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ABSTRACT 

 

In power systems, economic dispatch, contingency analysis, and the detection of 

faulty equipment rely on the output of the state estimator.   Typically, state 

estimations are made based on the network topology information and the 

measurements from a set of sensors within the network.   The state estimates must 

be accurate even with the presence of corrupted measurements. Traditional 

techniques used to detect and identify bad sensor measurements in state 

estimation cannot thwart malicious sensor measurement modifications, such as 

malicious data injection attacks.   Recent work by Niemira (2013) has compared 

real and reactive injection and flow measurements as indicators of attacks.  In this 

work, we improve upon the method used in that work to further enhance the 

detectability of malicious data injection attacks, and to incorporate PMU 

measurements to detect and locate previously undetectable attacks.  
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1.  INTRODUCTION 

 

 

The power grid is a complex network monitored and controlled by the SCADA 

(Supervisory Control and Data Acquisition) system.  The SCADA system relies 

on a large number of sensors to collect data to feed into the state estimator in 

order to estimate the state of the power grid.  Accurate state estimates are crucial 

for economic dispatch, which determines power generation adjustments to match 

power demands, and for local grid operators to plan control actions in case of 

contingencies.  

 

State estimators can be either AC or DC.  The AC state estimator uses a nonlinear 

model, incorporating both real and reactive power flows and injections 

measurements.  The DC state estimator uses a linear model that consists of only 

real power flows and injections measurements.  The states consist of bus angles 

[1]. 

 

Ordinary bad data are generally caused by sensor misconfiguration or device 

failures.  This type of bad data is usually large and isolated, which can be detected 

by traditional bad data detectors with enough measurement redundancy.     

However, work by Liu et al. [2] showed that an attacker, with knowledge of 

network configurations, can inject coordinated malicious data that are coherent 

with the DC power flow models without being detected.  In [3], the potential 

success of DC attacks on real EMS (energy management system) software using a 

nonlinear model was shown.  In [4], the sensitivity of real and reactive power 

measurement residuals in a nonlinear state estimator to false data injection attacks 

based on a linearized model was examined.   
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In this work, we show that as the system gets larger, the method used in [4] will 

have diminished detectability due to measurement noise.   We improve upon that 

method to further enhance the detectability of malicious data injection attacks, to 

incorporate PMU measurements to detect and locate previously undetectable 

attacks.  
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2.  BACKGROUND 

 

 

2.1 Power Flow 

 

Power flow is a numerical analysis of the flow of electric power.  It analyzes 

power systems in steady-state operation.  The power flow solution also sets the 

initial condition for transient stability analysis.   

 

The AC power injection equations for real power P and reactive power Q at a bus 

i are: 

𝐏𝐢 = 𝐕𝐢∑ 𝐕𝐣[𝐆𝐢𝐣 𝐜𝐨𝐬(𝛉𝐢 − 𝛉𝐣) + 𝐁𝐢𝐣 𝐬𝐢𝐧(𝛉𝐢 − 𝛉𝐣)]
𝐧

𝐣=𝟏
  (1) 

𝐐𝐢 = 𝐕𝐢∑ 𝐕𝐣[𝐆𝐢𝐣 𝐬𝐢𝐧(𝛉𝐢 ⋅ 𝛉𝐣) − 𝐁𝐢𝐣 𝐜𝐨𝐬(𝛉𝐢 − 𝛉𝐣)]
𝐧

𝐣=𝟏
  (2) 

 

where n is the number of buses, G and B are the real and imaginary parts of the 

admittance matrix Y. 

 

In this work, the AC power flow analyses were performed on power system test 

cases from [5] using MATPOWER [6], a flexible and powerful tool for power 

system research, to get the measurement data needed for state estimation.   
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2.2 State Estimation 

 

State estimation uses measurements from network sensors to estimate the current 

state of the system.  There is usually redundancy in the number of sensors in case 

of sensor failure, and to improve accuracy.  Each sensor measurement becomes an 

equation to the state estimation solution.  The weighted least-squares errors 

estimation method is used, which relies on the solution of an overdetermined 

system of equations, in order to find the solutions that fit best.   The weighted 

least squares problem uses the following estimator: 

�̂� = (𝐇𝐓𝐖𝐇)−𝟏𝐇𝐓𝐖𝐳    (3) 

where W is a diagonal matrix whose elements are the measurement weights, H is 

the Jacobian matrix representing the network topology, z represents the sensor 

measurements, and �̂� represents the estimated states of the system. 

 

2.3 Bad Data Detection 
 

Sensor measurements might be inaccurate due to device misconfiguration or 

device failures.  This type of bad data is usually large and isolated, which can be 

detected by traditional bad data detectors with enough measurement redundancy.  

Once the bad data has been found, the erroneous measurement is dropped as long 

as a set of basic measurements still exits [7].  A set of basic measurements is the 

minimum number of measurements needed to estimate the n state variables. 

 

Many methods for identifying and correcting bad measurements have been 

proposed.  A common approach [8], for detecting bad data is by looking at 

L2−norm of measurement residual defined as: 

‖𝐳 − 𝐇�̂�‖      (4) 
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where �̂�  is the state estimate and z − H�̂�  is the measurement residual.  If the 

value of expression in (4) is greater than a certain threshold, it is assumed that bad 

data is present.  

 

2.4 Malicious Data Attacks 
 

Malicious data injection attacks are those in which an attacker manipulates the 

sensor measurements to induce a change in the estimated state �̂� .  With 

knowledge of the network topology, bad data can be injected into DC state 

estimator without changing the measurement residual, thus cannot be detected by 

traditional bad data detection schemes.  In [2], Liu et al. present false data 

injection attacks that can bypass the bad data detection. 

 

2.4.1 Attack Principle 

Let a be an attack vector, the malicious data the attacker wants to add to the 

original measurement vector z.  Then 𝒛𝒂 = 𝒛 + 𝒂  represents the resulting 

modified measurement vector.  Theorem 1 in [2] shows that if the attack vector, a, 

was chosen to be equal to Hc, where c is the estimation error introduced, then 

resulting manipulated measurement 𝒛𝒂 = 𝒛 + 𝒂  can pass the bad measurement 

detection scheme described previous: 

‖𝐳𝐚 − 𝐇�̂�𝐛𝐚𝐝‖ = ‖𝐳 + 𝐚 − 𝐇(�̂� + 𝐜)‖      

= ‖𝐳 − 𝐇�̂� + (𝐚 − 𝐇𝐜)‖    

=‖𝐳 − 𝐇�̂�‖      

when  a = Hc     (5) 

where x̂bad is the state estimates using manipulated measurements za. 
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2.4.2 Attack Incentives 

In power system analysis, accurate state estimates are crucial for economic 

dispatch, which determines power generation adjustments to match power 

demands.  In [9], it was shown that a data attack on state estimation may disrupt 

the dispatch operation that controls the system state trajectory by perturbing the 

economic dispatch solution throughout multiple state estimation periods.  If the 

attack succeeds, it could mislead the control center into thinking that there will be 

an increase in demand.  As result, more expensive units will be used to increase 

the generation in order to match that demand; and the cost of generation will 

increase.  In [10], the impacts of malicious data attack on real-time electricity 

market were studied.  It was shown that since the real-time price is a function of 

state estimates, and the real-time locational marginal prices (LMP) is a function of 

data measured from meters, injecting bad data can affect prices in the real-time 

market.  If an attacker, with knowledge of the topology of the network, can inject 

malicious data to modify sensor measurements without being detected, then the 

attacker has the incentive and possesses the capability to alter the prices on the 

real-time electricity market to make a profit. 

 

Since the power grid is one of our nation’s most critical infrastructures, it is by 

itself an attractive attack target.  Adversaries may attempt to manipulate sensor 

measurements to cause equipment malfunction, monetary damage, or other 

malicious actions. 
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3.  DETECTION OF MALICIOUS DATA 

ATTACKS 

 

 

3.1 Previous Work and Approach 

 

This is a continuation of work in [4], and thus it is important to briefly describe its 

approach and results.   

 

3.1.1 Attacker Model 

It is assumed that the attacker has the network topology information, at least one 

column of the Jacobian matrix H, in static form available to formulate DC data 

injection attacks.  It is also assumed that the attacker has the ability to manipulate 

certain sensor measurements in order to launch an attack. 

 

3.1.2 Nonlinear Sensitivity Analysis 

Unlike traditional bad data, the malicious data injection attack is designed to fit 

the sum of squared residual test of a DC state estimator, minimizing the impact on 

measurement residues, thus avoiding detection.  When an AC state estimator is 

being used against attacks generated based on the DC model, the measurement 

residues will increase because the AC model accounts for reactive power as well 

as system losses which the DC model has neglected.   
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The measurements being considered are the real and reactive power injections and 

flows.  Since the impact of power losses increases with the square of current, the 

reactive flows would suffer more losses due to higher line reactance compared to 

line resistance; and since malicious data attack uses a linear model, reactive 

power estimates were expected to generate more measurement residues. 

 

3.1.3 Establishing Baseline 

In order to compare the measurement residues before and after the attack, baseline 

residual values had to be established.  Distribution of residuals due to noise was 

established using Monte Carlo trails that consist of  a normally distributed random 

variable with zero mean and standard deviation of 1% of the measurement values, 

which corresponds to 1% measurement noise,  resulting in z*: 

z* = z + n       (6) 

where n is the measurement noise vector, and z* is the sensor measurements 

including measurement noise.  AC state estimations were performed to record the 

measurement residues in order to establish a range of acceptable residue values.   

For any value higher than the value established, malicious data attack is assumed.   

A cutoff can be chosen based on the percentage of acceptable false alarms.  We 

will use 0% false alarms in our experiment, which means the cutoff chosen is the 

largest residue value of the established baseline.  
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3.1.4 Determine Detectability 

In order to determine if the system is under malicious data attack, the procedure 

from the last section was repeated along with added attack vectors from the H 

matrix, resulting in: 

z** = z + n + a             (7) 

where z** is the measurement vector that includes noise vector n and attack 

vector a.  In theory any combination of columns of DC H matrix can be served as 

an attack vector. 

 

The detectability of an attack is defined by the percentage of residual above the 

baseline cutoff established in the last section.  If 90% of residuals from the system 

under attack are above the cutoff value established earlier, then the attack is 

considered 90% detectable.   
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3.2 Evaluation of Approach for Larger Test Cases 

 

In [4], analysis was conducted on the IEEE 14-bus test case.  We would like to 

know if the results still hold for larger test cases such as the IEEE 30-bus and the 

IEEE 57-bus test cases; thus, analysis on these cases was conducted. 

 

3.2.1 Setup 

Analysis was conducted on the IEEE 30 and 57-bus test cases.  MATPOWER, a 

MATLAB package developed for power system simulation, was used to perform 

state estimations.  Distribution of residuals due to noise was established using 

Monte Carlo trails that consist of a normally distributed random variable with 

zero mean and standard deviation of 1% of the measurement values.  We will use 

0% false alarms in our experiment, which means the cutoff chosen is the largest 

residue value of the established baseline.  

 

3.2.2 Establishing Baseline 

Sum of squared residues of real and reactive flows and injections (PF, PG, QF, 

and QG) were recorded separately and as a weighted composite.  Histograms of 

the result were generated.  An example histogram for reactive power flows with 

5000 random noise samples is shown in Figure 3.1.  From these histogram bin 

counts, a cumulative density function (CDF) plot was created by normalizing the 

histogram to have an area of 1.  The cutoff was established by finding the largest 

sum of squared residue value of the CDF.  An example of CDF with cutoff for 

real power flows is shown in Figure 3.2. 
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Figure 3.1:  An example of histogram of sum of squared residues of reactive 

power flows (QF) for 5000 random noise vector samples. 

 

 

Figure 3.2:  An example CDF of sum of squared residues for real power flows 

(PF), with 1000 random noise vector samples.  The vertical line cuts the plot at 

100% percentile, indicating the baseline cutoff residue value. 
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3.2.3 Determine Detectability 

In theory any combination of columns of DC H matrix can be used to construct 

the attack vector.  For these experiments we have chosen to use only the columns 

such that the largest entry in each attack vector is scaled to the attack injection 

level.  The scale of attack vectors ranges from 10 MW to 50 MW in 100 MVA 

base.  For every distribution generated, the amount of residues above the baseline 

cutoff was computed, and the residual type (PF, PG, QF, QG, and weighted 

composite) with the highest detectability was then recorded.   

 

3.2.4 IEEE 30-Bus Test Case 

In Figure 3.3, the grouped bars showed the percentage of attacks detected by 

different residual types at 10 MW injection level.  For each measurement type, the 

size of residuals can be expected to vary greatly. 

Figure 3.3:  Grouped bars indicating percentage of each column DC H attack, 

from column 1 to column 30, detected at 10 MW attack injection level.  From left 

to right, the bars represent the residuals of:  the weighted composite, real power 

flow, real power generation, reactive power flow, and reactive generation. 
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Figure 3.4 shows the percentage of the total detectability of each attack column 

type detected, ranging from 10 to 50 MW attack injection level.  While the 

majority of attacks are detectable, attacks based on column 2, 3, 8, 21, and 22 of 

DC H matrix are below 50 percent detectable even at 50 MW injection level.  The 

total generation capacity of the IEEE 30-bus test case is about 335 MW.  50 MW 

injection is roughly 15% of total generation capacity.   

 

 

Figure 3.4:  Grouped bars indicating the percentage of detectability of each attack 

column type detected range from 10 to 50 MW attack injection level. 
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3.2.5 IEEE 57-Bus Test Case 

In Figure 3.5 below, the grouped bars showed the percentage of attacks detected 

by different residual types at 10 MW injection level. 

 

Figure 3.5:  Grouped bars indicating percentage of each column DC H attack, 

from column 1 to column 57, detected at 10 MW attack injection level.   
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Figure 3.6 shows the percentage of the total detectability of each attack column 

type detected, ranging from 10 to 50 MW attack injection level. The total 

generation capacity of the IEEE 57-bus test case is about 1975 MW.  At 50 MW 

injection levels, many column attacks remained undetected. 

 

 

Figure 3.6:  Grouped bars indicating the percentage of detectability of each attack 

column type detected range from 10 to 50 MW attack injection level. 
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3.2.6 Effect of Measurement Noise on Detectability 

Figure 3.7 shows the detectability of QF residual type on attack launched using 

column 14 of DC H matrix at 100 MW level.  The plot at the top contains the 

CDFs with 1% noise level.  The plot at the bottom contains the CDFs with 2% 

noise level.  At 1% noise level, we can clearly distinguish attack from noise, but 

at 2% noise it is no longer the case.  With larger percentage of measurement 

noise, the CDF plots will further stretch vertically, making the detection of 

malicious data injection more difficult. 

 

Figure 3.7:  Detectability of the same attack due to different measurement noise 

levels.  
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3.3 How to Improve the Previous Approach 

 

3.3.1 Note on Detectability 

Looking at the figures and data from Section 3.2, many would make the 

assumption that as the generation capacity increases, the detectability decreases, 

assuming the attack injection levels were kept constant.  The assumption is true, 

but it is not a major contributor causing attacks to become undetectable.  The 

major contributors to undetectability of many attacks are the random noise 

assigned to each sensor measurement and the size difference between measured 

quantities.   

 

For example: for the IEEE 57-bus test case, branch 1 has 102 MW flowing from 

bus 1 to bus 2, while branch 21 only has 0.67 MW flowing from bus 5 to bus 6.  If 

branch 21 was under malicious data attack, i.e. column 6 of DC H matrix was 

used along with 1% random noise samples, the attack residue from branch 21 has 

to be extremely large for the attack to be detectable.  The reason behind this is 

that the residue error created at branch 21(0.67 MW) is much smaller than the 

noise from branch 1 (102 MW) making it almost impossible to distinguish the bad 

data from noise.  Our data from Section 3.2, Figure 3.8 column 6, shows that the 

detectability of attack using column 6 of DC H matrix is about 50% at 50 MW 

attack injection level. 

 

Figure 3.8 shows the CDFs of sum of squared residues of reactive power flows 

(QF) for branch 21 alone, without residues from other branches, set to have 1% 

noise with 200 random noise samples, with and without malicious data attack at 

30 MW injection level using column 6 of DC H matrix. 
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Figure 3.8:  CDFs of sum of squared residues of branch 21 for reactive power 

flows (QF), set to have 1% noise with 200 random noise samples, with and 

without malicious data attack at 30 MW attack injection level using column 6 of 

DC H matrix. 

 

Looking at Figure 3.8, by analyzing data from branch 21 alone, we can clearly tell 

that branch 21 was under malicious data attack because we are able to distinguish 

the sum of squared residues (in blue) from the 1% random noise samples (in red). 

To be thorough, Figure 3.9 shows the CDFs for weighted QF, sum of squared 

residues for branches 21 to 40. 

 

Figure 3.9:  CDFs of sum of squared residues for reactive power flows (QF), for 

branch 20 to branch 40, set to have 1% noise with 200 random noise samples, 

with and without malicious data attack at 30 MW attack injection level using 

column 6 of DC H matrix. 

 

Looking at Figure 3.9, one cannot distinguish residues below 0.035 from noise, 

thus making it about 10% detectable, which matches the data from Figure 3.6.  
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3.3.2  On Improving the Detectability of Malicious Data Attack 

It was shown in Section 3.3.1 that the amount of measurement noise and the size 

difference between measured quantities can have negative effect on the 

detectability of malicious data attacks.  As the system gets larger, it is crucial to 

come up with better detection schemes without consuming too much computing 

power.   

 

In this improved approach, the sum of squared residues of all branches connected 

to each individual bus was calculated, with 1% random noise but without attack to 

establish baseline cutoffs for each bus.  For example:  for the IEEE 14-bus test 

case, the sum of squared residues, from bus 1 to 14, was calculated for each 

residual type.  If the sum of squared residues of any bus exceeds the threshold 

determined by the baseline case, then we would assume an attack has occurred.  

The percentage of residues that exceed the baseline threshold is the percentage of 

attack being detected.   

 

This approach was used because the residue from a single branch may not be 

large enough to distinguish it from noise, and each column of DC H matrix 

modifies branch data going in and out of a bus.  For example:  attack constructed 

using column 14 of DC H matrix modifies branch data connected to bus 14.  As 

result, the residue to noise ratio should be the highest around bus 14.  More details 

and simulation results will be provided in the next chapter.  
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4.  IMPROVEMENT TO PREVIOUS 

METHOD 

 

 

4.1 Improving the Detectability of Malicious Data Attack 

 

It was shown in Section 3.3.1 that the amount of measurement noise and the size 

difference between measured quantities can have negative impact on the 

detectability of malicious data injection attacks.  As the system gets larger, it is 

crucial to come up with better detection schemes without consuming too much 

computing power.  In Section 3.3.2, a method of grouping the branch residues 

according to their connection to system buses was investigated.  

 

4.2 Locations of Malicious Data Injection Attack 

 

By grouping the residues according to their connection to network buses, if an 

attack was detected, then we were also able to limit the attack location to a few 

specific areas.  Figure 4.1 showed attacks detected at bus 13 and bus 14, while 

only branches going in and out of bus 14 where modified.  Even though the 

improved approach was unable to locate the attack at the exact location, it would 

save a lot of time in locating the sensors being tampered.  An attack that is 

constructed as a combination of columns of DC H matrix will be detected at 

multiple buses.  In the next section, simulation results of the improved approach 

will be shown.  
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4.3 Simulation Results 

 

In this section, simulation results will be shown.  In theory any combination of 

columns of DC H matrix can be used to construct the attack vector.  For these 

experiments we have chosen to use only the columns such that the largest entry in 

each attack vector is scaled to the attack injection level.  The scale of attack 

vectors ranges from 10 MW to 50 MW in 100 MVA base.  For every distribution 

generated, the amount of residue above the baseline cutoff was computed, and the 

residual type (PF, PG, QF, QG, and weighted) with the highest detectability was 

then recorded.   

 

4.3.1 Setup 

The setup was exactly the same as Section 3.2.1. 

 

4.3.2 Establishing Baseline 

Squared residues of each real and reactive flow and injection (PF, PG, QF, and 

QG) were recorded separately.  Sum of squared residues was calculated according 

to their connection to each system bus.  Histograms of the result were generated.  

From these histogram bin counts, a CDF plot was created for each bus.  The 

cutoffs were established by finding the largest sum of squared residue value of 

each CDF plot.  We would then have a percentage of detectability for each bus, 

and we take the largest percentage to be the percent of attack detected. 

For example, Figure 4.1 shows the CDF plots of PF residual type for IEEE 14-bus 

test case under 30 MW attack injection level using column 14 of DC H matrix.  

Since bus 14 has the most detectability, we would calculate the percentage of 

attack detected at bus 14, and use that number as the percent of overall attack 

detected. 
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Figure 4.1:  CDF plots of PF residual type for IEEE 14-bus test case under 30 

MW attack injection level using column 14 of DC H matrix. 

 

 

4.3.3 IEEE 14-Bus Test Case 

Figure 4.2 shows the largest percentage of detectability among PF, PG, QF, and 

QG residual types for each attack column range from 10 to 50 MW attack 

injection levels.  
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Figure 4.2:  Grouped bars indicating the percentage of detectability of each 

column attack column detected range from 10 to 50 MW attack injection levels. 

 

Comparing results obtained in this section to results obtained from [4], the 

detectability of attacks has been improved.  Since the 14-bus test case is small, the 

improvement is not obvious.  Table 4.1 shows the number of column attacks 

detected using the method from [4], and the method proposed in this chapter. 

 

Table 4.1: for IEEE 14-bus test case, the number of column attacks detected using 

method from [4], and the method proposed in this chapter.   

Attack Levels Method used in [4] Method proposed 

10 MW 7 7 

30 MW 11 11 

50 MW 11 12 

 

For the IEEE 14-bus test case, at 50 MW attack injection level, column attacks 7 

and 10 are still not detectable.  We will talk about how to detect these attacks in 

the later chapter.  
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4.3.4 IEEE 30-Bus Test Case 

Figure 4.3 shows the largest percentage of detectability among PF, PG, QF, and 

QG residual types for each attack column range from 10 to 50 MW attack 

injection levels.  

 

Figure 4.3:  Grouped bars indicating the percentage of detectability of each 

column attack column detected range from 10 to 50 MW attack injection levels. 

 

Compared to results obtained from 3.2.4 using method from [4], the detectability 

of attacks has been greatly improved, especially at lower attack injection levels.  

Table 4.2 shows the number of column attacks detected using the method from 

[4], and the method proposed in this chapter. 
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Table 4.2: For IEEE 30-bus test case, the number of column attacks detected 

using method from [4], and the method proposed in this chapter.  The 

detectability of attacks has been improved, especially at lower attack injection 

levels.   

Attack Levels Method used in [4] Method proposed 

10 MW 8 15 

20 MW 15 23 

30 MW 20 25 

40 MW 20 26 

50 MW 22 26 

 

For the IEEE 30-bus test case, at 50 MW attack injection level, column attacks 2, 

3, 21, and 22 were still not detectable.   
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4.3.5 IEEE 57-Bus Test Case 

Figure 4.4 shows the largest percentage of detectability among PF, PG, QF, and 

QG residual types for each attack column range from 10 to 50 MW attack 

injection levels for the IEEE 57-bus test case.   

 
Figure 4.4:  Grouped bars indicating the percentage of detectability of each 

column attack column detected range from 10 to 50 MW attack injection levels. 
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Compared to results obtained from 3.2.5 using the method from [4], the 

detectability of attacks has been once again improved.  Table 4.3 shows the 

number of column attacks detected using the method from [4], and the method 

proposed in this chapter.   

 

Table 4.3: For IEEE 57-bus test case, the number of column attacks detected 

using method from [4], and the method proposed in this chapter.   

Attack Levels Method used in [4] Method proposed 

10 MW 4 20 

20 MW 11 27 

30 MW 17 34 

40 MW 24 41 

50 MW 28 48 

 

The method used in [4] will perform poorly as the bus system gets even larger due 

to the fact that column attacks are relatively sparse; the sum of squared error from 

the noise vector will outweigh the attack, thus making it more difficult to 

distinguish an attack from sensor noise. 
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5.  DETECTION OF MALICIOUS DATA 

ATTACKS USING PMU 

 

 

5.1 On Attacks that Are Difficult to Detect 

 

We have noticed during our previous simulations that there were still some 

column attacks left undetected.  As a result, the use of phasor measurement unit 

(PMU), or synchrophasor, to detect maliciously injected data was investigated.   

 

PMU is considered as one of the most important measuring devices in the future 

of power systems.  When placed on a network bus, it measures the magnitude and 

phase angle of voltage and current in real time.  PMU relies on a GPS time signal 

for time-stamping of the power system information.  Assuming the PMU 

measurements were unaltered by the attacker, then we can compare these 

measurements directly against the state estimates without relying on the residues.   

 

Since the PMUs rely on GPS time signal as a reference to measure phase angles 

while the previous test cases rely on a single reference bus angle, comparing them 

directly does not make sense.  Instead the angle differences between two buses 

were compared.  For example:  If an attack was injected using column 10 of DC 

H matrix, by comparing the angle differences, of bus 1 and bus 10, of PMU 

measurements against those from state estimation, malicious data injection attacks 

could be detected at much lower injection levels, and the PMU measurements can 

also provide bad data localization. 
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5.2 PMU Approach 

 

5.2.1 Setup 

The analysis was conducted on the IEEE 14, 30 and 57-bus test cases.  

MATPOWER was used to perform state estimations.   Distribution of noise was 

established using Monte Carlo trails that consist of a normally distributed random 

variable with zero mean and standard deviation of 1% of the measurement values.  

The cutoff chosen was the largest angle difference between two buses from the 

established baseline, which means 0% false alarm.  Calculation of residues was 

no longer needed here because the PMU measurements were assumed to be 

secure and accurate.  Therefore if the state estimates did not match closely to the 

PMU measurements, i.e. attack injections were distinguishable from noise, then 

the attack was detected. 

 

5.2.2 Establishing Baseline 

In order to calculate the angle difference between two buses, a reference bus was 

needed.  Since the reference buses for the IEEE test cases were chosen to be bus 

1, the same buses were used to calculate the buses angle difference from PMU 

measurements, which means PMUs were placed at those reference buses.  The 

bus angle difference from PMU measurements and the angle difference from the 

state estimates were recorded separately.  Histograms of the result were 

generated.  From these histogram bin counts, a CDF plot was created for each 

bus.  The cutoffs were established by finding the largest angle difference of each 

CDF plot.  A percentage of detectability for each bus was calculated, and the 

largest percentage was chosen to be the percent of attack detected. 
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5.3 Simulation Results 

 

In this section, simulation results will be shown.  In theory any combination of 

columns of DC H matrix can be used to construct the attack vector.  For these 

experiments we have chosen to use only the columns such that the largest entry in 

each attack vector is scaled to the attack injection level.  The scale of attack 

vectors range from 5 MW to 15 MW in 100 MVA base.   

 

5.3.1 Attack on the Reference Bus 

Since a bus is being used as the reference bus, if the reference bus was attacked, 

the PMU placed at the reference bus would not be able to detect such attack, but 

all other phase angle differences were expected to change thus making the attack 

even more obvious.  Figure 5.1 shows what happens when bus 1 of IEEE 14-bus 

test case was attacked using column 1 of DC H matrix at 10 MW injection level.  

 

Figure 5.1:  CDFs of PMU measurements and state estimates of bus angles for 

IEEE 14-bus test case when the reference bus was attacked under 10 MW 

injection level using column 1 of DC H matrix. 
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Figure 5.2 shows what happens when bus 10 of IEEE 14-bus test case was 

attacked using column 10 of DC H matrix at 10 MW injection level.  In [4], it was 

shown that even at 80 MW injection level this specific attack was undetectable.   

 

Figure 5.2:  CDFs of PMU measurements and state estimates of bus angles for 

IEEE 14-bus test case when the reference bus was attacked under 10 MW 

injection level using column 10 of DC H matrix. 

 

Even at only 10 MW attack injection level, the CDF for bus 10 clearly showed 

that there was something wrong.  The exact percentage of detectability will be 

shown in the next section. 
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5.3.2 IEEE 14-Bus Test Case 

Figure 5.3 shows the percentage of detectability of column attacks ranging from 5 

to 15 MW attack injection levels for the IEEE 14-bus test case.  Attacks were 

generated using only columns of DC H matrix.  At 15 MW injection levels, all 

column attacks were detected. 

 

Figure 5.3:  Percentage of detectability of column attacks ranging from 5 to 15 

MW attack injection levels.  Attacks were generated using only columns of DC H 

matrix from the IEEE 14-bus test case. 
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5.3.3 IEEE 30-Bus Test Case 

Figure 5.4 shows the percentage of detectability of column attacks ranging from 5 

to 15 MW attack injection levels for the IEEE 30-bus test case.  Attacks were 

generated using only columns of DC H matrix.  At only 5 MW injection levels, all 

column attacks were detected. 

 

Figure 5.4:  Percentage of detectability of column attacks ranging from 5 to 15 

MW attack injection levels.  Attacks were generated using only columns of DC H 

matrix from the IEEE 30-bus test case. 
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5.3.4 IEEE 57-Bus Test Case 

 

Figure 5.5:  Percentage of detectability of column attacks ranging from 5 to 15 

MW attack injection levels.  Attacks were generated using only columns of DC H 

matrix from the IEEE 57-bus test case. 
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Figure 5.5 shows the percentage of detectability of column attacks ranging from 5 

to 20 MW attack injection levels for the IEEE 57-bus test case.  Attacks were 

generated using only columns of DC H matrix.  At 20 MW injection levels, all 

column attacks were detected.  The total real power generation of the IEEE 57-

bus test case is about 1300 MW.  20 MW is about 1.6% of total real power 

generated. 

 

5.4 Localization of Malicious Data Attacks using PMU 

 

In section 5.3, it was shown in Figure 5.1 that if the reference bus was under 

attack, the CDF plots of PMU measurements and state estimates will have large 

angle differences at other buses.  Figure 5.2 showed that PMU placed on bus 10 

of the IEEE 14-bus test case could successfully detect attacks launched using 

column 10 of the DC H matrix at 10 MW injection level, which was not 

detectable even at 80 MW injection level using the method in [4].  Figure 5.2 also 

showed that none of the other PMUs has detected large bus angle differences, 

which means the location of the attack has been exposed. 

 

Previously, even if an attack was detected using the method in [4], the location of 

the attack cannot be derived from the sum of squared of attack residues.  It would 

take much time to locate and fix the damage created by the attacker.  Using the 

approach proposed in Chapter 4, the detectability of attacks was improved; the 

approach also limits the location of the attack to a few specific areas.  For 

example, Figure 4.1 showed attacks detected at bus 13 and bus 14, while only 

branches going in and out of bus 14 were modified.  Even though the approach in 

Chapter 4 was unable to locate the attack at the exact location, it would save a lot 

of time in locating the sensors being tampered with compare to the method used 

in [4].  By incorporating PMU measurements, the attacks can be pinpointed at the 
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exact bus locations at much lower attack injection level.  This is significant 

because it has improved the attack detectability at much lower attack injection 

levels, it can save a lot of time finding the attack location, and it provides an extra 

layer of protection; i.e., in order for the attacks to succeed, the attacker has to 

tamper with the sensors as well as the PMU measurements. 
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6.  PMU PLACEMENT 

 

 

6.1 Where to Place the PMUs 

 

Given limited resources, the PMUs need to be strategically placed along with the 

use of the approach from Chapter 4 to achieve the best protection without running 

exhaustive simulations.  For example: if a minimum attack injection level is 

given, i.e. any attack above or equal to such level should be detected, then we 

want to know where to place the PMUs to maximize protection against malicious 

data attacks, and how many PMUs are needed to complement the method from 

Chapter 4.   

 

6.1.1 Centrality Measures 

The network centralities from [11] were first investigated in order to identify the 

important nodes in the system where PMUs should be strategically placed in 

terms of system vulnerabilities.  The centralities did not complement the work in 

[4] or the approach from Chapter 4.  One of the reasons could be that the work in 

[11] did not incorporate system generation and load, which are important in 

determining the amount of real and reactive flows and injections given the 

admittance matrix Y.  
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6.1.2 Using Residues for PMU Placements 

To complement the work in [4], baseline cutoffs for each of the residual types 

(PF, PG, QF, and QG) were found the same way as in Section 3.2.2.  Then with 

specified attack injection levels and 0% measurement noise, attacks generated 

using the columns of the DC H matrix were launched.  The sum of squares of 

attack residues for each residual type can be calculated by running the state 

estimation once.  Since there is no noise, the state estimates would not vary by 

running state estimation multiple times.  Then the sum of squared residues were 

sorted from smallest to largest; the smallest was the most vulnerable to malicious 

data injection attack, and the bus that the column attack had modified was the 

location where the PMU needed to be placed.  Note: PMU placement on the 

reference bus is required in order to calculate bus angle difference. 

 

In order to complement the improved approach from Chapter 4, baseline cutoffs 

for each of the residual types (PF, PG, QF, and QG) were found the same way as 

in Section 4.3.2 by grouping the branches according to their connections to each 

system bus.  Then with specified attack injection levels and 0% measurement 

noise, squared of attack residues for each residual type were found by running the 

state estimation once.  The residues were then grouped according to their 

connection to each system bus.  For each attack launched, we would have a sum 

of squared residue for each bus.  The largest value among the buses was recorded 

as the attack residue.  Attacks were formed using columns of DC H matrix.  The 

sum of squares of attack residues for each column of DC H matrix were then 

sorted from smallest to largest, the smallest was the most vulnerable to malicious 

data injection attack, and is where the PMU needed to be placed.   
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6.1.3 Number of PMUs Needed 

In Section 6.1.2, we introduced a way to strategically place the PMUs to enhance 

malicious data detectability.  Since the PMUs were used to complement the 

approach from Chapter 4, the PMU placements need to be stopped as soon as the 

attack residues are large enough to be detected by the approach alone.  By 

comparing the attack residues with the baseline cutoffs determined from Section 

6.1.2, the attacks that will be detected by the approach from Chapter 4 can be 

roughly determined.   

 

In order to distinguish an attack from noise, the largest baseline cutoff from the 

CDF with no attack but noise has to be smaller than the smallest attack residue 

from the CDF with attack and noise.  By running the column attack only once 

without noise, the CDF curve for the attack vector injected was nonexistent.  As 

such, a coefficient was needed to be divided by the attack residues in order to find 

a rough estimate of the leftmost attack residue value.  The point of this is to verify 

that the baseline cutoff, i.e. the largest residue value due to noise alone, is smaller 

than the smallest attack residue, thus making the difference between noise and 

attack distinguishable without running exhaustive simulations.   

 

For the purpose of simulation, the coefficient is chosen to be the baseline cutoff 

divided by the baseline median.  How to determine a better coefficient to find the 

smallest attack residue value of the CDF plot without running exhaustive 

simulation could be a topic for future work. 
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6.2 PMU Placements 

 

From Section 5.3.4, it has been shown that for the IEEE 57-bus test case, all 

attacks generated using the columns of the DC H matrix can be detected at 20 

MW attack injection levels if PMUs are placed on the buses.  In this chapter, the 

PMU placements that complement the approach from Chapter 4, for attacks 

generated using the columns of the DC H matrix ranging from 20 to 50 MW, will 

be shown.   

 

6.2.1 IEEE 14-Bus Test Case 

Table 6.1 shows where to place the PMUs to further improve the detectability of 

malicious data injection attacks if the approach from Chapter 4 has been used 

without running exhaustive simulations.  The smaller the number assigned to a 

bus, the more vulnerable that bus.  A zero means no PMU was needed.  Since the 

difference between two bus angles was measured, PMU placement on the 

reference bus was required, which is bus 1 in this case. 

 

Simulation in Chapter 4 used 500 random noise samples for the IEEE 14-bus test 

case, which means AC state estimation was performed 500 times to establish the 

baseline cutoff and 7000 times to simulate the detectability of 14 column attacks 

for an arbitrary attack injection level.  In order to simulate the detectability of 14 

column attacks ranging from 20 to 50 MW injection levels, a total of 28500 AC 

state estimations on the IEEE 14-bus test case were needed.  As the test case gets 

larger, such a method of finding where to place the PMUs is not efficient. 
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Table 6.1:  PMU placement for the IEEE 14-bus test case to complement 

detection approach used in Chapter 4 without running exhaustive simulations. 

 Bus 1 Bus 2 Bus 3 Bus 4 Bus 5 Bus 6 Bus 7 

20 MW 1 4 0 0 0 0 2 

30 MW 1 0 0 0 0 0 2 

40 MW 1 0 0 0 0 0 3 

50 MW 1 0 0 0 0 0 3 

 Bus 8 Bus 9 Bus 10 Bus 11 Bus 12 Bus 13 Bus 14 

20 MW 0 0 3 0 0 0 0 

30 MW 0 0 3 0 0 0 0 

40 MW 0 0 2 0 0 0 0 

50 MW 0 0 2 0 0 0 0 

 

Using the method proposed in this chapter, AC state estimation was performed 

500 times to establish the baseline cutoff and 14 times to simulate the 

detectability of 14 column attacks for an arbitrary attack injection level.  In order 

to simulate the detectability of 14 column attacks ranging from 20 to 50 MW 

injection levels for PMU placement, a total of 556 AC state estimations on the 

IEEE 14-bus test case were needed.   

 

Comparing the results from Table 6.1 with simulation results from Chapter 4, the 

buses that are the most vulnerable to malicious data injection attack were found, 

the placement order for bus 7 and bus 10 was switched at the 20 MW injection 

level. 
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6.2.2 IEEE 30-Bus Test Case 

 

Table 6.2: PMU placements for the IEEE 30-bus test case to complement 

detection approach used in Chapter 4 without running exhaustive simulations. 

 Bus 1 Bus 2 Bus 3 Bus 4 Bus 5 Bus 6 Bus 7 

20 MW 1 4 2 0 0 0 6 

30 MW 1 4 2 0 0 0 6 

40 MW 1 5 2 0 0 0 0 

50 MW 1 5 2 0 0 0 0 

 Bus 8 Bus 9 Bus 10 Bus 11 Bus 12 Bus 13 Bus 14 

20 MW 0 0 0 0 0 7 0 

30 MW 0 0 0 0 0 0 0 

40 MW 0 0 0 0 0 0 0 

50 MW 0 0 0 0 0 0 0 

 Bus 15 Bus 16 Bus 17 Bus 18 Bus 19 Bus 20 Bus 21 

20 MW 0 0 0 0 0 0 3 

30 MW 0 0 0 0 0 0 3 

40 MW 0 0 0 0 0 0 3 

50 MW 0 0 0 0 0 0 3 

 Bus 22 Bus 23 Bus 24 Bus 25 Bus 26 Bus 27 Bus 28 

20 MW 5 0 0 0 0 0 0 

30 MW 5 0 0 0 0 0 0 

40 MW 4 0 0 0 0 0 0 

50 MW 4 0 0 0 0 0 0 

 Bus 29 Bus 30      

20 MW 0 0      

30 MW 0 0      

40 MW 0 0      

50 MW 0 0      
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Table 6.2 shows where to place the PMUs to further improve the detectability of 

malicious data injection attacks if the approach from Chapter 4 has been used 

without running exhaustive simulations. The smaller the number assigned to a 

bus, the more vulnerable was that bus.  A zero means no PMU was needed.  Bus 1 

was used as reference bus. 

 

Simulation in Chapter 4 used 500 random noise samples for the IEEE 30-bus test 

case, which means AC state estimation was performed 500 times to establish the 

baseline cutoff and 15,000 times to simulate the detectability of 30 column attacks 

for an arbitrary attack injection level.  In order to simulate the detectability of 30 

column attacks ranging from 20 to 50 MW injection levels, a total of 60500 AC 

state estimations on the IEEE 30-bus test case were needed.   

 

Using the method proposed in this chapter, AC state estimation was performed 

500 times to establish the baseline cutoff and 30 times to simulate the 

detectability of 30 column attacks for an arbitrary attack injection level.  In order 

to simulate the detectability of 30 column attacks ranging from 20 to 50 MW 

injection levels for PMU placement, a total of 620 AC state estimations on the 

IEEE 30-bus test case were needed.   

 

Comparing the results from Table 6.2 with simulation results from Chapter 4, at 

20 MW attack injection level, there should have been a PMU placement for bus 

28, but it was missing, so a redundant PMU was placed on bus 13 instead.   

Attack generated using the 28
th

 column of the DC H matrix was above 90% 

detectable using the method from Chapter 4.  For attack injection levels ranging 

from 30 to 50 MW, the buses that are the most vulnerable to malicious data 

injection attack were found correctly. 
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6.2.3 IEEE 57-Bus Test Case 

Table 6.3 shows where to place the PMUs to further improve the detectability of 

malicious data injection attacks if the approach from Chapter 4 has been used 

without running exhaustive simulations. Bus 1 was used as reference bus. 

 

Table 6.3: The order of PMU placements for the IEEE 57-bus test case to 

complement the detection approach used in Chapter 4 without running exhaustive 

simulations. 

Bus Protection Order Bus Number 

20 MW 1 12 44 48 38 22 23 2 

37 5 28 10 36 27 3           50 

8 53 13 6 47 7 52 9 

16 35 17 11 32 33 

30 MW 1 12 44 48 22 23 38 2 

37 28 5 10 36 27 3           8 

50        53 6 11 13 35 32 33 

40 MW 1 12 44 48 22 23 2 38 

37 28 10 5 3 36 53          50 

6          33 

50 MW 1 12 44 48 22 23 2 38 

37 28 10 36 

 

Simulation in Chapter 4 used 500 random noise samples for the IEEE 57-bus test 

case, which means AC state estimation was performed 500 times to establish the 

baseline cutoff and 28,500 times to simulate the detectability of 57 column attacks 

for an arbitrary attack injection level.  In order to simulate the detectability of 30 

column attacks ranging from 20 to 50 MW injection levels, a total of 114,500 AC 

state estimations on the IEEE 57-bus test case were needed.   

 



45 
 

Using the method proposed in this chapter, AC state estimation was performed 

500 times to establish the baseline cutoff and 57 times to simulate the 

detectability of 57 column attacks for an arbitrary attack injection level.  In order 

to simulate the detectability of 57 column attacks ranging from 20 to 50 MW 

injection levels for PMU placement, a total of 728 AC state estimations on the 

IEEE 30-bus test case were needed.   

 

Table 6.4: The order of PMU placements for the IEEE 57-bus test case 

determined using simulation results from Chapter 4. 

Bus Protection Order Bus Number 

20 MW 1 12 38 44 48 22 23 5 

37 2 28 8 36 53 10       50 

3 27 13 6 47 7 52        9 

16 35 17 11 14 15 

30 MW 1 12 44 48 22 23 38 37 

5 2 28 10 36 27 3          8 

50 47 7 52 53 9 6  

40 MW 1 12 44 48 22 23 38 2 

37 28 5 10 3 27 36        8 

50 MW 1 12 44 22 48 23 2 38 

37 

 

Table 6.4 shows the actual PMU placements needed after simulation by running 

exhaustive AC state estimations from Chapter 4.  Comparing the results from 

Table 6.3 and Table 6.4 along with simulation results from Chapter 4, at 20 MW 

attack injection level, there should have been two PMUs placed on bus 14 and 15, 

but instead two PMUs were placed on bus 32 and 33.   Attacks generated using 

the 14
th

 and 15
th

 columns of DC H matrix were above 95% detectable using the 

method from Chapter 4.   
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At 30 MW attack injection level, there should have been four PMUs placed on 

bus 7, 9, 47, and 52, but instead five PMUs were placed on bus 11, 13, 32, 33, and 

35.   Attacks generated using the 7
th

, 9
th

, and 52
nd

 columns of the DC H matrix 

were above 95% detectable using the method from Chapter 4.  The 47
th

 had 

detectability above 90%. 

 

At 40 MW attack injection level, there should have been two PMUs placed on bus 

8 and 27, but instead four PMUs were placed on bus 6, 33, 50, and 53.   Attacks 

generated using the 8
th

 and 27
th

 columns of DC H matrix were above 95% 

detectable using the method from Chapter 4.   

 

At 50 MW attack injection level, the buses that are the most vulnerable to 

malicious data injection attack were found correctly but three extra PMUs were 

placed on bus 10, 28 and 36.    

 

For the IEEE 57-bus test case, most of the PMU placements were correct.  For 

those missed locations, the simulation from Chapter 4 shows detectability above 

90%  
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6.3 Protecting the Basic Set 

 

In [7], the authors showed that protecting a strategically selected set of sensor 

measurements or state variables prevented attackers from launching unobservable 

attacks.  The PMU placements introduced in this chapter could be used to 

complement the approach used in Chapter 4.  For example:  Figure 4.2 showed 

that attacks on bus 7 and 10 were difficult to detect even at 50 MW attack 

injection level using the approach from Chapter 4, so in order to complement the 

approach, PMUs were needed.  Table 6.1 showed that at 50 MW attack injection 

level, PMUs were needed on bus 1, 7, and 10.  This is important because instead 

of protecting a basic set of sensor measurements, or the equal number of state 

variables, the number of state variables that required protection has now been 

limited to only three. 
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7.  CONCLUSION AND FUTURE WORK  

 

 

This work followed the idea from [4] that, by using an AC state estimator against 

attacks generated using a linear model, measurement residues were introduced.  

The difference between the measurement residues was leveraged to detect 

malicious data injection attacks.   The detection method was tested on larger bus 

systems, and was shown to have diminished sensitivity as the system got larger 

due to sensor noise introduced by larger measurements, which outweighed the 

residues generated by smaller measurements that were being attacked. 

 

To improve detectability for larger bus cases, a method of grouping the branch 

residues according to their connection to network buses was developed.  This 

method has shown improved detectability for larger bus cases.  Like the method 

used in [4], a few attacks were difficult to detect even at higher attack injection 

levels.  PMU was incorporated, and was shown to not only detect the attacks at 

lower attack injection levels, but also provide attack localization.  If 

measurements have been tampered with, then the PMUs placed at the bus nearby 

would detect the abnormality.   

 

Future work could include the detection of attacks that were difficult to detect 

without relying on the PMUs or development of an algorithm that distinguishes 

residual distributions from ordinary bad data. 
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