposome (ii). Scale bars represent 5 µm, and 

intensity profiles are shown across the liposome diameter as indicated. (b) With excess DTPA-

chitosan or DTPA-chitosan-g-C18, liposomes were coated at a 1:1 ratio of glucosamine unit to 

exposed lipid. Therefore, the number of chitosan subunits bound to a liposome was independent 

of the degree of substitution of octadecyl chains (DSC18). 
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Figure 2.7 Thermograms of DTPA-chitosan (left), and DTPA-chitosan-g-C18 with DSC18 = 2.3% 

(middle) and 4.2% (right). The top row represents raw heat flow data, while the bottom row is 

data fit to a single-site binding model. 

 

 

Table 2.2 Thermodynamic parameters derived from ITC analysis of chitosan-liposome binding. 

Values are given per mole of glucosamine unit and error values are the standard deviations of the 

fit parameters. 

DS of C18 N K ΔH ΔG ΔS 

(mol %)   104 M-1 kcal/mol kcal/mol cal/mol�K 

0 0.88 ± 0.02 1.55 ± 0.08 2.31 ± 0.07 -5.71 26.9 

2.3 0.98 ± 0.05 1.91 ± 0.27 2.43 ± 0.17 -5.83 27.7 

4.2 0.89 ± 0.02 2.22 ± 0.12 2.43 ± 0.06 -5.92 28.0 
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Figure 2.8 Linear regression of change in Gibbs free energy during the association (ΔG) versus 

DSC18. The y-intercept represents the ΔG for a glucosamine unit (ΔGglucosamine), and the slope is 

equal to the difference between ΔG for octadecyl chains (ΔGC18) and ΔGglucosamine. 
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Figure 2.9 Gadolinium loading on the liposome surface via DTPA-chitosan or DTPA-chitosan-

g-C18. (a) Schematic depicting gadolinium chelation by chitosan-coated liposomes. (b) The 

xylenol orange absorbance spectra of the mixture of GdCl3 and liposome coated by DTPA-

chitosan or DTPA-chitosan-g-C18 (I) and the mixture of GdCl3 and uncoated liposome (II). (c) 

Analysis of DTPA-chitosan or DTPA-chitosan-g-C18 bound to a liposome with (open bars) and 

without (shaded bars) addition of GdCl3 in the liposome suspension. Asterisk (*) represents 

statistical significance of the difference in the amount of DTPA-chitosan adsorbed to liposomes 

in the presence and absence of GdCl3 (*p < 0.05). 
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Figure 2.10 Effects of DSC18 of DTPA-chitosan-g-C18 on the liposome’s ability to enhance MRI 

contrast. (a) Pseudocolored MR phantom image and longitudinal relaxation rate (R1) of the 

gadolinium-loaded liposome (TI = 1000 ms). MR contrast and R1 were further increased with 

liposomes coated by DTPA-chitosan-g-C18. The scale bar represents MR signal intensity. (b) The 

independence of molar relaxivity (r1) on DSC18. Error bars represent standard deviation of the fit 

parameter. 
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Figure 2.11 Relaxivity plot for Gd-containing liposome particles. Relaxivities shown in Figure 

2.10 are determined from the slopes of the blue solid curves. The red dashed curve was used to 

determine the molar relaxivity of DTPA-chitosan-g-C18 encapsulated and adsorbed to the 

liposome. The green dotted curve represents unmodified DTPA-Gd. 
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Figure 2.12 Effects of gadolinium loading strategy on MR signal and molar relaxivity of 

gadolinium. (a) Pseudocolored MR phantom image and longitudinal relaxation rate (R1) of 

liposomes bound with gadolinium exclusively on the outer leaflet (left liposome in the MR 

image) and on both outer leaflet and interior of the liposome (right liposome in the MR image), 

(TI = 1000 ms). The total gadolinium concentration in the phantom samples was kept constant at 

70 µM. (b) Molar relaxivities (r1) of the liposomes bound with gadolinium on the outer leaflet 

(blue bar) and liposomes with gadolinium adsorbed on the exterior and encapsulated (red bar). 

Error bars represent standard deviation of the fit parameter. 
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Figure 2.13 Analysis of association between DTPA-chitosan-g-C18 and liposomes in the 

presence of human serum. Data is shown as the average of two replicates per time point, with 

error bars obscured by data point markers. 
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Figure 2.14 Microscopic images of liposomes coated by DTPA-chitosan-g-C18 (DSC18 = 4.2%). 

Images were taken with a Zeiss Axiovert 200M microscope before (a) and after (b) 1 h 

incubation in PBS supplemented with 10% serum. Scale bars represent 10 µm. The average 

diameters of liposomes before and after one-hour incubation in serum-supplemented PBS were 

4.3 ± 2 and 3.7 ± 2 µm respectively. 272 and 175 particles were measured for the conditions. 
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Figure 2.15 Cellular viability analyzed with an MTT assay for cellular metabolic activity. The 

level of viability was quantified by normalizing the absorbance values after incubation with 

MTT reagent to that of cells cultured without addition of gadolinium. Error bars represent 

standard deviation of three replicates. 
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Figure 2.16 Evaluation of gadolinium contrast agents with a murine model of hindlimb 

ischemia. (a) The femoral artery of the left hindlimb was ligated to prevent blood flow. (b-d) MR 

images of left and right hindlimbs of (b) a mouse that did not receive gadolinium, (c) a mouse 

that was injected with DPTA-gadolinium chelates, and (d) a mouse injected with gadolinium 

loaded on liposome surfaces. The arrow in (d) indicates significant accumulation of liposomes 

loaded with gadolinium. The color scale bar is proportional to MR signal intensity, and images 

are presented at the same grayscale levels. 

 

 

Figure 2.17 Analysis of gadolinium-loaded liposomes in a rat model of renal ischemia. (a) Renal 

arteries were occluded prior to injection of contrast agent. (b-d) MR images of coronal sections 

of kidneys injected with (b) saline, (c) free gadolinium-DTPA, and (d) liposomes surface-loaded 

with gadolinium. Images are pseudocolored and shown on the same grayscale. 
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Figure 2.18 Tissue sections of Sprague Dawley rat kidneys injected with (a) saline, and (b) 

liposomes labeled with CellVue NIR815 dye. The 680 excitation channel is shown in red and 

displays tissue autofluorescence. Cortex (marked as 1) is easily distinguished from medulla 

(marked as 2). The 780 excitation channel, shown in green, demonstrates localization of 

fluorescently labeled liposomes within the cortex.  
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CHAPTER 3 

GADOLINIUM LABELING VIA A POLYMERIC FASTENER 

FOR MRI CELL TRACKING 
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3.1 Introduction 

Cellular therapies have become increasingly used in the treatment of various disorders, 

including cardiovascular disease,1-3 cancer,4,5 metabolic disorders,6,7 and neurological diseases,8-

10 which are still difficult to treat with currently available drug molecules. For example, islet 

cells isolated from the pancreas endogenously secrete insulin used to treat diabetic patients.11 

Stem cells from bone marrow or adipose tissue secrete anti-inflammatory factors, angiogenic 

growth factors, and neurotrophic factors over an extended period of time, and can differentiate 

into cells that form specific tissues of interest.12-14 Success in such cellular therapies greatly 

relies on the ability to monitor transplanted or mobilized cells using non-invasive imaging tools.  

In this way, labeling of cells has emerged as a promising way to evaluate cellular 

phenotype, engraftment, and therapeutic outcomes in vivo.15 Additionally, cells can be labeled 

for diagnostic applications, such as the tagging of leukocytes to non-invasively locate areas of 

infection.16,17 While many approaches have been traditionally performed with radionuclides for 



	
   57 

imaging by positron emission tomography (PET), contrast agents for magnetic resonance 

imaging (MRI) have become an area of interest due to the high spatial resolution and non-

ionizing radiation of MRI.18 

Superparamagnetic iron oxide nanoparticles (SPIONs) lend themselves well to such 

applications as a negative contrast agent, since they can be readily formulated for labeling by 

cellular uptake.19 SPIONs, however, tend to exaggerate target areas as a result of susceptibility 

artifacts, and their negative contrast can be difficult to distinguish from void space in images.20 

Alternatively, gadolinium-based contrast agents can be used to provide positive contrast that is 

easy to distinguish from background features. Unlike SPIONs, however, gadolinium is not 

readily taken up into the cell. Therefore, chelates for gadolinium are typically administered 

within nanoparticle systems that can undergo cellular uptake, or with transfection agents to allow 

the chelate to cross the cell membrane.21-24 In either case, the labeling procedure takes from 4-24 

hours to accomplish, and may raise concerns of cytotoxicity. Furthermore, the molar relaxivity is 

greatly diminished upon uptake, as the interaction between the internalized contrast agent and 

water protons in surrounding fluid is reduced.25 

 We therefore hypothesized that a coating material that could immobilize gadolinium on a 

cell surface would present a simple strategy to rapidly label cells as well as reduce effects that 

weaken relaxivity. Previously, we demonstrated a chitosan-based polymeric fastener could coat 

the surface of a liposome as a method of post-fabrication modification to introduce gadolinium 

on the outer leaflet.26,27 As the liposomal bilayer is structurally similar to the morphology of a 

cell, this study investigates approaches to similarly label a cell with a fastener that can chelate 

gadolinium and anchor itself to the lipid bilayer via hydrophobic alkyl chains (Figure 3.1a). Here 

we investigate two types of backbones for the fastener and discuss the advantages and challenges 
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of each. First, chitosan was used in combination with polyethylene glycol (PEG) grafts. 

Secondly, hyperbranched polyglycerol (HPG) was then explored for its ability to present 

gadolinium away from the cell surface. Mouse D1 bone marrow stromal cells (BMSCs) were 

chosen as a model cell to demonstrate the feasibility of the approach, since BMSCs have been 

used previously in stem cell therapies, including the treatment of cardiovascular disease.28-30 

Overall, we believe the strategy of using a polymeric fastener to coat the cell will be 

advantageous in improving the quality of cell tracking by MRI. 

 

3.2 Results 

3.2.1 Coating of cells with DTPA-chitosan-g-C18  

Chitosan was modified with the gadolinium chelate, diethylenetriaminepentaacetic acid 

(DTPA) as well as octadecyl chains as previously described to create the polymeric fastener, 

DTPA-chitosan-g-C18.26 The degree of substitution of DTPA (DSDTPA) was found to be 17.8%, 

while that of the alkyl chains (DSC18) was 5.7% according to xylenol orange and a 2,4,6-

trinitrobenzene sulfonic acid (TNBS) assays. Prior to cell labeling, DTPA-chitosan-g-C18 was 

loaded with an amount of gadolinium to occupy the DTPA binding sites. Additionally, BMSCs 

were suspended in media free of serum proteins that could potentially interfere with the labeling 

by binding with the modified chitosan. Rapid labeling of BMSCs was then achieved simply by 

mixing the cells in suspension with gadolinium-loaded DTPA-chitosan-g-C18, followed by 

centrifugation to remove free fastener that remained unadsorbed to the cell. Successful 

immobilization of chitosan on the cell surface was confirmed with confocal microscopy, which 

indicated surface localization of rhodamine-labeled fastener after coating (Figure 3.1b). 



	
   59 

To ensure that the adsorption of the modified chitosan on the cell surface did not result in 

cytotoxicity, an MTT assay for cellular metabolic activity was used. BMSCs were coated with 

DTPA-chitosan-g-C18 by incubating them in chitosan solutions at concentrations up to 2 mg/mL, 

containing 1.4 mM gadolinium. Cells were then placed in culture media and incubated for 24 h. 

As a result, there was no significant change in metabolic activity across any of the concentrations 

tested, compared to BMSCs cultured without the fastener (Figure 3.1c). Additionally, the 

chitosan fastener remained associated with the cells with minimal desorption for 24 h after 

loading, and continued to present itself on the cell’s surface (Figure 3.2). 

 

3.2.2. Magnetic resonance contrast capability of gadolinium-coated BMSCs 

 For MR imaging, coated cells were immobilized in a 1% agar gel to prevent their 

sedimentation during image acquisition. T1 molar relaxivity was then determined for the chitosan 

fastener both in solution and adsorbed to the cell surface. Surprisingly, adsorption to the cell 

resulted in more than a 75% reduction in relaxivity (Figure 3.3). The result is not an inherent 

effect of chitosan immobilization, as DTPA-chitosan-g-C18 in an agar gel without cells had a 

comparable relaxivity value to that of the chitosan in solution (Figure 3.4). Additionally, as 

previously reported, when the fastener was used to coat liposomes, such a reduction in relaxivity 

was not observed.26 The diminished relaxivity is therefore likely due to reduced interaction 

between gadolinium and surrounding water molecules. This could be due to the cell surface 

fostering a relatively hydrophobic environment. Additionally, and more dramatically, the water-

binding site of gadolinium that accounts most strongly for the T1 effects could be occupied 

through coordination with the various proteins and carbohydrates found on the cell. To 
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investigate the former and promote hydrophilic interactions, DTPA-chitosan-g-C18 was further 

derivatized with PEG. 

 

3.2.3. Relaxivity of PEGylated DTPA-chitosan-g-C18 

 PEGylation was achieved by reaction of DTPA-chitosan-g-C18 with N-

hydroxysuccinimide-terminated PEG (PEG-NHS) (Figure 3.5). Different lengths of PEG chain 

were investigated: PEG4, PEG24, and PEG100 with 4, 24, and approximately 100 ethylene glycol 

repeat units per chain. All had a similar degree of substitution (DSPEG) on the chitosan backbone 

as determined by TNBS assay (Table 3.1). The solution of gadolinium-loaded fastener with the 

shortest PEG chain resulted in improved relaxivity (Figure 3.6a). However, with increasing 

length of PEG, relaxivity was reduced. The observation is similar to other studies in which 

longer PEG chains diminished relaxivity by limiting the access of water to gadolinium.31 

Consequently, when labeling BMSCs, the same trend in relaxivity with length of PEG chain was 

observed. 

 While PEGylation did not resolve the reduction in relaxivity upon adsorption to the cell, 

it did allow for signal enhancement at a reduced dose of gadolinium. The non-PEGylated DTPA-

chitosan-g-C18 was able to load 42 pg/cell of gadolinium. Upon PEGylation, this value was 

reduced to 27 and 31 pg/cell for the fastener conjugated with PEG4 and PEG24 respectively. The 

ability of the high molecular weight PEG100 to load gadolinium on the cell was undetermined, as 

the unadsorbed chitosan modified with this PEG had low colloidal stability and could not be 

purified from the coated BMSCs. Despite the reduced loading, PEG4-DTPA-chitosan-g-C18 was 

able to produce contrast per cell equivalent to the non-PEGylated chitosan (Figure 3.6b). This 

was due to its higher molar relaxivity. The reduced loading of gadolinium via PEG24-DTPA-
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chitosan-g-C18 combined with lower relaxivity, however, resulted in lower signal for any given 

cellular concentration. 

 To quantitatively compare the ability of each fastener to imbue the BMSCs with contrast 

capability, it is also important to consider the cell-based relaxivity normalized to concentration of 

cells rather than gadolinium concentration (Figure 3.6c). This takes into account both gadolinium 

loading and relaxation effects. Again, PEG24-DTPA-chitosan-g-C18 had dramatically lower cell-

based relaxivity than the other fasteners. While PEG4-DTPA-chitosan-g-C18 was slightly less 

efficient at beaconing cells according to the cellular relaxivity, the phantom images produced 

were comparable to those of cells coated by non-PEGylated fastener, and therefore may still be 

advantageous due to the lower level of administered gadolinium required to produce the contrast. 

 Interestingly, even BMSCs fixed with paraformaldehyde prior to coating produced the 

same relaxivity reduction as live cells, and had the same cell-based relaxivity when coated by 

PEG4-DTPA-chitosan-g-C18 (Figure 3.7). To resolve the cellular adsorption-induced relaxivity 

reduction, it may therefore be strategic to space the gadolinium away from the cell surface. 

Hyperbranched polyglycerol was investigated for its ability to achieve this spatial organization. 

 

3.2.4. Synthesis and characterization of DTPA-HPG-g-C18 

 HPG has been used in several other biomedical applications for its biocompatibility,32 

hydrophilicity, extended circulation time,33 and furthermore, its ability to present ligands away 

from the cell surface as a result of its globular nature.34 To form the HPG fastener, HPG with a 

molecular weight of approximately 4 kDa was functionalized with terminal primary amines to 

present reactive groups for conjugation of DTPA and C18 chains, as well as provide a basis for 

electrostatic interaction, similar to chitosan (Figure 3.8). In this way, DTPA-HPG-g-C18 could 
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anchor to the cell surface via the alkyl chains while spacing the DTPA and gadolinium away 

from the cell (Figure 3.9a). 

 The relaxivity of DTPA-HPG-g-C18 in solution was similar to that of DTPA-chitosan-g-

C18 (Figure 3.9b). However, upon adsorption to BMSCs, the relaxivity was reduced by only 

35%, to 4.48 mM-1s-1. In this way, the HPG backbone was able to greatly improve the molar 

relaxivity. To the best of our knowledge, this is among the highest reported relaxivity values for 

gadolinium-based cell labeling techniques. Despite the marked improvement, however, the 

loading of gadolinium per cell was considerably low, at 2 pg/cell. For this reason, the cell-based 

relaxivity was the lowest of all of the fasteners tested, and the contrast in MR phantom images 

could barely be detected (Figure 3.10). For this reason, the HPG-based fastener was ultimately 

not advantageous in cell labeling with gadolinium. The reason for the low gadolinium loading is 

likely due to a reduction in both loading of gadolinium per fastener and loading of fastener per 

cell. For DTPA-chitosan-g-C18 or PEG4-DTPA-chitosan-g-C18, 1 mg of polymer could chelate 

approximately 0.7 µmol of gadolinium, while an equivalent amount of DTPA-HPG-g-C18 was 

only able to incorporate 0.2 µmol. This disparity, however, cannot completely account for the 

differences in the amount of gadolinium retained per cell. Therefore, the ability of the HPG 

fastener to adsorb to the cell must be improved in order to match the performance of the 

modified chitosan. 

 

3.3 Discussion 

 The polymeric fastener approach labels cells with gadolinium much more rapidly than 

other techniques that rely on cellular uptake via nanoparticle or transfection. By simply mixing 

the fastener with the cells, labeling is achieved within 10 minutes with no further culturing or 
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incubation needed, and cells can be used immediately. The amount of gadolinium loaded per cell 

and molar relaxivities are comparable to the highest values reported by others.22 However, before 

further use, additional evaluation is needed to ensure proper cellular function. For example, in 

the case of therapeutic cells, such as BMSCs, the fastener must not interfere with the cells’ 

ability to produce therapeutic proteins or differentiate, depending on the intended use. For 

targeted applications, it will be important to verify that coating the cell does not disrupt its 

adhesion to target sites, or it may be necessary to additionally include adhesion ligands on the 

fastener. 

 Other improvements to the fastener may result in higher loading and relaxivity in future 

studies. For example, using a higher molecular weight HPG as the fastener backbone would 

allow for increased alkylation and DTPA per molecule, as well as more unreacted amine groups 

to provide greater electrostatic interaction between fastener and cell. The larger HPG would also 

space more gadolinium farther from the cell surface, which could result in higher relaxivity than 

reported. Such improvements may allow the modified HPG to become more effective than the 

DTPA-chitosan-g-C18, even at lower doses of gadolinium and would therefore represent great 

improvements in gadolinium cell labeling for MR tracking. 

 

3.4 Conclusion 

 This study demonstrates the use of a polymeric fastener to rapidly and efficiently label 

BMSCs for applications in cell tracking. DTPA-chitosan-g-C18 was adsorbed to the cell surface 

within 10 min, and demonstrated no adverse effects to cellular metabolic activity over a wide 

range of concentrations. Further modification of the chitosan fastener with a low molecular 

weight PEG graft allowed for similar contrast levels at lower doses of gadolinium and may 
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therefore be advantageous in imaging applications. While the relaxivity was, surprisingly, 

reduced upon adsorption to the cell, a fastener than can space gadolinium away from the cell 

may mitigate such effects by minimizing interactions that reduce access of water to the 

gadolinium-DTPA chelate. Overall, the labeling strategy will be broadly useful for tagging a 

wide variety of cell types for improved therapeutic and diagnostic cellular applications. 

 

3.5 Materials and Methods 

3.5.1 Synthesis and characterization of chitosan fasteners 

 All materials were purchased from Sigma-Aldrich unless otherwise noted. DTPA-

chitosan-g-C18 was synthesized and characterized using the methods previously described in 

detail.26 Briefly, the conjugation of C18 chains to the chitosan backbone was mediated by 1-ethyl-

3-(3-dimethylaminopropyl) carbodiimide (EDC). EDC was then used in the subsequent 

attachment of DTPA. The degrees of substitution of C18 and DTPA were then determined by 

2,4,6-trinitrobenzene sulfonic acid (TNBS) and xylenol orange assay respectively. 

 For chitosan fasteners containing PEG grafts, DTPA-chitosan-g-C18 was first dissolved in 

phosphate buffered saline (PBS). Then, amine-reactive N-hydroxysuccinimide (NHS) ester of 

PEG was added in the form of methyl-PEG4-NHS, methyl-PEG24-NHS (Fisher Scientific), or 

methyl-PEG-succinimidyl valerate (MW 5,000, Laysan Bio Inc.) to conjugate PEG chains of 

varying length. The reaction proceeded for 24 h at room temperature, followed by purification by 

dialysis dialysis (MWCO 6000-8000, Fisher Scientific) and lyophilization. The degree of 

substitution of PEG was then determined by TNBS assay to measure how many amines of the 

chitosan backbone were reacted with PEG-NHS. 
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3.5.2 Synthesis and characterization of DTPA-HPG-g-C18 

 HPG was formed by polymerization of glycidol based on methods described previously,35 

and aminated. C18 chains and DTPA were then conjugated to create the HPG fastener. Briefly, 

HPG-amine was dissolved in a 2:1 PBS:ethanol mixture, followed by addition of EDC, sulfo-

NHS (Fisher Scientific), and stearic acid at a 5:2:1 molar ratio. The reaction took place over 24 h 

while stirring at 70 ºC. Following reaction, dialysis was performed again for 1 day to remove 

unreacted material. DTPA was then added with EDC and sulfo-NHS at a 25:5:2 molar ratio. 

Purification proceeded by dialysis for 4 days, and the product was lyophilized. Successful 

chelation of gadolinium by DTPA-HPG-g-C18 was confirmed by xylenol orange assay. 

 

3.5.3 Cell labeling by polymeric fastener 

 Mouse D1 bone marrow stromal cells (ATCC) were cultured in Dulbecco’s Modified 

Eagle Media (DMEM, Corning) supplemented with 10% fetal bovine serum (FBS, Thermo 

Scientific) and 1% penicillin/streptomycin (Gibco). All cells used were at passage 28 or lower. 

Prior to coating, cells were resuspended in PBS. Separately, chitosan or HPG fastener was 

dissolved in PBS, and DTPA binding sites were saturated with a solution of gadolinium chloride 

(GdCl3). The cell suspension was then mixed with an excess of fastener and incubated at 37 ºC 

for 10 min. Free, unadsorbed fastener was then removed by centrifugation at 200 ×g for 5 min to 

pellet the cells, and cells were resuspended in cell culture media. 

 

3.5.4 Cell staining and confocal microscopy 

 For visualization, DTPA-chitosan-g-C18 was fluorescently labeled by reaction with 

rhodamine B isothiocyanate, followed by dialysis and lyophilization. The rhodamine-labeled 
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chitosan was mixed with BMSCs as described, and coated cells were plated in culture media on a 

glass-bottomed dish. After 3 or 24 h, cells were washed with PBS and fixed with 4% 

paraformaldehyde for 10 min. They were then washed again and permeabilized with 0.5% Triton 

X-100 for 5 min, followed by another wash and overnight incubation at 4 ºC with 1% bovine 

serum albumin (BSA) blocking solution. Finally, cells were washed again and nuclei were 

stained with 4’,6-diamidino- 2-phenylindole dihydrochloride (DAPI, Invitrogen). Imaging was 

then performed with a laser scanning confocal microscope (LSM 700, Carl Zeiss Microimaging, 

GmbH, Germany). 

 

3.5.5 MTT assay for cellular metabolic activity 

 BMSCs were labeled by incubation with gadolinium-loaded fastener at concentrations up 

to 2 mg/mL, and then seeded with cell culture media in a 96-well plate at a density of 5×103 cells 

per well. After 24 h, (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, 

ATCC) was added and its reduction to formazan dye was used to assess metabolic activity. 

Following incubation with MTT reagent, cells were lysed with the addition of MTT detergent, 

and absorbance was measured at 570 nm with a microplate reader (Tecan Infinite 200 PRO). 

 

3.5.6 Assessment of DTPA-chitosan-g-C18 desorption 

 To determine the degree to which DTPA-chitosan-g-C18 remained with the cell during 

incubation, BMSCs were coated with gadolinium-loaded fastener and seeded at 4×105 cells per 

well in a 12-well plate. At 3 and 24 h time points, the cell media was sampled, centrifuged, and 

digested with nitric acid for analysis of gadolinium content by inductively couple plasma optical 

emission spectroscopy (ICP-OES, Perkin-Elmer Optima 2000 DV, Norwalk, CT) to measure 
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how much had desorbed from the cell. Gadolinium concentration was compared to the total 

amount associated with the seeded cells by analyzing the initial full cell media without 

purification by centrifugation. Additionally, an initial time point was taken immediately after cell 

coating to determine background gadolinium levels, which were subtracted from all other values. 

 

3.5.7 Magnetic resonance imaging of fasteners and labeled cells 

 For relaxivity characterization and MR imaging, a concentration series of gadolinium-

containing fasteners in deionized water was prepared by serial dilution in borosilicate cell culture 

tubes, which were then placed in an agar gel prior imaging to hold the samples and reduce 

imaging artifacts. For analysis of labeled cells, BMSCs were coated with an excess of fastener 

followed by purification to remove free chelate. Coated cells were then mixed 1:1 by volume 

with a 2% agar solution to prevent sedimentation and stored at 37 ºC. Imaging was performed 

within 1-2 h after cell labeling. In the case of imaging of fixed cells, BMSCs were suspended in 

4% paraformaldehyde, washed with PBS, and then labeled with PEG4-DTPA-chitosan-g-C18 for 

imaging. 

 Imaging was performed on a 3 T Siemens Magnetom Trio clinical scanner (Siemens AG, 

Erlangen, Germany) with an inversion recovery turbo spin echo (IR-TSE) sequence. Images 

were acquired with a slice thickness was 3.0 mm, repetition time (TR) of 2500 ms, echo time 

(TE) of 18.0 ms, and inversion time (TI) ranging from 100 to 1700 ms. For each TI, signal 

intensity was measured with ImageJ software and used to determine T1 relaxation by nonlinear 

least-squares curve fitting. Finally, relaxivity was determined by linear regression of relaxation 

rate (1/T1) plotted against gadolinium concentration for each sample. Gadolinium content was 

measured by ICP-OES after digestion in nitric acid, and was also used to determine gadolinium 
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loading per cell. Additionally, cell-based relaxivity was reported by linear regression of 

relaxation rate versus cell concentration rather than gadolinium concentration. 
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3.6 Figures and Tables 

 

Figure 3.1 DTPA-chitosan-g-C18 as a polymeric fastener for cell labeling. (a) Scheme depicting 

DTPA-chitosan-g-C18 and its adsorption to the lipid bilayer. (b) Confocal microscopic image of 

the rhodamine-labeled, modified chitosan (red), anchored to the cell surface 3 h after labeling. 

The cell nucleus is highlighted with DAPI staining (blue). The scale bar represents 5 µm. (c) 

MTT assay for metabolic activity of BMSCs coated with DTPA-chitosan-g-C18 at various 

concentrations and incubated for 24 h. Absorbance values are normalized those of cells 

incubated without chitosan after blank subtraction. Error bars are the standard deviation of 3 

replicates. 
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Figure 3.2 Stability of DTPA-chitosan-g-C18 during incubation. (a) Less than 10% of the 

initially adsorbed gadolinium-loaded fastener was desorbed from the cell over 24 h, as 

determined from the average of 3 replicates. Error bars are obscured by data point markers. (b) 

Labeled cells continued to display modified chitosan (red) on the surface after 24 h. The cell 

nucleus was stained with DAPI (blue). The scale bar represents 5 µm. 

 

Figure 3.3 T1 molar relaxivity of DTPA-chitosan-g-C18 free in solution and adsorbed to BMSCs. 

Error bars represent standard deviation of the fit parameter. 

  

a b 
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Figure 3.4 The relaxivity of gadolinium-loaded fastener was similar both in solution and 

immobilized in an agar gel. Error bars are the standard deviation of the fit parameter. 

 

 

 

 

Figure 3.5 Modification of the chitosan fastener with PEG grafts of varying length. 
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Table 3.1 Degree of substitution of the PEG grafts (DSPEG) conjugated to chitosan backbones as 

determined by TNBS assay. 

PEG graft DSPEG 

(mol %) 

PEG4 15.3 

PEG24 19.6 

PEG100 13.7 
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Figure 3.6 Relaxivity characterization of PEGylated chitosan fastener. (a) Molar relaxivity of 

modified chitosans loaded with gadolinium free in solution (red) and adsorbed to cells (black). 

NT designates the sample not tested, as free PEG100-DTPA-chitosan-g-C18 could not be purified 

from coated cells. (b) MR images of the chitosan fasteners at various cell concentrations (TI = 

1000 ms). Pseudocoloring is proportional to signal intensity. (c) Relaxivities of chitosan 

fasteners normalized to cell concentration instead of gadolinium concentration. Error bars in all 

figures represent the standard deviation of the fit parameter. 
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Figure 3.7 Cells fixed in formalin buffer prior to labeling produced similar Gd-based (shown in 

black) and cell-based (shown in blue) relaxivities as live cells after coating with PEG4-DTPA-

chitosan-g-C18. Error bars are the standard deviation of the fit parameter. 

 

 

 

 

	
   

Figure 3.8 Synthesis of DTPA-HPG-g-C18. 
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Figure 3.9 DTPA-HPG-g-C18 as a polymeric fastener for cell labeling. (a) Scheme depicting 

DTPA-HPG-g-C18 labeling the cell membrane. (b) Molar relaxivity of gadolinium-loaded HPG 

fastener free in solution (red) and adsorbed to BMSCs (black). The cell-based relaxivity (blue) 

was lower than that of the chitosan fasteners. Error bars represent standard deviation of the fit 

parameter. 

 

 

 

 

Figure 3.10 MR images of cells labeled by DTPA-HPG-g-C18 (TI = 1000 ms). Pseudocoloring is 

shown on the same scale as Figure 3.6b.  
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CHAPTER 4 

HYDROPHILIC PACKAGING OF IRON OXIDE NANOCLUSTERS 

FOR HIGHLY SENSITIVE IMAGING 
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4.1 Introduction 

Magnetic resonance imaging (MRI) generates high-resolution images non-invasively and 

therefore is used for diagnosis of various tissue defects1,2 as well as evaluation of fluid flows 

within engineered materials and devices.3-5 The diagnostic capability of MRI has been greatly 

enhanced with the introduction of superparamagnetic iron oxide nanoparticles (SPIONs), which 

can provide negative contrast against surrounding tissues. To further enhance their utility, 
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SPIONs that have increased relaxivity while localizing at sites of interest would be advantageous 

for improving the capabilities of MRI. An attractive method to accomplish this is to tailor 

particle size within a range for which relaxivity is maximized, known as the static dephasing 

regime (SDR).6 However, SPIONs with diameters approaching such an optimal size often 

become permanently magnetic,7 resulting in uncontrolled aggregation that diminishes relaxivity 

and substantially reduces the SPION’s ability to reach target sites. Assembling SPIONs in the 

form of clusters has emerged as a promising strategy to yield a desired size of metallic core 

while maintaining superparamagnetism and colloidal stability.8-14 A limitation of common 

approaches, however, lies in the SPION coating material used to induce clustering, as such 

materials may limit penetration of water near the metallic core or reduce hydrophilic interactions. 

Such factors are intrinsically detrimental since the effectiveness of an MR contrast agent is 

highly dependent on its ability to interact with surrounding water.15  

In this study, we hypothesized that the globular nature of a hydrophilic, hyperbranched 

polymer would allow for maximal MR relaxivity of clustered SPIONs to improve the diagnostic 

capability of in vivo imaging of ischemic tissue. To test this hypothesis, SPIONs were coated by 

a hyperbranched polyglycerol substituted with a varying number of octadecyl chains (HPG-g-

C18) to form the nanoclusters (Figure 4.1). Hyperbranched polyglycerol was adopted to mimic 

the structure of glycogen, a natural, hyperbranched biopolymer that is able to hold 2-3 times its 

weight in water.16 The critical role of the polyglycerol molecular architecture in enhancing 

relaxivity of SPION clusters was addressed using the analogous linear polyglycerol substituted 

with octadecyl chains as a control. The ability of the resultant ultrasensitive nanocluster to 

identify ischemic tissue vascularized with leaky blood vessels was then evaluated in a murine 

model of hindlimb ischemia.17 
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4.2 Results 

4.2.1 Synthesis and characterization of hyperbranched and linear polyglycerols 

First, hyperbranched polyglycerol (HPG) was synthesized by one-step anionic ring-

opening polymerization of glycidol (Figure 4.2a). Further reaction of HPG with octadecyl 

bromide yielded HPG with a molecular weight of 3 kg/mol substituted with an average of 5 alkyl 

chains per polymer, termed HPG3k-g-C18(5), according to NMR and mass spectrometry 

(Spectroscopy data is shown at the end of the chapter). The control, linear polyglycerol (LPG) 

with a molecular weight of 3 kg/mol was synthesized through a three-step process in which 

glycidol was reacted with ethyl vinyl ether to form ethoxy ethyl glycidyl ether, which was then 

polymerized and finally hydrolyzed to yield LPG (Figure 4.2b). Subsequent alkylation of the 

resultant LPG3k yielded LPG3k-g-C18(2), with an average of 2 octadecyl chains per polymer. 

Despite having similar molecular weights and chemical functionalities, the hyperbranched 

architecture of HPG resulted in a smaller contact angle than the LPG (Figure 4.3). The 

corresponding surface energy of the HPG film was more than 30% greater. The result indicates 

that coating of SPION clusters with HPG would be advantageous in facilitating interaction with 

surrounding water. 

 

4.2.2 Comparison of nanoclusters assembled with alkylated HPG3k and LPG3k  

Emulsification of 5 nm-diameter oleic acid-capped SPIONs initially dispersed in 

chloroform and polyglycerol dissolved in water resulted in spherical SPION clusters that were 

stable in water (Figures 4.4a and 4.4b), as confirmed with transmission electron microscopy 

(TEM) (Figure 4.4c). While the Z-average hydrodynamic diameter determined by dynamic light 

scattering (DLS) was 80 nm regardless of polyglycerol molecular architecture, the average core 
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size of the HPG3k-g-C18(5) clusters measured with TEM was 42±9 nm, and that of the LPG3k-

C18(2)-induced clusters was 60±13 nm. This indicates that HPG3k-g-C18(5) provides a thicker 

hydrated polymer coating layer. In both cases, SPION clusters remained dispersed for over one 

year. Relaxivity measurements were performed on the nanoclusters to determine effects of the 

hyperbranched structure on T2 relaxation (Figure 4.4d). Despite having the same hydrodynamic 

size, nanoclusters coated by HPG3k-g-C18(5) had a relaxivity 30% higher than clusters made with 

LPG3k-g-C18(2), likely due to differences in hydrophilicity as a result of branching, as well as 

coating thickness. 

 

4.2.3 Tuning cluster size 

Next, the size of the nanoclusters was tuned within the SDR, commonly centered on a 

diameter of 120 nm.18 Size has been shown to vary with polymer content during fabrication,19-22 

however, clusters made with HPG3k-g-C18(5) or LPG3k-g-C18(2) remained 80 nm, regardless of 

concentration (Figure 4.5), with core diameters of approximately 40 nm and 60 nm respectively. 

To strengthen potential HPG-mediated inter-droplet interactions,23 a larger HPG with a 

molecular weight of 50 kg/mol, termed HPG50k, was synthesized by increasing the ratio of 

glycidol-to-initiator in the polymerization reaction. 

The resulting HPG was alkylated at two levels to yield HPG50k-g-C18(2) and HPG50k-g-

C18(10), in which two and ten alkyl chains were conjugated to the HPG50k respectively. For these 

polymers, the hydrodynamic diameter of the nanoclusters was indeed tunable with HPG content 

(Figure 4.6), with average diameters increasing to a critical size of approximately 145 nm. TEM 

images of SPION clusters also verified that the diameter of the clustered metallic core was 
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tailored with HPG50k-g-C18, following the same trends as the hydrodynamic diameter measured 

with DLS. 

 

4.2.4 Relaxivity characterization of HPG-SPION nanoclusters 

MR relaxivity of nanoclusters coated by alkylated HPG50k displayed the size-dependent 

behavior, characterized by an initial increase in relaxivity followed by decrease with larger sizes 

(Figure 4.7). Additionally, for any given size, the more highly alkylated HPG (i.e., HPG50k-g-C18 

(10)) led to reduced relaxivity (Figure 4.7a). As such, tuning the diameter of SPION nanoclusters 

coated with HPG50k-g-C18(2) led to a relaxivity of 719 mM-1s-1 (Figure 4.7b). This relaxivity was 

close to the theoretical maximum for the SPIONs used, which was determined to be 742 mM-1s-1 

based on magnetic saturation (Figure 4.8). 

According to phantom images, the HPG-SPIONs with a relaxivity of 719 mM-1s-1 

provided high contrast against background at low iron levels, unlike unclustered SPIONs with 

measured relaxivity of 122 mM-1s-1 (Figure 4.9). The nanoclusters completely dephased the 

water proton signal at an iron concentration of 0.14 mM, whereas unclustered SPIONs at the 

same concentration provided no noticeable contrast. 

 

4.2.5 In vitro nanocluster assays 

 The SPION nanoclusters minimally influenced metabolic activity of C166 endothelial 

cells, even at high doses of 580 µg Fe/mL (Figure 4.10). Furthermore, the ability of the clusters 

to penetrate an inflamed endothelium as a method of passive targeting was simulated using a 

transwell system (Figure 4.11). The migration of clusters through an endothelial monolayer was 
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greatly enhanced after incubating the cells with tumor necrosis factor (TNF)-α, a 

proinflammatory cytokine.24 SPION nanoclusters also remained intact during incubation in 

serum, thus supporting their stable structural integrity in blood circulation (Figure 4.12). 

 

4.2.6 In vivo models of ischemia 

 Finally, the engineered HPG-SPIONs were used to evaluate their capacity to accumulate 

in and identify ischemic tissue in vivo following systemic injection. Ligation of the femoral 

artery resulted in inflammation and local tissue damage typical of ischemic wounds. HPG-

SPIONs injected systemically via tail vein were able to dramatically reduce MR signal in the 

injured region of the hindlimb at a dose of 2 mg Fe/kg, which is 5 to 10 fold lower than those 

used in similar studies25-27 (Figure 4.13). In contrast, the unclustered SPIONs provided minimal 

enhancement, despite a comparable amount of iron accumulated in the target tissue as verified 

with Prussian blue staining (Figure 4.14). Similarly, in a model of coronary ischemia induced by 

ligation of coronary artery, HPG-SPIONs administered through the tail vein were able to locally 

highlight damaged cardiac tissue, whereas unclustered SPIONs no observable contrast effect 

(Figure 4.15). Again, according to Prussian blue staining, no significant difference of iron 

accumulation in target tissue was found (Figure 4.16). Therefore, the enhanced contrast of MR 

images is attributed to the high relaxivity of HPG-SPION nanoclusters. 

 

4.3 Discussion 

In summary, this study demonstrates that HPG creates SPION clusters with very high 

relaxivity due to control of cluster size coupled with optimization of hydrophilicity at the 
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surface. We propose that the thick, hydrophilic HPG coating layer serves to enhance relaxivity 

by absorbing water and reducing its diffusivity,28 analogous to the way the multi-branched 

polysaccharide, glycogen, interacts with and retains water via its molecular architecture and 

extensive hydrogen bonding. In this way, this study presents a first time investigation into the 

effects of molecular architecture of the packaging material on performance of the SPIONs. Such 

hydrophilic coatings may also be applied to improving nanoparticles of varying size and 

composition, and is thus broadly applicable in contrast agent design. 

 

4.4 Conclusion 

The formulated HPG-SPION nanoclusters can identify tissue defects using MRI, and 

therefore have potential to diagnose a wide variety of vascular diseases, which remain the 

leading cause of death worldwide. For further improvement, the HPG could easily be modified 

with targeting moieties to actively bind nanoclusters to sites of interest. Furthermore, as the 

inflammation that induces leaky vasculature occurs during initial stages of diseases, the HPG-

coated SPION clusters may represent an early detection system for some of the most significant 

diseases worldwide, not only for cardiovascular disease, but also cancer. 

 

4.5 Materials and Methods 

4.5.1 General polyglycerol characterization methods 

Mass spectral analysis was performed using ESI on a Waters Micromass Q-Tof 

spectrometer or MALDI-TOF on an Applied Biosystems Voyager-DE STR spectrometer. 

Nuclear magnetic resonance (NMR) spectra were recorded on a Varian U400, UI400, U500 or 
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VXR500 spectrometer. Additionally, the molecular weights of HPGs were evaluated by gel 

permeation chromatography (GPC, Waters Breeze 2) with a Styragel HT column. 20 mM LiBr in 

N,N-dimethylformamide (DMF) was used as an eluent. Values were based on calibration against 

polyethylene glycol (PEG) standards. NMR, GPC, and mass spectral data for all synthesized 

materials are shown in Figures 4.17-4.26.  

 

4.5.2 Synthesis of HPG 

All materials were purchased from Sigma-Aldrich unless otherwise noted. The overall 

synthetic scheme is shown in Figure 4.2 and generally follows the methods reported by Kong, 

Zimmerman, and coworkers.29 To prepare HPG, sodium hydride (NaH) was mixed with the 

alkyne initiator, 4-pentyn-1-ol at a 1:10 molar ratio. The mixture was stirred for 15 min followed 

by addition of doubly distilled glycidol by a syringe pump (1.2 mL/h) while stirring at 70 ºC. 

The molar ratio of glycidol to initiator was varied to achieve different molecular weights. After 

addition, the reaction continued for 3 h with constant stirring. For each 1 mL of glycidol used, 2 

mL of methanol was added and ion exchange Amberlite IR 1200 H form prewashed resin were 

added to the polymer solution and stirred for 1 h at 50 °C. The resin was removed by vacuum 

filtration and the polymer was fractionally precipitated with cold ether and centrifuged at 4,000 

rpm for 15 min at 4 °C. The supernatant was decanted and precipitation was repeated 2-3 more 

times. The resulting HPGs were characterized by mass spectrometry, 1H NMR, and 13C NMR. 
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4.5.3 Alkylation of HPG 

HPG (40 mg, 0.005 mmol) was dissolved in anhydrous dimethylformamide (DMF, 2.5 

mL) to which NaH in 60% mineral oil (7.6 mg, 0.19 mmol) was added. The solution was stirred 

for 15 min before addition of bromooctadecane (63.3 mg, 0.19 mmol). The average number of 

conjugated alkyl chains was controlled by varying the ratio of bromooctadecane to HPG. The 

reaction mixture was then placed in a preheated oil bath at 80 °C for 24 h. The mixture was 

extracted with hexane 3 times to remove unreacted bromide and the DMF was removed first by 

rotary evaporator and then under high vacuum. The material was characterized by MALDI-TOF, 

1H NMR and 13C NMR. 

The degree of substitution of alkyl chain (DSC18) on alkylated HPG was calculated from 

the integrated peaks of the 1H NMR spectra as follows in Eq. (4.1): 

         
DSC18 =

Peak1.3 / 30( )
Peak4.0!3.4 / 5( )! Peak1.3 / 30( )

"100%
            (4.1) 

 

4.5.4 Synthesis of the LPG intermediate, ethyl glycidol ether (EEGE) (3 in Figure 4.2b) 

Freshly distilled glycidol was added to ethyl vinyl ether at a molar ratio of 0.8:3 and 

cooled to 0 °C. p-Toluene sulfonic acid monohydrate (pTSA) was added slowly while keeping 

the temperature below 20 °C. The mixture was then warmed to room temperature and stirred for 

3 h. Saturated NaHCO3 was added and the organic layer was dried over Na2SO4. Solvent was 

removed under vacuum and the product was stored with CaH and vacuum distilled at 50 °C. The 

product was characterized by 1H NMR, 13C NMR, and electrospray ionization (ESI) mass 

spectrometry on a Waters Micromass Q-Tof spectrometer. 
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4.5.5 Synthesis of the LPG intermediate, poly(EEGE) (5 in Figure 4.2b) 

Using a slightly modified literature procedure,30,31 2.1 mmol of 4-pentyn-1-ol (0.2 mL) 

was added to 15 mL freshly distilled diglyme, followed by 0.2 mL of a 1 M solution of 

potassium tert-butoxide in THF and stirred for 10 min. The flask was then cooled to -50 °C prior 

to dropwise addition of EEGE (92 mL, 725 mmol). The reaction continued for 48 h at 120 °C. 

Diglyme was removed by vacuum distillation at 80 °C, and the remaining product was dissolved 

in dichloromethane (DCM) and washed with water. The organic phase was dried over anhydrous 

sodium carbonate, and the solvent was removed using a rotary evaporator. The product was 

characterized by MALDI-TOF, 1H NMR, and 13C NMR. 

 

4.5.6 Synthesis and alkylation of LPG 

 First, poly(EEGE) was dissolved in THF, followed by addition of 32% HCl aqueous 

solution, which resulted in precipitation of LPG. The reaction continued for 2 h before the 

solvent was decanted and the residue was washed twice with THF, followed by solvent removal 

under vacuum. Next, as in the alkylation of HPG, LPG was dissolved in anhydrous DMF and 

reacted with bromooctadecane in the presence of NaH to yield LGP3k-g-C18(2). The products 

were characterized by MALDI-TOF, 1H NMR and 13C NMR. DSC18 was determined with Eq. 

(4.1), as in the case of alkylated HPG. 

 

4.5.7 Contact angle measurement of HPG and LPG 

HPG3k or LPG3k was dissolved in a 1:1 water and acetone mixture and spin coated on 

glass cover slides to make a thin, even film using a VTC-100 vacuum spin coater (MTI 

Corporation). A droplet of deionized water was placed on the film, and the contact angle was 
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measured by a contact angle goniometer (Rame-Hart). The surface energies of the polyglycerol 

films, W, were calculated from the contact angle, θ, using the Young-Dupre Eq. (4.2) and the 

surface tension of water, γ: 

    W = ! 1+ cos"( )               (4.2) 

 

4.5.8 Synthesis of oleic acid-capped SPIONs 

5 nm-diameter oleic acid-capped SPIONs were synthesized by thermal decomposition of 

iron acetylacetonate, as previously described.32,33 Briefly, iron acetylacetonate (2 g), oleylamine 

(660 µL), oleic acid (660 µL), and 1,2 dodecanediol (0.7 g) were dissolved in 6.7 mL of benzyl 

ether. The mixture was heated under nitrogen to 200 °C for 2 h, followed by reflux at 300 °C for 

1 h. SPIONs were purified by precipitation in ethanol, magnetic separation, and finally re-

dispersion in chloroform at a concentration of 10 mg/mL. 

 

4.5.9 Analysis of magnetization of SPIONs 

The field-dependent magnetization of the SPIONs was evaluated with a vibrating sample 

magnetometer (MPMS, Quantum Design). Iron concentration was determined by digestion of 

SPIONs in concentrated nitric acid followed by analysis with inductively coupled plasma optical 

emission spectroscopy (ICP-OES, Perkin-Elmer Optima 2000 DV). The saturation magnetization 

acquired with the MPMS was used to estimate the theoretical maximum relaxivity within the 

static dephasing regime (SDR) using Eq. (4.3): 

                             (4.3) r2 =
2! " µ0#Ms

9 3
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where γ is here defined as the proton gyromagnetic ratio, µ0 is the permeability of free space, υ is 

the molar volume, and Ms is the saturation magnetization. With a saturation magnetization of 71 

emu/g (Figure 4.8), the maximum relaxivity for such SPIONs yielded the value of 742 mM-1s-1. 

 

4.5.10 Fabrication of polyglycerol-coated SPION nanoclusters 

SPION clusters were fabricated by emulsification. The aqueous phase was prepared by 

dissolving HPG-g-C18 or LPG-g-C18 in deionized water at varying concentrations. SPIONs 

dispersed in chloroform were added to the PG aqueous solution, and the mixtures were 

immediately sonicated (Fisher Scientific Sonic Dismembrator, Model 100). Chloroform was then 

removed by rotary evaporation (Heidolph Hei-VAP), and excess material was removed by 

centrifugation. Performance of HPG-SPIONs was compared to the unclustered SPION, FeREX 

(BioPAL, Inc.). 

 

4.5.11 Size determination of nanoclusters 

The Z-average hydrodynamic diameters of the nanoclusters were determined by dynamic 

light scattering (DLS, Malvern Zetasizer Nano). TEM micrographs were obtained by JEOL 2100 

cryo TEM at 200 kV, with samples dried on holey carbon-coated copper grids. To demonstrate 

stability in serum, HPG-SPIONs were incubated for 2 h at 37 °C in phosphate buffered saline 

(PBS) supplemented with 50% type AB human serum off the clot (PAA Laboratories Inc.) prior 

to grid preparation. For certain experiments, the cryo-TEM sample was applied to a lacey 

carbon-coated copper grid and prepared by cryo plunge (FEI vitrobot) into liquid ethane (~90 K) 

in a controlled environment at 23 ºC and 100% humidity. The images were acquired using JEOL 
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2100 cryo TEM with a cryogenic sample holder (Gatan 626) at 60 kV with digital imaging. 

Cluster core size was determined from a minimum of 50 clusters using ImageJ software. 

 

4.5.12 T2 relaxivity measurement of SPION contrast agents 

MR phantoms of SPIONs were prepared in borosilicate culture tubes, which were 

immobilized in an agar gel. Imaging was performed with a 3 T Siemens Magnetom Trio scanner 

equipped with head coil. Images were acquired using a spin echo sequence with repetition time 

(TR) of 1200 ms and echo time (TE) varied from 12 to 490 ms to determine spin-spin relaxation 

time (T2) by nonlinear least-squares curve fitting to Eq. (4.4): 

      S(TE) = S0 e
!TE/T2 + b              (4.4) 

where S(TE) is the average signal intensity for echo time (TE) taken over the coronal section area 

of the MR phantom by ImageJ software, S0 represents the steady state signal intensity, and b is 

an offset due to the background noise level. Transverse molar relaxivity (r2) was then determined 

by linear regression of Eq. (4.5): 

 1/T2 =1/T2,water + r2[Fe]              (4.5) 

in which 1/T2,water is the relaxation rate of water and [Fe] is the iron concentration within the 

phantom sample. Iron concentration was determined by ICP-OES (Perkin-Elmer Optima 2000 

DV) after digestion in concentrated nitric acid. 

 

4.5.13 MTT assay for cellular metabolic activity 

C166 endothelial cells were seeded at a density of 5×103 cells per well in a 96-well plate. 

Cells were incubated for 24 h with SPION clusters coated with HPG50k-g-C18(2). MTT reagent 

((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, ATCC) was then added, 
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followed by addition of MTT detergent, and absorbance at 570 nm was measured with a plate 

reader (Tecan Infinite 200 PRO) as an indicator of metabolic activity. 

 

4.5.14 Transwell migration assay 

The setup, shown schematically in Figure 4.11, consisted of an HTS Transwell 96-well 

plate with 8 µm diameter pores in a polyester membrane (Corning). C166 endothelial cells were 

seeded on the transwell insert at a density of 1×105 cells per well to form an endothelial layer 

according to the manufacturer’s protocol. To compare physiological to inflamed states, cells 

were incubated overnight with a 10 ng/mL solution of tumor necrosis factor alpha (TNF-α, 

GenScript Corporation) to induce an inflammatory condition. Cells were then incubated for 1 h 

with FITC-labeled HPG-SPIONs, and fluorescence intensity of the receiver well was measured 

with a plate reader (Tecan Infinite 200 PRO) at excitation of 458 nm and emission at 535 nm as 

an indication of the clusters’ ability to permeate the endothelial layer. 

 

4.5.15 Hindlimb ischemia model 

Hindlimb ischemia was induced in male BALB/c mice (Jackson Laboratories, ME) in 

accordance with the protocol approved by the Illinois Institutional Animal Care and Use 

Committee. Mice were anesthetized by intraperitoneal injection of a mixture of xylazine (10 

mg/kg) and ketamine hydrochloride (100 mg/kg). A small incision was made on the upper thigh 

of the left hindlimb and the femoral artery was ligated in two regions with 5-0 Ethilon sutures 

(Johnson and Johnson, NJ). The artery was then severed between the proximal and distal sutures. 

The ischemic injury developed over 24 h, at which point SPIONs were injected via tail vein at a 

dose of 2 mg Fe/kg. 
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4.5.16 Coronary ischemia model 

Procedures to induce coronary ischemia in female C57BL/6J mice (Jackson Laboratories, 

ME) were performed according to the protocol approved by the Illinois Institutional Animal Care 

and Use Committee. Mice were first anesthetized with 5% isofluorane delivered with 1 L/min 

oxygen in an anesthetic chamber. Mice were then intubated with a 20G angiocath tube and 

exposed to 1.5% isofluorane with 1 L/min oxygen during the surgical procedure. A one-inch 

incision was then made vertically and two muscle layers were retracted and sutured in place. To 

expose the heart, an intercostal incision was then made between the 3rd and 4th ribs. To induce 

occlusive blood flow, the left coronary artery was ligated with an 8-0 monofilament suture 

(Johnson and Johnson, NJ). Finally, the incisions were closed using a 6-0 monofilament suture 

(Johnson and Johnson, NJ). The myocardial infarction developed over 24 h, and SPIONs were 

injected via tail vein at a dose of 2 mg Fe/kg as in the hindlimb ischemia study. 

 

4.5.17 In vivo MRI 

For both models of murine ischemia, mice were imaged 3 h after contrast agent injection 

with a Varian 14.1 T microimager consisting of a Unity/Inova 600 MHz NMR spectrometer and 

adjustable radiofrequency coil. Images were acquired using a spin-echo multislice (SEMS) pulse 

sequence with TR = 500 ms for hindlimb images or 600 ms for the heart model, TE = 20 ms, 

slice thickness = 0.5 mm, and matrix size = 256 x 256. Coronal images were acquired for the 

hindlimb model, while transverse sections were used for evaluation of the myocardial infarction 

model. 
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4.5.18 Histological analysis 

Tissues of interest of the mice were fixed in 10% buffered formalin and embedded in 

paraffin. Tissues were cut at a 4 µm thickness using a Leica RM 2255 rotary microtome and the 

cross-sections were stained with Hematoxylin and Eosin or Prussian blue stain to analyze tissue 

morphology and locate SPIONs, respectively. Tissue sections were visualized with a 

NanoZoomer Slider Scanner/Digital Pathology System (Hamamatsu). 
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4.6 Figures 

 

Figure 4.1 Overall scheme of hyperbranched polyglycerol-coated SPION nanoclusters and 

representative chemical structures of HPG3k-g-C18(5) and LPG3k-g-C18(2).	
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Figure 4.2 Synthesis of (a) alkylated HPG and (b) alkylated LPG. 
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Figure 4.3 Contact angles and corresponding surface energies of water droplets on films of 

HPG3k and LPG3k. 

 

Figure 4.4 HPG-SPION clusters. (a) Schematic of the emulsification process to create 

polyglycerol-coated SPIONs. (b) Oleic acid-capped SPIONs were dispersed in (i) chloroform 

before emulsification and in (ii) water after emulsification. (c) TEM micrographs of SPIONs 

coated with (i) HPG3k-g-C18(5) and (ii) LPG3k-g-C18(2). Scale bars represent 50 nm. A minimum 

of 50 clusters were examined per condition. (d) Effect of molecular architecture on T2 relaxivity. 

Error bars represent standard deviation of the fit parameter. 
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Figure 4.5 Z-average hydrodynamic diameter of SPION nanoclusters produced by various 

concentrations of HPG3k-g-C18(5) (n) and LPG3k-g-C18(2) (○). HPG3k-g-C18(5) and LPG3k-g-

C18(2) represent HPG substituted with 5 C18 chains and LPG substituted with 2 C18 chains, 

respectively. Molecular weights of both HPG and LPG were 3,000 g/mol. Error bars, though 

partially obscured by data point markers, represent standard deviation of three measurements. 
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Figure 4.6 Controlling size of SPION nanoclusters with high molecular weight HPG. (a) Control 

of Z-average hydrodynamic diameter (DH) by varying the concentration of HPG50k-g-C18(2) (●) 

and HPG50k-g-C18(10) (□) per SPION, where HPG50k-g-C18(2) and HPG50k-g-C18(10) represent 

HPG50k substituted with 2 and 10 C18 chains, respectively. Data are the average of three replicate 

measurements, with error bars representing standard deviation obscured by data point markers. 

(b) Representative TEM micrographs of SPION nanoclusters with corresponding hydrodynamic 

diameter (DH) determined from DLS and average core diameter (D) measured from a minimum 

of 50 clusters by TEM. Scale bars represent 50 nm. 
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Figure 4.7 Tuning relaxivity with cluster size. Dependence of T2 relaxivity (r2) on the 

hydrodynamic diameter (DH) of SPION clusters coated with (a) HPG50k-g-C18(10) and (b) 

HPG50k-g-C18(2). The upper limit red dashed line represents the maximum theoretical relaxivity 

of the SPIONs at 742 mM-1s-1, while the lower blue dotted line at 122 mM-1s-1 is the relaxivity of 

unclustered, commercial SPIONs. All error bars represent standard deviation of the fit parameter 

and are partially obscured by data markers. 

 

Figure 4.8 Magnetization curve of oleic acid-capped SPIONs at 300 K. A saturation 

magnetization, Ms, of 71 emu/g, determined from the plateau of the magnetization curve, was 

used to estimate theoretical maximum relaxivity in Eq. (4.3). 
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Figure 4.9 MR phantom images comparing nanoclusters with relaxivity of 719 mM-1s-1 to 

unclustered SPIONs with relaxivity of 122 mM-1s-1. 

 

 

Figure 4.10 MTT assay to assess effects of HPG-SPION nanoclusters on metabolic activity of 

C166 endothelial cells. Percent viability was determined by normalization of absorbance values 

after blank subtraction to that of a control group of cells incubated without HPG-SPIONs. The 

concentration of Fe in the cell culture media was varied by altering the mass of SPION clusters. 

Values are the average of 3 replicates and error bars represent standard deviation. 
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Figure 4.11 Endothelial transwell migration assay. (a) Schematic of the transwell insert. (b) 

Fluorescence intensity of the receiving well after incubation of FITC-labeled HPG-SPIONs and 

C166 cells with and without exposure to inflammation-inducing TNF-α. The diffusion of HPG-

SPION nanoclusters was more than 3-fold higher through the endothelial layer exposed to TNF-

α. Error bars represent standard deviation of three replicates. 

 

 

Figure 4.12 TEM micrographs of HPG-SPIONs before and after incubation with 50% human 

serum in PBS. The HPG-SPIONs with a hydrodynamic diameter of 122 nm and relaxivity of 719 

mM-1s-1 were analyzed, and average core diameter is indicated on each figure. (a) TEM and (b) 

cryo-TEM images of the SPION clusters before serum incubation. (c) After incubation with 50% 

human serum in PBS for 2 h at 37 °C, the morphology and size remained unchanged, according 

to TEM micrographs. Scale bars represent 50 nm. 
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Figure 4.13 In vivo evaluation of the ability of SPION nanoclusters to highlight damaged tissue 

in MR images. (a) Hindlimb ischemia was induced by ligation of the left femoral artery. A 

control mouse receiving no injection of contrast agent (b) is compared to mice injected 

systemically with unclustered SPIONs (c) or the HPG-SPIONs with relaxivity of 719 mM-1s-1 

(d). White arrows indicate negative contrast in the injured region. 
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Figure 4.14 Histological analysis of the hindlimb ischemia model. (a) H&E staining of (i) the 

ischemic left hindlimb, indicating tissue damage as a result of ischemia and (ii) the uninjured, 

right hindlimb. (b) Prussian blue staining of the left, ischemic hindlimb sections containing (i) 

HPG-SPION nanoclusters and (ii) unclustered SPIONS, indicating the presence of contrast agent 

in both cases. In all figures, scale bars represent 50 µm. 
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Figure 4.15 SPION nanoclusters in a model of coronary ischemia. Ligation of the coronary 

artery resulted in myocardial infarction (a). As with the hindlimb model, a control mouse (b) is 

compared to injection of the unclustered SPIONs (c) or the HPG-SPIONs (d). White arrows 

indicate areas of edema, which is typical of the infarcted region. The yellow arrow represents 

negative contrast in the region of interest. 
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Figure 4.16 Histological analysis of the coronary ischemia model. (a) H&E staining of the heart, 

indicating (i) healthy and (ii) infarcted regions as a result of occluded blood flow. Scale bars 

represent 250 µm. (b) Prussian blue staining for iron in heart sections containing (i) unclustered 

SPIONs and (ii) HPG-SPION nanoclusters within the injured region. Scale bars represent 50 µm. 
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Figure 4.17 Characterization of HPG3k by (a) 1H NMR, (b) 13C NMR, and (c) MALDI-TOF. 

HPG3k represents HPG with a molecular weight (MW) of 3,000 g/mol. 1H NMR (400 MHz, 

methanol-d4) δ 4.87 (s, 41H), 3.94 – 3.37 (m, 236H), 2.24 (t, J = 7.0 Hz, 2H), 1.78 – 1.69 (m, 

1H). 13C NMR (126 MHz, methanol-d4) δ 81.61, 81.36, 80.06, 79.80, 73.88, 72.86, 72.37, 72.19, 

72.16, 70.89, 70.60, 64.41, 64.31, 62.73. MS (MALDI) m/z ~3000, peak separation 74 m/z 

units. 
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 Figure 4.18 Characterization of HPG3k-g-C18(5) by (a) 1H NMR, (b) 13C NMR, and (c) MALDI-

TOF. Protons of the C18 chain are from 1-2 ppm in the 1H NMR spectrum. HPG3k-g-C18(5) 

represents HPG (MW ~3,000 g/mol) substituted with 5 C18 chains. 1H NMR (500 MHz, 

methanol-d4) δ 4.71 (d, J = 6.6 Hz, 63H), 3.97 – 3.44 (m, 267H), 2.30 (s, 2H), 1.79 (s, 2H), 1.59 

(s, 8H), 1.43 – 1.25 (m, 129H), 0.96 – 0.89 (m, 13H). 13C NMR (126 MHz, methanol-d4) δ 

79.49, 73.95, 72.30, 72.08, 70.73, 70.42, 64.33, 40.63, 40.61, 30.76. MS (MALDI) peak 

separation 253 m/z units. 
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Figure 4.19 Characterization of EEGE, an LPG synthetic intermediate, by (a) 1H NMR, (b) 13C 

NMR, and (c) ESI mass spectrometry, calculated 146 m/z, experimental 147.1 (M+1), 169.0 m/z 

(M+Na). 1H NMR (500 MHz, chloroform-d) δ 4.58 – 4.49 (m, 1H), 3.64 – 3.14 (m, 5H), 2.95 – 

2.88 (m, 1H), 2.57 (ddt, J = 5.9, 3.1, 1.5 Hz, 1H), 2.43 – 2.35 (m, 1H), 1.10 (ddd, J = 6.5, 5.4, 

1.1 Hz, 4H), 0.98 (tt, J = 7.1, 1.3 Hz, 4H). 13C NMR (126 MHz, chloroform-d) δ 99.28, 99.26, 

65.48, 64.82, 60.50, 60.45, 50.47, 50.36, 44.01, 43.96, 19.37, 19.25, 14.89. 
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Figure 4.20 Characterization of poly(EEGE), an LPG synthetic intermediate, by (a) 1H NMR, 

(b) 13C NMR, and (c) MALDI-TOF. 1H NMR (500 MHz, chloroform-d) δ 4.63 (q, J = 5.5 Hz, 

380H), 3.65 – 3.51 (m, 1032H), 3.49 (q, J = 4.2 Hz, 249H), 3.44 – 3.34 (m, 490H), 1.84 (d, J = 

5.6 Hz, 1H), 1.70 (t, J = 2.6 Hz, 1H), 1.26 – 1.18 (m, 1143H), 1.12 (t, J = 7.1 Hz, 1015H). 13C 

NMR (126 MHz, CDCl3) δ 99.88, 99.83, 99.80, 99.70, 99.67, 79.00, 78.91, 78.84, 78.77, 78.69, 

77.42, 70.10, 69.81, 65.03, 64.75, 62.38, 61.07, 61.02, 60.79, 60.75, 19.79, 15.33. MS (MALDI) 

3600 m/z, peak separation of 147 m/z units.  
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Figure 4.21 Characterization of LPG3k by (a) 1H NMR, (b)13C NMR, and (c) MALDI-TOF. 

LPG3k represents LPG with MW of ~3,000 g/mol. 1H NMR (500 MHz, DMSO-d6) δ 4.29 – 4.11 

(m, 1044H), 3.62 – 3.32 (m, 1897H), 2.32 (td, J = 6.9, 3.0 Hz, 1H), 1.65 – 1.58 (m, 2H). 13C 

NMR (126 MHz, DMSO-d6) δ 80.16, 80.05, 79.91, 69.45, 69.29, 67.08, 60.92, 59.95, 40.02, 

39.94, 39.86, 39.78, 39.69, 39.60, 39.52, 39.35, 39.27, 39.19, 39.02. MS (MALDI) ~3000 m/z, 

separation of 74 m/z units.  
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Figure 4.22 Characterization of LPG3k-g-C18(2) by (a) 1H NMR, (b) 13C NMR, and (c) MALDI-

TOF. Protons of the C18 chain are from 1-2 ppm in the 1H NMR spectrum. LPG3k-g-C18(2) 

represents LPG (MW ~3,000 g/mol) substituted with 2 C18 chains. 1H NMR (500 MHz, 

deuterium oxide) δ 3.70 (dd, J = 15.5, 9.7 Hz, 977H), 3.61 (s, 702H), 2.38 (s, 2H), 1.52 (m, 

16H), 1.24 – 0.98 (m, 80H), 0.77 (s, 6H). 13C NMR (127 MHz, deuterium oxide) δ 79.93, 79.83, 

79.73, 77.11, 70.90, 70.52, 69.09, 69.06, 68.85, 62.73, 60.93, 60.90, 60.85, 60.81, 37.08, 34.69, 

31.57, 16.83. MS (MALDI) ~3500 m/z, separation of 74 m/z units.  



	
   113 

Figure 4.23 Characterization of HPG50k by (a) 1H NMR and (b) 13C NMR. HPG50k represents 

HPG with MW of ~50,000 g/mol. 1H NMR (500 MHz, methanol-d4) δ 4.86 – 4.77 (m, 1367H), 

4.02 – 3.39 (m, 3529H), 1.85 – 1.81 (m, 2H). 13C NMR (126 MHz, methanol-d4) δ 74.00, 72.24, 

64.53. 
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Figure 4.24 Characterization of HPG50k-g-C18(2) by (a) 1H NMR and (b) 13C NMR. Protons of 

the C18 chain are from 1-2 ppm in the 1H NMR spectrum. HPG50k-g-C18(2) represents HPG (MW 

~50,000 g/mol) substituted with 2 C18 chains. 1H NMR (500 MHz, methanol-d4) δ 4.88 (s, 

849H), 4.10 – 3.37 (m, 3105H), 3.03 (d, J = 3.0 Hz, 26H), 2.26 (t, J = 7.3 Hz, 8H), 1.88 – 1.78 

(m, 12H), 1.67 – 1.56 (m, 16H), 1.32 (d, J = 9.5 Hz, 110H), 0.91 (dt, J = 10.0, 6.0 Hz, 18H). 13C 

NMR (126 MHz, methanol-d4) δ 78.69, 72.84, 71.25, 71.04, 69.49, 63.36, 47.91, 47.84, 47.74, 

47.56, 47.45, 47.39, 41.44, 39.28, 29.59.  
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Figure 4.25 Characterization of HPG50k-g-C18(10) by (a) 1H NMR and (b) 13C NMR. Protons of 

the C18 chain are from 1-2 ppm in the 1H NMR spectrum. HPG50k-g-C18(10) represents HPG 

(MW ~50,000 g/mol) substituted with 10 C18 chains. 1H NMR (500 MHz, methanol-d4) δ 4.80 

(s, 878H), 3.95 – 3.61 (m, 3528H), 1.75 (dd, J = 10.9, 5.9 Hz, 30H), 1.40 (d, J = 5.7 Hz, 60H), 

1.28 (s, 326H), 0.91 (t, J = 6.7 Hz, 31H). 13C NMR (126 MHz, methanol-d4) δ 81.14, 79.50, 

73.87, 72.54, 72.19, 72.10, 70.44, 65.04, 64.32, 62.55, 30.00, 31.64, 30.72, 30.56, 30.41, 30.09, 

23.42, 14.41. 
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Figure 4.26 Characterization of molecular weights of HPG3k and HPG50k by GPC. The 

molecular weight of HPG3k is in agreement with that determined by MALDI-TOF.  
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CHAPTER 5 

MORPHOLOGICAL CONTROL OF IRON OXIDE NANOCLUSTERS BY 

HYPERBRANCHED POLYGLYCEROL FOR IMPROVED TISSUE TARGETING  
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5.1 Introduction 

Nanoparticles have been investigated for decades as carriers of various clinical diagnostic 

imaging agents and therapeutic molecules due to their ability to sustainably retain their cargoes 

and release them at controlled rates. Strategies to deliver such particles to tissues of interest, 

however, remain a highly active and challenging area of research.1-5 Towards this effort, non-

spherical nanoparticles are of increasing interest, predominantly due to their ability to adhere to 

target tissues with greater affinity than their spherical counterparts.6,7 A common method of 

controlling nanoparticle shape is to increase the intermolecular packing parameter of self-

assembling, amphiphilic molecules.8,9 Attaining an appropriate packing parameter often relies on 

a large hydrophobic component in order to achieve a desired, elongated morphology.10-12 
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As a consequence, the resulting nanoparticles may significantly limit the functionality of 

their encapsulated materials due to the hydrophobic environment directly surrounding the cargo, 

which substantially reduces hydrophilic interactions with surrounding biological fluids. This is of 

particular importance in the design of magnetic resonance imaging (MRI) contrast agents, which 

rely mechanistically on the probe’s ability to interact with water molecules of the target tissue.13 

To this end, this study demonstrates an advanced method to direct the self-assembly of 

SPIONs into non-spherical clusters that maintain a hydrophilic environment in order to provide 

superior contrast capability and highlight leaky vascular defects in MR images. The non-

spherical cluster assembly was achieved by emulsifying hydrophobic SPIONs with a binary 

mixture of amphiphilic hyperbranched polyglycerols (HPGs) having molecular weights that 

differed by an order of magnitude. HPG was previously used in Chapter 4 to facilitate the 

interaction between clustered SPIONs and surrounding water by mimicking the molecular 

architecture of glycogen, thereby dramatically increasing MR relaxivity. By varying the ratio of 

the low and high molecular weight HPG molecules, we were able to alter the morphology of 

SPION clusters from spherical to wormlike, with an average aspect ratio of 10. The resultant 

SPION nanoclusters were further modified with oligopeptides to bind with inflamed, leaky 

vasculature and displayed superior adhesion to target receptors compared to spherical clusters, 

according to in vitro studies. Finally, we assessed the ability of the bioactive, wormlike SPION 

nanoclusters to beacon vascular defects of an ischemic murine hindlimb after systemic injection 

at doses lower than we previously reported. 
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5.2 Results 

5.2.1 Synthesis of hyperbranched polyglycerols and iron oxide nanoparticles 

Alkylated HPG was synthesized as described in Chapter 4 by anionic polymerization of 

glycidol followed by reaction with bromooctadecane. The molecular weight was controlled from 

3,000 g/mol to 50,000 g/mol by varying the ratio of glycidol to initiator. The low molecular 

weight HPG was found to have an average of five alkyl chains per molecule, termed HPG3k-g-

C18(5), while the high molecular weight counterpart had 10, termed HPG50k-g-C18(10). 

Separately, SPIONs were fabricated using standard methods of high temperature thermal 

decomposition to yield an average core diameter of 5 nm.14 

 

5.2.2 Fabrication of wormlike nanoclusters 

 Spherical clusters of SPIONs were fabricated by emulsifying SPIONs dispersed in 

chloroform with HPG dissolved in deionized water (Figure 5.1). In either case of HPG50k-g-

C18(10) or HPG3k-g-C18(5), clusters had a spherical morphology. Interestingly, however, when 

the aqueous phase of the emulsion consisted of a binary mixture of the two HPG molecular 

weights, there was a notable change in morphology (Figure 5.2). Specifically, as f3k, defined in 

Eq. (5.1), increased, the clusters became elongated. 

            (5.1) 

Here, n3k and n50k are defined as the molar amount of HPG3k-g-C18(5) and HPG50k-g-C18(10) 

respectively. While short, non-spherical nanoclusters with an average aspect ratio of 4 were 

apparent for other mixtures, at a critical value of f3k = 0.75, the SPION clusters were maximally 

extended in the form of wormlike structures. Such clusters had an average aspect ratio of 10, 

though some attained an aspect ratio greater than 20. We estimate that for f3k = 0.75, 

f3k =
n3k

n3k + n50k
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approximately 50% of the SPIONs took the form of a wormlike cluster, while for the other 

mixtures tested, only approximately 15% of the SPIONs became incorporated into the elongated 

clusters. 

 The morphogenic properties of the system seem to arise from the molecular weight 

mismatch of the HPGs. While other studies have shown that wormlike micelles are possible 

depending on the hydrophobic content of a polymer, we found that changing the degree of 

alkylation, for example by using HPG50k and HPG3k both with two C18 chains per molecule, still 

resulted in wormlike appearance when f3k = 0.75 (Figure 5.3a). Furthermore, mixing two types of 

HPG3k did not result in worms, namely HPG3k-g-C18(2) and HPG3k-g-C18(5), nor did the high or 

low molecular weight HPGs produce SPION wormlike clusters when mixed with the 

intermediately sized HPG8k-g-C18(2) (Figure 5.3b-d). Additionally, the SPIONs themselves 

served to favor the formation of wormlike structures, similar to other reports.15 When the f3k = 

0.75 mixture of HPG3k-g-C18(5) and HPG50k-g-C18(10) was created without SPIONs, the vast 

majority of the structure produced were spherical, though a minority of wormlike structures 

could be seen by transmission electron microscopy (Figure 5.4). We therefore believe that the 

assembly of the morphology is a result of the synergistic effects of packing of low molecular 

weight HPG3k around the high molecular weight HPG50k, and the strong hydrophobic driving 

force of SPIONs. 

 

5.2.3 Nanocluster surface modification for active targeting  

 We next conjugated a targeting ligand to demonstrate the ability of the HPG-SPION cluster 

to accumulate at sites of interest. The peptide sequence VHPKQHR, which bears homology to 

very late antigen-4 (VLA-4) found on leukocytes, has been shown to bind to vascular cell 
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adhesion molecule-1 (VCAM-1) overexpressed by inflamed endothelial cells.16 In this way, 

conjugation of the peptide to a carrier can serve as a mechanism of immobilization. Therefore, 

we propose that conjugation of the peptide to alkylated HPG will allow for binding of the HPG-

SPION worms to inflamed blood vessels, which are a hallmark of cardiovascular disease.17 

 The peptide was conjugated to an acrylate-modified HPG3k-C18(5) via the terminal cysteine 

residue (Figure 5.5 and 5.6a). The peptide-laden HPG was subsequently used to induce SPION 

clustering. The presence of the peptide did not interfere with the morphology of the clusters, as 

f3k = 0.75 remained wormlike while f3k = 1 was spherical, using peptide-modified HPG3k-C18(5) 

(Figure 5.6b). 

 

5.2.4 Kinetic binding analysis of targeted nanoclusters 

 To evaluate the kinetic binding of targeted spherical and wormlike structures to sites of 

inflammation, surface plasmon resonance (SPR) spectroscopy was performed. VCAM-1 

receptors were immobilized on an SPR chip and SPION clusters were flowed over to examine 

their binding under convective flow. The binding resonance unit (RU) for the wormlike clusters 

was dramatically higher than that of the spheres at the same iron dose (Figure 5.6c). The reason 

is likely do to the way in which the nanostructures are able to adhere to the binding sites. As a 

wormlike structure is able to extend across the inflammation-mimicking surface, it is able to 

interact with more binding sites compared to its spherical counterpart (Figure 5.6d). Noting that 

RU is indicative of mass binding to the SPR chip,18 the wormlike clusters are better able to bring 

iron oxide contrast agent to the site of interest. 

 In consideration of binding parameters, the association rate constant, ka, was 10-fold higher 

per iron dose for worms compared to spheres (Table 5.1). Additionally, the dissociation rate 
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constant, kd, was orders of magnitude lower, thus highlighting the superior adherent nature of the 

morphology. As a result, the overall binding constant was over 1000-fold greater for the 

wormlike clusters. In addition to morphology, the importance of the targeting peptide was 

evaluated in control experiments using non-targeted HPG-SPION nanoclusters, or targeted 

clusters flowed over VCAM pre-saturated with peptide (Figure 5.7). Without targeting peptide, 

the binding was significantly reduced compared to binding between VCAM-1 and the peptide-

conjugated wormlike HPG-SPIONs. Similarly, by occupying the binding sites of VCAM-1 prior 

to administering the nanoclusters, the peptide-conjugated SPION clusters were no more 

advantageous to binding than their non-targeted counterpart. 

 

5.2.5 In vivo evaluation of targeted nanoclusters 

 The utility of the wormlike nanoparticle clusters in targeting defective tissue in vivo was 

evaluated using a murine model of hindlimb ischemia. Vascular occlusion of the left femoral 

artery resulted in local tissue damage. Peptide-conjugated HPG-SPION clusters were then 

injected systemically via tail vain at an iron dose of 1 mg/kg to locally highlight the injured 

region in MR scans (Figure 5.8). In both cases of targeted spherical and wormlike clusters, signal 

was locally reduced in the injured region. However, in the case of the wormlike clusters, the 

contrast was significantly more pronounced, with a signal reduction of 70% compared to native 

muscle, while the spheres produced a 45% signal reduction. Both types of clusters provided very 

high T2 molar relaxivity of 600 mM-1s-1, which is likely due to the compact clustering and 

hyperbranched, hydrophilic polymer coating as previously described in Chapter 4. While 

differences in contrast may be due in part to a slightly higher relaxivity for the wormlike 

structure (Figure 5.9), the more significant effect is likely the higher accumulation of SPIONs at 
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the target site due to the elongated morphology, as the contrast effect appeared similar per dose 

of iron in either system. Furthermore, histological sections of the injured mouse hindlimb 

indicated 50% more iron content per area in the case of wormlike clusters, as indicated by 

Prussian blue staining (Figure 5.10). The in vivo result is supported by the SPR binding data, 

which demonstrate an enhanced ability of the targeted worms to adhere to the site of interest. 

 

5.3 Discussion 

 The strategy presented mimics the way in which several strains of bacteria have developed 

rod-shaped or filamentous morphologies to maximize contact surface area with the endothelium 

of their host under shear forces of blood flow.19 As such, our approach was able to bring higher 

amounts of iron oxide to the target site and retain it for imaging. Additionally, the elongated 

morphology may allow for extended circulation in vivo,20 which could also promote 

accumulation at sites of inflammation. Furthermore, since our approach of tuning the 

morphology of the nanoclusters relied on size mismatch rather than hydrophobicity, we were 

able to maintain a high degree of hydrophilicity, which is important in the design of any MRI 

contrast agent. As a result of this hydrophilicity coupled with the high degree of clustering, the 

relaxivity of the clusters was higher than previous reports of elongated nanocarriers of 

SPIONs.21-23 Taken together, the superior relaxivity and targetability allowed for in vivo 

diagnosis at doses lower than previously reported in Chapter 4. 

 

5.4 Conclusion 

 In this study we have demonstrated the superior adhesive qualities of the HPG-induced 

wormlike micelles that ultimately allowed for greater targetability and accumulation at sites of 
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interest in vivo. By varying the ratio of high and low molecular weight HPG molecules used 

during emulsification with hydrophobic SPIONs, we were able to tune the morphology of the 

resultant nanoclusters from spherical to wormlike. In future studies, the wormlike structures may 

be purified from their spherical counterparts to yield a uniform population with enhanced 

targetability. Additionally, by understanding the specific parameters that result in the wormlike 

clusters it may be possible to fabricate populations that are more monomodal. In this way, efforts 

to study this mechanism of self-assembly will be critical in further improving these targeted 

clusters. Overall, We believe that the assembly strategy presented here could be readily extended 

to other nanoparticle types, and is therefore broadly applicable to colloidal systems. By 

incorporating iron oxide nanoparticles in the clustered core, this work also has the potential to 

substantially enhance imaging-based diagnostic capabilities. 

 

5.5 Materials and Methods 

5.5.1 Synthesis of HPG 

All materials were purchased from Sigma-Aldrich unless otherwise noted. 

Hyperbranched polyglycerol (HPG) was synthesized by anionic ring polymerization of glycidol 

as described previously in Chapter 4. Briefly, to the distilled initiator 4-pentyn-1-ol, NaH was 

added and stirred for ~15 min to allow deprotonation. Then twice-distilled glycidol was slowly 

added at a rate of 1.2 mL/h while stirring at 70 °C. The molar ratio of initiator to glycol was 

varied to attain different molecular weights. For the high molecular weight HPG, dioxane was 

used as a solvent and emulsifying agent before the glycidol addition. The resulting HPGs were 

characterized by MALDI-TOF, 1H NMR and 13C NMR. 
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5.5.2 Alkylation of HPG 

 HPG was prepared by drying under high vacuum overnight 1 day before the alkylation 

reaction.  Dried HPG (390 mg, 0.133 mmol, 1eq) was dissolved in 20 mL of anhydrous DMF 

and NaH (0.14 g, 27 eq., 60% in mineral oil) was added to deprotonate alcohol groups in HPG. 

The solution was stirred for ~15 min under nitrogen, and bromooctadecane (1.19 g, 27 eq) was 

added to the solution. By changing the ratio of bromooctadecane to HPG, the average degree of 

alkylation was controlled. After the addition of reagents, the reaction solution was stirred at 80 

°C for 24 h. The reaction mixture was extracted with hexane a minimum of 4 times to remove 

remaining bromooctadecane, and DMF layer was collected. DMF was then removed by rotary 

evaporation and high vacuum. The degree of alkylation was calculated the 1H NMR spectra. 

 

5.5.3 Conjugation of peptide to HPG 

 Alkylated HPG, HPG3k-g-C18(5) (107.3 mg, 1 eq.), was prepared by drying under high 

vacuum overnight 1 day before the reaction. Dried HPG was dissolved in anhydrous DMF (20 

mL) and distilled triethylamine (467.5 µL, 312 eq.) was added to the solution. The reaction flask 

was placed in an ice bath before the addition of methacryloyl chloride to cool the reaction 

solution. Methacryloyl chloride  (359 µL, 156 eq.) was then added dropwise. The reaction 

mixture was stirred for 24 h at 0 °C to RT. The substitution reaction of methacryloyl chloride by 

OH groups in HPG was monitored by crude 1H NMR spectra with an aliquot of the reaction 

mixture. Then, the peptide solution in DMF (137.8 mg, 6 eq., NH2-VHPKQHRGGSWGC-

CONH2) was added to the reaction flask, and the reaction was allowed to proceed for another 

24h at 60 °C. The thiol group in cysteine reacted with the methacryloyl group on HPG via 

Michael addition. Afterwards, the remaining methacryloyl groups on HPG were quenched with 
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3-mercaptopropane-1,2-diol. The reaction solution was then dialyzed against an aqueous NaCl 

solution (10 g/L followed by 5 g/L) for 2 days, and then against deionized water for 1 day. The 

amount of peptide conjugated to HPG3k-g-C18(5) was determined by UV absorbance at 280 nm.  

 

5.5.4 Formation of iron oxide nanoclusters 

Oleic acid-capped iron oxide nanoparticles were fabricated by high temperature thermal 

decomposition and dispersed in chloroform at a concentration of 10 mg/mL. To form 

nanoclusters, SPIONs were sonicated with varying ratios alkylated HPG50k and HPG3k dissolved 

in water. Chloroform was then removed by rotary evaporation, and the resultant clusters were 

purified from unencapsulated material by centrifugation. For targeted clusters, peptide-

conjugated HPG3k-g-C18 was incorporated with either HPG50k-g-C18 or unmodified HPG3k-g-C18 

at a 3:1 molar ratio to make wormlike and spherical clusters respectively. 

 

5.5.5 Microscopy of nanoclusters 

HPG-SPION nanoclusters were imaged with a JEOL 2100 transmission electron 

microscope (JEOL 2100 cryo TEM) at an accelerating voltage of 200 kV. Specimens were 

prepared by air-drying on a holey carbon-coated copper grid. Analysis was done with ImageJ 

software, and a minimum of 50 clusters were imaged per condition. 

 

5.5.6 Determination of kinetic binding parameters 

The targeted binding of peptide-conjugated nanoclusters was measured with a Biacore 

3000 (GE Healthcare, USA). A gold sensor chip was modified with 11-mercapoundecanoic acid 

to present reactive carboxylic acid groups on the chip surface. The carboxyl groups were then 
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activated by flowing 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-

hydroxysuccinimide (NHS) over the chip, followed by VCAM to attach the protein to the gold 

surface. Nanoclusters suspended in PBS at an iron concentration of 420 µM were then injected 

into the flow cell at a rate of 5 µL/min to measure association and dissociation rates with the 

VCAM-coated surface. For control experiments, free targeting peptide at a concentration of 6 

mg/mL was flowed over the surface for 20 min at a rate of 2 µL/min prior to introduction of 

nanoclusters to saturate the binding sites. Binding parameters were determined from a 1:1 

Langmuir binding model with BIAevaluation software version 4.1. 

 

5.5.7 Relaxivity characterization 

MR images were acquired with a 3 T Siemens Magnetom Trio scanner (Siemens AG, 

Erlangen, Germany) using a spin echo pulse sequence. The repetition time (TR) was 1200 ms 

and the echo time (TE) was varied from 12 to 490 ms. For each TE, signal intensity was 

measured using ImageJ software, and the T2 relaxation time was determined by least squares 

curve fitting of signal as a function of TE. Iron content was measured by inductively couple 

plasma optical emission spectroscopy (ICP-OES, Perkin Elmer Optima 2000 DV, Norwalk, CT) 

after digesting MR phantoms in concentrated nitric acid. Relaxivity was then determined as the 

slope of the relaxation rate (1/T2) versus iron content. 

 

5.5.8 In vivo ischemia model 

A murine model of hindlimb ischemia was used with male BALB/c mice (Jackson 

Laboratories, ME) in accordance with the protocol approved by the Illinois Institutional Animal 

Care and Use Committee. Anesthesia was induced by intraperitoneal injection of xylazine (10 
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mg/kg) and ketamine hydrochloride (100 mg/kg). A small incision was performed on the upper 

thigh of the left hindlimb to expose the femoral artery, which was ligated in two regions with 5-0 

Ethilon sutures (Johnson and Johnson, NJ). The artery was then severed between the two sutures. 

The resulting ischemic condition developed for 24 h, followed by injection of SPIONs through 

the tail vein at a dose of 1 mg Fe/kg. 

Mice were then imaged 3 h after administering the SPION contrast agents with a Varian 

14.1 T microimager that consisted of a Unity/Inova 600 MHz NMR spectrometer and adjustable 

radiofrequency coil. A spin-echo multislice (SEMS) pulse sequence was used to collect coronal 

images with TR = 500 ms, TE = 20 ms, slice thickness = 0.5 mm, and matrix size = 256 x 256. 

 

5.5.9 Histological analysis 

The mouse hindlimbs were fixed in 10% buffered formalin and then embedded in 

paraffin. Sections were cut at a 4 µm thickness with a Leica RM 2255 rotary microtome. Tissues 

were stained with Hematoxylin and Eosin (H&E) to analyze morphology and confirm the 

ischemic injury, or Prussian blue stain to indicate the presents of SPIONs. The sections were 

analyzed using a NanoZoomer Slider Scanner/Digital Pathology System (Hamamatsu). The 

relative degree of SPION accumulation was determined by measuring the blue-stained area in 

histological images using ImageJ software. A total of 200 mm2 of tissue was analyzed for each 

condition. 
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5.6 Figures and Tables 

 

Figure 5.1 Fabrication of HPG-SPION nanoclusters by emulsification. Amphiphilic HPG 

stabilizes the hydrophobic SPIONs in the form of a controlled aggregate. 

 

 

 

Figure 5.2 Sphere-to-worm transition. As high and low molecular weight HPGs were 

incorporated together during emulsification, the resultant SPION clusters became elongated, with 

maximal length occurring for a 3:1 HPG3k-g-C18(5):HPG50k-g-C18(10) ratio. Scale bars represent 

50 nm in all cases.  
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Figure 5.3 Effects of alkylation and molecular weight mismatch on cluster morphology. (a) A 

3:1 ratio of low:high molecular weight HPG still resulted in wormlike clusters when both had an 

average of two C18 chains per molecule. (b) Alkylated HPG3k was unable to produce wormlike 

clusters by varying only the degree of alkylation. Similarly, using an intermediately sized HPG, 

HPG8k-g-C18(2), resultant only in spheres when mixed with alkylated (c) HPG3k and (d) HPG50k. 

Scale bars represent 50 nm. 
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Figure 5.4 A 3:1 mixture of HPG3k-g-C18(5):HPG50k-g-C18(10) prepared from emulsification 

with SPION-free chloroform resulted predominantly in spherical structures. The scale bar 

represents 500 nm. 

 

Figure 5.5 Conjugation of the VCAM-1 targeting peptide to the alkylated HPG backbone. 
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Figure 5.6 VCAM-targeting HPG-SPION clusters. (a) Example chemical structure of peptide-

conjugated HPG3k-g-C18. (b) Addition of the peptide did not interfere with cluster formation, as 

f3k = 0.75 resulted in wormlike clusters, while f3k = 1 remained spherical. Scale bars represent 50 

nm. (c) SPR kinetic binding analysis of targeted wormlike (red, solid curve) and spherical (blue, 

dotted curve) nanoclusters during association and dissociation with VCAM-1 receptors. (d) 

Schematic of differences in binding between nanocluster and substrate for wormlike and 

spherical clusters. 
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Table 5.1 Kinetic binding values for the association and dissociation between nanoclusters and 

VCAM-immobilized substrate as determined by SPR. Values are given per molar concentration 

of iron. 

Morphology of 

targeted cluster 

Association 

rate constant 

ka (M-1s-1) 

Dissociation 

rate constant 

kd (s-1) 

Binding constant 

 

KA (M-1) 

Spherical 1.02 1.32×10-3 7.73×102 

Wormlike 14.7 1.45×10-5 1.01×106 

 

 

 

 

Figure 5.7 The role of targeting peptide in the binding of wormlike nanoclusters. The binding 

RU for targeted clusters (red, solid curve) was higher than that of non-targeted clusters (green, 

dotted curve). Additionally, pre-saturating VCAM-1 receptors with free peptide reduced the 

binding RU for targeted clusters (black, solid curve), but had minimal effect on non-targeted 

clusters (purple, dotted curve).  

Association Dissociation 
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Figure 5.8 In vivo evaluation of targeted nanoclusters. Ischemic injury induced in the left 

hindlimb was highlighted with negative contrast after systemic injection of (a) targeted spherical 

clusters and (b) targeted wormlike clusters. The region of interest is highlighted by yellow 

arrows. 
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Figure 5.9 Relaxivity of SPION clusters. (a) The T2 molar relaxivity of wormlike clusters was 

slightly higher than that of spherical clusters, however resultant differences in contrast capability 

were minimal (b). Error bars represent standard deviation of the fit parameter. 

 

Figure 5.10 Histological analysis of the mouse hindlimb. (a) H&E staining of (i) the ischemic 

left hindlimb and (ii) the right hindlimb that did not receive the injury. (b) Prussian blue staining 

of the injured, left hindlimb for the mouse injected with (i) targeted spherical clusters and (ii) 

targeted wormlike clusters.  
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CHAPTER 6 

CONCLUSION 

6.1 Summary 

 This thesis has described several design strategies for the improvement of MRI contrast 

agents. In all cases, preserving the ability of the contrast agent to interact with surrounding water 

molecules was imperative in enhancing molar relaxivity. For gadolinium, this was accomplished 

by spatially organizing the contrast agent on the surface of its nanocarrier, rather than within the 

interior, thus providing access to bulk water. For SPIONs, interaction with water was promoted 

by the hyperbranched, hydrophilic network of the polyglycerol cluster coating. Relaxivity was 

further enhanced through size effects. HPG was able to tune the size of SPION clusters, thus 

enabling relaxivity optimization within the static dephasing regime. In the case of gadolinium, 

conjugation to a macromolecular backbone allowed for improved contrast per dose, compared to 

the clinically used small molecule chelate. 

 The carriers described in this thesis also allowed for greater accumulation within vascular 

defects to further improve their diagnostic capability. Gadolinium-coated liposomes were able to 

highlight damaged vasculature in a murine model of hindlimb ischemia, and were retained in the 

renal cortex of a renal ischemia model. Similarly, HPG-SPION clusters beaconed ischemic tissue 

in models of hindlimb and coronary ischemia due to the EPR effect. The targetability of SPION 

clusters was further improved through the incorporation of targeting ligands that allowed for 

adhesion to sites of inflammation, and with morphogenic control to promote multivalent binding. 

Taken together, these efforts to enhance relaxivity and localization of MRI contrast agents have 

allowed for diagnostic imaging at low doses in animal models, and will contribute to sensitive 

imaging in the evaluation of vascular diseases. 
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6.2 Future Work 

 The materials used for the assembly of gadolinium and iron oxide could easily be 

extended to incorporate secondary imaging probes. For example, liposomes may be used to 

encapsulate an additional contrast agent, such as gold nanoparticles for computed tomography 

(CT), prior to coating with gadolinium. The method would allow for spatial separation of agents 

and orthogonal diagnosis. Similarly, HPG could easily be modified, for example with the 

covalent conjugation of near infrared (NIR) probes for optical imaging. Furthermore, combining 

gadolinium or SPIONs with radiolabels would facilitate high sensitivity PET imaging to localize 

areas of disease, followed by high resolution MR imaging to locally assess tissue structure. 

Finally, the gadolinium-coated liposomes could be used to encapsulate HPG-SPION clusters for 

dual T1 and T2 contrasted imaging. 

 In addition to targeted diagnosis, the probes developed in this thesis could be used for 

local delivery of therapeutic agents. This would allow for monitoring of accumulation and 

clearance of probe at target sites to non-invasively examine therapeutic outcomes and inform 

dosing regimens. This would also provide the opportunity for triggered delivery, in which the 

nanocarrier is stimulated to release its cargo locally after sufficient accumulation, as determined 

by diagnostic imaging. In the case of cell labeling, the fastener could be further modified to carry 

stimulatory factors as cargo in order to promote therapeutic secretions from the cell.  

Furthermore, the contrast agents themselves may have applications in treatment. Gadolinium has 

been investigated for its use in cancer treatment with neutron capture therapy (NCT), and the 

fastener-modified liposome may provide a way to target cancer cells for cellular uptake and 

irradiation. Similarly, iron oxide nanoparticles produce a hyperthermic effect in an alternating 

magnetic field to locally treat tumors, for which the targeted iron oxide clusters may be of 
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benefit. Overall, the materials developed in this thesis are broadly applicable to many diagnostic 

and therapeutic applications, which remain ongoing, active areas of interest. 

 


