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ABSTRACT

A comprehensive study of the theory and experiments of surface-emitting

semiconductor lasers is presented. The design of novel micro and nanolasers

using metal cavities for optical confinement is discussed. Theoretical mod-

eling of quantum-well and quantum-dot emission properties, as well as ex-

perimental characterization of their coupling with optical cavities, are pre-

sented. Lasing behavior of our designed and fabricated devices is demon-

strated at room temperature under continuous-wave and pulsed electrical

injection with 3-µm and 1-µm cavity diameters, respectively. This work pro-

vides the research path toward dense-integrable power-efficient on-chip light

sources. Surface-emitting tunable lasers for high-speed, long-haul communi-

cation are investigated. Novel laser designs using micro-electro-mechanical

system controlled high-contrast gratings as tunable mirrors are presented.

Rigorous, accurate, and efficient electromagnetic models for high-contrast

gratings are developed. Our model enables us to design high-contrast grat-

ings as one-dimensional or two-dimensional metastructures integrable on

surface-emitting lasers. A wide range of optical functionalities such as broad-

band reflection, high-Q resonance, filtering, beam-steering, focusing, beam-

conversion, and generation of photon orbital angular momentum are achieved.

Our optical model is integrated with our laser cavity model and the rate-

equation model to predict the temperature-dependent voltage tunable light

output intensity and spectra. Future design and experimental strategies for

heterogeneously integrated tunable surface-emitting lasers are discussed.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Research Goals

The demand for data transmission in our daily lives is growing at an ever-

increasing rate. The global data center traffic is expected to have a three-fold

increase from 2013 to 2018 [1], as shown in Fig. 1.1. Such demand is a driv-

ing force for the development of technologies that enable faster and faster

data communication. Semiconductor lasers are key components that enable

the long-haul communication for the world-wide Internet connections. End-

less research efforts have been devoted to searching novel data modulation

and multiplexing schemes, as well as improving the modulation speed for

individual devices.

Figure 1.1: Cisco’s prediction on total data center traffic growth adapted
from [1].

Accompanying the heavy data traffic, the increase of data processing ca-
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pacity is another demand. As a result, the integration density of electronic

devices, such as transistors, is doubling every eighteen months, which is com-

monly regarded as Moore’s law. Figure 1.2 shows Intel’s effort to keep up

with Moore’s law, and developing new generations of technology becomes

a crucial matter. One example is the on-chip copper transmission lines, a

bottle-neck for high-speed data transmission, which are being gradually re-

placed by hybrid opto-electronic structures [2].

Figure 1.2: Intel’s effort to keep up with Moore’s law and develop new
generations of technology. [2]

Semiconductor lasers, being efficient and high-performance coherent light

sources, are key components that enable high-speed data transmission. Ever

since the inventions of the first laser by Maiman in 1960 [3] and the semicon-

ductor lasers by Hall and three other groups [4, 5, 6, 7], the miniaturization

of lasers has been going on continuously. The invention of vertical-cavity

surface-emitting lasers (VCSELs) by Iga in 1979 [8, 9] was a milestone, which

enabled coherent light generation with small device footprint, low threshold,

and high beam quality. The first room-temperature continuous-wave (CW)

operation of a VCSEL was reported in 1988 [10]. In the 1990s and 2000s,

researchers engineered novel laser cavities to confine the optical modes down

to micrometer and sub-micrometer scales. Notable breakthroughs include

the whispering-gallery mode microdisk lasers in 1992 [11] and the photonic

crystal lasers in 2004 [12]. In 2007, the first metal-cavity nanolaser under
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CW injection was demonstrated at 77 K [13], where the optical field was

confined using the metal-cavity and mode-cutoff.

In this dissertation, we will focus on surface-emitting semiconductor lasers

for optical communications. On one hand, our research goal is the minia-

turization and integration of micro and nanolasers using novel cavity designs

and optical gain materials. This will enable the dense integration of low-

cost, low-footprint, low-crosstalk, and power-efficient coherent light sources

for on-chip communication. On the other hand, our research goal is toward

the high-speed, high-power, widely-tunable, low-cost, densely-integrable light

sources, which enable long-haul optical communication using various modern

multiplexing schemes.

1.2 Challenges and Issues with Current Technologies

In the current technology, copper still plays a major role in interconnects

especially for chip-to-chip and board-to-board communication. As the data

rate approaches tens and twenties of gigabits per second, copper is already

approaching its limits with its significantly large attenuation and energy loss.

Numerous researchers have proposed optical interconnects and the integra-

tion of photonic devices for high bandwidth, low loss, low power consumption

and low noise transmission. One of the major challenges for integrated pho-

tonics is the on-chip light source.

As electrical signals are confined and guided in structures with a physical

scale on the order of tens of nanometers, shrinking the dimensions of photonic

devices to such nano scales is extremely challenging. As we approach such

a size limit, known as the diffraction limit (λ0/2nr)
3, the optical diffraction

loss drastically increases. The optical field becomes poorly confined and

increasing crosstalk between neighboring devices forbids increasingly dense

integration. The electrical contacts, isolation, as well as heat management

all become more critical for devices at the sub-micron and nanometer scales.

Another challenge is the heterogeneous integration between the electronic

and photonic systems. Most electronic devices are based on the silicon plat-

form, while photonic devices, especially efficient semiconductor light sources,

are based on III-V compound semiconductor materials. Research efforts are

directed toward either establishing efficient group IV light sources, or finding
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stable, high-performance integration methods.

Multiplexing technologies are crucial for modern data transmission, and

wavelength-division multiplexing (WDM) has become the most widely used

method for fiber-optic communication systems. Multiple channels with op-

tical carriers at different wavelengths are packed into the C-Band of silica

fibers around 1550 nm. Coarse WDM (CWDM) utilizes 8 channels and dense

WDM (DWDM) utilizes up to 80 channels with 50 GHz spacing in the same

window. However, further increasing the channel density is very challenging,

because very strict requirements would be placed upon the laser linewidth

and the fiber dispersion. Researchers have been seeking other independent

multiplexing techniques besides the wavelength-division, time-division, and

space-division multiplexing. Polarization is another degree of freedom for

optical signals. However, photons can only have two different spin angular

momenta, and thus each optical mode can only have two independent po-

larizations. The orbital angular momentum (OAM) of light, on the other

hand, can theoretically be any integer multiple of ~. This unique feature has

attracted extensive research interest in the last decade. The challenge lies in

the efficient generation and stable guidance of these beams containing high

orders of OAM, which are vortex beams.

1.3 State of the Art

In 2009, Hill et al., collaborating with Ning’s group at Arizona State Univer-

sity (ASU), demonstrated metal-cavity nanolasers operating at 298 K under

pulsed electrical injection [14]. Ding et al. from the ASU group further

demonstrated CW operation of the sub-wavelength metal-cavity laser with

a cavity volume of 0.67λ30 (λ = 1591 nm) in 2013 [15, 16]. Optically pumped

nanolasers were achieved at 4 K by Kwon et al. using the nanopan design

[17], as well as at 77 K by Wu’s group at the University of California at

Berkeley (UCB) using the nanopatch design [18], both in 2010. Fainman’s

group at the University of California at San Diego (UCSD) demonstrated op-

tically pumped subwavelength lasers at room temperature in 2010 [19]. Lee

et al. from the UCSD group further demonstrated in 2011 the electrically

pumped nanolaser at 140 K using the coaxial structure [20].

Here in our group at the University of Illinois at Urbana-Champaign
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(UIUC), Lu et al. have designed and realized the metal-cavity surface-

emitting 2-µm-diameter laser integrated on silicon, operating at room tem-

perature under CW injection, in 2010 [21], and directions for further size

reduction were subsequently proposed [22]. We have further replaced the

conventional strained quantum wells (QWs) by the submonolayer quantum

dots (QDs) as the gain medium, and demonstrated room temperature oper-

ation under electrical injection [23, 24, 25, 26, 27, 28].

Tunable lasers are important components for the WDM systems, and tun-

able VCSELs with micro-electro-mechanical systems (MEMS) prove to be

favorable due to their continuous tuning capability, low cost, and low power

consumption [29]. Gierl et al. from Amann’s group demonstrated 102 nm

tuning in 1550-nm VCSELs in 2011 [30]. Potsaid et al. demonstrated 110

nm wavelength tuning in a 1310-nm VCSEL in 2012 [31]. Yet due to the

fabrication complexity, low-cost tunable VCSELs are still not widely avail-

able. Huang et al. from Chang-Hasnain’s group at UCB demonstrated the

first tunable VCSEL at 850 nm using the low-cost, compact, high-contrast

grating (HCG) in 2007 [32]. The UCB group, in collaboration with our group

here at UIUC, further extended the work to the 1550-nm VCSELs since 2010

[33, 34, 35, 36, 37]. In 2014, the first 1550-nm VCSEL heterogeneously inte-

grated on silicon-on-insulator (SOI) using the silicon HCG was demonstrated

[38, 39].

Besides improving the performance of individual devices, researchers are

also seeking novel multiplexing schemes for optical data transmission on top

of the existing WDM systems. Recently, Willner’s group at the University of

Southern California (USC) demonstrated terabit free-space data transmission

using OAM multiplexing [40]. However, developing efficient integrated light

sources for generating optical beams with OAM remains challenging. Our

group here at UIUC and Chang-Hasnain’s group at UCB are collaborating on

the design and experimental demonstration of phase manipulation of surface-

emitting lasers with two-dimensional high-contrast metastructures [41].

1.4 Dissertation Overview

This dissertation presents a comprehensive study on the theory, design, fab-

rication, and characterization of novel surface-emitting semiconductor lasers
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for optical communication. These power-efficient, high-speed, low-cost, and

low-footprint coherent light sources are key components in the upcoming

electronic-photonic heterogeneously dense-integrated systems.

Chapter 2 presents the theory and design for novel surface-emitting mi-

cro and nanolasers. The light emission properties of QDs as the laser gain

medium are predicted using our theoretical formulation with effective-mass

approximation. The resonance behavior of micro and nanocavities is cap-

tured by our electromagnetic model. The coupling between the QD sponta-

neous emission and the cavity modes, and its effects on laser behavior, are

investigated thoroughly. Our theory is used to explain the electron-photon

interaction in laser cavities, as well as the light emission power and spectrum

for a given injection current.

Chapter 3 presents the fabrication and characterization of our micro and

nanolasers. The epitaxial wafers are grown by our collaborators and the de-

vices are fabricated in the cleanrooms in the Micro and Nanotechnology Lab-

oratory (MNTL) at UIUC. Detailed fabrication steps are included. The elec-

trical and optical characterizations of our fabricated devices are performed in

Professor Shun Lien Chuang’s laboratory in MNTL. Light emission intensity,

spectra, and field profiles are collected for devices with various sizes under

various injection conditions. Our tested devices use metallic or dielectric ma-

terials to form the optical cavity, as well as QDs or QWs as the gain medium.

We demonstrate lasing behavior of our devices at room-temperature under

electrical injection. The experimental observation confirms our prediction on

the sub-threshold and above-threshold emission properties.

Chapter 4 focuses on the theory and design of a novel optical component,

known as the high-contrast grating (HCG). We develop electromagnetic mod-

els for HCGs with one-dimensional periodicity based on the mode-matching

method and the surface-integral-equation method with periodic Green’s func-

tions. The results are compared with simulations using commercial pack-

ages. For HCGs with two-dimensional (2D) periodicity, we develop a rig-

orous coupled-wave analysis (RCWA) package, which is efficient for design

purposes and accurate for understanding the physics of HCGs. We propose a

design procedure for 2D HCGs to realize various optical functionalities, such

as beam-steering, beam-focusing, and beam-conversion. We further design

2D phase plates which can modulate the orbital angular momentum of light.

Our high-performance designs are confirmed by full-wave simulations.

6



Chapter 5 discusses the application of HCG as high-performance mirrors

in tunable vertical-cavity surface-emitting lasers (VCSELs). We demonstrate

a comprehensive model for the MEMS-tunable HCG VCSELs. The model

calculates the temperature-dependent material gain and spontaneous emis-

sion spectra of the strained QW active region. The optical properties of the

HCG reflector are obtained from the previous chapter and the HCG VCSEL

cavity is modeled with the transfer matrix method, which produces impor-

tant parameters for device-level simulation. The rate-equation model takes

into account the thermal effects and our calculated temperature-dependent

L-I curves show excellent agreement with experiment. Our MEMS model

further correlates the tuning voltage with the resonance wavelength, thresh-

old current, and peak power. The measurements can be accurately explained

by our model.

Chapter 6 summarizes the major accomplishments of this dissertation and

provides promising future research directions.
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CHAPTER 2

THEORY AND DESIGN OF NOVEL

SURFACE-EMITTING MICRO AND

NANOLASERS

2.1 Introduction

Metal-cavity microlasers have attracted extensive research interest in the

past few years. Since the first demonstration of lasers in 1961 and the first

vertical-cavity surface-emitting laser (VCSEL) in 1979 [8], metals have been

used by researchers for the miniaturization of semiconductor lasers. With

the help of metals, micrometer- to nanometer-scale light sources are now

promising candidates for low foot print high-speed optical communication

systems. Novel structures based on metal cavities, photonic crystals, or

surface plasmons have been employed to confine the optical mode close to

or even below diffraction limit. Recent work on metal cavity nanolasers has

demonstrated operation not only under optical pumping [18, 19], but also at

room temperature under electrical injection [15, 16, 20, 22].

Low dimensional materials such as quantum dots (QDs) have been em-

ployed as the active material in lasers showing enormous advantages as com-

pared to conventional quantum-well lasers, such as high differential gain, low

threshold current, high temperature stability, and wide modulation band-

width due to their discrete density-of-states (DOS) [42]. Submonolayer quan-

tum dots (SML QDs) as an alternative to the Stranski-Krastanow grown

quantum dots (S-K QDs), have been demonstrated with much higher modal

gain, better uniformity, less inhomogeneous broadening, and sharper emis-

sion spectra [43]. The smaller size and shape deviations of SML QDs allow

a much higher saturated gain. Since SML QDs do not have wetting layers

(WLs), the carrier population in WL bound states and the carrier scattering

from WL states into QDs are avoided [44]. Hence, both maximum gain and

modulation bandwidth are expected to be larger.

One major challenge of achieving room-temperature electrical-injected mi-
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crolasers is to have enough gain to balance the loss. Both the radiation and

material loss increase rapidly as cavity size shrinks. Heat accumulation from

increasing series resistance is another limiting factor for electrical-injection

microlasers. Thermal effects result in unstable threshold current and early

output power roll-over. SML QDs have shown improved thermal stability

in threshold current and differential efficiency in high-power high-speed VC-

SELs [44] and are also promising for micro-cavity lasers.

In this chapter, we develop a theoretical model to investigate the size-

dependent device performance of metal-cavity SML QD microlasers. Devices

are demonstrated to lase at room temperature under electrical injection with

device radius down to 2µm for continuous wave (CW) and to 0.5µm for

pulsed mode operations. Using a quantum disk model for S-K grown QDs,

we have successfully explained experimental results such as optical gain and

linewidth enhancement factor [45]. In this work [26, 27, 28], we extend the

model for multi-stack SML QDs with strong vertical correlation, and con-

sider them as effective quantum disks. Strain effects on the heterojunctions

are included in the Hamiltonian for calculating the electronic states in SML

QDs. The QD material gain and the spontaneous emission rate are obtained

with Fermi’s golden rule and both homogeneous and inhomogeneous broad-

ening effects are considered. The characteristics of the laser optical cavity

are solved using Maxwell’s equations semi-analytically, with the effective in-

dex method and the transfer matrix method. We then use the rate-equation

model to study the interaction between the injected carriers and the gen-

erated photons. The calculated QD gain and cavity properties are used as

inputs and the light output power versus current (L-I) behavior is predicted.

Our theory agrees with experimental data for device radii from 5µm down

to 0.5µm.

The coupling of spontaneous emission (SE) into the cavity modes becomes

much more significant as the cavity size and the effective mode volume re-

duce [46, 47]. In conventional semiconductor lasers, such as VCSELs using

quantum wells (QWs), the free-space SE bandwidth is much wider than the

cavity linewidth, i.e. Γsp, free ≫ Γcav. Then the SE coupled into the lasing

mode can be approximated by the total SE over the full spectrum multiplied

by a coupling factor βsp, which is set as a constant [48]. On the other hand,

researchers study how the radiation environment affects the emission prop-

erty, i.e. the Purcell effect [46, 47, 49, 50, 51], and the formulation often
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assumes a two-level system, such as an artificial atom, as the emitter. This

is the case for the other extreme where Γsp, free ≪ Γcav. However, we are

interested in the intermediate regime Γsp, free ≈ Γcav, which is the case for

semiconductor QDs emitting in micro and nanocavities.

In this work [27, 28], we derive a rigorous expression for the coupling fac-

tor βsp which accounts for both the emission properties of the QDs and the

radiation environment modified by the cavity. The sub-threshold L-I behav-

ior we observe is successfully explained by the increasing amount of carrier

density-dependent spontaneous emission coupling into the cavity mode. The

βsp factor at threshold increases drastically as we reduce the device size due

to the more sparse mode distribution within the gain spectrum.

Figure 2.1(a) shows the schematic of the metal-cavity microlasers. The

active region contains three groups of SML QDs. The device sidewall is

passivated by silicon nitride (SiNx) for both electrical isolation and optical

buffering to reduce metallic loss. The whole device is covered by silver to

form the metal cavity. The top/bottom mirrors of the cylindrical 3λ/2nr

microcavity are formed by 19/32 pairs of p-doped/n-doped AlGaAs/GaAs

distributed Bragg reflectors (DBR), respectively.

2.2 Optical Gain of Submonolayer Quantum Dots

The active region of the microlasers consists of three groups of SML QDs

[44, 52], each being 8 nm thick and separated by 13 nm GaAs spacers. Each

group of the SML QDs consists of ten stacks of 0.5-monolayer InAs QD layers,

separated by 2.2-monolayer GaAs spacers. The nominal structure for each

group of SML QDs is shown as Fig. 2.1(b) [52]. Vertically-correlated SML

QDs in each group are modeled as effective quantum disks. Extensive work

[53] has been done to analyze the effect of size, shape, and piezoelectricity

on QD optical properties. In our model, since the SML QD layers are thin,

we assume the effective quantum disks to have no variance in the growth

direction. Such cylindrical high-symmetry structure leads to a negligible

shear strain, thus we consider the QD strain as biaxial, namely, ǫxx = ǫyy 6=
ǫzz, but ǫxy = ǫyz = ǫzx = 0.

Since the shear strain is assumed negligible, there are two effects that also

become negligible: the piezoelectric effect [53, 54] and valence-band mixing.
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(a)

(b) (c)

Figure 2.1: (a) Schematic of a submonolayer (SML) quantum-dot (QD)
metal-cavity surface-emitting laser. The active region contains 3 groups of
SML QDs. (b) Schematic of each group of SML QDs, consisting of 10
stacks of 0.5-monolayer InAs QDs separated by 2.2-monolayer thick GaAs
spacers.[44] (c) A scanning electron micrograph of a 0.5-µm-radius
microlaser before the SiNx sidewall-passivation and metal-coating.

For materials with zincblende crystal structure, the first-order piezoelectric

polarization P1 is only dependent on the shear strain because the only non-

zero elements in the strain tensor [ē]3×6 are e14 = e25 = e36. The second-

order piezoelectric polarization P2 also vanishes when no shear strain exists
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[53, 54]. Due to the discrete energy levels of quantum dots, the band mixing

effect is only caused by strain. That is, the off-diagonal terms in the coupled

Hamiltonian [55, 56, 57] are only dependent on the shear strain (ǫxy, ǫyz, and

ǫzx), where ǫxx − ǫyy is also negligible due to symmetry. Therefore, we can

treat the conduction, heavy-hole, light-hole, and spin-orbit split-off bands

as fully decoupled, and we can solve the single-band Hamiltonian for each

band individually using the corresponding Γ-point effective mass. The biaxial

strain effect is included through the extra strain terms from the Pikus-Bir

Hamiltonian [57]. The material parameters related to the band gap, strain

and effective mass are taken from the experimental data summarized in [58].

The eigen-problem formed by the Hamiltonian is solved numerically using

the 3D finite-difference method. The Dirichlet boundary condition is used

for an isolated QD when the dot density is low or the 2D fill factor is small.

Periodic boundary conditions are used at high dot density and 2D fill factor

to include the lateral coupling among QDs.

Figure 2.2(a) shows the isosurfaces of the 3D wavefunctions for the first

two conduction band states (CB1 and CB2) and heavy-hole states (HH1 and

HH2). The QDs are assumed to be isolated laterally. In this figure, the

effective diameter of the vertically-stacked SML QDs is assumed as 20 nm.

We can see that the half maximum isosurface of the ground state and the first

excited state wavefunctions are still well contained in the stacked SML QDs.

Figure 2.2(b) shows the case when the lateral coupling is not negligible (2D

fill factor being 62.8%) and a periodic boundary condition is used. In this

case, the squared magnitude of the wavefunction at the mid-point between

two unit cell centers is 19.8% of that at the unit cell center. When the 2D fill

factor is 31.4%, the squared magnitude of the wavefunction at the mid-point

between two unit cell centers becomes 0.72% of that at the unit cell center,

which indicates the lateral coupling is negligible in this case.

The calculated ground state transition (C1 to HH1) energy as a function

of the temperature and effective dot diameter is shown in Fig. 2.3(a). The

temperature-dependent material band gap is used from the empirical Varshni

equation [58, 59]. The measured ground state transition energy [44] from

photoluminescence is shown for comparison. We conclude that the effective

QD size is close to the size observed in [52].

To account for inhomogeneous broadening [42, 55] due to QD size vari-

ations, the electron and hole carrier densities (n and p) are related to the
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quasi-Fermi levels (Fc and Fv) as

n = 2
N2D

dot

Lz

∑

i

∫
dE

[
1√
2πσc

e−(E−Ei
c)

2/2σ2
c

]
fc(E,Fc),

p = 2
N2D

dot

Lz

∑

j

∫
dE

[
1√
2πσv

e−(E−Ej
v)

2/2σ2
v

]
fv(E,Fv)

(2.1)

respectively. The subscripts c and v indicate conduction and valence bands,

respectively. The square brackets are the linewidth broadening functions,

with linewidths being σc and σv. Here, N
2D
dot is the 2D dot density, fc and fv

are the Fermi occupation probabilities, and Ei
c and Ej

v are the energies for

the i-th conduction band and j-th valence band, respectively. And Lz is the

thickness of each QD group.

Figure 2.3(b) shows the carrier-dependent quasi-Fermi level (Fc) for the

CB obtained from Eq. (2.1), together with the first fifty CB states, among

which three are bound states (one ground state and two degenerate excited

states). Similarly, the carrier-dependent quasi-Fermi level (Fv) for the VB is

shown in Fig. 2.3(c). The first fifty HH states shown are all bound states,

while only the first LH state out of the twenty states shown is a bound state.

Once the quasi-Fermi levels are obtained, we can calculate the carrier-

dependent material gain (cm−1) and the free-space spontaneous emission

rate (cm−3s−1eV−1) as [42, 45, 55]

g(~ω) =
2N2D

dot

Lz

C0

∑

i,j

∫
dE|M ij

env|2|ê · pcv|2D(E,Eij
cv)L(E, ~ω)(fc,i − fv,j),

rspon(~ω) =
2N2D

dot

Lz

B0C0

∑

i,j

∫
dE|M ij

env|2|ê · pcv|2D(E,Eij
cv)L(E, ~ω)fc,i(1− fv,j)

(2.2)

where M ij
env is the overlap integral between the envelop functions of i-th CB

and j-th VB states, and Eij
cv is the transition energy between the two states.

Here, ê ·pcv is the bulk momentum matrix element. The linewidth functions

due to inhomogeneous broadening D() and homogeneous broadening L() are

13



expressed as

D(E,Eij
cv) =

1√
2π(σ2

c + σ2
v)

exp
[
−(E − Eij

cv)
2/2(σ2

c + σ2
v)
]
,

L(E, ~ω) =
Γcv

π

1

Γ2
cv + (E − ~ω)2

, B0 =
n2
aω

2

π2~c2
, C0 =

πe2

nacǫ0m2
0ω
,

fc,i =
1

1 + exp
(

Ec,i−Fc

kT

) , fv,j =
1

1 + exp
(

Ev,j−Fv

kT

)

(2.3)

where the linewidth Γcv accounts for carrier scattering processes, and na is

the refractive index for the active region. Figure 2.4(a) and 2.4(b) show the

carrier-dependent TE-polarized (electric field normal to growth direction)

material gain and spontaneous emission rate, respectively, at T = 300K.

(a) (b)

Figure 2.2: (a) Wavefunctions of the first two conduction band states (CB1
and CB2) and the first two heavy-hole states (HH1 and HH2). The
wavefunctions are shown at the isosurface of |Ψ|2 = 0.5|Ψ|2max. The blue
disks are the ten-fold vertically-correlated submonolayer quantum dots,
assuming no lateral coupling. (b) Wavefunction of the conduction band
ground state (CB1), considering lateral coupling. The wavefunction is
shown at the isosurface of |Ψ|2 = 0.16|Ψ|2max. In this example, the
quantum-dot 2D fill factor is 62.8% and the 2D dot density is 2× 1011 cm−2.

2.3 Spontaneous Emission Coupling in Micro and

Nanocavities

Since the spontaneous emission is affected by the vacuum-field fluctuation

and the interaction between the emitter and the optical modes, by modi-
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Figure 2.3: (a) Ground state transition energies as functions of the
temperature for different effective dot sizes. The measured
photoluminescence peak [44] is shown as the star. (b) The quasi-Fermi level
Fc for conduction band (blue circles) as a function of injected carrier
density. Horizontal lines show fifty conduction band states with bound
states circled. (c) The quasi-Fermi level Fv for valence band (red circles) as
a function of injected carrier density. Horizontal lines show fifty heavy-hole
and twenty light-hole states.
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Figure 2.4: (a) TE-polarized material gain and (b) TE-polarized
spontaneous emission rate calculated for the submonolayer quantum dots at
T = 300K, with carrier densities from n = 6× 1017 cm−3 to
n = 5.4× 1018 cm−3.

fying the radiation environment we can potentially control the spontaneous

emission rate. It was discovered by E. Purcell [49] that spontaneous emission

is not only an inherent property of the emitter, but also dependent on the

density of optical modes. Such enhancement of the spontaneous emission

rate is characterized by the Purcell factor

Fp =
3Q

4π2Veff

(
λ

nr

)3

(2.4)

where Q is the quality factor of the optical cavity, Veff is the effective mode

volume, and nr is the refractive index. The assumption to arrive at the

Purcell factor given in Eq. (2.4) is that the emitter is a two-level system.

Therefore, the Purcell factor contains information about the optical proper-

ties (radiation environment) but lacks information on the electronic density-

of-states of the emitter.

The spontaneous emission coupling factor (βsp factor) is defined as the ratio

between the spontaneous emission coupled into the m-th mode Rsp,m and the

spontaneous emission coupled into all modes Rsp [46, 48, 55]. Gérard et al.

[51] showed the relationship between the βsp factor and the Purcell factor as

βsp =
Fp/3

gFp/3 + 1
(2.5)
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where g is the mode degeneracy (g = 2 for circular pillars and disks [51]).

Yamamoto et al. [50] gave an empirical formula as

βsp =
λ4

4π2V∆λǫ3/2
(2.6)

which is equivalent to the expression derived by Baba et al. [46]. We can see

that the above empirical formula does not contain the detailed emission prop-

erty of the emitter. Due to various linewidth broadening mechanisms, the

quantum dot transition linewidth can be comparable to the cavity linewidth,

and the detailed electronic density-of-states should be considered. Hence,

we start with the discrete-mode spontaneous emission rate that couples into

the m-th cavity mode [27, 28, 60], and take into account both the transition

linewidth Γcv and the cavity mode linewidth Γm,

Rsp,m =
2N2D

dot

Lz

2π

~

∫
dE
∑

i,j

{∣∣∣∣
〈
ψi
c

∣∣∣∣ed · Em

2

∣∣∣∣ψ
j
v

〉∣∣∣∣
2

·

D(E,Eij
cv)

Γcv + Γm

π

fc,i(1− fv,j)

(E − ~ωm)2 + (Γcv + Γm)2

}

(2.7)

where Γm is the half-width half-maximum (HWHM) of the optical density-of-

states, determined by the cavity quality factor (~ωm/2Γm = Q). Here, ed is

the dipole moment, and N2D
dot is the 2D density of the QDs. The number “2”

before N2D
dot accounts for the spin degeneracy, and the number “2” below Em

comes from the phasor representation Em(r, t) = Em

2
eiωmt + E∗

m

2
e−iωmt. For

simplicity, we omit the inhomogeneous broadening integral
∫
dED(E,Eij

cv)

for now (and we can re-include it anytime)

Rsp,m =
2N2D

dot

Lz

2π

~

∑

i,j

∣∣∣∣
〈
ψi
c

∣∣∣∣ed · Em

2

∣∣∣∣ψ
j
v

〉∣∣∣∣
2
Γcv + Γm

π

fc,i(1− fv,j)

(Eij
cv − ~ωm)2 + (Γcv + Γm)2

≈ 2N2D
dot

Lz

2π

~

[∫

Va

d3r

Va

|Em(r)|2
4

]∑

i,j

{∣∣〈ψi
c |ed · ê|ψj

v

〉∣∣2 Γcv + Γm

π
·

fc,i(1− fv,j)

(Eij
cv − ~ωm)2 + (Γcv + Γm)2

}

(2.8)

where we have used the slow-varying approximation of cavity mode Em com-
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pared to crystal unit cells. The energy confinement factor is rigorously de-

fined [61] as

Va
Veff

= ΓE =

∫
Va
d3rǫ0n

2
a|Em(r)|2/2∫

V
d3rǫ0n2(r)|Em(r)|2/2

=

∫
Va
d3rǫ0n

2
a|Em(r)|2/2

~ωm

(2.9)

where Va is the active region volume and V is the total volume. The refractive

indices na (active region) and n have to be replaced by

n2 → 1

2

[
∂ [ω′n2(ω′)]

∂ω′

∣∣∣∣
ω′=ω

+ n2(ω)

]
(2.10)

in order to account for material dispersion and the negative permittivities

of many noble metals at optical frequencies. The interaction matrix in Eq.

(2.8) can be rewritten as

∣∣〈ψi
c |ed · ê|ψj

v

〉∣∣2 = |M ij
env|2 |edcv · ê|2 = |M ij

env|2
e2

m2
0ω

2
ij

∣∣ê · pij
cv

∣∣2 (2.11)

The discrete-mode spontaneous emission rate becomes

Rsp,m =
2N2D

dot

Lz

2π

~

(
ΓE~ωm

2ǫ0n2
aVa

)∑

i,j

{
e2

m2
0ω

2
ij

|M ij
env|2 |ê · pcv|2

Γcv + Γm

π
·

fc,i(1− fv,j)

(Eij
cv − ~ωm)2 + (Γcv + Γm)2

} (2.12)

Considering ωm ≈ ωij due to the narrow linewidth for the discrete mode,

and splitting the Lorentzian function as the convolution of two Lorentzian

functions

Rsp,m =
2N2D

dot

Lz

2π

~

∑

i,j

{
~e2

2ǫ0n2
aVeffm

2
0ωm

|M ij
env|2 |ê · pcv|2 fc,i(1− fv,j)·

∫
d(~ω)

Γcv/π

(Eij
cv − ~ω)2 + Γ2

cv

Γm/π

(~ω − ~ωm)2 + Γ2
m

}

=

∫
d(~ω)

{[
2N2D

dot

Lz

cC0

Veffna

∑

i,j

|M ij
env|2 |ê · pcv|2 fc,i(1− fv,j)

Γcv/π

(Eij
cv − ~ω)2 + Γ2

cv

]
·

Γm/π

(~ω − ~ωm)2 + Γ2
m

}

(2.13)
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where we have used the expression of C0 in Eq. (2.3).

We notice that the term in the square bracket in Eq. (2.13) is proportional

to the free-space spontaneous emission in Eq. (2.2). Therefore, we can write

Rsp,m =

∫
d(~ω)

c/(Veffna)

B0

rspon(~ω)
Γm/π

Γ2
m + (~ω − ~ωm)2

≈ Dcav(~ωm)

∫
d(~ω)rspon(~ω)

Γm/π

Γ2
m + (~ω − ~ωm)2

(2.14)

From Eq. (2.14) we see that the discrete-mode spontaneous emission rate

(s−1cm−3) reduces to an overlap integral between the free-space spontaneous

emission spectrum (s−1cm−3eV−1) and the photon density spectrum (eV−1)

for the m-th mode, expressed by a Lorentzian. The prefactor Dcav keeps the

unit consistent and is dependent on the resonance wavelength for the m-th

mode. By the comparison in Eq. (2.14), we see the prefactor Dcav is closely

related to the Purcell factor as

Dcav(~ωm) =
c/(Veffna)

B0

=
π2
~c3

Veffn3
aω

2
m

=
~ωm

8πVeff

(
λm
na

)3

=
2ΓmQ

8πVeff

(
λm
na

)3

= πΓm

[
Q

4π2Veff

(
λm
na

)3
]
= πΓm

Fp

3

(2.15)

where the square bracket is exactly the same as the Purcell factor in Eq.

(2.4). Therefore, by definition we can write the βsp factor for the m-th cavity

mode as

βsp,m =
Rsp,m

Rsp

=
Rsp,m

gRsp,m +Rsp,cont

=
Dcav(~ωm)

∫
d(~ω)rspon(~ω)

Γm/π
Γ2
m+(~ω−~ωm)2

gDcav(~ωm)
∫
d(~ω)rspon(~ω)

Γm/π
Γ2
m+(~ω−~ωm)2

+Rspon,cont

(2.16)

where Rsp,cont accounts for the coupling into the continuum modes of the

cavity, and g accounts for the degeneracy of the m-th mode. If the cavity

supports other discrete modes, those can be lumped into Rsp,cont as well.

Combining Eq. (2.15) and Eq. (2.16), we obtain the simplified form of βsp
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factor as

βsp,m =
γFp/3

γgFp/3 + 1
(2.17)

We can see the expression is similar to the empirical formula in Eq. (2.5).

But now the βsp factor considers not only the radiation environment (photon

density-of-states), but also the radiation property of the emitter (electronic

density-of-states), which is embedded in the unitless parameter γ as

γ =
1

Rsp,cont

∫
d(~ω)rspon(~ω)

Γ2
m

Γ2
m + (~ω − ~ωm)2

= τsp,contVa

∫
d(~ω)rspon(~ω)

Γ2
m

Γ2
m + (~ω − ~ωm)2

(2.18)

To evaluate the spontaneous emission coupled into the continuum modes

is nontrivial not only because the continuum electric field mode has to be

used in the optical matrix element, but also because the continuum photon

density-of-states ρcont(~ω) is needed. Furthermore, the amount of coupling

depends on the injected carrier density. In this case, we can replace Rsp,cont

by a phenomenological lifetime τsp,cont for an active region volume of Va.

Figure 2.5 shows the theoretical free-space SE of the SML QDs at different

injection carrier densities, as well as illustrations of the photon density-of-

state for cavity modes aligned with the QD ground-sate and excited-state

transitions, shown as the red (λpeak = 978 nm) and magenta (λpeak = 952 nm)

curves, respectively. Figure 2.5(b) shows the carrier-dependent SE coupled to

a specific cavity mode (Rsp,m(n)) and Fig. 2.5(c) shows the carrier-dependent

βsp,m factor for a cavity mode when such a mode is resonating at different

wavelengths. We can see that the alignment between the cavity resonance

and the QD emission peak has major effects on both the Rsp,m and βsp,m.

The Rsp,m at different cavity resonances always increases with carrier density

n, but the increasing rate is different. The ground-state SE at 978 nm first

increases with n then saturates, while the excited-state SE at 952 nm appears

later but takes over. As a result, the βsp factor for the 978-nm cavity mode

decreases with n because of the decreasing amount of the portion of the total

SE that is coupled to this mode. This tells us that the positioning the cavity

resonance is very critical for QD VCSELs.
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Figure 2.5: (a) Theoretical submonolayer (SML) quantum dot (QD)
spontaneous emission (SE) at different injection carrier densities at
T = 300K. The red curve is the normalized photon density-of-state (DOS)
for a λ = 978 nm cavity mode aligned with the QD ground-state transition.
The magenta curve is the normalized photon DOS for a λ = 952 nm cavity
mode aligned with the QD excited-state transition. (b) The SE coupled to
the cavity mode and (c) the βsp factor at different cavity resonances.
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2.4 Size-Dependent Cavity Properties and Lasing

Behavior

Solving the cavity properties of the microlaser usually requires 3D numerical

methods such as finite-element method (FEM) and finite-difference time-

domain method (FDTD). However, due to the metallic dispersion and the

thin DBR layers, the computational cost for 3D methods is expensive. Alter-

natively, we can solve the 2D transverse waveguide modes and the effective

indices neff from the equations derivable from Maxwell’s equations,

[
∇2

t + n2(ρ)k20
]
[
Ez

Hz

]
= k2z

[
Ez

Hz

]
= n2

effk
2
0

[
Ez

Hz

]
(2.19)

where the k0 = ω
√
ǫ0µ0 is the free-space wave number, and kz is the wave

number in the propagation direction. Here, n(ρ) is the transverse profile

for the refractive index. The effective index neff solved from Eq. (2.19)

includes both the material dispersion and the modal dispersion due to size

dependence. We use neff for each layer in the 1D transfer matrix method,

which calculates the longitudinal field distribution, as well as the reflection

spectra from the top and bottom mirrors. The cavity resonance condition

(round-trip phase matching condition) is obtained from the 1D Fabry-Pérot

model, which has been shown to be in excellent agreement with the full-

structure FDTD simulation and the experimental data [25].

Figure 2.6(a) shows the longitudinal profile of the electric field across the

device layer structure at resonance for a 2-µm-diameter device. The magni-

fied view across the cavity region in Fig. 2.6(b) helps us verify the design of

the layer structure in terms of the optical field overlap with the active region,

which strongly affects the confinement factor Γ and the threshold gain.

The key size-dependent parameters to be obtained from the cavity model

are the fundamental mode (HE11) lasing wavelength λr, quality factor Q, pho-

ton lifetime τp, mirror loss αm, and confinement factor ΓE. Size-dependent

resonance wavelength, photon lifetime and the quality factor are calculated

for the HE11 mode and shown in Fig. 2.7(a) and Fig. 2.7(b). The effective

mode volume in terms of (λr/nr)
3 is calculated based on the confinement

factor obtained from the Fabry-Pérot model.

To study the light output power versus current behavior of the metal-cavity
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Figure 2.6: (a) Longitudinal profiles of the electric-field squared-magnitude
(red) and the material indices across the device layer structure. (b)
Magnified view of the device cavity showing the overlap between the optical
field and the quantum-dot active region.
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Figure 2.7: (a) Calculated lasing wavelength and the photon lifetime as a
function of the cavity diameter for the fundamental HE11 transverse mode.
(b) Calculated cavity quality factor and effective mode volume as a
function of the cavity diameter for the HE11 transverse mode.

microlasers, we use the rate equations [48, 55, 62] of the carrier density n

and the photon density S

dn

dt
= ηi

I − Il(n)

qVa
− (An+ Cn3)−Rsp(n)− vgg(n)S,

dS

dt
= ΓEvgg(n)S − S

τp
+ ΓEβsp,m(n)Rsp(n)

(2.20)
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where the material gain g(n) and spontaneous emission rate Rsp(n) are ob-

tained from our QD gain model which accounts for the inhomogeneous broad-

ening effect. The photon lifetime τp and confinement factor ΓE are obtained

from our cavity transfer matrix model with effective indices. The rigorous

definition for the energy confinement factor ΓE is given in Eq. (2.9). Here,

ηi is the intrinsic quantum efficiency, and vg is the group velocity. And A is

the surface recombination coefficient and C is the Auger coefficient. The A

coefficient is dependent on the surface-to-volume ratio (Aa/Va) of the active

region

A =
Aa

Va
vs =

4

D
vs (cylindrical) (2.21)

where vs is the surface recombination velocity and D is the cavity diameter.

Before the laser threshold is reached, as more carriers are injected, the quasi-

Fermi level gets closer to the quantum dot barrier and more carriers leak

out of the quantum dots without radiative recombination. Therefore such

carrier leakage has an important effect on the threshold carrier density and

threshold current. We consider such leakage current [63] as

Il(n) = Il0 · exp
(
Eg,barrier − [Fc(n)− Fv(n)]

kT

)
(2.22)

where Eg,barrier is the band gap of the quantum dot barrier.

The spontaneous emission coupling factor βsp,m(n) into the lasing mode

in Eq. (2.20) is obtained from the previous section, and is dependent on

the carrier density. The free-space spontaneous emission rspon increases with

carrier density as shown in Fig. 2.4, thus the γ parameter in Eq. (2.18) is

also carrier-dependent. Although the continuum-mode spontaneous emission

lifetime τsp,cont decreases with carrier density, the increase of the integral in

Eq. (2.18) is faster if the free-space emission peak aligns with the cavity

peak. Then, both the γ parameter in Eq. (2.18) and the βsp,m factor in Eq.

(2.17) increase with the carrier density.

After the rate equations are solved for each given injection current, we can

obtain the output light power as

P = βc1~ω
Va
ΓE

vgαmS + βc2~ωRspVa (2.23)

The first term is the contribution from stimulated emission, which depends
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on the photon density S and the photon escape rate vgαm, and Va/ΓE is the

effective mode volume. The second term is the contribution from spontaneous

emission. βc1 and βc2 are the coupling efficiencies to the detector for the

stimulated emission and spontaneous emission, respectively, which account

for the loss of light power from the experimental setup.

Figure 2.8 shows a comparison between the theoretical and experimental

light output power versus current (L-I) curves for metal-cavity SML QD

surface-emitting microlasers with different device diameters at T = 300 K.

The L-I curves are measured under pulsed mode to eliminate laser self-heating

for the ease of analyzing the size-dependent lasing characteristics. We can

see that, as the device size reduces, the L-I curves exhibit a more obvious

turn-on behavior below threshold. Such turn-on behavior was also observed

for metal-cavity quantum-well microlasers in [62]. This “upward-bending”

L-I behavior below threshold can be explained by the increasing amount of

spontaneous emission coupling into the cavity mode as the injection current

increases.

In the rate-equation model, the surface recombination velocity vs is set to

6× 105 cm/s and the Auger coefficient C is set to 1× 10−29 cm6/s. However,

we do not see significant change of the L-I curves when we vary vs in the

105 cm/s range or vary C in the 10−30 ∼ 10−29 cm6/s range. Due to the

1% pulsed mode operation, the thermal effect is negligible, and most carrier-

dependent laser characteristics are pinned upon threshold. Table 2.1 summa-

rizes the carrier density, material gain, threshold current density, and leakage

current density at threshold. The threshold material gain gth increases as size

reduces because of both larger radiation loss and larger material loss from

metal. Figure 2.9(a) shows the threshold carrier density and the threshold

current density as functions of the cavity diameter. The threshold carrier

density nth is dependent on gth as well as the lasing wavelength. Since the

quantum dot emission bandwidth is narrow, the alignment between the cav-

ity peak and gain peak is important. Furthermore, because nth is larger for

smaller devices, the quasi-Fermi levels are closer to the quantum dot barrier,

and the leakage current density at threshold Jl,th is also larger. As a result of

larger nth and larger Jl,th, we can see that the threshold current density also

increases when we reduce the device size. Figure 2.9(b) shows the Purcell

factor calculated with Eq. (2.4), as well as the βsp factor at threshold ex-

tracted from the fitting of the L-I curves with the rate-equation model. We
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Figure 2.8: Theoretical and measured light output power versus current
(L-I) curves for submonolayer quantum-dot metal-cavity surface-emitting
microlasers with different device diameters at T = 300K. The turn-on
behavior below lasing threshold is explained by the increasing βsp factor
with carrier injection, i.e., increasing amount of spontaneous emission
coupled into the cavity mode.
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Figure 2.9: (a) Threshold carrier density and the threshold current density
solved from the rate equations as functions of the cavity diameter. (b)
Purcell factor and the βsp factor at threshold as functions of the cavity
diameter.

Table 2.1: Size-dependent laser characteristics extracted from the
rate-equation model.

Device
diameter

Threshold car-
rier density nth

Threshold
material gain
gth

Leakage cur-
rent density at
threshold Jl,th

Threshold cur-
rent density Jth

(µm) (×1018 cm−3) (cm−1) (kA/cm2) (kA/cm2)
10 1.96 160.72 1.488 5.730
5 1.97 163.01 6.305 15.83
4 1.98 165.96 14.21 24.89
3 2.29 175.02 25.96 39.82
2 2.77 216.83 128.7 150.2
1 3.58 685.68 411.4 452.1

can see that the portion of spontaneous emission coupled to the lasing mode

increases drastically when the cavity size reduces. The parameters used in

our model are summarized in Table 2.2.

2.5 Summary

Metal-cavity submonolayer quantum-dot surface-emitting lasers are demon-

strated under electrical injection at room temperature with device radius

down to 0.5 µm. We have developed a comprehensive model for analyzing
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Table 2.2: Parameters used in our theoretical model.

Name and symbol Value Name and symbol Value
Surface recombination
velocity vs

6 × 105 cm/s
[48]

Injection efficiency ηi 0.4∼0.7

Auger coefficient C 1×10−29 cm6/s
[48]

Quantum dot diameter 20 µm

Coupling efficiency βc1 0.05∼0.15 Quantum dot 2D den-
sity

1×1011 cm−2

Coupling efficiency βc2 0.005∼0.05 Series leakage current
parameter Il0

100∼300 mA

Homogeneous broad-
ening linewidth Γcv

15 meV [55] Inhomogeneous broad-
ening linewidth for con-
duction band σc

15 meV [55]

Inhomogeneous broad-
ening linewidth for va-
lence band σv

2 meV [55]

the size-dependent device performance. Our model yields the material gain

and the spontaneous emission spectra of submonolayer quantum dots. We

derive a rigorous expression for the spontaneous emission coupling factor.

The laser cavity properties are solved with the effective index method and

the transfer matrix method. For future work, we can extend our cavity model

for cases where multiple transverse modes are present. This can be done us-

ing the analytical vector mode-matching method, and the mode conversion

and mismatch can be included. The resonance wavelength and photon life-

time for each individual mode can be obtained. This then can be followed by

a multi-mode rate-equation model to produce the mode-resolved L-I curves.

In this work, a single-mode model has shown good prediction of the cavity

resonance for our application. With the information on the quantum-dot

emission and the optical cavity, a single-mode rate-equation model is used to

investigate the laser characteristics. Our theory shows excellent agreement

with the experiments and directs our future work toward the miniaturization

of metal-cavity lasers.
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CHAPTER 3

FABRICATION AND

CHARACTERIZATION OF

METAL-CAVITY SURFACE-EMITTING

MICROLASERS

3.1 Introduction

In this chapter, we will discuss the fabrication steps for surface-emitting micro

and nanolasers in detail. The device processing in this work is challenging

due to its small size. Both the optical and electrical performance can be

significantly affected by the fabrication imperfections. For example, many

of the processing steps can cause the device sidewall to be rough and not

perfectly vertical, reducing the cavity quality factor. The device top surface

can also become non-flat and rough, causing problems for electrical contact as

well as optical loss. Also, many processing steps involve high-vacuum, high-

temperature, or high-power plasma, which all require robustness of the laser

structure. Nonetheless, we demonstrate lasing behavior of our quantum-well

(QW) and quantum-dot (QD) surface-emitting lasers at room temperature

under electrical injection.

For our working devices, we characterize the light output versus current

(L-I) and the current versus voltage (I-V) behavior. We study the threshold

condition for various device sizes. From the current-dependent emission spec-

tra, we study the thermal effects on the cavity resonance and the emission

intensity. We verify the emission beam pattern from the near-field images.

We also measure the sub-threshold emission spectra to extract the cavity in-

formation. Using our theory developed in Chapter 2, we are able to explain

size-dependent spontaneous emission coupling with the cavity modes.
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3.2 Fabrication of Surface-Emitting Micro and

Nanolasers

The micro and nanolasers in this work are fabricated from top down using

plasma etch (dry etch), where a SiNx hard mask is needed to protect the

patterned region from the plasma etch. Figures 3.1(a) to 3.1(d) show the

processing steps for patterning the hard mask. We first deposit a uniform

SiNx layer by plasma-enhanced chemical vapor deposition (PECVD). A layer

of photoresist is spin-coated and patterned by ultraviolet (UV) photolithog-

raphy (365 nm) using the Karl Suss MJB3 Contact Mask Aligner. Then

a thin layer (around 10 nm) of nickel is vacuum-evaporated using the elec-

tron beam, followed by a metal lift-off step. Thus the pattern remains with

the nickel mask and can be transfered onto the SiNx by Freon reactive-ion

etch (RIE) using the combination of CHF3 and O2. Figure 3.1(e) shows the

1-µm-diameter SiNx hard mask formed on top of the wafer to be processed.

Figures 3.2(a) to 3.2(e) show the processing steps for forming the laser cav-

ity by plasma etch as follows. We first remove the remaining nickel on top

of the SiNx mask by the TFG nickel etchant. Then we use the inductively-

coupled plasma (ICP) RIE with SiCl4/Ar to form the cavity. The result

after ICP RIE is shown in Fig. 3.2(c) and we can identify the distributed

Bragg reflector (DBR) layers and the cavity region. Afterwards, we remove

the remaining SiNx mask and a 1-µm-diameter laser cavity is shown in Fig.

3.2(e). We etch past the cavity region and stop at around the seventh pair of

the bottom DBR. Since the cavity quality is critical to the laser performance,

we need precise control of the ICP etch rate and the etch stop. Besides cal-

ibrating the etch time, we also have an in-situ reflectometer to monitor the

etch depth, as shown in Fig. 3.3(a). The collimated laser beam is incident

through the monitor window of the etch chamber onto the sample. The re-

flected beam is collected by a photodetector. As the DBR lasers are removed

in the etch chamber, the reflected power shows an oscillation, which allows

us to monitor the etched thickness as time elapses, as shown in Fig. 3.3(b).

From the reflected power we can further identify whether we have etched

past the cavity region and reached our desired depth.

In order to have electrical injection through the laser top surface and the

p-doped region, we need to provide sidewall electrical isolation, for which

SiNx is a good candidate. The refractive index of SiNx is lower than GaAs,
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Processing steps for patterning the SiNx hard mask for plasma
etch. (a) SiNx chemical vapor deposition; (b) Photolithography for
patterning photoresist (PR); (c) Nickel evaporation; (d) Metal lift-off for
nickel mask; (e) Freon reactive-ion etch (RIE); (f) Scanning electron
micrograph of the SiNx hard mask.

which provides optical mode confinement and reduces the field leakage into

the sidewall metal and thus the material loss. Figures 3.4(a) to 3.4(c) show

the processing steps. We first coat conformally our laser cavity with SiNx

using PECVD. Then we cover the sample with PR and planarize step by step

using the UV exposure and PR development until the device top is exposed.

Afterwards, we use the Freon RIE with CHF3 to remove the SiNx on the

device top while the sidewall is protected by the PR. Figure 3.4(d) shows the

scanning electron micrograph of a device with sidewall coated by SiNx while

the top surface is exposed for electrical injection and optical emission.

Since the bottom contact is on the n-doped GaAs substrate, careful steps
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(a) (b) (c)

(d) (e)

Figure 3.2: Processing steps for forming the laser cavity using plasma etch.
(a) Nickel mask removal; (b) Inductively-coupled plasma (ICP) reactive-ion
etch (RIE); (c) Scanning electron micrograph of the laser cavity after ICP
RIE; (d) SiNx mask removal; (e) Laser cavity of 1-µm-diameter formed.

are needed to form the ohmic contact. We vacuum-evaporate around 200

nm of AuGe/Ni/Au and anneal at the eutectic temperature around 370 ◦C,

as shown in Fig. 3.5(a). Then we do photolithography to define the pattern

for the top contacts. We vacuum-evaporate 5 nm of silver/gold as the top

p-contact and do metal lift-off so that the device p-contacts are separated,

as shown in Fig. 3.5(b) and Fig. 3.5(c), respectively. However, at this step

the n-regions for all devices are still connected. Thus we spin-coat the PR

and pattern with the UV lithography for device separation, as shown in Fig.

3.5(d). We then plasma-etch the SiNx layer using Freon RIE with CF4/O2,

and chemical-etch the n-DBR using 1:5:5:40 citric acid:H2O:H2O2:H2SO4,

where the citric acid is mixed from 1mg:1mL C6H8O7 monohydrate to H2O.

After cleaning the device, we can proceed to testing, as shown in Fig. 3.5(e)
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Figure 3.3: (a) Schematic diagram of the in-situ reflectometer for
monitoring the sample etching depth in the plasma chamber. (b) Reflected
power collected by the detector as a function of the etching time. We
identify the time when the etch depth reaches the cavity region, the bottom
distributed Bragg reflector, and our desired etch-stop.

(a) (b)

(c) (d)

Figure 3.4: Processing steps for the sidewall SiNx coating. (a) Conformal
SiNx coating; (b) Photoresist planarization; (c) Plasma etch of the top SiNx

and cleaning; (d) A sidewall-coated device with top emission window
opened.
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: Processing steps of forming laser contacts. (a) Evaporation and
annealing of the bottom n-contact; (b) Lithography for top p-contacts; (c)
Metal lift-off for top contacts; (d) Mesa etch for device separation; (e)
Schematic diagram and (f) scanning electron micrograph of a processed
1-µm-diameter metal-cavity surface-emitting laser.

and Fig. 3.5(f).

As a comparison, we also fabricate dielectric-cavity surface-emitting lasers

with the same wafer. In this work, we use Benzocyclobutene (BCB) as the

cavity cladding. Before forming the dielectric cavity, we first processed the

bottom n-contact and the separation of devices, as shown in Fig. 3.6(a).

Then we spin-coat the BCB and cure at 250◦C, after which BCB becomes

solid and stable. Afterwards, we use Freon RIE with CF4/O2 to planariza-

tion the BCB until the device top surface is exposed. Figure 3.6(c) shows

the scanning electron micrograph after BCB planarization. We normally

planarize slightly deeper than the device top surface for the better surface

quality and contact adhesion. Figure 3.6(d) shows the patterning and the
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(a) (b) (c)

(d) (e)

Figure 3.6: Processing steps for dielectric-cavity surface-emitting lasers. (a)
Spin-coating and curing of Benzocyclobutene (BCB); (b) Planarization of
BCB using Freon reactive-ion etch; (c) Device top surface exposed after
planarization; (d) Top contact lithography; (e) Process finished and ready
for testing.

evaporation of the top contacts. Figure 3.6(e) shows the schematic of the

dielectric-cavity surface-emitting laser ready for testing.

3.3 Characterization of Quantum-Well

Surface-Emitting Microlasers

The wafers for our QW surface-emitting lasers are grown on the GaAs sub-

strate using the metal-organic chemical vapor deposition (MOCVD). The ac-

tive region consists of three 6-nm-thick compressively strained In0.17Ga0.83As
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QWs separated by 4-nm-thick GaAs0.92P0.08 barriers with tensile strain. The

photoluminescence of the QWs has a peak wavelength of 970 nm. The 3λ/2nr

cavity is sandwiched between 23 pairs p-doped and 36 pairs of n-doped DBRs.

The DBR consists of alternating Al0.12Ga0.88As and Al0.9Ga0.1As layers. Fig-

ure 3.7 shows the scanning electron micrograph of a QW laser cavity formed

after the ICP RIE plasma etch, which passes the cavity and down to the

seventh pair of the bottom DBR.

(a)

Figure 3.7: Scanning electron micrograph of a 1-µm-diameter quantum-well
surface-emitting laser, viewed at a right angle.

Our metal-cavity QW surface-emitting lasers can operate at room temper-

ature under continuous-wave (CW) electrical injection with device diameter

down to 3µm and threshold current being 0.58 mA (8.2 kA/cm2 thresh-

old current density). Figure 3.8 shows the light output versus current (L-I)

and current versus voltage (I-V) characteristics of our devices. The light

output is collected by the Lightwave Probe with a ball-lensed pigtail multi-

mode (62.5-µm core) fiber, coupling to the calibrated Newport 818-SL silicon

photodetector. The L-I and I-V characteristics are measured by the Hewlett-

Packard 4145B Semiconductor Parameter Analyzer. The devices are tested

using the Cascade MPS150 probe system. The 1.5V turn-on voltages in Fig.

3.8 indicate proper electrical performance for the devices as p-i-n diodes.

The roll-over behavior of the light output is observed due to the heating of

the device active regions under CW operation. Figure 3.8(e) shows the ex-

tracted threshold currents Ith and threshold current densities Jth as functions
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of the device diameter. The Ith reduces as the device size shrinks, yet the

Jth increases. One reason for this is the larger detuning between the lasing

wavelength and the high-reflection window of the DBR for smaller devices

because of the change of the effective index. Thus the quality factor reduces

and the radiation loss increases, and the devices have larger threshold gain

and threshold carrier density. Thus, even with a smaller active region vol-

ume, a small device can have a larger threshold current density. Another

reason is that for smaller devices, the optical field has more penetration into

the metallic sidewall and more material loss is introduced, resulting in larger

thresholds.

Figure 3.9 shows the near-field images of the emission from a 10-µm-

diameter metal-cavity QW laser under various injection currents. The im-

ages are taken by the Industrial Vision Source model IV-CCAM2 digital color

CCD camera, which covers the visible to infrared spectrum. The light emis-

sion is collected through a 50x objective lens, which focuses on the laser top

surface. The threshold current for this device is 3.2 mA.

Figure 3.10 shows the emission spectra of the devices under CW injection

at room temperature for various device sizes. The light emission is collected

using the Lightwave Probe with a ball-lensed pigtail multi-mode (62.5-µm

core) fiber. The emission peaks red-shift as more current is injected because

of the heat-induced cavity expansion and the refractive index change. We also

observe larger mode splitting with smaller sizes. The side-mode suppression is

more than 15 dB for the 5-µm-diameter devices, and more than 40 dB for the

4-µm-diameter devices. Devices with diameters smaller than 4µm can be well

considered as single-mode lasers. Figure 3.10(e) shows the current-dependent

peak wavelengths of the fundamental cavity mode for various device sizes.

At very low current (I < 1mA), we observe the mode dispersion due to

geometry, since a smaller size supports a smaller peak resonance wavelength.

As the current increases, the red-shift of the peak wavelength for a smaller

device is much faster. One reason is the larger series resistance for smaller

devices, which can be seen from the I-V curves in Fig. 3.8. Thus more heat is

generated for smaller devices at the same current. Another reason is that the

heat dissipation through the sidewall metal is not efficient enough. Smaller

devices have larger surface-to-volume ratio and should be better in terms of

sidewall heat dissipation. Yet because of the low thermal conductivity of

the SiNx sidewall buffer layer, there is still a large amount of heat flowing
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Figure 3.8: The light output versus current (L-I) and the current versus
voltage (I-V) curves for metal-cavity quantum-well surface-emitting lasers
operating at room temperature under continuous-wave electrical injection.
The cavity diameters are (a) 3µm, (b) 4µm, (c) 5µm, and (d) 10µm,
respectively. (e) Size-dependent laser threshold currents (black) and
threshold current densities (blue).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: Near-field images of the top emission from a 10-µm-diameter
metal-cavity quantum-well laser under (a) 1 mA, (b) 3 mA, (c) 5 mA, (d) 6
mA, and (e) 7 mA current injection. Images are collected through a 50x
objective lens and taken by an infrared CCD camera. (f) Optical
micrograph of the device being probed.
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vertically through the bottom DBR to the substrate. And the vertical heat

flow is less efficient for smaller devices.

We can also look at the contour plot of the current-dependent emission

spectra. By tracing the peak location as current increases, we can map the

relation between the peak wavelength and injection current, i.e. λpeak(I).

At low current injection, we can often assume a linear relation between the

temperature change ∆T and the dissipated power ∆P , i.e. a constant ther-

mal resistance such that ∆T = Rth∆P , where ∆P = IV − Pout. Further-

more, the change of the peak wavelength ∆λpeak is also nearly linear to the

change of temperature ∆T . As a result, the peak wavelength should follow

λpeak(I) − λpeak(I = 0) ∝ Iln(I), where the natural logarithmic dependence

comes from the diode equation. This gives rise to a dependence on I which

is stronger than linear but weaker than quadratic, i.e. Ix where 1 < x < 2.

This argument is confirmed by Fig. 3.11.

As a comparison, we also fabricate simultaneously quantum-well lasers

with dielectric cavities using the same wafer. The laser cavity is covered by

BCB and the top emission window is exposed by the planarization of the

BCB through plasma etch. Figure 3.12 shows the SEM of a processed BCB

laser after contact metallization. The top surface of the laser is only covered

by a thin layer (around 4 nm) of silver/gold for electrical contact. The

devices are tested with the Cascade MPS150 probe station. The emission is

collected by directly covering the devices with the Newport 818-SL silicon

detector. Figure 3.13(a) shows our smallest BCB laser of 2-µm diameter at

room temperature under pulsed injection. Figure 3.13(b) shows our smallest

BCB laser of 4-µm diameter under CW operation at room temperature. We

have later improved this work in [64], which have demonstrated CW lasing

down to 2-µm diameter at room temperature, with the lasing threshold as

small as 0.374 mA.

3.4 Characterization of Quantum-Dot

Surface-Emitting Microlasers

Figure 3.14 shows the schematic diagram of the fabricated QD metal-cavity

surface-emitting lasers. The layer structure is grown by molecular beam

epitaxy (MBE). The gain medium consists of three groups of submonolayer
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Figure 3.10: Current-dependent emission spectra of the metal-cavity
quantum-well lasers with cavity diameters of (a) 3µm, (b) 4µm, (c) 5µm,
and (d) 10µm. The lasers operate under continuous-wave electrical
injection at room temperature. (e) Current-dependent peak wavelengths for
the fundamental cavity mode with various device sizes.
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(a) (b)

(c) (d)

Figure 3.11: Contour plots of the current-dependent emission spectra of the
metal-cavity quantum-well lasers with cavity diameters of (a) 3µm, (b)
4µm, (c) 5µm, and (d) 10µm.
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(a)

Figure 3.12: Scanning electron micrograph of a 1-µm-diameter
dielectric-cavity surface-emitting quantum-well laser after contact
metallization.
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Figure 3.13: Light output versus current (L-I) curves and current versus
voltage (I-V) curves for our smallest dielectric-cavity quantum-well lasers at
room temperature under (a) pulsed and (b) continuous-wave electrical
injection.

(SML) QDs, which are positioned within the 3λ/2nr cavity. The top and

bottom mirrors are 19 pairs of p-doped DBR and 33 pairs of n-doped DBR,

respectively. The DBR consists of alternating AlGaAs/GaAs layers. The

lasing wavelength is designed to be around 975 nm.

In this section, we also carry out the size-dependent study of the QD laser

properties. Devices with cavity diameters ranging from 10µm down to 1µm

are fabricated simultaneously on the same chip. Figures 3.15(a)-(f) show the

laser cavities with various diameters formed after the plasma etch and before
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(a)

Figure 3.14: Schematic diagram of the metal-cavity quantum-dot
surface-emitting microlaser.

(a) (b) (c)

(d) (e) (f)

Figure 3.15: Scanning electron micrographs showing the quantum-dot
surface-emitting lasers with cavity diameters being (a) 10µm, (b) 5µm, (c)
4µm, (d) 3µm, (e) 2µm, and (f) 1µm. The red arrows indicate the
quantum-dot active region.
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the SiNx sidewall coating.

The laser L-I curves are measured using the Newport 818-SL silicon pho-

todetector calibrated with the Newport model 835 optical powermeter, and

the ILX Lightwave LDP-3811 current source. The devices are mounted on

the thermoelectric cooler, which is set at the room temperature (293 K)

during measurements. Figure 3.16(a) shows the experimental and theoreti-

cal L-I curves for a 2-µm-diameter device. Good agreement is shown when

the carrier-dependent βsp-factor is used, as discussed in Chapter 2. Figure

3.16(b) shows the emission spectrum for the same device operating at room

temperature under 5 mA pulsed electrical injection with 200 kHz repetition

rate and 10% duty cycle. The spectrum indicates that the device is lasing at

5 mA pulsed injection. Figure 3.16(c) shows the light output versus current

density (L-J) curves for devices with various diameters operating under 1%-

duty cycle electrical injection. Our theory explains very well the measured

laser behavior.

In order to experimentally determine the parameters of the cavity modes,

we need to measure the emission spectrum before the laser reaches the thresh-

old [25]. The emission is collected using an objective lens (50x, 0.60 NA).

The emission spectrum is obtained through the SPEX 1250Mmonochromator

with a liquid-nitrogen-cooled germanium detector. Since the sub-threshold

emission is weak and we need a narrow slit width in the monochromator

for high spectral resolution, it is necessary to use the lock-in technique to

improve the signal-to-noise ratio. The Stanford Research Systems lock-in

amplifier model SR530 is used in this experiment. Figure 3.17 shows the

sub-threshold emission spectra for devices with diameters ranging from 10µm

down to 2µm. The black arrows indicate the fundamental cavity modes.

Below the lasing threshold, the spontaneous emission can still be ampli-

fied by the cavity effect. Since the thermal effect is negligible under pulsed

operation below threshold, we can estimate the cavity resonance from the

amplified spontaneous emission, and the peak wavelength (λc) should have

very little shift with current injection below threshold. Furthermore, from

the full-width-half-maximum (FWHM) of the emission peaks, we can extract

the quality factor (Q) for each cavity mode. Ideally, what we need is the cold-

cavity Q, where all the loss comes from the cavity, including material loss

(ohmic loss) and diffraction loss. This means that the gain medium should

have neither amplification nor absorption, and should be electrically biased
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Figure 3.16: (a) Experimental light output versus current (L-I) curve (red)
for a 2-µm-diameter surface-emitting quantum-dot laser operating at room
temperature. Theoretical L-I curves with (dashed) and without (blue)
using a carrier-dependent βsp-factor. (b) Experimental emission spectrum
for the same laser with 5mA pulsed electrical injection at room
temperature, showing the lasing behavior. (c) Light output versus current
density (L-J) curves for devices with different cavity diameters.
Comparison between theory (dashed) and experiment (red) is shown.

at the transparency condition. The transparency carrier density for the gain

region to have zero gain or loss is difficult to determine experimentally for

VCSELs, yet we can estimate theoretically from the gain spectra as in Chap-

ter 2 for QDs and Chapter 5 for QWs. In the case of our SML QDs, the

transparency carrier density ntr is around 1 × 1018 cm−3, which is around

1/3 to 1/2 of the threshold carrier density nth, depending on the size of the

device. Figure 3.18 shows the magnified view of the sub-threshold emission
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Figure 3.17: Emission spectra below threshold for metal-cavity
surface-emitting quantum-dot lasers with various cavity diameters. The
black arrows indicate the fundamental cavity modes.

Table 3.1: Extracted size-dependent cavity-mode parameters.

Device diameter
(µm)

Q(HE11) Q(TE01) λc(HE11)
(nm)

λc(TE01)
(nm)

2 682 320 961.07 950.51
3 870 762 965.40 962.60
4 2702 2258 965.63 964.05
5 2997 2264 965.57 964.54
10 2.77 216.83 966.32 965.97

spectra of devices with various sizes. Lorentzian fits are shown for the emis-

sion peaks corresponding to the two fundamental cavity modes (HE11 and

TE01). From the extracted FWHMs, we can determine the Q for each mode.

The values of λc and Q are shown in Table 3.1.

With the extracted λc and Q, we can theoretically estimate the spon-

taneous emission coupled to a specific mode based on the formulation in

Chapter 2. Figure 3.19 shows the size-dependent experimental Q and the cal-

culated discrete-mode spontaneous emission rate (Rsp,m). The Q decreases

with the reduction of the device size due to the increase of cavity diffrac-

tion loss. But at the same time, the effective mode volume (Veff) decreases

as the device size shrinks down, resulting in a larger Purcell factor, which
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Figure 3.18: Lorentzian fits of the emission spectra for parameter extraction
of the HE11 (blue) and TE01 (black) cavity modes. The device diameters
are (a) 2µm, (b) 3µm, (c) 4µm, (d) 5µm, and (e) 10µm, respectively.
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is proportional to the ratio between Q and Veff . Therefore, we can see an

increasing amount of spontaneous emission coupled into the cavity mode as

the size shrinks down in Fig. 3.19.
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Figure 3.19: Size-dependent experimental cavity quality factor (blue) and
the calculated discrete-mode spontaneous emission (black) for the HE11

mode (round dots) and the TE01 mode (triangles).

3.5 Summary

In summary, we show the detailed fabrication procedures for both the metal-

cavity and the dielectric-cavity surface-emitting micro and nanolasers. We

demonstrate the room-temperature operation under electrical injection of

both quantum-well (QW) and quantum-dot (QD) lasers. Continuous-wave

lasing is observed for 3-µm-diameter QW lasers with 0.5-mA threshold. Current-

dependent emission spectra are collected and the size-dependent thermal

properties are investigated. Dielectric-cavity lasers are characterized for com-

parison. We observe room-temperature lasing for QD devices with only 2-µm

cavity diameters. We further investigate the sub-threshold emission spec-

tra for QD lasers and extract the cavity information for our analysis of the

spontaneous emission coupling with cavity modes. Our theory successfully
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explains our experimental observation.

Different from many other groups’ work on nanolasers, our work has a fixed

constraint of electrical injection at room temperature. And our strategy is

to start with a larger device size and move toward the device miniaturiza-

tion without relaxing the operation criteria. As a result, our devices always

meet the practical working conditions, where high-power optical pumps and

cryogenic temperature are not feasible.

50



CHAPTER 4

MODELING AND DESIGN OF

HIGH-CONTRAST GRATINGS

4.1 Introduction

Diffraction gratings have been crucial components in the broad area of op-

tics for centuries [65]. In the recent decade, researches have shown extensive

interest in an operation regime where the grating period Λ is comparable

or slightly smaller than the wavelength λ [32, 35, 66, 67, 68], where strong

field interaction among the near-wavelength structures can provide extraor-

dinary optical behaviors. One interesting type of grating, known as the

high-contrast grating (HCG), is made of periodic high-index materials sur-

rounded by materials with much smaller indices [35]. HCGs have been used

as ultrabroadband reflectors [69] and high-Q resonators [70]. They can be

integrated as compact, high-performance tunable mirrors in optoelectronic

devices, such as vertical-cavity surface-emitting lasers (VCSELs) [32, 33, 38].

In Sections 4.2 and 4.3 the optical properties of one-dimensional (1D) grat-

ings are investigated using the in-house developed mode-matching method

and the surface-integral-equation (SIE) method, respectively. The results

are compared with the finite-element method (FEM) using COMSOL Mul-

tiphysics. Excellent agreement is demonstrated. The developed methods

allow the efficient top-down design of 1D gratings for various optical appli-

cations. To use 1D HCGs as broadband high-reflection mirrors in vertical-

cavity surface-emitting lasers (VCSELs), the key property is the complex

reflection coefficient for the fundamental reflection order.

Recently, much research interest has been devoted to the design of 2D ar-

rays of nanostructures [66, 71]. In Section 4.4 the properties of 2D HCGs un-

der various incidence conditions and with different structural parameters are

studied using an in-house developed rigorous coupled-wave analysis (RCWA)

package. In Section 4.5 a top-down design procedure for 2D HCGs is pro-
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posed with the RCWA package as an efficient design tool.

One important application for 2D HCGs is the 2D phase plate, which

allows novel designs of optical components, such as deflectors, lenses [72],

axicons for generating Bessel beams [73, 74], vortex phase plates for gener-

ating orbital angular momentum of light [75, 76], or even holographic plates.

2D phase plates normally require non-periodic designs. However, the high-

index material can largely confine the field around the local position, where

effective-medium approximation is applicable [76, 77, 78]. Based on our op-

timized design for periodic 2D HCGs, we can apply the grating parameters

as the local parameters for the non-periodic grating, according to the design

requirement at the local position. Our designed non-periodic phase plate is

then verified through the finite-difference time-domain (FDTD) simulation.

The results show excellent agreement with our designs.

4.2 Mode-Matching Method for 1D Periodic Structures

HCGs are referred as one-dimensional (1D) if the periodicity is only in one

direction (e.g. periodic bars, stripes, or grooves). In this case the prob-

lem is reduced to a 2D problem, and the fields can be decoupled into the

transverse-electric (TE) and transverse-magnetic (TM) polarizations, where

the electric field is parallel and perpendicular to the grating bars, respec-

tively. An incident wave with one polarization will not excite an HCG mode

with an orthogonal polarization.

4.2.1 Theoretical Formulation

The complex reflection coefficient of the HCG is an important parameter

for the design and modeling of HCG VCSELs. For normal incidence on a

subwavelength HCG, i.e. the wavelength is smaller than the grating period

Λ, only the zeroth-order Floquet mode (normal reflection) is propagating,

while all higher-order Floquet modes are evanescent. In this case, a complex

reflection coefficient, instead of a reflection matrix, can be defined. In this

subsection, we compare the reflection spectra calculated using three different

methods: analytical mode-matching [79], mode-matching [80] using numer-

ically solved eigenmodes, and parameter extraction from the finite-element
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simulation. As shown in Fig. 4.1(a), we define Region I and Region III to

be the incidence and transmission air regions, respectively, and Region II to

be the HCG layer.

For the analytical mode-matching method, the modes inside Region II are

expanded in terms of sinusoidal functions in both the transverse and longitu-

dinal directions. In Regions I and III, the field is expanded into a summation

of discrete propagating waves, the wavenumbers and propagation directions

of which are governed by the Floquet theorem. The boundary conditions for

the electric and magnetic fields are matched at the air-HCG interfaces, and

we can obtain a reflection matrix, out of which the zeroth-order reflection

coefficient can be extracted. For the numerical mode-matching method, we

first solved the eigenmodes in the HCG layer using the 1D finite-difference

frequency-domain (FDFD) method, and using Floquet modes in the air re-

gions.

(a) (b)

Figure 4.1: (a) Schematic of a high-contrast-grating (HCG) reflector with a
normal incident plane wave. The complex reflection coefficient |r|eiφ for the
zeroth-order reflected wave is to be determined. (b) Calculation of the
HCG reflection by mode-matching method. Fields in each region are
expanded by eigenmodes, and the reflection and transmission matrices R̄
and T̄ are determined at each interface. The generalized reflection matrix
R̃ is obtained.

For the 2D TE (Ey) case, the electric field (invariant in ŷ) in the grating

region (Region II) can be written as

EII(x, z) = ŷEII
y (x)e

ikzz (4.1)
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Substituting the above into the Helmholtz equation ∇2E+ k2E = 0, we get

∂2

∂x2
EII

y (x) + k20n
2
r (x)E

II
y (x) = k2zE

II
y (x) (4.2)

from which we see that the eigen-problem in the grating is now a 1D problem.

According to the Bloch’s theorem, the periodicity in x-direction requires the

field to take the form of EII
y (x) = Ukx,Bloch

(x)eikx,Blochx, where Ukx,Bloch
(x +

Λ) = Ukx,Bloch
(x) and Λ is the period. If the field repeats for N periods, i.e.

EII
y (x + NΛ) = EII

y (x), then the Bloch wave number kx,Bloch takes discrete

values in the first Brillouin zone,

kx,Bloch =
2πn

NΛ
, where n =

{
0,±1,±2, . . . ,±N

2
, N is even

0,±1,±2, . . . ,±N−1
2
, N is odd

(4.3)

Then the eigenvalue problem is solved in one period using the FDFD method

with the periodic boundary condition EII
y (x+ Λ) = eikx,BlochΛEII

y (x).

Figure 4.2 shows the first four eigenmodes corresponding to kx,Bloch = 0

(Γ-point) for 10 periods. Figure 4.3 shows the contour plots for these four

eigenmodes as they propagate along the ẑ-direction. We can see starting

from the fourth mode to higher orders, the fields become evanescent.

Because of the periodic structure, the scattered waves in Regions I and III

have discrete wave vectors, and we can write the fields as

EI,III(x, z) = ŷEI,III
y,n (x)eikz,nz (4.4)

for the n-th mode, where the transverse profile takes the form EI,III
y,n (x) =√

1
NΛ
eikx,nx, and kx,n = kix +

2nπ
Λ
, n = 0,±1,±2, . . ..

Now we can expand the transverse electric field in terms of eigenmodes in

each region,

Et =ŷ
N∑

n

ψn(x)e
ikz,nzEn

=ŷ [ψ1(x), . . . , ψn(x)]




exp(ikz,1tg) 0 . . .

0 exp(ikz,2tg)
...

. . .







E1

E2

...

En




(4.5)
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Figure 4.2: |Ey| for the first four TE-polarized eigenmodes in the grating
region for 10 periods. Parameters: period Λ = 1070 nm, grating width
D = 260 nm, wavelength λ = 1.55µm, and index nr = 3.164.

55



(a) (b)

(c) (d)

Figure 4.3: Contour plots of |Ey| for the first four TE-polarized eigenmodes
in one unit cell as they propagate along the +ẑ-direction in the grating
region. Starting from the fourth mode the fields become evanescent in the
+ẑ-direction.
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Similarly, the transverse magnetic field can be written as

−ẑ ×Ht =ŷ
1

iωµ

∂

∂z
Ey = ŷ

N∑

n

kz,n
ωµ

ψn(x)e
ikz,nzEn

=ŷ [ψ1(x), . . . , ψn(x)]




kz,1/ωµ 0 . . .

0 kz,2/ωµ
...

. . .







exp(ikz,1z) 0 . . .

0 exp(ikz,2z)
...

. . .







E1

E2

...

En




(4.6)

In terms of the matrix form, we can write

Ey =Ψ̄†(x) · eiK̄zz · e
[−ẑ ×Ht]y =Ψ̄†(x) · Ḡ · eiK̄zz · e

(4.7)

where Ψ̄†(x) = [ψ1(x), . . . , ψn(x)], Ḡ and eiK̄zz are diagonal matrices with

elements being kz,n/ωµ and exp(ikz,nz), respectively. To account for both

forward and backward propagation as the wave transmits from Region I to

Region II, the transverse fields become

EI
y =Ψ̄

†
1(x) ·

(
eiK̄1zz · e1 + e−iK̄1zz · R̄12 · e1

)

[
−ẑ ×HI

t

]
y
=Ψ̄

†
1(x) · Ḡ1 ·

(
eiK̄1zz · e1 − e−iK̄1zz · R̄12 · e1

) (4.8)

in Region I and

EII
y =Ψ̄

†
2(x) · eiK̄2zz · e2 = Ψ̄

†
2(x) · eiK̄2zz · T̄12 · e1

[
−ẑ ×HII

t

]
y
=Ψ̄

†
2(x) · Ḡ2 · eiK̄2zz · e2 = Ψ̄

†
2(x) · Ḡ2 · eiK̄2zz · T̄12 · e1

(4.9)

in Region II, where R̄12 is a N1×N1 reflection matrix from Region I to Region

II, and T̄12 is a N2 ×N1 transmission matrix from Region I to Region II. N1

and N2 are the numbers of modes kept in Regions I and II, respectively.
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The continuity of the transverse fields from Region I to Region II gives

Ψ̄
†
1(x) ·

(
eiK̄1zz · e1 + e−iK̄1zz · R̄12 · e1

)
= Ψ̄

†
2(x) · eiK̄2zz · T̄12 · e1

Ψ̄
†
1(x) · Ḡ1 ·

(
eiK̄1zz · e1 − e−iK̄1zz · R̄12 · e1

)
= Ψ̄

†
2(x) · Ḡ2 · eiK̄2zz · T̄12 · e1

(4.10)

We can set the interface location as z = 0 and do an inner-product with Ψ̄1.

Then the reflection and transmission matrices can be obtained at the I-II

interface as

T̄12 = 2
(
D̄−1

1 L̄12 + Ḡ−1
1 D̄−1

1 L̄12Ḡ2

)−1

R̄12 =
(
D̄−1

1 L̄12 − Ḡ−1
1 D̄−1

1 L̄12Ḡ2

)−1 (
D̄−1

1 L̄12 + Ḡ−1
1 D̄−1

1 L̄12Ḡ12

) (4.11)

where D̄i = 〈Ψ̄i, Ψ̄
†
i〉 and L̄ij = 〈Ψ̄i, Ψ̄

†
j〉.

Similarly, we can find the reflection and transmission matrices at the II-III

interface. Then the generalized reflection matrix [R̃12]N1×N1 can be obtained

as [80]

R̃12 = R̄12 + T̄21(Ī− eiK̄2ztgR̄23e
iK̄2ztgR̄21)

−1eiK̄2ztgR̄eiK̄2ztgT̄12 (4.12)

where [R̄12]N1×N1 , [R̄23]N2×N2 , [R̄21]N2×N2 , [T̄12]N2×N1 , and [T̄21]N1×N2 are the

reflection and transmission matrices at the interfaces. [Ī]N2×N2 is the identity

matrix. The subscript ij indicates wave incidence from Region i to Region j.

N1 and N2 are the number of modes in Region I and Region II, respectively.

The propagation matrix [eiK̄2ztg ]N2×N2 can be written as

eiK̄2ztg =




exp(ikz,1tg) 0 . . .

0 exp(ikz,2tg)
...

. . .


 (4.13)

where tg is the thickness of the grating, and kz,i is the propagation constant

for the i-th eigenmode in Region II. The complex reflection coefficient can

then be obtained from the R̃12 matrix. As shown in Fig. 4.1(b), the idea

of generalized reflection for layered medium is still applicable when there are

multiple modes in each region, except that the reflection and transmission

at each interface are characterized by matrices solved from mode-matching.

The dimensions of the matrices also match with the number of modes in each
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region.

4.2.2 Convergence Tests and Result Verification

The convergence of the generalized reflection matrix is tested with different

numbers of modes N1, N2, and N3, in Regions I, II, and III, respectively. We

choose the matrix element corresponding to the zeroth order TE reflection

coefficient (rTE
0 ) for analysis. Figure 4.4 shows the convergence of the squared

magnitude and phase of rTE
0 as N1 and N3 (N1 = N3) increase, with N2 fixed.

Figure 4.5 shows the convergence of the squared magnitude and phase of rTE
0

as N2 increases, with N1 and N3 fixed.
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Figure 4.4: Convergence of the (a) squared magnitude and (b) phase of the
zeroth-order generalized reflection coefficient upon the number of modes in
Regions I and III (N1 = N3). Parameters: N2 = 11, λ = 1.4µm,
Λ = 1.07µm, D = 0.26µm, tg = 0.195µm, and nr = 3.164.

We further simulate the total field distribution using the finite-element

method (COMSOL Multiphysics). By fitting the field distribution using the

complex reflection coefficient as the fitting parameter, we are able to extract

the reflection spectrum.

Figure 4.6(a) shows the total field distribution when a normal incident

wave (λ = 1550 nm) is reflected by a TE-HCG (electric field parallel to HCG

bars), where the cross-sections of HCG bars are indicated by the white boxes.

Figure 4.6(b) and Figure 4.6(c) show excellent agreement among the three

methods for both the magnitude and the phase of the complex reflection
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Figure 4.5: Convergence of the (a) squared magnitude and (b) phase of the
zeroth-order generalized reflection coefficient upon the number of modes in
Region II N2. Parameters: N1 = N3 = 13, λ = 1.4µm, Λ = 1.07µm,
D = 0.26µm, tg = 0.195µm, and nr = 3.164.

coefficient. The green dashed line indicates λ = Λ. When λ > Λ, we no

longer have a single reflected mode since higher order Floquet modes become

propagating. The power is not conserved for the zeroth-order mode, and

incident power will be carried away by higher order Floquet modes.

4.3 Surface Integral Equations and Periodic Green’s

Function for 1D Periodic Structures

The scattering problem of a periodic structure can be solved by reducing

the problem to only one period. According to the Bloch theorem, the fields

satisfy certain periodic properties and the surface integral equations (SIEs)

can be reduced to only one period. The summation of all Bloch phase-shifted

terms gives rise to the periodic Green’s function (PGF).

The method of moments (MOM) is used to solve the surface integral equa-

tions. When the surface elements are close to each other, the periodic Green’s

function and its derivatives converge very slowly. For the self-interaction

terms (or the diagonal terms in the impedance matrix), the PGF is singular

if summed over the spatial phased-shifted terms, and not converging at all if

summed over the spectral modes. A technique to accelerate the convergence
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Figure 4.6: (a) Total electric field distribution calculated with the
mode-matching method for a 1550 nm normal incident plane wave reflected
by a TE-HCG. The HCG parameters are: nr = 3.164, grating period
Λ = 1070 nm, thickness tg = 195 nm, width w = 260 nm. (b) The
reflectivity and (c) the phase of the complex reflection coefficient of a
TE-HCG calculated using analytical mode-matching method [79] (solid),
numerical mode-matching method (circle), and finite-element method with
COMSOL Multiphysics (cross). The green dashed line indicates λ = Λ.
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of PGFs based on the Poisson summation formula is used and compared to

the direct summation over the spectral Floquet modes. PGFs converge with

less than 20 terms with the acceleration technique. The derivatives of PGFs

converge with less than 40 terms.

4.3.1 Convergence of the Periodic Green’s Function and Its
Derivatives

The periodic Green’s function for 1D gratings can be derived as [81]

gp(r, r
′) =

i

4

∞∑

n=−∞
eikixnΛH

(1)
0 (k |r− r′ − x̂nΛ|)

=
i

4

∞∑

n=−∞
eikixnΛ

1

π

∫ ∞

−∞
dkx

1

kz
eikx(x−x′−nΛ)+ikz |z−z′|

=
i

4π

∫ ∞

−∞
dkx

1

kz
eikx(x−x′)+ikz |z−z′|

∞∑

n=−∞
ei(kix−kx)nΛ

=
i

4π

∫ ∞

−∞
dkx

1

kz
eikx(x−x′)+ikz |z−z′|

∞∑

n=−∞

2π

Λ
δ(kx − kix −

2nπ

Λ
)

=
i

2Λ

∑

n

1

kzn
eikxn(x−x′)+ikzn|z−z′|

(4.14)

where kxn = kix +
2nπ
Λ
, kzn =

√
k2 − k2xn, (ℑm[kzn] > 0 for proper waves),

and we represent an infinite summation of complex exponentials by a periodic

train of Dirac delta functions using the Fourier expansion.

Two acceleration techniques for the summation are used. The first method

[82] is to sum in the spectral domain for the fast converging part, but convert

the slow converging part into spatial domain using the Poisson summation

formula. The slow converging part then becomes modified Bessel functions.

The second method [83] is to sum in the spatial domain (all image terms

of the Green’s function), but the asymptotic behavior is subtracted out by

introducing auxiliary terms. These auxiliary terms are then converted back

to spectral domain and converge rapidly. Figure 4.7(a) is the convergence of

gp(x−x′, z− z′) when x−x′ = ∆s and z− z′ = 0 with ∆s being the element

length in MOM. Figure 4.7(b) is the convergence of gp(x − x′, z − z′) when

x−x′ = 0 and z−z′ = ∆s. The first (blue) and the second (black) acceleration

62



methods both converge much faster than direct spectral summation (red).

Note that for the self-interaction terms (x− x′ = z− z′ = 0) in MOM, the

acceleration method will have singularity and the direct summation is never

converging. But we can directly integrate the element [84] and the result is

P.V.

∫ ∆s/2

−∆s/2

ds′gp|x=x′,z=z′,n=0 = ∆s
i

4

[
1 +

2i

π
ln

(
k∆s

4e
γ

)]
(4.15)

where γ = 1.781.
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Figure 4.7: (a) Convergence of the real and imaginary parts of the periodic
Green’s function with direct spectral sum (red), acceleration method 1
(blue), acceleration method 2 (black). Here, x− x′ = ∆s and z − z′ = 0.
(b) Convergence of the real and imaginary parts of the periodic Green’s
function with direct sum (red), acceleration method 1 (blue), acceleration
method 2 (black). Here, x− x′ = 0 and z − z′ = ∆s.

The derivatives of the periodic Green’s function can be derived as

∂

∂x′
gp(r, r

′) =
i

4

∞∑

n=−∞

[
eikixnΛH

(1)
1

(
k
√
(x− x′ − nΛ)2 + (z − z′)2

)

· k(x− x′ − nΛ)√
(x− x′ − nΛ)2 + (z − z′)2

]

=
1

2Λ

∑

n

kxn
kzn

eikxn(x−x′)+ikzn|z−z′|

(4.16)
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and

∂

∂z′
gp(r, r

′) =
i

4

∞∑

n=−∞

[
eikixnΛH

(1)
1

(
k
√
(x− x′ − nΛ)2 + (z − z′)2

)

· k(z − z′)√
(x− x′ − nΛ)2 + (z − z′)2

]

=
1

2Λ

∑

n

eikxn(x−x′)+ikzn|z−z′|sgn(z − z′)

(4.17)

where sgn() is the sign function. The derivatives of the periodic Green’s

function converge more slowly, and the acceleration method that subtracts

the asymptotic behavior of the Hankel function is used as in [83]. The cross-

terms in MOM can be derived as

∂

∂x′
gp(r, r

′) =
i

4

∞∑

n=−∞

[
eikixnΛH

(1)
1

(
k
√
(x− x′ − nΛ)2 + (z − z′)2

)

· k(x− x′ − nΛ)√
(x− x′ − nΛ)2 + (z − z′)2

]

− i

4

∞∑

n=−∞

[
eikixnΛH

(1)
1

(
k
√

(x− x′ − nΛ)2 + (|z − z′|+ cΛ)2
)

· k(x− x′ − nΛ)√
(x− x′ − nΛ)2 + (|z − z′|+ cΛ)2

]

+
1

2Λ

∑

n

kxn
kzn

eikxn(x−x′)+ikzn(|z−z′|+cΛ)

(4.18)
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∂

∂z′
gp(r, r

′) =
i

4

∞∑

n=−∞

[
eikixnΛH

(1)
1

(
k
√
(x− x′ − nΛ)2 + (z − z′)2

)

· k(z − z′)√
(x− x′ − nΛ)2 + (z − z′)2

]

− i

4

∞∑

n=−∞

[
eikixnΛH

(1)
1

(
k
√
(x− x′ − nΛ)2 + (|z − z′|+ cΛ)2

)

· k(|z − z′|+ cΛ)sgn(z − z′)√
(x− x′ − nΛ)2 + (|z − z′|+ cΛ)2

]

+
1

2Λ

∑

n

eikxn(x−x′)+ikzn(|z−z′|+cΛ)sgn(z − z′)

(4.19)

where c is a dimensionless control parameter chosen as 0.05. Figures 4.8(a)

and 4.8(b) show the convergence of ∂gp/∂x
′ and ∂gp/∂z

′, respectively, when

x− x′ = ∆s and z − z′ = 0. Figures 4.9(a) and 4.9(b) show the convergence

of ∂gp/∂x
′ and ∂gp/∂z

′, respectively, when x− x′ = 0 and z − z′ = ∆s.

For the self-interaction terms (x − x′ = z − z′ = 0) in MOM, we use the

expression in Eq. (4.16) and Eq. (4.17) in the spatial domain and directly

do the principal value integration within the element. For the n = 0 term of

the derivatives, the integration is zero because of the odd-symmetry,

P.V.

∫ ∆s/2

−∆s/2

ds′
∂

∂x′
gp|x=x′,z=z′,n=0 = P.V.

∫ ∆s/2

−∆s/2

ds′
∂

∂z′
gp|x=x′,z=z′,n=0 = 0

(4.20)

For n 6= 0 terms,

∂

∂x′
gp|x=x′,z=z′,n=0 = − i

4
eikixnΛH

(1)
1 (k|nΛ|) kn|n|

∂

∂z′
gp|x=x′,z=z′,n=0 = 0

(4.21)
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Figure 4.8: (a) Convergence of the real (red) and imaginary (black) parts of
∂gp/∂x

′ with direct spectral sum (dotted), acceleration (solid). Here,
x− x′ = ∆s and z − z′ = 0. (b) Convergence of the real (green) and
imaginary (blue) parts of ∂gp/∂z

′ with direct sum (dotted), acceleration
(solid). Here, x− x′ = ∆s and z − z′ = 0.
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Figure 4.9: (a) Convergence of the real (red) and imaginary (black) parts of
∂gp/∂x

′ with direct spectral sum (dotted), acceleration (solid). Here,
x− x′ = 0 and z − z′ = ∆s. (b) Convergence of the real (green) and
imaginary (blue) parts of ∂gp/∂z

′ with direct sum (dotted), acceleration
(solid). Here, x− x′ = 0 and z − z′ = ∆s.
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4.3.2 TE (s-Polarized) Scattering by 1D Periodic Dielectric
Structures

Two sets of SIEs are required to solve the surface fields since both tangential

electric field and magnetic field are present. Based on the formulation of SIEs

and the PGFs in Appendix A, the scattering problem becomes a matrix

equation with given incidence conditions. Once we have solved the MOM

expansion coefficients, we can find the tangential electric field and its normal

derivative. Further we can find the complex mode expansion coefficients rn

and tn for each diffraction order n in Region I and Region II, respectively.

The total field can then be calculated as

{
Ey(r) = Eiy(r) +

∑
n rne

ik+
1n·r r ∈ V1

Ey(r) =
∑

n tne
ik−

2n·r r ∈ V2
(4.22)

where the expressions for the coefficients rn and tn are given in Appendix

A, and k±
n = x̂kxn ± ẑkzn with kzn being real and positive for propagating

modes.

Figure 4.10 (a) shows the total electric field for a plane wave incident upon

a 1D grating calculated using SIEs with PGFs. The grating thickness tg is 600

nm, width D is 400 nm, period Λ is 1200 nm, the incident polar angle θ is 70

degrees, the incident azimuthal angle φ is 0, εr1 = 1, εr2 = 2, µr1 = µr2 = 1,

and the free-space wavelength λ0 is 600 nm. We also compare the results with

the those from finite-element methods (FEM) using COMSOL Multiphysics

on the x = 0 and z = 1µm lines. As shown in Fig. 4.10(b) and Fig. 4.10(c),

the two methods show good agreement. The numerical error in solving the

surface fields comes from the imperfect expansion as MOM basis functions.

The numerical error in the total field also comes from using a finite number

of diffraction orders in Eq. (4.22). When the observation point is close to

the grating, the contribution from evanescent waves can be strong. In the

example we are using four propagating modes and six evanescent modes.

4.3.3 TM (p-Polarized) Scattering by 1D Periodic Dielectric
Structures

Following the same procedure as the TE case, we can obtain the complex

expansion coefficient of each diffraction order for the TM case. And we can
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Figure 4.10: (a) Real part of the total electric field (ℜe[Ey]) for a TE
scattering problem with an oblique plane-wave incidence and a 1D
dielectric grating, calculated using surface integral equations (SIEs) with
periodic Green’s function. (b) Comparison between ℜe[Ey] along the x = 0
line calculated by SIEs and finite-element method (FEM). (c) Comparison
between ℜe[Ey] along the z = 1µm line calculated by SIEs and FEM.

use the same summation as in Eq. (4.22) to find the total field, except the

field component is changed to Hy and the expansion coefficients rn and tn

for the TM case are included in Appendix A.

Figure 4.11 (a) shows the total magnetic field for a plane wave incident

upon a 1D grating calculated using SIEs with PGFs. The grating parameters

and the incidence conditions are the same as the previous TE case. We also

compare the results with the those from finite-element methods (FEM) using
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COMSOL Multiphysics on the x = 0 and z = 1µm lines. As shown in Fig.

4.11(b) and Fig. 4.11(c), the two methods again show good agreement.
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Figure 4.11: (a) Real part of the total magnetic field (ℜe[Hy]) for a TM
scattering problem with an oblique plane-wave incidence and a 1D
dielectric grating, calculated using surface integral equations (SIEs) with
periodic Green’s function. (b) Comparison between ℜe[Hy] along the x = 0
line calculated by SIEs and finite-element method (FEM). (c) Comparison
between ℜe[Hy] along the z = 1µm line calculated by SIEs and FEM.
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4.4 Optical Properties of 2D High-Contrast Gratings

For 2D HCGs, structures are periodic in two directions and the modes sup-

ported by the grating have hybrid polarizations, that is, they are not sepa-

rable into TE and TM. The modes in 2D HCGs are also more closely-packed

spectrally. In other words, with a given incident wave, many more modes can

be excited in a 2D HCG than in a 1D HCG. The diffracted modes, also known

as the Floquet modes, have one extra degree of freedom for the propagation

direction, which makes it very difficult to predict the optical properties of a

2D HCG. Moreover, there are many more structural parameters in 2D HCGs,

which largely complicate the design and optimization procedure. Up to now,

majority of the gratings in use are still one-dimensional.

However, there are applications which require beam-steering or focusing

in both directions, or generating optical vortices [72, 76]. In these cases,

2D HCGs are more advantageous. Extensive experimental work has been

done in demonstrating the functionalities of 2D gratings [66, 72]. In this

work, we examine the physics of 2D HCGs and the mechanisms which allow

high-performance operation. The dual-mode analysis we propose can largely

simplify the searching of the initial design and the subsequent optimization.

A top-down design procedure is provided. To model 2D HCGs, the analytical

mode-matching method [35, 79], which was previously used in 1D HCGs, is

rather inefficient and requires complex root-searching for coupled nonlinear

equations. An in-house developed rigorous coupled-wave analysis (RCWA)

[85, 86] program is shown to be very convenient for design purposes, and

both the convergence and accuracy are verified.

We first study the underlying physics of 2D high-contrast gratings. Figure

4.12(a) shows a general 2D grating on a substrate (optional for suspended

grating membranes). The incident plane wave is characterized by the polar

angle θ and the azimuthal angle φ of its wave vector,

ki = (kix, kiy, kiz) = (k0 sin θ cosφ, k0 sin θ sinφ, k0 cos θ) (4.23)

The polarization of the incident electric field should also be characterized by

two angles,

Ei = (E0 sinα1 cosα2, E0 sinα1 sinα2, E0 cosα1) (4.24)
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Yet the electric field is transverse to the wave vector for propagating waves,

thus one angle α is sufficient to describe the polarization. For oblique inci-

dence, it is convenient to decompose the fields into s- and p-polarizations,

which will be discussed later.

(a) (b)

Figure 4.12: (a) Schematic diagram of a 2D high-contrast grating on a
rectangular lattice with a substrate. The plane-wave incident polar and
azimuthal angles are θ and φ, respectively. Parameters: Λx and Λy (periods
in x̂ and ŷ), Dx and Dy (box widths in x̂ and ŷ), ng and ns (grating and
substrate indices), and tg and ts (grating and substrate thicknesses). (b)
Schematic diagram of a 2D high-contrast grating on a hexagonal lattice
with a substrate. Parameters: period Λ, rod diameter d, grating and
substrate indices ng and ns, grating and substrate thicknesses tg and ts.

Design parameters include grating periods and widths in both x̂ and ŷ

directions (Λx, Λy, Dx, and Dy), as well as thicknesses and refractive indices

of both the high-index material and the substrate (ng, ns, tg, and ts), as

shown in Fig. 4.12(a). We define duty cycles for the high-index material as

ηx = Dx/Λx and ηy = Dy/Λy.

For applications where optical fields express rotational symmetry, 2D cir-

cular gratings on a hexagonal lattice, as shown in Fig. 4.12(b), are more

advantageous. Design parameters are simplified to grating period (Λ), rod

diameter (d), thicknesses and refractive indices of both the grating and sub-

strate (tg, ts, ng and ns). The duty cycle is defined as η = d/Λ. Gratings

on a hexagonal lattice, being more closely packed, require Λ < 2λ0/
√
3 in

order to have only the main harmonic being propagating, as compared to

Λx,y < λ0 for gratings on a rectangular lattice.

We first look at the incident and transmitted regions, which are typically

homogeneous. According to the Floquet theorem, the scattered field consists

of Floquet modes with different orders of tangential wave vectors, as a result
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of the phase matching between the homogeneous region and the 2D grating

with the translational symmetry. In rectangular lattice, the (m,n)-th order

Floquet mode is a plane wave with a wave vector being

k(m,n) = x̂kx + ŷky + ẑkz, kx = kix +Gx,m, ky = kiy +Gy,n,

Gx,m =
mπ

Λx

, m = 0,±1,±2, ...,±Nx,

Gy,n =
nπ

Λy

, n = 0,±1,±2, ...,±Ny,

kz = ±
√

4π2n2
r

λ2
− k2x − k2y

(4.25)

where nr is the index of the incident or transmitted region. Thus the total

number of modes is N = (2Nx+1)(2Ny +1). Using the RCWA formulation,

we can further expand the transverse fields of the i-th eigenmode in the

grating layer in terms of the same Floquet basis,

E
(i)
t = eiK

(i)
z z

(
∑

m,n

(x̂Ẽ
(i)
x,(m,n) + ŷẼ

(i)
y,(m,n))e

iGx,mx+iGy,ny

)
eikixx+ikiyy

= eiK
(i)
z z
∑

G

Ẽ
(i)
t,G · eiG·reikixx+ikiyy

(4.26)

where G = (Gx,m, Gy,n, 0), Ẽ
(i)
t,G = (Ẽ

(i)
x,(m,n), Ẽ

(i)
y,(m,n)), and the tilde symbols

indicate the spectral coefficients. Here, K
(i)
z is the propagation constant for

the i-th eigenmode. Since the displacement field in spatial domain can be

related to the electric field as

D(i)(r) =

∫
ε(r)δ(r− r′)E(i)(r′)dr′ (4.27)

then in spectral domain we can write

D̃
(i)
G

=
∑

G′

εGG′Ẽ
(i)
G′ (4.28)

where

εGG′ =
1

S

∫
ε(r) exp[i((G′ −G)r)]dxdy (4.29)

The above integration is performed over the unit cell with an area S. For a
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rectangular unit cell with a rectangular core medium ε2 and a surrounding

medium ε1, we have an analytical expression [86],

εGG′ = ε1δGG′ + (ε2 − ε1)
sin
[
π(m−m′)Dx

Λx

]
sin
[
π(n− n′)Dy

Λy

]

π2(m−m′)(n− n′)
(4.30)

For 2D circular materials ε2 with a radius r and a surrounding material ε1

[87],

εGG′ =

{
ε1 + (ε2 − ε1)

πr2

S
for G = G′

2(ε2 − ε1)
J1(|G−G′|r)
|G−G′|r

πr2

S
for G 6= G′ (4.31)

where J1 is the Bessel function of the first order. If the 2D grating is on

a hexagonal lattice with a period Λ, we can still define a rectangular unit

cell with a fixed aspect ratio
√
3 : 1. Then there will be equivalently two

phase-shifted core structures in a cell. If the core structure is circular, we

can write

εGG′ =

{
ε1 + (ε2 − ε1)

2πr2

S
for G = G′

2(ε2 − ε1)
J1(|G−G′|r)
|G−G′|r

πr2

S

(
1 + e[iπ(m−m′)+iπ(n−n′)]

)
for G 6= G′

(4.32)

Substituting the Fourier expansion Eq. (4.26) and Eq. (4.28) into the

vector wave equation ∇×∇× (E
(i)
t + ẑE

(i)
z ) = ω2

c2
D(i), and eliminating E

(i)
z

using the divergence theorem, we obtain the eigen-equation in the spectral

domain [86],

M̄ · Ẽ(i)
t = (K(i)

z )2N̄ · Ẽ(i)
t (4.33)

where M̄ and N̄ are 2N×2N matrices dependent on the frequency ω and re-

fractive index nr(x, y), (K
(i)
z )2 is the eigenvalue, and Ẽ

(i)
t is a 2N -dimensional

vector consisting of spectral coefficients,

Ẽ
(i)
t =

(
ẼG1

x , ..., ẼGN
x , ẼG1

y , ..., ẼGN
y

)T
(4.34)
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The M̄ and N̄ can be written in terms of block matrices as [86]

M̄ =

[
ω2

c2
εGG′ − δGG′(kiy +Gy)

2 (kix +Gx)(kiy +Gy)δGG′

(kix +Gx)(kiy +Gy)δGG′

ω2

c2
εGG′ − δGG′(kix +Gx)

2

]
(4.35)

N̄ =

[
δGG′ − (kix +Gx)Z

−1
GG′(kix +G′

x) −(kix +Gx)Z
−1
GG′(kiy +G′

y)

−(kiy +Gx)Z
−1
GG′(kix +G′

x) δGG′ − (kiy +Gy)Z
−1
GG′(kiy +G′

y)

]

(4.36)

where

ZGG′ = −ω
2

c2
εGG′ + δGG′

[
(kix +Gx)

2 + (kix +Gx)
2
]

(4.37)

In general, the M̄ and N̄ are not positive definite and Hermitian, and we

can have eigenvalues (K
(i)
z )2 not being real, that is, K

(i)
z being neither purely

real or imaginary but complex, which corresponds to leaky waves in periodic

waveguides.

The total transverse field in the grating layer can be expressed in terms of

eigenmodes as

Ẽt =
∑

i

AiẼ
(i)
t = ĒEE t ·A (4.38)

where ĒEE t is a 2N × 2N matrix with columns being eigenvectors Ẽ
(i)
t , and A

contains 2N -dimensional eigenmode expansion coefficients. From the eigen-

equations in Eq. (4.33) one can obtain forward and backward propagation

constants for each eigenmode (±K(i)
z ).

Similar to Eq. (4.38) we can expand the transverse magnetic field in terms

of the magnetic components H̃
(i)
t of the eigenmodes (H̃

(i)
t obtained from Ẽ

(i)
t ).

H̃t =
c

ω
(C̄ĒEE tK̄) ·A = H̄HHt ·A (4.39)
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where

¯̄C =

[
(kiy +Gx)Z

−1
GG′(kix +G′

x) −δGG′ + (kiy +Gy)Z
−1
GG′(kiy +G′

y)

δGG′ − (kix +Gx)Z
−1
GG′(kix +G′

x) −(kix +Gx)Z
−1
GG′(kiy +G′

y)

]

K̄ =




K
(1)
z 0 0 . . . 0

0 K
(2)
z 0 . . . 0

. . .

0 . . . K
(2N)
z




(4.40)

We can then express the z-dependent transverse electric and magnetic

fields including forward and backward propagation as

[
Ẽt(z)

H̃t(z)

]
=

[
ĒEE t ĒEE t

H̄HHt −H̄HHt

][
A+(z)

A−(z)

]

=

[
ĒEE t ĒEE t

H̄HHt −H̄HHt

][
eiK̄zz 0

0 e−iK̄zz

][
A+

A−

] (4.41)

where A± = [A±
1 , ..., A

±
2N ]. Here, e

±iK̄zz are diagonal matrices with elements

being exp (±iK(i)
z z). Matching the boundary conditions at the interface be-

tween two regions (e.g. I for air and II for grating), we have

[
A+

II

A−
II

]
=

[
ĒEE II
t ĒEE II

t

H̄HHII
t −H̄HHII

t

]−1 [
ĒEE I
t ĒEE I

t

H̄HHI
t −H̄HHI

t

][
A+

I

A−
I

]
=
[
T̄TT I−II

]
4N×4N

[
A+

I

A−
I

]

(4.42)

where T̄TT I−II
is the transfer matrix at the I-II interface. For a given incident

Ainc, we can solve for the reflected Aref and transmitted Atrans, once we find

the total transfer matrix or scattering matrix, which satisfy

[
Atrans

0

]
=
[
T̄TT total

]
4N×4N

[
Ainc

Aref

]
(4.43)
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and

[
Atrans

Aref

]
=
[
S̄SStotal

]
4N×4N

[
Ainc

0

]
(4.44)

respectively. We can find the coefficients Ẽt and H̃t for each spectral order

using Eq. (4.38), and the spatial representations Et and Ht using the Fourier

series as in Eq. (4.26).

The phase matching diagram for a 2D grating is a matching sphere, as

shown in Fig. 4.13. We can see that, when the wavelength is larger than

both Λx and Λy, only the (0,0) diffracted mode is propagating. Otherwise

there will be higher diffraction orders.

(a) (b)

Figure 4.13: (a) Phase matching diagram for Λx = Λy = 1.3µm and
λ = 1.55µm. (b) Phase matching diagram for Λx = 1.4µm, Λy = 1.4µm,
and λ = 1.55µm.

Figure 4.14(a) shows the (0,0)-th order reflection spectra for a 2D HCG un-

der normal incidence. Results are calculated with the finite-element method

(FEM) using COMSOLMultiphysics, the finite-difference time-domain method

(FDTD) using Lumerical Solutions, as well as an in-house developed 2D rig-

orous coupled-wave analysis (RCWA) program. Good agreement is shown

among three methods and good convergence of our RCWA program upon to-

tal number of 2D spectral orders (N) is observed. Moreover, calculating each

frequency point using RCWA with N = 625 is only 90 seconds on a personal

computer with a Intel Core i7-3520M processor, whereas the computation
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cost is much heavier for FDTD and FEM due to the full discretization of the

3D solution domain. When λ < max{Λx,Λy}, higher spectral orders become

propagating, and extracting each spectral order accurately from the total

field solution in FDTD or FEM becomes more challenging.

We also verify that our RCWA simulation is energy-conserving. We cal-

culate the scattered power flux (reflection and transmission) normalized by

the incident power flux for the (0,0), (+1,0), (−1,0) modes, as shown in

Fig. 4.14(b). The power scattered into the (0,0) mode drops from unity

when λ < 1µm, indicating power transfering into higher diffraction orders.

Nonetheless, the total scattered power remains unity, satisfying the conser-

vation of energy.
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Figure 4.14: (a) Comparison among the (0,0)-th order reflectivity spectra of
a 2D high-contrast grating (HCG) under normal incidence calculated using
finite-element method (blue star), finite-difference time-domain (red dots),
and rigorous coupled-wave analysis (RCWA) using N = 289 (magenta),
N = 441 (green), and N = 625 (blue). HCG parameters are Λx = 1µm,
Λy = 0.5µm, Dx = 0.6µm, Dy = 0.3µm, and tg = 0.5µm. (b) Spectra of
normalized scattered power in the ẑ-direction for (0,0), (+1,0), and (−1,0)
spectral orders (blue, red, and black, respectively), and the sum of the
three spectra (green).

We can also study the 2D HCG properties under oblique incidence. The

field polarization is defined relative to the incidence plane, which is formed

by the surface normal and the incidence wave vector. We use s- and p-

polarization for electric field perpendicular and parallel to the incidence

plane, respectively. Figure 4.15(a) shows the (0,0)-th order reflectivity and
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transmissivity as functions of the incidence polar angle θ with wavelength

λ = 2µm and incidence azimuthal angle φ = 0. In this case, all higher spec-

tral orders remain evanescent for the whole 90-degree range of θ. Thus the

sum of reflectivity and transmissivity remains unity. Results from our 2D

RCWA program and FEM software agree very well.

As the wavelength decreases, the higher spectral orders may be propa-

gating. The critical condition for the (m,n)-th spectral order to transition

between propagating and evanescent is

(
k0 sin θ cosφ+

mπ

Λx

)2

+

(
k0 sin θ sinφ+

nπ

Λy

)2

= k20 (4.45)

where 0 < θ < 90◦. If we consider the incidence plane being the xz-plane

(i.e. φ = 0), wavelength being fixed, and λ > Λy, then the cutoff angles from

the above critical condition become

θc = sin−1

(
1− |m|λ

Λx

)
for (+|m|, 0) to disappear

θc = sin−1

( |m|λ
Λx

− 1

)
for (−|m|, 0) to appear

(4.46)

Figures 4.15(b) and 4.15(c) show the normalized scattered power in the ẑ-

direction for different spectral orders under s- and p-polarized oblique plane

wave incidence, respectively. The cutoff angles for the (−2,0), (+1,0), and

(−3,0) modes are calculated from Eq. (4.46) to be 11.54◦, 23.58◦, and 53.13◦,

which agree with the results indicated by the arrows in Fig. 4.15(b) and Fig.

4.15(c).

We also observe resonance behavior around the cutoff angles for p-polarized

but not the s-polarized incidence. Such resonance is not a numerical arti-

fact since it remains as the numerical accuracy is varied (N in RCWA). It is

indeed the Wood’s anomaly which has been studied extensively since 1902

[88, 89, 90, 91, 92, 93]. Hessel and Oliner [92] classified the anomaly into two

types: a Rayleigh type where a diffraction order appears or disappears, and

a resonance type which is related to the coupling between the diffracted wave

and the leaky wave inside the grating. The two types may occur very closely

or separately. The second type is dependent on the incident field polariza-

tion, which requires the surface reactance of the grating to be capacitive or

inductive for resonance to occur. The surface reactance is affected by grating
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thickness, which explains why for a range of thicknesses, the anomaly only

happens to one polarization. Previous investigation on Wood’s anomaly in

1D gratings is well applicable to 2D gratings, though rigorous theoretical

analysis could be rather involved. In this case, our 2D RCWA program is a

convenient tool to study this effect. One thing to note is that, many studies

[92, 93] on 1D grating defined s- and p-polarizations relative to the grooves

of the grating, while in this work on 2D grating, polarizations are defined

relative to the incidence plane. Thus the analysis on “s-anomalies” in [92] is

applicable to the p-polarized case in Fig. 4.15(c).

Regardless of the anomalies, the energy conservation is still satisfied, as

confirmed by our RCWA results. The total scattered power flux in the ẑ-

direction remains a smooth function and has a cosine dependence on the

incident polar angle when normalized by the total incident power flux, as

shown by the magenta lines in Fig. 4.15(b) and Fig. 4.15(c).

Even using only the fundamental order of reflection or transmission with

normal plane wave incidence, the 2D grating can be designed as various opti-

cal components, such as polarizers and waveplates. Figure 4.16(a) shows the

magnitude of the reflected, transmitted, and total scattered wave under nor-

mal plane wave incidence in the subwavelength regime (λ > max{Λx,Λy}).
The scattered wave is decomposed into two polarizations, one being parallel

and the other being perpendicular to the incidence. As the incident polar-

ization rotates relative to the grating about the ẑ-axis, the magnitude of the

parallel component varies relative to the perpendicular component. This pro-

vides the possibility of using 2D gratings as polarizers. Moreover, the phase

difference between the two components is also dependent on the azimuthal

angle of the incident electric field, as shown in Fig. 4.16(b). This enables us

to design quarter-wave plates. In this example, the parallel and perpendicu-

lar reflected waves have a 90◦ phase difference when the incident polarization

angle is 27.7◦. If such angle is 52.7◦, the two transmitted components have

a −90◦ phase difference.

4.5 Design Rules for 2D High-Contrast Gratings

We have verified our 2D RCWA program as a design tool and studied the

optical properties of 2D HCGs, yet the design of 2D HCGs remains a chal-
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Figure 4.15: (a) Incident polar angle dependent reflectivity (black),
transmissivity (magenta), and their sum (green) for the (0,0) fundamental
order under p-polarized incidence with λ = 2µm calculated using rigorous
coupled-wave analysis, and comparison with finite-element method (red and
blue crosses). The same grating structure is solved under (b) s-polarized
and (c) p-polarized incidence with wavelength being λ = 0.6µm.
Normalized scattered power fluxes in the ẑ-direction for the (0,0)-th,
(+1,0)-th, (−1,0)-th, (−2,0)-th, and (−3,0)-th spectral orders are shown as
the blue, red, black, green, and cyan lines, respectively. The magenta line
indicates the total normalized scattered power flux in the ẑ-direction.
Arrows indicate the cutoff angles for spectral orders to appear or disappear.
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Figure 4.16: (a) Reflectivity (blue), transmissivity (red), and the
normalized scattered power (green) of a normal incident plane wave with
λ = 1.55µm as functions of the azimuthal polarization angle. The arrows
indicate the components parallel and perpendicular to the incident wave.
(b) Phase differences between the parallel and perpendicular components
for reflection (red) and transmission (blue) as functions of the azimuthal
polarization angle. The ±90◦ phase differences correspond to polarization
angles of 27.7◦ and 52.7◦ for reflection and transmission types, respectively.

lenge. The structural parameters include nr, tg, Λx, Λy, ηx, and ηy. The

incidence condition includes wavelength (λ), propagation direction (φ, θ),

and polarization (α). Here we present a design procedure which largely sim-

plifies the searching of initial parameters and the optimization process. As

shown in Fig. 4.17, we start from the eigenmodes in the 2D HCG, which is

considered as an infinitely long waveguide along the ẑ-direction and periodic

in the xy-plane. Based on the dispersion relations of the eigenmodes, we can

obtain initial designs for the grating structure in the xy-plane. Then using

the dual-mode analysis we can find the resonance condition, and thus the

values of grating thickness to provide high and possibly perfect reflection or

transmission. With the initial structural parameters, we can then optimize

the design for various applications. For reflectors, filters and resonators, we

are concerned with locations of the passband, stopband, and transition band.

By checking the frequency spectra and adjusting the grating thickness, we

can shift these bands to our desired frequency range. For polarizers and

waveplates, we want to obtain desired amplitude selectivity and relatively

phase shift between two orthogonal polarizations. Both can be achieved by

rotating the incident polarization relative to the 2D HCG, as shown in Fig.
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4.16. For 2D phase plate, we need to obtain a full 2π phase tuning range by

varying the HCG transverse structure (e.g. Λ or η). At the same time, we

need to maintain high reflection or transmission for designs to be practical.

More details about the phase plate are in the next section.

Figure 4.17: Design procedures of 2D high-contrast gratings.

4.5.1 Eigenmodes in 2D High-Contrast Gratings

Eigenmodes in 2D dielectric gratings are hybrid modes, which cannot be

separated into transverse electric (TE) and transverse magnetic (TM), as in

the case of 1D gratings. Furthermore, eigenmodes are more closely spaced

in the frequency domain due to one extra degree of freedom (one more mode

number), which largely complicates our analysis and prediction. However,

the majority of the modes with strong confinement have dominant transverse

field components, namely Ex/Hy-dominant (EH-like) and Ey/Hx-dominant

(HE-like). These modes in periodic gratings resemble the EH and HE modes

in the rectangle dielectric waveguides, using Marcatili’s approximation [94].

We can analyze the two separately under the approximation that grating

modes with one dominant polarization only couple strongly with the free-

space Floquet modes with the same polarization. Thus we can reduce the

number of modes to analyze by almost half. Moreover, the field distribution

of the incident plane wave possesses even symmetry in the xy-plane across

the unit cell except for particular incident angles. Therefore eigenmodes

with odd symmetry will not be excited for most incidence conditions and we

can further narrow down our analysis. Figure 4.18(a) shows the dispersion
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curves of the eigenmodes with even symmetry and Hx-component dominant

over Hy-component. In fact, the four modes shown in Fig. 4.18(a) are very

much like the HE modes in rectangular dielectric waveguides when they are

well-confined between the light lines (kz = ω/c and kz = ngω/c). Similarly,

we can separate out Ex/Hy-dominant eigenmodes with even symmetry, as

shown in Fig. 4.18(b). The Hy field profiles for EH00-like and EH20-like

modes at ω = 0.82πc
Λx

indeed are very close to those in dielectric waveguides,

as shown in Fig. 4.18(c).

Now we are able to focus on the modes which have major contribution

to the HCG behavior. For instance, between the cutoff frequencies ωc20 and

ωc02 (for the EH20-like and EH02-like modes, respectively), we have a spectral

region where only two key modes exist. This means within this region we

can engineer the interference between the two modes to produce desired

functionalities.

In other cases, 2D gratings on the hexagonal lattice are preferred. Our

RCWA program can be easily modified for this case. As shown in Fig.

4.19(a), the unit cell can be chosen as the yellow rectangle with a fixed

aspect ratio of
√
3 : 1. We can still separate eigenmodes with Hx-dominant

and Hy-dominant polarizations. The dispersion curves of the first few Hx-

and Hy-dominant eigenmodes are shown in Fig. 4.19(b) and Fig. 4.19(c), re-

spectively. We further identify the eigenmodes which are symmetric with the

translation along 1
2
x̂+

√
3
2
ŷ from those which are anti-symmetric, as indicated

by the red and blue lines in the dispersion curves. The Hy components of

the first symmetric, first anti-symmetric, and second symmetricHy-dominant

modes are shown in Fig. 4.19(d), Fig. 4.19(e), and Fig. 4.19(f), respectively.

4.5.2 Dual-Mode Analysis for Perfect Reflection and
Transmission

In many cases, the incident wave only strongly couples to a few eigenmodes

due to mismatch of the field polarization or symmetry. We are particularly

interested in the case when only two eigenmodes are strongly excited. Then

we can engineer the structure to produce nearly perfect interference between

them. In such case we can simplify our study to a dual-mode analysis. The
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Figure 4.18: (a) HE-like even eigenmodes in a 2D rectangular grating on a
rectangular lattice. The two dashed lines indicate the kz = ω/c and
kz = ngω/c light lines. (b) EH-like even eigenmodes in a 2D rectangular
grating on a rectangular lattice. (c) ℜe[Hy] for the EH00-like eigenmode and
EH20-like eigenmode at ω = 0.82πc

Λx
, as indicated by the green dots in (b).

transverse field in Eq. (4.38) is rewritten as

Ẽt ≈ ĒEEDM
t ·ADM (4.47)

where the “DM” indicates dual-mode. Here, ĒEEDM
t is a 2N × 2 matrix con-

taining only two eigen-vectors. And ADM = [Ap, Aq]
T contains two elements

which are the expansion coefficients of the two modes. The superposition

of eigenmodes in the HCG layer (Region II) forms a supermode. At certain

wavelength λ and HCG thickness tg, such a supermode can satisfy the Fabry-

Pérot resonance condition in the ẑ-direction. Assume the field is scaled by a

complex number Ω = |Ω|eiϕ after a round-trip, we have

|Ω|eiϕA+
II(0) = R̄II−IA−

II(0) = R̄II−Ie−iK̄z ·(−tg)A−
II(tg) = R̄II−IeiK̄ztgR̄II−IIIA+

II(tg)

= R̄II−IeiK̄ztgR̄II−IIIeiK̄ztgA+
II(0) = M̄(λ, tg)A

+
II(0)

(4.48)

where R̄II−I and R̄II−III are the reflection matrices for the Region II eigen-

modes bounced back by Region I (incident region) and Region III (trans-

mitted region), respectively. Both reflection matrices can be obtained from

Eq. (4.42). Equation (4.48) is an eigen-equation for the round-trip propa-

gation matrix M̄(λ, tg). When the phase ϕ of the eigenvalue Ω is even or
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Figure 4.19: (a) Circular high-contrast grating on a hexagonal lattice. The
yellow rectangle indicates a choice of the unit cell. Parameters: Λ = 1µm,
η = 0.6. Dispersion curves of (b) Hx-dominant and (c) Hy-dominant
eigenmodes possessing symmetry (red) and anti-symmetry (blue). ℜe[Hy]
for (d) the first symmetric, (e) the first anti-symmetric, and (f) the second
symmetric modes at frequency ω = 0.52πc

Λ
, as indicated by the green dots in

(c).
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odd multiples of π, we have perfect constructive or destructive interference,

respectively.

Using our dual-mode analysis, the dimensions of matrices and vectors in

Eq. (4.48) are reduced to contain only two modes,

[
M̄DM

]
2×2

(λ, tg)

[
Ap

Aq

]
= |ΩDM|eiϕDM

[
Ap

Aq

]
(4.49)

where the phase ϕDM can be adjusted by the wavelength and the grating

structure.

In Fig. 4.20(a) we see the reflection and transmission spectra of a 2D

circular HCG on a hexagonal lattice under Ex/Hy-polarized normal inci-

dence at λ = 1.55µm. We have perfect transmission (zero reflection) at two

wavelengths and ultra-high transmission in between. Using our dual-mode

analysis, we can easily extract the contribution to the reflected (0,0) mode

from the back-coupling of each of the two strongly excited eigenmodes, as

well as the contribution from all other modes, as shown in Fig. 4.20(b).

Furthermore, we can calculate the phase difference of the contribution from

the two modes. We can see that at zero reflection, indicated by the dashed

lines, the coupling magnitudes of the two modes are almost the same, and

the phase difference is almost ±π. This indicates the interference of the

two modes is very close to but not yet perfectly destructive. We still see

some coupling from other eigenmodes. This is because the eigenmodes in 2D

HCG are hybrid modes and we have no perfect selectivity of polarizations.

The result is a slight difference between the wavelengths for zero-reflection

and the dual-mode perfect interference. Nonetheless, this analysis provides a

very good estimation of the zero-reflection condition. The zero-transmission

case can be analyzed similarly when we look at the forward-coupling to the

transmitted region.

4.5.3 Resonance Conditions in 2D High-Contrast Gratings

For a given desired wavelength, we can also adjust the HCG thickness tg to

study the resonance condition. We first look at a rectangular HCG with the

same structure as in Fig. 4.14 under Ex/Hy-polarized normal incidence. The

dual-mode eigen-equation in Eq. (4.49) yields two eigen-solutions which we
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Figure 4.20: (a) Reflectivity (red) and transmissivity (blue) of a 2D circular
high-contrast grating on a hexagonal lattice with Λ = 750 nm, λ = 1.55µm,
and tg = 713 nm. Blue dashed lines indicate the wavelengths for perfect
transmission. (b) Back-coupling magnitude from the first (red), second
(black) symmetric eigenmodes and all other eigenmodes (green) in the
grating to the (0,0) mode in the incident region. The dashed lines in (b) are
at the same wavelengths as in (a). Blue solid line is the phase difference
between the reflected waves back-coupled from the two eigenmodes.

will name as supermode 1 and supermode 2. The phases of the eigenvalues

(ϕ1,DM and ϕ2,DM), which are the round-trip phases for the two supermodes,

are functions of the grating thickness. Figure 4.21(a) shows the half-trip

phases (ϕhalf
1,DM and ϕhalf

2,DM), and we record the HCG thicknesses at which the

half-trip phases are even and odd multiples of π, indicated by the empty

boxes and solid circles, respectively. At each given wavelength, we can solve

this dual-mode eigen-problem and obtain the thicknesses for resonance to

occur. Figure 4.21(b) shows the contour plot for the resonance conditions.

Red and black lines indicate the half-trip phases ϕhalf
1,DM and ϕhalf

2,DM being odd

multiples of π, respectively. Blue and green lines indicate the half-trip phases

ϕhalf
1,DM and ϕhalf

2,DM being even multiples of π, respectively.

Figure 4.22(a) shows the reflectivity contour plot as a function of the grat-

ing thickness and wavelength. From Fig. 4.18(b) we can find the cutoff

frequencies for the EH20 and EH02 to be ωEH20
c = 0.3922πc

Λx
(λEH20

c = 2.55Λx)

and ωEH02
c = 0.8272πc

Λx
(λEH02

c = 1.21Λx). Between these two frequencies we

see a dual-mode spectral window from the dispersion curves. These two fre-

quencies are also indicated by the black lines in Fig. 4.22. We can see the
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Figure 4.21: (a) Half-trip phases of the supermodes 1 (blue) and 2 (red) in
the same grating as in Fig. 4.14 under λ = 2.1µm normal incidence.
Empty boxes and solid circles indicate half-trip phases being odd and even
multiples of π, respectively. (b) Resonance conditions for the grating
thicknesses at given wavelengths. Red and blue lines indicate the half-trip
phase of supermode 1 being odd and even multiples of π, respectively.
Black and green lines indicate the half-trip phase of supermode 1 being odd
and even multiples of π, respectively.

ultra-high-reflection regions are mostly within the dual-mode window. Fig-

ure 4.22(b) shows the overlap between the resonance lines in Fig. 4.21(b) and

the reflectivity contour in Fig. 4.22(a). Excellent agreement is shown which

indicates that our dual-mode analysis can successfully predict the resonance

and high-reflection conditions in a 2D HCG.

For a circular HCG on a hexagonal lattice, we can also identify a dual-

mode spectral window where only two symmetric modes with the same dom-

inant polarization are strongly excited, as shown in Fig. 4.23(a). From the

transmissivity contour plot of our designed transmission-type HCG in Fig.

4.23(b), we see wide high-transmission regions inside the dual-mode win-

dow. These high-transmission regions are mostly bounded by or along the

resonance lines, as shown in Fig. 4.23(c). We again see an excellent over-

lap between the dual-mode resonance lines and the contour plot. From the

resonance lines, we can easily identify the design regions for broadband or

sharp-transition applications, such as reflectors, filters, and resonators.
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(a) (b)

Figure 4.22: (a) Reflectivity contour plot of a rectangular high-contrast
grating (same as in Fig. 4.14) as a function of the thickness tg and
wavelength λ. The solid lines indicate λ = 2.55Λx and λ = 1.21Λx,
corresponding to the cutoff frequencies ωEH20

c = 0.3922πc
Λx

and

ωEH02
c = 0.8272πc

Λx
for the EH20 and EH02-like modes, as shown in Fig.

4.18(b). (b) Overlap between the resonance contour plot (white) and the
reflectivity contour plot.
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Figure 4.23: (a) Dual-mode dispersion curves in a hexagonal-lattice grating
and the dual-mode window (same as in Fig. 4.19) is indicated by the blue
dashed lines at ω = 0.442πc

Λ
and ω = 0.62πc

Λ
. (b) Transmission contour plot

as a function of the grating thickness tg and wavelength λ. The dual-mode
window indicated by the two black lines. (c) Overlap between the
resonance lines (white) and the transmission contour plot.
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4.6 Engineering of 2D Phased Arrays Using

High-Contrast Gratings

With the knowledge of the resonance conditions and the mechanisms for

ultra-high reflection or transmission, we can also apply the initial design to

2D phase plates using HCGs. Now we fix the wavelength and grating thick-

ness, but vary the transverse structure to find a full 2π reflection (or trans-

mission) phase tuning range while maintaining the power efficiency. Figure

4.24 shows an example of a transmission-type hexagonal-lattice HCG op-

erating at λ = 1.55µm with a thickness of 0.8µm. We are able to find an

optimum design range by fixing Λ = 0.75µm, and tuning η from 10% to 63%,

as indicated by the black lines. Thus we have a mapping between the trans-

mission phase and the transverse geometry. The design of the phase plate is

essentially aimed at generating a transverse position-dependent phase alter-

nation profile, that is, ∆Φ(x, y). This can be translated into the design of

the η(x, y) profile. In many applications, we would need substrates for the

(a) (b)

Figure 4.24: Contour plots as functions of the grating period Λ and duty
cycle η for the (a) magnitude and (b) phase of the transmission through a
hexagonal-lattice grating under λ = 1.55µm normal incidence. The black
lines indicates a 2π phase range at Λ = 750 nm. The white lines indicate
the contour for 90% transmission.

HCGs. Figure 4.25(a) shows the magnitude and phase tuning by the HCG

duty cycle with different substrate thicknesses (tg = 0, λ/4, and λ/2). We

can see the full 2π phase tuning range is still obtainable except the phase
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discontinuity occurs at different locations. The magnitude remains almost

unchanged for thickness being multiples of half-wavelength, but is strongly

perturbed at quarter-wavelength. In the situation when the grating trans-

mission is not close enough to unity, we can use the substrate to further

improve the transmission, and find the optimum value of tg, as shown in Fig.

4.25(b).

By introducing a phase alternation ∆Φ based on the transverse spatial lo-

cation (x, y), we can have 2D HCGs behaving like many conventional optical

components. For example, having ∆Φ(x, y) = 2π
λ
(x cosφ sin θ + y sinφ sin θ),

we can steer the normal-incident plane wave into an oblique direction of

x̂ cosφ sin θ + ŷ sinφ sin θ + ẑ cos θ, where θ and φ are the polar and az-

imuthal angles of the transmitted wave vector. For a lens with a focus-

ing length f , we need ∆Φ(x, y) = 2π
λ

(
f −

√
f 2 + x2 + y2

)
. For an axi-

con [73] with an opening angle αaxi, an index nr and a radius R, we have

∆Φ(x, y) = (R −
√
x2 + y2)(nr − 1) tanαaxi. For a focusing lens that gener-

ates orbital angular momentum (OAM) of m~ (m = 0,±1,±2...), we have

∆Φ(x, y) = 2π
λ

(
f −

√
f 2 + x2 + y2 +mφ

)
. Using Fig. 4.25 we can design

the local duty cycle η(x, y) for the 2D HCG based on the desired phase

alternation ∆Φ(x, y).
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Figure 4.25: (a) Tuning of the transmission magnitude (solid) and phase
(dots) by grating duty cycle with thickness being 0 (blue), 258 nm (black),
and 517 nm (red). Same structure as in Fig. 4.19 and λ = 1.55µm. (b)
Transmission magnitude (blue) and phase (green) as functions of the
substrate thickness with 48% duty cycle.
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Once we have the design for 2D HCGs, we use the 3D FDTD method to

verify the performance. Figure 4.26(a) shows a normal-incident x-polarized

plane wave toward the +ẑ-direction at λ = 1.55µm passing through our de-

signed HCG beam steering plate with a 15◦ steering angle. The two dashed

lines indicate the normal and 15◦ from normal directions. The transmitted

wave is indeed traveling along the desired direction with high power effi-

ciency. Figure 4.26(b) shows a normal-incident x-polarized Gaussian beam

with a beam waist w0 = 7µm transmitting through a 10-µm-radius HCG

phase plate, which is designed to have a focal length f = 15µm. The ma-

genta dashed lines indicate the focusing behavior of an equivalent lens with a

numerical aperture of 0.5547. Figure 4.26(c) shows that the same Gaussian

beam passes through a HCG phase plate, which acts as an axicon [74], and

becomes a Bessel beam . The magenta dashed lines indicate an Bessel beam

opening angle of 2θBS = 0.4 rad, which is the result of an equivalent axicon

with a radius R = 10µm, an index nr = 1.5, and an axicon opening angle

αaxi = θBS/(nr − 1) = 0.4 rad. Such a Bessel beam has a maximum propa-

gation distance zmax ≈ w0/θBS = 35µm, within which the beam will have no

diffraction. This maximum distance can be increased by reducing the axicon

opening angle αaxi.

We can allow our 2D HCG phase plate to focus and simultaneously gener-

ate orbital angular momentum as a beam passes through. Such modification

can be easily done by adding a spatial-dependent, or more specifically, an

azimuthal angle-dependent phase delay. Using the phase information from

Fig. 4.25(a) we arrive at a 2D HCG design in Fig. 4.27(a) on top of a glass

substrate, with an operation wavelength at λ = 1.55µm. The transmitted

field intensity profiles at z = f −4λ, z = f , and z = f +4λ are shown in Fig.

4.27(b), 4.27(c), and 4.27(d), respectively, where the focal length is designed

to be 20µm. We can see a clear intensity null at the center, which is neces-

sary for nonzero OAM. The incident beam has a Gaussian distribution with

a beam waist of 7µm and zero OAM, as shown in Fig. 4.27(e). The focusing

behavior is observed by comparing the beam waists and the peak intensi-

ties 4λ below, 4λ above, and exactly at the focal plane, as well as those of

the source. Our design provides high transmissivity with a power efficiency

above 90%. Figure 4.27(f), 4.27(g), and 4.27(h) show the phase distribution

profiles at z = f−λ/3, z = f , and z = f+λ/3. The spatial-dependent phase

distribution already indicates nonzero OAM. The phase of the transmitted
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(a)

(b) (c)

Figure 4.26: ℜe[Ex] in the xz-plane for an x-polarized normal-incident wave
toward +ẑ at λ = 1.55µm transmitting through HCG phase plates
designed for Gaussian beams to: (a) be deflected by 15◦; (b) focus at a
15-µm distance; (c) be converted to Bessel beams. Black solid lines indicate
the grating layer. Blue dashed lines indicate the source locations. Other
dashed lines are for visual aids. All field intensities are normalized by the
incident field intensity.
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Figure 4.27: (a) Structure of the 2D high-contrast grating phase plate for
focusing at f = 20µm and generating +1~ orbital angular momentum. (b)
Gaussian source intensity with a beam waist of 12µm. (c) Cross-section
view of ℜe[Ex] in the xz-plane, where the red dashed line indicates the
focal plane, the blue dashed line indicates the source, and the black lines
indicate the phase plate. Field intensities at z = f − 4λ, z = f , and
z = f + 4λ are shown in (d), (e), and (f), respectively. Phase distributions
(in π) of the transmitted wave at z = f − λ/3, z = f , and z = f + λ/3 are
shown in (g), (h), and (i), respectively.
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wave increases from −π to π as the azimuthal angle increases in a 2π range,

indicating the OAM is +1~ per photon. Alternatively, we see the phase pro-

file rotates clockwise by 2π/3 as the beam propagates by ∆z = λ/3 in the

+ẑ-direction, showing a left-hand helical phase front. Therefore the OAM is

indeed +1~ per photon.

4.7 Summary

In this chapter we study the optical properties of high-contrast gratings

(HCGs), and the design of HCGs as novel high-performance, low cost, com-

pact optical components. We start with modeling the HCGs with one-

dimensional periodicity using the mode-matching method and the method

of moments with periodic Green’s functions. Our results show good agree-

ment with the finite-element method. Our model is efficient and accurate for

the design and optimization of the HCGs.

We have also investigated the physics of 2D HCGs. Our in-house devel-

oped 2D rigorous coupled-wave analysis (RCWA) program is shown to be

an efficient and accurate tool for understanding the optical behavior of 2D

HCGs with various structural and incidence parameters. We further demon-

strate the design rules for various optical applications using 2D HCGs, based

on the HCG mode properties we obtained from RCWA. Using our dual-mode

analysis, the design process is largely simplified. Once our high-performance

initial design is obtained, it is optimized according to the desired functionali-

ties, such as broadband reflection, high-Q resonance, filtering, polarizing, etc.

At last, we discuss the design of phase plates using 2D HCGs. Our designed

HCG phase plates can function as conventional optical components, such as

lenses, deflectors, axicons, spiral phase shifters, with excellent agreement.

There is much recent research progress on vortex beam generation using

plasmonic metastructures. The localized resonance behavior resulting from

the plasmonic effect also enables a wide range of beam engineering. How-

ever, materials supporting plasmonic resonance also introduce much loss.

Compared to these designs, our designs using low-loss high-index dielectric

materials demonstrate excellent performance in terms of power efficiency.
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CHAPTER 5

HIGH-CONTRAST-GRATING

MEMS-TUNABLE VCSELS

5.1 Introduction

Long wavelength vertical-cavity surface-emitting lasers (VCSELs) emitting

at around 1550 nm have drawn extensive research interest in the past few

decades due to their fast-growing applications in fiber communication, optical

interconnects, and laser spectroscopy [9, 95, 96, 97]. VCSELs with tunable

wavelengths are particularly important for wavelength-division-multiplexing

and light ranging and detection [29, 98, 99]. The high contrast grating

(HCG) controlled by a micro-electro-mechanical system (MEMS) has become

a promising candidate for tunable VCSELs due to its high reflectivity, good

mode selectivity, low power consumption, and low cost [32, 33, 34, 38, 39, 99].

The InP-based HCG tunable VCSELs have been demonstrated with single

mode operation, a wide wavelength tuning range, and fast MEMS tuning

speed [33]. However, a theoretical model has yet to be developed for analyz-

ing the laser performance. In this chapter, we demonstrate a comprehensive

model which covers the theories of quantum-well (QW) material gain, the

reflectivity of the top and bottom mirrors composed of both the HCG and

distributed Bragg reflectors (DBRs). The optical modeling of the resonant

cavity is connected to the electrostatic modeling of the MEMS, and the re-

sults provide a deeper understanding of the tunable device properties and

accurately predict the lasing wavelength and threshold current. This chap-

ter also establishes a rate-equation model that correlates the injected carrier

density and output photon density, accurately predicting the laser light out-

put versus current (L-I) behavior. Thermal effects are especially important

to consider for short cavity lasers such as VCSELs [100]. In this work we

consider the temperature change of the active region as more current is in-

jected. The degradation of the material gain as the active region temperature
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increases is considered, as well as the red-shift of both the gain peak and the

cavity resonance due to thermal effects. The current that leaks through the

quantum wells without undergoing recombination is also included. The un-

pinning effect of the carrier density above threshold is investigated. The

temperature-dependent L-I curves calculated by our model agree very well

with the experiment. This comprehensive model can be an important tool

for designing high-speed, low-chirp, low-threshold tunable lasers with wide

tuning ranges.

Figure 5.1(a) shows the schematic diagram of the HCG tunable VCSEL

to be modeled in this work [36, 37]. The active region consists of InGaAlAs

multiple quantum wells. The top reflector consists of the HCG and DBR.

The air gap between the HCG and top DBR is tunable by the MEMS control

voltage. The device is electrically injected and the proton implantation serves

to form the current confining aperture. Figure 5.1(b) shows the flow of

the modeling procedure. The HCG optical properties are calculated by the

mode matching method, and the air-gap thickness is correlated with the

tuning voltage by the MEMS model. The VCSEL structure is modeled by

the transfer matrix method, which can predict the MEMS-controlled lasing

wavelength and provide the cavity parameters. The rate-equation model

takes in the cavity parameters and the QW material gain calculated by the k·
p method. Finally, the temperature-dependent MEMS-controlled L-I curves

are calculated.

(a) (b)

Figure 5.1: (a) Schematic diagram of the high contrast grating tunable
VCSEL. (b) Block diagram of the theoretical modeling procedure.
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5.2 Material Gain of Strained Quantum Wells

The active region of the long-wavelength HCG VCSEL consists of InGaAlAs

multiple quantum wells (MQWs). The modeling of the optoelectronic prop-

erties of the strained MQWs is based on our rigorous band structure model,

and the detailed formulation is shown in Appendix B. The valence band

structure and eigenstates are solved with the 4-band k · p method using

the Luttinger-Kohn model [55, 101, 102, 103], which includes the heavy-

hole (HH) and light-hole (LH) mixing. The conduction band (CB) structure

and eigenstates are solved with the single-band effective-mass approxima-

tion. The strain effect is included through the Pikus-Bir strain terms in the

Hamiltonian [57].

The QW region is a 57.5Å InGa0.274Al0.046As layer with compressive strain

on the InP substrate. The barriers between the QWs are 90Å InGa0.366Al0.174As

layers with tensile strain on the InP substrate. The binary material param-

eters as well as the bowing parameters for ternary and quaternary materials

can be found in [58, 104]. Figure 5.2(a) shows the energy levels solved from

the 4-band Hamiltonian for six coupled QWs. Due to the coupling among

QWs, each state becomes a miniband with six coupled states. The energy

splitting among the states depends on the wavefunction leakage from one

QW to others, and thus is affected by the effective mass and the barrier

height. This is the reason why the CB miniband has a broader splitting.

Figure 5.2(b) shows the envelop functions ψ(z) and g(1)(z) for the lowest CB

miniband state and the highest HH1 miniband state, respectively.

The coupled Hamiltonian is solved at each given transverse wave number

kt, and we can obtain the energy dispersion relations for each subband, as

shown in Fig. 5.3(a) and 5.3(b). The CB dispersion is very close to parabolic

due to the effective mass approximation and the fact that the barrier effective

mass has little contribution for bound states. However, the VB dispersion is

non-parabolic due to the band-mixing effect.

The radiative transition rate can be obtained from Fermi’s golden rule,

which accounts for the Fermi-Dirac occupation of the conduction and va-

lence subbands. Therefore we can write the material gain and spontaneous

98



−600 −400 −200 0 200 400 600
−0.2

0

0.2

0.4

0.6

0.8

Position (Angstrom) 

E
ne

rg
y 

(e
V

)

 

 

C1 minibands

HH1 minibands HH2 minibands

(a)

−600 −400 −200 0 200 400 600
−0.2

0

0.2

0.4

0.6

0.8

Position (Angstrom) 

E
ne

rg
y 

(e
V

)

 

 

Strained CB edge

Strained HH edge

Strained LH edge

C1 wavefunction

HH1 wavefunction

(b)

Figure 5.2: (a) Energy levels for the minibands in the first conduction band
(CB) (green), the first heavy-hole (HH) band (red), and the second HH
band (orange). Black and blue solid lines are the strained CB and HH band
edges, respectively. (b) Green and red lines are the wave functions for the
lowest and highest states among the C1 and HH1 minibands, respectively.
The magenta line is the light-hole band edges.
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Figure 5.3: Energy dispersion relations for (a) the first conduction band
(C1), (b) the first heavy-hole band, the second heavy-hole band, and the
first light-hole band. Each subband is split into six minibands due to the
six coupled quantum wells.
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emission rate for the quantum wells as [105]

g(~ω) =
πe2

nrcǫ0m2
0ω

∑

σ2

∑

n,m

∫ ∞

0

ktdkt
πLz

|Mσ2
nm(kt)|2[fn

c (kt)− fσ2,m
v (kt)]L(kt, ~ω)

rspon(~ω) =
nrωe

2

π~c3ǫ0m2
0

∑

σ2

∑

n,m

∫ ∞

0

ktdkt
πLz

|Mσ2
nm(kt)|2fn

c (kt)[1− fσ2,m
v (kt)]L(kt, ~ω)

(5.1)

where σ2 accounts for the valence band spin degeneracy, where the conduc-

tion band spin degeneracy is already accounted for. The lineshape function

L(kt, ~ω) accounts for the finite transition linewidth due to various scatter-

ing mechanisms. Here, Mσ2
nm is the momentum matrix element, and fc and

fv are the Fermi distribution functions for electrons in the n-th conduction

subband and m-th valence subband, respectively.

fn
c (kt) =

1

1 + exp(Ec,n(kt)−Fc

kT
)

fm
v (kt) =

1

1 + exp(Ev,m(kt)−Fv

kT
)

(5.2)

The quasi-Fermi levels (QFLs) Fc and Fv in Eq. (5.2) are related to the

injected carrier density by

n =

↑,↓∑

σ1

∑

n

1

2πLT

∫ ∞

0

ktdktf
σ1,n
c (kt)

p =

U,L∑

σ2

∑

m

1

2πLT

∫ ∞

0

ktdkt [1− fσ2,m
v (kt)]

(5.3)

Figure 5.4 shows how the quasi-Fermi levels Fc, Fv, and their separation

∆F depend on the injection carrier density. From Fig. 5.4(a) we can deter-

mine at different temperatures the values for injection carrier density such

that the Fermi-level separation is equal to the effective band gap, i.e. the

Bernard-Duraffourg inversion condition. The corresponding carrier density

is known as the transparency carrier concentration ntr [48, 55]. Also, the

difference between ∆F and the QW barrier height determines the rate for

carriers to tunnel into or leak out of the QW region [37, 63]. Therefore this

should be considered in our design, which will be discussed in later sections.
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Figures 5.4(b) and 5.4(c) show the Fc and Fv calculated from Eq. (5.3) and

the miniband energies at the zone center (kt = 0) are shown for reference.

Note that at high injection levels, the CB QFL can get very close to the

QW barrier energy level and the calculation in Eq. (5.3) should include the

continuum states; otherwise, the QFL value will be overestimated.
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Figure 5.4: (a) Quasi-Fermi-level (QFL) separation ∆F as a function of the
injection carrier density at temperature T = 283K, T = 313K, and
T = 343K. (b) QFL for conduction band and (c) QFL for valence band as
functions of the injection carrier density. The zone-center (kt = 0) energies
for the minibands are shown for reference.

Once we understand how the injected carriers populate in the energy

bands, we need to calculate the strength of the transition, which is deter-

mined by the optical transition matrix, or the momentummatrix. The optical

101



transition matrix is calculated from the wavefunction overlap between sub-

bands, as shown in Appendix B. We consider the transition separately when

the interacting light polarization is TE (parallel to QW) and TM (perpen-

dicular to QW). Figure 5.5 shows the squared magnitude of the momentum

matrix (normalized by m0Ep/6) for different light polarizations and different

types of interband transitions. We can see the C1-HH1 transition favors the

TE polarization and allows little TM polarization unless going far away from

zone center (large kt). This is due to the lack of the |Z〉 p-state in the HH

basis. On the other hand, the C1-LH1 transition favors the TM polarization.
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Figure 5.5: Normalized squared magnitude of the momentum matrix for
C1-HH1 (solid) and C1-LH1 (circle) transitions with the TE (red) and TM
(blue) light polarizations.

The large densities of electrons and holes in the laser active region bring in

the many-body effects, which cause the band gap renormalization. Thus, we

need to account for the red-shift of the band edge with the increasing injection

level. The band gap shrinkage is modeled with a cubic-root dependence on

the carrier density [48] as

∆Eg = −∆EBR(n2D)
1/3 (5.4)

where ∆EBR is the band gap renormalization constant for quantum wells,

and n2D is the surface carrier density in each quantum well normalized by
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1012 cm−2. Furthermore, we include the temperature dependence of the

material band gap [58] as

Eg(T ) = Eg(T = 0)− αT 2

T + β
(5.5)

where α and β are the Varshni parameters [59].

Our InGaAlAs gain model has been verified by experimental data [104].

Figures 5.6(a) and 5.6(b) show the transverse electric (TE) polarized (electric

field parallel to QWs) material gain and the TE spontaneous emission rate

per unit volume per unit energy interval (s−1cm−3eV−1), respectively, for

the InGaAlAs QWs at different temperatures and different carrier densities.

Increasing temperature results in the red-shift of the gain and spontaneous

emission spectra. Increasing carrier density results in the blue-shift of both

spectra under low injection due to band-filling, but red-shift under high in-

jection due to band gap renormalization. The total spontaneous emission

rate per unit volume (s−1cm−3) is the integration over the emission spectrum

averaged among the TE and TM polarizations [55],

Rsp =

∫ ∞

0

1

3
[2× rTE

spon(~ω) + rTM
spon(~ω)]d(~ω) (5.6)

We see both the peak gain and the total spontaneous emission rate decrease

with temperature.

5.3 Optical Modeling of High-Contrast-Grating

Tunable VCSELs

The top mirror of the tunable HCG VCSEL consists of 2-4 pairs of p-doped

DBR and a TE-HCG (electric field parallel to HCG bars) with an air gap

in between the two regions. The bottom mirror consists of 40-55 pairs of

n-doped DBR composed of alternating InGaAlAs and InP layers. The air-

gap thickness and, consequently, the lasing wavelength can be tuned by the

MEMS control voltage. Since the device diameter is large (between 10-25 µm)

compared to the emission wavelength, the fundamental transverse mode pro-

file approaches a plane wave, and the effective index approaches the material

refractive index. In this case, the transfer matrix method [55] can reduce

103



1.4 1.5 1.6 1.7 1.8
-500

0

500

1000

1500

2000

2500

3000

M
at

er
ia

l g
ai

n 
(c

m
-1
)

Wavelength ( m)

T

n=3.0x1018cm-3

n=1.8x1018cm-3

n=1.1x1018cm-3

(a)

1.2 1.3 1.4 1.5 1.6 1.7
0

1

2

3

4

5

6

7

8

T

rTE sp
on

 (x
10

27
 s

-1
cm

-3
eV

-1
)

Wavelength ( m)

n=3.0x1018cm-3

n=1.8x1018cm-3

n=1.1x1018cm-3

(b)

Figure 5.6: (a) TE-polarized material gain and (b) TE-polarized
spontaneous emission rate calculated for InGaAlAs quantum wells at
T = 283 K (solid), T = 313 K (dashed), and T = 343 K (dotted), with
carrier densities n = 1.0× 1018 cm−3 (blue), n = 1.8× 1018 cm−3 (green),
and n = 3.0× 1018 cm−3 (red).

the 3D problem to a 1D problem in the longitudinal direction, and provide

an accurate prediction of the top and bottom mirror reflectivity, cavity reso-

nance wavelength, confinement factor, quality factor, and threshold material

gain.

In Chapter 4 we have obtained the optical properties of HCGs, particularly

the fundamental-mode reflection coefficient. In this section, the complex

reflection coefficient of the TE-HCG is used as the boundary condition for

the transfer matrix method, as illustrated in Fig. 5.7(a). The transfer matrix

method uses a forward and a backward propagating plane wave for each

layer, characterized by two complex coefficients An and Bn. The boundary

conditions at the last layer determine the relationship Bn+1 = rHCGAn+1,

and the complex coefficient rHCG for the fundamental-mode HCG reflection

is obtained in Chapter 4.

Figure 5.7(b) shows the reflectivity of the top mirror (including the DBR,

air gap and HCG), bottom mirror, and HCG alone. The top DBR, though

only four pairs, increases the reflection bandwidth of the HCG alone. The

bottom DBR bandwidth is narrower because of the large number of pairs, and

the round-trip high reflection window of the Fabry-Pérot cavity is determined

by the bottom DBR.

Figure 5.8(a) shows the longitudinal profile of the electric field magnitude
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Figure 5.7: (a) Transfer matrix method for calculating the reflection
magnitude and phase of the top mirror. The high-contrast grating (HCG)
reflection properties are used as the boundary conditions at the HCG-air
interface. (b) The reflectivity of the top (blue) and bottom (black) mirrors
calculated by the transfer matrix method, plotted with the reflectivity of
HCG alone (red).

obtained from transfer matrix method and the refractive index across the

device layer structure at wavelength λ = 1.55µm. We observe that at this

desired wavelength, the laser cavity is indeed at the Fabry-Pérot resonance,

and the air gap between the HCG and the VCSEL top surface supports full

periods of standing waves. Figure 5.8(b) shows the magnified profiles in the

laser cavity. We see that the peak of the electric field overlaps well with the

laser active region made of the MQWs. From here we can also obtain the

cavity quality factor Q, photon lifetime τp for the resonant mode, and the

optical confinement factor Γ, which are important design parameters for a

laser cavity and will be discussed later.

By adjusting the air-gap thickness, we can investigate the tunability of

both the magnitude and phase of the top mirror reflection. The peak reflec-

tivity of the top mirror changes little with the air-gap thickness. However,

there is significant variation in the shape and asymmetry of the reflection

spectrum, as shown in Fig. 5.9(a). The air-gap thickness largely perturbs

the phase of the wave reflected by HCG, which ultimately determines the
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Figure 5.8: (a) Longitudinal standing wave pattern of the electric field
magnitude (blue) and the refractive index profile (green) across the device
layer structure. The red line indicates the interface between the air gap and
the high-contrast grating. (b) Magnified view of (a) showing the overlap
between the electric field and the multiple quantum wells as the gain region.

resonance wavelength. Similar to the Fabry-Pérot model, we define the total

round-trip phase as

φtotal(λ) = φtop(λ) + φcavity+bottom(λ) (5.7)

where φtop is the top reflection phase and φcavity+bottom is the bottom reflection

phase that includes the cavity region. The resonance condition is determined

by

φtotal(λr) = 2mπ, m ∈ integer (5.8)

Figure 5.9(b) shows the round-trip phase spectra for different air-gap thick-

nesses, indicating the tunability of the cavity, where zero-crossing points

correspond to cavity resonances. Due to the change of the resonance wave-

length, the reflectivity at resonance also changes largely with the air-gap

thickness, as indicated by the circles in Fig. 5.9(a), though the peak reflec-

tivity remains nearly the same. The transfer matrix method can take into
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account complex effective indices in the layered medium as

n = n′ + in′′ =





n′ + i(αi − g)
λ

4π
, in QWs

n′ + iαi
λ

4π
, elsewhere

(5.9)

where g is the QW material gain and αi is the material intrinsic loss. The

effective index real part n′ is assumed constant since the change induced by

the gain in QWs is negligible. Further, the small change in the thin QWs has

little effect on optical modes. In order to calculate the threshold material

gain gth and mirror loss αm, we define the round-trip gain at resonance to be

Gtotal(g) = − ln

(
1

|rtop(λ)|2|rcavity+bottom(λ, g)|2
)∣∣∣∣

λ=λr

(5.10)

where rtop and rcavity+bottom are the complex reflection coefficients of the top

mirror, and the bottom region (including cavity region and bottom DBR),

respectively. Then the threshold material gain can be found by setting the

round-trip gain to be zero

Gtotal(gth) = 0 (5.11)

Since the mirror loss is equal to the threshold modal gain Gth when the

intrinsic loss is zero, we can find the mirror loss as

αm = Gth|αi=0 = Γgth|αi=0 (5.12)

where Γ is the confinement factor calculated from the transfer matrix method

at a given air-gap thickness. The photon lifetime can be found as

1

τp
= vg(αm + αi + αd) =

ω

Qrad

+
ω

Qmat

+
ω

Qd

(5.13)

where αd accounts for the diffraction loss due to the finite-size effect, and

the tilting and bending of the HCG caused by the MEMS tuning [106]. Qrad,

Qmat, and Qd refer to the quality factors associated with the radiation loss,

material loss, and diffraction loss, respectively.

Figure 5.10(a) shows the tuning of the cavity resonance wavelength by

controlling the air-gap thickness through the MEMS. The linear tuning range

can be as wide as 20 nm, with a tuning efficiency around 0.04 nm/nm. Figure
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Figure 5.9: (a) The reflectivity of the top mirror with different air-gap
thicknesses: d1 = 2.13 µm, d2 = 2.03 µm, d3 = 1.83 µm, d4 = 1.63 µm, and
d5 = 1.53 µm. The circles indicate the corresponding resonance wavelengths
at different air-gap thicknesses. (b) Total round-trip phase spectra in the
Fabry-Pérot model with different air-gap thicknesses. The zero-crossing
points of the total round-trip phase determine the resonance wavelengths.

5.10(b) shows the cavity mirror loss and the radiation Q at different air-gap

thicknesses. We can see that when air-gap thickness is 1.83 µm, the reflection

spectrum in Fig. 5.9(a) is most symmetric. It also corresponds to the center

of the tuning range in Fig. 5.10(a), and the lowest mirror loss and the highest

radiation Q in Fig. 5.10(b).
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Figure 5.10: (a) Cavity resonance wavelengths of the HCG VCSEL at
different air-gap thicknesses controlled by the MEMS. (b) Cavity mirror loss
αm and radiation quality factor Qrad as functions of the air-gap thickness.
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Moving away from the linear tuning range, the lasing wavelength begins

to change very quickly with the air-gap thickness, which is mainly caused by

the bottom DBR. The phase delay from the air gap changes linearly with the

gap thickness, while the HCG phase dispersion is also nearly linear, yet the

phase dispersion from the bottom DBR is highly nonlinear for off-resonance.

When the tuning goes beyond a certain point, there is a sudden jump in the

resonance wavelength, indicated by the discontinuities in Fig. 5.10(a). The

discontinuity is due to the switching between two longitudinal cavity modes.

Within the linear tuning range, the mirror loss and radiation Q change very

little, while outside of this range, the mirror loss sharply increases and the

radiation Q sharply decreases. This is due to the significant decrease in

reflectivity from the bottom DBR as the resonance wavelength shifts away

from the center of the reflection bandwidth spectrum.

5.4 Rate Equations for Tunable VCSELs

After obtaining the gain g(λ, n, T ) and spontaneous emission rate Rsp(n, T )

from the k · p method, and the photon lifetime τp, the confinement factor Γ

and the mirror loss αm from the transfer matrix method, the output power

of the HCG tunable VCSELs is modeled using the rate equations [48, 55, 62]

for the carrier density n and the photon density S

dn

dt
= ηi

I − Il(n, Ta)− Ish(I)

qVa
−Rnr(n)−Rsp(n, Ta)−Rst(n, Ta)S

dS

dt
= ΓRst(n, Ta)S − S

τp
+ ΓβspRsp(n, Ta)

(5.14)

where βsp is the spontaneous emission coupling factor, and ηi is the current

injection efficiency. The active region temperature Ta can be obtained from

the substrate temperature Tsub, input electric power (V I), and output light

power P as

Ta = Tsub +Rth(V I − P ) (5.15)

where Rth is the thermal resistance in K/mW. The cavity resonance wave-

length also has a red-shift with increasing temperature due to the change of

the material refractive index and the thermal expansion of the cavity. The
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change of lasing wavelength due to thermal effects is

∆λ =
dλ

dT
∆T (5.16)

where dλ/dT , obtained from experiments, is around 0.102 nm/K, and ∆T

is known once the active region temperature is obtained in Eq. (5.15). The

non-radiative recombination rate and the stimulated emission rate can be

calculated as

Rnr(n) = vs
Aa

Va
n+ Cn3 (5.17)

Rst(n, Ta) = vgg(λ, n, Ta) (5.18)

where vs is the surface recombination velocity, C is the Auger recombination

coefficient, Aa and Va are the surface area and volume of the active region,

respectively, and vg is the group velocity in the active region.

In order to account for injected carriers that pass through the quantum

wells without undergoing recombination, we consider the series leakage cur-

rent as

Il(n, Ta) = Il0 · exp
(
(Fc − Fv)− Eg,barrier

kTa

)
(5.19)

where Fc and Fv are the quasi-Fermi levels in conduction band and valence

band, respectively, Eg,barrier is the band gap of the QW barrier, and Il0 is

a leakage current parameter. As the quasi-Fermi level separation (Fc − Fv)

becomes closer to the QW barrier band gap, the leakage current significantly

increases, which indicates large leakage currents at high injection levels.

Due to the incomplete electrical isolation of the proton implantation, we

include Ish(I) in the rate equations as the shunt leakage current. The shunt

leakage is dependent on the injection current rather than the carrier density,

and the carrier pinning effect does not clamp the shunt leakage. The shunt

leakage path can be considered as a leakage diode in parallel with the laser

diode. When the laser diode has a small turn-on voltage compared to the

shunt diode, the laser diode path behaves like a small resistance, and the volt-

age is almost linear with the total current. The shunt diode current depends

on the voltage exponentially. Thus, in this case, it is a good approximation

to model the shunt leakage current as an exponential function of the total

current.

If the shunt diode turns on earlier than the laser diode, the shunt leakage
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current increases with total current linearly at first, and the laser diode is

nearly an open circuit. As the voltage increases, the laser diode turns on,

and the circuit becomes two parallel diodes. Since the current through each

diode depends on the voltage exponentially, the two currents are polynomial

functions of each other. Thus, in this case, we can relate the total current

to the shunt leakage current as a linear function at first and a polynomial

function after the laser diode turns on.

The output light power can be obtained as

P = βc1~ωS
Va
Γ
vgαm + βc2~ωRspVa (5.20)

where βc1 and βc2 account for the coupling efficiencies for the stimulated

emission and spontaneous emission power.
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Figure 5.11: Comparison between the theoretical and experimental L-I
curves for a fixed-gap TE-HCG VCSEL at different temperatures.

Figure 5.11 shows the theoretical temperature-dependent L-I curves of a

fixed-gap (fixed-wavelength) TE-HCG VCSEL and the excellent agreement

with experimental data. Our theory can accurately explain the temperature

dependence of the threshold current and the rollover of the output power
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due to thermal effects. The threshold current increases with temperature

because the material gain is reduced at higher temperature for a given car-

rier density. Therefore more carriers are required to increase gain to a high

enough level to overcome the loss. Thus the threshold current is larger at

higher temperature. The rollover can be caused by a combination of many

mechanisms. Firstly, as larger current is injected, the active region temper-

ature increases, which causes the thermal expansion of the cavity and the

change of the material refractive indices. Thus, the lasing wavelength has

a red-shift with temperature. Meanwhile, the material gain also has a red-

shift with increasing temperature, as shown in Fig. 5.6. However, the lasing

wavelength red-shift is slower than that of the material gain, causing the

detuning of the gain peak and the lasing wavelength and the reduction of

the stimulated emission rate and output power. Secondly, the material gain

itself decreases with temperature even without considering the detuning, as

also shown in Fig. 5.6. Thirdly, the series leakage current increases at higher

carrier densities and high temperatures, as indicated in Eq. (5.19). Higher

carrier density also gives rise to a larger non-radiative recombination current

and larger spontaneous emission current. Therefore, the current contributing

to the lasing mode is reduced, resulting in less lasing power. Furthermore, the

shunt leakage increases with the injection current, and directly contributes

to the rollover.

Figure 5.12(a) and Fig. 5.12(b) show the gain and carrier density solved

from the rate equations as functions of the injection current. The kinks in

the curves correspond to the lasing threshold, with higher substrate temper-

atures resulting in larger threshold currents, as described above. Both the

gain and the carrier density should be pinned at their threshold values if

thermal effects are not considered. However, the unpinning effect is observed

in our theoretical results. The red-shift of the lasing wavelength at higher

injection currents causes the decrease of the HCG and DBR reflectivity and

the increase of mirror loss. Therefore, the gain is pinned at slightly higher

values to overcome the loss when current increases, as shown in Fig. 5.12(a).

The carrier unpinning [63, 107] shown in Fig. 5.12(b) is mainly caused by

the degradation of the material gain at elevated temperatures as injection

current increases, and the detuning between the gain peak and the cavity

resonance. To compensate the reduction of gain at cavity resonance, more

carriers are required as current increases. At the same injection current above
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Figure 5.12: (a) Material gain and (b) carrier density solved from the rate
equations as functions of the injection current at different substrate
temperatures.

threshold, higher substrate temperature also requires a larger carrier density

to maintain enough material gain, thus larger non-radiative, spontaneous

emission, and leakage currents. This results in a smaller portion of the in-

jected current contributing to the lasing mode at a higher temperature, and

both the output power and the wall-plug efficiency are reduced, as shown in

Fig. 5.11.

Figure 5.13(a) shows the spontaneous emission rate Rsp and the Auger re-

combination rate RAuger calculated as functions of the injection current. Due

to the unpinning of the carrier density, both Rsp and RAuger keep increasing

above threshold, and they are both larger for higher substrate temperatures.

However, Rsp is less temperature-sensitive than RAuger. Even though the car-

rier density n is larger with higher substrate temperature at a given injection

current, as shown in Fig. 5.12(b), the increase of temperature also causes

Rsp(n, Ta) to drop, as shown in Fig. 5.6(b). Therefore, compared to RAuger,

Rsp increases with substrate temperature much slower at a fixed injection

current.

To see the temperature-dependent spontaneous emission, we obtain the B

coefficient as

B(n, T ) =
Rsp(n, Ta)

n2
(5.21)

where Rsp, n, and Ta are all solved from the rate equations at a given injec-

tion current. The relationship among Rsp, n, and Ta at different substrate
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temperatures are shown in Fig. 5.13(b). The B coefficient decreases with

carrier density due to the increasing active region temperature. At the same

carrier density, the B coefficient with lower substrate temperature is indeed

larger. The four curves are pinned to the same curve due to stimulated emis-

sion, where the kinks indicate the thresholds. At the same carrier density,

Rsp is also larger with lower substrate temperature. Below threshold, Rsp

increases with n almost quadratically, yet the curvature is reduced by the

increase of the active region temperature.
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Figure 5.13: (a) Calculated spontaneous emission rate (solid) and Auger
recombination rate (dashed) as functions of the injection current at
different substrate temperatures as labeled. (b) Relationship among the B
coefficient, spontaneous emission rate, and the carrier density, all of which
are solved from the rate equations at different substrate temperatures as
labeled.

Figure 5.14 shows the five current mechanisms that comprise the injection

current, including the current contributing to stimulated emission, sponta-

neous emission, non-radiative recombination, the current leaking through

quantum wells, and the shunt leakage current, at four different substrate

temperatures. We can see indeed smaller percentage of the injection current

goes into the lasing mode when the substrate temperature is higher.
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Figure 5.14: The stimulated emission current (green), spontaneous emission
current (red), non-radiative recombination current (cyan), series leakage
current (black), and shunt leakage current (blue) solved as functions of the
injection current with substrate temperatures at (a) T = 288 K, (b)
T = 308 K, (c) T = 328 K, and (d) T = 348 K.
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5.5 Electrostatic Model for MEMS and Tunable

Resonance

In order to correlate the lasing wavelength and the L-I curve with the MEMS

tuning voltage, we use an electrostatic model for the MEMS that controls

the air-gap thickness, as shown in Fig. 5.15(a). The gravity of the MEMS

top plate and the attractive force due to the opposite charges on the two

MEMS plates are balanced by the MEMS elastic force. The force equations

are

k(h0 − x0) = mg, for V = 0

k(h0 − x) = mg + FE = mg +
ǫAV 2

2x2
, for V 6= 0

(5.22)

where k is the spring constant for the elastic force Fk, FE is the electrostatic

force, h0 is the air-gap thickness when no charge is on the plate and gravity is

not considered, i.e., the MEMS has no elastic deformation. x0 is the air-gap

thickness when the control voltage is zero (no charge), and x is the air-gap

thickness when the control voltage is V . From Eq. (5.22) we can obtain the

mapping between the control voltage V and the air-gap thickness x as

x2(x0 − x) =
ǫAV 2

2k
(5.23)
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Figure 5.15: (a) Schematic diagram of the electrostatic model for MEMS
controlling the air-gap thickness. (b) Theoretical and experimental
resonance wavelengths versus tuning voltage.
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Since the mapping between the air-gap thickness and resonance wavelength

is obtained from Fig. 5.10(a), we can correlate the tuning voltage and res-

onance wavelength using Eq. (5.23). By taking the spring constant k as

the only fitting parameter, our theoretical results match very well with the

experimental data, as shown in Fig. 5.15(b). The fitted spring constant k is

0.16 N/m.
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Figure 5.16: (a) Theoretical (dashed) and experimental (solid) L-I curves of
a MEMS-controlled TE-HCG VCSEL with different tuning voltages. (b)
Theoretical (circle) and experimental (square) peak output powers and
threshold currents as functions of the MEMS tuning voltage.

At a given MEMS control voltage, we can calculate the air-gap thickness,

which is used as the input to the transfer matrix model, outputting the mirror

loss αm, confinement factor Γ, and the quality factor Q. Our rate-equation

model further produces the L-I curves at different tuning voltages, as shown

in Fig. 5.16(a). We can also see that as we increase the tuning voltage, the

air-gap thickness is tuned away from the center of the linear tuning range in

Fig. 5.10(a), and the threshold current increases due to the increase of the

mirror loss. As shown in Fig. 5.16(b), the change of the threshold current

and the peak power is small below V = 4 V because the shift of the lasing

wavelength is small, as indicated in Fig. 5.15(b). Yet above V = 4 V we

see a fast increase of the threshold current. Besides of the increase of the

mirror loss, the increase of diffraction loss also has a contribution to the

large increase of the threshold current. The increase of diffraction loss can

be caused by the bending of the HCG reflector due to MEMS tuning. From

our model, we estimate the additional diffraction loss ∆αd (relative to 0 V)
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at 5 V, 7 V, and 8 V to be 12, 20, and 26 cm−1, respectively, which equates to

a 0.1%, 0.17%, and 0.23% reduction in the reflectivity, respectively. Both the

peak power and the slope of the L-I curve increase slightly with tuning voltage

due to the increase of mirror loss. The parameters used in our theoretical

model are listed in Table. 5.1.

Table 5.1: Parameters used in our theoretical model.

Name and symbol Value Name and
symbol

Value

Surface recombination
velocity vs

800∼1200 m/s Varshni
parameter α

0.42 meV/K

Auger coefficient C 2∼9×10−29 cm6/s Varshni
parameter β

271 K

Band gap renormaliza-
tion constant ∆EBR

25 meV Thermal re-
sistance Rth

(measured)

∼1.5 mW/K

Series leakage current
parameter Il0

80∼120 mA Intrinsic loss
αi

5∼15 cm−1

Cavity resonance shift
dλ/dT (measured)

∼0.102 nm/K Injection effi-
ciency ηi

0.7∼0.9

Diffraction loss αd

(Tuning V=0∼8 V)
34∼60 cm−1

5.6 Thermal Management in High-Contrast-Grating

VCSELs

Thermal management is a crucial matter in the VCSEL design. Unlike edge-

emitting lasers, VCSELs have much wider cavity mode spacing and the cav-

ity resonance is rather sensitive to heat due to the temperature-dependent

material indices and the cavity length. Furthermore, the active region tem-

perature strongly affects the optical gain not only on the peak wavelength

but also the maximum gain achievable at a given carrier injection level. The

thermal effect comes in not only through the substrate temperature but also

through electrical injection due to the finite device thermal resistance. As a

result, the substrate temperature affects the threshold current, and the in-

jection increases, so we can often observe the rollover behavior in the output

power, as discussed in the previous section.
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Figure 5.17 illustrates the thermal detuning between the cavity resonance

and the material gain peak as the injection current increases with a fixed

substrate temperature at 75◦C. The cavity resonance indicated by the vertical

lines red-shifts as current increases and cavity temperature rises, due to the

increase of material indices and the expansion of cavity length. The material

gain also red-shifts with temperature and it is much faster than the red-shift

of the cavity resonance. From Fig. 5.6, we know that at the same carrier

density, higher temperature gives lower peak gain. From Fig. 5.17 we can

tell that in order to maintain the gain at resonance to overcome cavity loss,

indeed more carriers are injected because the peak gain is higher at 6Ith. The

carrier density at a given injection current is solved from the rate equations

in the previous section.
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Figure 5.17: Thermal detuning between the cavity resonance (vertical lines)
and the material gain peak when the injection current is Ith (red), 4Ith
(blue), and 6Ith (green). The substrate temperature is set at 75◦C and Ith
is the threshold current at this substrate temperature.

Using COMSOL Multiphysics, a finite-element-method simulation tool,

the heat distribution of the HCG VCSEL structure, as shown in Fig. 5.18,
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(a) (b)

Figure 5.18: Schematic diagram of a VCSEL with silicon HCG as bottom
mirror [38]. (a) Tilted-view of the VCSEL cross-section with circulating red
arrows indicating optical cavity, drawn to scale. The two material systems
are heterogeneously integrated via AuSn thin film, with a hermetically
sealed air gap of length L within the cavity. (b) The VCSEL employs a
proton implant-defined aperture for current confinement, indicated by red
curved lines between contacts.

was modeled by an 8µm aperture with 25, 45, and 65 mW heat sources in

the active region. The boundary conditions are set as thermal insulation at

the semiconductor-air interface to provide a worse-case scenario for heat dis-

sipation. The heat transfer in the vertical and radial directions can be very

different in a multilayer system such as a DBR [108], where the thermal resis-

tance of each layer adds up in series and in parallel, respectively. Moreover,

the heat flow is strongly affected by the alloy impurities and layer interfaces,

due to the restriction of the phonon mean free path [109]. In conventional

standalone VCSELs, the heat dissipation relies on the bottom DBR in be-

tween the heat source and heat sink. In flip-chip-bonded VCSELs, the heat

can be carried away through the AuSn bonding layer.

In Fig. 5.19, we show a comparison between a flip-chip bonded VCSEL on

SOI using AuSn, and a standalone III-V VCSEL structure, with the DBR

thermal conductivity modeled after the approach in [110]. The maximum

temperature generated is 125◦C for the VCSEL on SOI, whereas the stan-

dalone III-V structure reached 183◦C, shown in Fig. 5.19(a) and 5.19(b),

respectively. Although the flip-chip VCSEL is resting on insulator (SOI),

the graph in Fig. 5.19(c) shows that, at a given input thermal power, the

average temperature in the active region has a stronger dependence on the

vertical thermal conductivity of the DBR for standalone VCSELs (red) than
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Figure 5.19: Radially-symmetric COMSOL finite-element simulation
modeling temperature distribution in VCSEL using 45mW heat source in
active region. (a) Bonded Si-HCG VCSEL on SOI substrate; active region
z = 0, DBR extends from 0.8µm ≤ z ≤ 11.3µm, air z ≥ 11.3µm (since InP
substrate is removed), thermal oxide −4µm ≤ z ≤ −4µm, silicon substrate
z ≤ 4µm and 350µm thick. (b) Standalone III-V VCSEL with InP
substrate; structure has air above active region from z ≥ 0.8µm, DBR
extends from −11.3µm ≤ z ≤ −0.8µm, InP substrate z ≤ 11.3µm and
350µm thick. (c) Maximum temperature versus DBR quaternary alloy
thermal conductivity. The standalone III-V structure reaches higher
temperature for DBR thermal conductivities below 7.2W/mK.
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flip-chip-bonded VCSELs (blue). This means the flip-chip-bonded VCSELs

can overcome the restriction of heat flow caused by the DBR alloy impuri-

ties and interfaces. The thermal conductivity of AuSn is 57W/mK, roughly

an order of magnitude better than for a standard DBR quaternary alloy,

i.e. 5W/mK for AlGaInAs [111]. For alloy compositions with thermal con-

ductivities below 7.2W/mK, the bonded device exhibits superior thermal

performance.

5.7 Summary

We have successfully demonstrated a comprehensive model for the MEMS-

tunable HCG VCSELs. The model calculates the temperature-dependent

material gain and spontaneous emission spectra of the quantum-well ac-

tive region. The optical properties of the HCG reflector are modeled with

both analytical and numerical methods, showing good convergence. The

HCG VCSEL cavity is modeled with the transfer matrix method, which pro-

duces important parameters for device-level simulation. The rate-equation

model takes into account the thermal effects and our calculated temperature-

dependent L-I curves show excellent agreement with experiment. Our MEMS

model further correlates the tuning voltage with the resonance wavelength,

threshold current, and peak power. The measurements can be accurately

explained by our model.
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CHAPTER 6

CONCLUSION

6.1 Summary of Key Results

In this dissertation, we have investigated the theory and experiment of novel

surface-emitting semiconductor lasers, which enable a wide range of appli-

cations in optical communications. On one hand, we focus on metal-cavity

micro and nanolasers as promising light sources for dense photonic integrated

circuits and power-efficient on-chip optical links. On the other hand, we ex-

amine the high-power tunable surface-emitting lasers, which are important

components in the wavelength division multiplexing (WDB) systems for high-

speed fiber optical communication. Fast and widely tunable light sources also

enable applications such as optical coherent tomography (OCT), and light

detection and ranging (LIDAR).

We first present the theory and design for surface-emitting micro and

nanolasers using submonolayer quantum-dots (QD) as the optical gain medium.

Our theoretical formulation of the QD gain allows us to predict the available

gain at the desired wavelength with the given level of carrier injection. Our

size-dependent cavity model provides the information of cavity loss and res-

onance. Our rate-equation model allows us to predict the laser light output

at a given injection current. This comprehensive theory enables us to design

cavity structures where the total loss can be balanced and the lasing thresh-

old is achievable. We further investigate the spontaneous emission from QDs

coupled to the optical modes in micro and nanocavities. Our theory success-

fully explains the sub-threshold and above-threshold QD laser behavior.

The fabrication steps for surface-emitting micro and nanolasers are dis-

cussed in details. We demonstrate high-quality plasma etch for forming laser

cavities. We develop recipes for the coating of sidewall SiNx and the opening

for the laser top emission window. We present lasing behavior of our QD
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and quantum-well (QW) lasers with both metallic and dielectric cavities,

at room temperature under electrical injection. Our QW lasers work with

continuous-wave (CW) injection with device diameter down to 3µm and

threshold current as low as 0.58 mA. Our QD lasers work under CW and

pulsed injection with device diameters down to 4µm and 1µm, respectively.

Our current-dependent laser emission spectra allow us to study thermal ef-

fects on cavity properties and QW/QD light emission. We further investigate

the sub-threshold light emission spectra of our QD devices. The extracted

spontaneous emission coupling in micro and nanocavities agrees with our

theoretical prediction.

We then study the optical properties of the high-contrast grating (HCG),

which is a key component in tunable lasers based on the micro-electro-

mechanical systems (MEMS). We develop theoretical models for gratings

with one-dimensional (1D) periodicity using both the mode-matching method

and the surface-integral-equation method based on the periodic Green’s func-

tion. Excellent agreement is shown between our developed methods and

the commercial packages. To understand the physics of HCGs with two-

dimensional (2D) periodicity, we develop the rigorous coupled-wave analysis

(RCWA) package, which allow us to efficiently predict the optical perfor-

mance of 2D HCGs with various combinations of structural parameters and

wave incidence conditions. Furthermore, we present a top-down design pro-

cedure that enables us to efficiently engineer the 2D HCGs for a wide range

of applications, such as reflectors, filters, resonators, waveplates, and 2D

phase plates. The simulation results of our designed 2D phase plates show

ultra-high power efficiency, and excellent agreement with our predicted func-

tionalities, such as beam steering, focusing, beam conversion, and generation

of orbital angular momentum of light.

Finally, the HCGs that we design are integrated onto the vertical-cavity

surface-emitting lasers (VCSELs), and can be made tunable using MEMS.

We present a comprehensive theoretical model for the HCG VCSELs, and

it covers from the scale of quantum structures, lasing devices, up to the

scale of photonic integration. Our band structure model based on the k · p
method calculates the optical gain and spontaneous emission of the strained

QW active region. The grating reflection properties and the cavity reso-

nance condition are investigated through our optical model. Correlating the

results with the electrostatic model for the MEMS, we accurately predict
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the measurements on the voltage-controlled lasing wavelength. Furthermore,

our calculated temperature-dependent wavelength-tunable light output ver-

sus current behavior shows excellent agreement with experiment. Thermal

effects on HCG VCSELs are discussed, and directions for heat management

are provided.

6.2 Future Prospects

We have demonstrated standalone metal-cavity QD lasers working at room

temperature. The future directions include further size reduction and the

integration on silicon platform. We propose the new design by reducing the

number of distributed Bragg reflector (DBR) pairs from 19/32 to only 4

pairs, as shown in Fig. 6.1. Using fewer pairs of DBR, the high reflection

window can be widened, and we can maintain the reflectivity by adding a

silver layer to form the hybrid mirror. Furthermore, the series resistance can

be largely reduced and the heat dissipation also becomes more efficient. As

the device size becomes small, the carrier leakage and temperature stability

are important issues to consider. The multi-stack submonolayer quantum

dots can provide good carrier confinement and are less temperature sensitive

as compared to quantum wells. Thus the thermal rollover of the device L-I

curves is expected to be pushed much farther. In order the form the back-

side (n-side) hybrid mirror, the device is flip-chip-bonded to silicon, and

a substrate removal is performed, followed by the deposition of the silver

reflector. An InGaP layer is used as the etch-stop layer during substrate

removal. The substrate-removed devices now have their sizes largely reduced

and are compatible for integration on silicon platform. Flip-chip-bonded

devices also are expected to have largely improved thermal properties. As

shown in Fig. 6.1, the new design has a total volume of 2.16λ30 for a 1-

µm-diameter structure, and a total volume of λ30 for a 0.65-µm-diameter

structure. The new design is nearly three times smaller than the current

design in terms of the size of the metal cavity. In terms of threshold gain,

the new design has values of 1302 cm−1 and 1471 cm−1 for the 1-µm-diameter

and 0.65-µm-diameter structures, respectively. With the use of submonolayer

quantum dots, the threshold condition is achievable at room temperature.

For the HCG VCSELs, we have demonstrated the heterogeneous integra-
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(a) (b)

Figure 6.1: (a) Schematic diagram of a metal-cavity quantum-dot
surface-emitting nanolaser integrated on silicon. (b) Scanning electron
micrograph of a nanocavity with quantum-dot active region.

tion of InP-based long-wavelength devices on the silicon-on-insulator (SOI)

substrate, using silicon as the HCG. However, after flip-chip bonding the

bottom DBR is still kept. The future direction is to replace the bottom

DBR by the HCG mirror, and thus VCSEL will be free of DBR and the

cavity is formed by two HCG layers. The device height can be shrunk down

to micrometer or sub-micrometer scale without sacrificing the cavity quality

factor. The thermal properties are expected to improve even more, and the

device structure would be more favorable for dense photonic integration.

We have also provided the designs for 2D phase plates using HCGs, which

enables us to engineer the beam properties. The future direction is to in-

tegrate the HCG phase plates onto VCSELs. Then the VCSEL output can

be steered, focused, or converted to Bessel beams with minimal divergence.

The phase plates can also introduce orbital angular momentum (OAM) to the

output beam, which provides another degree of freedom for carrying informa-

tion. The VCSEL arrays integrated for OAM multiplexing are expected to

greatly improve the optical communication bandwidth on top of the existing

technologies, such as the wavelength division multiplexing.
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APPENDIX A

SURFACE INTEGRAL EQUATIONS FOR

PERIODIC DIELECTRIC STRUCTURES

We consider a dielectric structure which is periodic in the x̂-direction, and

invariant along the ŷ-direction. The scattering problem of an incident plane

wave, of which the wave vector is within the xz-plane, can then be separated

into a TE (s-polarized) case and a TM (p-polarized) case. We first consider

the TE case, where Ey is the component for our formulation. The integral

equations based on the Green’s function in Region I (incident region) and

Region II (transmitted region) can be written as [81]

Eiy(r) +

∫

Λ

dS ′ {E1y(r
′)n̂ · ∇′g1p(r, r

′)− g1p(r, r
′)n̂ · ∇′E1y(r

′)} =

{
E1y(r), r ∈ V1

0, r ∈ V2

(A.1)

−
∫

Λ

dS ′ {E2y(r
′)n̂ · ∇′g2p(r, r

′)− g2p(r, r
′)n̂ · ∇′E2y(r

′)} =

{
0, r ∈ V1

E2y(r), r ∈ V2

(A.2)

Combining the integral equations, we obtain the two SIEs on the surface S ′,

−
∫

Λ

dS ′ {E1y(r
′)n̂ · ∇′g1p(r, r

′)− g1p(r, r
′)n̂ · ∇′E1y(r

′)}+ 1

2
E1y(r) = Eiy(r)

∫

Λ

dS ′ {E2y(r
′)n̂ · ∇′g2p(r, r

′)− g2p(r, r
′)n̂ · ∇′E2y(r

′)}+ 1

2
E2y(r) = 0

(A.3)

where r ∈ S ′. According to the boundary conditions,

{
E1y(r

′) = E2y(r
′) = Ey(r

′)
n̂·∇′E1y(r′)

µr1
= −iωH1t(r

′) = −iωH2t(r
′) = n̂·∇′E2y(r′)

µr2

(A.4)
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Then we can let





E1y(r
′) = E2y(r

′) = Ey(r
′) =

∑
l dlvl(r

′)

n̂ · ∇′E1y(r
′) = µr1

∑
j cjvj(r

′)

n̂ · ∇′E2y(r
′) = µr2

∑
j cjvj(r

′)

(A.5)

where v(r) is the basis function for MOM. The matrix equation becomes

[
¯̄Bm×l

¯̄Am×j

¯̄Dm×l
¯̄Cm×j

][
d̄l×1

c̄j×1

]
=

[
b̄m×1

0̄

]
(A.6)

where

¯̄Bml = −P.V.
∫

Λ

dS ′n̂ · ∇′g1p(rm, r
′)vl(r

′) +
1

2
δml

¯̄Amj = µr1P.V.

∫

Λ

dS ′g1p(rm, r
′)vj(r

′)

b̄m = Eiy(rm)

¯̄Dml = P.V.

∫

Λ

dS ′n̂ · ∇′g2p(rm, r
′)vl(r

′) +
1

2
δml

¯̄Cmj = −µr2P.V.

∫

Λ

dS ′g2p(rm, r
′)vj(r

′)

(A.7)

From the matrix equation we obtain the expansion coefficients for the fields

on the surface in terms of MOM basis functions. Then we can find the total

fields in Regions I and II as the summation of all propagating diffraction

orders,

{
Ey(r) = Eiy(r) +

∑
n rne

ik+
1n·r r ∈ V1

Ey(r) =
∑

n tne
ik−

2n·r r ∈ V2
(A.8)

where k+
1n = x̂kxn+ ẑ

√
ω2µ1ε1 − k2xn and k−

2n = x̂kxn+ ẑ
√
ω2µ2ε2 − k2xn. The

mode expansion coefficients can be found as [81]

rn =
i

2Λ

∫

Λ

dS ′

{
Ey(r

′)n̂ · ∇′ e
−ik+

1n·r′

k1zn
− e−ik+

1n·r′

k1zn
n̂ · ∇′Ey(r

′)

}

tn = − i

2Λ

∫

Λ

dS ′

{
Ey(r

′)n̂ · ∇′ e
−ik−

2n·r′

k2zn
− e−ik−

2n·r′

k2zn
n̂ · ∇′Ey(r

′)

} (A.9)

We then consider the TM case, where Hy is the component for our formu-
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lation. The integral equations in Region I, Region II, and on surface S ′ are

the same as Eq. (A.1), (A.2), and (A.3), except that we change Eiy, E1y,

and E2y to Hiy, H1y, and H2y, respectively. The key difference comes from

the boundary conditions, where we need to rewrite Eq. (A.4) as

{
H1y(r

′) = H2y(r
′) = Hy(r

′)
n̂·∇′H1y(r′)

εr1
= iωE1t(r

′) = iωE2t(r
′) = n̂·∇′H2y(r′)

εr2

(A.10)

Then we can let





H1y(r
′) = H2y(r

′) =
∑

l dlvl(r
′)

n̂ · ∇′H1y(r
′) = εr1

∑
j cjvj(r

′)

n̂ · ∇′H2y(r
′) = εr2

∑
j cjvj(r

′)

(A.11)

The matrix equation is the same as Eq. (A.6) except that

¯̄Bml = −P.V.
∫

Λ

dS ′n̂ · ∇′g1p(rm, r
′)vl(r

′) +
1

2
δml

¯̄Amj = εr1P.V.

∫

Λ

dS ′g1p(rm, r
′)vj(r

′)

b̄m = Hiy(rm)

¯̄Dml = P.V.

∫

Λ

dS ′n̂ · ∇′g2p(rm, r
′)vl(r

′) +
1

2
δml

¯̄Cmj = −εr2P.V.
∫

Λ

dS ′g2p(rm, r
′)vj(r

′)

(A.12)

Finding the total field and the mode expansion coefficient for each diffrac-

tion order is the same as Eq. (A.8) and Eq. (A.9), except that all the fields

are changed to Hy and the surface field expansion uses Eq. (A.11).
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APPENDIX B

MODELING OF STRAINED MULTIPLE

QUANTUM WELLS WITH THE k · p
METHOD

The Bloch wave functions at the zone center can be taken from the s-state

and p-state wave functions of a hydrogen atom model, which are the spherical

harmonics [101], that is, |S ↑〉, |S ↓〉 for conduction band, and |X ↑〉, |X ↓〉,
|Y ↑〉, |Y ↓〉, |Z ↑〉, and |Z ↓〉 for valence band.

For most semiconductor photonic applications in the near-infrared and

visible range, the effective band gap is sufficiently large such that the mixing

among conduction band (CB) and valence band states is negligible. We can

solve the CB states from a single-band Hamiltonian with the effective mass

approximation,

−~
2

2

∂

∂z

[
1

m∗(z)

∂

∂z
ψ(z)

]
+

~
2k2t

2m∗(z)
ψ(z) + V (z)ψ(z) = En(kt)ψ(z) (B.1)

with En(kt) being the n-th subband energy with a given transverse wave

number kt. In order to include the strain effect on the band edge, we have

V = Ec + Aǫ, where Ec is the unstrained CB edge, and Aǫ is the strain

contribution to be expressed later.

Using the k · p method for degenerate bands based on the Luttinger-Kohn

(LK) model [102], the valence band state can be expanded into the following

basis functions to include the coupling among degenerate bands,

|1〉 = − 1√
2
|(X + iY ) ↑〉, |4〉 = 1√

2
|(X − iY ) ↓〉

|2〉 = 1√
6
| − (X + iY ) ↓ +2Z ↑〉, |5〉 = 1√

6
|(X − iY ) ↑ +2Z ↓〉

|3〉 = 1√
3
|(X + iY ) ↓ +Z ↑〉, |6〉 = 1√

3
|(X − iY ) ↑ −Z ↓〉

(B.2)

where |1〉 = |3
2
, 3
2
〉 and |4〉 = |3

2
,−3

2
〉 are known as the heavy-hole (HH) states,

|2〉 = |3
2
, 1
2
〉 and |5〉 = |3

2
,−1

2
〉 are known as the light-hole (LH) states, and
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|3〉 = |1
2
, 1
2
〉 and |6〉 = |1

2
,−1

2
〉 are known as the spin-orbit split-off (SOSO)

states. Note that here, we assume the valence band has weak coupling with

the conduction band. But for narrow-gap materials we have to use an eight-

fold basis [105].

We can further block-diagonalize the 6-band LK Hamiltonian using the

basis transformation as

|u1〉 =
1√
2
[|1〉e−i3φ/2 − i|4〉ei3φ/2], |u4〉 =

1√
2
[|1〉e−i3φ/2 + i|4〉ei3φ/2]

|u2〉 =
1√
2
[i|2〉e−iφ/2 − |5〉eiφ/2], |u5〉 =

1√
2
[−i|2〉e−iφ/2 − |5〉eiφ/2]

|u3〉 =
1√
2
[−i|3〉e−iφ/2 − |6〉eiφ/2], |u6〉 =

1√
2
[i|3〉e−iφ/2 − |6〉eiφ/2]

(B.3)

The resultant Hamiltonian will become

HLK
6×6(kt) =

[
HU

3×3(kt) 0

0 HL
3×3(kt)

]
(B.4)

where

HU
3×3(kt) =




Ev − P−Q Rρ + iSρ

√
2Rρ − i 1√

2
Sρ

Rρ − iSρ Ev − P+Q −
√
2Q− i

√
3
2
Sρ

√
2Rρ + i 1√

2
Sρ

√
2Q+ i

√
3
2
Sρ Ev − P−∆




HL
3×3(kt) =




Ev − P−Q Rρ − iSρ

√
2Rρ + i 1√

2
Sρ

Rρ + iSρ Ev − P+Q −
√
2Q+ i

√
3
2
Sρ

√
2Rρ + i 1√

2
Sρ

√
2Q− i

√
3
2
Sρ Ev − P−∆




(B.5)
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and

A =
~
2

2m′
c

(k2t + k2z) + Aǫ

P =
~
2

2m0

γ1(k
2
t + k2z) + Pǫ

Q =
~
2

2m0

γ2(k
2
t − 2k2z) +Qǫ

Rρ = − ~
2

2m0

√
3(
γ2 + γ3

2
)k2t = − ~

2

2m0

√
3γ̄k2t

Sρ =
~
2

2m0

2
√
3γ3k

2
t

(B.6)

For QWs, the kz term in the Hamiltonian is replaced by the operator −i∂/∂z.
Ev is the unstrained valence band edge. The strain is assumed to be biaxial

with the substrate and epilayer lattice constants being a0 and a, respectively.

The strain effect is introduced into the Hamiltonian through the Pikus-Bir

deformation potentials ac, av, and b [57], and the strain tensor elements Cij,

Aǫ = ac(ǫxx + ǫyy + ǫzz),

Pǫ = −av(ǫxx + ǫyy + ǫzz),

Qǫ = − b
2
(ǫxx + ǫyy − 2ǫzz)

ǫxx = ǫyy =
a0 − a

a
, ǫzz = −2C12

C11

ǫxx

(B.7)

Then the m-th upper-eigenstate and m′-th lower-eigenstate in the VB can

be written as

ΨU
m(kt, r) =

eikt·rt
√
A

3∑

i=1

g(i)m (kt, z))|ui〉

ΨL
m′(kt, r) =

eikt·rt
√
A

6∑

i=4

g
(i)
m′(kt, z))|ui〉

(B.8)

A state is named as an HH, LH, or SOSO state if the dominant envelop

function is g(1), g(2), or g(3), respectively. Once the envelop functions are

solved we can find the squared magnitude of the momentum matrix elements
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|Mσ1σ2
nm (kt)|2 = |〈Ψσ1,n

c (kt, z)|ê · p|Ψσ2,m
v (kt, z)〉|2 as

|MTE|2 = |x̂ · 〈Ψσ1,n
c |p|Ψσ2,m

v 〉|2 = |ŷ · 〈Ψσ1,n
c |p|Ψσ2,m

v 〉|2

=
1

4

[
3
∣∣〈ψn|g(1)m 〉

∣∣2 +
∣∣∣〈ψn|g(2)m 〉+

√
2〈ψn|g(3)m 〉

∣∣∣
2
]
M2

b for σ2 = U

=
1

4

[
3
∣∣〈ψn|g(4)m 〉

∣∣2 +
∣∣∣〈ψn|g(5)m 〉+

√
2〈ψn|g(6)m 〉

∣∣∣
2
]
M2

b for σ2 = L

(B.9)

for TE polarization, and

|MTM|2 = |ẑ · 〈Ψσ1,n
c |p|Ψσ2,m

v 〉|2

=

∣∣∣∣〈ψn|g(2)m 〉 − 1√
2
〈ψn|g(3)m 〉

∣∣∣∣
2

M2
b for σ2 = U

=

∣∣∣∣〈ψn|g(5)m 〉 − 1√
2
〈ψn|g(6)m 〉

∣∣∣∣
2

M2
b for σ2 = L

(B.10)

for TM polarization. The matrix element M2
b can be obtained from the

optical matrix energy parameter Ep in many data books [55] as M2
b =

|〈S|px|X〉|2 /3 = m0Ep/6.

In many applications, the SOSO band can also be far from the VB edge

and has little contribution. Then we further reduce the formulation to four

bands. In this case we will disregard |3〉 and |6〉 in Eq. (B.2), and |u3〉 and
|u6〉 in Eq. (B.3). Deleting the third rows and columns in the matrices in

Eq. (B.5) gives the 2× 2 upper and lower Hamiltonian for coupled HH and

LH bands. We will also remove all the momentum matrix terms containing

g(3) and g(6) in Eq. (B.8), (B.9), and (B.10).
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