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ABSTRACT 

Logistics costs constitute a considerable proportion of overall daily expenses for many public 

sectors, among which parking enforcement agencies are some of the most prominent examples. 

While currently there is little research about the planning of efficient parking enforcement patrol 

operations, this work presents several models to generate patrol schemes that help parking 

departments achieve low operational costs and effective enforcement. This thesis considers two 

levels of problems: i) parking behavior of drivers based on given patrol frequency (but not 

schedule), and ii) parking enforcement patrol routing and scheduling based on the parking 

behavior of drivers. Driver determines optimal payment based on the distribution of parking 

duration, parking prices, citation fines, and patrol frequencies via a newsvendor model. As the 

intensity of parking enforcement increases, illegal parking is expected to occur less frequently. 

However, improving parking enforcement sometimes requires more frequent patrols that lead to 

higher agency costs. In order to find the optimal trade-off point, the problem is further 

formulated into a Vehicle Routing Problem (VRP). Solving this bi-level optimization problem 

means that the cost is reduced while anticipated parking offenses are limited to a certain level. 

We present a traditional discrete mixed-integer programming model, and a continuous 

approximation model based on the method of continuum approximation. Numerical tests are 

performed in order to examine the performance of these two models using randomly-generated 

datasets. Sensitivity analyses show that as parking price or demand increases, or citation fine 

decreases, more frequent patrols are required to maintain the healthy operation of the parking 

lots. The results also validate that the method of continuum approximation can offer good 

estimation of the agency cost for the parking patrol problem with comparatively minimal 

runtime. 
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CHAPTER 1 

INTRODUCTION 

Public agencies continuously strive to optimize their operational efficiencies by reducing costs 

and/or improving service performance. In many circumstances, such public sector organizations 

are responsible for keeping communities and societies running in a healthy manner with patrol 

operations. Two of the most important functions of patrols are: 1) rule-breakers can potentially 

be penalized by means of monetary losses or other forms of punishment, and 2) rule-breakers 

may become discouraged by the risk of being subject to penalties, and such people become more 

likely to obey regulations in the future. For instance, traffic enforcement patrols are believed to 

be important for limiting reckless driving behavior by issuing tickets and suspending driving 

licenses; frequent police patrols are generally associated with safer communities because the 

presence of police officers constitutes per se an effective warning to potential criminals; and 

border patrols are a primary reasons why smuggling does not occur on an hourly basis. This 

thesis focuses on effective parking enforcement patrols, which helps guarantee the turnover rate 

of parking spaces and helps maintain a prosperous and dynamic community. 

Most parking lots in urban areas use pay systems by which parking fees are paid either 

before drivers leave their vehicles, or after drivers come back to use their vehicles. Paying 

afterwards means that a driver pays for a fixed span of time for parking, and they need not 

estimate the parking fees based on their anticipated stays. Moreover, as regards municipal 

parking lot owners, the expense of management can be quite small since most of the work can be 

conducted using machines, and little parking enforcement is required. However, this is not 

always the best solution for urban parking problems. For example, on-street parking facilities 

cannot be operated with making payments afterwards because it is not realistic to build entrances 

and exit in open environments. Parking lots which experiences high demand do not allow drivers 

to park for as long as they want, and a parking time limit is often specified. Therefore, the 

prepaid system of parking, meaning specifically metered parking system, plays an important role 

in modern life. 



	   2	  

 
Figure 1.1. Traditional meters (Marlith, 2008) 

 
Figure 1.2. Fully-electric multi-space meter (Burdette, 2010) 

A parking meter is a device that is widely used to enforce the policies of on-street or off-

street parking in North America and Europe. Drivers feed parking fees into the meters and are 

then allowed to park the vehicle for a specified period of time. Parking fees can be paid using 

coins, cash-keys, credit cards or through the Internet, depending on the type of meters or pay 
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stations. There are several different types of electronic and electromechanical meter machines, 

and some merely work as coin-collectors while others are equipped with more advanced 

technologies. Traditional parking meters are simply timers that collect coins, and flash after 

expiration to notify patrol officers of parking violations, see Figure 1.1. Modern parking meters 

can be fully electrical, and may send signals to technicians when repairs are needed or be able to 

maintain a number of parking spaces in real time, see Figure 1.2. Some advanced parking meters 

can even clear the remaining time when a vehicle departs, so that there is no chance for the next 

vehicle to park for free, or pay less for the parking duration. In order to maintain an optimal 

occupancy rate and turnover rate of the parking lots, municipalities need to ensure that vehicles 

leave before their meters expire. This means that potential parking violations require supervision 

and proper penalties if violations occur. Otherwise, the lack of regulation and management 

would encourage people to park their vehicles for as long as they want. 

The geographic and demographic differences between different urban districts mean that 

parking lots are usually associated with different parking rates and regulation policies. In 

densely-populated areas, the meter rates are also relatively high due to demand. This implies that 

in such areas parking agents may patrol more frequently and violation penalties may be more 

expensive. Moreover, there are situations in which maximum parking time limits are enforced 

for the public good. Drivers should be informed of certain types of information by having 

parking rates and time limit posted on meters or pay stations. In order to properly decide how 

much drivers should pay for legal stays, drivers require more information about certain topics: 

citation penalties and patrol frequencies or schedules, which are not posted on the meters. This 

study assumes that drivers are frequent parkers who are more or less aware of the violation 

penalties and patrol frequencies.  

Information about parking prices, patrol schedules, and citation penalties can help drivers 

make their choices: pay a sufficient amount, pay less than they should or even not pay at all. 

Obviously it is waste for drivers to pay more than they need to do so, but it is even more painful 

to have violation tickets appear on the dashboard. A driver who has received several parking 

citations will probably endeavor to avoid receiving additional parking citations in the same 

parking lot. It is reasonable for drivers to pay a little bit more in order to avoid potential 

penalties. On the contrary, a driver who is fortunate enough to park the vehicle for extra free 
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minutes is likely test his/her luck a second time. In such instances as noted above, drivers tend to 

judge whether or not a parking lot is inspected regularly based on personal observations. For one 

thing, intuitively, it is less likely to get a parking citation in a parking lot that is patrolled less 

frequently than others. For another, driver mays have some notion that it is more likely to be 

inspected by an officer when the parking duration is longer, even if they are unaware of the exact 

patrol schedule or frequency. 

In order to restrict parking offenses, parking enforcement officers are dispatched to patrol 

metered streets and certain off-street parking lots so as to inspect the meters or pay box receipts 

on the dashboards. Parking departments want to watch the turnover rate of particular high-

demand parking lots, and might take measures such as charging higher parking fees, issuing 

citations with higher fines, or inspecting certain parking lots more frequently. The problem of 

patrol officer assignment and patrol route design is a typical Vehicle Routing Problem. Related 

topics have been studied by numerous researchers and many studies have shown that more 

efficient routing arrangements can help save expenses and satisfy customer demand. The 

problems associated with the routing of parking enforcement patrol systems have not yet been 

addressed, however. 

Most vehicle routing problems involve the minimum number of visits made by each 

customer being specified based on the demand, while this parking patrol problem involves 

customer behavior having an interdependent relationship with the routing arrangements. More 

specifically, while most vehicle routing problems involve only a unilateral effect between 

customer and routing schemes, there exists an interaction effect that must be addressed in this 

problem. That is, patrol frequency affects driver behavior, which in turn impacts the expected 

cost of patrol and further affects decision-making concerning patrol frequency and routing. Also, 

as an uncapacitated VRP, the planning of parking patrol routes is more flexible in terms of 

vehicle assignments, compared with capacitated VRPs. Without the limitations of vehicle 

capacity, patrol officers can inspect as many parking lots as possible for as long as the duration 

of the tour involves a time limit. 

This thesis consists of five chapters in total, including the introductory chapter. Chapter 2 

presents a literature review of related works. Chapter 3 introduces the driver behavior model that 
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optimizes parking payments and the agency model that seeks to minimize expected system costs. 

The solution methods and numerical tests of the agency models are illustrated in Chapter 4, 

along with sensitivity analysis. Finally, the conclusion and options for future research can be 

found in the final chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter provides an overview of the studies of the parking behavior of drivers and related 

studies in the field of Periodic Vehicle Routing Problems. It also introduces some case studies 

involving patrolling deployment problems, and illustrates the method of continuum 

approximation. 

2.1 Parking behavior 

The influence of parking policies on driver behavior is reflected in the types of parking, parking 

locations, car occupancy, and even travel frequency and travel mode in the target area (Bates et 

al., 1997). On the one hand, poor parking management policies can result in low transportation 

efficiency. For example, Shoup (2005) stated that overly low parking prices can produce parking 

demand inflation, which can lead to increased traffic volume, a considerable portion of which are 

vehicles cruising for parking spots. It can further negatively impact business efficiency in a given 

area (D’Acierno et al., 2006). On the other hand, good parking policies can positively impact 

urban transportation systems. Many researchers are of the opinion that parking price is one of the 

best measures for reducing the number of car trips (Albert and Mahalel, 2006; Kelly and Clinch, 

2006; Simićević et al., 2013). 

Most research on parking behavior notes that the main factors that influence the drivers 

are policies about parking charges and time limitations. These two measures have been proven to 

impact the demand for on-street parking. For instance, a willingness-to-pay survey conducted in 

New York City has shown that as parking prices rise, residents are less willing to park their 

vehicles in such an area (Guo and McDonnell, 2013). A state preference survey conducted in 

Sydney (Hensher and King, 2001) suggests that curtailing the hours of operation at specific 

locations can lead to the relocation of parking and some switching over to public transportation. 

However, parking price increases can lead to significantly greater use of public transportation, 
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and a noticeable increase in parking relocation. Although the prices and hours of operation may 

not result in losses to the central business district, it can significantly impact the demand for 

parking at certain specific parking locations. Thus, it is justifiable to assume that on-street 

parking demand is mainly related to the location of the parking spaces, parking prices, hours of 

operation, and parking time limitations. 

In addition to the policies regarding parking prices and time limitations, parking 

enforcement, which restricts violations of parking regulations, also exerts a significant influence 

on the parking behavior of drivers (Petiot, 2004; Cullinane and Polak, 1992). At present, there is 

little research that has examined the connection between parking enforcement and illegal parking 

in the case of on-street meter parking, except for studies conducted by Petiot and Saltzman. 

According to Petiot (2004), the answer to the question of the primary determinant of parking 

meter violations is generally the weakness of enforcement efforts, for example, overly low 

parking fines. No empirical study has offered any substantial evidence to support the notion that 

an increase in parking fines results in decreases in parking violations. Robert M. Saltzman (1997) 

simulated the parking behavior of drivers and found that higher degrees of enforcement result in 

lower violation rates and higher system capacity. A higher degree of enforcement can be put into 

effect by toughening penalties, including policies such as increasing fines or removing illegally-

parked vehicles. The turnover rate and the probability of finding ideal metered parking space 

would probably rise as a result.  

In order to model the decision-making processes of drivers in metered parking slots, the 

Newsvendor model can be applied to compute optimal parking payments based on the 

distribution of actual parking duration. The Newsvendor model, which is also known as the 

single-period problem, optimizes the order quantity (which is the parking payment in this study) 

of a certain product in a probabilistic demand setting, such that the expected system profit can be 

maximized. At the end of a certain period of time, any remaining inventory would either be 

disposed of, or sold at a reduced price. If the order quantity were smaller than the demand, the 

system would be punished (Silver et al., 1998). The Newsvendor model has been proven by a 

large number of researchers during the last century to be applicable in several industries (Khouja, 

1999). 
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2.2 Periodic vehicle routing problem 

A standard Periodic Vehicle Routing Problem (PVRP) is to assign each customer to one of the 

service schedules in a manner such that the headway between two visits meets the preset 

requirements and the total profit of the system is maximized. The services are offered by 

dispatching vehicles to visit customers to pick up packages, deliver goods, or conduct on-site 

services. PVRP has been studied by a large number of researchers for about half a century. The 

problem is so versatile that it can be applied to various situations and can be solved using 

multiple solution methods. The patrol routing problem for parking enforcement addressed in this 

thesis is a type of PVRP with no constraints on vehicle capacity, which is an uncapacitated-

PVRP. 

2.2.1 Problem setting of PVRP 

One major difference within the papers that address PVRP lies in the definition of the delivery 

schedule. Some of the research literature presets the number of visiting days for each customer 

(Beltrami and Bodin, 1974; Christofides and Beasley, 1984), while some specified a visiting 

frequency or constraints on the headway between two visits for each customer (Chao, Golden 

and Wasil, 1995; Cordeau, Gendreau and Laporte, 1997; Gaudioso and Paletta, 1992; Las 

Fargeas et al., 2012). The required visiting frequency or number visiting days during a period of 

time depends upon the characteristics of the customers in the model. For example, in the PVRPs 

of visiting student or patients, the frequency for each student or patient to be visited depends 

upon the types of disabilities of the students (Maya, Sörensen and Goos, 2012) or seriousness of 

their illnesses (An, Kim, Jeong and Kim, 2012). In an oil extraction problem, the optimum 

headway between two visits at a well depends upon the time needed for a mobile bump to lift the 

available oils and the recovery time of the well (Gonçalves, Ochi and Martins, 2005). In certain 

more modern cases, such as the patrolling of mobile data collectors, there can be a vehicle 

equipped with a data transceiver (Almi'ani, Selvadurai and Viglas, 2008), and the visiting 

frequency is determined according to the data generation speed of the sensors. A sensor that 

generates more data per unit of time should be visited more frequently.  
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Due to the diversity of PVRP, the customers in some problems may also have particular 

special requirements regarding the service vehicle, although in many cases the vehicles are 

assumed to be identical. For instance, in the research conducted by Jang et al. (2006), thirty-nine 

representatives visited the retailers, and each retailer required a particular visiting frequency. 

Given that a representative tends to build relationships with the retailers visited previously, this 

problem can be further decomposed into multiple TSP problems. The TSP (travelling salesman 

problem) is a special case of an on-site service routing problem in which only one vehicle is 

dispatched. This is a very special case in which each vehicle is unique and each customer needs 

to be served by only one of the vehicles. In another study by Blakeley et al. (2003), the 

customers of Schindler, an elevator company, were visited by a number of maintenance 

technicians periodically and the technicians’ skills may be different. Given that each specific 

type of maintenance work must be done periodically, the skills of the technicians and the 

maintenance cycles of the customers must be taken into consideration when assigning jobs to 

technicians.  

In most of the cases mentioned above, the objective function is the cost of the entire 

system during a specified time period or the cost per unit of volume of the goods that are 

delivered. In some instances, the objective is to minimize the fleet size or the amount of labor 

required, when the required fleet size or number of staff members is closely correlated with the 

agency cost (Campbell and Hardin, 2005; Delgado, Laguna and Pacheco, 2005). The cost 

function can also be substituted for using the profit function, when the agency also earns some 

income from the dispatch service (Baptista, Oliveira and Zúquete 2002), particularly for private 

organizations. According to Francis et al. (2006a), when benefits are considered in the PVRP, the 

model will generate schemes in which some customers are visited with a greater frequency, such 

that the total cost can be further reduced. In the oil extraction transportation problem, it is less 

profitable to visit wells with extraction times and lift times longer than the recovery time, so 

these wells would probably be visited less frequently (Gonçalves, Ochi and Martins, 2005).  

2.2.2 Solution methods of PVRP 

Years ago, the solution methods of the VRPs were quite straightforward heuristics (Beltrami and 

Bodin, 1974; Russell and Igo, 1979) or exact approaches (Christofides and Beasley, 1984), 
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which were suitable for small cases. Particularly, in cases involving the PVRPs, the solution 

methods often have two stages: developing routes and assigning visiting days (Beltrami and 

Bodin, 1974; Baptista, Oliveira and Zúquete, 2002; Tan and Beasley, 1984; Christofides and 

Beasley, 1984). One could either develop the routes, and later assign the routes to days within a 

time period (a week or month), or first assign visiting days for each customer and then develop 

routes for each day in a time period (Coene, Arnout and Spieksma, 2010).  

The most widely-known classical heuristics for the VRPs in the past is the Savings 

Algorithms devised by Clarke and Wright (1964). This algorithm can solve the problems in 

which the numbers of vehicles is a decision variable. Sequential improvement methods can also 

be applied in such problems, but it is not a competitive algorithm when compared with other 

available methods (Mole and Jameson, 1976; Christofides, 1976). The Sweep Algorithm, the 

Petal Algorithm, and the Cluster-First-Route-Second Algorithm involve similar procedures—

they first cluster the nodes for one vehicle, and then generate the routes by solving the TSP 

(Gillett and Miller, 1974; Fisher and Jaikumar, 1981). 

As computation speed increases in the contemporary era, larger instances can be solved 

using either meta-heuristics or mathematics-based approaches. Thus, the two stages used to solve 

PVRP which are mentioned above, developing routes and assigning visiting days, can be 

integrated and solved simultaneously by setting a large matrix of decision variables. The matrix 

can be three-dimensional or greater. For instance, Francis et al. developed and solved a PVRP 

(2006b) in which service schedule choices of the customers and vehicle routes were generated by 

solving one integrated model. Some state-of-art commercial solvers can solve such problems by 

using either exact methods or meta-heuristics. One of the most influential meta-heuristic 

methods is Tabu Search, which starts with a number of randomly-selected customers being 

assigned to certain service schedules. Tabu Search is similar to Simulated Annealing that they 

can both guide local search to extend beyond local optimality (Osman, 1993). Tabu search uses a 

forbidding strategy to prevent non-improving movements, which is conducted by identifying the 

attributes of such movements (Osman, 1991). The Variables Neighborhood Search algorithm is 

inspired by Simulated Annealing and has some advantages in terms of runtime. In large 

instances, Variables Neighborhood Search can outperform many other state-of-art techniques 

and generate better solutions (Hemmelmayr et al., 2009).  
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2.3 Patrol models 

Patrol allocation problems have been discussed since the late 1970s (Chaiken et al., 1978; Chelst, 

1978). There is a large body of literature that addresses the optimization problem of patrolling, 

and these studies can be classified into several categories. 

Maximum coverage security patrol problem has been studied for decades. As the name 

implies, the objective underlying such problems is to design effective routes and schedule plans 

that cover as large a number as possible of hot spots during a given time period. In these patrol 

models, a hot spot is defined as an area where accidents occurred more frequently than in other 

places during a certain time period. For instance, highway patrol hotspots involve a certain 

combination of stretches of highway and a time of a day when crashes occur frequently (Çapar, 

Keskin and Rubin, 2015; Keskin and Li, 2012; Keskin, Li, Steil and Spiller, 2012). While on 

marine patrol, fleets of boats are sent to patrol regions in a manner such that each region will 

have at least one boat during a given time (Chircop et al., 2013). In many cases, these problems 

can be formulated into a Mixed Integer Linear Programming problem and can thus be solved 

using some state-of-art solvers using exact methods or meta-heuristics.  

Patrolling upon request is common in property management or in police patrolling 

systems. One primary duty of such security patrols is to provide an immediate response to 

requests made by the residents. The objective of the problem is thus to minimize the response 

time, maximize the probability of successful responses (Lau et al., 2010) or minimize the system 

cost while control the average reaction time (Traffic Institute, 1993). The response time is 

defined as the lead time from the detection of an event to the arrival of a patrol officer on the 

scene. As a result of such a research objective, the blackspots, the locations with higher 

complaint rates, get patrolled more frequently. For example, Chelst (1978) allocated a fixed 

number of patrols to certain areas that had higher complaint rates in order to maximize the 

probability of intercepting complaints. Deploying patrol tasks using this method can help 

increase complaint interception probability by 30%, although it might lead to seriously uneven 

patrol distribution. More recently, Di Tella and Schargrodsky (2004) estimated and evaluated the 

deployment of police forces to patrol the area under random terrorist attack. Lou et al. (2011) 

investigated the freeway service patrol problem in order to minimize the total incident response 
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time in both deterministic and stochastic incidence occurrence settings. In a special case where 

all of the blocks or units in the patrol region have equal complaint rates, the solution would 

simply be the shortest Hamiltonian path (Chevaleyre, Sempe and Ramalho, 2004). 

Meanwhile, the research objective and solution methods of patrolling problems in a 

dynamic environment can be quite different from the problems above. In a dynamic 

environment, there are no static hotspots or constant crime rates for the different blocks or units 

in the service region, but opponents that can change attack plans at any time. Under these 

settings, the patrol routes must be subject to flexible change so that the region can be defended 

efficiently or the opponents can be confused (Irvan et al., 2011). The patrol routing plan of the 

police force can be generated dynamically using machine learning models or through the re-

computation of the models mentioned above (Melo et al., 2006). In order to meet this real-time 

computation requirement, the algorithms used must be sufficiently fast such that new routes can 

be generated as the environment changes (Chen and Yum, 2010; Chen, 2012). The objective of 

such a dynamic patrolling problem might be minimizing the amount of time that each block 

remained unpatrolled or optimizing system efficiency. 

2.4 Continuum approximation 

In many cases people are interesting in optimizing detailed large-scale distribution systems by 

minimizing the expected cost of the entire system, such as the delivery service routing problem 

or the warehouse location problem. For VRP models with a considerable number of decision 

variables and constraints, the continuum approximation (CA) technique can be applied to reduce 

the model to an idealized continuous system in which smooth functions are used to describe the 

input data or even describe decisions (Smilowitz and Daganzo, 2007). Using this method, the 

locations of the customers are approximated into a density function. The method of CA is 

particularly applicable in complex and large-scale systems when an accurate expected cost must 

be estimated (Erera, 2000). It has been proven that the larger the instance, the more accurate the 

result it will achieve (Daganzo, 1999) 

In some cases, solving the problem of multiple decision functions involves further 

simplification by partitioning the entire region into multiple delivery zones in which the 
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customers in a single zone are serviced by one vehicle (Ouyang, 2007). The reduced models can 

help identify the efficient strategies and greatly reduce the number of decision variables and 

computation time (Daganzo and Erera, 1999). According to Daganzo and Erera (1999), for 

vehicle routing problems in which the demand of customers remains static, an efficient strategy 

is to divide the service region ℛ into a number of delivery zones, each of which contains a 

certain amount of demand, see Figure 2.1. One vehicle is assigned to one zone and can meet all 

of the demand in the zone. The travel distance of the delivery system per unit area (which can be 

regarded as distance density) at any location 𝐱 should be a function of customer density 𝛿, 

location 𝐱, and the average number of stops 𝐶 made by one vehicle, see Equation 2.1. 

2𝑟 𝐱 𝛿
𝐶 + 0.57𝛿!/! 

(2.1) 

The average number of stops 𝐶 can be approximated by the vehicle capacity divided by the 

average demand volume of one customer. The detour distance also depends on the metric used in 

the system. Here 0.57 is the Euclidean metric according to Daganzo (1999). 

 
Figure 2.1. The zoning technique in the CA method (adapted from Daganzo et al., 1999) 

ℛ	  
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The total travel distance can be approximated by integrating the distance per unit area 

over the entire service region. After the customer locations in each zone become known, the 

operational-level route planning of the systems can be conducted based on some cluster-first-

route-second algorithms or meta-heuristics methods (Ouyang, 2007; Robust and Daganzo, 1990). 

The continuum approximation method can be applied broadly to distribution problems 

and is found to be very helpful in assisting decision-making, in many studies (Ouyang and 

Daganzo, 2006; Smilowitz and Daganzo, 2007).  
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CHAPTER 3 

METHODOLOGY 

In this chapter, the driver behavior model and parking violation model are initially presented, 

followed by the formulation of the mathematical models of agency decision under both discrete 

and continuous settings. 

3.1 Parking violation models 

3.1.1 Optimal parking payment of driver 

Drivers make decisions regarding parking payments based on their estimates of the amount of 

time the vehicle is anticipated to be parked in a parking slot. It is assumed that drivers are 

blocked from the information about the schedule for parking lot patrols, but are aware of the time 

gap between two inspections. Therefore, the drivers can roughly assess the amount of potential 

penalties—longer illegal parking time or a higher patrol frequency can mean greater amounts of 

expected penalties.  

 
Figure 3.1. The overall parking cost of one vehicle 



	   16	  

Several more assumptions are made in this model: i) the time limitation of the metered 

parking lots is not taken into consideration; ii) the actual parking time 𝑇 at a certain parking lot 

follows a distribution with Probability Density Function of 𝑃(𝑇) and a Cumulative Distribution 

Function  𝐹(𝑇); iii) drivers want to minimize their total costs, see Figure 3.1, which is the sum of 

payments for parking and potential penalties; iv) one unit of money can be exchanged for 𝑐 units 

of legal parking time; and finally, v) the expected penalty is the product of perceived patrol 

frequency 𝑠, the amount of fine for one parking ticket 𝑝, and the potential illegal parking time 

max(0,𝑇 − 𝑟𝑐). 

Hence, in order to minimize the expected costs, the optimal payment should be 

formulated as follows: 

𝑟∗ = argmin
!

𝐸 𝑟 + 𝑝𝑠 ∙max(0,𝑇 − 𝑟𝑐)  (3.1) 

where 𝐸(max(0,𝑇 − 𝑟𝑐)) = (𝑇 − 𝑟𝑐)𝑃(𝑇)𝑑𝑇!
!" . The optimal solution   𝑟∗ to the equation is 

formulated as: 

𝑟∗ =
1
𝑐 𝐹

!!(1−
1
𝑝𝑐𝑠) (3.2) 

The domain of 𝐹!! is [0,1]. Thus, 𝑟∗ exists only when 1 ≤ 𝑝𝑐𝑠. This implies that the penalty 𝑝 

should exceed the parking payment for the parking duration of one patrol headway. Otherwise, 

the driver would not pay the parking fee but instead pay the ticket. Therefore, the optimal 

payment is: 

𝑟∗ =
1
𝑐
𝐹!!(1−

1
𝑝𝑐𝑠

), 𝑖𝑓  1 ≤ 𝑝𝑐𝑠

0, 𝑜.𝑤.
 (3.3) 

For the sake of simplicity, it is assumed that 1 ≤ 𝑝𝑐𝑠 and thus 𝑟∗ = !
!
𝐹!!(1− !

!"#
) in the 

remainder of the thesis. 
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3.1.2 Expected illegal parking duration  

The inspection cost consists of the labor and gasoline costs that can be attributed to checking 

meters, which is assumed to be the product of the total number of meters inspected and the cost 

to inspect on single meter. This cost is highly correlated with driver behavior. For one thing, if 

the inspection frequency remains unchanged, while parking violations occur more frequently, 

this situation is probably due to high parking fees or low violation penalties. The officers would 

thus expect to spend more time issuing citations. Another issue is that in seeking to restrict 

illegal parking, patrol frequency could be increased at certain parking lots in order to persuade 

the drivers to obey parking regulations. Hence, it is important to analyze the influence of patrol 

frequency and driver behavior on illegal parking time per hour at metered parking lots. 

A metered parking slot is a queuing system with one service station and no space for 

queues. The arrival of the customers can be assumed to follow the Poisson process with average 

arrival rate  𝜆. Moreover, we assume that parking time follows a same distribution for all drivers 

at a certain parking lot. They thus have the same optimal payment. The service time 𝑇 (which is 

the actually parking time in this problem) for each customer follows a general distribution as 

mentioned above, while paid parking time is 𝑐𝑟∗. The operation of such a service system is a 

M/G/1/1 queue with an arrival rate 𝜆 (-/hr) and a service rate 𝜇 (-/hr), 𝜇 = !
! !

. The system 

contains only one parking slot and the overall capacity is one. A customer is thus lost 

permanently if the customer arrives when the parking slot is occupied by another vehicle. See 

Figure 3.2, 𝑇! is the actual parking time of the 𝑖!! driver, and 𝑐𝑟∗ is the optimal legal parking 

time for all drivers. 
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Figure 3.2. The operation of a metered parking slot over an infinite timeline 

The system has only two types of status: empty or full. Let 𝑃! be the probability of 

system being empty and 𝑃! be the probability of system being full. 𝑃! should also represent the 

blocking probability, which is the probability of customers being lost. Intuitively we have: 

𝑃! + 𝑃! = 1 (3.4) 

The “traffic intensity” 𝜌! is actually the occupied time of the parking slot in one unit of time, and 

is determined by 𝜆!, the rate at which customers actually enter the parking slot, and the expected 

service time 𝐸   𝑇 . 𝜆! is equal to the arrival rate of the system, and the loss rate due to the 

system blocked is subtracted from this, see Equation 3.6.  

𝜌! = 𝜆! ∙ 𝐸   𝑇 = 𝜆!/𝜇 (3.5) 

𝜆! =   𝜆(1− 𝑃!) (3.6) 

Note that 𝜌! is essentially the fraction of time that the parking slot is occupied, it should be equal 

to 𝑃!. Then we have: 

𝑃! = 𝜌! =
𝜆 1− 𝑃!

𝜇  
(3.7) 

Solving Equation 3.7, we can write: 
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𝑃! =
𝜆

𝜆 + 𝜇 
(3.8) 

Assuming that the parking space is occupied, the expected ratio of expired time over total 

occupied time is: 

𝑃! =
𝑇 − 𝑐𝑟∗

𝑇 𝑃 𝑇 𝑑𝑇
!

!!∗
 

(3.9) 

Note that the  𝑃! is not the probability of parking expiration conditional upon parking space being 

occupied, but rather the expected ratio of illegal parking time to total occupied time. Therefore, 

the probability 𝑃!"# of one metered parking space being illegally occupied by a vehicle should 

be: 

𝑃!"# = 𝑃!𝑃! =
𝜆

𝜆 + 𝜇
𝑇 − 𝑐𝑟∗

𝑇 𝑃 𝑇 𝑑𝑇
!

!!∗
 

(3.10) 

When 𝑇 follows a normal distribution with a mean 𝜇!! and variance 𝜎!, 𝑃!"# can be written as: 

𝑃!"# =
𝜆

𝜆 + 𝜇
1
𝑝𝑐𝑠 −

𝑐𝑟∗

𝑇
1
𝜎𝜙

𝑇 − 𝜇!!

𝜎 𝑑𝑇
!

!!∗
 (3.11) 

in which 𝑐𝑟∗ = 𝜎 ⋅ 𝛷!! 1− !
!"#

+ 𝜇!!, and 𝛷 and 𝜙 are, respectively, the CDF and PDF of 

Standard Normal Distribution. As 𝑠 grows larger, !
!"#

 will certainly decrease, while  𝑐𝑟∗  will 

increase.   𝑃! , see Equation 3.9, decreases as 𝑐𝑟∗  increases. Thus, 𝑃!"#  is monotonically 

decreasing when 𝑠 is increasing. When every variable in Equation 3.11 is fixed except for 𝑠, we 

can write 𝑃!"# as: 

𝑃!"# = 𝑔(𝑠) (3.12) 

where 𝑔(∙) is a function of frequency. Thus, 𝑠 can be written as: 

𝑠 = 𝑔!!(𝑃!"#) (3.13) 
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For the sake of simplicity, the expected violation duration in unit time  𝑃!"# is referred to 

as violation probability in the remainder of this thesis. Assuming that each parking meter is 

independent of the others in the sense that all of the events which occur at this meter do not 

depend on the other meters, the expected number of violations encountered during one patrol of 

an parking lot should be the product of the total number of meters and the violation probability 

𝑃!"# in this parking lot. 

3.2 A discrete agency model 

In the region ℛ, a number of parking lots need to be patrolled by enforcement officers. A patrol 

tour is defined as a trip that starts and ends at the depot. And during each tour, the parking 

enforcement officer must travel along one of the specified routes. Each parking lot is 

characterized with a pre-set number of meters and deemed to be a node, and the officers are 

assigned to visit the parking lots during each patrol tour, as shown in Figure 3.3. The travelling 

distance between each couple of nodes, and the number of routes are also fixed as input 

parameters. The routes and the patrol frequencies of the routes are the decisions in this model. 

 
Figure 3.3. Patrol routes in the service region 𝓡 

ℛ	  
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The following notations are used to formulate the discrete patrol routing model: 

𝑁 total number of nodes 

𝐼 set of nodes, 𝐼 = {1,2,…𝑁}, and Node 0 is the depot 

𝑐! the parking charge rate at parking lot 𝑖 (hr/$) 

𝜆! arrival rate at parking lot 𝑖  (-/hr) 

𝜇! sevice rate at parking lot 𝑖  with  𝜇! = 1/𝐸(𝑇!) (-/hr) 

𝑟!∗ optimum parking payment at node 𝑖 ($) 

𝑃!"#,! expected violation duration in unit time at node 𝑖, see details in Section 3.1.2 

𝐾 set of routes, 𝑘 ∈ 𝐾 = 0,1,2,… 𝑘… 𝐾 − 1  represents a patrol route 

𝐷 set of network arcs, 𝐷 = { 𝑖, 𝑗 : 𝑖, 𝑗 ∈ 𝐼 ∪ {0}} 

𝑑!" distance of arc (𝑖, 𝑗) (mile) 

𝑢 variable cost associated with the distance travelled ($/mile) 

𝛽! fixed cost of inspection at node 𝑖 ∈ 𝐼   ($) 

𝛾! cost of issuing citations at node 𝑖 assuming that all parking slots are illegally 

parked ($)  

𝑃!"! violation probability limit (-) 

𝐶!"#  travel distance limit of one vehicle tour (mile) 

The decision variables are as follows: 

𝑋!"! =
1,
0,  

𝑠! patrol frequency of route 𝑘, 𝑘 ∈ 𝐾 (-/hr) 

The expected travelling cost per unit time 𝑧! of route 𝑘 is linear to the summation of the 

costs traveling through the arcs: 

𝑧! = 𝑋!"!
!,!∈!∪ !

𝑑!"𝑢 (3.14) 

The expected inspection cost per unit time 𝑧! at parking lot 𝑖 is: 

if 𝑎𝑟𝑐(𝑖, 𝑗) ∈ 𝐷 is in route 𝑘 
otherwise 
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𝑧! = 𝑋!"!

!∈!∪{!}!∈!

⋅ 𝑠! ⋅ (𝛽! + 𝛾! ⋅ 𝑃!"#,!) (3.15) 

The objective is to minimize the expected system cost per unit time with constraint on violations 

at each parking lot: 

min 𝑍 = 𝑠!𝑧!
!∈!

+ 𝑧!
!∈!

 (3.16a) 

subject to 

𝑃!"#,! =
𝜆!

𝜆! + 𝜇!
𝑇! − 𝑐!𝑟!∗

𝑇!
𝑃 𝑇! 𝑑𝑇!

!

!!!!
∗

≤ 𝑃!"# ∀  𝑖 ∈ 𝐼 (3.16b) 

𝑐!𝑟!∗ = 𝐹!
!! 1−

1
𝑝𝑐! 𝑋!"!!∈!∪{!} ∙ 𝑠!!∈!

 ∀  𝑖 ∈ 𝐼 (3.16c) 

0 ≤ 𝑠! ∀  𝑘 ∈ 𝐾 (3.16d) 

𝑋!"!

!∈!∪{!}!∈!

= 1 ∀  𝑖 ∈ 𝐼 (3.16e) 

𝑋!"!

!∈!∪{!}

= 𝑋!"!

!∈!∪{!}

 ∀  𝑖 ∈ 𝐼 ∪ 0 , 𝑘 ∈ 𝐾 (3.16f) 

𝑋!"!

!,!∈!∪ !

≤ 𝑄 − 1 ∀  𝑄 ⊆ 𝐼, 𝑘 ∈ 𝐾 (3.16g) 

𝑋!"!

!∈!∪{!}

⋅ 𝑑!" ≤ 𝐶!"#  
!∈!∪{!}

   ∀  𝑘 ∈ 𝐾 (3.16h) 

𝑋!"! ∈ {0,1} ∀ 𝑖, 𝑗 ∈ 𝐷, 𝑘 ∈ 𝐾 (3.16i) 

Constraints 3.16b and 3.16c are set for the purpose of enforcing the probabilities of 

violation occurring at all of the parking lots under a limit, in which 𝑋!"!!∈!∪{!}  indicates whether 

or not node 𝑖 is covered by route 𝑘, see the detailed formulation in Section 3.2. Constraints 3.16d 

are non-negativity constraints of the decision variables 𝑠!. Constraints 3.16e make sure that each 

parking lot must be visited along one and only on route. Constraints 3.16f ensure the equality of 

inflow and outflow at each node. Constraints 3.16g are to eliminate the subtours. Constraints 
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3.16h restrict the travel distance of each patrol tour. Constraints 3.16i specify the space of 

decision variables 𝑋!"! . 

The cost attributed to the processing of citations is relatively small compared to the 

transportation and inspection cost (see details in Section 4.1 and the numerical test in Appendix 

A). Assuming this part of cost being omitted, the objective function, Equation 3.16a, can be 

transformed into Equation 3.17a. Furthermore, considering that in reality the headways in 

logistics services such as transit are usually choices that are made among particular numbers 

such as 5 minutes or 1 hour, instead of any randomly-chosen number, and for the purpose of 

simplifying the problem, constraint 3.16d is modified into 3.17c.  

The following notation is added to the discrete model: 

𝑆 set of feasible patrol frequencies, 𝑆 = {!
!
, !
!
, !
!
, 1, !

!
, 2} (-/hr) 

The modified model could be written as: 

min 𝑍 = 𝑠!𝑋!"!
!,!∈!∪ !

𝑑!"
!∈!

+ 𝑋!"!

!∈!∪ !!∈!

𝑠!𝛽!

!

!!!

 (3.17a) 

subject to 

𝑠! ≥ 𝑔!!! 𝑃!"# ∙ 𝑋!"!

!∈!∪{!}

 ∀  𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 (3.17b) 

𝑠! ∈ 𝑆 ∀  𝑘 ∈ 𝐾 (3.17c) 

𝑋!"!

!∈!∪{!}!∈!

= 1 ∀  𝑖 ∈ 𝐼 (3.17d) 

𝑋!"!

!∈!∪{!}

= 𝑋!"!

!∈!∪{!}

 ∀  𝑖 ∈ 𝐼 ∪ 0 , 𝑘 ∈ 𝐾 (3.17e) 

𝑋!"!

!,!∈!

≤ 𝑄 − 1 ∀  𝑄 ⊆ 𝐼, 𝑘 ∈ 𝐾 (3.17f) 
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𝑋!"!

!∈!∪{!}

⋅ 𝑑!" ≤ 𝐶!"#
!∈!∪{!}

   ∀  𝑘 ∈ 𝐾 (3.17g) 

𝑋!"! ∈ {0,1} ∀ 𝑖, 𝑗 ∈ 𝐷, 𝑘 ∈ 𝐾 (3.17h) 

Therefore, the original nonlinear non-convex mixed integer problem has been modified 

into a Mixed Integer Linear Programming problem. 

3.3 A continuous agency model 

In the continuous model, the discrete parameters and variables are transformed into continuous 

functions. These functions are assumed to be smooth, continuous and vary slowly over the entire 

service region ℛ. It is assumed that the parking lots are distributed across the entire service 

region according to a density function, and each parking lot should be patrolled according to a 

frequency. 

The notations in this part follow previous models, but now are mostly functions of 𝐱. The 

following new notations are introduced to formulate the continuous model: 

𝜔 𝐱  spatial density of nodes (number of parking lots per unit area) at point 𝐱 

𝑑 𝐱  distance between the depot from point  𝐱 (mile) 

The decision functions and variables are introduced as follows: 

𝑓! 𝐱  fraction of nodes at 𝐱 being visited according to frequency 𝑙 ∈ 𝑆  

𝑌! number of routes patrolled with frequency 𝑙 ∈ 𝑆 

The travelling cost of each patrol vehicle can be distributed to each node and be 

computed by integrating the cost of the nodes over the whole region. The travel distance for 

patrolling the nodes at 𝐱 with a frequency 𝑙 consists of the line-haul between the depot and the 

vicinity of point 𝐱 and detours between nodes, see Equation 3.18. The first term of the equation 

is the line-haul per unit area for the nodes patrolled according frequency 𝑙, in which 𝜔 𝐱 𝑓! 𝐱  

is the number of nodes per unit area patrolled with frequency 𝑙, 𝜔 𝐱 𝑓! 𝐱 𝑑𝒙ℛ  is the total 

number of nodes patrolled with frequency 𝑙, and 2𝑑 𝐱  is the distance between 𝐱 and the depot. 
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The average distance between two nodes near point 𝐱 can be approximated by the product of 

[𝑓! 𝐱 ∙ 𝜔 𝐱 ]!
!
! and a metric constant. Assuming that the distance is computed in terms of 

Euclidean distance, the detour cost per unit of area which is the second term in Equation 3.18 

should be the product of [𝑓! 𝐱 ∙ 𝜔 𝐱 ]!
!
!, node density 𝑓! 𝐱 ∙ 𝜔 𝐱 , and a Euclidean metric 

constant 0.57 (Daganzo, 1999). 

2𝑑 𝐱 𝜔 𝐱 𝑓! 𝐱

𝜔 𝐱 𝑓! 𝐱 𝑑𝐱ℛ

+ 0.57[𝑓! 𝐱 ∙ 𝜔 𝐱 ]
!
! 

(3.18) 

When there is no constraint on the travel distance of or the number of stops made by each 

vehicle, an optimal method will allow a vehicle to visit as many nodes as possible, see Figure 

3.4. However, the duration of one vehicle tour should be restricted according to certain labor 

regulations (Daganzo, 1999). Thus, the nodes that are determined to be patrolled with frequency 

𝑙 should be assigned to a number of separate vehicle routes, instead of one single vehicle route, 

see Figure 3.5. While the length of a detour remains the same as the second term in Equation 

3.18, the original line-haul distance term should be multiplied by 𝑌!, which is the number of 

routes associated with frequency 𝑙. 

 
Figure 3.4. Patrol zoning without travel distance constraints 

ℛ	  
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Figure 3.5. Patrol zoning with travel distance constraints 

Let 𝛹! 𝐱  denote the expected cost at 𝐱 of a dispatch associated with frequency 𝑙. 𝛹! 𝐱  

can be divided into the traveling cost and the meter inspection cost in each parking lot. The first 

term in Equation 3.19 is the travel cost, which is derived from Equation 3.18, while the second 

term is the cost of inspection. The cost for processing citations is again omitted. 

Ψ! 𝐱 =
2𝑑 𝐱 𝜔 𝐱 𝑓! 𝐱 𝑌!

𝜔 𝐱 𝑓! 𝐱 𝑑𝐱ℛ

+ 0.57[𝑓! 𝐱 ∙ 𝜔 𝐱 ]
!
! ⋅ 𝑢 + [𝑓! 𝐱 ∙ 𝜔 𝐱 ] ⋅ 𝛽 𝐱  (3.19) 

The objective of this continuous vehicle routing problem is to minimize the expected 

system cost per unit time while controlling the violation probability of each parking lot, see 

Equations 3.20. 

min 𝑍 = Ψ! 𝐱 ⋅
!∈!

𝑙 𝑑𝐱
𝐱∈ℛ

 (3.20a) 

subject to 

ℛ	  
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𝜆 𝐱
𝜆 𝐱 + 𝜇 𝐱

𝑇 − 𝑐 𝐱 𝑟∗! 𝐱
𝑇 𝑃 𝐱,𝑇 𝑑𝑇

!

! 𝐱 !∗! 𝐱
≤

𝑃!"#
𝑓! 𝐱  ∀𝑙   ∈ 𝑆, 𝐱 ∈ ℛ   (3.20b) 

𝑟∗!(𝐱) =
1
𝑐(𝐱) F

!!(𝐱, 1−
1

𝑝𝑐(𝐱)𝑙) ∀𝑙   ∈ 𝑆, 𝐱 ∈ ℛ (3.20c) 

2𝑑 𝐱 𝜔 𝐱 𝑓! 𝐱 𝑌!

𝜔 𝐱 𝑓! 𝐱 𝑑𝐱ℛ

+ 0.57[𝑓! 𝐱 ∙ 𝜔 𝐱 ]
!
! 𝑑𝐱

𝐱∈ℛ

≤ 𝑌! ⋅ 𝐶!"# 

∀𝑙   ∈ 𝑆 (3.20d) 

𝑓! 𝐱
!∈!

≥ 1 ∀  𝐱 ∈ ℛ (3.20e) 

0 ≤ 𝑓! 𝐱 ≤ 1 ∀𝑙   ∈ 𝑆, 𝐱 ∈ ℛ (3.20f) 

𝑓! 𝐱 ≤ 𝑌! ∀  𝐱 ∈ ℛ, 𝑙 ∈ 𝑆 (3.20g) 

𝑌!
!∈!

≤ 𝐾   (3.20h) 

𝑌! ∈ {0,1,2… 𝐾 } ∀𝑙   ∈ 𝑆 (3.20i) 

Constraints 3.20b and 3.20c are set in order to enforce the probability of violation in all 

parking lots being under a limit, see the detailed formulation in Section 3.2.1. Constraints 3.20d 

restrict the travel distance of each patrol vehicle. Constraints 3.20e ensure that each parking lot 

must be covered by at least one patrol route. Constraints 3.20f and 3.20i specify the space of 

decision variables 𝑓! 𝐱  and 𝑌!. Constraints 3.20g enforce that when some nodes near 𝐱 are to be 

patrolled with frequency 𝑙, at least one route associated with frequency 𝑙 must be constructed. 

Constraint 3.20h ensures that the total number of routes is below the limit. Constraints 3.20i 

specify the space of 𝑌!. 

According to the assumptions regarding continuous and slow-varying parameters in the 

continuum approximation method, the experimental region can be decomposed into a set of 

geographic subregions. In each subregion 𝑚, 𝑚 ∈ 𝑀, the parameters of the points should vary 

very slowly and approach a constant such that all of the input functions of the subregion can be 

simplified into constant parameters. In addition, a subregion 𝑚 must be large enough to contain 
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at least one route. The shape of a subregion can be square, triangular, rectangular or any arbitrary 

shape. Hence, the problem can be decomposed into several subproblems for each subregion. For 

subregion  𝑚, let 𝐴! be the area of 𝑚, let 𝑑! be the distance from the weighted centroid of 𝑚 to 

the depot, let   𝜔! be the average node density, and let 𝛽! be the average inspection cost per 

node. The decision variables are 𝑓!!  and 𝑌!, respectively, and these are the fraction of nodes in 

subregion 𝑚 patrolled according to frequency 𝑙 and number of routes associated with patrol 

frequency 𝑙. The expected cost per unit time can be written as: 

𝐴! 𝑙
2𝑑!𝜔!𝑓!! 𝑌!

𝜔!𝑓!! Ω!!∈!
+ 0.57(𝑓!! ∙ 𝜔!)

!
! ⋅ 𝑢 + 𝑓!! ∙ 𝜔! ⋅ 𝛽!

!∈!

 
(3.21) 

The CA problem can be written as: 

min 𝑍 = 𝑙 ⋅ A!
2𝑢𝑑!𝜔!𝑓!! 𝑌!

𝜔!𝑓!! Ω!!∈!
+ 0.57𝑢(𝑓!!𝜔!)

!
! + 𝛽!𝑓!!𝜔!

!∈!!∈!

 (3.22a) 

subject to 

𝑓!! = 0 ∀  𝑙 < 𝑔!!! 𝑃!"#  (3.22b) 

𝑓!!
!∈!

≥ 1 ∀  𝑚 ∈ 𝑀 (3.22c) 

2𝑑!𝜔!𝑓!! 𝑌!

𝜔!𝑓!! Ω!!∈!
+ 0.57(𝑓!! ∙ 𝜔!)

!
! ⋅ A! ≤ 𝑌! ⋅ 𝐶!"#

!∈!

 ∀𝑙   ∈ 𝑆 (3.22d) 

0 ≤ 𝑓! 𝐱 ≤ 1 ∀𝑙   ∈ 𝑆, 𝐱 ∈ ℛ (3.22e) 

0 ≤ 𝑓!! ≤ 1 ∀  𝑚 ∈ 𝑀, 𝑙 ∈ 𝑆 (3.22f) 

𝑓!! ≤ 𝑌! ∀  𝑚 ∈ 𝑀, 𝑙 ∈ 𝑆 (3.20g) 

𝑌!
!∈!

≤ 𝐾   (3.20h) 

𝑌! ∈ {0,1,2… 𝐾 } ∀𝑙   ∈ 𝑆 (3.20i) 
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The problem now contains a reduced number of decision variables, and the non-linear 

objective function and constraints, and can thus be solved rapidly using commercially available 

solvers.  

 Based on the optimal values of decision variables, we can further elaborate upon the 

design of the vehicle routes for each patrol frequency 𝑙. In each subregion, the original parking 

lot locations replace the node density function, and then the vehicle routing zoning method can 

be applied to design the detailed routes for each vehicle tour. In this thesis we mainly focus on 

the optimum agency cost, while the design of routes in the continuous model is omitted. 

  



	   30	  

 
CHAPTER 4 

NUMERICAL EXPERIMENTS 

Due to the absence of real-world parking enforcement data, for the purpose of numerical testing 

of the problem, several data sets are generated and the problems are solved using the data. In this 

chapter, the results of numerical testing of both the discrete model and the CA model are 

presented, followed by the sensitivity tests of some of the most seemingly important parameters. 

4.1 Parameter setting  

The data used in this experiment is randomly generated from some reasonable ranges according 

to a list of peer-reviewed papers, government statistics, and news articles. Parking lots are almost 

evenly distributed across a 1×2  mile! service region, and the depot is assumed to be at the center 

of the rectangle. The values of the parameters of each parking lot, including the inspection cost, 

driver arrival rate, average parking duration and the parking rate, are randomly selected from a 

reasonable range, see Table 4.1. 

According to some case studies of parking demand in the United States, the average 

arrival rate λ for one parking space is usually less than 1 per hour (Kimley-Horn and Associates, 

Inc., 2013a; Kimley-Horn and Associates, Inc., 2013b; Ottosson et al., 2013). The price of 

parking is assumed to vary from 0.25 to 1 ($/hr), which covers the most likely parking rates in 

small towns and cities, so the parking rate 𝑐 (hr/$) should be within this range [1,4]. The average 

parking time 𝜇!! in a metered parking space may vary from 1 hour to 2 hours (Ottosson et al., 

2013), thus each 𝜇!!! is randomly selected from this range. The variable travel cost is $1.55/mile, 

including a $0.55/mile for gas and maintenance for law enforcement vehicles in United States 

(Vincentric, LLC, 2010). Also included is $1/mile for officer wages (considered to be an hourly 

wage of $19.92 (Bureau of Labor Statistics, 2014) for patrol officers in Illinois and a 20mph 

travel speed, which is based on field observations). The distances between nodes are calculated 

using the Euclidean metric. The fine amount for a single citation is assumed to be $20 or more, 
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which is the case in many small and medium-sized cities. The cost of processing a parking 

citation is usually much lower than the amount of fine for one parking citation, such that the 

revenue from the tickets can be used to offset the cost in other municipal projects (McNerthney, 

2011; Murray, 2014). We assume a $2 processing cost for one parking citation herein. The 

number of on-street parking slots per block usually contains five to fifteen slots as an estimate 

based on field observations in the Champaign-Urbana area of Illinois. Without data source about 

the inspection cost per parking slot, we assume that the inspection cost per parking slot is $0.5, 

including the labor cost, fuel and maintenance cost for a patrol vehicle with speed lower than 5 

mph. Also, due to the absence of the literature about parking violation tolerance, we chose a 

reasonable value range of violation probability limit in this thesis based on the numerical test in 

Appendix A. 

Table 4.1. Value ranges of the parameters 

Parameter Value Unit Parameter Value Unit Parameter Value Unit 

𝜆! 0,1  -/hr 𝜇!!! 1,2  -/hr 𝜎! 0.2𝜇!!! hr 

𝑐! 1,4  hr/$ 𝛽! 2.5, 7.5  $ 𝐾  ℤ! - 

𝑝 20.0 $ 𝑃!"# [0.0005,0.003] - 𝑢 1.55 $/mile 

 
Figure 4.1. Demand/price distribution of Case I 

Depot 
𝑖 𝑗 

ℛ	  
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The west side of the service region is assumed to be subject to greater demand and higher 

parking prices, see Figure 4.1, the parking demand distribution of Case I. Each green circle 

represents a parking lot, and larger size of the circle means higher demand (-/hr) and parking 

price ($).  

In order to compute the parameters of the continuous model, the region had to be 

partitioned into two subregions, according to the distribution of required patrol frequency, 

𝑔!!(𝑃!"#). Base on the method illustrated in Section 3.3, the parameters of each subregion 

should be set at the average of the nodes in it. 

4.2 Numerical test 

In this section, we solve the case with nodes distributed as seen in Figure 4.1 under both discrete 

and continuous settings using some state-of–art solvers. There are some difficulties in solving 

these models. For the discrete model, the number of constraints increases exponentially as the 

number of nodes increases, so does the computation time. Therefore, to reduce the computation 

time, some constraints like subtour elimination constraints (3.16g) and tour length constraints 

(3.16h) were relaxed initially. If subtours or overly long vehicle tours exist in the solution, the 

corresponding constraints should be re-added into the model formulation, then the model should 

be resolved (Francis et al., 2006b). Similarly, for the continuous model, the nonlinear constraints 

(3.22d) associated with tour length are relaxed initially and should be re-added into the model 

when the solution contains routes that are longer than the limit. These heuristic approaches are 

used to simplify the solution process. 

The values, or value ranges, of some of the parameters in this case are exhibited in Table 

4.2. Other parameters are randomly generated based on the value ranges in Table 4.1. There are 

in total seventeen parking lots in the service region. The required patrol frequency,  𝑔!!(𝑃!"#), of 

each parking lot is shown in Figure 4.3. A larger size of the yellow circle represents the fact that 

the parking lot requires a higher patrol frequency. In comparing Figure 4.1 and 4.2, one can see 

that, generally speaking, a parking lot with greater demand and a higher price requires more 

frequent inspection, but greater demand and higher price definitely do not mean that a higher 

patrol frequency is required, since the required patrol frequency remains dependent on other 
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parameters, including 𝑇! , 𝑝, and 𝑙𝑖𝑚𝑖𝑡. For example, in Figure 4.1 and 4.2, the demand of 

parking lot 𝑖 has a greater demand and higher price than 𝑗, but 𝑗 still requires more frequent 

inspections.  

Table 4.2. Value or value range of the parameters of Case I and II 

Parameter Value Unit Parameter Value Unit Parameter Value Unit 

𝜆! [0.31,0.62] -/hr 𝑇! [1,1.38] hr 𝑝 20.0 $ 

𝑃!"# 0.002 - 𝐾  2 - 𝑐! [1,2] hr/$ 

 
Figure 4.2. Required patrol frequency distribution of Case I 

The discrete model is solved using Gurobi (Gurobi Optimization, I., 2014) based on 

Python using an i7 processor and 8 GB of memory. The subtour constraints are added back into 

the problems, while the tour length constraints are relaxed. The computation time is 2 hour 55 

minutes. Figure 4.3 shows that in Case I, Route 1 (the solid blue lines) covers the high-demand 

nodes, with the patrol frequency being !
!
, while Route 2 (the dotted yellow lines) covers the rest 

of the nodes with the patrol frequency being !
!
. The optimum cost is found to be $47.8508 with a 

0.0% optimality gap. 

ℛ	  

Subregion 1 Subregion 2 

Depot 

𝑖 𝑗 
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Figure 4.3. Routes generated in the discrete model of Case I 

To solve the case with the method of continuum approximation, we first partition the 

service region ℛ into two subregions based on the distribution of the required patrol frequency, 

see the detailed description of the partitioning method in Section 3.3. The two subregions are 

shown in Figure 4.2. Then the values of the parameters of the continuous model can be computed 

by taking the average over each subregion, see Table 4.3. 

The continuous model is solved using the Knitro solver (Ziena Optimization LLC, 2011) 

based on AMPL (Fourer et al. 2003) with an i7 processor and 8 GB of memory. Given that 

Knitro only provides a local optimum, we conducted the computation several times with 

different initial values in order to obtain a global optimum by enumerating a number of feasible 

solutions that are as great as possible. The computation time is 0.41 second with the tour length 

constraints being relaxed. The optimum cost is $46.5645 with 0 feasibility error, and the values 

of the decision variables can be found in Table 4.4.  
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Table 4.3. Value of the parameters of the continuous model in Case I 

Parameter Unit Subregion 1 Subregion 2 

𝜆! -/hr 0.4498 0.3451 

𝜇!!! hr 1.1635 1.1888 

𝑐! hr/$ 0.9992 1.3132 

𝜎! hr 0.2327 0.2377 

𝑟! mile 0.75 0.25 

𝐴! mile2 0.5 1.5 

𝜔! -/mile2 4.0 10.0 

𝛽! $ 4.8120 4.7361 

𝑔!!! 𝑃!"#  hr 0.5585 0.3725 

Table 4.4. Solution of the continuous model in Case I 

    Frequency (𝑙) 
 

Decision variables 

1
3 

1
2 

2
3 1 

4
3 2 

𝑓!! 0 0 1 0 0 0 

𝑓!! 0 1 0 0 0 0 

𝑌! 0 1 1 0 0 0 

In both the discrete and continuous model, routes with patrol frequencies of !
!
 and !

!
 are 

generated to serve the parking lots in region ℛ. Although the design of vehicle routes is omitted 

in the continuous model, it still provides an accurate estimation of the optimal agency cost with a 

percentage difference that is less than 3%. 

The continuum approximation model yields an optimum cost that is slightly smaller than 

the result of the discrete model. One possible reason is that, although the set of feasible 

frequencies and maximum number of patrol routes remain the same, the partitioning and 

approximation steps in the CA method are actually making the customers more evenly 

distributed than that of the discrete model. For example, in Subregion 2, which is the low 

demand area, most of the nodes in it are located near the four sides of the subregion but are away 

from the depot. This may lead to the solution value of the discrete model being larger than in the 
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case of the continuous model because the line-haul cost is potentially higher. This conclusion 

will be further supported in the following section of sensitivity analysis. 

4.3 Sensitivity test 

In this section, sensitivity tests of both the discrete and the continuous models are presented in 

order to illustrate the impact of parking demand 𝜆, parking rate 𝑐, parking citation fine 𝑝, and 

violation probability limit 𝑃!"#. We generate a new instance with fewer nodes, Case II, as the 

benchmark case, since the computation time of the discrete model in Case I is overly long. The 

percentage differences between the discrete models and continuous models are also presented to 

validate that continuum approximation method is accurate to some extent for the purpose of 

estimating the agency cost.  

In Case II, only fifteen nodes are generated while the values and value ranges of the 

parameters remain the same as those in Table 4.1 and 4.2. Using the same method in Section 4.2, 

we obtain the optimum cost of $49.5823 with a 0.00% optimality gap by solving the discrete 

model. The computation time is around 20 minutes, which is much less than that of Case I. This 

is due to the reduction in the number of decision variables and a much greater reduction in the 

number of constraints. The optimum cost of the continuum approximation model turns out to be 

$48.4533 with 0 feasibility error. The computation time is 0.31 seconds. Both of the models 

generate routes with patrol frequencies of !
!
 and !

!
, and the percentage difference between the 

solution values of the two models is less than 3%.  

4.3.1 Impact of demand 

While the distribution of nodes and other parameters remain unchanged, the demand 𝜆! of each 

parking lot in the service region are multiplied by a scalar 𝑎. Considering the range of the 

parking demand in real life, 𝑎  should satisfy 0 ≤ 𝑎 ≤ 10 . For 

𝑎 ∈ {0.677, 1, 1.32, 1.97, 3.23, 5.45}, the optimum agency cost is computed using the same 

method explained in Section 4.2 and is plotted in Figure 4.6. The horizontal axle is the average 

demand of the parking lots in the service region. The purple line with cross marks gives the 
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percentage difference between the solution values of the discrete model and the continuous 

model. 

Figure 4.4 shows that as the demand increases, the required patrol frequency and 

optimum agency cost rise stepwise. It rises stepwise because that the frequency variable 𝑙 does 

not take continuous values. This also occurs in the sensitivity analysis of other parameters. 

Hence, there exist a number of demand thresholds, see the inflection points in Figure 4.4. When 

the demand varies between two thresholds, the optimal agency cost and the patrol scheme will 

remain unchanged. Otherwise, the agency cost and the patrol scheme will definitely change.  

 

Figure 4.4. Impact of parking demand on solution value 
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Note that the solution values of the continuous model move in the same steps as those of 

the discrete model, and the percentage difference between the two models is generally below 

10%.  

4.3.2 Impact of violation probability limit 

The tolerance level for parking violations may vary upon occasion. In many situations, e.g., 

during the Thanksgiving shopping season, patrol officers may have to perform their duties more 

strictly while the parking prices and fines remain constant. We tested the sensitivity of the 

models to the tolerance level for violations by incrementally changing the parking violation limit, 

𝑃!"# ∈    {0.0005, 0.001, 0.0015, 0.002, 0.0025, 0.003} , and computing the corresponding 

solutions, see Figure 4.5. 

As the violation probability limit rises, the system provides greater tolerance for parking 

violations, and the patrol cost per unit time decreases. When the violation probability is set to 

zero, the patrol frequency approached a value greater than ten billion and the corresponding 

agency cost can be seen as infinite. Note that the method of CA provides a particularly good 

estimation of the agency cost when the violation limit is larger than 0.0015, and the percentage 

differences are generally smaller than 10%. 
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Figure 4.5. Impact of violation probability limit on solution value 
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keeping other parameters constant. Note that parking rate 𝑐 is the inverse of the parking price. 

The solution values and the percentage differences are plotted in Figure 4.6. 
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economical for drivers to pay less than they should have paid. The consequence is that parking 

enforcement officers had to inspect the parking lots more frequently in order to keep the 

violation probability under the limit. 

When the parking rate is less than one hour per dollar which means price is greater than 

one dollar per hour, the estimation of agency cost using the CA method becomes less accurate, 

with the percentage difference being around 10%, but it still moves in the same steps with the 

solution value of the discrete model. 

 

Figure 4.6. Impact of parking price on solution value 
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4.3.4 Impact of parking fine 

Online forums and local newspapers often have featured discussions involving advocates of 

lowering or increasing local parking fines. Intuitively, a higher penalty can lead to reduced 

number of illegal behaviors because less effort is required to inspect the parking lots. In order to 

explore the sensitivity of the model to the value of parking fine, we raised the value of 𝑝 

stepwise and monitored the changes in the solution, 𝑝 ∈ {13, 16, 20, 23, 25, 29, 32}. 

  

Figure 4.7. Impact of parking fine on solution value 
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4.4 Conclusion 

In this chapter, the parking enforcement patrol models in Section 3.2 and 3.3 are tested with the 

assumed data. The discrete agency model, a Mixed Integer Linear Problem, is solved with the 

commercial solver Gurobi (Gurobi Optimization, I., 2014) using an exact method, while the 

continuous agency model is solved with KNITRO (Ziena Optimization LLC, 2011) using a 

multi-start algorithm. With the method of continuum approximation, the numbers of decision 

variables and constraints are greatly reduced, and as a result the runtime of this idealized model 

is relatively minimal, compared with the original discrete model. Generally, the solution values 

of the CA models are slightly smaller than those of the discrete model. Overall, 23 different 

instances are generated and tested in this chapter. And about 61% of these instances yield the 

percentage differences between the discrete and continuous models that are less than 5.5%, see 

details in Figure 4.8. 

 
Figure 4.8. Values of percentage difference between the two models 
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or cutting the parking price, both of which are effective methods. Another important finding is 

that parking demand changes may influence the optimum patrol scheme. When parking demand 

fluctuates between some thresholds, the efficiency of patrol system will not be affected. But if 

the parking demand changes go beyond some limits, the agency will have to re-compute the 

patrol scheme in order to maintain the healthy operation of the parking system. Thus, the patrol 

department should periodically check the parking demand and make new patrol plans. 
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CHAPTER 5 

CONCLUSION AND FUTURE RESEARCH 

5.1 Conclusion 

This thesis applied the method of mathematical modeling and the approach of continuum 

approximation in order to design a more efficient patrol system for parking enforcement.  

Chapter 2 reviews the research literature related to i) the characteristics of driver behavior 

when parking, in the peer-reviewed papers, ii) the problem settings and solution methods of 

multiple periodic vehicle routing problems, iii) model formulation for some popular patrol 

problems, and iv) the method of continuum approximation.  

Chapter 3 presents a driver model in which stricter enforcement results in higher parking 

payments from drivers, and the two agency models that have the objective of minimizing 

expected system cost per unit time. The perspective of drivers is that the parking payment that 

minimizes the expected overall cost of the parking duration should be determined based on 

whatever limited information the drivers can obtain. The optimal parking payment is formulated 

as a function of parking prices, violation fines, parking time distribution and patrol frequency. 

The perspective of agency is that the patrol cost should be minimized with the parking violation 

under control. The violation probability for one parking slot is formulated based on the Queueing 

Theory. The probability of a parking slot being illegally occupied is formulated as function of 

parking demand, the distribution of parking duration, and drivers’ optimal payment. 

In order to formulate the models that aim at minimizing agency cost, several important 

assumptions are made: i) under the time-invariant demand setting, the arrival rate at each parking 

lot is a constant, so the headway between two inspections is also assumed to be time-invariant; 

ii) the violation limits at all parking lots are of the same value; iii) the events at one parking slot 

are independent of the events at any other parking slot; iv) the number of vehicle routes is 

specified as a preset parameter; v) the citation processing cost is omitted. Given the above 
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results, two agency models are built under discrete and continuous settings, respectively. In the 

discrete model, the parking lots are assigned to several routes and each route is patrolled 

according to a certain frequency, which is one of the decisions of the model. Two routes can 

share the same patrol frequency, while each parking lot can only be assigned to one route. In the 

continuous model, the parking demand, parking time, and parking rate are all assumed to be 

continuous functions of location. The agency costs are computed by, first, formulating the cost 

per unit area, and, second, by integrating the cost over the entire region. The problem is further 

simplified by partitioning the service region into multiple subregions in a manner such that, 

within each subregion, the parameters can be approximated into the average over the subregion. 

Note that the construction of the vehicles routs is skipped in this continuous model.  

In Chapter 4, the agency models are tested using assumed data, and the results of 

sensitivity analysis provide some significant insights into the efficient parking enforcement 

patrol scheme. Note that the tour length constraints are relaxed when solving these small cases. 

Compared with that of the discrete model, the computation time of the continuous model is 

minimal. The computation time for the discrete model, would increase exponentially as the 

number of nodes increased. As regards the continuous model, the number of the instances has 

little impact on the number of decision variables or constraints, so the runtime can remain 

relatively small even for extremely large problems. The method of CA can be used as an 

efficient tool for estimating system cost and assisting decision-makings of new policies, a 

conclusion that has been arrived at by multiple researchers.  

In conclusion, as regards parking patrol routing problems, it is valid to apply the method 

of continuum approximation in system cost estimations and parametric analyses, because it can 

rapidly provide important decision-making information for new measures or policies. As regards 

parking prices, violation fines and patrol frequencies, all of these play significant roles in 

controlling the violation rate of drivers. Regular surveys should be conducted to verify the 

parking demand, parking purposes and other customer information involving the parking lots, so 

that patrol schemes can be updated to ensure parking enforcement efficiency as the situation 

changes. 
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5.2 Future research options 

The application of the models and solution methods above are restricted to problems with time-

invariant customer demands and fixed number of patrol routes. Potential extensions of the 

parking patrol routing problems include: i) relaxing the assumptions regarding parking demand, 

violation limit and so on mentioned in Section 5.1; ii) modifying the objective functions by 

adding benefit terms; iii) constructing vehicle routes in the continuous model; iv) testing larger 

instances with the nonlinear tour length constraints. 

Due to the limits of testing data, the computational study herein is restricted to small 

instances with assumed data. In small instances, for example, Case I and Case II generated in 

Chapter 4, the violation probability can be assumed to be constant for all parking lots, and the 

tour length can hardly extend beyond the limit 𝐶!"#. Thus the tour length constraints are relaxed 

when solving the models in this work. However, when the size of the instances grows larger, the 

violation probability limit should vary upon location to reflect the functional differences between 

locations. And the tour length constraints in the continuous model, which are nonlinear 

constraints, will further extend the computation time of the models. Thus, large instances 

involving real data should be tested to examine the performance of the continuous model of 

parking enforcement patrol problem formulated in this thesis.  

Given the time-invariant setting of parking demand and patrol frequency settings in this 

paper, it is not permissible for parking lots that require different levels of inspections be patrolled 

by the same vehicle. While under the time-variant setting, the feasible dispatch time set 𝑆! can be 

a substitute for 𝑆, the set of feasible patrol frequencies. Thus, the parking lots associated with 

different patrol levels are allowed to be visited by one vehicle that departs at a scheduled time. 

The agency cost can be further reduced, and the model can be more applicable in practical use. 

Under the continuous setting, the problem basically involves decision-makings regarding both 

time and space, see Figure 6.1 

And the decision variables would be: 

𝑛! numbers of vehicles dispatched at time 𝜏, 𝑛! ∈ 0,1,2,3… , 𝜏 ∈ 𝑆! 

𝑓!(𝐱) fraction of nodes at point 𝐱 visited by vehicles dispatched at time 𝜏 
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Figure 5.1. Time-variant model of parking patrol problem 

In many cities, the revenues from parking charges and violation tickets are not 

completely given to the local parking department. Revenues can be shared and used to offset the 

costs of education, public safety, and advocacy projects unrelated to parking, and other programs 

(McNerthney, 2011; Murray, 2014). It is the case that a small portion of the revenue goes to the 

city or county to offset the costs of parking, patrolling and the processing of the tickets. Thus, 

there are some benefits to be derived from effective patrolling operations. The objective function 

could be changed from cost to net cost by adding the benefit parameters. When the net income 

from one parking ticket is a positive value, the model would probably generate patrol plans that 

inspect the parking lots more frequently. Again, this will be a tradeoff between the patrol costs 

and benefits. Sensitivity analysis should be conducted to examine the effect of the changes in 

these benefit parameters. 

Last, but not least,, analyzing the design of vehicle routing zones can be conducted to 

further narrow the gap between the agency costs generated by mathematical modeling with 

Service region ℛ 

	  	  	  	  	  :	  Area with positive values of	  𝑓!(𝐱)	  
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discrete inputs and the method of continuum approximation. First, a number of vehicles routing 

zones should be created such that one patrol vehicle is assigned to visit all the nodes in one and 

only one zone. The near-optimum shape of such zones has been proved to be a narrow wedge 

elongated towards the depot (Newell and Daganzo, 1986). Second, after replacing the continuous 

density function with the original customer locations, the exact routes for each patrol vehicle can 

be generated (Ouyang, 2007). A comparative analysis between the two modeling approaches 

should also be conducted to further analyze the method of CA in operational-level patrol routing 

problems. 

  



	   49	  

 

REFERENCES 

Albert, G., Mahalel, D., 2006. Congestion tolls and parking fees: A comparison of the potential 

effect on travel behavior. Transport policy, 13(6), 496-502. 

Almi'ani, K., Selvadurai, S., Viglas, A., 2008. Periodic mobile multi-gateway scheduling. 

In Parallel and Distributed Computing, Applications and Technologies, 2008. PDCAT 2008. 

Ninth International Conference on (pp. 195-202). IEEE. 

An, Y. J., Kim, Y. D., Jeong, B., Kim, S. D., 2012. Scheduling healthcare services in a home 

healthcare system. Journal of the Operational Research Society, 63(11), 1589-1599. 

Baptista, S., Oliveira, R. C., Zúquete, E., 2002. A period vehicle routing case study. European 

Journal of Operational Research, 139(2), 220-229. 

Bates, J., Skinner, A., Scholefield, G., Bradley, R., 1997. Study of parking and traffic demand. 2. 

A Traffic Restraint Analysis Model (TRAM). Traffic engineering & control, 38(3), 135-141. 

Beltrami, E. J., Bodin, L. D., 1974. Networks and vehicle routing for municipal waste 

collection. Networks, 4(1), 65-94. 

Blakeley, F., Argüello, B., Cao, B., Hall, W., Knolmajer, J., 2003. Optimizing periodic 

maintenance operations for Schindler Elevator Corporation. Interfaces,33(1), 67-79. 

Burdette, D. Multi-space Parking Meter. Digital image. Wikimedia.org. 16 Sept. 2010. Web. 

Retrieved from: http://commons.wikimedia.org/wiki/File:Multi-space_parking_meter.JPG.  

Bureau of Labor Statistics, 2014. Occupational Employment and Wages, 33-3041 Parking 

Enforcement Workers. Retrived from: http://www.bls.gov/oes/current/oes333041.htm. 

Accessed on 2015-04-01. 



	   50	  

Campbell, A. M., Hardin, J. R., 2005. Vehicle minimization for periodic deliveries. European 

Journal of Operational Research, 165(3), 668-684. 

Çapar, İ., Keskin, B. B., Rubin, P. A., 2015. An improved formulation for the maximum 

coverage patrol routing problem. Computers & Operations Research. 

Chaiken, J. M., Dormont, P., 1978. A patrol car allocation model: Capabilities and 

algorithms. Management Science, 24(12), 1291-1300. 

Chao, I., Golden, B. L., Wasil, E., 1995. An improved heuristic for the period vehicle routing 

problem. Networks, 26(1), 25-44. 

Chelst, K., 1978. An algorithm for deploying a crime directed (tactical) patrol 

force. Management Science, 24(12), 1314-1327. 

Chen, X., 2012. Fast patrol route planning in dynamic environments. Systems, Man and 

Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 42(4), 894-904. 

Chen, X., Yum, T. S., 2010. Cross Entropy approach for patrol route planning in dynamic 

environments. In Intelligence and Security Informatics (ISI), 2010 IEEE International 

Conference on (pp. 114-119). IEEE. 

Chevaleyre, Y., Sempe, F., Ramalho, G., 2004. A theoretical analysis of multi-agent patrolling 

strategies. In Proceedings of the Third International Joint Conference on Autonomous Agents 

and Multiagent Systems-Volume 3 (pp. 1524-1525). IEEE Computer Society. 

Chircop, P. A., Surendonk, T. J., van den Briel, M. H. L., Walsh, T., 2013. A column generation 

approach for the scheduling of patrol boats to provide complete patrol coverage. In 20th 

International Congress on Modelling and Simulation. No. December, 1-6. 

Christofides, N., 1976. The vehicle routing problem. RAIRO-Operations Research-Recherche 

Opérationnelle, 10(V1), 55-70. 

Christofides, N., Beasley, J. E., 1984. The period routing problem. Networks, 14(2), 237-256. 



	   51	  

Clarke, G. U., Wright, J. W., 1964. Scheduling of vehicles from a central depot to a number of 

delivery points. Operations research, 12(4), 568-581. 

Coene, S., Arnout, A., Spieksma, F. C., 2010. On a periodic vehicle routing 

problem&star. Journal of the Operational Research Society, 61(12), 1719-1728. 

Cordeau, J. F., Gendreau, M., Laporte, G., 1997. A tabu search heuristic for periodic and multi-

depot vehicle routing problems. Networks, (30), 105-119. 

Cullinane, K., Polak, J., 1992. Illegal parking and the enforcement of parking regulations: 

causes, effects and interactions. Transport Reviews, 12(1), 49-75. 

D'Acierno, L., Gallo, M., Montella, B., 2006. Optimisation models for the urban parking pricing 

problem. Transport Policy, 13(1), 34-48. 

Daganzo, C. F., Erera, A. L., 1999. On planning and design of logistics systems for uncertain 

environments. In: New Trends in Distribution Logistics, 3-21. Springer Berlin Heidelberg.  

Daganzo, C.F., 1999. Logistics systems analysis, Springer, New York. 

Delgado, C., Laguna, M., Pacheco, J., 2005. Minimizing labor requirements in a periodic vehicle 

loading problem. Computational Optimization and Applications, 32(3), 299-320. 

Di Tella, R., Schargrodsky, E., 2004. Do police reduce crime? Estimates using the allocation of 

police forces after a terrorist attack. The American Economic Review, 94(1), 115-133. 

Erera, A., 2000. Design of large-scale logistics systems for uncertain environments. Ph.D. 

Dissertation, University of California, Berkeley. 

Fisher, M. L., Jaikumar, R., 1981. A generalized assignment heuristic for vehicle routing. 

Networks, 11(2), 109-124. 

Fourer, R., Gay, D., Kernighan, B., 2003. AMPL: A Modeling Language for Mathematical 

Programming. Brooks/Cole–Thomson 



	   52	  

Francis, P., Smilowitz, K., 2006a. Modeling techniques for periodic vehicle routing problems. 

Transportation Research Part B: Methodological, 40(10), 872-884. 

Francis, P., Smilowitz, K., Tzur, M., 2006b. The period vehicle routing problem with service 

choice. Transportation Science, 40(4), 439-454. 

Gaudioso, M., Paletta, G., 1992. A heuristic for the periodic vehicle routing problem. 

Transportation Science, 26(2), 86-92. 

Gillett, B. E., Miller, L. R., 1974. A heuristic algorithm for the vehicle-dispatch problem. 

Operations research, 22(2), 340-349. 

Gonçalves, L. B., Ochi, L. S., Martins, S. L., 2005. A grasp with adaptive memory for a period 

vehicle routing problem. In: Computational Intelligence for Modelling, Control and 

Automation, 2005 and International Conference on Intelligent Agents, Web Technologies and 

Internet Commerce, International Conference on Vol. 1, 721-727. IEEE. 

Guo, Z., McDonnell, S., 2013. Curb parking pricing for local residents: An exploration in New 

York City based on willingness to pay. Transport Policy, 30, 186-198. 

Gurobi Optimization, I., 2014. Gurobi optimizer reference manual. Retrieved from: 

http://www.gurobi.com.  

Hadjiconstantinou, E., Baldacci, R., 1998. A multi-depot period vehicle routing problem arising 

in the utilities sector. Journal of the Operational Research Society, 1239-1248. 

Hall, R. W., 1986. Discrete models/continuous models. Omega, 14(3), 213-220. 

Hemmelmayr, V. C., Doerner, K. F., Hartl, R. F., 2009. A variable neighborhood search heuristic 

for periodic routing problems. European Journal of Operational Research, 195(3), 791-802. 

Hensher, D. A., King, J., 2001. Parking demand and responsiveness to supply, pricing and 

location in the Sydney central business district. Transportation Research Part A: Policy and 

Practice, 35(3), 177-196. 



	   53	  

Irvan, M., Yamada, T., Terano, T., 2011. Multi-agent learning approach to dynamic security 

patrol routing. In SICE Annual Conference (SICE), 2011 Proceedings of (pp. 875-880). IEEE. 

Jang, W., Lim, H. H., Crowe, T. J., Raskin, G., Perkins, T. E., 2006. The Missouri Lottery 

optimizes its scheduling and routing to improve efficiency and balance. Interfaces, 36(4), 302-

313. 

Kelly, J. A., Clinch, J. P., 2006. Influence of varied parking tariffs on parking occupancy levels 

by trip purpose. Transport Policy, 13(6), 487-495. 

Keskin, B. B., Li, S. R., 2012. Bi-Criteria Dynamic Location-Routing Problem for Patrol 

Coverage. 

Keskin, B. B., Li, S. R., Steil, D., Spiller, S., 2012. Analysis of an integrated maximum covering 

and patrol routing problem. Transportation Research Part E: Logistics and Transportation 

Review, 48(1), 215-232. 

Khouja, M., 1999. The single-period (news-vendor) problem: literature review and suggestions 

for future research. Omega, 27(5), 537-553. 

Kimley-horn and associates, Inc., 2013a. Downtown Parking Study. City of Burham. Retrived 

from: http://durhamnc.gov/ich/op/dot/Pages/Comprehensive-Parking-Studies.aspx. Accessed 

on 2015-04-01. 

Kimley-horn and associates, Inc., 2013b. Ninth Street Parking Study. City of Burham. Retrived 

from: http://durhamnc.gov/ich/op/dot/Pages/Comprehensive-Parking-Studies.aspx. Accessed 

on 2015-04-01. 

Las Fargeas, J., Hyun, B., Kabamba, P., Girard, A., 2012. Persistent visitation with fuel 

constraints. Procedia-Social and Behavioral Sciences, 54, 1037-1046. 

Lau, H. C., Ho, G. T., Zhao, Y., Hon, W. T., 2010. Optimizing patrol force deployment using a 

genetic algorithm. Expert Systems with Applications,37(12), 8148-8154. 

Learning, Pacific Grove, CA.  



	   54	  

Lou, Y., Yin, Y., Lawphongpanich, S., 2011. Freeway service patrol deployment planning for 

incident management and congestion mitigation. Transportation Research Part C: Emerging 

Technologies, 19(2), 283-295. 

Marlith, 2008. A Parking Meter. Digital image. Wikimedia.org. Retrieved from: 

http://commons.wikimedia.org/wiki/File:ParkingMeter.JPG. 

Maya, P., Sörensen, K., Goos, P., 2012. A metaheuristic for a teaching assistant assignment-

routing problem. Computers & Operations Research,39(2), 249-258. 

McNerthney, C., 2011. Where does the money from traffic tickets go, Seattle 911. Retrived 

from: http://blog.seattlepi.com/seattle911/2011/04/20/where-does-the-money-from-traffic-

tickets-go-2/. Accessed on 2015-04-01. 

Melo, A., Belchior, M., Furtado, V., 2006. Analyzing police patrol routes by simulating the 

physical reorganization of agents. Multi-Agent-Based Simulation VI (pp. 99-114). Springer 

Berlin Heidelberg. 

Mole, R. H., Jameson, S. R., 1976. A sequential route-building algorithm employing a 

generalised savings criterion. Operational Research Quarterly, 503-511. 

Murray, J., 2014. Denver Parking Revenue tickets on the rise analysis finds, The Denver Post. 

Retrived from: http://minnesota.cbslocal.com/2013/06/27/good-question-where-does-traffic-

ticket-money-go/. Accessed on 2015-04-01. 

Newell, G. F., Daganzo, C. F., 1986. Design of multiple-vehicle delivery tours—I a ring-radial 

network. Transportation Research Part B: Methodological, 20(5), 345-363. 

Osman, I. H., 1991. Metastrategy: simulated annealing and tabu search for combinatorial 

optimization problems. Doctoral dissertation, Imperial College London (University of 

London). 

Osman, I. H., 1993. Metastrategy simulated annealing and tabu search algorithms for the vehicle 

routing problem. Annals of operations Research, 41(4), 421-451. 



	   55	  

Ottosson, D. B., Chen, C., Wang, T., Lin, H., 2013. The sensitivity of on-street parking demand 

in response to price changes: A case study in Seattle, WA. Transport Policy, 25, 222-232. 

Ouyang, Y., 2007. Design of vehicle routing zones for large-scale distribution systems. 

Transportation Research Part B: Methodological, 41(10), 1079-1093. 

Ouyang, Y., Daganzo, C. F., 2006. Discretization and validation of the continuum approximation 

scheme for terminal system design. Transportation Science, 40(1), 89-98. 

Petiot, R., 2004. Parking enforcement and travel demand management. Transport Policy, 11(4), 

399-411. 

Renaud, J., Boctor, F. F., Laporte, G., 1996. An improved petal heuristic for the vehicle routeing 

problem. Journal of the Operational Research Society, 329-336. 

Robust, F., Daganzo, C. F., Souleyrette, R. R., 1990. Implementing vehicle routing 

models. Transportation Research Part B: Methodological, 24(4), 263-286. 

Russell, R., Igo, W., 1979. An assignment routing problem. Networks, 9(1), 1-17. 

Saltzman, R. M., 1997. An animated simulation model for analyzing on-street parking 

issues. Simulation, 69(2), 79-90. 

Shoup, D. C., 2005. The high cost of free parking (Vol. 206). Chicago: Planners Press. 

Silver, E., Pyke, D. F., Peterson, R., 1998. Inventory management and production planning and 

scheduling. 

Simićević, J., Vukanović, S., Milosavljević, N., 2013. The effect of parking charges and time 

limit to car usage and parking behaviour. Transport Policy,30, 125-131. 

Smilowitz, K. R., Daganzo, C. F., 2007. Continuum approximation techniques for the design of 

integrated package distribution systems. Networks,50(3), 183-196. 

Tan, C. C. R., Beasley, J. E., 1984. A heuristic algorithm for the period vehicle routing 

problem. Omega, 12(5), 497-504. 



	   56	  

The Traffic Institute, 1993. Police allocation manual. Northwestern University. 

Vincentric, LLC., 2010. A Look At Lifecycle Costs For Law Enforcement Vehicles. Retrieved 

from: 

http://vincentric.com/Portals/0/Market%20Analyses/Law%20Enforcement%20Lifecycle%20

Cost%20Analysis-%20Prepared%20Feb%202010.pdf. Accessed on 2015-04-01. 

Ziena Optimization, LLC., 2011. Knitro Documentation 9.1. Retrived from: 

http://www.ziena.com/documentation.htm.  

  



	   57	  

 
APPENDIX A  

NUMERICAL TEST OF VIOLATION PROBABILITY LIMIT 

To find a reasonable value range of the violation probability limit 𝑃!"#, a numerical test is 

conducted. First, a sample of 500 nodes is generated with different values of 𝜆!, 𝑐!, and 𝑇 

randomly generated respectively, from range [0.31,4], [0.375,2] and [1,1.38], see detailed 

description of these parameters in Section 4.1. For each combination of difference values of 𝑝 

and 𝑠!, we calculated the value of 𝑃!"# of all nodes, then we obtained the minimum, average and 

maximum values of 𝑃!"# from the sample. Second, we generated a sample of 1000 nodes and 

repeat the first step. As shown in Table A, in each row, the statistics of the 1000-size sample and 

the 500-size sample are very close, thus it is reasonable to assume that the sample large enough 

to provide accurate estimation of the population.  

 The value of violation probability limit should be high enough to ensure a healthily 

functioning parking system and meanwhile below a reasonable limit such that the patrol cost is 

affordable for the parking department. Hence, the value range of 𝑃!"# is set to be [0.0005,0.003], 

according to the average values of the two samples. With the citation processing cost being $2, 

number of parking slot per street block being 10, total number of parking lots being 15, and the 

patrol frequency being 1 (-/hr), the expected citation processing cost per hour should be in range 

[0.15,0.9], which is much smaller than the transportation and inspection cost, see Section 4.1. 

Table A.1. Value of 𝑷𝒗𝒊𝒐 under different parameter settings 

𝑝 𝑠! 
𝑃!"# 

500 nodes generated 1000 nodes generated 
Min. Ave. Max. Min. Ave. Max. 

20 

0.5 0.00085 0.00496 0.01988 0.00080 0.00511 0.02052 

0.67 0.00043 0.00342 0.01334 0.00056 0.00353 0.01377 

1 0.00031 0.00206 0.00780 0.00035 0.00212 0.00805 

1.33 0.00027 0.00145 0.00542 0.00025 0.00150 0.00559 

2 0.00017 0.00089 0.00325 0.00015 0.00091 0.00336 
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Table A.1. (Cont.) 

𝑝 𝑠! 
𝑃!"# 

500 nodes generated 1000 nodes generated 
Min. Ave. Max. Min. Ave. Max. 

25 

0.5 0.00065 0.00372 0.01457 0.00061 0.00383 0.01504 

0.67 0.00043 0.00258 0.00990 0.00043 0.00266 0.01022 

1 0.00028 0.00157 0.00586 0.00027 0.00161 0.00605 

1.33 0.00020 0.00111 0.00409 0.00019 0.00114 0.00422 

2 0.00013 0.000686 0.00248 0.00012 0.00070 0.00255 

30 

0.5 0.00052 0.00295 0.01139 0.00049 0.00304 0.01176 

0.67 0.00037 0.00206 0.00780 0.00035 0.00212 0.00805 

1 0.00023 0.00126 0.00645 0.00021 0.00129 0.00480 

1.33 0.00016 0.00089 0.00326 0.00015 0.00092 0.00337 

2 0.00010 0.00055 0.00198 0.00009 0.00337 0.00205 

35 

0.5 0.00043 0.00243 0.00929 0.00041 0.00251 0.00959 

0.67 0.00031 0.00170 0.00639 0.00029 0.00176 0.00660 

1 0.00019 0.00104 0.00384 0.00018 0.00107 0.00396 

1.33 0.00013 0.00074 0.00270 0.00013 0.00076 0.00279 

2 0.00008 0.00046 0.00165 0.00008 0.00047 0.00170 

 


