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ABSTRACT 

Layer thickness is a critical part of the flexible pavement system. It can affect the structural 

capacity of existing flexible pavement, and can be used to predict its remaining service life. For 

newly constructed flexible pavement, obtaining its layer thickness is essential for the purposes of 

quality control and quality assurance (QC/QA). 

Currently, most departments of transportation, highway agencies, and consultants in the 

United States use destructive methods, e.g. coring, to obtain asphalt pavement layer thicknesses. 

As a non-destructive technique, ground penetration radar (GPR) has also been applied to estimate 

asphalt pavement thickness. However, the use of GPR is limited due to the difficulty involved in 

determining the dielectric constant of asphalt pavement in the traditional two-way travel time and 

surface reflection method. Asphalt mixture is a composite material and, as such, the reflection 

amplitude of electromagnetic waves could be affected by many factors, such as the presence of 

moisture. The extended common mid-point (XCMP) method is an alternative method that can be 

used on the traditional air-coupled pulsed horn antenna to increase the accuracy of asphalt 

pavement thickness estimation without calibrating the dielectric constant by taking cores. By 

developing signal processing and numerical analysis techniques, this research attempts to integrate 

3-D GPR with the XCMP method, which holds certain advantages over the traditional air-coupled 

pulsed horn antenna. 

3-D GPR is a multi-array stepped-frequency radar that can measure both in-line and cross-

line directions at a very close sampling interval. Therefore, 3-D radar provides faster data 

collection speeds than the pulsed horn antenna and is preferred in large survey areas such as an 

airport runway/taxiway. To solve the XCMP equations, the time domain sampling rate of the 3-D 
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radar is increased by applying a Whittaker-Shannon interpolation. The XCMP equations are then 

solved numerically in the least-square sense. 

By validating the developed algorithm in a full scale test site, the study concludes that by 

using signal processing techniques and numerical analysis approaches, 3-D radar can be used to 

accurately predict asphalt layer thickness using the XCMP method when the layer thickness is 

greater than 50mm.  
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Asphalt concrete (AC) is a composite material consisting of bituminous and aggregate, and 

is widely used in pavement construction. Asphalt pavement is also called “flexible pavement,” as 

opposed to Portland cement concrete (PCC) pavement, which is also known as “rigid pavement.” 

AC pavement typically provides a smoother drive and generates less roadway noise than its PCC 

counterpart (Claessen et al. 1977). Layer thickness is crucial in the asphalt pavement system, and 

most asphalt pavement design processes consider it to be the most important parameter (Huang 

1993; Yoder et al. 1975; Masad 2012). For newly constructed asphalt pavement, layer thickness is 

used for quality control and quality assurance (QC/QA); for existing pavement, it is used for 

condition assessment of existing pavements and in predicting their remaining service life.  

Predicting the layer thicknesses is, therefore, necessary whether during construction or for 

existing pavement. However, it still remains an issue to estimate asphalt layer thickness effectively 

and non-destructively. Traditionally, coring has been the prevalent method for agencies seeking to 

obtain asphalt layer thickness (Lahouar 2003). However, taking cores results in pavement defects; 

as such, the number of coring locations is usually limited. In addition, coring provides limited layer 

thickness information of the asphalt pavement. Ground penetrating radar (GPR) represents an 

alternative, non-destructive method. 

GPR is a specific type of radar system that uses electromagnetic (EM) waves to explore 

subsurface. In transportation infrastructure survey, GPR has been commonly applied to locate 

reinforcement and delamination under a concrete slab (Chang et al. 2009). In flexible pavement 

(asphalt pavement), GPR has been used to detect free water (Al-Qadi et al. 1991), to estimate the 
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dielectric property of pavement materials (Al-Qadi et al. 2001), and to estimate the layer 

thicknesses (Al-Qadi and Lahouar 2005) and asphalt concrete layer density (Leng 2011; Leng et 

al. 2011; Shangguan et al. 2014a; Shangguan 2015). ASTM standard ASTM D6432-11 provides 

a procedure of applying GPR for subsurface investigation. 

1.2 Problem statement 

One of the most successful applications of GPR on flexible pavement is in estimating layer 

thicknesses—a job for which the two-way travel time method was traditionally employed. The 

dielectric property of the asphalt material was usually determined by the surface reflection method. 

The major limitation of this approach is that the surface reflection cannot be obtained with enough 

accuracy. Calibrating the dielectric constant by taking cores may improve the dielectric constant 

accuracy; however, this is, again, destructive, rendering the use of GPR meaningless.  

Leng and Al-Qadi (2014) developed the extended common mid-point (XCMP) method, 

which can be used on 2GHz air-coupled pulsed horn antennas to estimate asphalt pavement 

thickness with high accuracy without the need of dielectric constant calibration via coring. This 

was an extension of the common-midpoint method introduced by Al-Qadi and his coworkers 

(Lahouar et al. 2002). One of the disadvantages of pulsed horn antenna is that the GPR survey is 

limited to a line scan. In applications where large areas need to be surveyed—e.g. an airport 

runway/taxi way—the GPR survey with single horn antenna can be extremely time consuming.  

A new type of GPR was recently developed in Norway. The 3-D GPR contains an antenna 

array, which has very close sampling interval in the cross-line direction. This 3-D GPR enables 

data collection at much faster speeds, making it possible to efficiently survey large areas. 
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3-D GPR is different from an air-coupled horn antenna in many ways. These include the 

characteristics of the antenna, the number of channels, the way signals are generated, the gain, and 

the characteristics of the EM signals. For example, both the time domain sampling rate and 

bandwidth of the 3-D GPR are less than that of the 2GHz pulsed antenna. Since XCMP methods 

require very high time domain sampling rates to ensure the solution of the XCMP equations, it is 

necessary to develop signal processing techniques for the 3-D GPR signals to increase its own time 

domain sampling rate. Analytical methods are also needed to solve the XCMP equations.  

1.3 Research objectives 

The main objective of this research is to integrate the XCMP method with stepped-

frequency 3-D GPR. As a result, large areas can be surveyed using 3-D GPR at faster speeds, and 

a two-dimensional thickness profile can be generated with high accuracy without the need of 

dielectric constant calibration via coring. In order to achieve this objective, the research efforts 

focus on characterizing 3-D GPR properties, developing signal processing techniques as a pre-

process of the XCMP method, and developing numerical methods to solve the XCMP equations. 

In order to validate the outcome of this study, four XCMP configurations were tested on a 

full scale test site and ground truth data were obtained. This allows the accuracy for each of the 

XCMP configurations to be assessed and corresponding recommendations to be proposed for the 

practical use of XCMP methods with 3-D GPR. 

1.4 Thesis scope 

This thesis has five chapters. Chapter 1 provides a brief introduction to the research and 

the study objectives. Chapter 2 presents the current state of knowledge on the electromagnetic 

theories, the fundamentals of GPR, and the GPR applications on asphalt pavement. Chapter 3 

provides a detailed description of the XCMP method used in the study, the experiment plan with 
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the 3-D GPR, and the development of signal processing techniques needed as pre-process for 

XCMP method. Chapter 4 delineates and discusses the numerical results of both standard scan 

patterns and the four XCMP configurations. Chapter 5 summarizes the findings and conclusions 

based on the results from Chapter 4 and includes recommendations for future studies. 
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CHAPTER 2: THE CURRENT STATE OF KNOWLEDGE 

2.1 Electromagnetic theory 

The EM phenomenon can be described by four Maxwell’s equations which relate the 

electric and magnetic fields to their sources. These were established by James Clerk Maxwell 

(1831-1879) based on experimental discoveries of Andre-Marie Ampere (1775-1836), Michael 

Faraday (1791-1867), and Carl Frierich Gauss (1777-1855). 

The Maxwell’s equations in integral forms in terms of total charges and currents are: 

 
c S

d
E dl B dS

dt
     (2-1) 

 0 0 0 total

c S S

d
B dl ε E dS J dS

dt
       (2-2) 

 
,

0

1
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E dS dV


    (2-3) 

 0
S

B dS    (2-4) 

where E is electric field intensity (Volts/meter), B is magnetic flux density (Webers/meter2), 

totalJ is electric current density (Amperes/meter2), 0ε =8.854*10-12F/m=1/36pi*10-9F/m is 

permittivity of free space (Farads/meter), 0 =4pi*10-7H/m is permeability of free space 

(Henrys/meter), and ,e total  is electric charge density (coulombs/meter3) in volume V. 

 Faraday’s induction law (2-1) shows that a changing magnetic flux can generate an electric 

field. The Maxwell-Ampere’s law (2-2) shows that an electric current or a changing electric field 

can generate a magnetic field. Gauss’ law (2-3) pertains to static electric fields, showing that the 
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electric field lines originate from positive charges and terminate at negative charges. Gauss’ law 

for magnetism (2-4) shows that magnetic flux lines don’t have origins and must form a circle. 

 By taking account of electric polarization and magnetization effects, the Maxwell-

Ampere’s law (2-2) and Gauss’ law (2-3) can be written in terms of free charges and currents: 

 free

c S S

d
H dl D dS J dS

dt
      (2-5) 

 
,freee

S V
D dS dV    (2-6) 

where D E  is the electric flux density in coulombs/meter2,  is called the permittivity of the 

material, 
B

H


  is the magnetic field intensity in amperes/meter, and  is called the permeability 

of the material. There will be conductive current given by J E , where   is the conductivity 

of a medium in siemens/meter. 

Maxwell’s Equations in the integral form are valid everywhere. However, the integral form 

is not convenient for analyzing physical problems. Therefore, it is necessary to convert them to 

the differential forms: 
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In this document, the pavement mediums are assumed to be homogeneous, isotropic, and 

non-dispersive. 

In the application of GPR, the object is usually in the far field region of the antenna. In the 

far field of an antenna, the EM field exhibits local plane wave behavior. If we assume the EM 

wave is propagating in the z direction, the EM filed is linearly polarized (the most general case 

being elliptically polarized) with an electric field only in the x direction. Then, by solving 

Maxwell’s equations, the harmonic plane wave solution in a lossless medium ( 0  ) can be 

expressed as follows: 

 0
ˆ( ) x cos( t z)xE z E      (2-11) 

 0
ˆ( ) cos( t z)yH z yH      (2-12) 

where 0xE  and 0 yH are arbitrary constant values, 0

0

x

y

E
Z

H




  is the wave impedance  is the 

angular frequency, and    is the phase constant.  

 Form Equations (2-11) and (2-12), the EM wave velocity can be calculated as: 

 
1

v


 
    (2-13) 

In free space, the EM wave velocity is equal to 
8

0 0

1
3 10 /m s

 
  , which is the speed of 

light in free space. 
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In general, the electric permittivity and magnetic permeability of a material can be 

expressed as ratio relative to the permittivity and permeability of space: 
0

r





 ,

0

r





 . The 

relative permeability and relative permittivity (or dielectric constant) are called r and r , 

respectively. 

If the plane wave is normally incident on an interface of medium 1 and medium 2, the 

reflection coefficient R and transmission coefficient T are: 

 2 1

2 1

R
 

 





  (2-14) 
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  (2-15) 

where 1 1 1/    and 2 2 2/    are the intrinsic impedance of medium 1 and medium 2, 

respectively. This is Snell’s law of reflection and transmission in the normal incident case. From 

Equations (2-14) and (2-15), we can see if medium 1 and medium 2 are the same, then R=0 and 

T=1, which shows that there is no reflection. If medium 2 is a perfect conductor, then  2 0  , R 

= -1, and T = 0, meaning that all of the EM waves are flipped and reflected back. 

 For flexible pavement, the asphalt material can be considered non-magnetic ( 1r  ) and 

non-conductive ( 0  ); therefore, the only important electric property is the dielectric constant. 

Figure 2-10 shows a typical GPR signal reflected from a pavement system consisting of a surface 

layer whose dielectric constant is 1  and a second layer whose dielectric constant is 2 . Tx/Rx 

represents the location of the monostatic antenna. 0A  and 1A  are the amplitudes of the reflection 
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from the surface and the bottom of the surface layer, respectively. According to Equation (2-14), 

the dielectric constant of the surface layer is: 
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1
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1
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A

A
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  (2-16) 

where 𝐴𝑝  is the amplitude of the reflected signal collected over a copper plate placed on the 

pavement surface, which can be considered a perfect reflector.  

 

Figure 2-1. Typical GPR signal reflected from a pavement system (Zhao et al. 2015) 

Knowing the dielectric constant of the surface layer, the thickness of the surface layer can 

be calculated using the two-way travel time method: 

 
2

v t
h


   (2-17) 
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where h is the layer thickness, t  is the EM wave two-way travel time within the surface layer, 

/ rv c   is the speed of EM wave, c is the speed of light in free space (3 × 108m/s), and r is 

the dielectric constant of the surface layer. 

 The surface reflection and two-way travel time method provide an easy way to obtain the 

dielectric constant of pavement and the thickness of the pavement layer. However, the reflection 

amplitude can easily be affected by many factors, such as the surface moisture, temperature, 

instability of the GPR system, and environment electric noise. Therefore, the resulting dielectric 

constant and layer thickness may not be accurate enough. One possible solution is to calibrate the 

dielectric constant of pavement: that is, take cores of pavement and back-calculate the dielectric 

constant with obtained two-way travel time. However, this method is destructive and not preferred. 

In this study, another algorithm – the common midpoint method – is used as an alternative to obtain 

the dielectric constant and layer thickness. This method can provide better accuracy compared to 

surface reflection and two-way travel time method without the need of calibration with cores. 

2.2 Fundamental of GPR 

Electrical signals are transmitted via transmission line or through empty space.  Antennas 

are essentially transducers that can convert electrical signals from transmission lines to empty 

space, or vice versa. According to IEEE, an antenna is defined as “that part of transmitting or 

receiving system that is designed to radiate or to receive electromagnetic waves” (IEEE 1993). 

Ground penetration radar, in contrast, is a type of radar whose purpose is to locate targets or 

interfaces buried with earth material (Daniels 2005).  



11 

 

2.2.1 Air coupled horn antenna 

One of the most popular GPR systems is the air-coupled system with horn antennas. Figure 

2-2 shows a typical vehicle-mounted air-coupled GPR system. The two orange boxes are two horn 

antennas with a 2GHz central frequency, and are manufactured by Geophysical Survey Systems, 

Inc. (GSSI). There is a control unit called SIR20 that sends a signal to the antennas during GPR 

surveys. There is also a distance measuring instrument (DMI) mounted on the back wheel of the 

van to collect distance information or a GPS system. The GPR control unit and DMI system are 

shown in Figure 2-3. The air-coupled antenna allows for the collection of GPR data on pavement 

at highway speeds. Another advantage of this GPR system is that the horn antenna is a type of 

aperture antenna (i.e., an antenna that has a physical aperture through which EM waves flow) that 

has gains larger than 15 dB, which implies very good directivity (Stutzman and Thiele 2012). 

 

 

Figure 2-2. A vehicle-mounted air-coupled GPR system 
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Figure 2-3. GPR system control unit – SIR20 and DMI 

2.2.2 Ultra wide band bowtie antenna 

Resolution describes the ability of a signal to distinguish adjacent pulses. For example, an 

EM wave with a shorter wavelength, or higher frequency, could distinguish objects with smaller 

distances; therefore a signal with higher frequency usually has a greater resolution than a low 

frequency signal. The Rayleigh resolution criteria, proposed by Lord Rayleigh (Culick 1987), is 

the most common criteria for resolution. The one dimensional Rayleigh resolution of a signal is 

the width of a pulse, which is defined as the distance between the maximum point of the pulse and 

the first zero point of the pulse. A band pass filter usually decreases the resolution of a signal.  

A horn antenna usually has a moderate bandwidth, or range of operation frequency. In civil 

engineering applications where the target is deep, such as with ancient archeological structures, 

low frequency antennas are desirable, due to their larger penetration depth; while in applications 

at near surface levels, such as pavement inspection, higher frequency antennas are superior since 

they can provide a better time domain resolution. In line with this, a broadband antenna could 

better satisfy the requirement. A broadband antenna has a pattern, gain, and impedance nearly 
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constant over a wide frequency range, because it has an active region that relocates on the antenna 

as the frequency changes. The bowtie antenna, or the bifin antenna, is an ultra-wideband antenna 

yielding very fine time domain resolutions (Eide 2000). Its main beams perpendicular to the 

antenna plane and it is also linearly polarized. In addition to a better time domain resolution, the 

bowtie antenna also have finer lateral resolutions since bandwidth is the most important factor for 

the resolution (Jol 2008). A typical bowtie antenna is characterized by its angle between the two 

metal pieces, α, and the total length, L, as shown in Figure 2-4.  

 

Figure 2-4. A typical bowtie antenna 

2.2.3 Stepped frequency signal 

Due to the constant radiation pattern over very wide frequency bands, broadband antennas 

such as the bowtie antenna introduced in section 2.1.2 can radiate signals at stepped frequency. 

Stepped frequency signals have successive pulses with linearly increasing frequency in discrete 

steps. As shown in Figure 2-5, the frequency increases with time by the frequency step, while the 
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dwell time is the duration over which each frequency is emitted. The time domain sketch of the 

signal is shown in Figure 2-6. 

It should be noted that the stepped frequency signal is collected in the frequency domain. 

Specifically, the amplitude and phase of the frequency response is recorded at each frequency step 

by sending and receiving the corresponding harmonic waves. The time domain signal can then be 

retrieved by calculating the inverse Fourier transform of the frequency response.  

 

Figure 2-5. Spectrogram of stepped frequency signal 
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Figure 2-6. Time domain waveform of stepped frequency signal 

With increased dwell time, a better signal to noise ratio (SNR) can be obtained. However, 

due to the long dwell time, the survey speed of a single stepped frequency system will be slower 

than in a pulsed system.   

2.2.4 Antenna array 

An antenna array is a combination of multiple antenna elements. During data collection, 

electric signals are simultaneously transmitted through all elements of the array, and the reflected 

signals are also simultaneously received by all elements of the array. The first popular antenna 

array was the Yagi antenna, invented in 1926 by Shintaro Uda and Hidetsugu Yagi (Uda 1925), 

and was widely used during World War II. Arrays are popular since, unlike a single antenna, their 

radiation pattern can be controlled by adjusting the spacing and phasing of each array element.  
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An antenna array can be characterized by the radiation pattern of a single element, i.e. the 

element pattern, and by the radiation pattern of the array if its actual elements are replaced by 

isotropic point sources. The latter is defined as the array factor. The total pattern of the array is 

then the product of the array factor and element pattern. 

The type of array element is determined by the application of the antenna. For example, a 

horn antenna array can provide moderate bandwidth and need fewer array elements but the number 

of scans is limited due to wide element spacing. A bowtie antenna element, on the other hand, has 

a wide beam, simple structure, and a broad bandwith (Stutzman and Thiele 2012). 

A synthetic aperture radar (SAR) is a single antenna moving from position to position, and 

is therefore superficially similar to an antenna array (Blahut 2004). Unlike a real antenna array, 

the antenna sends the pulse and records the reflection at each position one at a time. Since the 

antenna is transmitting and receiving while moving, the EM wave is doppler-shifted. It should be 

noted that a SAR can give less information than a real antenna array since it misses the information 

when a signal is transmitted and received by two different antenna elements. 

2.2.5 3-D GPR 

In 2001, a new type of GPR—3-D GPR—was developed in Norway. The major 

components of the 3-D GPR system are shown in Figure 2-7: an antenna array, a GeoScope control 

unit, an operator PC with data collection and analysis software (3DR EXAMINER), and, 

sometimes, a GPS. A 3-D GPR system thus consists of an array of electronically switched 

transmit/receive bow-tie antenna pairs ranging from 9 to 41 with the width of the antenna arrays 

ranging between 0.9 and 3.3m. Figure 2-8 shows the VX1821 model, which has 11 antenna pairs. 

The transmitter is denoted by “T” and the receiver is denoted by “R.”  
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Figure 2-7. 3-D GPR system (3-D radar GPR 2015) 

 

Figure 2-8. Model VX1821 antenna array (Eide and Sala 2012) 
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The antenna element used in the 3-D GPR is a bowtie antenna with frequency ranges from 

200 MHz – 3 GHz. The simulated radiation patterns of this kind of bowtie antenna at different 

frequency levels are shown in Figure 2-9. 

 

Figure 2-9. Simulated Radiation pattern of bowtie antenna (Eide and Sala 2012) 

2.2.6 Application of 3-D GPR 

It is known that EM waves can be reflected from local scatterers such as aggregate and air 

voids in asphalt pavement. Depending on the electrical size (size in terms of EM wave length) of 

the scatter, the EM scattering phenomenon can be different: if the scatterers are electrically small, 

the scattering effect is Rayleigh scattering; if the size of the scatterers are comparable to the EM 

wavelength, the scattering effect is in Mie scattering domain (Chuang 2009). For example, for a 

2GHz horn antenna which is widely used in pavement surveys, the EM wavelength in free space 

is around 0.016m and the scattering effect in asphalt pavement is more significant than low 

frequency EM waves. At the same time, a high frequency antenna usually has a shorter pulse length 

in the time domain, which gives better time domain resolution. Therefore, there is a tradeoff 

between the penetration depth and the resolution: high frequency waves have shallow penetration 

depths and better resolution at the near surface area, while low frequency wavelengths are much 
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larger than the scale of pavement scatterer, allowing them to penetrate deeper into the ground but 

with lower resolution. 

This is not a problem when the GPR survey is concentrated near the surface, such as in 

asphalt pavement surveys; however, if a complete survey is undertaken through the depths ranging 

from the surface to several meters deep, the use of a single frequency antenna can be problematic 

for the aforementioned reasons. Figure 2-10 shows the power received by a GPR antenna versus 

frequency at different depths. The dotted line represents the GPR sensitivity line, below which the 

EM signal power is too low for the receiver to sense. It is shown that at depth of 0.2m, signals at 

all frequencies can get strong reflected power. As the depth increases, only the low frequency 

portion of the spectrum is above the GPR sensitivity. This is consistent with the conclusion that 

the GPR is sensitive to each frequency only above a particular depth. Therefore, in order to obtain 

the most accurate data at each depth, one should eliminate the high frequency component in the 

spectrum that would otherwise produce only noise at large depths. In light of this, the ultra-wide 

band 3-D radar can be employed to generate 2D profiles at different depths. 
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Figure 2-10. Received power spectrum at different depths (Eide and Jens 2002) 

3-D GPR has been used for evaluating civil engineering structures over the past ten years. 

In 2001, 3-D GPR was successfully used in mapping pipes, cables, and old tramlines under streets 

in Trondheim, Norway (Eide and Jens 2002). During the survey, the 3-D radar was operated in the 

frequency range of 100MHz to 1.6GHz. The results of the study show that by applying different 

bandpass filters based on antenna sensitivity, utility lines under the pavement can be successfully 

mapped by 3-D GPR at different depths.  

Another study compares the results of air-coupled 3-D GPR with 400 MHz ground-coupled 

pulsed antenna to detect underground archeological structures in the Roman town of Augusta 

Raurica, in Switzerland (Leckebusch 2011). The study concludes that the air-coupled 3-D GPR 

can penetrate less deeply as compared to the ground-coupled pulsed GPR, due to the high reflection 

at the ground-air interface of the air-coupled antenna. 
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2.3 GPR applications on asphalt pavement 

2.3.1 Layer thickness estimation 

The most prevalent application of GPR on asphalt pavement is the estimation of layer 

thickness, due to the straightforwardness of the surface reflection and the two-way travel time 

method. Many studies have examined using GPR for this application. Using the two-way travel 

time method, Al-Qadi et al. (2003) reported a mean thickness error of 2.9% for asphalt pavement 

layers ranging between 100 mm and 250 mm in thickness on a newly built test section of Route 

288 in Richmond, Virginia, United States. Lahouar et al. (2002) analyzed GPR data collected from 

interstate highway I-81 using a kind of multi-offset measurement method – the common midpoint 

method (CMP) –reporting a thickness error ranging from 1% to 15% with a mean error of 6.8%. 

Liu et al. (2014) applied a similar CMP method and envelope velocity spectrum analysis to GPR 

data to measure the dielectric permittivity and thickness of snow and ice cover on a brackish lagoon, 

with good accuracy. Liu and Sato (2014) used another multi-offset measurement method – the 

common source method – for asphalt layer thickness and EM wave velocity estimation. In the 

study they first designed a Vivaldi antenna array and then calibrated the phase center using a 

gypsum model. The results from their field experiment shows that the error of asphalt layer 

thickness estimation is less than 6mm (10%). The Wide Angle Refraction and Reflection (WARR) 

method can also be used to measure the EM wave velocity within the surface layer and therefore 

the dielectric constant and thickness of the surface layer (Huisman et al. 2001). 

2.3.2 Asphalt pavement density estimation 

Asphalt pavement density is another important factor that influences the performance and 

service life of the pavement (Roberts et al. 1996). There have been many studies trying to predict 
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asphalt density from GPR survey data. Most of these methods attempted to correlate the dielectric 

constant of the asphalt concrete to the volumetric properties of asphalt pavement.  

Currently there are two major methods for estimating asphalt pavement density from GPR 

data. The first method is to relate the asphalt pavement density to its dielectric constant using an 

empirical regression model (Saarenketo and Scullion 2000; Kassem et al. 2012; Saarenketo 1997). 

The second method is to use density models between the bulk specific gravity and dielectric 

constant of asphalt mixture according to the EM mixing theory (Al-Qadi et al. 2010; Leng et al. 

2011; Leng et al. 2012; Shangguan et al. 2014a). 

2.4 Summary 

Predicting asphalt pavement layer thicknesses accurately helps to evaluate the pavement 

condition. Current coring methods, used to estimate the asphalt layer thicknesses, have limitations. 

GPR represents an alternative non-destructive approach. The XCMP method overcomes the 

disadvantage of the traditional surface reflection methods. The recent developed 3-D GPR is a 

multi-channel antenna array, and can therefore collect data at a relatively high speed. The 

combination of XCMP method and 3-D GPR will allow rapid data collection speed while maintain 

an accurate layer thickness prediction. This reflects the main objective of the thesis. Detailed 

research approach follows.  
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CHAPTER 3: RESEARCH APPROACH 

3.1 Extended CMP method 

Multi-offset methods were originally used in seismic migration to measure seismic wave 

velocity (Yilmaz 2008). The common source method and common midpoint (CMP) method are 

the two common multi-offset techniques (Schneider 1984). The CMP method has been recently 

used to calculate the EM wave velocity within asphalt concrete pavement layers (Lahouar 2002).  

Figure 3-1 shows a simple CMP configuration to measure the surface layer thickness with 

a monostatic ground-coupled GPR system and a bistatic ground-coupled GPR system. In Figure 

2-11, “Tx” and “Rx” represent the transmitting and receiving antenna, respectively. The antennas 

are placed on the surface of an asphalt concrete pavement of thickness “h” at distance x/2 from 

each other. As a result of the geometry configuration, the reflection location of the bistatic system 

and monostatic system at the bottom of the surface layer should be the same point P.  

Figure 3-1. CMP configuration using ground-coupled GPR system 

From Figure 2-11 we can write the following equations: 
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where 1t  is the two way-travel time from point P of the monostatic system and 2t  is the two-way 

travel time from point P of the bistatic system. From Equations (3-1) and (3-2), the layer thickness 

h and EM wave velocity can be calculated: 
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The dielectric constant of the asphalt concrete can then be obtained from
1

c
v


  . 

Therefore, once the two-way travel times of both antenna systems are obtained from the 

collected signals, the dielectric constant as well as the layer thickness can be obtained. This 

assumes that the pavement is thick enough, or the frequency band of the EM wave is wide enough, 

and that the two pulses reflected from the surface and the bottom of the layer can be 

distinguished—i.e., there is enough time resolution. Otherwise, super resolution techniques such 

as deconvolution need to be used to distinguish the overlapping pulses (Zhao et al. 2015; La 

Bastard et al. 2012). 

In the previous discussed CMP method, we assume that the two antenna systems are all 

ground-coupled systems. However, in this study, the available 3-D GPR is an air-coupled system. 

One of the advantages of an air-coupled system is that it doesn’t require direct contact with the 
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ground surface, allowing it to collect data continuously and at high speeds (Shangguan and Al-

Qadi 2014). Leng and Al-Qadi (2014) developed an extended CMP (XCMP) method that can be 

applied to two air-coupled bistatic antenna systems. Details on XCMP algorithm by Leng and Al-

Qadi (2014) is presented herein for the completeness of the study. 

Figure 3-2 shows the configuration of the XCMP method. Two air-coupled bistatic antenna 

systems are used. As in Figure 3-1, “Tx” and “Rx” represent the transmitting and receiving antenna, 

respectively. In Figure 3-2, the antenna height is d; the pavement thickness is h; the distance 

between antenna pairs Tx1/Rx1 and Tx1/Rx2 is 01x and 02x , respectively, and they share the same 

midpoint P1 and P2. The dielectric constant of the free space (air) and the asphalt concrete is 0 1   

and 1 , respectively. Figure 3-2(a) shows the reflection paths from surface of the asphalt concrete 

layer, where the two-way travel times of antenna pairs Tx1/Rx1 and Tx1/Rx2 are 11t and 21t , 

respectively. Figure 3-2(b) shows the reflection path from bottom of the layer, where the two-way 

travel times of antenna pairs Tx1/Rx1 and Tx1/Rx2 in the air are 12t and 22t , respectively; the two-

way travel times of antenna pairs Tx1/Rx1 and Tx1/Rx2 in the pavement are 1t and 2t , respectively; 

the incident angles at the surface of the layer of antenna pairs Tx1/Rx1 and Tx1/Rx2 are 1i and 2i , 

respectively; and the transmission angles at the surface of the layer of antenna pairs Tx1/Rx1 and 

Tx1/Rx2 are 1t and 2t , respectively.  
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(a) 

 

(b) 

Figure 3-2. XCMP configuration with two are-coupled bistatic antenna system: (a) reflection 

from surface of the layer; (b) reflection from bottom of the layer 
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According to Snell’s law of transmission, the incident angle and transmission angle in 

Figure 3-2(b) has the following relationship (Jin 2011): 
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The following equations can be derived based on the geometry information in Figure 3-2:  
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where 
1

c
v


 is the EM wave velocity in the asphalt concrete. 

Combining Equations (3-6) and (3-7) and plugging in 
1

c
v


 yields: 
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Combining Equations (3-5) and (3-8) with (3-12), the following two equations can be 

obtained: 
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There are four unknowns in Equations (3-13) and (3-14): 1x , 2x , 1t , and 2t . In order to 

solve these four unknowns, two additional equations are required. It should be noted that the 

information from the collected GPR signals has not been used. Figure 3-3 is an example of the 

collected GPR signals from two air-coupled 3-D GPR antenna pairs. Since the 3-D GPR collects 

data in the frequency domain, this figure shows the time domain amplitude data after inverse 

Fourier Transform and the data are therefore all positive. In Figure 3-3, both Tx/Rx pairs have 

receive three significant pulses: the first one is the direct coupling pulse, the second one is the 

reflection from the surface of the pavement, and the third one is the reflection from the bottom of 

the pavement layer. 
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Figure 3-3. Collected XCMP GPR signals from two air-coupled 3-D GPR antenna pairs 

As shown in Figure 3-3, the time difference between the surface reflection and the 

reflection at the bottom of the layer 1t  and 2t  can be directly obtained from the collected data, 

and they can be expressed as follows: 

 1 12 1 11t t t t      (3-15) 

 2 22 2 21t t t t      (3-16) 
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Therefore, the following two equations can be obtained by substituting Equations (3-17) to 

(3-20) into Equations (3-15) and (3-16): 

 

2 2 2 2

01 1 01

1 1

2 ( ) / 4 2 / 4d x x d x
t t

c c

  
      (3-21) 

 

2 2 2 2

02 2 02

2 2

2 ( ) / 4 2 / 4d x x d x
t t

c c

  
      (3-22) 

With Equations (3-13), (3-14), (3-21) and (3-22), the four unknowns 1x , 2x , 1t , and 2t can 

be solved numerically using the optimization method described in Section 3.3.3. The dielectric 

constant of asphalt concrete 1 and the asphalt layer thickness h can then be obtained from 

Equations (3-12) and (3-6), respectively. 

3.2 Experiment plan with 3-D GPR to validate XCMP method 

With the XCMP method described in the previous section, Leng and Al-Qadi (2014) 

successfully validated that the pulsed antenna can provide better accuracy in determining asphalt 

pavement layer thickness than the surface reflection method. In that study, two air-coupled horn 

antennas manufactured by Geophysical Survey Systems, Inc. (GSSI) were used (Figure 2-1). A 

test site was constructed as shown in Figure 3-4.  
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Figure 3-4. Test site configuration plan: (a) top view; (b) side view  

 The test site has four sections, each of which is a 3.35m by 3.35m (11 ft by 11 ft) square. 

The design thicknesses of sections one to four are 50.8mm, 101.6mm, 152.4mm, and 203.2mm (2 

in, 4 in, 6 in, and 8 in), respectively. There are three transition zones between each section to 

facilitate the construction process. Each transition zone has a length of 3.96m (13 ft) and is left 

incomplete, as shown on Figure 3-4, for simplicity.  
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 There are steel plates placed at the bottom of each asphalt lift to increase the reflection 

coefficient at the bottom of the pavement, since it can then be regarded as a perfect reflector, 

reflecting back all the EM wave energy. This is not necessary in practice when the dielectric 

constant difference between the surface layer and the bottom layer is significant. The layout of the 

steel plates is shown in Figure 3-4: section n has n steel plates embedded in the asphalt concrete at 

different depths, where n=1 to 4.    

 This study used a DX1821 antenna array manufactured by 3D-Radar Company. Similar to 

the one shown in Figure 2-7, the DX1821 system has a total of eleven bow-tie monopole transiting 

antennas and eleven bow-tie monopole receiving antennas. It has a total length of 1.8m with an 

effective scan width of 1.575m. Each of the bow-tie antenna has an ultra-wide frequency band 

from 200MHz to 3GHz and can radiate EM signal in a stepped frequency manner, as explained in 

section 2.1.3. The antenna spacing is 0.15m. A total of 21 channels could be configured arbitrarily 

between one transmitting antenna and one receiving antenna (3D-Radar GPR 2015).  

To survey the whole lane, a wood trailer was built to carry the antenna array—as shown in 

Figure 3-5—together with the antenna array and control unit. After calibration, the phase center of 

each bow-tie antenna was found to be 0.369m above the ground. 

In order to apply the XCMP method, several different antenna scan patterns are designed 

to have multiple XCMP offsets. The authors devised total five testing plans to find the best 

configuration based on the results. Plan 1 is XCMP 1-3, meaning that the cross-line offset between 

Tx1/Rx1 is 1 intervals, and the cross-line offset between Tx2/Rx2 is 3 intervals. “In-line” and 

“cross-line” refer to the directions parallel to the survey direction and the length of the antenna 

array, respectively, and the cross-line intervals and in-line intervals were 0.075m and 0.44m, 

respectively, as shown in Figure 3-6. Similarly, Plan 2 is XCMP 1-5, Plan 3 is XCMP 1-7, Plan 4 
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is XCMP 3-5, and Plan 5 is the standard scan pattern, meaning that each of the Tx/Rx pairs has an 

in-line offset of 1 spacing. Table 3-1 shows all the testing plans. It should be noted that the 

distances in Table 3-1 are the actual distances. Figure 3-6 illustrates plan 2: XCMP 1-5 

configuration. As shown in Figure 3-6, the standard scan pattern has 21 measuring points (denoted 

by the yellow circle at the center point of each antenna pair). Using all 21 channels, by changing 

the antenna Tx/Rx match, we can set up the XCMP 1-5 configuration as shown in the blue lines in 

Figure 3-6. The trade-off is that only 9 points can be surveyed in the XCMP 1-5 method as 

compared with 21 points in the standard survey plan. Since the DX 1821 antenna array is about 

half the width of the survey lane, two GPR surveys were conducted to cover the whole length: one 

along the center of the south side of the survey lane, and the other along the center of the north 

side of the survey lane. 

 

Figure 3-5. DX1821 antenna array and wood trailer 

Wood Trailer 

Control Unit 

Antenna Array 

Survey Lane 
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Table 3-1. XCMP antenna setting plans 

Plan 1 2 3 4 5 

Configuration XCMP 1-3 XCMP 1-5 XCMP 1-7 XCMP 3-5 Standard 

Distance between 

Tx/Rx pair 1 (m) 
0.446 0.446 0.446 0.369 0.446 

Distance between 

Tx/Rx pair 2 (m) 
0.369 0.578 0.685 0.578 - 

 

 

Figure 3-6 DX 1821 antenna array layout, standard survey and XCMP 1-5 test configuration 

 After all 10 GPR surveys (2 surveys for each test plan) were completed, the collected GPR 

data were converted to time domain signals and corresponding signal processing techniques were 

applied (see Section 3.3). The signal directed reflected from the center of each steel plate was used 

to calculate the dielectric constant and layer thickness. The signal reflected from the center of each 

steel plate can be approximated found by identifying the maximum reflection amplitude.  

 Cores were drilled at the center of each steel plate and their thicknesses were measured in 

the laboratory to provide the as-built pavement thicknesses of each section. The accuracy of the 

proposed algorithm could then be evaluated (see Section 4). 
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3.3 Signal Processing 

3.3.1 3-D GPR signal characteristics 

As explained in section 2.1.2, the resolution of a signal is important as it determines the 

ability to distinguish adjacent pulses. Where GPR is used to determine asphalt layer thickness by 

applying a two-way travel method, the time domain resolution of the GPR signal is critical, due to 

the reasons explained in section 3.1. When the XCMP method is used, it is also necessary to 

distinguish the reflection from the surface and the bottom of the surface layer to obtain 1t and 2t

in Equations (3-15) and (3-16). An example of the 3-D GPR signal reflected back from a two-

layered asphalt pavement system is shown in Figure 3-7. The Rayleigh resolution of the signal was 

found to be 0.61ns, as shown in Figure 3-7. Therefore, if the 3-D GPR signal is normally incident 

on the pavement whose dielectric is 4, the smallest thickness that can be resolved is

80.61 3 10 / 6 / 74.7ns m s mm   , which about 75mm. For a GSSI 2GHz horn antenna, the 

Rayleigh resolution is 0.5382ns. This shows that the pulsed horn antenna has good time domain 

resolution due to its wide bandwidth.  
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Figure 3-7. 3-D GPR signal over a two-layered asphalt pavement system 

3.3.2 Whittaker–Shannon interpolation 

According to section 3.1, the result of XCMP problem can be obtained by solving a set of 

four non-linear equations (3-13), (3-14), (3-21) and (3-22). Numerical solutions, such as least 

square solutions, are needed to solve these equations. However, such equations are not necessarily 

stable, meaning that a small disturbance in the inputs ( 01x , 02x , d , 1t and 2t ) could have a huge 

influence on the outputs ( 1x , 2x , 1t , and 2t ). The layout of the 3-D GPR was provided by the 3-D 

Radar Company and therefore the values of 01x , 02x and d  have been well calibrated to yield 

sufficient accuracy. After sensitivity analysis, we also found that the output results are most 

sensible to the change of 1t  and 2t . 
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Since the 3-D GPR collects signal in the frequency domain, the time domain signal is 

“synthetized” by inverse Fourier transform of the frequency domain signal, and the time domain 

signal sampling interval is directly related to the frequency bandwidth, according to the Discrete 

Fourier Transform (DFT) property: 

 
1

dt
f

   (3-23) 

where dt  is the time domain sampling interval and f  is the upper limit of the frequency band. 

For the DX1821 3-D GPR, the time domain sampling interval is 0.12207 ns, and the corresponding 

upper limit of the frequency band is 8.19 GHz. Compared with the time domain sampling interval 

of a 2 GHz GSSI pulsed horn antenna—which is 0.0234ns according to Zhao et al. (2015)—it is 

shown that the 3-D GPR has a smaller time domain sampling interval. In other words, the 

frequency band of 3-D GPR is not significantly wider than that of the 2 GHz GSSI pulsed horn 

antenna. However, if we assume that the frequency content of the 3-D GPR signal above the upper 

limit of the frequency band is all zero, then the time domain sampling interval of the signal can be 

decreased by zero padding the frequency domain signal (Lyons 2010). The corresponding time 

domain process is the Whittaker–Shannon interpolation, or the Sinc interpolation: 

 ( ) [ ]sinc
n

t ndt
x t x n

dt





 
  

 
   (3-24) 

where discrete time signal [ ]x n is continuous time signal ( )x t sampled at ndt , n is an integer, 

sin( )
sinc(x)

x

x
 is the sinc function, and dt is the time domain sampling interval. If the sampling 

interval dt  meets the Nyquist criteria—i.e. the sampling frequency 1/dt is higher than twice the 

maximum frequency content of the analog signal—then Equation (3-24) can perfectly restore the 
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original analog signal ( )x t ; otherwise Equation (3-24) gives an approximation of the original 

analog signal ( )x t . In practice, we can again sample ( )x t with a finer sampling interval to obtain 

the time domain signal with desired time sampling interval: 

 [ ] ( ) [ ]sincnew

n

mT ndt
x m x mT x n

dt





 
   

 
   (3-25) 

where [ ]newx m is the interpolated discrete signal, m is an integer, and T is the desired time domain 

sampling interval. From a signal processing point of view, Equation (1.1) can be considered as, 

first, up-sampling the discrete signal x[n] and then, second, filtering the up-sampled signal [ ]newx m  

with an ideal low pass filter. The process can also be performed in the frequency, and the 

corresponding technique called the frequency zero padding; i.e., if we want to perform a k point 

sinc interpolation on x[n], we can first pad zeros behind ( )X  , the DFT of x[n], such that the 

length of the padded frequency series is m times longer than the original ( )X  , and then do the 

inverse DFT on the zero padded frequency series. In this study, it was found that a one-hundred 

point Whittaker–Shannon interpolation could provide a sufficient time domain sampling interval. 

3.3.3 Numerical solving technique 

After 1t and 2t are obtained from the interpolated signals, based on Equations (3-13), (3-

14), (3-21) and (3-22), the four unknowns 1x , 2x , 1t , and 2t can be solved. Since Equations (3-13) 

and (3-14) cannot be solved analytically, the least square solutions of 1x and 2x are calculated. The 

entire solving process is summarized below. 

1) Select the GPR signals reflected from each steel plate (the maximum reflection coefficient 

location). 
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2) Perform 100-points Whittaker–Shannon interpolation on each of the GPR signals. 

3) From Equations (3-21) and (3-22), 1t  and 2t can be expressed in terms of 1x , 2x . 

Substituting 1t  and 2t into Equations (3-13) and (3-14) yields two equations with two 

unknowns 1x and 2x . 

4) Discretize 1x and 2x  with distance step of 0.001 m in the range 1 01 2 1 02(0, ), ( , )x x x x x 

according to Figure 3-2(b). 

5) Find the 1x and 2x , such that the residue of the Equations (3-13) and (3-14) are minimized: 

  
1 01 2 1 02

1 2 1 2
(0, ), ( , )

[ , ] arg min ([ , ])
x x x x x

x x norm r r
 

   (3-26) 

where 1r and 2r are the residues of Equations (3-13) and (3-14), respectively. It should be 

noted that if the minimum norm is located at the boundary of the area

1 01 2 1 02(0, ), ( , )x x x x x  , the resulting 1x and 2x  are not the solutions of Equations (3-13) 

and (3-14). 

6) Find 1t  and 2t From Equations (3-21) and (3-22). 

7) Find the dielectric constant of the asphalt concrete 1 from Equation (3-12). 

8) Find the layer thickness h from Equation (3-6) or (3-7). 
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CHAPTER 4: TEST RESULTS AND DISCUSSION 

4.1 3-D GPR standard scan pattern results 

Before doing the XCMP test, a 3-D GPR survey with the standard scan pattern was first 

conducted to show the layout of the two asphalt pavement lanes. The trigger distance was set to 

7.504183cm, the depth range set to 125ns, and the dwell time set to 1ns. The detailed scan pattern 

is shown in Table 4-1. “Tx” means the transmitting antenna and “Rx” means the receiving antenna 

as shown in Figure 3-6. 

Table 4-1. Standard scan pattern 

Channel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

Tx 1 2 2 3 3 4 4 8 8 6 6 7 7 8 8 9 9 10 10 11 11 

Rx 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 

 

For each of the two lanes, the collected signal is a 245 by 409 by 21 three dimensional 

matrix, where 245 is the number of time steps, representing the through depth direction, 409 is the 

number of scans along the lane, representing the in-line direction, and 21 is the number of channels, 

representing the cross-line direction. By selecting different time steps, we can obtain the horizontal 

slices of the pavement at different depths. For example, Figures 4-1 and 4-3 show the four slices 

at the depths of the embedded steel plates for both south and north lanes.  
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Figure 4-1. Horizontal slices at different depths for south lane 

 

Figure 4-2. Horizontal slices at different depths for north lane 
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The rectangular spots in Figures 4-1 and 4-2 represent areas with very high reflection 

coefficients, corresponding to the places where steel plates are embedded. Together with the steel 

plate configuration shown in Figure 3-4, we can see that by selecting the GPR signals at different 

horizontal slices corresponding to the depth of the steel plate, the steel plates can be clearly seen. 

This shows the ability of 3-D GPR to map pavement sections accurately and rapidly. It should be 

noted that in some of the GPR horizontal slice signals, there are some rectangular spots resulting 

from the echoing effect, which is caused by the EM wave bouncing back and forth between asphalt 

layers. The echoing effect can be better observed in the vertical slices of the GPR data. Figures 4-

3 and 4-4 are two vertical slices passing through the center of each steel plate in both south and 

north lanes. The “white line” at the top of both figures is the direct coupling pulse due to the 

antenna interaction, and the second “white line” is the reflection at the surface of the asphalt 

pavement. The short “white plateau” represents the location where steel plates are embedded. The 

echoing effect can be clearly seen beneath each of the steel plates. 

 

Figure 4-3. Vertical slice passing the center of each steel plates in south lane 
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Figure 4-4. Vertical slice passing the center of each steel plates in north lane 

 Figures 4-3 and 4-4 are also called the “B-scan” GPR images. From the B-scan of the 3-

D GPR, the steel plates can be clearly seen. The layer structure can also be seen, but not as 

clearly as the steel plates. This also shows that the two way travel time can be obtained directly 

from the GPR signal except for the case of steel plate #1, where the reflection overlaps with the 

surface reflection due to the layer thinness. Therefore, once an accurate dielectric constant is 

obtained, a depth map can be generated by converting the time based signals to depth based 

signals. 

4.2 XCMP test results 

Four XCMP testing plans were performed to obtain the depth of the steel plates; i.e., XCMP 

1-3, XCMP 1-5, XCMP 1-7, and XCMP 3-5, as shown in Table 3-1. The detailed testing plan 

configurations are shown in Tables 4-2 to 4-5. All of the other parameters, including the trigger 

distance, the depth range, and the dwell time, were the same as the standard testing plan as 

explained in section 4.1.  
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Table 4-2. XCMP 1-3 scan pattern 

Channel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Tx 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 

Rx 2 1 3 2 4 3 5 4 6 5 7 6 8 7 9 8 10 9 

 

Table 4-3. XCMP 1-5 scan pattern 

Channel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Tx 2 1 3 2 4 3 5 4 6 5 7 6 8 7 9 8 10 9 

Rx 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 

 

Table 4-4. XCMP 1-7 scan pattern 

Channel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Tx 3 5 4 6 5 7 6 8 7 9 8 10 9 11 

Rx 3 1 4 2 5 3 6 4 7 5 8 6 9 7 

 

Table 4-5. XCMP 3-5 scan pattern 

Channel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Tx 5 3 6 4 7 5 8 6 9 7 10 8 11 9 

Rx 3 5 4 6 5 7 6 8 7 9 8 10 9 11 

 

After all GPR data are collected, the one hundred point Whittaker–Shannon interpolation 

was performed on all GPR signals to increase the sampling rate. Figure 4-5 illustrates an example 

of the GPR signal before and after interpolation. It can be seen that the original peak location is 

shifted after the signal is interpolated, which results in a more accurate determination of t  as 

shown in Figure 3-3.  
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Figure 4-5. Demonstration of 100-point Whittaker–Shannon interpolation on GPR signal 

The results of dielectric constants and layer thicknesses from all ten steel plates are shown 

in Tables 4-6 to 4-9 for all four XCMP test configurations. 

Table 4-6. Results for XCMP 1-3 configuration 

Steel 

Plate No. 
1 2 3 4 5 6 7 8 9 10 

1t (ns) 0.71 1.95 3.05 1.10 3.92 1.09 2.03 1.04 2.90 1.93 

2t (ns) 0.66 1.97 3.05 1.10 3.91 1.11 2.02 1.03 2.88 1.93 

1x (m)  - - 0.060 - 0.083 - 0.043 - 0.091 0.043 

2x (m)  - -  0.065 -  0.091 -  0.047 -  0.099 0.047 

1t (ns) - - 3.15 - 4.05 - 2.10 - 3.04 2.00 

2t (ns) - - 3.16 - 4.06 - 2.11 - 3.05 2.01 

Dielectric 

Constant 
- - 7.36 - 6.45 - 6.98 - 4.36 6.66 

Thickness 

(mm) 
- - 172 - 236 - 117 - 214 114 
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Table 4-7. Results for XCMP 1-5 configuration 

Steel 

Plate No. 
1 2 3 4 5 6 7 8 9 10 

1t (ns) 0.72 1.91 3.05 0.93 3.94 1.07 2.07 1.03 2.88 1.95 

2t (ns) 0.66 1.89 3.03 0.91 3.91 1.05 2.05 1.02 2.86 1.94 

1x (m) - 0.041 0.062 - 0.062 - 0.044 - 0.059 0.044 

2x (m) -  0.051 0.076 -  0.076 -  0.054 - 0.073 0.054 

1t (ns) - 1.98 3.15 - 4.04 - 2.14 - 2.98 2.03 

2t (ns) - 1.99 3.18 - 4.06 - 2.16 - 3.00 2.04 

Dielectric 

Constant 
- 6.88 7.03 - 9.00 - 6.92 - 7.01 6.54 

Thickness 

(mm) 
- 111 176 - 200 - 120 - 166 117 

 

Table 4-8. Results for XCMP 1-7 configuration 

Steel 

Plate No. 
1 2 3 4 5 6 7 8 9 10 

1t (ns) 0.69 1.95 3.04 0.98 3.89 1.11 2.09 1.04 2.88 1.96 

2t (ns) 0.73 1.92 2.99 0.92 3.83 1.24 2.02 1.05 2.84 1.93 

1x (m) - 0.040 0.065 - 0.074 - 0.047 - 0.068 0.038 

2x (m) -  0.055 0.090 -  0.104 -  0.063 - 0.095 0.052 

1t (ns) - 2.01 3.15 - 4.01 - 2.17 - 3.00 2.02 

2t (ns) - 2.04 3.19 - 4.06 - 2.16 - 3.04 2.05 

Dielectric 
Constant 

- 7.27 6.68 - 7.27 - 6.61 - 6.03 7.65 

Thickness 
(mm) 

- 110 180 - 220 - 124 - 180 108 
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Table 4-9. Results for XCMP 3-5 configuration 

Steel 

Plate No. 
1 2 3 4 5 6 7 8 9 10 

1t (ns) 0.71 1.93 3.04 1.00 3.92 1.06 2.08 1.14 2.89 1.96 

2t (ns) 0.77 1.92 3.03 1.00 3.91 1.03 2.07 1.11 2.86 1.95 

1x (m) - 0.039 0.079 - 0.045 - 0.039 - 0.059 0.044 

2x (m) -  0.043 0.089 -  0.054 -  0.043 - 0.073 0.049 

1t (ns) - 2.00 3.18 - 4.01 - 2.15 - 2.99 2.03 

2t (ns) - 2.00 3.20 - 4.02 - 2.16 - 3.01 2.04 

Dielectric 
Constant 

- 8.16 5.94 - 7.97 - 8.80 - 4.67 7.27 

Thickness 
(mm) 

- 103 192 - 212 - 107 - 206 111 

 

The actual core thicknesses measured in the lab are considered to be the ground truth and 

are shown in Table 4-10. 

Table 4-10. Core thicknesses measured in the lab 

Steel 

Plate No. 
1 2 3 4 5 6 7 8 9 10 

Thickness 

(mm) 
45 114 178 60 221 64 121 63 165 114 

 

 In Tables 4-6 to 4-9, the blank cell represents the core locations where there are no solutions 

for the four unknowns 1x , 2x , 1t , and 2t by solving Equations (3-13), (3-14), (3-21) and (3-22), 

either because 1t and 2t cannot be resolved due to the thin layer thickness, or 1t and 2t are not 

accurate enough to give the correct answers to 1x , 2x , 1t , and 2t . It is found that for steel plate #1, 

#4, #6 and #8, all four XCMP configurations give no solutions due to the overlapping of the signals 

from the surface reflection and the reflection from bottom of the surface layer. This makes sense, 
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since steel plates #1, #4, #6 and #8 have the thinnest layers; i.e. one lift, or less than 50mm (design 

thickness) according to Table 4-10. If we assume the average dielectric constant of the asphalt 

pavement is 7.0, based on the analysis of the 3-D radar signals in Section 3.3.1, the Rayleigh 

resolution of the EM signal is around 0.61ns, which makes the smallest possible layer thickness 

that can be resolved 80.61 3 10 / 7 69.1ns m s mm    . For the XCMP method, the resolution 

limit is slightly different than 69.1mm depending on the EM wave incident angle.  

It can also be noted that in addition to steel plates #1, #4, #6 and #8, the XCMP 1-3 

configuration doesn’t have a solution for steel plate #2 either. This is because the difference 

between 1t and 2t is too small: 0.02ns in this case. The value of it not only dependent on the 

layer thickness, but also on the offset between the Tx and the Rx. Specifically, for the same layer 

thickness, the smaller the offset between Tx and Rx, the smaller the value of it . In order to obtain 

an accurate solution, we want the difference of 1t and 2t to be as large as possible. Table 4-8 

shows that the difference between 1t and 2t is 0.03ns for the XCMP1-7 configuration, which is 

50% larger than that of the XCMP1-3 configuration. Theoretically, the performance of the XCMP 

1-7 configuration should be better than that of the XCMP 1-5 configuration, and the performance 

of the XCMP 1-5 configuration should be better than that of the XCMP 1-3 and XCMP 3-5 

configurations. This is also the reason why the XCMP 1-3 configuration doesn’t have a solution 

for steel plate #2, although the layer thickness at steel plate #2 is larger than the resolution limit. 

In practice, we should use the XCMP configuration with the largest difference between the 

offset of Tx1/Rx1 and Tx2/Rx2. For example, in the case of the DX1821 antenna array (Figure 3-

6), the best XCMP configuration would be XCMP1-21, which uses Tx6/Rx6 as the first antenna 
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pair, and Tx11/Rx1 as the second antenna pair. However, if multiple line scans are needed, the 

Tx/Rx offset needs to be less than 21.  

Table 4-11 shows the comparison of the prediction error of the results from all four XCMP 

configurations. To visualize the different performances of the four XCMP configurations, the 

prediction errors in Table 4-11 are shown in the column chart in Figure 4-6. 

Table 4-11. Thickness prediction error (%) from all four XCMP configurations  

Steel 
Plate No. 

1 2 3 4 5 6 7 8 9 10 Avg. 

XCMP1-3 - - 3.69 - 6.79 - 2.76 - 29.26 0.40 8.58 

XCMP1-5 - 2.40 1.44 - 9.56 - 0.36 - 0.52 2.38 2.85 

XCMP1-7 - 3.21 0.75 - 0.45 - 2.95 - 8.74 5.41 3.45 

XCMP3-5 - 9.55 7.60 - 4.10 - 11.32 - 24.34 2.62 8.56 

Avg. - 5.05 3.37 - 5.22 - 4.35 - 15.72 2.70 5.86 

 

Figure 4-6. Relative thickness prediction errors for all four XCMP configurations 
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From the results of all XCMP configurations for all ten steel plate locations as shown in 

Table 4-11 and Figure 4-6, we can first see that the there are no solutions for steel plates #1, #4, 

#6, and #8. As explained in the previous section, this is because the layer thickness is less than the 

resolution limit. According to Leng (2011), the 2GHz pulsed radar manufactured by GSSI can 

provide solutions to all ten steel plate locations, which implies that the time domain resolution of 

the 2GHz pulsed GPR is better than that of the DX1821 3-D GPR. This was also verified in Section 

3.3.1, in which it was shown that the Rayleigh resolution for 2GHz pulsed GPR is 0.54ns, while 

the Rayleigh resolution for stepped frequency 3-D GPR is only 0.61ns. This observation implies 

that the bandwidth, which determines the time domain resolution, of the 3-D GPR is not better 

than that of the 2GHz pulsed GPR, which was expected based on the property of the stepped 

frequency signal. Therefore, when no super resolution techniques are used, for thin asphalt 

pavement layers the 2GHz pulsed radar will give a better result. Nonetheless, 3-D GPR has better 

data collecting speed and survey area coverage, which is extremely important when large areas 

need to be surveyed; e.g., an airport runway/taxiway. Hence, such information will help to select 

the best approach for the given conditions.  

Sufficient difference between 1t and 2t are required to solve the XCMP equations. The 

difference between 1t and 2t  may be increased by either increasing pavement layer thickness or 

by increasing the difference between the offsets of the antenna pairs. XCMP1-3 has an insufficient 

difference between 1t and 2t at steel plate #2 due to combining effect of the small difference 

between Tx1/Rx1 and Tx2/Rx2. Hence, no solution could be determined.  

For steel plates #2, #3, #5, #7, #9, and #10, the average relative thickness prediction errors 

are 5.05%, 3.37%, 5.22%, 4.35%, 15.72%, and 2.70%, respectively. Excluding steel plate #9, the 
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maximum average prediction error is 5.22%, which gives an absolute error of 15mm. This value 

is above the construction tolerance (usually 5mm in the State of Illinois); therefore, not all XCMP 

configurations are suitable for estimating asphalt pavement thickness for the purposes of QC/QA. 

The cause of the high prediction error at steel plate #9 is the echoing of the surface reflection 

(similar to the echoing shown in Figure 4-4), which shifts the second peak of the reflection at the 

bottom of the surface layer. The echoes could be EM waves bouncing back and forth between the 

layer interfaces, or between the ground surface and the 3-D GPR antenna structure. This maybe 

another drawback of the 3-D GPR, since no echoing effects were found in the previous XCMP 

studies (Leng 2011). 

Due to the reasons explained above, XCMP1-5 and XCMP1-7 should be preferred to 

XCMP1-3 and XCMP3-5. According the Table 4-11, it is confirmed that XCMP1-5 and XCMP1-

7 have average relative prediction errors of 2.85% and 3.45%, which are much better than the 

accuracy of XCMP1-3 and XCMP3-5 (8.58% and 8.56%, respectively). The average absolute error 

for both XCMP1-5 and XCMP1-7 configurations is 5mm, which meets the construction tolerance.  

It should be noted that XCMP can be used to obtain the dielectric constant of asphalt 

concrete. Specifically, if the dielectric constant is constant throughout the pavement, average 

dielectric constant values may be obtained from various locations. The averaging process will 

eliminate random errors such as those due to the echoing effect. Using averaged dielectric constant 

and traditional two-way travel time method, an accurate thickness profile may be obtained. In this 

case, the nondestructive XCMP method serves the same purpose as the dielectric constant 

calibration by taking cores. The XCMP also provides greater area coverage.  
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4.3 Summary 

To measure the asphalt pavement thickness using GPR, the CMP method is preferred to 

the traditional two-way travel time method, as it can be used without calibrating the dielectric 

constant. XCMP method is an extended CMP method that can use two air-coupled antenna pairs 

to conduct the study without using additional ground-coupled antenna pairs. The advantage of 

using air-coupled antennas is that they allow to collect GPR data at highway speeds, making it 

possible to survey a large area. In this study, a DX 1821 3-D GPR was used to conduct the XCMP 

method. 

A test site was built with various thicknesses (ranging from one lift to four lifts), and ten 

steel plates are embedded under each of the asphalt lifts. A standard test pattern along with 4 

XCMP configurations—XCMP1-3, XCMP1-5, XCMP1-7, and XCMP3-5—are designed to 

evaluate the performance of different XCMP configurations.  

From the collected data of the standard test pattern, we found that by selecting horizontal 

slices at different depths, the steel plates embedded under each lift can be clearly detected. The 

echoing effects can be seen from the longitudinal vertical slices. By integrating all the data 

collected from 3-D GPR, a 3-D map can be generated. 

For the XCMP method, the data reflected from each of the steel plates are used due to the 

large reflection from the steel plates. Whittaker-Shannon interpolation was performed on the GPR 

signals to increase the time domain sampling rate. The XCMP equations are numerically solved 

using least squares. Cores were taken at each of the steel plates’ locations to obtain the true layer 

thickness as ground truth. From the data of the four XCMP configurations, it could be concluded 

that the time domain resolution of the 3-D GPR is not enough for layers thinner than 50mm. 

Another valuable point is that XCMP1-5 and XCMO1-7 performs better than XCMP1-3 and 
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XCMP3-5. Overall, the average thickness prediction error for layers thicker than 50mm is 5mm, 

which is within the construction tolerance.   
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CHAPTER 5: FINDINGS, CONCLUSIONS, AND RECOMMENDATIONS 

5.1 Summary 

Layer thickness is one of the most important parts of asphalt concrete pavement and one 

of the most important parameters in pavement design, since it largely determines the pavement 

load capacity. Layer thickness also plays a critical role in the pavement rehabilitation strategy. For 

existing pavement, it is an important factor that predicts the condition of the pavement and its 

remaining service life. For newly built flexible pavement, the layer thickness is used for QC/QA. 

Coring has been predominantly used by agencies to obtain the asphalt layer thickness. However, 

it is destructive and can only provide data at limited locations. The use of GPR to estimate the 

asphalt pavement layer thickness has been studied for many years and has become the most 

prevalent application of GPR in civil engineering. The major difficulty in the application is the 

inaccuracy of determining the dielectric constant and the requirement of dielectric constant 

calibration by taking cores. The XCMP method is an alternative to the traditional two-way travel 

time method, and it can provide more accurate dielectric constant values without calibration. This 

study attempts to integrate the XCMP method with a stepped-frequency antenna array—3-D 

GPR—by developing signal processing techniques and numerical analysis methods. 

A full-scale asphalt concrete test lane was utilized to evaluate the performance of the 

XCMP method with 3-D GPR. The thickness of the asphalt pavement ranged from one lift to four 

lifts (each lift is around 50.8mm thick). Steel plates were embedded under 10 locations with 

different layer thicknesses to increase the reflection amplitude. Five 3-D GPR configurations were 

designed: one standard scan patter, XCMP1-3, XCMP1-5, XCMP1-7, and XCMP3-5. A 

Whittaker-Shannon interpolation algorithm was developed to increase the time domain sampling 



55 

 

rate, which is important to solving the XCMP equations. A numerical solving technique based on 

least square principle was introduced to solve the XCMP equations. 

The introduced algorithm was used on the GPR signal reflected from ten steel plates. Cores 

were taken at each of the steel plate locations and their lab-measured thicknesses were chosen as 

the ground truth. A comparison of the XCMP measured thickness with the ground truth shows that 

3-D GPR can be used together with the XCMP method to estimate asphalt layer thickness with 

good data acquisition speed and large coverage area. 

5.2 Findings 

The findings of this study are summarized as following: 

 The time domain sampling interval of the 3-D GPR is 0.12207 ns, which is smaller 

than that of the 2GHz pulsed antenna. Since the accurate determination of it is 

essential for the XCMP algorithm, the Whittaker-Shannon interpolation can be 

used to increase the time domain sampling rate. The interpolated signal was used 

in the XCMP method and reasonable results were obtained. 

 The four XCMP equations can be solved numerically utilizing the least square error 

approach. Constraints need to be set based on the physical representation of the 

variables to ensure robustness of the outcome.   

 The Rayleigh resolution of stepped-frequency DX1821 3-D GPR is 0.62ns, which 

is smaller than that of the 2GHz pulsed GPR. For asphalt pavement thinner than 

50mm, the time domain resolution of the 3-D GPR is inadequate. Accordingly, the 

bandwidth of the stepped-frequency DX1821 3-D GPR is smaller than that of the 

2GHz pulsed GPR.  
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 The echo presence of the surface reflection can be overlapped with the reflection 

from the bottom of the surface layer, resulting in inaccurate XCMP results. 

 As the difference between 1t and 2t  in the XCMP is larger, the higher the 

accuracy.   

 The average thickness estimation error for both XCMP1-5 and XCMP1-7 is 5mm, 

which meets the construction tolerance. Therefore, in practice, XCMP1-5 and 

XCMP1-7 are suitable for QA/QC of asphalt pavement thicker than 50mm. 

5.3 Conclusions 

Based on the results of the study, the following conclusions can be drawn: 

 Accurate determination of 1t and 2t are critical in the XCMP method. Whittaker-

Shannon interpolation can be applied to the 3-D GPR signals to increase the time 

domain sampling rate. 

 XCMP algorithms with large difference between the offsets of the two antenna 

pairs be can be used to estimate the thickness of asphalt layers which are thicker 

than 50mm without calibration of dielectric constant. The average thickness 

estimation error is 5mm, which is within construction tolerance.The data collection 

speed of DX1821 3-D GPR is 21 times faster than that of the typical horn antenna. 

Therefore, 3-D GPR may be used in large survey areas such as airport 

runways/taxiways to generate a two-dimensional thickness profile or to identify 

possible pavement flaws. 
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5.4 Recommendations 

This study shows the feasibility of 3-D GPR to estimate asphalt pavement thickness using 

the XCMP method. As a continuation of the study, the recommendations for future study are as 

follows: 

 For asphalt pavement thinner than 50mm, the current 3-D GPR system doesn't have 

enough time domain resolution. Therefore super-resolution techniques are needed 

to estimate thin layer thickness. 

 Effect of asphalt surface moisture on 3-D GPR signal needs to be investigated. 

 Since echoing effect affects the accurate determination of 1t and 2t , it is 

necessary to introduce signal processing techniques to eliminate the effect of 

surface reflection echoes. 

 The performance of other 3-D GPR models should be studied. 

 

  



58 

 

References 

3D-Radar GPR. 2015. http://www.3d-radar.com/. 

Al-Qadi, I. L., Ghodgaonkar D., Varada V., and Varadan V., 1991. “Effect of Moisture on 

Asphaltic Concrete at Microwave Frequencies.” IEEE Transactions on Geoscience and 

Remote Sensing, 29.5, 710-717. 

Al-Qadi, I., Lahouar S., and Loulizi A., 2001. “In Situ Measurements of Hot-Mix Asphalt 

Dielectric Properties.” NDT & E International, 34.6, 427-434. 

Al-Qadi, I., Lahouar S., and Loulizi. A., 2003. “Successful Application of Ground-Penetrating 

Radar for Quality Assurance-Quality Control of New Pavements.” Transportation 

Research Record: Journal of the Transportation Research Board, 1861.1, 86-97. 

Al-Qadi, I., and Lahouar S., 2005. “Measuring Layer Thicknesses with GPR–Theory to Practice.” 

Construction and Building Materials, 19.10, 763-772. 

Al-Qadi, I.L., Leng Z., Lahouar S., Baek J., 2010. “In-place hot-mix asphalt density estimation 

using ground-penetrating radar.” Transportation Research Record: Journal of the 

Transportation Research Board, 2152.1, 19-27. 

ASTM D6432 - 11. “Standard Guide for using the Surface Ground Penetrating Radar Method for 

Subsurface Investigation.” 

Blahut, Richard E., 2004. Theory of remote image formation. Cambridge University Press. 

Claessen, A. I. M., Edwards J. M., Sommer P., and Uge P., 1977. “Asphalt Pavement Design--The 

Shell Method.” In Volume I of proceedings of 4th International Conference on Structural 

Design of Asphalt Pavements, Ann Arbor, Michigan, August 22-26, 1977 (No. Proceeding). 

Culick, F. E. C., 1987. “A note on Rayleigh's criterion.” Combustion Science and Technology, 56. 

4-6, 159-166. 

Chang, C. W., Lin C. H., and Lien H. S., 2009. “Measurement Radius of Reinforcing Steel Bar in 

5 Concrete using Digital Image GPR.” Construction and Building Materials, 23.2, 1057-

1063. 

Chuang, S. L., 2012. Physics of photonic devices. 80. John Wiley & Sons. 

Daniels, David J., 2005. Ground penetrating radar. John Wiley & Sons, Inc. 

Eide, Egil S., 2000. “Ultra-wideband transmit/receive antenna pair for ground penetrating radar.” 

IEE Proceedings-Microwaves, Antennas and Propagation, 147.3, 231-235. 

Eide, E. S., and Jens F. H., 2002. “3D utility mapping using electronically scanned antenna array.” 

Ninth International Conference on Ground Penetrating Radar (GPR2002), International 

Society for Optics and Photonics. 

Eide, E., and Sala J., 2012. High Resolution Step-Frequency 3D GPR Using Wideband Antenna 

Arrays (Presentation at Seminar of Ground Penetrating Radar in Road Monitoring and 

Evaluation Now and the Future). 

http://www.3d-radar.com/


59 

 

Huang, Y. H., 1993. Pavement analysis and design. Transportation Research Board. 

Huisman, J., Sperl C., Bouten W., and Verstraten J., 2001. “Soil Water Content Measurements at 

Different Scales: Accuracy of Time Domain Reflectometry and Ground-Penetrating Radar.” 

Journal of Hydrology, 245.1, 48-58. 

IEEE Standard 145-1993, 1993. IEEE Standard Definitions of Terms for Antennas. 

Jin, Jian-Ming., 2011. Theory and computation of electromagnetic fields. John Wiley & Sons. 

Jol, Harry M., ed., 2008. Ground penetrating radar theory and applications. Elsevier. 

Kassem, E., Scullion T., Masad E., and Chowdhury A., 2012. “Comprehensive Evaluation of 

Compaction of Asphalt Pavements and a Practical Approach for Density Predictions.” 

Transportation Research Record: Journal of the Transportation Research Board, 2268.1, 

98–107. 

Lahouar, S., Al-Qadi I., Loulizi A., Clark T., and Lee D., 2002. “Approach to Determining in Situ 

Dielectric Constant of Pavements: Development and Implementation at Interstate 81 in 

Virginia.” Transportation Research Record: Journal of the Transportation Research 

Board. 1806.1, 81-87. 

Lahouar, S., 2003. “Development of data analysis algorithms for interpretation of ground 

penetrating radar data (Doctoral dissertation, Virginia Polytechnic Institute and State 

University).” 

Le Bastard, C., Baltazart V., Derobert X., and Wang Y., 2012. “Support Vector Regression method 

applied to thin pavement thickness estimation by GPR.” Ground Penetrating Radar (GPR), 

2012 14th International Conference on IEEE, 349-353. 

Leckebusch, J., 2011. “Comparison of a stepped‐frequency continuous wave and a pulsed GPR 

system.” Archaeological Prospection, 18.1, 15-25. 

Leng, Z., Al-Qadi I.L., Lahouar S., 2011. “Development and validation for in situ asphalt mixture 

density prediction models.” NDT & E International, 44, 369-375. 

Leng, Z., 2011. “Prediction of in-situ asphalt mixture density using ground penetrating radar: 

theoretical development and field verification (Doctoral dissertation, University of Illinois 

at Urbana-Champaign).” 

Leng, Z., Al-Qadi, I. L., Shangguan P., Son S., 2012. “Field application of ground penetrating 

radar for asphalt mixture density measurement: a case study of Illinois Route 72 Overlay.” 

Transportation Research Record: Journal of the Transportation Research Board, 2304, 

133–141. 

Leng, Z., and Al-Qadi I. L., 2014. “An innovative method for measuring pavement dielectric 

constant using the extended CMP method with two air-coupled GPR systems.” NDT & E 

International, 66, 90-98. 

Liu, H., Takahashi K., and Sato M., 2014. “Measurement of Dielectric Permittivity and Thickness 

of Snow and Ice on a Brackish Lagoon using GPR.” IEEE Journal of Selected Topics in 

Applied Earth Observations and Remote Sensing, 7.3, 820-827. 



60 

 

Liu, H., and Sato M., 2014. “In Situ Measurement of Pavement Thickness and Dielectric 

Permittivity by GPR using an Antenna Array.” NDT & E International, 64, 65-71. 

Lyons, Richard G., 2010. Understanding digital signal processing. Pearson Education. 

Masad, E., Al-Rub R. A., and Little D. N., 2012. “Recent Developments and Applications of 

Pavement Analysis Using Nonlinear Damage (PANDA) Model.” In 7th RILEM 

International Conference on Cracking in Pavements (pp. 399-408). Springer Netherlands. 

Morey, R. M., 1998. Ground Penetrating Radar for Evaluating Subsurface Conditions for 

Transportation Facilities. Transportation Research Board. 

Roberts, F. L., Kandhal P. S., Brown E. R., Lee D.Y., and Kennedy T. W., 1996. “Hot mix asphalt 

materials, mixture design and construction.” 

Saarenketo, T., 1997. "Using ground-penetrating radar and dielectric probe measurements in 

pavement density quality control." Transportation Research Record: Journal of the 

Transportation Research Board, 1575.1, 34-41. 

Saarenketo, T., and Scullion T., 2000. “Road Evaluation with Ground Penetrating Radar.” Journal 

of Applied Geophysics, 43.2-4, 119–138. 

Schneider, W. A., 1984. “The common depth point stack.” Proceedings of the IEEE, 72.10, 1238-

1254. 

Shangguan, P., Al-Qadi I., Coenen A., and Zhao S., 2014a. “Algorithm development for the 

application of ground-penetrating radar on asphalt pavement compaction monitoring.” 

International Journal of Pavement Engineering, 1-12. 

Shangguan, P., and Al-Qadi, I. L., 2014b. “Calibration of FDTD simulation of GPR signal for 

asphalt pavement compaction monitoring.” IEEE Transactions on Geoscience and Remote 

Sensing, 53.3, 1538-1548. 

Shangguan, P., 2015. “Development of algorithms for asphalt pavement compaction monitoring 

utilizing ground penetrating radar.” Diss. University of Illinois at Urbana-Champaign. 

Stutzman, W. L., and Thiele G. A., 2012. Antenna theory and design. John Wiley & Sons. 

Uda, S. 1928. “On the Wireless Beam of Short Electric Waves”. Institute of Electrical Engineers 

of Japan.  

Yilmaz, Ö., 2008. “Seismic data analysis: processing, inversion, and interpretation of seismic data.” 

Tulsa: Society of Exploration Geophysicists.  

Yoder, E. J., and Witczak M. W., 1975. Principles of pavement design. John Wiley & Sons. 

Zhao, S., Shangguan P., and Al-Qadi I., 2015. “Application of Regularized Deconvolution 

Technique for Predicting Pavement Thin Layer Thicknesses from Ground Penetrating 

Radar Data.” NDT & E International, 73, 1-7. 

 


