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ABSTRACT 

The oscillatory boundary layer represents a particular case of unsteady wall-bounded flows in 

which fluid particles follow a periodic sinusoidal motion. Unlike steady boundary layer flows, 

the flow regime and bed roughness character of oscillatory flows change in time during the 

oscillation, a characteristic that introduces a high degree of complexity in the analysis. 

Experimental work in this topic started in the 1960s followed by numerical work in the late 

1980s, yet it is not completely understood, particularly in the transitional regimes. 

 

In this work, several oscillatory flow experiments were performed in the Large Oscillatory Water 

and Sediment Tunnel (LOWST) facility at the Ven Te Chow Hydrosystems Laboratory. A 

custom PVC floor was built inside the tunnel to obtain a flat and smooth bed. The range of wave 

Reynolds numbers tested spanned all along the transition regime of the oscillatory boundary 

layer between the upper limit of the laminar regime and the lower limit of the turbulent regime 

(3x104 < Rew < 9x105). A 3D laser Doppler velocimetry (LDV) system was used to measure 

instantaneous flow velocities with high spatial and temporal resolution, which allowed capturing 

flow features with great detail inside the boundary layer and even inside the viscous sublayer in 

some cases. A special set-up was built involving two LDV probes and a refraction-correcting 

device to be able to measure all three velocity components (u, v, w) simultaneously. 

 

From the velocity measurements, flow characteristics were obtained through the analysis of 

different variables including mean flow velocities, boundary layer thickness, turbulence 

intensities, turbulent kinetic energy, viscous and Reynolds stresses, turbulence production, eddy 

viscosity, quadrant analysis, bed shear stresses, shear velocity, wave friction factor and viscous 

sublayer thickness. In particular, the results of this work provide detailed evidence of the 

competition between laminar and turbulent effects taking place in the transition regime of the 

oscillatory boundary layer as Rew increased. A surprising behavior was observed in the phase of 

the peak bed shear stress, which changed dramatically with Rew: first leading about 40º ahead of 

the outer flow for low Rew, then lagging up to 25º behind for the transitional Rew experiments, 

and finally returning slightly ahead about 5º for high Rew. This finding is expected to have 
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significant implications for the entrainment and transport of sediment near the bed. Also, 

investigation of the viscous sublayer revealed that the classic steady flow threshold of z+ = 5 

doesn’t work well for oscillatory flows. A new method was developed to calculate the thickness 

of the viscous sublayer taking into account the ratio of viscous to turbulent forces near the bed. 

 

These results can be directly applied to better understand sediment transport in the ocean under 

the action of waves and currents. Furthermore, they will be also useful for a variety of 

engineering applications related to fluid mechanics including aerospace, biomedical research, 

engine design, turbines, industrial machinery, pumping systems, pipe transport, marine 

hydrokinetics, wave dynamics, and river, coastal and estuarine processes. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Oscillatory flows are a particular case of the more general unsteady flows, characterized by the 

change in flow conditions over time. In the particular case of oscillatory flows, the conditions are 

repeated periodically along a cycle with a certain period of oscillation. 

 

These types of flows are found in nature in a variety of physical processes, such as the pulsating 

flow of blood in the arteries, air flow in lungs, roll-damping of ships, water flow under a sea 

wave, flow in a piston device, such as an engine cylinder, and any other sort of fluid oscillating 

under a pressure forcing. Particularly interesting is the case of wave-induced oscillatory flows, 

with applications in the fields of coastal and off-shore engineering, such as sediment transport, 

submarine outfalls, drilling platforms, off-shore wind turbines and other marine energy-

generating devices, etc. 

 

Pure oscillatory flowPure oscillatory flow

 
Figure 1. Sketch of water particle trajectories under a surface wave propagating in intermediate or shallow depth. 

Wave propagating from left to right. 
 



 

 2

For the purpose of this research work, the focus is going to be on the cases when the oscillatory 

flow is in the proximity of a boundary, such that the flow interacts with the boundary and vice 

versa. A direct application of this situation can be found in the bottom of the ocean, where an 

oscillatory flow is generated under the action of waves on the surface, creating an oscillatory 

boundary layer (Figure 1). 

 

1.2 Previous work on oscillatory boundary layers 

Research in boundary layers has been performed for about a century now, since the early 

experiments of Prandtl (1905), although the equations of motion for a viscous fluid were 

established earlier by Navier (1823), Poisson (1831), Saint-Venant (1843) and Stokes (1845). A 

comprehensive historical review on the development and history of the boundary layer theory 

can be found in Tani (1977). 

 

In the case of purely oscillatory flow, Jonsson (1963), in Denmark, was among the first to 

conduct experiments in the turbulent boundary layer. He used a 5 mm  micropropeller to measure 

flow velocities, from which he was able to obtain shear stress distributions and the friction 

coefficient. Later, it was Kamphuis (1975), in Canada, who expanded the knowledge to the case 

of rough oscillatory boundary layers, with a special focus on the wave friction factor (fw). He 

developed a diagram for a wide range of wave Reynolds numbers (Rew) and relative roughness 

(a/ks) (similar to Nikuradse’s (1933) for steady flows), which has been extensively used ever 

since. However, the behavior and characteristics of the flow inside the oscillatory boundary layer 

remained still unknown, and specially the mechanisms for the creation and dissipation of 

turbulence, the role of the viscous sublayer, the effects of roughness, viscosity, bedforms, etc. 

 

In 1980, more experiments by Jonsson (1980) in an oscillating water tunnel over a rough bed 

showed the existence of a logarithmic overlap layer, similar to the one found in steady flows. He 

was also able to measure and predict the phase lead of wall shear stress over the free-stream 

flow. However, the equipment he used didn’t allow for measurements of turbulence or near the 

wall. Later, in Japan, Hino et al. (1983) reported an experiment of oscillatory flow in a wind 

tunnel over a smooth wall. They measured velocities using a laser Doppler velocimetry (LDV) 
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system, which allowed them to show for the first time the turbulence characteristics associated 

with this type of flows. The wave Reynolds number for this experiment was Rew ≈ 3x105, which 

meant having a transitional oscillatory flow regime. A detailed analysis of mean velocities, 

turbulence intensities, Reynolds stresses, turbulence energy production, turbulence spectra, 

ejections, sweeps and fluid-wall interactions was reported, with some surprising conclusions 

about the accelerating and decelerating stages, and the associated production of turbulent energy. 

Then, in the United Kingdom in 1987, Sleath (1987) performed a series of experiments over 

rough beds in an oscillatory water tunnel, using as well a LDV system for the velocity 

measurements. The rough beds consisted of a layer of sand, gravel or pebbles glued on a flat 

surface. His study comprised a wide range of wave Reynolds number (Rew) and relative 

roughness (a/ks), and it is probably one of the most complete experimental sets reported. The 

limitations of his tunnel only allowed him to reach values of Rew < 3x105, which made for a 

difficult analysis, since most of the experiments fell into the transitional oscillatory flow regime, 

despite his “hopes” for a fully developed turbulence. The analysis performed stayed quite 

superficial and some conclusions were unclear. He focused on turbulence intensities, Reynolds 

stresses, eddy viscosity and mixing length, and the effect of increasing roughness in some of 

these variables. There is, however, a very interesting observation regarding the development of a 

logarithmic boundary layer in relation with the wave Reynolds number (Rew) and the phase (ωt), 

which can be used to understand the changing threshold for the fully developed turbulent regime 

in oscillatory flows. 

 

Major contributions to the understanding of turbulent oscillatory flows came also from the work 

by Sumer, Fredsoe and Jensen in Denmark. They performed their experiments in an oscillating 

water tunnel powered by a pneumatic piston, and a LDV system was used for the measurement 

of velocities. In Sumer et al. (1987), they presented a comparison of the hydraulically smooth 

and rough oscillatory boundary layers through two experiments with the same wave Reynolds 

number (Rew). Mean velocity and shear stress profiles were shown and compared, together with 

boundary layer thickness evolution over the cycle for both the smooth and rough cases. The 

authors also observed and discussed about the transfer of momentum from the wall, where 

turbulence is created, up to the free-stream flow and the relation of this process with the 

accelerating and decelerating stages of the oscillatory flow. 
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Later in 1988, Jensen (1988) in his Ph.D. thesis was able to perform a systematic and 

comprehensive analysis of the turbulent oscillatory boundary layer. He reported fifteen 

experiments, with wave Reynolds numbers ranging between 7.5x103 < Rew < 6x106 , although 

the analysis was focused only on the high Reynolds number experiments in an attempt to achieve 

fully developed turbulent flow regime conditions. The experiments involved smooth wall and 

rough wall conditions. Only four of them were performed under rough conditions, which were 

created by gluing D = 0.35 mm sand paper and D = 1.5 mm sand grains to the flat bed of the 

tunnel. The relative roughness ranged between 435 < a/ks < 3700 for those experiments. His 

results focused on the effects of the relative roughness (a/ks) and wave Reynolds number (Rew) 

on the most relevant parameters for the characterization of this type of flows, namely, the 

thickness of the boundary layer (δ), the phase lead of the wall shear stress with respect the free-

stream flow velocity (Δφs), and the wave friction factor (fw). Similarly to other authors before 

him, he reported also mean flow and shear stress profiles, turbulence intensities, Reynolds 

stresses, wall shear stress, etc. In addition, he presented the results in dimensionless variables, 

both for outer scales and inner scales, the latter being of special interest for the analysis of the 

oscillatory boundary layer very close to the wall and the quantification of the viscous effects, in a 

similar way to the steady boundary layers. Although the results are lacking, in some cases, some 

more experimental evidence to be able to generate strong conclusions about this type of flows, 

the methodology of the analysis he presented shows how the unsteady oscillatory boundary layer 

problem may be approached. 

 

More recently, Carstensen et al. (2010), also in Denmark, performed several experiments in an 

oscillatory flow tunnel with smooth bed. The flow conditions in their experiments were such that 

the amplitude of the oscillation was not constant but it was increasing slowly for every cycle. 

They covered a range of wave Reynolds numbers between 7x104 < Rew < 5x106 to be able to 

capture the structure of the flow in the transition regime. Their measurements were mainly 

focused on flow visualization, although bed shear stresses were also measured. They were 

among the first to obtain videos of vortex tubes and turbulent spots as they were developing in 

the oscillatory boundary layer with great detail. 
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In addition to the experimental work described, in recent years there have been a growing 

number of numerical studies in the literature trying to simulate the oscillatory boundary layer. 

Among the first was the DNS work of Spalart and Baldwin (1987), which is considered a 

reference for all subsequent numerical studies. Later came the DNS work of Vittori and Verzicco 

(1998), which focused on the onset of turbulence in the transition regime. More recently, 

Pedocchi et al. (2011) where among the first to perform a direct numerical simulation (DNS) in 

the fully turbulent regime (Rew = 1.4x106). Their study focused on the analysis of the turbulent 

kinetic energy budget, providing good insight on turbulence production and dissipation in the 

turbulent oscillatory boundary layer. At the same time, Mazzuoli et al. (2011) performed a DNS 

study in which they reproduced two of Carstensen et al. (2010) experiments. Their results 

focused on the formation of flow structures and in particular on the characterization of the 

turbulent spots observed by Carstensen. After them, Ozdemir et al. (2014) followed with more 

DNS results in the transition regime, focused on the onset of turbulence as well. They also 

showed flow structures, such as vortex tubes, using the swirling strength concept from Zhou et 

al. (1999). Although the DNS technique has improved significantly in recent years, all these 

studies are not yet able to capture completely all the features of the oscillatory boundary layer, 

particularly in the transition regime. In fact, most of them use the experimental data of Hino et 

al. (1983), Sleath (1987) and Jensen (1988) as a reference to compare their results. As such, the 

results in this work will be compared mainly against other experimental work. 

 

1.3 Objectives 

The main objective of this work is to advance the scientific knowledge about the flow and 

turbulence characteristics of the oscillatory boundary layer. Despite the many efforts from 

previous researchers, a significant shortage in experimental evidence still exists in this field. Yet 

experiments can provide the most accurate information to understand a physical phenomenon of 

such complexity. Consequently, an experimental approach was used during this work. 

 

High spatial and temporal resolution measurements were taken with a laser Doppler velocimetry 

(LDV) system in a unique oscillatory tunnel such as the Large Oscillating Water-Sediment 

Tunnel (LOWST) at the Ven Te Chow Hydrosystems Laboratory. The range of flows tested 
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spanned from the laminar to the turbulent regimes. This way, the existing studies could be 

complemented and their conclusions revisited and improved. With all the experimental results, a 

comprehensive analysis was performed, in a similar fashion to the methodology introduced by 

Jensen (1988). These results, together with existing data from previous researchers on the topic, 

contributed to build a more complete theory on the characteristics and behavior of the oscillatory 

boundary layer. 

 

Additionally, the findings of this work are very relevant for the sediment transport phenomenon. 

Significant implications for initiation of motion, development of bedforms, sediment 

entrainment, and sediment fluxes inside the oscillatory boundary layer can be derived from the 

results of this work. 

 

Also, the results obtained will be useful to compare and validate numerical simulations, like the 

DNS work of Spalart and Baldwin (1987), Vittori and Verzicco (1998), Mazzuoli et al. (2011), 

Pedocchi et al. (2011) and Ozdemir et al. (2014). 
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CHAPTER 2 

LITERATURE REVIEW:                                           
OSCILLATORY BOUNDARY LAYERS 

2.1 General concepts about oscillatory flows 

An oscillatory flow is a particular type of unsteady flow in which the mean flow repeats itself for 

every cycle with a constant periodicity, given by the period of the oscillation (T). In a purely 

oscillatory flow, fluid particles only travel along one direction back and forth, such that the 

average fluid velocities in the other two orthogonal directions are zero. The sketch in Figure 2 

shows the trajectory (x) and streamwise velocity (u) of a fluid particle in this type of flows, 

which can be represented by sinusoidal expressions of the form: 

 

( )sin ox a tω φ= ⋅ +         (1) 

 

( ) ( )'cos sino ou a t a tω ω φ ω ω φ= ⋅ + = ⋅ +      (2) 

 

where a is the amplitude of the oscillation, such that the particle would travel a distance 2a from 

side to side, ω is the angular frequency, given by ω = 2π / T  (in rad/s), T is the period of the 

oscillation (in s) and φo is a phase shift (in rad). 
 

      
Figure 2. Sketch of fluid particle trajectory (left) and fluid particle streamwise velocity (right) in a purely 

oscillatory flow. 
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In order to characterize these flows, it is common practice to use the wave Reynolds number 

(Rew) first given by Bagnold (1946). This number is defined in terms of the amplitude (a) and 

maximum velocity of the oscillation (umax), such that: 

 

maxRew
a u

ν
⋅=          (3) 

 

where ν is the kinematic viscosity of the fluid 
2length

time
⎡ ⎤
⎢ ⎥
⎣ ⎦

, and umax can be calculated as: 

 

max
2 au
T
π=          (4) 

 

 
Figure 3. Diagram of normalized wave friction factor (fw*), based on wave Reynolds number (Rew) and phase of the 

oscillation (ωt), showing the different flow regimes for oscillatory flows. Smooth wall. From Jensen 
(1988). 

 

w 
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Unlike steady flows, in unsteady flows the fluid is subject to changes in velocity over time. In 

the particular case of oscillatory flows, for every half-cycle the flow undergoes one acceleration 

stage and one deceleration stage, from zero velocity up to maximum streamwise velocity (umax) 

and back to zero. This implies that oscillatory flows have a different flow regime for every phase 

(ωt) in the cycle, thus, creating the possibility for laminar, turbulent and laminar-to-turbulent 

transitional conditions to coexist in sequence, which introduces a high degree of complexity in 

the analysis of such flows. This complex behavior can be visualized in Figure 3, adapted from 

Jensen (1988), showing the evolution in phase (ωt) of a characteristic parameter of the flow. For 

a given experiment (points of constant Rew) the regime within the experiment can change from 

laminar to transitional to turbulent conditions. 

 

2.2 The oscillatory boundary layer 

When a boundary or wall is found in the proximity of an oscillatory flow, then the flow begins to 

feel the effect of the wall and two distinct regions appear with different flow characteristics, 

namely, the outer inviscid region, far from the wall, where the oscillatory flow doesn’t feel the 

wall; and the boundary region or boundary layer, close to the wall, where viscosity effects are 

important (Figure 4). The velocity field outside the boundary layer is not affected by the 

presence of the wall and will only depend on the oscillation uout(ωt). Inside the boundary layer, 

the velocity field will be affected due to the friction with the wall and will depend both on the 

oscillation and the distance from the wall u(z,ωt). 

 

The direct consequence of the existence of the boundary layer is the appearance of shear and 

turbulence that propagates outward from the wall throughout the entire boundary layer up to the 

outer free-stream flow. This has been observed in both steady and unsteady flows (see Hino et 

al., 1983; Sumer et al., 1987; Jensen, 1988). 
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Figure 4. Sketch of the oscillatory boundary layer, showing velocity (u) and shear stress (τ) profiles for phase ωt = 
π/2 = 90º of the oscillation, and the definition of the thickness (δ) of the boundary layer for different 

authors. From Jensen (1988). 
 

In general, the shear stress (τ) in a turbulent flow can be expressed as in equation (5), where the 

first term represents the viscous contribution due to the vertical velocity gradient and the second 

term (known as Reynolds shear stress) represents the turbulent contribution due to the velocity 

fluctuations: 

 

''wu
z
u ρμτ −

∂
∂=         (5) 

 

where μ is the dynamic viscosity mass
length time
⎡ ⎤
⎢ ⎥⋅⎣ ⎦

, given by μ = ρν, and ρ is the fluid density. 

 

As turns out from the unsteadiness of the oscillatory flow, the shear stress is a time-dependent 

variable, changing its value for every phase (ωt) in the cycle. Particularly interesting is the value 

of the shear stress at the wall or bed shear stress (τb), which is the physical manifestation of the 

friction between fluid and wall, and is the primary force for the movement of bed sediments. 

z 
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Using the bed shear stress (τb), it is possible to define the shear velocity (u*) and the friction 

coefficient (Cf) (see Garcia, 2008): 

 
2
*b uτ ρ=          (6) 

 
2

b f outC uτ ρ=          (7) 

 

In wave boundary layers, the friction is usually characterized by the wave friction factor (fw), 

which is equivalent to the friction coefficient (fw = 2Cf), and from equations (6) and (7) can be 

defined as: 

 
2
*

21
2

w

out

uf
u

=          (8) 

 

For oscillatory boundary layers, since both u* and uout are phase-dependent variables, then the 

wave friction factor will also be dependent on phase fw(ωt). This friction is a consequence of the 

roughness of the wall, due to the existence of irregularities, protuberances or topographic 

features associated with the wall, the most common of which are usually sediment grains and 

bedforms. For the case of grain friction, the roughness height (k) is usually taken as the median 

size (D) of the sediment. Then, the roughness scale is usually taken as Nikuradse’s equivalent 

sand-grain roughness (ks), which varies between ks ≈ 1-5 D, depending on the authors, with a 

typical value of ks = 2.5D (Garcia, 2008). The findings of Kamphuis (1975) and Jensen (1988) 

for oscillatory boundary layers also agree with that value. 

 

However, the roughness character of the wall depends not only on the roughness height, but also 

on the flow conditions and the characteristics of the fluid, such that for a particular set of 

conditions, a flow may feel the wall as hydraulically smooth, rough or in transition. The 

dimensionless parameter that controls this character is known as the Reynolds shear number or 

roughness Reynolds number (Re* or ks
+) and is obtained from Nikuradse’s equivalent roughness 

(ks) divided by the inner length scale of the boundary layer (ν/u*): 



 

 12

 

*

*

Re s
s

kk
u

ν
+= =         (9) 

 

Threshold values that define the character of the wall for oscillatory flows can be found in the 

literature (Kamphuis, 1975) and are defined in a similar way as for unidirectional steady flows 

(Nezu and Nakagawa, 1993; see also Garcia, 2008): 

 

     Unidirectional flow        Oscillatory flow 

 Hydraulically smooth:          Re* < 5             Re* max < 15 

 Hydraulically in transition:   5 < Re* < 70     15 < Re* max < 200 

 Hydraulically rough:  70 < Re*   200 < Re* max 

 

Since the shear velocity (u*) varies with phase (ωt) over the cycle of the oscillatory flow, then 

the Reynolds shear number (Re*) is also a phase-dependent variable, and so the character of the 

wall roughness with respect to the flow would be constantly changing along the cycle. This fact 

introduces a high level of complexity for the analysis of rough walls in oscillatory boundary 

layers, as opposed to steady flows. 

 

This way, the combination of the three different flow regimes and the three different characters 

of the wall creates the possibility for 9 different behaviors of the boundary layer (Figure 5). 

These different behaviors can be found one by one for each flow condition in steady boundary 

layers, however, in unsteady conditions several of them may appear in sequence along with the 

variation of the flow condition. In the particular case of the oscillatory boundary layer, if the 

flow regime is fully turbulent and the character of the wall is fully rough for the phase of 

maximum velocity, then it is guaranteed that the flow will go through transitional and laminar 

regimes as it tends to zero velocity close to the flow reversal phases, and in doing so, the 

character of the wall will also evolve through the transitional and smooth regimes even for a 

small amount of time. 
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Figure 5. Conceptual diagram of possible boundary layer scenarios according to flow regime and wall roughness 

character. 
 

 
Figure 6. Oscillatory flow regimes diagram. From Kamphuis (1975). 
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Kamphuis (1975) was able to characterize all these combinations of flow regime and wall 

roughness character and plotted them into a diagram (Figure 6) showing relative roughness (a/ks) 

against wave Reynolds number (Rew). This diagram was made considering the Rew calculated 

with the maximum streamwise velocity of the outer flow (uout_max), which is typically the velocity 

happening at phase ωt = 90º. Three main regions stand out, namely the laminar-smooth, the 

turbulent-smooth and the turbulent-rough. Then transition regions occur between those three, 

mainly the laminar-to-turbulent transition for smooth cases, and a large region covering the 

smooth-to-rough transition for both laminar and turbulent regimes. 

 

2.3 Governing equations 

The oscillatory boundary layer is, in general, a three-dimensional hydrodynamic process, which 

can be analyzed starting from the general Navier-Stokes equations and applying the particular 

boundary conditions of the problem. For the sake of clarity, the 2D equations of the oscillatory 

boundary layer are presented herein, with x the streamwise direction and z the vertical direction. 

 

Conservation of momentum equations: 

 

x-dir: 
2 2

2 2 x
u u u p u uu w g
t x z x x z

ρ μ ρ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + = − + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
    (10) 

z-dir: 
2 2

2 2 z
w w w p w wu w g
t x z z x z

ρ μ ρ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + = − + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
   (11) 

 

Continuity equation: 

 

 0u w
t x z
ρ ρ ρ∂ ∂ ∂+ + =

∂ ∂ ∂
        (12) 

 

From the general equations, the Reynolds average procedure can be applied to separate between 

mean and fluctuating quantities ( 'ϕ ϕ ϕ= + ). Also, several assumptions about the oscillatory 

flow are made: 
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 - Incompressible flow:  ρ = constant 

 - Horizontal bed:   gx = 0;  gz = -g 

 - Oscillation in x-direction:  0iu
x

∂ =
∂

 (mean velocities constant in x-dir) 

 

Then, resolving for the mean flow, from the continuity equation it results that: 

 

 0w
z

∂ =
∂

         (13) 

 

Which means that w  is constant in z-dir, but since at the wall it has to be zero, then the constant 

is zero: 

 

 0w =           (14) 

 

And the conservation of momentum equations result as follows: 

 

x-dir: 1 1 ' 'u p u u w
t x z z

μ ρ
ρ ρ

∂ ∂ ∂ ∂⎛ ⎞= − + −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
      (15) 

z-dir: ( )1 10 ' 'p w w g
z z

ρ
ρ ρ

∂ ∂= − + − −
∂ ∂

      (16) 

 

Now, taking into account that the external forcing of the oscillatory flow is the pressure gradient, 

which generates the sinusoidal velocity field: 

 

1outu p
t xρ

∂ ∂= −
∂ ∂

        (17) 

 

_ maxsin( ) sin( )out outu a t u tω ω ω= =       (18) 
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And, also, taking into account the definition of shear stress (τ): 

 

' 'u u w
z

τ μ ρ∂= −
∂

        (19) 

 

Then, we obtain the equation that describes the mean flow of the oscillatory boundary layer: 

 

x-dir: ( )outu u
t z

τ
ρ

∂ − ⎛ ⎞∂= ⎜ ⎟∂ ∂ ⎝ ⎠
        (20) 

 

It is also worth noting that, from the analysis of the z-dir equation, it turns out that the pressure 

variation in the vertical is not hydrostatic, since a deviatory term remains, related to the 

turbulence in the vertical velocity component (w’). Jensen (1988) also realized about this fact, 

but didn’t explore any further through his experiments: 

 

z-dir: 
2'p wg

z z
ρ
⎛ ⎞∂ ∂= − +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

        (21) 

 

2.4 The laminar regime: analytical solution to the equations 

For the particular case where no turbulence is considered, the governing equations of the 

oscillatory boundary layer can be solved analytically, giving as a result the solution for the 

laminar oscillatory boundary layer. This solution has been known for many years and is usually 

called “Stokes second problem” (Stokes, 1845). 

 

In the laminar case, all turbulence terms are neglected, and consequently the shear stress only has 

the viscous component, so from equation (19) we obtain: 

 

u
z

τ μ ∂=
∂

         (22) 
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Starting from equation (20) and now using (22) for the shear stress, the following equation is 

obtained: 

 

 
2

2

( )outu u u
t z

ν∂ − ∂=
∂ ∂

        (23) 

 

where the oscillation is given by _ max sin( )out outu u tω= , as before, and the averaged symbols are 

not needed any more since no turbulence is considered for the laminar soluton. 

 

A solution for equation (23) can be obtained analytically for the streamwise velocity field inside 

the laminar boundary layer, resulting: 

 

 ( )_ max sin( ) sin( )sz
out su u t e t zδω ω δ−= − −      (24) 

 

where δs is called the “Stokes’ length” and is defined as 2sδ ν ω= . This parameter is 

proportional to the thickness of the laminar boundary layer. This solution can be evaluated for 

different phases (ωt) and distance from the wall (z) to obtain the distribution of velocities in the 

cycle (Figure 7). 

 

Particularly interesting is the solution for the shear stress in the laminar regime, which can be 

obtained from equations (22) and (24). After some trigonometric manipulation, the following 

expression is obtained (see also Figure 8): 

 

 
2

_ max sin( 4)
Re

sout z
s

w

u
e t zδτ ρ ω δ π−= − +      (25) 
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OSCILLATORY BOUNDARY LAYER - LAMINAR REGIME
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Figure 7. Plot of analytical solution of the flow velocity inside the laminar oscillatory boundary layer for one cycle. 
 

OSCILLATORY BOUNDARY LAYER - LAMINAR REGIME
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Figure 8. Plot of analytical solution of the shear stress inside the laminar oscillatory boundary layer for one cycle. 
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Then, from equation (25) the bed shear stress can be obtained for the case when z = 0, which 

gives the following expression: 

 

 
2

_ max sin( 4)
Re

out
b

w

u
tτ ρ ω π= +        (26) 

 

In that equation, the characteristic π/4 or 45º phase lead of the bed shear stress with respect to the 

outer flow velocity is clearly observed (see also Figure 9). 

 

OSCILLATORY BOUNDARY LAYER - LAMINAR REGIME
Analytical solution - Bed shear stress
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Figure 9. Plot of analytical solution of the bed shear stress and outer flow velocity for the laminar oscillatory 

boundary layer, showing a 45º phase lead. 
 

2.5 The turbulent regime 

In the turbulent regime, the governing equations of the oscillatory boundary layer can’t be solved 

analytically as in the laminar regime. Approximated solutions have been proposed in the 

literature, being Fredsoe (1984) among the most widely used. However, an experimental 
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approach is still needed to understand the complex processes taking place in the turbulent 

oscillatory boundary layer. 

 

As mentioned before, due to the particular nature of oscillatory flows, the turbulent oscillatory 

boundary layer develops and vanishes for every half-cycle due to the flow reversal. In addition, 

since the instantaneous flow regime changes for each phase, close to the wall, the boundary layer 

evolves accordingly, and some particular features characteristic of turbulent oscillatory flows 

appear. 

 

2.5.1 Mean flow velocity 

The streamwise flow velocity (u) inside the boundary layer shows a phase lead and larger peak 

value with respect to the outer flow. This behavior is expected from the analytical solution of the 

laminar boundary layer and has also been observed by many authors (Bagnold, 1946; Jonsson, 

1980; Hino et al., 1983; Sleath, 1987; Jensen, 1988; Fredsoe et al., 1993; Sumer et al., 1993). 

See also Figure 10. 

 

  
Figure 10. Ensemble-averaged profiles of streamwise velocity (u) of a turbulent oscillatory flow for one half-cycle, 

showing the accelerating stage (left) and the decelerating stage (right). Smooth bed. Rew = 6x106. From 
Jensen (1988). 
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A logarithmic region exists for the phases where the flow inside the boundary layer has reached a 

fully developed turbulent state, typically far from the flow reversal (Hino et al., 1983; Jensen, 

1988), and it is more pronounced for larger wave Reynolds numbers (Rew) (Sleath, 1987). See 

Figure 11. 

 

 
Figure 11. Ensemble-averaged profiles of streamwise velocity (u) for a turbulent oscillatory boundary layer, showing 

the existence of a logarithmic region for the phases in which the boundary layer is fully developed 
turbulent. Vertical axis in wall units (dimensionless) in semi-log scale. Smooth bed. Rew = 6x106. From 

Jensen (1988). 
 

2.5.2 Boundary layer and viscous sublayer 

Similarly to the steady boundary layer, the streamwise fluid velocity at the wall is zero (u|z=0 = 0, 

i.e. no-slip condition), and a boundary layer develops up to some distance from the wall, with the 

existence of a viscous sublayer in the inner portion of it (Hino et al., 1983; Jensen, 1988). 

 

The thickness of the boundary layer (δ) grows slowly during the acceleration stage, and then 

abruptly expands during the deceleration stage (Hino et al., 1983; Jensen, 1988). On the 

contrary, the thickness of the viscous sublayer (δv) grows steadily during the acceleration stage, 

and then decreases suddenly with the generation of high turbulence about the peak flow, and 

becomes very thin (Hino et al., 1983). See also Figure 12. 
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Figure 12. Evolution of boundary layer thickness (denoted δ) and viscous sublayer thickness (denoted δ*) over one 
half-cycle in a turbulent oscillatory flow. Smooth bed. Rew = 3x105. From Hino et al. (1983). 

 

The boundary layer thickness varies with the wave Reynolds number (Rew) of the oscillatory 

flow. As Rew gets larger, the relative thickness of the oscillatory boundary layer (δ/a) gets 

smaller, according to Jensen (1988). It could be taken as if faster flows (for the same amplitude 

a) tend to compress the boundary layer and confine it close to the wall. This behavior is similar 

to the one observed in steady boundary-layer flows (Schlichting, 1979). See Figure 13. 

 

 

Figure 13. Variation of relative boundary layer thickness (δ/a) with wave Reynolds number (Rew). Values of δ taken 
at phase ωt = π/2 = 90º. Smooth bed. 1: Laminar solution; 2: Fredsoe’s (1984) theoretical solution. From 

Jensen (1988). 
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The presence of wall roughness (ks) also affects the thickness of the oscillatory boundary layer, 

such that δ/a grows as the relative roughness (a/ks) decreases (absolute roughness increase) 

(Jensen, 1988). This effect can be explained from the increase in turbulence that takes places due 

to the increased roughness, which promotes the transfer of momentum to the upper layers, thus 

propagating the effect of the wall higher into the flow. See Figure 14. 

 

 

Figure 14. Variation of relative boundary layer thickness (δ/a) with roughness (ks). Values of δ taken at phase ωt = 
π/2 = 90º. Solid lines: Fredsoe’s (1984) theoretical solution. From Jensen (1988). 

 

2.5.3 Bed shear stress 

Shear stresses in an oscillatory flow change with the phase (ωt) and so does the wall shear stress. 

For every half-cycle there is a peak of wall shear stress. According to Hino et al. (1983), the 

magnitude of the peak is a combination of the viscous and the turbulent terms, respectively. See 

Figure 15. 

 

In addition, the peak of wall shear stresses (τb_max) happens at a different phase than the peak 

velocity of the outer flow (uout_max). This effect is usually known as the “phase lead” of the 

oscillatory boundary layer because typically τb_max happens in advance of uout_max. However, it is 

possible that it may not always be the case and that τb_max may happen after uout_max (causing a 

phase lag instead) depending on Rew. This effect was observed by Jensen (1988) and is shown in 
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Figure 16, however it was not clear what was causing this effect and under what range of Rew 

conditions it may happen. 

 

 

Figure 15. Evolution of wall shear stress (denoted τw) over one half-cycle in an oscillatory flow. Smooth bed. Rew = 
3x105. From Hino et al. (1983). 

 

Jensen (1988) summarized this effect in a plot relating the phase lead to Rew (Figure 17). He 

showed how the phase lead varies with Rew, with a value of π/4 or 45º for low Rew (laminar 

regime) and decreasing through the transition regime down to about π/32 or 6º for the turbulent 

regime. It must be pointed out that the value of 45º for the laminar regime was predicted by the 

analytical solution of the laminar boundary layer. Other authors (Hino et al., 1983) have 

provided experimental evidence for this effect as well; however, they showed a phase lag 

instead, such that the peak of wall shear stress occurs after the peak of outer velocity (see Figure 

15). A more detailed investigation is required on this matter, since the direction of the phase 

difference is contradictory based on the literature. From the experiments by Jensen (1988) it may 

be argued that this variability may be related to the transition regime of the oscillatory boundary 

layer. 
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Figure 16. Evolution of normalized wall shear stress over one half-cycle in an oscillatory flow, for different Rew. 

Smooth bed. From Jensen (1988). 
 

 

Figure 17. Variation of phase lead of peak wall shear stress (denoted φ) with wave Reynolds number (Rew). Smooth 
bed. 1: Laminar solution. 3: Fredsoe’s (1984) theoretical solution. From Jensen (1988). 
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Also, Jensen (1988) showed how the phase lead of peak wall shear stress changes with the 

roughness of the wall (Figure 18). Although more data would be desired, a general tendency can 

be observed, in which the phase lead becomes larger as the wall gets more rough, assuming that 

all experiments reported by Jensen (1988) in Figure 18 correspond to the turbulent regime. The 

tendency in that figure leans toward the value for smooth bed observed in Figure 17 for the 

turbulent regime. Later, Pedocchi and Garcia (2009) extended this analysis using more data 

compiled from several authors, showing the phase lead in the smooth-to-rough transition for the 

turbulent regime. 

 

 

Figure 18. Variation of phase lead of peak wall shear stress (φ) with relative roughness (a/ks). From Jensen (1988). 
 

2.5.4 Wave friction factor 

Kamphuis (1975) provided a friction factor diagram for oscillatory flows, similar to Nikuradse’s 

or Moody’s diagrams for unidirectional flows. In that diagram (Figure 19) the wave friction 

factor (fw) was calculated using uout_max and the maximum shear velocity of the cycle (u* max). It 

must be noted that, although uout_max occurs at ωt = 90º, that is not necessarily the case for u* max , 

which typically occurs at a different phase in the cycle depending on Rew, as will be shown later 

in the results. 
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Figure 19. Wave friction factor diagram. From Kamphuis (1975). 

 

 
Figure 20. Evolution of wave friction factor (fw) with wave Reynolds number (Rew) for smooth bed. Lines: 1- 

laminar solution, 2- DNS from Spalart and Baldwin (1987), 3- Fredsoe (1984) theoretical solution. 
Symbols: dots -Kamphuis (1975), triangle - Hino et al. (1983), crosses - Sleath (1987) with 0.2 mm sand, 

hollow circles - Jensen (1988). From Jensen (1988). 
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Several years later, Jensen (1988) calculated fw for his experiments and ploted the results in a 

similar diagram, but only for smooth bed (Figure 20). He also included data from Hino et al. 

(1983), Spalart and Baldwin (1987) and Sleath (1987), finding good agreement in the laminar 

and turbulent regimes. However, there was some dispersion in the data for the transition regime. 

More recently, Pedocchi and Garcia (2009) presented a compilation of experimental data from 

previous studies found in the literature and proposed an empirical expression to calculate the 

wave friction factor for the smooth-to-rough turbulent regime. 
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CHAPTER 3 

RESEARCH GOALS 

3.1 Issues identified from literature review 

From the literature review, an important knowledge gap was found for the transition regime of 

the oscillatory boundary layer, for which very little experimental data is available. This is a 

complex regime, since flow characteristics change rapidly in a short range of Rew. However, 

many geophysical flows of engineering interest are found to belong to the transition regime, so a 

deeper understanding of the flow behaviour in this regime is necessary. 

 

In the particular case of smooth bed, only Hino et al. (1983), Jensen (1988) and Carstensen et al. 

(2010) reported experiments in the transition regime. Hino’s data was obtained from one 

experiment only and using air as fluid, Jensen’s measurements in the transition regime didn’t 

include velocity data, only bed shear stress, while Carstensen’s measurements were more 

focused on flow visualization. Also, most of the measurements reported in the literature were 

obtained for two velocity components only (typically u and w), which limited the ability to 

achieve a complete understanding of the turbulence characteristics of the flow. This situation 

evidenced the lack of a consistent data set with 3D velocity measurements covering the whole 

transition regime in detail. 

 

Furthermore, some contradictory results have been reported in the literature by different authors 

regarding the occurrence of the bed shear stress peak in the transition regime. In some 

circumstances, this peak happens in advance of the outer flow velocity maximum (known as 

phase lead), while in others the peak happens after the outer flow velocity maximum (known as 

phase lag). The exact circumstances for either condition to occur are not clear in the literature, 

and so a more detailed set of experiments with time-resolved velocity measurements is necessary 

to understand this effect. 
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Another important characteristic of the transition regime is the appearance of turbulence as Rew 

increases from the laminar regime to the fully turbulent regime. How turbulence develops in this 

transition is not clearly understood yet. Visualization experiments like the ones from Carstensen 

et al. (2010) and numerical models have helped in this regard. However, detailed measurements 

of the velocity fluctuations and turbulent intensities as they grow for increasing Rew are still 

missing. Also, these types of measurements would help understand the contribution of turbulence 

to the changes observed in the mean velocity profiles and bed shear stresses between the laminar 

and turbulent regimes. 

 

Finally, very little attention is given in the literature to the viscous sublayer inside the oscillatory 

boundary layer. In the laminar regime a solution for the thickness of the viscous sublayer exists, 

given by Rayleigh (1911). Also, Hino et al. (1983) reported some values from their experiment 

in the transition regime. However, it is not clear whether or not a viscous sublayer exists in these 

flows and for what phases of the flow. The main reason for this lack of attention could be the 

lack of detailed measurements close to the bed with enough temporal and spatial resolution to 

capture the flow inside the viscous sublayer. 

 

3.2 Research questions 

Based on the isses identified from the literature review, the experimental investigation presented 

in this work was designed to provide answers to the following research questions, in the context 

of the transition regime of the oscillatory boundary layer with smooth bed: 

 

1- Understand the evolution of the mean flow characteristics of the oscillatory boundary layer as 

Rew increases along the transition regime. 

 

2- Understand the evolution of the turbulence characteristics of the oscillatory boundary layer as 

Rew increases along the transition regime. 

 

3- Explain the mechanism of bed shear stress generation and evolution along the oscillation 

cycle. 
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4- Clarify the occurrence of the bed shear stress peak during the oscillation cycle, and in 

particular whether it presents a phase lead or a phase lag with respect the outer flow velocity 

maximum. 

 

5- Explain the mechanism of turbulence formation and evolution along the oscillation cycle, and 

investigate the relation with bed shear stresses. 

 

6- Quantify the contribution of viscous shear stresses and turbulent shear stresses to the total 

shear stress along the oscillation cycle, and their effect on bed shear stress. 

 

7- Analyze whether a viscous sublayer exists in oscillatory flows, and if so, for what phases 

along the cycle and what would be the thickness. 

 

3.3 Experimental plan 

In order to answer those questions an experimental plan was designed based on the information 

available in the literature and some preliminary tests performed by the author. A summary of the 

nominal experimental conditions is shown in Table 1. 

 

T 2a u out_max Re w Bed D k s a /k s

Exp no. (s) (m) (m/s) (-) (-) (mm) (mm) (-)
1 10 0.500 0.157 3.9E+04 Fixed - - Smooth
2 10 0.800 0.251 1.0E+05 Fixed - - Smooth
3 10 1.000 0.314 1.6E+05 Fixed - - Smooth
4 10 1.200 0.377 2.3E+05 Fixed - - Smooth
5 10 1.300 0.408 2.7E+05 Fixed - - Smooth
6 10 1.400 0.440 3.1E+05 Fixed - - Smooth
7 10 1.600 0.503 4.0E+05 Fixed - - Smooth
8 10 1.800 0.565 5.1E+05 Fixed - - Smooth
9 10 2.100 0.660 6.9E+05 Fixed - - Smooth

10 10 2.500 0.785 9.8E+05 Fixed - - Smooth

Flow conditions Roughness conditions

 
Table 1. Nominal conditions for the experiments in this work. 
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The oscillatory boundary layer experiments in this work were designed to be carried out over a 

smooth bed, using water as fluid (kinematic viscosity, ν ≈ 10-6). The oscillation period (T) 

selected was 10 s, and the amplitude of the oscillation (2a) varied between 0.5 and 2.5 m. This 

resulted in a range of wave Reynolds numbers (Rew) from 4x104 to 1x106, extending from the 

laminar regime to the turbulent regime, covering the entire transition regime in detail. Ten 

experiments were planned in this range, uniformly spread around the center of the range to be 

able to capture the highly non-linear evolution of the boundary layer parameters along the 

transition. 

 

A plot of wave Reynolds number (Rew) against relative wall roughness (a/ks) showing the 

different regions characterizing the oscillatory boundary layer is shown in Figure 21. This plot 

was originally proposed by Kamphuis (1975), and then extended and improved by other authors. 

The ten experiments presented in this work are included in the smooth wall transition region in 

that plot (labeled “LOWST + LDV”). Also, previous experiments from the literature performed 

by Jonsson (1980), Hino et al. (1983), Sleath (1987) and Jensen (1988) are shown. A few of 

Jensen’s experiments covered this same region, however, only bed shear stress measurements 

were recorded. As it turns out, no other studies in the literature have reported before such a 

detailed experimental set of velocity measurements in this important region of the oscillatory 

boundary layer as the experiments presented in this work. 

 

Additionally, other experiments performed under different experimental conditions by the author 

(labeled “SOT + LDV”) and by the author with other collaborators (labeled “SOT + PIV”, see 

Mujal et al., 2014) are shown in the plot for the sake of completeness; however their results 

won’t be included in this work. 
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Figure 21. Plot of wave Reynolds number (Rew) against relative wall roughness (a/ks), showing previous experiments 

found in the literature and the experiments performed in this work. 
 

In order to achieve the high Rew values required, a unique experimental facility capable of high 

oscillatory flow speeds was used, as is the case of the Large Oscillatory Tunnel (LOWST) in the 

Ven Te Chow Hydrosystems Laboratory. Also, the use of a state-of-the-art 3D laser Doppler 

velocimetry (LDV) system allowed all three components of velocity to be measured along a 

vertical profile inside the boundary layer, with high spatial and temporal resolution. The 

combination of these factors made possible to obtain the highly-accurate and time-resolved 

measurements needed to be able to answer the research questions stated. 

 

From the velocity measurements several variables of interest were calculated for all the 

experiments. These variables provided insightful information about the mean flow and turbulent 

characteristics of the oscillatory boundary layer and are presented in the results, namely: 

 

- Mean flow velocity 

- Boundary layer thickness 

- Velocity fluctuations 
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- Turbulence intensities 

- Turbulent kinetic energy 

- Reynolds shear stress 

- Viscous shear stresses 

- Total shear stresses 

- Turbulence production 

- Eddy viscosity 

- Skewness of velocity fluctuations 

- Quadrant analysis: sweeps and ejections 

- Bed shear stress 

- Shear velocity 

- Wave friction factor 

- Viscous sublayer thickness 

 

3.4 Applicability of experiments to coastal environments 

The experiments performed can be representative of the conditions occurring in the field, at the 

bottom of the ocean, for multiple combinations of wave height and depth. Linear wave theory 

can be used to obtain an expression for the maximum horizontal water particle velocity near the 

bed (ub_max), which would be equivalent to the outer flow velocity in the oscillatory boundary 

layer (uout_max): 

 

 max
1

sinhb
Hu

T kd
π ⎡ ⎤= ⎢ ⎥⎣ ⎦

       (27) 

 

where H is the wave height, T is the wave period, d is depth, and k is the wave number such that 

k = 2π / L, where L is the wave length. This equation can be plotted (Figure 22) to obtain lines of 

constant T that relate ub_max with the relative depth (d/L), for a given ratio of relative wave height 

(H/d). 
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Figure 22. Near-bed maximum velocity (ub_max) as a function of relative depth (d/L), for each period (T), and for the 

particular cases of relative wave height H/d = 0.8 (a) and H/d = 0.2 (b). Linear wave theory is valid under 
the curves for each period, and within the limits given by the criteria specified. 

Valid 
region 

a 

Valid 
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In order for linear wave theory to hold valid, several criteria need to be satisfied: 

a) Breaking wave limit: specified by a maximum value of relative wave height, beyond which 

the wave is considered to start breaking: H/d < 0.8 

b) Wave steepness: specified by the ratio of wave height to wave length, such that H/L < 0.17 

c) Ursell number (Ursell, 1953): which established a ratio between relative wave height and 

relative water depth, such that: HL2 / d3 < 100 

d) Jonsson criterion (Jonsson, 1980): which is similar to the Ursell number, but less restrictive: 

HL / d2 < 20 

 

All these conditions make for a highly complex validity region with a three-dimensional shape in 

the ub_max - d/L plane. In Figure 22 the valid region is below the curves of constant T, and 

between the vertical lines corresponding to the Jonsson, Ursell and wave steepness criteria (in 

fact, the Ursell number is more restrictive than Jonsson’s criterion, and so the latter doesn’t play 

a role). One of the extreme, but yet possible, conditions where linear theory is still valid happens 

at the threshold of all these criteria. In this regard, Figure 22a has been created for the case when 

H/d = 0.8, resulting that from Jonsson d/L > 0.04, from Ursell d/L > 0.09 and from wave 

steepness d/L < 0.21. If a more common, less extreme, relative wave height is used, such as H/d 

= 0.2, the values of ub_max for each T curve are reduced, while the limits become wider (Figure 

22b). 

 

Rearranging equation (27), a dimensionless expression can be obtained that relates ub_max with 

the relative depth (d/L): 

 

 
( ) ( )

max

sinh 2
bu

H T d L
π
π

=        (28) 

 

This equation can be plotted (Figure 23), showing the collapse of all the lines of constant T into a 

single line, which is also independent of the relative wave height parameter H/d. The criteria for 

the limits are still dependent on H/d though. 
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Figure 23. Dimensionless near-bed maximum velocity (ub_max / (H/T)) as a function of relative depth (d/L), for any 

period (T). Limits are shown for the particular case of relative wave height H/d = 0.8. Linear wave theory is 
valid at the T curve, and within the limits given by the criteria specified. 

 

From this analysis, a more practical plot can be constructed in which the reader can quickly find 

the combination of wave height (H) and water depth (d) that produce a particular near-bed 

velocity condition. For that purpose, equation (28) was used in combination with the dispersion 

relation, which relates water depth with wave length and period: 

 

 tanh( )gk kdω =         (29) 

 

where ω is the angular frequency, such that ω = 2π / T, and g is the acceleration of gravity. Due 

to the implicit nature of the two equations, there is no explicit solution, so they need to be solved 

numerically. Figure 24 shows wave height (H) as a function of depth (d), for different values of 

ub_max (all with dimensions), for a wave period of T = 10 s. Validity limits are also shown, 

corresponding to each one of the threshold values mentioned before. With this plot it is possible 

Valid 
region 
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to find all the possible combinations of H and d that produce a particular ub_max at the bottom of 

the ocean. 
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Figure 24. Validity of experiments within linear wave theory. Lines of constant near-bed maximum velocity (ub_max) 

as a function of wave height (H) and depth (d) in the ocean, for a period of T = 10 s. Shaded region 
indicates range where the experimental results of this work apply. 

 

The experiments performed in this work stay within a range of maximum oscillatory velocities of 

uout_max = 0.157 - 0.785 m/s for an oscillation period of T = 10 s. These conditions can be found 

in the ocean for many different combinations of depth (d) and wave height (H), as shown in 

Figure 24. This way, one particular experiment is useful to represent the oscillatory boundary 

layer of any combination of H and d along its corresponding line of constant near-bed maximum 

velocity (ub_max). For example, a condition with depth d = 9 m and waves of height H = 1 m, will 

produce the same ub_max in the bottom of the ocean as a condition with depth d = 78 m and waves 

of height H = 18 m. Note that the plot will change for a different period of oscillation (T). This 

plot is only valid within the limits of linear wave theory, indicated by the limit curves. A 
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combination of H and d that falls outside of the limit curves will not be properly reproduced by 

the experiments. 
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CHAPTER 4 

EXPERIMENTAL FACILITIES AND INSTRUMENTATION 

4.1 Large Oscillatory Water-Sediment Tunnel (LOWST) 

4.1.1 General characteristics 

The Large Oscillatory Water-Sediment Tunnel (LOWST) in the Ven Te Chow Hydrosystems 

Laboratory was designed to study flow characteristics and sediment transport processes under 

controlled wave-current flows similar to the ones found in the bottom boundary layer of the 

ocean. 

 

 
Figure 25. Sketch of the LOWST. From Pedocchi (2009). 

 

The tunnel was made by Engineering Laboratory Design Inc. and MTS Systems Corporation in 

2002. The walls are built on a composite sandwich construction of glass reinforced polyester 

with a wooden core, and structural support is provided by steel beams. Numerous Plexiglas® 

windows along the side and top walls allow access for instrumentation and for visual 

observation. Three access hatches on the top allow a person to get in for the preparation of 
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experiments. The test section is 12 m long and the internal dimensions of the cross-section are 

0.8 m wide by 1.2 m high. The tunnel is ready to contain sediment in its bottom half (0.6 m) for 

movable bed experiments (Figure 26). 

 

 
Figure 26. Detail showing a representative cross-section of the LOWST (dimensions in m). From Pedocchi (2009). 
 

The oscillatory motion of the water is driven by three pistons that run inside 0.78 m diameter 

cylinders with a maximum stroke of 1.37 m. At the opposite end of the tunnel, a 1.0 m by 2.0 m 

holding tank open to the atmosphere acts as a passive receiver for the water displaced by the 

pistons. Three servo motors, controlled by a computer, drive the pistons using a screw-gear 

system. The facility also has two centrifugal pumps that allow for the superposition of a 

unidirectional current to the oscillatory motion through a pipe recirculation system, up to 0.5 

m/s. Flow straighteners and sediment traps are placed at both ends of the main test section. 

 

Thanks to its many access ports and transparent windows, different instruments can be used in 

the LOWST facility to perform various measurements of the physical processes of interest taking 

place inside. In particular, the tunnel is equipped with a few onboard instruments: an ultrasonic 

velocity profiler (UVP) and an acoustic Doppler velocimeter (ADV) for velocity measurements, 

a pencil beam sonar for bathymetric measurements, and a pressure transducer. A detailed 

description of these instruments can be found in Pedocchi (2009). However, they were not used 
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for this work. Instead, a laser Doppler velocimeter (LDV) was used to measure velocities from 

the outside of the flume, so that the flow was not affected by the instrument. 

 

 
Figure 27. General view of the LOWST and the LDV system at the Ven Te Chow Hydrosystems Laboratory, UIUC. 
 

4.1.2 Range of operation 

The LOWST can be operated for oscillatory flows only, unidirectional flows only or a 

combination of both. In the oscillatory flow configuration, the maximum amplitude of the 

oscillation in the test section is 2a = 4.1 m, and the maximum velocity is 2 m/s at a period of 

about T = 6.2 s. The maximum velocity is limited by the amplitude for the long period cases 

(according to the formula for a sinusoidal wave umax = 2πa / T), while for the short periods the 

maximum velocity is limited by the acceleration of the pistons. There is also an absolute speed 

limit of 2 m/s (see Figure 28). With these values, the maximum wave Reynolds number that 

could be tested in the LOWST is Rew ≈ 4x106. 
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Figure 28. Operational range of the LOWST for oscillatory flows, showing nominal and safe operation limit curves. 

The conditions used for the experiments presented in this work are also displayed. Lines of constant Rew are 
included for reference. 

 

However, these operational limits shouldn’t be reached in any circumstance, since damage could 

occur due to the extreme forces at play. In particular, the acceleration limit is the most critical 

since fast accelerations introduce very high pressure gradients that could compromise the 

structural integrity of the tunnel. On the contrary, the amplitude limit is not very critical, since it 

only represents a physical limitation due to the available stroke of the pistons. The velocity limit 

is mainly due to the machinery used to move the pistons, and it is hardly ever reached. With 

these considerations in mind and from the experience acquired while using the LOWST, a more 

conservative set of limits is provided in Figure 28 to ensure safer operation and longer life of the 

facility. In this safer situation, the maximum velocity in the measurement section would be about 

1.3 m/s for a period of T = 8.4 s with amplitude 2a = 3.5 m, and the maximum wave Reynolds 
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number would be Rew ≈ 2x106. All the experiments performed in this work fall inside the safe 

operation limit of the LOWST. 

 

4.2 Laser Doppler velocimetry (LDV) system 

Warning: when using LDV systems, safety precautions must be taken to avoid personal 

injury to the eyes or skin due to the high intensity of the laser light. 

 

4.2.1 Overview of the LDV technique 

The following is only an overview of the LDV technique. More information can be found in the 

following references: Albrecht et al. (2003), Tropea et al. (2007), TSI Inc. (2005). 

 

4.2.1.1 Introduction 

Laser Doppler Velocimetry (LDV) is a technique used to measure instantaneous velocity at a 

point in fluid flows. It is commonly used for velocity measurements in water and air flows, fuel 

injection and spray research, and even in the biomedical field for blood flow. LDV is particularly 

suited for the measurement of fast moving turbulent flows, and for flow measurements near the 

boundaries. Also, the fact that it is an optical instrument allows for non-intrusive measurements, 

thus avoiding any disturbances to the flow. Availability of optical access to the flume is required, 

as well as taking into account possible refraction issues occurring when measuring through 

windows. Furthermore, it provides very fine spatial resolution (on the order of 0.1 mm), which 

allows the measurement of velocities very close to the boundaries, and in particular to the bed, 

which is essential to resolve the velocity gradients and profiles from which shear stress 

calculations are made. Due to its high temporal resolution (upwards of 10,000 Hz, provided that 

appropriate seeding is present), the high frequencies of the flow are also preserved, thus allowing 

for the analysis of turbulent characteristics, especially within the boundary layer. In addition, the 

fact that its measurement principle is based on geometric considerations results in very accurate 

velocities, with no need for calibration, since the optical arrangement is factory-set. 
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Measurements performed with LDV are single-point time series of instantaneous flow velocity. 

In order to obtain measurements at different points, the measurement volume needs to be 

traversed inside the flume, which makes this technique very time-consuming. After a complete 

set is obtained, the data can be analyzed to obtain different flow quantities and statistics. A multi-

component LDV system can measure the mean velocity field and the entire turbulence stress 

tensor at a point. However, spatial correlations or tracking of flow structures is not typically 

possible with LDV since multiple points are not measured all at the same time. 

 

 
Figure 29. LDV measurements using a 5-beam probe. 

 

4.2.1.2 Working principle 

Typical LDV systems consist of a laser, a set of optical components, a probe, a photo detector, 

and processing electronics. The measurement principle is based on the Doppler effect related to 

the frequencies of the signals produced by seeding particles when crossing the measurement 

volume. The measurement volume is located at the intersection of a pair of laser beams, where 

they interfere with each other, creating a fringe pattern (Figure 30). The spacing of these fringes 

(Δs) is accurately known from the optical properties of the system. Small seeding particles in the 

fluid cross those fringes, scattering the laser light with a particular frequency. The scattered light 

is collected by the probe and then analyzed by the electronics to obtain that frequency (f = 1/Δt). 



 

 46

From the spacing of the fringes and the frequency of the scattered light, the particle velocity 

perpendicular to the fringes is computed as V = Δs / Δt. By using multiple pairs of beams at the 

same time, all components of velocity can be measured at a point. 

 

~ 1 mm

~ 0.1 mm

Δs

V

     

Intensity

time

Δt

 
Figure 30. Sketch of the LDV measurement volume and signal generated by the seeding particles, from which 

velocity is computed. 
 

4.2.1.3 Seeding particles 

LDV experiments need the addition of seed particles to the fluid to enhance the light scattering 

properties and achieve greater data rates. Common types of seeding used in LDV systems are 

Hollow Glass Spheres (HGS), with average density 1.1 g/cm3 and mean diameter 11 μm, and 

Silver-coated Hollow Glass Spheres (S-HGS), with average density of 1.7 g/cm3 and mean 

diameter of 14 μm (Potter Industries Inc., 2008). In order for seeding particles to be suitable for 

LDV measurements, they must have good light reflection properties and, at the same time, they 

must be able to follow the flow at all turbulent time scales present. In addition, they must be of a 

suitable size for the optics configuration of the LDV. Ideal candidates for liquid flows are usually 

neutrally buoyant particles (or close), that are big enough to generate large intensity backscatter 

signals, and small enough to meet the turbulence criteria. 

 

 

V = Δs / Δt
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Figure 31. Hollow glass spheres (HGS) as seen under the microscope. 

 

An optimum concentration of seeding in the flume can be found for which the LDV data rate is 

maximized. In this regard, Mier and Garcia (2009) performed a series of experiments in a water 

tank using HGS and S-HGS to determine the seeding concentration that results in the maximum 

possible data rate (samples per second). They observed that the data rate increases linearly with 

seeding concentration to a peak value, beyond which, additional seeding causes the data rate to 

decay exponentially. Indeed, linear growth in data rate is expected when seeding is added since 

more individual particles cross the measurement volume, in agreement with Albrecht et al. 

(2003) and Tropea et al. (2007). However, when seeding concentration becomes too high, the 

medium becomes so turbid that both the incident laser light and the scattered reflections are 

attenuated as they travel through the medium, causing a decline in data rate. This is shown in 

Figure 32, which plots normalized data rate against a dimensionless number volume (Nv*) for the 

two types of spheres and for various laser beam path lengths. Nv* represents seeding 

concentration and is defined by: 

 

 * wdNv Nv eα= ⋅         (30) 

 

where Nv is the expected number of particles within the LDV measurement volume, dw is the 

distance the laser beams travel through the seeded medium from the flume wall to the 

100 μm 
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measurement volume (in m), and α is an attenuation coefficient (in m-1), which varies with 

seeding type. Mier and Garcia (2009) experimentally determined the values of α for their 

experiments as αHGS = 7.87 m-1 and αS-HGS = 5.75 m-1. 
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Figure 32. Experimental results of normalized LDV data rate for increasing seeding concentrations (Nv*) in a water 

tank, for two different seeding types (HGS and S-HGS) and four distances to the measurement volume 
inside the seeded medium (dw = 1, 5, 10, 20 cm). Adapted from Mier and García (2009). 

 

The work of Mier and Garcia (2009) reveals optimal data rates for values of Nv* in the range of 

0.4 to 0.5. This result is independent of seeding type, path length and the optical configuration of 

the probe since Nv* accounts for these parameters. Based on their results, they developed a 

relation to calculate the specific amount, in terms of mass of seeding particles (Mp) needed for a 

certain experiment involving LDV measurements: 

 

 10.45
w

p T
p d

m

VV
M

V eα

ρ
=

⋅
        (31) 

 

where ρp is the density of the seeding particles, V1 is the volume of one seeding particle (which 

can be obtained from the diameter assuming spherical shape), Vm is the LDV measurement 

volume and VT is the total volume of water in the flume. 
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4.2.1.4 Optical refraction 

Different lens combinations of the LDV probes allow for longer focal distance (F) in order to 

perform measurements at farther distances inside the flume. The optical probe usually sits 

outside of the flume (although there are some applications in which submersible probes are used) 

and the laser beams travel from the probe through air, through the flume’s window, and then 

through water until they cross each other, creating the measurement volume inside the flume. In 

order to take the measurements at the right location, the refraction of the beams when traveling 

through different media (air, window and water) needs to be taken into account using Snell’s 

law: 

 

 1 1 2 2sin sinn k n k⋅ = ⋅         (32) 

 

where n is the refractive index of each medium (air = 1, water = 1.33, glass = 1.52, Plexiglas® = 

1.49), and k is the angle of incidence of the beams with respect to the interface perpendicular. 

This way, a new corrected focal distance (F*) can be calculated. For the case when the probe axis 

is perpendicular to the window, the following equation can be used: 

 

 * tantan tan1 1
tan tan tan

ga a
g a

w w w

kk kF F d d
k k k

⎡ ⎤ ⎡ ⎤
= + − + −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
    (33) 

 

where d is the distance traveled in each medium (a = air, g = window, w = water) such that F* = 

da + dg + dw. 

 

An additional degree of complexity is associated with traversing an LDV measurement volume 

inside a flume (for instance, to obtain a velocity profile). When a probe is moved to a different 

location, the distances traveled by the beams through the different mediums may change, 

affecting the refracted focal distance (F*). For single-probe measurements this issue is quickly 

resolved by adjusting the traverse displacements to match the desired locations of the 

measurement volume inside the flume. However, when performing multi-component LDV 

measurements using two probes, the measurement volume of each probe may experience a 
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different displacement inside the flume, even if both probes are attached to the same traversing 

mechanism. A special set-up involving a refraction-correcting device can be used in these 

situations to compensate the distortions and maintain coincidence in all components (Booij, 

2003; Mier and Garcia, 2012). 

 

4.2.1.5 Measurement volume 

The LDV measurement volume has an ellipsoid shape, and its dimensions vary with the type of 

lens used. An average value of the diameter of the measurement volume is 0.1 mm and an 

average value of its length is about 1 mm, which results in a very small volume indeed (about 

0.01 mm3). Unlike other measurement techniques, the extremely small size of the measuring spot 

makes LDV an ideal candidate for the measurement of local instantaneous velocities and 

characterization of flow turbulence. 

 

4.2.1.6 Transformation matrix 

Sometimes the directions of measured LDV velocity components ( 1V
r

, 2V
r

, 3V
r

) do not match the 

directions of the velocity components in the reference coordinate system (ur , vr , wr ). For example, 

when measuring close to the bed, it is convenient to tilt the probe forward a few degrees so that 

the LDV beams are able to reach the measurement volume inside the flume without interference 

from bed features. Other times, several probes may be used together at non-orthogonal angles in 

order to perform multi-component measurements. In such situations, a spatial transformation is 

required to project the measured velocity components from the instrument coordinate system into 

the reference coordinate system: 

 

 
1 1 1 1

2 2 2 2

3 3 3 3

x y z

x y z

x y z

V u m m m u
V M v m m m v
V w m m m w

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

     (34) 

 

where M is called the transformation matrix. To obtain the velocity components in the reference 

coordinate system, equation (34) must be resolved by inverting matrix M. It is important to 

remember that when the measurement volume is inside a different medium (such as water), the 
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angles of the measured velocity components ( 1V
r

, 2V
r

, 3V
r

) may be affected by refraction, and the 

refracted angles should be used in the transformation matrix. Examples of transformation 

matrices for different probe configurations can be found in TSI Inc. (2005). 

 

4.2.1.7 Data quality and uncertainty 

LDV systems require no calibration, although alignment of the beams is very important to obtain 

high quality measurements. Strictly speaking, the error associated with LDV measurements is 

typically very small, in the order of 1 % (Albrecht et al., 2003). However, other factors can also 

introduce error in LDV measurements, mainly the positioning of the measurement volume, 

seeding particles, and signal processing. Relative errors within ±2% for higher-order statistics 

and as low as ±0.3 % for the mean velocities are commonly reported when the measurements are 

compared with direct numerical simulations, like the experiments in open-channel flows by 

Niederschulte et al. (1990) or in pipe flows by Durst et al. (1995) among others. 

 

In LDV systems, however, there is need for proper tuning of the laser sub-system, beam 

alignment, careful coordinate positioning, optimization of electronics and software settings, and 

patient operation. In this regard, it must be said that maintaining proper operating procedures and 

high signal quality standards according to the manufacturer recommendations (see TSI Inc., 

2005) ensures low noise readings and high burst efficiencies, preserving the accuracy of the 

velocity measurements with little operator-dependent influence on the results. This quality 

usually comes at a cost, though, since the filtering process greatly reduces data rates. For most 

applications it is typically recommended that the LDV system be operated such that a “high” 

signal-to-noise ratio is achieved and the appropriate band-pass filter and burst threshold for each 

channel are selected so as to ensure the highest possible bursting efficiency at each location. 

Values of bursting efficiency greater than 90 % on average guarantee very good quality of the 

data collected. In addition, multi-component coincidence with a burst gate overlap of less than 

250 % is recommended to ensure good burst correlation between the velocity components. This 

will further ensure the high quality of the velocity measurements taken. 

 



 

 52

4.2.1.8 Laser safety 

Lasers used in LDV systems are typically classified as “class 4”, meaning very high intensity of 

light, and can cause severe damage to persons and other equipment. Hazards include mainly the 

following: 

 

• severe damage to skin and eye tissue can occur from direct exposure to the laser beams, as 

well as eye damage from specular or diffuse reflections. 

• electrical shock or electrocution could result from contact with the high voltage power 

supplies used in these systems. 

• lasers can create a fire when pointed towards or used near flammable materials. 

 

Safety of operation is a priority when using laser equipment. 

 

4.2.2 LDV system characteristics 

The LDV system used in this work was manufactured by TSI Inc. in 2007. It has an Ar-ion 6W 

multiline laser (model Stabilite 2017, from Spectra-Physics), that generates the light beam, 

which is directed towards a FiberLight™ multicolor beam separator box (model FBL-3). There, 

the main beam is split in two by means of a Bragg cell, which also introduces a slight frequency 

shift of 40 MHz on one of the resulting beams. After that, the multi-color spectrum of the beams 

is divided into each individual color component using a prism, from which only the three main 

colors are used (green, blue and violet). Each one of these colors corresponds to one velocity 

component, so that up to 3D velocity measurements can be performed. The individual color 

beams then get directed and focused into an optical fiber cable by means of a coupler (model 

CPL2001), carrying the light to a transceiver probe (model TR-60 series), which operates both as 

a transmitter of incident light and as a receiver of backscattered light. A photo detector module 

(model PDM 1000) is responsible for converting the bursts of backscattered light into electric 

analog signals for each one of the velocity components separately. Then, a signal processor 

(model FSA-3500) takes the analog bursts and converts them into velocity measurements, which 

are in turn sent to a computer and analyzed with the FlowSizer™ software from TSI Inc. A set of 
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fiber optic and electronic cables interconnect all these devices to transmit light and electric 

signals throughout the system (Figure 33). 

 

 
Figure 33. Main components of a typical LDV system (modified from TSI Inc., 2005). 

 

 
Figure 34. LDV system at the Ven Te Chow Hydrosystems Laboratory, UIUC. 
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The LDV system at the Ven Te Chow Hydrosystems Laboratory is equipped with three different 

probes: a 5-beam probe (model TR-360, see Figure 29), a 4-beam submersible probe (model TR-

260) and a 2-beam submersible probe (model TR-160, see Figure 35). Each probe can measure 

one velocity component for each pair of beams. The probes can be used simultaneously in 

different configurations to measure up to three components combined. The front lens of the 

probes determines the focal distance, which is the distance from the last surface of the lens to the 

measurement volume. These lenses can be interchanged to achieve the desired range of focal 

distance, according to the requirements of a particular experiment. The available lenses provide a 

range of focal distance from 250 mm to 600 mm in air. In water, the focal distance will increase 

due to refraction, the magnitude of which depends on the path length of the beams inside the 

water. 

 

 
Figure 35. 2-beam submersible probe at the Ven Te Chow Hydrosystems Laboratory, UIUC. 

 

The 5-beam probe (Figure 29), in reality has three color pairs (the central beam is shared by two 

colors) and can be used for three-component velocity measurements by itself; however the 

velocity components that share the middle beam won’t be orthogonal. In this case, when the 

transformation is applied to convert the measurements into the orthogonal components, large 

errors can be produced on the component along the probe axis when the transformation angle is 

smaller than about 20º. This translates into a limitation on the focal distance that this probe can 
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be used for 3D measurements, which for the standard lenses would be about 70 mm. This probe 

is still useful as a two-component probe, and in particular to measure velocities close to the 

boundaries thanks to the middle beam, which provides some extra clearance to avoid one of the 

beams from getting blocked before the measurement volume can get close to the boundary. In a 

regular probe where all four beams come from the sides, one of them will typically get blocked 

by the flume side wall before the measurement volume gets anywhere close to the bed, unless the 

probe is tilted. This characteristic was very important for the experiments performed in this work 

to be able to measure very close to the PVC bed of the LOWST. 

 

4.2.3 Traverse system 

The LDV probes were mounted on a 3-axis traverse, driven by a Microstep Controller (model C 

142-4.1, from Isel Automation). It is capable of providing a spatial resolution of 0.01 mm in all 3 

directions, proving essential for the fine geometric requirements needed inside the boundary 

layer. The displacement range of the traverse is about 50 cm in all three directions. 

 

 
Figure 36. 3-axis traverse system for LDV measurements. 
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The reference coordinate system used for the traverse is orthogonal, being x the coordinate along 

the tunnel (streamwise), y the coordinate across the tunnel (spanwise) and z the vertical 

coordinate (Figure 36). Careful manipulation of the traverse is required in order to accurately 

position the measurement volume at the desired locations inside the flume, taking into account 

the effect of refraction in the focal distance of the probes. For measurements close to the bottom, 

position accuracy is particularly important when setting up the instrument in the vertical 

coordinate (z). This is due to the large vertical gradients expected for the streamwise velocity 

component ( /u z∂ ∂ ) close to the bed. However, results are not so sensitive to small position 

inaccuracies in the other two directions (x and y). 

 

4.2.4 Laser enclosure 

Experiments in the Large Oscillatory Tunnel required the operation of the LDV system in an 

open area, so a safety enclosure was built for the purpose of protection to other persons and 

equipment working in the vicinity (Figure 37). 

 

 
Figure 37. Laser enclosure for the LDV system operating in the main lab. 
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CHAPTER 5 

METHODOLOGY 

5.1 LOWST set-up: flat and smooth bed 

For the experiments performed in this work, the LOWST was fitted with a fixed bed made of 

PVC all along the tunnel, resulting in a flat and smooth surface in contact with the flow. In order 

to build this set-up, first, a 22 cm layer of sand was removed from inside the LOWST all along 

the tunnel’s 12 m long measurement section. Then two layers of a fine-mesh geotextile material 

where applied to keep the remaining sand in place and avoid any upwards entrainment. Directly 

on top of them, a coarse-mesh geotextile layer followed, upon which the PVC bed structure was 

assembled. 

 

    
Figure 38. Pictures of the sand extraction process, by hand (left) and using a siphoning device (right). 
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Figure 39. Picture of the inside of LOWST after sand extraction, with the fine-mesh geotextile in place. 

 

 
Figure 40. Picture of the PVC bed structural cross-section. 
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The PVC bed cross-section was designed as a combination of I-beams across the width of the 

tunnel. The thickness of the supporting beams was 1.5 inches (38 mm) for the two in the center 

and 0.75 inches (19 mm) for the two on the sides. The thickness of the bottom plate was 0.25 

inches (6 mm) while the top plate was 0.5 inches (13 mm). This design created a strong yet 

slender cross-section, which was important to provide enough rigidity to ensure no deformation 

of the bed under the continuously up-down alternating pressure forces of the oscillatory flow. 

One additional condition affecting the design was that no holes or attachment points could be 

made in the composite structure of the LOWST, so the PVC bed had to be self-supporting and 

able to remain in place under the forces of the flow. 

 

The PVC bed was assembled in situ, in short sections due to the size limitations imposed by the 

tunnel hatches. First the bottom plate and vertical beams were installed. Then, concrete blocks 

were installed in the three spaces between the beams to provide additional weight to the 

structure. Finally, the top plates were screwed to the beams using countersunk flat-head screws. 

Continuity between plates was assured with a tongue-and-grove system. The plates extended 

from side to side and a neoprene rubber gasket was used in the contact with the walls to provide 

cushion and close any gaps. 

 

This design ensured that the surface of the bed exposed to the flow was flat and smooth. With the 

PVC structure in place, the bed elevation inside the tunnel was back to the nominal position (mid 

height), and the resulting cross-section available for the flow was 0.6 m high by 0.8 m wide. 
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Figure 41. Picture of the inside of LOWST during assembly of the PVC bed. Concrete blocks were placed in 

between the vertical beams to add weight. 
 

 
Figure 42. Picture of the inside of LOWST with the PVC bed in place. 
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5.2 LDV set-up: 3D measurements with 2 probes 

The laser Doppler velocimetry (LDV) system at the Ven Te Chow Hydrosystems Laboratory 

was used to perform the velocity measurements in this work. This technique is particularly suited 

for the objectives of this research since it offers very fine spatial resolution (on the order of 0.1 

mm) and very high temporal resolution (upwards of 10,000 Hz). In addition, the fact that it is an 

optical technique allows that the measurements be performed from the outside of the flume and, 

consequently, the flow is not disturbed by the presence of any type of probe, as opposed to 

mechanical or acoustic techniques. Based on these characteristics, the LDV technique is 

particularly suitable for the detailed measurement of velocities inside the boundary layer, 

providing very good and reliable results at the same time. 

 

    
Figure 43. 3D LDV setup in the LOWST showing the 2 probes mounted on the same traverse pointing into the flume 

(left). Detail of the special water-filled container used to correct refraction of the top probe (right). 
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A special LDV set-up was built involving 2 probes and a refraction-correcting device, which 

allowed to obtain measurements of all three velocity components (u, v, w) simultaneously (see 

also Mier and Garcia, 2012). The 5-beam probe was mounted on the side of the flume with the 

360 mm lens to measure two velocity components (u, w) at the centerline of the tunnel. The 2-

beam submersible probe was mounted on top of the flume with the 600 mm lens to measure one 

velocity component (v) at the same location simultaneously, effectively obtaining 3D 

measurements of velocity at each point. The two probes were mounted on the same traversing 

system at a nearly 90º configuration, each one accessing the flume through a different window. 

The top probe was submerged in a special water-filled container such that the focal distance of 

this probe didn’t change when moving the traverse vertically (see Figure 44). 

 

Water 
container

Submersible 
probe

l1

l3

Access 
window

y

z

x y

z

x
    

Figure 44. 3D LDV setup using two probes with a refraction correction container for vertical profiling. Schematic 
(left) and actual image (right) of the laser beams in the LOWST. From Mier and Garcia (2012). 

 

With this setup, after the system was aligned, the measurement volumes of both probes remained 

coincident when traversing along the z axis. Any reduction in distance traveled by the top probe 

beams inside the flume (l3) was compensated with an equivalent gain in distance traveled by the 

beams inside the external container (l1). Since the index of refraction of the internal and external 

mediums was the same (water), the refracted focal length of the top probe did not change, and 



 

 63

consequently the displacement of the measurement volume was the same as the displacement of 

the probe. Both probes were attached to the same traversing system, and their measurement 

volumes moved the same distance and remained coincident along the vertical profile. 

 

The 3 components measured where not orthogonal and a transformation was required during the 

data processing to convert them into the orthogonal reference system (x, y, z). The transformation 

matrix used for this configuration is shown in Figure 45. It shows the laser beams in the 3D LDV 

set-up with the side probe tilted forward χ degrees, and with half-angles of the beam pairs in air 

of α, β and γ, respectively. It is important to note that, since the measurement volume was inside 

a medium (water) different than air, the angles of the measured velocity components ( 1V
r

, 2V
r

, 3V
r

) 

were affected by refraction. Those refracted angles need to be used in the transformation matrix, 

according to the LDV theory (see also Mier and Garcia, 2012). 
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Top view:

Y

X
V1

Side view:

Y

Z

Transformation Matrix (side probe pitch χ):
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V v
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χ α χ α+ +⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
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1

3
2

χ∗
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Figure 45. Transformation matrix for the 3D LDV setup used in this work. The side probe is pitched forward χ 
degrees and the bottom beam of pair #1 comes from the center of the 5-beam probe. Refracted angles were 

used underwater and are indicated with an asterisk (*). 
 

For the experiments in this work, the side probe was slightly pitched forward to be able to move 

the measurement volume very close to the bed without interference from any possible obstacle 

along the beam path. The pitch angle in air was χ = 1º and the refracted angle in water was χ* = 

0.76º. The angles of the measured velocity components were determined by the optical properties 
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of the lenses, with values in air α = 1.98º, β = 3.95º, γ = 2.35º, and corrected for refraction in 

water α* = 1.5º, β* = 3.0º, γ* = 1.78º. With these values, the transformation matrix was: 

 

 
1

2

3

0 0.0394 0.9992
1 0 0
0 1 0

V u
V v
V w

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

      (35) 

 

The inverse matrix was also calculated, resulting: 

 

 
1

2

3

0 1 0
0 0 1

1.0008 0 0.0394

u V
v V
w V

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

      (36) 

 

The bottom of the flume was painted black with a matte finish paint to reduce reflections off of 

the PVC bed. This helped improve the quality of the measurements close to the bed in all 3 

components. In particular, for channel 3 (violet color, top probe), corresponding to the spanwise 

component (v), the measurement of velocities inside the boundary layer was quite challenging 

because of this issue. Due to the orientation of the probe, strong reflections were being generated 

from the PVC bed going back straight into the receiving lens of the probe. Without the black 

paint, the closest point to the bed with good measurements in this channel was at around 20 mm. 

After the black paint was applied, good measurements in this channel were possible as close as 2 

mm from the bed. This distance is still too much in order to resolve the complete boundary layer, 

but it is the best possible with the set-up used. A better solution would be to have this probe 

looking into the flume from the side, so that the beams were not perpendicular to the boundary of 

interest. However, due to window size limitations and angle requirements, that kind of 

arrangement was difficult in the LOWST. Only channels 1 and 2 (green and blue, respectively) 

were looking into the flume from the side, which allowed measurements as close as 0.2 mm from 

the bed for the streamwise and vertical velocity components. 

 

Position accuracy when using the traverse system during this work was within ± 0.05 mm in the 

vertical coordinate (z). In addition, a correction was applied to every vertical profile during data 
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processing to account for the uncertainty in the determination of the true z = 0 level of the bed. 

This correction helped minimize errors in the analysis, reducing the uncertainty in the vertical 

position to about ± 0.01 mm. 

 

5.3 Experimental procedure 

For each experiment a velocity profile was measured at the centerline of the tunnel in order to 

avoid any boundary effects coming from the side walls. From the results obtained for the 

boundary layer thickness of the bottom wall of the tunnel, it was clear that the boundary layer 

that could be generated at the side walls would never reach the centerline of the tunnel. Indeed, 

the maximum thickness of the boundary layer observed for the bottom was around 50 mm. For 

the side walls it could be assumed to be similar, since they are also smooth. Now considering the 

centerline is at 400 mm from the side walls, it is clear that it is unlikely that any effects coming 

from the side walls of the tunnel could have affected the measurements. This way the analysis of 

the boundary layer parameters can be reduced to a two-dimensional situation in the x-z plane, in 

which only the bottom wall (bed) needs to be considered. 

 

Velocity profiles were obtained by traversing the LDV probes along the vertical from z = 0.2 mm 

to z = 200 mm. Each profile included 54 points, which were unevenly distributed following a 

logarithmic series in order to obtain higher density of points close to the bottom. The first 12 

points were within a distance of 1 mm from the bed and a total of 28 points were in the first 10 

mm, which allowed capturing flow features with great detail inside the boundary layer and even 

inside the viscous sublayer in some cases. 

 

Time series of instantaneous flow velocities for the 3 components (u, v, w) were measured at 

each location. Measurements were recorded for up to 130 cycles at each location. A high number 

of cycles were needed in order to obtain good ensemble-averaged quantities during the analysis. 

This was especially important for the analysis of higher order statistics, such as root-mean-square 

(RMS) of velocity fluctuations and skewness of velocity fluctuations. 
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In addition to velocity measurements, also the temperature of the water was measured for each 

experiment. Readings were taken at the beginning and at the end of each experiment from an 

analog thermometer installed inside the LOWST. From these readings, the average temperature 

was computed for each experiment. From the temperature, then it was possible to calculate the 

density (ρ) and the kinematic viscosity (ν) of the water using the following common formulas 

(Thiesen et al., 1900): 

 
6

2

1.79 10
1 0.03368 0.00021Temp Temp

ν
−⋅=

+ ⋅ + ⋅
     (37) 
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1000 1
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Temp Temp
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ρ

⎛ ⎞+ −
= −⎜ ⎟
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   (38) 

 

where the temperature (Temp) is given in degrees Celsius (ºC), the kinematic viscosity (ν) is 

obtained in m2/s, and the density (ρ) is obtained in kg/m3. When calculating these parameters for 

the experiments in this work, differences with respect to the nominal values under standard 

conditions were small. However, even though they might be small, the calculation of these 

parameters is very important, since they play a key role in the analysis of the boundary layer 

variables. 

 

5.4 Data processing 

The outcome of the experiments in this work was a vast set of data sampled at different rates at 

several locations in the flume. In LDV measurements the data rate is not fixed, but rather 

variable depending on the seeding conditions and flow velocity, resulting in an uneven number 

of data points for the locations tested (Nezu and Rodi, 1986; Adrian and Yao, 1987; Mier and 

Garcia, 2009, 2011). The data needs to be re-sampled at even-time intervals after it is collected 

in order to avoid any possible velocity bias (Adrian and Yao, 1987; Mier and Garcia, 2013). 

Additionally, measurements in unsteady periodic flows require a synchronization signal to be 
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recorded together with the data so that meaningful statistics can be obtained from the analysis 

(Hino et al., 1983; Jensen et al., 1989; Mier and Garcia, 2013). 

 

In this regard, a systematic methodology for processing LDV data in unsteady periodic flows 

was developed as part of this work (see also Mier and Garcia, 2013). Given a particular LDV 

data set from measurements in an oscillatory flow, the goal was to develop a processing 

algorithm capable of dealing with the special characteristics of this type of data, including: cycle 

synchronization, filtering of bad data points, even-time re-sampling, coordinate transformation, 

quality checks, and generation of ensemble statistics; all in one single package and capable of 

processing all 3 velocity components at the same time. 

 

The processing algorithm was developed using MATLAB® and the computer code is provided in 

APPENDIX A. It was designed to process the datasets through several steps: 

 

1. First, a cycle synchronization routine was used to detect the time stamps in the data 

corresponding to the pulses of the synchronization trigger signal. After that, individual cycles 

were identified and stacked into ensembles. 

2. Then, bad data points were identified and removed using a custom routine that allowed user 

interaction through the filtering process. This included checking for complete cycles that 

could be out of sync, flocks of bad points generated from photodetector saturation, and spikes 

and other outliers. 

3. With the clean data, now it was possible to perform the re-sampling of the data at even-time 

intervals, with a specific data rate selected by the user. At this point some statistics of the 

data set are calculated to optimize the selection of an appropriate data rate without loosing or 

fabricating information. 

4. Until this step, the data was manipulated using ‘cell’ arrays in MATLAB® due to the 

existence of locations with different number of samples. However, after even-time sampling 

the ‘cell’ arrays were converted to 5-D matrices of velocity for each channel with dimensions 

(x, y, z, cycle, phase). 

5. Next, a coordinate transformation was applied to convert the velocity data into the Cartesian 

coordinate system with corresponding velocities (u, v, w). In this step it is important to note 
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that underwater distortion due to refraction was accounted for in the transformation matrix by 

using the refracted angles of the measurement directions. 

6. A correction in the vertical coordinate (z) of each profile was calculated to account for the 

uncertainty in the determination of the true z = 0 level during the measurements. 

7. Finally, a quality check was performed before the data was ready for analysis. Checks 

included calculating running average and percentage error plots at each measurement 

location. 

 

After processing the data, clean and tidy datasets were obtained for all 3 components of velocity 

(u, v, w) at all locations measured. These were used for the subsequent analysis of mean flow and 

turbulent characteristics of the oscillatory flow. 

 

5.5 Data analysis 

The measurements were analyzed in the context of unsteady periodic flows, which requires the 

use of ensemble averaging of cycles. This type of analysis assumes that the mean flow repeats 

itself for each cycle, as it is the case of oscillatory flows. This way, average information about 

the mean flow and turbulence characteristics could be obtained for every phase of the oscillation. 

However, the analysis of turbulent structures and spatial correlations was limited due to the fact 

that the LDV technique only provides single-point measurements one location at a time. 

 

From the clean data sets obtained after processing, several variables of interest were analyzed 

using the ensemble average method. The mathematical expressions of those variables are 

presented in the equations below. In these equations, the symbol  denotes ensemble average, 

N is the total number of cycles measured at each location, nc is the cycle index such that nc = 

1…N, ωt is the phase of the oscillation, and i represents the three dimensions of Cartesian space, 

so that i = 1,2,3 correspond to spatial coordinates x,y,z and velocity components u,v,w 

respectively. Note that capital letters are used for simplicity to denote ensemble-averaged 

quantities, such as i iU u= . From the instantaneous velocity measurements obtained from the 

LDV (ui), the following mean flow and turbulence variables can be calculated: 
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Instantaneous velocities: 

 

( , , , , )i iu u x y z nc tω=         (39) 

 

Mean flow velocities: 
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Turbulent velocity fluctuations: 
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Root-mean-square (RMS) velocity fluctuations: 

 

, ,

1 22

1 2 1 2
2 2

1 1

( , , , )

' ( , , , , )

1 1' ( , , , , ) '

i RMS i RMS

i

N N

i i
nc nc

U U x y z t

u x y z nc t

u x y z nc t u
N N

ω

ω

ω
= =

= =

= =

⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑

    (42) 

 

 

 

 



 

 70

Turbulent kinetic energy: 
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  (43) 

 

Reynolds shear stresses: 
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Viscous shear stress: 
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Total shear stresses: 
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Bed shear stress: 
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Turbulence production: 
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Eddy viscosity: 
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Skewness of velocity fluctuations: 
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As part of this work, a computer code was developed using MATLAB® to perform all the 

calculations needed for the analysis of the LDV data following the equations presented. The code 

is provided in APPENDIX B. 

 

 

 

 



 

 73

CHAPTER 6 

MEAN FLOW RESULTS 

6.1 Measured experimental conditions 

In Table 2 a summary of the measured experimental conditions is presented for all 10 

experiments. It can be observed that measured flow conditions differ slightly from the nominal 

values presented before in Table 1. However, this issue didn’t affect the results of the 

experiments, since the nominal values were only used as a reference. All the calculations 

presented in this work have been obtained using the actual measured flow conditions included in 

this Table 2. 

 

Among the physical parameters, water temperature (Temp) was measured for each experiment, 

which in turn provided a way to calculate water density (ρ) and kinematic viscosity (ν) using the 

formulas in equations (37) and (38). Among the flow conditions, the oscillation period (T) was 

set and the maximum velocity of the outer flow (Uout_max) was obtained from the measurements. 

With these two variables, it was then possible to back-calculate the oscillatory amplitude (2a) 

using equation (4) and then to obtain the wave Reynolds number (Rew) using equation (3). 

 

Temp ρ ν T 2a U out_max Re w N max

Exp no. (ºC) (kg/m3) (m2/s) (s) (m) (m/s) (-) (cycles)
1 18.0 998.62 1.07E-06 10 0.468 0.147 3.2E+04 130
2 16.6 998.87 1.11E-06 10 0.761 0.239 8.2E+04 130
3 23.2 997.52 9.45E-07 10 0.958 0.301 1.5E+05 130
4 23.6 997.42 9.36E-07 10 1.159 0.364 2.3E+05 130
5 27.5 996.41 8.59E-07 10 1.261 0.396 2.9E+05 130
6 27.0 996.54 8.68E-07 10 1.362 0.428 3.4E+05 130
7 26.5 996.68 8.77E-07 10 1.566 0.492 4.4E+05 130
8 24.5 997.20 9.17E-07 10 1.770 0.556 5.4E+05 130
9 18.1 998.61 1.07E-06 10 2.069 0.650 6.3E+05 130

10 20.0 998.23 1.02E-06 10 2.368 0.744 8.7E+05 130

Flow conditions (measured)Physical parameters (measured)

 
Table 2. Physical parameters and flow conditions measured for each experiment. 
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Given the large amount of information and plots generated from the 10 experiments, only a 

subset is presented in the results. Notwithstanding, the complete data set for all 10 experiments is 

included in APPENDIX C. A representative selection of results for 3 of the experiments was 

made in order to showcase the oscillatory flow behavior across the laminar-to-turbulent 

transition regime according to wave Reynolds number (Rew). This way results are shown for one 

experiment in the lower Rew range (Experiment no. 1), one in the middle of the range 

(Experiment no. 5) and one in the upper part of the range (Experiment no. 10). 

 

6.2 Outer flow velocity 

The streamwise velocity of the flow far from the bottom was used as a reference in the analysis 

and presentation of results. This velocity is referred to as outer flow velocity (Uout) and 

represents the flow outside of the boundary layer, thus unaffected by the friction with the bottom. 

It was calculated as the average of the streamwise velocity of all points measured more than 100 

mm away from the bottom. This distance was larger than the boundary layer thickness measured 

for all phases of the oscillation in all experiments. 

 

Outer flow velocity computed from the measurements is shown in Figure 46 for the 3 

experiments selected (blue line). It must be noted that all the measurements in this work are 

presented such that ωt = 90º was chosen as the phase of the cycle at which Uout reaches the 

maximum (Uout_max). Also, a reference sine wave using the nominal parameters for each 

experiment is shown for comparison (green line). 

 

Taking that into account, small differences between the two lines can be observed. The 

difference in magnitude is attributed to the difference between nominal and measured 

parameters, as mentioned before, so it has no influence on the results. However, the shape of the 

measured wave (blue line) becomes a bit distorted as Rew increases, creating a small asymmetry 

between the acceleration and deceleration parts in each half-cycle of the wave. In particular there 

is a small lag in the decelerating parts of the cycle, evidenced at the zero crossing point, which 

doesn’t happen exactly at ωt = 180º, but rather a few degrees after. This results in the wave not 

being perfectly sinusoidal, however the difference is very small. 



 

 75

 

 

 

 
Figure 46. Outer flow velocity for experiments 1 (a), 5 (b) and 10 (c). 

 

Due to the oscillatory nature of the flow, the results obtained for a full cycle can be viewed as 

two repetitions of each half-cycle. Although not perfectly symmetric, the first half-cycle and the 

second half-cycle should give very similar results for all the variables presented. Most times, 

these variables will show opposite signs between the two half-cycles due to the changing flow 

a) 

b) 

c) 
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direction. For the outer flow, the first half-cycle goes from phases 0º to 180º displaying positive 

velocities, and the second half-cycle goes from phases 180º to 360º with negative velocities. 

Negative velocities in this context just means that the flow is going in reverse direction. Within 

each half-cycle, there is a zone of flow acceleration for the first 90º until the phase of maximum 

flow velocity, and then the flow decelerates until zero velocity around 180º. 

 

For simplicity during the presentation of results in this work, and given the nearly symmetrical 

nature of the flow between each half-cycle, phases 0º to 180º will be used to refer to both half-

cycles, unless otherwise noted. 

 

6.3 Mean velocities 

Mean flow velocity was obtained from the measurements after performing the ensemble 

averaging of the instantaneous velocities for all cycles, as described before in the methodology. 

Contour plots, profile plots and cycle evolution plots were generated for all three velocity 

components (u, v, w), however, only the streamwise component (u) is shown here. The results 

obtained for the other two components didn’t provide any significant information since they 

exhibited averaged values very close to zero, as it was expected. Plots for v and w can be found 

in APPENDIX C. 

 

6.3.1 Experiment no. 1 

Results for experiment 1 are presented in Figure 47, showcasing the oscillating nature of the 

flow, with symmetric positive and negative velocities. Both half-cycles present good symmetry 

as shown in the cycle evolution plot (Figure 47c). A clear distinction in the velocity patterns can 

be observed between the outer flow and the flow inside the boundary layer. Outer flow is very 

smooth and symmetric, with good overlap between the equivalent phases of the first and second 

half-cycles. The velocity magnitude is also very constant in the vertical for all locations outside 

of the boundary layer. Inside the boundary layer, close to the bottom, the velocities show a 

different behavior as they are affected by friction with the bed (Figure 47b). 
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Figure 47. Mean flow velocity contours (a), profiles (b) and cycle evolution (c) for experiment 1. 

 

This experiment falls within the laminar regime and, as such, certain defining characteristics 

about the laminar oscillatory boundary layer can be observed. In particular, for the phases of 

maximum outer flow velocity (90º), the velocity peak inside the boundary layer is greater than 

outside the boundary layer. This effect can be observed in the profile plot (Figure 47b) for the 

lines corresponding to 90º and 270º. Also, the velocity field inside the boundary layer seems to 

a) 

b) 

c) 
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act ahead of the velocities outside. This effect can be observed in the contour plot (Figure 47a) 

by the skewed shape of the contour lines towards the left inside the boundary layer. It is also 

observed in the profiles (Figure 47b), for instance, at the phases of flow reversal (0º and 180º) 

when the outer flow is just stopped, but inside the boundary layer the flow is already traveling in 

the opposite direction. In particular, the velocity near the bed is traveling 45º in advance of the 

outer flow. This can be easily observed in the cycle evolution plot (Figure 47c), looking at the 

phase where the velocity maximum occurs for each line. For the first line closer to the bed, this 

maximum velocity happens at the 45º phase, which is in turn 45º in advance of the outer flow 

velocity maximum. For higher z locations moving away from the bed, the velocity maximum 

shifts slowly towards phase 90º until it converges with the outer flow maximum. 

 

6.3.2 Experiment no. 5 

Results for experiment 5 are presented in Figure 48. Both half-cycles present good symmetry 

inside the boundary layer, although outside the boundary layer the flow velocity is slightly 

skewed towards the positive values, as shown in the cycle evolution plot (Figure 48c). Also, the 

profiles for phases near flow reversal (180º) don’t overlap due to the small shape difference 

observed between the reference sine wave and the measured outer flow shown before in Figure 

46, which was caused by a lag in the decelerating stage of the half-cycle. 

 

This experiment falls within the transition between the laminar and turbulent regimes. 

Experiments in this transitional regime experience significant changes inside the boundary layer 

as Rew increases. In particular, the shape of the velocity field changes significantly in terms of 

phase of the velocity maximum for each z location. In this experiment the phase of the near bed 

velocity maximum changed from phase 45º in experiment 1 (laminar regime) to around phase 

65º in this transition regime. Additionally, in the contour plot (Figure 48a) a secondary lobe of 

high velocities appears in the lower part of the boundary layer, near phase 120º. Looking at the 

cycle evolution plot (Figure 48c), it can be observed that for the first few z locations near the bed 

the velocity profile experiences two maximums, one ahead of phase 90º (outer flow velocity 

maximum) and this one behind. This new velocity maximum becomes less evident for higher z 

locations and eventually there is only one maximum, ahead of phase 90º. 
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Figure 48. Mean flow velocity contours (a), profiles (b) and cycle evolution (c) for experiment 5. 

 

This situation having two velocity maximums near the bed will have important implications for 

bed shear stress as will be shown later. The appearance of this second velocity maximum 

happens gradually from experiment 3 (Rew = 1.5x105) until experiment 8 (Rew = 5.4x105) being 

most evident for this experiment 5 shown here. It must be pointed out that this effect could only 

be observed thanks to the high temporal and spatial resolution of the LDV measurements 

a) 

b) 

c) 
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performed in this work, and in particular to being able to measure so close to the bed, since this 

phenomenon was only visible for the locations within 1 mm from the bed. 

 

Also, the velocity field inside the boundary layer continues to act ahead of the velocities outside, 

but the phase lead is smaller than it was in experiment 1. This effect can still be observed in the 

contour plot (Figure 48a) by the skewed shape of the contour lines towards the left inside the 

boundary layer. It is also observed in the profiles (Figure 48b), for instance, at the phases of flow 

reversal (0º and 180º). 

 

6.3.3 Experiment no. 10 

Results for experiment 10 are presented in Figure 49. Both half-cycles present good symmetry 

inside and outside the boundary layer. The profiles for phases near flow reversal (180º) don’t 

overlap due to the small shape difference observed between the reference sine wave and the 

measured outer flow shown before in Figure 46, which was caused by a lag in the decelerating 

stage of the half-cycle. 

 

This experiment represents a condition near the fully turbulent regime. As Rew approaches the 

fully turbulent regime, all the changes in shape inside the boundary layer described before for the 

transitional regime tend to converge towards a unified shape. In particular, from the two velocity 

maximums observed near the bed in experiment 5, the one behind phase 90º gradually moves 

towards phase 90º and eventually takes over the other maximum and dominates at a phase 

around 85º. This effect can be observed in the contour plot in Figure 49a, where only one big 

lobe remains and it is located near that phase. Additionally, a noticeable “step” shape appears for 

phases between 30º and 60º, also visible in the cycle evolution plot (Figure 49c). 

 

Also, the velocity field inside the boundary layer continues to act ahead of the velocities outside 

but the phase lead is even smaller than it was in experiment 5. This effect can still be observed in 

the contour plot (Figure 49a) by the skewed shape of the contour lines towards the left inside the 

boundary layer. It is also observed in the profiles (Figure 49b), for instance, at the phases of flow 

reversal (0º and 180º). Furthermore, the profiles reveal the appearance of a logarithmic layer 

(shown linear in the semi-log plot in Figure 49b) for some part of the profile from about z = 0.5 
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mm to 10 mm and for a few of the phases only, from about 70º to 150º. Sleath (1987) also 

observed this possibility. 

 

 

 

 
Figure 49. Mean flow velocity contours (a), profiles (b) and cycle evolution (c) for experiment 10. 

 

a) 

b) 

c) 
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6.3.4 Comparison for all experiments 

Mean velocity profiles for phase 90º were compared for all 10 experiments and are presented in 

Figure 50. Note that velocities have been normalized by Uout_max and the vertical coordinate has 

been made dimensionless with the boundary layer thickness (δ90) to facilitate comparison. The 

analytical solution for the laminar regime is included in the plot together with experiment 1 

(laminar regime). As it can be observed in the plot, the results exhibited good agreement with the 

analytical solution since both profiles match quite well. In addition, the experimental data of 

Hino et al. (1983) is displayed together with experiment 5 for comparison, since they both have 

the same Rew. In this case the profiles deviate significantly from each other for the lower part of 

the boundary layer (z/δ90 < 0.2). On the contrary, for the upper part of the boundary layer the 

results match quite closely. The reason for this disagreement is unknown, but it could be due to 

the fact that they used air as fluid instead of water. Data from Jensen (1988) was also included 

for comparison with the high Rew experiments (turbulent regime). Jensen (1988) didn’t measure 

velocities in the transition regime and the smallest Rew he reported was Rew = 1.6x106, which is 

larger than Rew for experiment 10 (Rew = 8.7x105). Despite the Rew difference, Jensen’s data was 

ploted together with the profile for experiment 10, showing good agreement. No other studies 

were included since, unfortunately, there is very little experimental data available in the 

transition regime of the oscillatory flow. In this regard, the contribution from this work will be 

very useful to achieve a better understanding of the oscillatory boundary layer in the transition 

regime. 

 

Looking at the shape of the mean velocity profiles in Figure 50 and their evolution as Rew 

increased, it can be observed how the bottom part of the profile evolved from a linear relation 

(curve in semi-log plot) in the laminar regime to a logarithmic relation (straight line in semi-log 

plot) in the turbulent regime. This is an important observation, since self-similarity exists for the 

profiles in the laminar and the turbulent regimes, but it doesn’t exist in the transition regime. The 

only way to know the shape of the profiles in the transition regime is through experiments like 

the ones presented in this work. This fact highlights the important contribution of this work to 

expand the knowledge in this complicated regime of the oscillatory boundary layer and can be 

used later on for the calibration of numerical models. 
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Figure 50. Normalized mean velocity profiles at phase 90º for all experiments in this work (solid symbols). The 

laminar solution (solid line) is ploted together with the profile for experiment 1 (laminar regime). 
Experimental data from Hino et al. (1983) is for Rew = 2.9x105, similar to experiment 5. Experimental data 
for Jensen (1988) is for Rew = 1.6x106 and is ploted together with the profile for experiment 10 (turbulent 

regime). 
 

The mean flow velocities and particularly the changes experienced by the velocity field inside 

the boundary layer during the Rew laminar-to-turbulent transition regime have a strong influence 

on the evolution of all the other variables presented in this work. 

 

6.4 Boundary layer thickness 

Boundary layer thickness (δ) was calculated in a similar way to the method used by Sumer et al. 

(1987), which was also used by Jensen (1988), and is illustrated in Figure 4. Upon this method, δ 

is defined as the z location of maximum streamwise velocity. This location can be easily 

identified from the mean velocity profiles shown before. As Jensen (1988) pointed out, this z 

location is coincident with the location at which the shear stresses experience the first zero 

crossing starting from the bed. The definition of δ in this way is similar to the steady boundary 

layer definition. The main difference in the case of oscillatory flows is that the location of the 

velocity maximum changes during the cycle, growing from the bottom up to the outer flow, 

where the true boundary layer threshold is (δtop). In order to simplify this issue and provide a 
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reference value for δ, Sumer et al. (1987) used the boundary layer thickness calculated at phase 

ωt = 90º (δ90). For the experiments in this work, δ was calculated for all phases of the oscillation 

and cycle evolution plots were generated. Only the plots for experiments 1, 5 and 10 are shown 

here, the others can be found in APPENDIX C. 

 

uz

δ = δ (ωt)

δtop

OUTER
FLOW

BOUNDARY
LAYER

 
Figure 51. Definitions of oscillatory boundary layer thickness used for the results in this work. 

 

The plots in Figure 52 show how δ grows continuously for each half-cycle, as it was expected 

from the theory and also from previous work on oscillatory flows. Looking at the plots in detail, 

it can be observed how the boundary layers from both half-cycles coexist for some time during 

the phases of flow reversal (around 0º and 180º). Indeed, when the flow changes direction, the 

flow closer to the bed changes before and ahead of the flow far from the bed, as it was observed 

from the mean velocity profiles. This part of the flow is already moving in the opposite direction 

(left) and so a new δleft starts to grow close to the bed while higher up in the boundary layer the 

flow is still traveling in the original direction (right) and δright is still present. 

 

The growth rate of δ during the half-cycle seemed to be quite constant for all the experiments. 

However, a more detailed look at the plots revealed a slight increase in the growth rate during the 

deceleration stage of the half-cycle for the higher Rew experiments. This change is particularly 

noticeable for experiment 5, happening at around phase 60º (Figure 52b). This effect could be 

related to the increase in turbulence taking place during the deceleration stage, as will be shown 

later. 
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Figure 52. Boundary layer thickness cycle evolution for experiments 1 (a), 5 (b) and 10 (c). 

 

Jensen (1988) showed similar results for the two experiments reported in the fully turbulent 

regime, although the growth rate in his plots seemed to increase slowly and evenly along the 

half-cycle. On the contrary, Hino et al. (1983), in their transition regime experiment, reported 

that δ grew slowly during the acceleration stage of the half-cycle and then it suddenly changed to 

a faster growth rate during the deceleration stage. This would be similar to the effect observed in 

a) 

b) 

c) 
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Figure 52b, although for the case of Hino et al. (1983) the change was more dramatic. Hino’s 

definition of the boundary layer was slightly different though, since they used the location of the 

lower end of the log-law in the velocity profiles to determine δ. 

 

Looking at the magnitude, Figure 53 shows boundary layer thickness evolution with Rew for all 

experiments in this work. It can be observed that δ was larger as Rew increased. Both δtop and δ90 

are included in that plot for comparison. In particular, for experiment 1 (laminar regime) δtop 

reached a maximum value of around 9 mm on average between the two half-cycles. For 

experiment 5 (transition regime), this value was around 25 mm, while for experiment 10 

(turbulent regime) it was around 45 mm. δ90 exhibited a similar behaviour as δtop and the 

magnitude was about half of δtop. Trend lines for the transition regime experiments are also 

included in Figure 53 and a straight line (in log-log scale) can be observed. Fitting of the trend 

lines to a power law relation revealed δ was roughly proportional to Rew
1/2. 

 

y = 2E-05x0.5687

R2 = 0.9616

y = 9E-06x0.5534

R2 = 0.9551

0.001

0.010

0.100

1.0E+04 1.0E+05 1.0E+06 1.0E+07

Rew (-)

δ9
0 ,

 δ
to

p (
m

)

delta_top

delta_90

 

Figure 53. Evolution of boundary layer thickness (δ90 and δtop) with wave Reynolds number (Rew) for all 
experiments. Trend lines for the transition regime range are also displayed. 

 

Boundary layer thickness results for δ90 were compared with previous studies from the literature 

and are shown in Figure 54. In order to facilitate comparison, the relative boundary layer 

thickness (δ90 / a) was used, which is a dimensionless parameter. Lines for the laminar and 
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turbulent regimes are also included. In the laminar regime, the line corresponds to the analytical 

solution to the equations, given by wa Re32/6/90 πδ = , and is proportional to the Stokes 

length. In the turbulent regime, the line corresponds to Fredsoe (1984) approximation. 

Experimental results from Hino et al. (1983) and Jensen (1988) are included, as well as results 

from the DNS simulation of Spalart and Baldwin (1987). The results of this work compare quite 

well with the previous studies, and provide a significant contribution to the state of the art given 

the lack of experimental data available in the transition regime. 

 

0.00

0.01

0.02

0.03

0.04

1.0E+04 1.0E+05 1.0E+06 1.0E+07

Rew (-)

δ9
0 /

 a
 (-

)

this work

Hino et al. (1983)

Spalart & Baldwin (1987)

Jensen (1988)

Laminar solution

Fredsoe (1984)

 

Figure 54. Evolution of relative boundary layer thickness (δ90 / a) with wave Reynolds number (Rew). 
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CHAPTER 7 

TURBULENCE CHARACTERISTICS 

7.1 RMS velocity fluctuations 

RMS velocities were obtained from the measurements after performing the root-mean-square of 

the instantaneous velocity fluctuations for all cycles, as described before in the methodology. 

This variable provides good information on the turbulent fluctuations of the flow. Contour plots, 

profile plots and cycle evolution plots were generated for all three velocity components (URMS, 

VRMS, WRMS). Only the contour plots are shown here, the others can be found in APPENDIX C. 

 

Results for the streamwise component (URMS) are presented in Figure 55 for the three 

experiments selected 1, 5 and 10. In the plot corresponding to experiment 1 (Figure 55a) very 

low values of URMS are observed inside the boundary layer. This behavior was expected since 

this experiment falls in the laminar regime. Higher values are observed for the outer flow, and a 

clear divide between the two zones can be identified, most likely signaling the thickness of the 

boundary layer for that experiment. On the contrary, for experiment 5 (Figure 55b) regions of 

high URMS were found inside the boundary layer, mainly for the phases of decelerating flow, with 

the peak centered at around phase 110º and location z = 0.6 mm. The magnitude of the peak is 

around 0.057 m/s, which represents about 14 % of Uout_max. It is worth noting that outside the 

boundary layer URMS values are still very similar to experiment 1, however the colors in the plots 

are different due only to the different scale used. For experiment 10 (Figure 55c) with a Rew near 

the fully turbulent condition, it can be observed how URMS increases in magnitude and also in 

terms of the phase range, with the high intensity zone now covering from about phase 50º to 

130º, indicating widespread turbulence inside the boundary layer both before and after Uout_max 

(90º). The peak is now happening at phase 60º and location z = 0.4 mm, which is lower and in 

advance with respect to experiment 5. The magnitude is close to 0.084 m/s, which represents 

about 11 % of Uout_max. 
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Figure 55. URMS velocity contours for experiments 1 (a), 5 (b) and 10 (c). 

 

Results for the spanwise component (VRMS) are presented in Figure 56. As it was mentioned in 

the methodology section, it was not possible to obtain measurements below z = 2 mm in any 

experiment for this velocity component. As such, some information was lost and the plots are not 

complete all the way down to the viscous sublayer. However some information was still obtained 

for some portion of the boundary layer. 

a) 

b) 

c) 
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Figure 56. VRMS velocity contours for experiments 1 (a), 5 (b) and 10 (c). 

 

As it was observed before for the streamwise component, the residual turbulence for the outer 

flow remains almost constant regardless of the Rew, having values around 0.01 m/s for all three 

experiments. In experiment 1 (Figure 56a) only the outer flow was captured. For experiment 5 

(Figure 56b), some part of the turbulence inside the boundary layer is observed above z = 4.5 

a) 

b) 

c) 
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mm, while for experiment 10 (Figure 56c), a good portion of the high VRMS zone was captured 

above z = 2.5 mm, extending from phases 60º to almost 180º. The magnitude of VRMS in that zone 

was about 30 % less than URMS. It is not easy to determine the location or magnitude of the peak 

in this case due to the missing data for the bottom part of the boundary layer, however, looking at 

the shape of the turbulent zone, it could be argued that the peak could certainly be around that 

location at z = 2.5 mm. 

 

Results for the vertical component (WRMS) are presented in Figure 57. Again, this case highlights 

the clear divide between the outer flow and the boundary layer as far as the presence of 

turbulence is concerned. For the outer flow, values around 0.01 m/s are observed again, and 

remain almost constant with increasing Rew for the three experiments. This value is very similar 

to the values obtained for URMS and VRMS for the outer flow, which indicates that turbulence in 

the outer flow zone is very homogenous. 

 

Inside the boundary layer, for experiment 1 (Figure 57a) the plot indicates there is absolutely no 

turbulence in the vertical direction for the laminar regime. For experiment 5 (Figure 57b), a zone 

of vertical turbulence is present mainly for the decelerating part of the oscillation and the peak 

has a value around 0.017 m/s, which is about 70 % smaller than the peak of URMS. It is located at 

z = 3 mm and around phase 120º, which is much higher and slightly behind the peak of URMS. For 

experiment 10 (Figure 57c), the zone of high turbulence extends from phases 60º to 160º and its 

vertical location changes upward with the oscillation, starting at around z = 1 mm and moving up 

to almost z = 10 mm. This effect is already present in experiment 5 as well, but becomes more 

evident as Rew increases. This indicates upwards propagation of turbulence as the cycle develops, 

mainly happening during the deceleration stage of the oscillation. The magnitude of the peak 

reaches values around 0.03 m/s, showing that WRMS grows as Rew increases, as it was expected. 

This value is about 20 % smaller than VRMS, and about 45 % smaller than URMS. It is also behind 

the phases of peak URMS for the same experiment. 
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Figure 57. WRMS velocity contours for experiments 1 (a), 5 (b) and 10 (c). 

 

Overall, it was observed that the intensity of turbulence increased as Rew increased, as it was 

expected. Also, turbulence in the streamwise direction (URMS) is dominant with respect the other 

two components and the magnitude is more than double of peak VRMS and nearly triple of peak 

WRMS. Regarding vertical location, the turbulence gets closer to the bottom as Rew increases. In 

particular, URMS is more intense near the bottom starting as close as z = 0.2 mm in experiment 10, 

a) 

b) 

c) 
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and remains high up to z = 1 mm, then progressively reduces all the way to about z = 20 mm 

where it meets the magnitudes of VRMS and WRMS. On the contrary WRMS is very small close to the 

bottom, and begins to increase at around z = 1 mm, extending upwards to z = 20 mm, together 

with VRMS. This indicates it is the streamwise component the one responsible for the most 

turbulence in the lower part of the boundary layer. 

 

7.2 Turbulent kinetic energy 

Values of turbulent kinetic energy (TKE) were obtained from the velocity fluctuations, as 

described before in the methodology. This variable provides good information on the overall 

presence of turbulence in the flow as it combines the information from the three components. 

Contour plots, profile plots and cycle evolution plots were generated. Only the contour plots are 

shown here, the others can be found in APPENDIX C. 

 

The plots in Figure 58 reaffirm some of the characteristics observed before from the RMS 

velocity fluctuations. In particular, for experiment 1 (laminar regime), no turbulence is observed 

inside the boundary layer, but a clear divide is present between this layer and the outer flow. 

Then as Rew increases, values of TKE increase as well. Since the streamwise component was 

dominant in terms of turbulence magnitude, the zones of high TKE follow quite closely the same 

patterns as URMS before. It must be mentioned that since it was not possible to obtain velocity 

measurements of the spanwise component (v) below a certain location z, the results of TKE are 

lacking that contribution as well. This could be misleading in the interpretation of these plots, 

since TKE values would be slightly higher than shown in Figure 58 if the missing contribution 

from VRMS was present. This is mostly felt in the zone between z = 1 mm and z = 3 mm. 

 

Regardless of this shortcoming, the peak of TKE is very much located at the same spot as URMS. 

It can be clearly observed how the peak moves from around phase 110º (behind 90º) to around 

phase 60º (before phase 90º) as Rew increases, and also how it gets closer to the bottom as well. 

As the oscillation progresses, turbulence moves higher up and is significant until about z = 30 

mm. It starts to lose strength from about phase 120º until it vanishes at the phase of flow 
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reversal. After that it dissipates completely, and then everything happens again for the next half-

cycle. 

 

 

 

 
Figure 58. Turbulent kinetic energy contours for experiments 1 (a), 5 (b) and 10 (c). 

 

In fact, the zone of minimum TKE between the two half-cycles corresponds to the growth of the 

new boundary layer for the reverse flow. This observation is in line with other variables which 

a) 

b) 

c) 
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indicate how independent the flow inside the boundary layer is from one half-cycle to the next, 

and how the complete boundary layer is reworked for every new half-cycle, with no remaining 

turbulence present from the previous one. 

 

7.3 Turbulent shear stress (Reynolds shear stress) 

Reynolds shear stresses were obtained from the velocity fluctuations, as described before in the 

methodology. This variable provides information on the presence of shear in the flow induced by 

turbulence. Three components of Reynolds shear stress can be computed from the measurements 

depending on the shear planes of interest. This way Rxz is obtained from velocity fluctuations in 

the streamwise (u’) and vertical (w’) directions, Rxy from the streamwise (u’) and spanwise (v’) 

directions and Ryz from the spanwise (v’) and vertical (w’) directions. Only the Rxz component is 

shown since it is the most interesting of the three for the purposes of this analysis and also 

because the lack of good v’ measurements inside the boundary layer limited the availability of 

results for Rxy and Ryz in that region. Contour plots, profile plots and cycle evolution plots were 

generated. Only the contour plots are shown here, the others can be found in APPENDIX C. 

 

Results are presented in Figure 59 for the three experiments selected 1, 5 and 10. In the plot 

corresponding to experiment 1 (Figure 59a), very low values of Rxz are observed inside the 

boundary layer. Again, this behavior was expected since this experiment falls in the laminar 

regime. As Rew increases, Rxz becomes more intense, particularly around the phase of flow 

reversal (180º). This can be observed for experiment 5 (Figure 59b) where a high intensity zone 

occurs for phases between 160º and 190º. This effect is even more clear for experiment 10 

(Figure 59c) in which the highest intensity is still near the phase of flow reversal, but the zone of 

high Rxz has expanded from phases 110º to 230º. The vertical location of the Rxz peak seems to 

remain constant regardless of Rew, at a distance between 5 mm and 20 mm from the bottom. The 

wider zone of high Rxz seems to expand upwards as Rew increases, reaching the top of the 

boundary layer in each experiment. 

 

Values of Rxz in the plots change sign for every half-cycle. This is only due to the changing flow 

direction. However, it also helps to visualize the divide between the turbulent shear stresses 
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generated in each one of the two half-cycles. This indicates that these stresses disappear 

completely from one half-cycle to the next, and that they grow new again with every half-cycle. 

 

 

 

 
Figure 59. Reynolds shear stress contours for experiments 1 (a), 5 (b) and 10 (c). 

 

Looking at the phases and vertical location where the Reynolds shear stresses occur, and together 

with other findings of this work and some of the previous knowledge in oscillatory boundary 

a) 

b) 

c) 
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layers, we could relate the presence of high Rxz in that zone to other features of these flows. In 

particular, it is likely that the occurrence of high Rxz is associated with the presence of a shear 

layer generated by the opposing mean flow happening near the phases of flow reversal. Indeed, 

as observed before in the mean velocity analysis, the flow in the lower part of the boundary layer 

reverses direction before the flow in the upper part of the boundary layer. Furthermore, this 

effect could also be associated with the presence of structures in the flow such as vortex tubes or 

turbulent spots found to appear around those phases and distance from the bottom (Carstensen et 

al., 2010). 

 

7.4 Viscous shear stress 

Viscous shear stresses were obtained from the gradient of mean flow velocities, as described 

before in the methodology. This variable provides information on the presence of shear in the 

flow due to viscous effects and mean velocity gradients. Six components of viscous shear stress 

can be computed from the measurements depending on the shear directions of interest. Due to 

the nature of the oscillatory flow and that the measurements were performed at the centerline of 

the flume, gradients in the streamwise or spanwise directions are negligible and not relevant for 

the analysis. The main gradients happen in the vertical direction due to the presence of the bed, 

and that is the direction of boundary layer growth, which is the focus of this work. This way τv_xz 

was obtained from streamwise velocity gradients in the vertical direction (du/dz). Contour plots, 

profile plots and cycle evolution plots were generated. Only the contour plots and profile plots 

are shown here, the others can be found in APPENDIX C. 

 

Viscous shear stress is typically present in areas of low turbulence, where viscous effects have a 

dominant role over turbulent effects. This is particularly evident in low Rew experiments and in 

the lower part of the boundary layer near the bed. This zone within the boundary layer is 

typically called the viscous sublayer. The thickness of this sublayer is very small, typically in the 

order of microns for a water flow, and it was in no case larger than 1 mm for the transition 

experiments of this work. Thus, measurements inside this zone are very difficult to obtain. The 

high spatial resolution of the measurements in this work provided unprecedented measurements 

inside this viscous sublayer with great detail, and the results are shown in the following plots. 
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Figure 60. Viscous shear stress contours for experiments 1 (a), 5 (b) and 10 (c). 

 

Figure 60 shows contour plots of viscous shear stress for the three experiments selected 1, 5 and 

10. It can be observed how the highest intensity is found near the bed and it quickly vanishes far 

from the bed, as it was expected. This behavior is opposite to the behavior of the Reynolds shear 

stress presented before, which was higher far from the bed. Also, the highest values of viscous 

a) 

b) 

c) 
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shear stress are found around the phases of maximum streamwise velocity. This is also the 

opposite as what was found for the Reynolds shear stresses, which happen near the phases of 

flow reversal. In addition, as Rew increases, the zone of high viscous stress gets compressed even 

closer to the bed, in agreement with the thickness of the viscous sublayer. In the plot 

corresponding to experiment 1 (Figure 60a), viscous stresses are observed up to z = 4 mm, with 

the peak near the bed at phase 45º and then following a similar upwards development in phase as 

the mean flow velocity. This behavior agrees well with the theory for the laminar oscillatory 

boundary layer presented earlier, as it was expected since this experiment falls in the laminar 

regime. From the plots corresponding to experiments 5 (Figure 60b) and 10 (Figure 60c), it is 

observed how the intensity of the viscous shear stress increases quite dramatically as Rew 

increases, reaching values around 1.5 N/m2 for experiment 10. Also, the zone of high viscous 

shear stress shifts back in phase with respect the laminar case, moving to phases around 90º. 

 

Profile plots are also presented in Figure 61. In these plots, the vertical distribution of the viscous 

shear stress is highlighted. Particularly interesting is the shape of the profiles near the bed. As the 

measurements got closer to the bed it was found that the profiles reached a point where the 

intensity of the viscous shear stress no longer increased, but remained more or less constant. This 

can be observed for the last few points of each profile. This effect is a direct consequence of the 

shape of the mean velocity profiles themselves, such that when the velocity profiles become 

linear, the gradient becomes constant. This behavior meaning that those points with a constant 

viscous shear stress are truly inside the viscous sublayer. The distance at which this behavior is 

found changes for every phase in the cycle, and is also different for each experiment as it 

depends on Rew, as explained before. However, having been able to measure this close as to find 

the viscous sublayer is a remarkable achievement for this work. This set of profile plots 

represents clear evidence to support this finding. 
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Figure 61. Viscous shear stress profiles for experiments 1 (a), 5 (b) and 10 (c). 

 

7.5 Total shear stress 

Total shear stresses were obtained from the addition of viscous and turbulent shear stresses, as 

described before in the methodology. This variable provides information on the combined 

presence of shear due to viscous and turbulent effects. Also, this variable was used to obtain bed 

a) 

b) 

c) 
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shear stress later on in the analysis. Only the total shear stress in the x-z plane was obtained (τxz). 

Contour plots, profile plots and cycle evolution plots were generated and are shown below for 

experiments 1, 5 and 10. The other experiments can be found in APPENDIX C. 

 

 

 

 
Figure 62. Total shear stress contours for experiments 1 (a), 5 (b) and 10 (c). 

 

a) 

b) 

c) 
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From the contour plots in Figure 62 the contribution of turbulence and viscous shear stresses can 

be evaluated for the different zones in the boundary layer. In particular, for experiment 1 in the 

laminar regime (Figure 62a), all stresses come from the viscous component. As Rew increases, 

for experiment 5 in the transition regime (Figure 62b) the turbulent contribution becomes more 

important and shows values comparable to those of the viscous stresses. For experiment 10 

(Figure 62c) near fully turbulent regime, it seems like the turbulent component losses strength 

relative to the viscous contribution. This behavior was not expected and constitutes a surprising 

finding, which deserves further investigation. 

 

Additionally, the phase and vertical location of the areas of viscous and turbulent shear stresses 

are clearly distinct from these plots. Viscous shear stresses are more intense near the bed for 

phases around the mean velocity maximum, while turbulent shear stresses are high far from the 

bed for phases around the flow reversal. Furthermore, from the positive and negative signs 

obtained due to the different half-cycles, it can be stated that the shear stresses generated in one 

half-cycle are dissipated upwards and do not affect the new shear stresses generated for the next 

half-cycle. 

 

From the profile plots in Figure 63, again the main features described before are clearly 

observed. In particular the relative magnitude of viscous versus turbulent shear stresses, and also 

the distinct divide in terms of vertical location between the two components. 

 

Cycle evolution plots for the total shear stress are presented in Figure 64. These plots mainly 

show the total shear stress near the bed and at a few vertical locations farther from the bed. It can 

be observed how the total shear stress near the bed changes in direction for every half-cycle, as it 

was expected. Also, an important effect can be observed from these plots in terms of the phase of 

the total shear stress peak for the different vertical locations. In particular, for the plot 

corresponding to experiment 1 (Figure 64a), the phase of the peak is around 45º near the bed, and 

quickly shifts back to values beyond 90º for z = 2 mm. As Rew increases, interesting effects 

appear in the shape of the total shear stress near the bed. In particular, for experiment 5 (Figure 

64b), a double peak appears near the bed, one situated before and one after phase 90º. In fact, the 

stronger of the two peaks is the one happening after 90º. Just a few microns farther from the wall 
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this effect is not felt as much and it quickly disappears beyond z = 1 mm. In the case of 

experiment 10 (Figure 64c), the total shear stress shows a very strong peak around phase 90º, 

slightly in advance, which again is completely vanished beyond z = 0.5 mm. 

 

 

 

 
Figure 63. Total shear stress profiles for experiments 1 (a), 5 (b) and 10 (c). 

 

a) 

b) 

c) 
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Figure 64. Total shear stress cycle evolution for experiments 1 (a), 5 (b) and 10 (c). 

 

These observations highlight the importance of having measurements so close to the bed, which 

where only possible with the high spatial resolution provided by the LDV in combination with 

the traverse system. A different instrument that was not capable of measuring inside the first 

millimeter close to the bed would have completely misrepresented these effects and others 

regarding the behavior inside the oscillatory boundary layer. 

a) 

b) 

c) 
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7.6 Turbulence production 

Turbulence production in the x-z plane (Pxz) was calculated as the product of the turbulent 

vertical flux of streamwise fluctuations (u’w’, present in the Reynolds shear stress) and the 

vertical gradient of streamwise velocity (du/dz, present in the viscous shear stress), as described 

before in the methodology. This variable provides information on the phases and vertical 

locations in the flow where turbulent kinetic energy is being produced. Typically, in turbulent 

shear flows, the flux is negative in zones of positive velocity gradient and, conversely, the flux is 

positive in zones of negative velocity gradient. The result of the product would give a negative 

amount in both situations. Thus, a negative sign is introduced in the calculation of turbulence 

production such that it becomes a positive term in the turbulent kinetic energy balance. 

 

In the particular case of oscillatory flows, the shape of the streamwise velocity profile exhibits a 

positive gradient zone below the velocity peak, and a negative gradient zone above the velocity 

peak, so production can be expected to happen in both zones. However, the gradient closer to the 

bottom is typically much stronger and so most of the production should be concentrated near the 

bottom. 

 

Contour plots were generated for all experiments. Only experiments 1, 5 and 10 are shown here, 

the others can be found in APPENDIX C. Results are presented in Figure 65. The magnitude of 

production in experiment 1 (Figure 65a) was very small, as it was expected for the laminar 

regime. The gradients were relatively strong but turbulence was negligible, so the production 

was not significant. For experiments 5 (Figure 65b) and 10 (Figure 65c), it can be observed that 

most of the production was located near the bottom, below z = 1 mm, for phases between 90º and 

150º in experiment 5, and between 50º and 140º in experiment 10. This observation agrees with 

the behaviour exhibited by the RMS velocities and TKE, which showed how turbulence becomes 

stronger for earlier phases and gets closer to the bottom as Rew increases. Also, a zone of low 

values of production was present in experiment 10 between z = 3 mm and z = 20 mm, for phases 

from 70º to 180º. This zone corresponds to the middle part of the velocity profile, just below the 

velocity peak, where the gradient is still positive. 
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Figure 65. Turbulence production contours for experiments 1 (a), 5 (b) and 10 (c). 

 

Additionally, in the zone of high turbulence production near the bottom (below z = 1 mm), spots 

of high positive production and high negative production were found next to each other for 

multiple phases and vertical locations, which was not expected. This type of behaviour is strange 

since production is typically a positive magnitude. The reason for this result is unknown and 

further investigation is needed on this regard. However, there is evidence in the literature of 

a) 

b) 

c) 
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flows with negative production (Gayen and Sarkar, 2011) and this kind of behaviour is typically 

associated with the presence of some type of flow structure. No measurements of flow structures 

were performed in this work, but that could be a possible explanation for this phenomenon. It is 

also possible that it was due to a problem with the velocity measurements, or during data 

processing, however that is unlikely. 

 

7.7 Turbulent viscosity (Eddy viscosity) 

Eddy viscosity (νt) is a synthetic parameter commonly used in the modeling of fluids that relates 

the small scale turbulence to the mean flow. This way the transfer of momentum by turbulent 

eddies can be accounted for without modeling the eddies themselves (this is known as the 

Boussinesq approximation). Eddy viscosity in the x-z plane (νt_xz) was calculated as the ratio 

between the turbulent vertical flux of streamwise fluctuations (u’w’, present in the Reynolds 

shear stress) and the vertical gradient of streamwise velocity (du/dz, present in the viscous shear 

stress), as described before in the methodology. Zones of very small gradients have been 

excluded from the calculation in order to avoid divisions by zero or by very small numbers, 

which would have resulted in unrealistically large values of νt_xz. In the particular case of the 

oscillatory flow, the streamwise velocity profile outside of the boundary layer is nearly constant, 

and so gradients are very small. As a consequence, νt_xz results were only obtained inside the 

oscillatory boundary layer. Regarding the sign, eddy viscosity is positive in zones where the flux 

and the gradient have opposite signs, which is the case of most turbulent shear flows. Negative 

values of eddy viscosity are rare, but possible (Liberzon et al., 2007). They may happen when 

the flux and the gradient have the same signs, and can be found in zones of negative turbulence 

production. 

 

Contour plots of eddy viscosity were generated for all experiments. Only experiments 1, 5 and 

10 are shown here, the others can be found in APPENDIX C. Results are presented in Figure 66. 

Values of νt_xz for experiment 1 (Figure 66a) were very small since there was no significant 

turbulence. For experiments 5 (Figure 66b) and 10 (Figure 66c), zones of high νt_xz were found in 

the upper part of the boundary layer above z = 5 mm, and for phases between 0º and 120º. That 

zone corresponds to the part of the streamwise velocity profile above the velocity peak and with 
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negative velocity gradient. The magnitude of νt_xz in that zone was about 2x10-5 for experiment 5 

and about 6x10-5 in experiment 10. 

 

 

 

 
Figure 66. Eddy viscosity contours for experiments 1 (a), 5 (b) and 10 (c). 

 

a) 

b) 

c) 
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7.8 Skewness of velocity fluctuations 

Skewness was obtained from the measurements by calculating the third order moment of the 

instantaneous velocity fluctuations for all cycles, as described before in the methodology. This 

variable provides information on whether the positive or the negative fluctuations are more 

important at a particular phase and z location in the flow. Skewness is a dimensionless number, 

and the scale has no direct physical translation. A skewness of 0 would correspond to a perfectly 

symmetrical distribution of positive and negative fluctuations around the mean velocity. Positive 

skewness means the positive fluctuations are stronger than the negative fluctuations, and the 

opposite would be true for negative skewness. When skewness is greater than 0.5, it is 

considered a significant value. When it is greater than 1, it means there is a strong skewness. In 

this work, skewness was calculated for the fluctuations of the three velocity components (u’, v’, 

w’), however only the streamwise (u’) and vertical (w’) components are shown since they are the 

most relevant for the analysis presented. Contour plots were generated for all experiments. Only 

experiments 1, 5 and 10 are shown here, the others can be found in APPENDIX C. 

 

Results for the streamwise component (u’) are presented in Figure 67 for the three experiments 

selected 1, 5 and 10. A very different behavior is observed between experiment 1 (laminar 

regime) and experiments 5 and 10. Indeed, it was expected that the skewness would follow a 

mirror pattern with opposite signs between the first and second half-cycles. This is because of the 

sign change of the mean flow velocity due to the oscillating nature of the flow. In fact, negative 

skewness in the second half cycle would mean that the stronger fluctuations are going with the 

mean flow. However, that is not the case for experiment 1 (Figure 67a), where skewness in the 

upper zone of the boundary layer (z = 2 mm to 20 mm) remains negative for the most part of 

both half-cycles. This means that for the first half-cycle, the stronger fluctuations go against the 

mean flow, while for the second half-cycle they go with the mean flow. Closer to the bed (z < 1 

mm) the skewness shows some alternating patterns following the change in mean velocity, which 

is the behavior expected. This observation will be useful to better understand the quadrant 

analysis patterns later on. It must be noted that skewness is a relative variable, and so, even 

though it may show high values for experiment 1, the absolute magnitude of the turbulence in 

that experiment was very small, as shown in the RMS velocity fluctuations before. For that 
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reason, any interpretation of turbulent features for that experiment should be considered 

carefully. 

 

 

 

 
Figure 67. Skewness of u’ contours for experiments 1 (a), 5 (b) and 10 (c). 

 

Experiments 5 (Figure 67b) and 10 (Figure 67c) show some strong skewness patterns at certain 

phases in the oscillation. In particular, for the upper part of the boundary layer (z = 2 mm to 30 

a) 

b) 

c) 
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mm) a zone of negative skewness in the first half-cycle (and positive in the second half-cycle) 

indicates that the stronger fluctuations are going against the mean flow, specially for phases 45º 

to around 120º, moving upwards along the cycle. In the case of experiment 10 this effect happens 

earlier in the cycle, for phases between 30º and 60º. In the lower part of the boundary layer, 

closer to the bed (z < 1 mm), and inside the viscous sublayer, the skewness pattern is completely 

the opposite, with the stronger streamwise fluctuations going with the mean flow. 

 

Results for the vertical component (w’) are presented in Figure 68 for the three experiments 

selected 1, 5 and 10. Again, the skewness pattern observed for experiment 1 (laminar regime) is 

quite different from experiments 5 and 10. However, there is a major difference with respect the 

streamwise component, since now the mean flow in the vertical is very close to zero for both 

half-cycles. As a consequence, positive skewness would indicate positive fluctuations in both 

half-cycles, and the opposite is true for negative skewness. Taking that consideration into 

account, it seems that the skewness pattern observed for experiment 1 (Figure 68a) now follows 

the expected behavior. In this case, skewness values are small, although still a general trend can 

be observed. In particular, for the upper part of the boundary layer (z = 6 mm to 20 mm) 

skewness is mostly negative, which would indicate that negative fluctuations are dominant in 

that zone. Below that, zones of mild positive and negative skewness are intermixed, with no 

dominant direction except for a few isolated spots. 

 

Experiments 5 (Figure 68b) and 10 (Figure 68c) show similar skewness patterns for the vertical 

component as well. In particular, for the upper part of the boundary layer (z = 3 mm to 30 mm) a 

zone of positive skewness in both half-cycles indicates that positive fluctuations are stronger, 

starting around phase 90º for experiment 5 and earlier at phase 60º for experiment 10, and then 

moving upwards along the cycle. In the lower part of the boundary layer, closer to the bed (z < 1 

mm), and inside the viscous sublayer, zones of mild positive and negative skewness are 

intermixed, with no dominant direction except for a few isolated spots, like in experiment 1. 
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Figure 68. Skewness of w’ contours for experiments 1 (a), 5 (b) and 10 (c). 

 

7.9 Quadrant analysis: sweeps and ejections 

Instantaneous velocity fluctuations in the streamwise (u’) and vertical (w’) components were 

analyzed to classify them in quadrants according to their interactions with the mean flow. This 

a) 

b) 

c) 
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technique was used to get some information on turbulent structures in the oscillatory boundary 

layer, in particular to identify sweeps and ejections. 

 

Four different types of interactions can be observed according to the relation of the velocity 

fluctuations with respect to the mean flow. These are classified in 4 regions or quadrants as 

follows (see also Figure 69): 

 

 Q1: u' > 0   &   w' > 0  (outward interaction) 

 Q2: u' < 0   &   w' > 0  (ejection) 

 Q3: u' < 0   &   w' < 0  (inward interaction) 

 Q4: u' > 0   &   w' < 0  (sweep) 

 

Ejections and sweeps contribute to positive shear stress and represent mixing of momentum that 

works against the pattern of the velocity profile. A threshold H is typically applied to distinguish 

between signals of interest and smaller interactions, such that: 

 

 ' ' ' 'u w H u w⋅ > ⋅ ⋅         (51) 

 

where H is a suitable threshold coefficient, typically around 2 or 3, the symbol  means 

absolute value and the symbol  means ensemble average. 

 

It must be mentioned that, for the interpretation of the quadrant analysis in the case of oscillatory 

flows, it is necessary to take into account that the mean flow can be positive or negative 

depending on the phase of the flow. As such, during the phases of returning flow, a negative 

fluctuation (u' < 0) will in fact go with the mean flow (U < 0) and so the interactions will be a Q1 

or Q4, whereas a positive fluctuation (u' > 0) will go against the mean flow (U < 0), and so the 

interactions will be Q2 or Q3. Taking this into account, the quadrant patterns should be very 

similar between the first and second half-cycles. 
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Figure 69. Quadrant analysis for experiment 10, at location z = 24.96 mm and phase 90º. Dashed lines represent the 

threshold given by H = 2. Highlighted points are above the threshold and are the only ones that count 
towards the quadrant analysis. For this particular phase and location the dominant quadrant is Q1. 

 

Contour plots identifying each one of the four types of quadrant interactions were generated for 

all experiments. Results are presented in Figure 70 for experiments 1, 5 and 10. The other 

experiments can be found in APPENDIX C. 

 

Despite some scatter in the plots, some general patterns can be observed. First, it is worth noting 

the big difference existing between the patterns of experiment 1 (laminar regime) and the 

patterns in experiments 5 and 10. In experiment 1 (Figure 70a), there seems to be some effect 

causing the quadrant patterns to be different between the first and second half-cycles. The reason 

for this effect can be found in the skewness patterns for the streamwise velocity fluctuations 

presented before in Figure 67. As it was mentioned then, the streamwise velocity fluctuations 

show negative skewness along both half-cycles in the upper part of the oscillatory boundary 
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layer, giving as a result that the fluctuations go with the flow for the second half-cycle, and thus 

the quadrant becomes Q4 from a Q3 in the first half-cycle. For the lower part of the boundary 

layer, the quadrant pattern is quite mixed without any general trend. In any case, it must be 

mentioned that being that the absolute magnitude of turbulence in this experiment was so small, 

the existence of turbulence interactions, sweeps and ejections, may be questionable, so the 

quadrant analysis in this case should be interpreted carefully. 

 

For experiment 5 (Figure 70b), several zones can be distinguished from the analysis. In 

particular, a zone of outward interactions (Q1) was found in the upper part of the boundary layer 

(z = 10 mm to 30 mm), which seems to act as a divide between the boundary layer flow and the 

outer flow, essentially sending turbulence out of the boundary layer. In the middle part of the 

boundary layer (z = 1 mm to 10 mm) two distinct zones were identified: first, a zone of inward 

interactions (Q3), mainly dominant from phases 0º to 60º, during flow acceleration; second, a 

zone of ejections (Q2), mainly dominant from phases 90º to 180º, during flow deceleration. In 

between, both zones coexist during phases 60º to 90º. All these zones seem to be moving 

upwards as the cycle progresses. Closer to the bed and inside the viscous sublayer (z < 1 mm), 

zones of outward interactions (Q1) and sweeps (Q4) alternate each other without a dominant 

pattern. 

 

For experiment 10 (Figure 70c), a similar quadrant pattern was observed as in experiment 5. In 

this case, however, the zones are more clearly delimited. In particular, the upper zone of outward 

interactions is still there but extends further up to about z = 60 mm. The zones of inward 

interactions (Q3) and ejections (Q2) in the middle part of the boundary layer are more clearly 

separated now, with Q3 remaining in phases 0º to 60º and Q2 taking over the zone between 

phases 60º and 90º and extending up to 180º. In the lower part of the boundary layer and in the 

viscous sublayer, zones of outward interactions (Q1) and sweeps (Q4) coexist again, however, it 

seems that the presence of sweeps has increased slightly with respect to experiment 5 for the 

later phases of the oscillation between 150º and 180º. 
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Figure 70. Quadrant analysis contours for experiments 1 (a), 5 (b) and 10 (c). 

 

The quadrant patterns found in this work will be useful for future work related with the analysis 

of fluxes and transport patterns in oscillatory flows, and in particular in the context of sediment 

particles, sediment transport, suspended sediment concentrations and sediment fluxes. 

 

 

a) 

b) 

c) 
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CHAPTER 8 

VISCOUS SUBLAYER ANALYSIS 

8.1 Bed shear stress 

Bed shear stress (τb) along the cycle was obtained from the total shear stress near the bottom, 

which includes both the viscous and turbulent components, as described in the methodology. 

Inside the viscous sublayer the total shear stress reaches a nearly constant value, and so a good 

estimate of τb can be calculated as the average of the total shear stress for the z locations inside 

the viscous sublayer. This is only possible when measurements are available very close to the 

bottom and inside the viscous sublayer, as it was the case in these experiments. Otherwise, it 

would not be possible to get τb from the total shear stress, and most likely τb values would be 

underestimated. 

 

In addition, two other methods were tested for comparison: the linear fit and the logarithmic fit. 

Results from the linear fit method were obtained by fitting a straight line to the linear part of the 

velocity profiles inside the viscous sublayer, then obtaining the value of shear velocity and bed 

shear stress, as described in the methodology. This method gave very similar results as the total 

shear stress method. Indeed, the linear fit method is equivalent to calculating the viscous shear 

stress near the bottom. And since most of the total shear stress is due to the viscous component 

near the bottom, both results are expected to be very close. Results for the logarithmic fit method 

were obtained by fitting a logarithmic equation to the logarithmic part of the profiles (which 

become a straight line in a semi-log plot), then obtaining the value of shear velocity and bed 

shear stress, as described in the methodology. Results from this method are conditioned to the 

presence of a logarithmic layer in the streamwise velocity profile, which is not always the case in 

oscillatory flows. 

 

Using these three methods bed shear stress plots were generated for all experiments. Only 

experiments 1, 5 and 10 are shown here (Figure 71), the others can be found in APPENDIX C. 
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From these plots it can be observed that the magnitude of the maximum bed shear stress (τb_max) 

increases with Rew, as it was expected. Indeed, faster flows are expected to generate more shear 

on the bottom. A value of 0.11 N/m2 was obtained for experiment 1 (laminar regime), which 

agrees quite well with the theoretical value of 0.12 N/m2 predicted by the laminar solution. For 

experiment 5 (transition regime) this value was 0.32 N/m2, while for experiment 10 (turbulent 

regime) it was 1.5 N/m2. 

 

Also, two important characteristics of oscillatory flows can be observed from these plots. First, 

due to the unsteady nature of the oscillatory boundary layer, bed shear stress is not a constant, 

but changes for every phase along the cycle. Also, the shape of the bed shear stress evolution 

along the cycle is not constant, but changes depending on Rew, particularly during the transition 

regime. This way, for low Rew in the laminar regime (Rew < 6x104), bed shear stress typically 

follows a sinusoidal curve, with the maximum around phase 45º, as it is the case of experiment 1 

(Figure 71a). This result agrees with the analytical solution for the laminar regime presented 

before in Figure 9. As Rew increases, the shape of the curve changes and the phase of the 

maximum shifts closer to phase 90º. For high Rew in the turbulent regime (Rew > 6x105) as in 

experiment 10 (Figure 71c), the shape stabilizes, although is not a perfect sinusoidal, and the 

maximum stays around phase 85º. For intermediate values of Rew in the transition regime (6x104 

< Rew < 6x105), the shape of the bed shear stress evolution along the cycle changes dramatically, 

even showing a double peak, one in the acceleration zone and one in the deceleration zone of 

each half-cycle, as it can be observed in experiment 5 (Figure 71b). In this transition regime, the 

maximum of the bed shear stress shifts from phase 45º near the laminar regime to phases around 

120º in the middle of the transition, and then back to around 85º as Rew gets closer to the fully 

turbulent regime. These observations for the bed shear stress in the transition regime constitute 

one of the main findings of this work and are discussed in more detail in the next section. 

 

From the plots in Figure 71, it can also be observed that the linear fit method (green line) gives 

very similar results to the total shear stress method (red line) as it was expected. On the contrary, 

the logarithmic fit method is only able to produce good results for the high Rew experiments, 

close to the fully turbulent regime, and even so, only for a few phases along the cycle. 
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Figure 71. Bed shear stress cycle evolution for experiments 1 (a), 5 (b) and 10 (c). 

 

Indeed, as it was shown by Sleath (1987), the velocity profile only becomes logarithmic for a 

few phases and vertical locations in the flow. The range of phases with a logarithmic velocity 

profile increases with Rew, typically expanding to cover all the phases of decelerating flow for 

high Rew, as it was also shown by Jensen (1988). For the experiments presented in this work, a 

logarithmic zone was first observed for experiment 4 with Rew = 2.3x105, for a few phases 

a) 

b) 

c) 
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around 130º. However, the value of τb was overestimated when using this method for 

experiments in the transition regime. Only from experiment 8 (Rew = 5.4x105) and beyond, the 

values of τb from the logarithmic fit gave reasonable results compared to the other two methods. 

For experiment 10 (Rew = 8.7x105), the logarithmic zone was present for phases between 70º and 

150º and τb values were very similar to those obtained from the other two methods. However, the 

phase at which the maximum occurs was not properly captured by the logarithmic fit method, as 

it can be observed in Figure 71c. Also, a major disadvantage of this method is that it is unable to 

provide information of τb outside of those phases where a logarithmic profile exists. 

 

8.2 Phase difference of bed shear stress 

From the bed shear stress results it was observed that the phase of the maximum bed shear stress 

(τb_max) experienced a dramatic change as Rew increased. First, τb_max was ahead of the outer flow 

velocity maximum (Uout_max) for the low Rew experiments. Then it shifted to phases later than 

Uout_max for some of the intermediate Rew experiments. And finally, τb_max returned slightly ahead 

of Uout_max for the high Rew experiments. Bed shear stress in this Rew range had been reported 

before by other authors (Hino et al., 1983; Jensen, 1988), however no explanation was provided 

for the existence of this effect by any of them. Furthermore, when Jensen (1988) reported the 

phase difference (Δφ) between τb_max and Uout_max (see Figure 17), he ignored this effect and only 

considered positive values of Δφ, meaning that τb_max could only be ahead of Uout_max. As it will 

be shown in this section, that plot was misleading, since Δφ can indeed exhibit negative values 

for a significant range of Rew in the transition regime. 

 

In order to understand this effect, the experiments in this work were specifically designed to 

cover the transition regime using small increments in Rew. This allowed to capture the evolution 

of Δφ along the transition regime with great detail. To better illustrate this effect, a plot of bed 

shear stress evolution for one half-cycle is shown in Figure 72 for all experiments together in the 

same plot. This plot is similar to the one presented by Jensen (1988), included in Figure 16. Note 

that bed shear stress values have been normalized for each experiment to allow comparison 

between them. This way the focus was on the shapes of the lines and not on the specific values, 
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and so the phases where bed shear stress peaks occur were easier to identify. Also, an offset has 

been applied to each experiment in the vertical axis to be able to stack all lines together in the 

same plot, which helped to compare visually between experiments. In addition, lines 

corresponding to the experiments of Hino et al. (1983) and Jensen (1988) are shown for values 

of Rew that were similar in their experiments. From this plot, it can be observed that the bed shear 

stress along the transition regime experiences two peaks of high intensity. One of the peaks was 

always found in the acceleration stage of the half-cycle (phases 0º to 90º) and is indicated in 

green, while the other was mainly found in the deceleration stage (90º to 180º) and is indicated in 

red. The higher of the two peaks for each experiment is indicated with a blue circle. It can be 

observed that the green peak was dominant for the low Rew experiments up until Rew = 2.3 x 105. 

On the contrary, the red peak starts to appear from Rew = 1.5 x 105 and then became dominant for 

Rew ≥ 2.9 x 105. The green peak still existed for a few more experiments and then it vanished for 

Rew ≥ 5.4 x 105. 

 

From these observations and taking into account the results obtained from the analysis of the 

turbulence characteristics of the oscillatory boundary layer, it is possible to look into the origin 

of each one of the peaks. In particular, it could be argued that the green peak was related to the 

laminar regime of the flow. Indeed, this was the only peak existing for the low Rew experiments, 

corresponding to the laminar regime. As Rew increased, the flow in the boundary layer 

transitioned to a more turbulent regime, however, for the first part of the half-cycle, the laminar 

behavior still prevailed even for high Rew, which explains why the green peak can still exist at 

Rew = 5.4 x 105, which is the upper end of the transition. On the other hand, it could be argued 

that the red peak was related to the turbulent regime. Indeed this peak was non-existing for the 

low Rew. Only when Rew increased the red peak appeared, and it did so in the later part of the 

half-cycle, where turbulence perturbations start to reach the bottom. This peak became stronger 

as Rew increased, and at the same time the phase shifted slowly towards the earlier part of the 

half-cycle. This indeed corresponds to the behavior observed in the turbulent intensities, which 

got stronger and closet to the bed for the earlier phases of the half-cycle as Rew increased. 

Finally, for experiment 10 with Rew in the turbulent regime, the red peak was the only peak 

existing and the shape of the bed shear stress evolution became more sinusoidal again. 
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Figure 72. Normalized bed shear stress evolution during one half-cycle for experiments 1 to 10. Also, results from 

Hino et al. (1983) and Jensen (1988) for similar values of Rew are shown for comparison. 
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In addition, it was observed in the mean flow analysis that the mean velocity near the bed 

experienced a significant increase during the deceleration stage of the half-cycle as Rew 

increased. That velocity increase was visible in the “lobes” appearing in the contour plots of 

Figure 48a and Figure 49a, and is very much related to the increase in bed shear stress and the 

appearance of the red peak. Altogether, this analysis shows how turbulent effects compete with 

laminar effects during the transition regime, and how eventually the turbulence effects dominate 

close to the bottom as Rew increases. 

 

From the previous analysis, the phase difference (Δφ) can be calculated between the maximum 

bed shear stress (which is given at the green or red peaks) and the maximum outer flow velocity 

(which corresponds to phase 90º) for all the experiments. Results are shown in Figure 73, with 

the green and red peaks having the same meaning as in Figure 72. Circled in blue are the peaks 

corresponding to the maximum bed shear stress. It can be observed that Δφ was positive 

(meaning there was a phase lead) for the low Rew experiments, as it was expected. This agrees 

with the theory, which predicts a 45º phase lead in the laminar regime. As Rew increased, Δφ 

reduced slowly to values around 30º. For Rew = 2.9 x 105, Δφ became negative (meaning there 

was a phase lag) and this was due to the red peak becoming dominant. This indicated that 

turbulent effects were getting stronger and eventually created higher bed shear stress than the 

laminar effects, as explained before. In this new situation with the red peak dominant, as Rew 

increased, the phase of the peak got closer to phase 90º and this in turn made Δφ smaller, 

although still negative. Eventually, for Rew = 6.3 x 105, Δφ became positive again, and then 

remained at values around 5º to 10º in the turbulent regime. 

 

A plot similar to Figure 73 was made by Jensen (1988) and is included in Figure 17. However, in 

Jensen’s plot Δφ was always positive. He completely overlooked the effect of the phase lag 

during the transition regime, despite having one experiment in this condition. Also, the symbol 

corresponding to Hino et al. (1983) experiment was placed in the positive Δφ zone, when in fact 

corresponds also to a situation with phase lag, as it is now included in Figure 73. The plot of 

Jensen (1988) although very valuable at the time, can be misleading in the interpretation of the 

phase lead and phase lag of the maximum bed shear stress. 
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Figure 73. Phase difference (Δφ) of bed shear stress peak (τb_max) with respect to maximum outer flow velocity 
(Uout_max). 

 

The consequences of these observations about the behavior of Δφ during the transition regime 

could be very significant for all the processes related to sediment transport, and in particular to 

sediment entrainment in suspension. Indeed, the fact that the maximum bed shear stress could 

happen either some time before or after the maximum outer flow velocity, would significantly 

change the time when sediments are entrained in suspension. This in turn would affect to which 

part of the flow in the oscillation cycle the suspended sediments are exposed. If they were 

suspended at the deceleration stage of the first half-cycle, it is possible that they could be subject 

to the current created by the second half-cycle for longer time. This effect would transport the 

suspended particles in the opposite direction to the flow that put them in suspension in the first 

place. Furthermore, under non-symmetrical wave conditions or with symmetrical waves but in 

the presence of a small current superimposed, this effect could create situations where sediments 

could be traveling in the direction opposite to the net current in the area. This could have a 

dramatic effect on the estimation of sediment fluxes. The analysis of these processes, however, 

falls outside of the scope of this work, and further analysis is required to better understand them. 
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8.3 Shear Velocity 

Shear velocity (U*) along the cycle was obtained from the bed shear stress as * bU τ ρ= . 

Results are presented in Figure 74 for experiments 1, 5 and 10. Plots for the other experiments 

can be found in APPENDIX C. 

 

 

 

 
Figure 74. Shear velocity cycle evolution for experiments 1 (a), 5 (b) and 10 (c). 

a) 

b) 

c) 
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Shear velocity was calculated for all three methods used in τb: from the total shear stress at the 

bottom, from the linear fit of streamwise velocity profiles near the bottom, and from the 

logarithmic fit of streamwise velocity profiles inside the boundary layer. In fact, for the two 

fitting methods, U* was obtained directly from the fit, then τb was calculated from U*. 

 

As a consequence, U* shows the same behavior as it was described for τb before, both in terms of 

the evolution along the cycle and also the change in shape with increasing Rew. The main 

difference would be the magnitude, since U* ~ τb
½. This relation makes the shape of U* observed 

in the plots (Figure 74) look more smooth than the shape of τb., except near the phases of flow 

reversal, where the change becomes more sharp. Still, the double peak effect and the phase shift 

of the shear velocity maximum (U* max) with increasing Rew along the transition regime are also 

present, as it was the case in τb plots. 

 

Despite the fact that the value of U* changes for every phase along the cycle, it is necessary to 

keep in mind that the maximum (U* max) is commonly used in the literature as a reference to 

compare between different experiments and to use in subsequent calculations, regardless of the 

phase in the flow where it might occur. 

 

8.4 Wave friction factor 

Wave friction factor (fw) along the cycle was obtained from the shear velocity (U*) and the outer 

flow velocity (Uout), using the relation given in equation (8). Results of fw along the cycle for 

experiments 1, 5 and 10 are presented in the plots in Figure 75. Plots for the other experiments 

can be found in APPENDIX C. Included in the plots are also U* and Uout for reference. In order 

to avoid unrealistic values of fw due to a division by a very small number, results are only shown 

for the phases where Uout > Uout_max / 2. 

 

Similarly to U*, it was expected that the value of fw change for every phase along the cycle (fw = 

fw(ωt)), since it depends on both U* and Uout, and these in turn are also dependent on phase. 

Indeed, when looking at the plots in Figure 75, it can be clearly observed how the friction factor 
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for oscillatory flows changes along the cycle. This fact, although already mentioned in the 

literature (Jensen, 1988), it had never been shown before, and constitutes an important 

contribution from this work. 

 

 

 

 
Figure 75. Wave friction factor cycle evolution for experiments 1 (a), 5 (b) and 10 (c). 

 

a) 

b) 

c) 
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From the plots, it can also be observed how the relation between U* and Uout at different phases 

influences fw to become larger or smaller depending on the phase. In particular, for experiment 1 

(Figure 75a), the difference in phase between the curves for U* and Uout, with U* being around 

45º ahead of Uout, makes fw to show a great deal of variability along the cycle, from very high 

values near phase 45º to zero near phase 140º. For experiment 5 (Figure 75b), with U* being now 

more flat, and closer in phase with Uout, the shape of fw becomes more sinusoidal, following the 

influence of Uout. A few bumps are observed due to the peaks experienced by U*. As Rew 

increases, the shape of fw becomes more flat. This can be observed in experiment 10 (Figure 

75c), where both U* and Uout show a similar sinusoidal shape, nearly in phase, making the value 

of fw almost constant for all phases along the cycle. 

 

It must be mentioned that it is common practice to find in the literature that the wave friction 

factor be computed using the maximum value of the shear velocity (U* max) and the maximum 

value of the outer flow velocity (Uout_max), regardless of the phase where they happen. In this 

work, the value obtained this way will be named the “reference wave friction factor” (fw_ref). As 

shown from the results in this work, that method could be valid to characterize the flow for high 

Rew, in the fully turbulent regime, since fw is almost constant along the cycle. However, in the 

laminar or transition regimes, with lower Rew, the phases of U* max and Uou_maxt can be very 

different, and so reporting the wave friction factor using that method could be misleading. 

  

A plot showing fw_ref evolution with Rew along the transition regime with smooth wall is 

presented in Figure 76, including the results obtained in this work. This plot is similar to the 

diagrams presented before in Figure 19 and Figure 20 from Kamphuis (1975) and Jensen (1988), 

respectively. For comparison purposes the experimental results from Kamphuis (1975), Hino et 

al. (1983) and Jensen (1988), as well as the DNS results from Spalart and Baldwin (1987) are 

also included. In addition, analytical solutions are delineated for the laminar regime (obtained 

from the equations) and for the turbulent regime (obtained from Fredsoe (1984) approximation). 

As it can be observed from this plot, fw_ref follows a straight line (in log-log scale) in the laminar 

and turbulent regimes. However, there is no clear trend in the transition regime and consequently 

some dispersion was observed when comparing the results from the literature. The results of this 

work compared reasonably well with previous studies, although it seemed experiments 5, 7 and 8 
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could be underestimating the value of fw_ref. This could be due to the fact that in those 

experiments the first measurement location close to the bottom was at z = 0.26 mm, z = 0.24 mm 

and z = 0.23 mm respectively, compared to an average of z = 0.13 mm for the other experiments. 

Having the first measurement location higher could have caused underestimation of the bed 

shear stresses and U* in those experiments and, consequently, fw_ref would have been affected. 
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Figure 76. Reference wave friction factor (fw_ref) evolution with Rew for smooth wall. Solid symbols correspond to 

the experiments in this work. 
 

8.5 Viscous sublayer thickness 

The viscous sublayer is defined as the zone inside the boundary layer where viscous effects are 

important compared to turbulent effects. This sublayer is typically very thin for turbulent water 

flows (less than 1 mm) and is found close to the wall, where velocities and turbulence 

fluctuations are small. For steady flows, the divide between the viscous sublayer and the rest of 

the boundary layer on top is typically marked by the threshold between the linear part of the 

velocity profile near the wall and the logarithmic part of the velocity profile far from the wall. 

This threshold is known to be proportional to the viscous length scale (zv = ν/u*), which relates 

the viscosity of the fluid (ν) and the shear velocity of the flow (u*), and it can be calculated as 

*11.6v uδ ν= ⋅ . However, only the zone where the velocity profile closely follows a linear 



 

 130

relation is considered as the strictly viscous zone, which is found at *5v uδ ν= ⋅  (Schlichting, 

1979; Nezu and Rodi, 1986). 

 

For unsteady flows, and in particular for oscillatory flows, the thickness of the viscous sublayer 

(δv) is expected to change along the cycle, since the shear velocity (U*) also changes along the 

cycle. The evolution of δv along the cycle is also expected to be affected by the acceleration and 

deceleration of the flow and also by the flow reversal, since these conditions create significant 

changes in the vertical distribution of turbulence, and in particular near the bottom. 

 

For the experiments in this work, the thickness of the viscous sublayer (δv) was difficult to 

determine. When the classic relation for steady flows was used, it was found that it didn’t work 

well for certain phases along the cycle, and also depending on Rew. For instance, in the high Rew 

experiments, zones of high turbulence were found below the threshold and inside the viscous 

sublayer for several phases along the cycle, while in the low Rew experiments, zones with high 

viscous stresses and very low turbulence where left outside above the threshold. This issue has 

not been previously reported in the literature. In fact, very little experimental evidence was found 

about the viscous sublayer in oscillatory flows over a smooth wall. Only the paper by Hino et al. 

(1983) shows the thickness of the viscous sublayer for their experiment in the transition regime, 

however they didn’t mention how it was calculated. For the laminar regime, an analytical 

solution was provided by Rayleigh (1911), who investigated deeper into the Stokes second 

problem, and found that δv is proportional to (νt)1/2. No reference was found in this regard for the 

turbulent regime. 

 

As a consequence, a new method was developed as part of this work to obtain a reasonable 

estimation of the thickness of the viscous sublayer (δv) along the cycle. The method takes a step 

back from the steady flow relation and goes back to the very definition of the viscous sublayer, 

trying to find the zone of the flow near the wall where viscous effects are significant compared to 

turbulent effects. In order to do this, a ratio of viscous forces to turbulent forces was devised in 

the following way: 

 



 

 131

 _ vviscous forcesratio VT
turbulent forces e

τ= =       (52) 

 

where the viscous shear stress (τv) was used as the characteristic viscous force and the turbulent 

kinetic energy (e = ρ * TKE) as the characteristic turbulent force. Note that both variables have 

the same units (N/m2), thus ratio_VT is a dimensionless variable. Due to limitations in the 

available data near the bottom, only the streamwise contribution to the turbulent kinetic energy is 

considered for this analysis. This way, equation (52) can be rewritten as follows: 
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The question remains as to find a suitable value of ratio_VT that defines the threshold of the 

viscous sublayer. In this regard a simplification can be made to equation (53) in order to obtain a 

working relation near the bottom. In particular, near the bottom, the viscous shear stress can be 

approximated by τv ≈ ρ (U*)2 , resulting in: 
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Also, it is worth looking at the equivalent situation for the case of steady flows. As mentioned 

before, it is commonly accepted for steady flows that the limit of the purely viscous zone is 

found at z+ = 5. Looking at experimental data reported in the literature (Nezu and Nakagawa, 

1993), it is found that at that distance the relation between RMS velocity and shear velocity is 

uRMS / u* ≈ 1.8. This relation gives an idea of the level of turbulence in relation to the viscous 

forces that is commonly accepted to be found in the limit of the viscous sublayer. Indeed, it 

indicates that a great deal of turbulence is still happening at the limit of z+ = 5, and even though 

viscous forces are dominant, turbulence forces are still present as well in the viscous sublayer. 

Now, we can use the same criterion for the case of oscillatory flows, and apply it to equation 

(54). This way, a value of ratio_VT = 0.62 is found as the threshold for the viscous sublayer in 
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oscillatory flows. In fact, this threshold should hold valid for both steady and unsteady turbulent 

flows, since it is a general criterion based on the intrinsic definition of the viscous sublayer, 

without any particularization regarding the type of flow. 

 

 

 

 
Figure 77. Contours plots showing the ratio of viscous forces to turbulent forces for experiments 1 (a), 5 (b) and 10 

(c). Also, lines of viscous sublayer thickness obtained from different methods are superimposed. 
 

a) 

b) 

c) 
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Contour plots of ratio_VT were created based on the definition given before and are shown in 

Figure 77 for experiments 1, 5 and 10. The change in sign just means the different flow direction 

along the cycle. Also, superimposed lines of viscous sublayer thickness (δv) are shown, 

calculated using the different methods explained before: Rayleigh relation for laminar regime, 

steady flow criterion for z+ = 11.6 (general threshold of viscous sublayer) and z+ = 5 (purely 

viscous zone) and the proposed method using ratio_VT = 0.62. For experiment 1 (Figure 77a), it 

can be observed that viscous forces clearly dominate up to a distance of 4 mm from the bed. 

Also, these viscous forces are present for the entire duration of each half-cycle. This indicates the 

viscous sublayer is rather thick for all phases of the oscillation in the laminar regime. Indeed, in 

this regime almost the entire boundary layer is expected to show a strong viscous influence due 

to the low amount of turbulence present. From the theory, the viscous sublayer in this regime 

should grow continuously, starting at the phase of flow reversal near the bottom. It can be 

observed in the plot that the Rayleigh line captures this behavior quite well, as it was expected, 

since it represents the analytical solution specific for the laminar regime. On the contrary, the 

lines of z+ = 5 and z+ = 11.6 completely fail to capture the behavior in this regime. This can be 

explained because these lines were conceived for developed turbulent flow, and so they struggle 

to predict δv in laminar conditions. They work well when the streamwise velocity profile is fully 

developed and shows distinct linear and logarithmic regions. Finally, the line obtained using the 

ratio_VT method shows a similar shape as the Rayleigh line, and the magnitude is larger by a 

factor of about 2. This is not necessarily wrong since the viscous sublayer in this laminar regime 

is expected to extend to almost the entire boundary layer, which for this experiment was about 10 

mm high. This method seems to be able to provide a good estimate of the overall shape of the 

viscous sublayer in the laminar regime. 

 

As Rew increases, the behavior of the viscous sublayer becomes more complex, since the flow 

can experience both laminar and turbulent conditions depending on the phase along the cycle. 

This can be observed in experiment 5 (Figure 77b), where viscous forces are dominant near the 

bottom for the acceleration stage (phases 0º to 90º) of the half-cycle, but then turbulence 

becomes stronger near the bottom for the deceleration stage (phases 90º to 180º). Under those 

conditions, the viscous sublayer is expected to behave in a laminar way at the beginning of the 
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half-cycle, then transitioning towards a turbulent behavior. This can be observed in the plot, 

where ratio_VT is high for phases -10º to 30º near the bottom in a way that suggests a laminar 

behavior. In this zone, the Rayleigh line would be applicable to predict δv. As the oscillation 

progresses, there is a transition, where viscous forces decrease from about phases 30º to 80º, then 

turbulent forces dominate afterwards from phases 80º to 170º. In this region dominated by 

turbulence, it is expected that the turbulent lines from steady flow would be able to predict δv. As 

a result, the thickness of the viscous sublayer first grows, then slowly decreases, and eventually 

becomes nearly constant in the turbulent zone. Now, looking at the line obtained from the 

ratio_VT method, it can be observed how it predicts quite well this behavior, following the 

Rayleigh line at the beginning of the half-cycle, then it decreases along the transition until it 

meets the turbulent line corresponding to z+ = 5 for the deceleration stage of the half-cycle. 

 

Looking at experiment 10 (Figure 77c), the same behavior is observed as in experiment 5, with a 

laminar zone close to the bed at the beginning of the half-cycle, then a transition and then a zone 

where turbulence dominates closer to the bed. The main difference in this case is that the 

turbulent zone close to the bed has expanded, now starting earlier in the half-cycle, covering 

phases from about 50º to 170º. As a consequence, the transition has shortened, now covering 

phases from 15º to 50º, and also the laminar zone has shortened, now covering phases from -10º 

to 15º. It can be observed how the thickness of the viscous sublayer (δv) calculated from the 

ratio_VT method was able to predict this behavior quite well, following the Rayleigh line at the 

beginning of the half-cycle, then converging towards the turbulent line of z+ = 5. 

 

Using the ratio_VT method described before, viscous sublayer thickness (δv) was calculated for 

all the experiments. This method was mainly necessary for the experiments in the turbulent 

regime, however, it also applies to the transition and laminar regimes as observed before. Results 

of δv along the cycle for experiments 1, 5 and 10 are presented in the plots in Figure 78. Plots for 

the other experiments can be found in APPENDIX C. Outer flow velocity (Uout) is also included 

in these plots for reference. 
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Figure 78. Viscous sublayer thickness cycle evolution for experiments 1 (a), 5 (b) and 10 (c). 

 

In the plots in Figure 78, it can be observed how the viscous sublayer thickness is smaller as Rew 

increases. In particular, for the laminar regime experiment (Figure 78a) δv grows along the entire 

half-cycle, reaching a value of around 4 mm. On the contrary, for the higher Rew experiments 

(Figure 78b,c) the shape of δv changes along the half-cycle, showing the different regimes 

a) 

b) 

c) 
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happening near the bed. First the flow starts laminar, and δv grows, reaching values of around 0.9 

mm for experiment 5 and 0.6 mm for experiment 10. Then the flow experiences a transition 

when turbulence effects start to be noticeable, which makes δv decrease. And for the final part of 

the half-cycle where turbulence dominates near the bed, δv becomes nearly constant with a value 

similar to that of z+ = 5 as shown before, which for experiment 5 is around 0.3 mm and for 

experiment 10 is about 0.15 mm. 

 

8.6 Summary of viscous sublayer parameters 

In Table 3 a summary of the calculated viscous sublayer parameters is presented for all 10 

experiments. These include maximum shear velocity (U* max), maximum bed shear stress (τb_max), 

phase difference (Δφ) of maximum bed shear stress with respect maximum outer flow velocity, 

reference wave friction factor (fw_ref) calculated with the maximum shear velocity and the 

maximum outer flow velocity, reference viscous length scale (Zv_min = ν / U* max) and viscous 

sublayer thickness at phase 90º (δv_90). For completeness, boundary layer thickness at phase 90º 

(δ90) and maximum boundary layer thickness (δtop) are also included. Negative values of Δφ 

indicate that τb_max happens after the outer flow velocity maximum (phase 90º typically). For 

experiments 5, 7 and 8 it was not possible to calculate δv_90 because it was smaller than the first 

data point in the profile. Instead, an approximate value of z+ = 5 is provided. 

 

U * max τ b_max Δφ f w_ref Z v_min δ v_90 δ 90 δ top

Exp no. (m/s) (N/m2) (deg) (-) (mm) (mm) (mm) (mm)
1 0.011 0.11 39.5 0.0102 0.102 3.672 4.7 9
2 0.014 0.21 39.0 0.0073 0.077 2.655 4.5 12
3 0.016 0.26 37.5 0.0057 0.059 0.693 7.3 19
4 0.017 0.28 36.5 0.0043 0.056 0.326 8.6 22
5 0.018 0.32 -26.5 0.0041 0.048 0.238 9.2 25
6 0.023 0.52 -16.0 0.0057 0.038 0.172 9.8 30
7 0.024 0.58 -7.0 0.0048 0.036 0.181 11.7 35
8 0.026 0.70 -7.5 0.0045 0.035 0.173 13.4 40
9 0.037 1.34 6.0 0.0063 0.029 0.169 17.0 45

10 0.039 1.51 2.0 0.0054 0.026 0.150 17.7 45  
Table 3. Viscous sublayer parameters calculated for each experiment. 
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CHAPTER 9 

UNCERTAINTY ANALYSIS 

Uncertainty in experimental measurements comes from different sources, the most typical being 

instrument accuracy, instrument bias, positioning accuracy, facility variability, human error and 

sampling error. Each one of these sources of uncertainty was taken into account during this 

work. In particular, sampling error was analyzed in detail. 

 

9.1 Instrument errors 

Regarding instrument accuracy, LDV systems are one of the most accurate flow measurement 

devices nowadays, and the error associated is typically very small, in the order of 1 % (Albrecht 

et al., 2003). Instrument bias can be important in unsteady flow measurements with LDV due to 

varying data rates depending on the velocity of the flow (Adrian and Yao, 1987). In order to 

avoid that bias in this work, an even-time sampling routine was developed and applied during 

data processing and it is described in the methodology in more detail. 

 

9.2 Positioning errors 

Positioning accuracy during the measurements was influenced by two effects: first, the position 

of the measurement volume at the beginning of each profile, which was always referenced to the 

PVC floor. This initial positioning had an uncertainty of ± 0.05 mm in z, and later it was further 

improved during data processing by adjusting the z = 0 level using the near-bed velocity profiles. 

The second effect related to position accuracy was the displacement of the measurement volume 

inside the tunnel. In this regard, the traverse system was capable of displacements as small as 

0.01 mm in all 3 directions, providing very good accuracy for all locations in the profile. 
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9.3 Facility variability 

The LOWST facility is equipped with an electro-mechanic system by MTS to control the 

movement of the pistons and generate the flow. The timing of this system was very accurate (in 

the order of 0.01 s), which ensured proper repetition of the oscillatory flow cycles. In addition, a 

trigger system was used to synchronize the LDV measurements with the motion of the pistons. 

Furthermore, the phase of the oscillation was fine-tuned during data processing, achieving an 

accuracy of ± 1º. 

 

9.4 Sampling error 

Sampling error is associated with the duration of a time series collected at a particular location 

and, in particular, with the number of data points (N) collected. When N is too small, the 

uncertainty of flow statistics increases, regardless of the instrument. Typically N > 1000 

independent samples are enough to compute high-order turbulence statistics at a particular 

location with small sampling errors. 

 

In the oscillatory flow experiments performed in this work, measurements were collected at each 

location for a certain number of cycles. During data processing, the time series were divided in 

cycles and all the cycles were ensembled to obtain mean flow and turbulence statistics. Because 

of this ensemble-averaging process, to compute the flow statistics for a particular phase at each 

location there was only one data point available per cycle. This is a major inconvenience when 

measuring unsteady flows and made for very time-intensive experiments. In addition, at certain 

locations (such as close to boundaries and in areas of very low velocities) it might be more 

difficult to obtain good data, and information may not be available for some of the cycles. In 

order to account for this eventuality, at those locations it was necessary to measure for longer 

time in order to collect some extra data. 

 

Once the data was collected, the standard error (S.E.) associated with the mean value of a 

particular flow statistic ( X ) was calculated according to the following equation: 
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N

XES Xσ
=).(.         (55) 

 

where σX is the standard deviation of the variable X and N is the number of data points available. 

Expressions for the standard deviation of common turbulence statistics were obtained from 

Benedict and Gould (1996). Percent error (P.E.) was then calculated as: 

 

 
NXX

XESXEP Xσ
== ).(.).(.        (56) 

 

9.4.1 Number of valid data points 

During the experiments, the goal was to measure for 130 cycles at the locations close to the 

bottom were turbulence was more intense in order to obtain better quality statistics. Far from the 

bottom, outside of the boundary layer, measurements were collected for 65 cycles, since 

turbulence levels were expected to be lower. This strategy was a good compromise to help 

reduce the total duration of each experiment by a significant amount of time with a small 

increase in the uncertainty for the upper locations. Despite the efforts, the number of available 

data points for certain phases of the oscillation was lower than the goal, especially close to the 

bottom and near the phases of flow reversal because flow velocities were very low. 

 

Contour plots showing the number of valid data points for all vertical locations (z) and phases 

were generated for all experiments. Results are presented in the following figures for 

experiments 1, 5 and 10. The other experiments can be found in APPENDIX C. 

 

Figure 79 corresponds to the streamwise velocity component (u), Figure 80 to the spanwise 

component (v) and Figure 81 to the vertical component (w). The red color corresponds to zones 

with the highest data points (up to 130), the green color to zones with intermediate number of 

points (around 65), and the blue colors to zones with low number of points (around 20 to 30). 

The blue zones are mainly found near the bottom and the phases of flow reversal, which were the 

most complicated zones to collect measurements from and consequently the drop-out rate was 

the highest. In Figure 80, for the spanwise component (v) a large zone of dark blue color can be 
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observed below z = 3 ~ 5 mm depending on the experiment, indicating no valid data points for 

those locations. From all three velocity components, the vertical one (w) was the one with the 

best data, since it exhibited the lowest drop-out rate. 

 

 

 

 
Figure 79. Contour plots showing the number of data points available in the streamwise component (u) for 

experiments 1 (a), 5 (b) and 10 (c). 
 

a) 

b) 

c) 
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Figure 80. Contour plots showing the number of data points available in the spanwise component (v) for experiments 

1 (a), 5 (b) and 10 (c). 
 

a) 

b) 

c) 
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Figure 81. Contour plots showing the number of data points available in the vertical component (w) for experiments 

1 (a), 5 (b) and 10 (c). 
 

9.4.2 Percent error of mean velocity 

Percent error of mean velocity for the streamwise component (U) was calculated using equation 

(56) and the expression for the standard deviation given by Benedict and Gould (1996): 

 

a) 

b) 

c) 
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 2'uX =σ          (57) 

 

Contour plots of percent error of U were generated for all experiments. Results are presented in 

Figure 82 for experiments 1, 5 and 10. The other experiments can be found in APPENDIX C. 

 

It can be observed that the error for the mean velocity was very small, with values below 1 % for 

most locations and phases of the oscillation (zones of dark blue color), increasing up to 5 % near 

the bottom. Only for the phases near flow reversal the error was higher, with values around 20 % 

and up to 40 % for some locations. This was mainly due to mean velocities getting close to zero 

at those locations, giving unrealistic high values of the percent error when dividing in equation 

(56) by a very small number. 

 

9.4.3 Percent error of RMS velocity fluctuations 

Percent error of the RMS velocities was calculated for the three components (URMS, VRMS, WRMS) 

using equation (56) and the expression for the standard deviation given by Benedict and Gould 

(1996): 

 

 
2

224

'4

''

u

uu
X

−
=σ         (58) 

 

Contour plots of percent error of URMS , VRMS and WRMS were generated for all experiments. 

Results are presented in the following figures for experiments 1, 5 and 10. The other experiments 

can be found in APPENDIX C. 

 

Figure 83 shows percent error for URMS , Figure 84 corresponds to VRMS , and Figure 85 

corresponds to WRMS . All three components show very similar values for all the experiments, 

with percent errors between 5 % and 10 % for most locations, and increasing up to 20 % (zones 

of light blue color) for a few locations near the bottom and near the phases of flow reversal. 
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Figure 82. Contour plots showing percent error of mean velocity for the streamwise component (U) for experiments 

1 (a), 5 (b) and 10 (c). 
 

a) 

b) 

c) 
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Figure 83. Contour plots showing percent error of URMS for experiments 1 (a), 5 (b) and 10 (c). 

 

a) 

b) 

c) 
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Figure 84. Contour plots showing percent error of VRMS for experiments 1 (a), 5 (b) and 10 (c). 

 

a) 

b) 

c) 
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Figure 85. Contour plots showing percent error of WRMS for experiments 1 (a), 5 (b) and 10 (c). 

 

 

 

 

 

a) 

b) 

c) 
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9.4.4 Percent error of turbulent kinetic energy 

In order to calculate percent error of TKE, the rules of error propagation were applied to the 

expression of TKE given in equation (43), yielding: 

 

 ( ) ( ) ( )[ ]222 '..'..'..
2
1).(. wESvESuESTKEES ++=     (59) 

 

In this equation, the standard errors (S.E.) of the mean-squared variables for the three velocity 

components 222 ',',' wvu  were calculated using equation (55) and the expression for the 

standard deviation given by Benedict and Gould (1996): 

 

 
224 '' uuX −=σ         (60) 

 

Finally, equation (56) was used to calculate the percent error of TKE. Contour plots were 

generated for all experiments. Results are presented in Figure 86 for experiments 1, 5 and 10. 

The other experiments can be found in APPENDIX C. 

 

The values obtained were similar in all the experiments, with percent errors between 10 % and 

20 % for most locations, and increasing up to 40 % (zones of yellow color) for a few locations 

near the bottom and near the phases of flow reversal. 
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Figure 86. Contour plots showing percent error of TKE for experiments 1 (a), 5 (b) and 10 (c). 

 

 

 

 

 

 

a) 

b) 

c) 
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9.4.5 Percent error of Reynolds shear stress 

Percent error of Reynolds shear stress was calculated for the x-z component '' wu  using 

equation (56) and the expression for the standard deviation given by Benedict and Gould (1996): 

 

 222 '''' wuwuX −=σ        (61) 

 

In this case, using '' wu  in the denominator of equation (56) resulted in divisions by a very 

small number for certain locations, giving unrealistic high values of percent error, so the 

denominator was replaced with the product URMS x WRMS . 

 

Contour plots were generated for all experiments. Results are presented in Figure 87 for 

experiments 1, 5 and 10. The other experiments can be found in APPENDIX C. 

 

The values obtained were similar in all the experiments, with percent errors between 10 % and 

15 % for most locations, and increasing to 30 % (zones of light blue and green color) for the 

locations near the bottom and up to 40 % (zones of yellow and orange color) near the phases of 

flow reversal. It must be noted that the percent error of this variable was substantially higher for 

the locations near the bottom compared to the rest of locations in the vertical. The reason for this 

can be explained from the fact that the number of valid data points N for the combination of u’w’ 

was smaller than for each of the individual components u’ or w’ alone. The results were more 

sensitive to this effect near the bottom were N of the individual components was already small. 

This effect can be more clearly observed in the plots of experiments 1 (Figure 87a) and 5 (Figure 

87b). 
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Figure 87. Contour plots showing percent error of TKE for experiments 1 (a), 5 (b) and 10 (c). 

 

 

 

a) 

b) 

c) 
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CHAPTER 10 

CONCLUSIONS 

10.1 General conclusions 

A series of experiments were performed involving the measurement of velocities inside the 

boundary layer of oscillatory flows over a flat and smooth bed. The experiments were designed 

to cover the complete range of wave Reynolds numbers in the transition regime, between the 

upper limit of the laminar regime and the lower limit of the turbulent regime. The main focus 

was to analyze in detail the mean flow and turbulence characteristics of the oscillatory boundary 

layer in the transition regime. The key findings of this work are summarized below. 

 

Mean velocities exhibited the characteristic behavior of oscillatory flows in which a phase lead 

exists for the velocities inside the boundary layer with respect to the outer flow. This phase lead 

was around 45º for low Rew (laminar regime) and reduced to about 10º for higher Rew (turbulent 

regime). The boundary layer was well-defined and the thickness ranged between 10 mm for 

experiment 1 (low Rew) and 50 mm for experiment 10 (high Rew). No influence from turbulence 

in the outer flow was observed inside the boundary layer. Also, the two half-cycles of the 

oscillation seemed to be quite independent from each other, as observed from the contour plots in 

many of the turbulence variables. 

 

For the experiments in the transition regime, an interesting effect was observed in the mean 

velocity for the phases of decelerating flow very close to the bed (less than 1 mm). In that zone, a 

“lobe” of higher velocities appeared in the contour plots, extending all the way down to the bed. 

First, it was located at around phase 120º for the lower Rew experiments, and then it extended 

towards phase 90º as Rew increased. This zone of higher mean velocities could be related to the 

presence of turbulence that finds its way down to the bed in the decelerating stage of the half-

cycle, bringing higher momentum flow to the lower part of the boundary layer. 
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Turbulence results support that conclusion. The zone of high turbulence intensity inside the 

boundary layer got closer to the bed as Rew increased, reaching all the way down to 0.1 mm in 

the higher Rew experiment. Also, this zone of high turbulence was located around phase 120º for 

the low Rew experiments and progressively moved ahead towards phase 60º in experiment 10. In 

terms of magnitude, turbulence increased with Rew as expected. Also, turbulence in the 

streamwise direction (URMS) was dominant with respect to the other two components and the 

magnitude was more than double of peak VRMS and nearly triple of peak WRMS. Regarding vertical 

location, URMS was more intense in the lower part of the boundary layer within 2 mm from the 

bed, while VRMS and WRMS seemed to be stronger in the upper part between 2 mm and 10 mm 

from the bed. Also, WRMS showed upwards propagation of turbulence as the cycle developed, 

mainly happening during the deceleration part of the oscillation. Outside of the boundary layer, 

results showed very similar values of turbulence for the three components, indicating 

homogenous turbulence in the outer flow. 

 

Reynolds shear stresses followed a different pattern, showing the highest intensities near the 

phase of flow reversal (180º) and located far from the bed at a distance between 5 and 20 mm. 

This distance seemed to be quite independent of Rew. The magnitude increased with Rew, as 

expected. It is likely that the occurrence of high Reynolds shear stress was associated with the 

presence of a shear layer generated by the opposing mean flow happening near the phases of 

flow reversal. This could explain the existence of vortex tubes and other coherent structures 

observed around those phases and distances from the bottom by other authors (Carstensen et al., 

2010). 

 

Viscous shear stresses dominated near the bed and they quickly vanished far from the bed, as it 

was expected. The highest values were found around the phases of maximum streamwise 

velocity. Viscous shear stress profiles revealed a zone of nearly constant intensities very close to 

the bed, which suggested the presence of a viscous sublayer. The distance at which this behavior 

was found changed for every phase in the cycle, and also with Rew. 

 

Total shear stresses were calculated from the viscous and Reynolds contributions. The two 

components were clearly differentiated inside the boundary layer: the viscous component was 
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more intense near the bed for phases around the mean velocity maximum, while the Reynolds 

component was more intense far from the bed for phases around the flow reversal. In terms of 

the relative magnitude, the viscous component dominated for the low Rew experiments in the 

laminar regime, as expected. However, for higher Rew, the viscous component was still 

dominant, such that it was three times larger than the Reynolds component for experiment 5 (in 

the transition regime) and five times larger for experiment 10 (in the turbulent regime), which 

was completely unexpected. 

 

Quadrant analysis for the experiments in the transition and fully turbulent regimes revealed a 

generalized zone of ejections in the decelerating stage of the half-cycle at a distance between 2 

mm and 20 mm from the bed. Also, zones of sweeps were found within 1 mm from the bed 

scattered along the entire half-cycle. 

 

The results of this work also provided evidence about the strong phase-dependent nature of 

several variables related to the viscous sublayer (bed shear stress, shear velocity, wave friction 

factor and viscous sublayer thickness), which was typically neglected or omitted in the literature 

before. In particular, bed shear stress and shear velocity exhibited a sinusoidal behavior for all 

Rew. The friction factor showed strong phase dependence for low Rew, while for high Rew it 

became almost constant. Viscous sublayer thickness didn’t follow any of those patterns and was 

more complicated to calculate. 

 

Bed shear stresses increased with Rew, as expected. A surprising behavior was observed in the 

phase of the maximum bed shear stress, which changed dramatically with Rew: first leading 

about 40º ahead of the outer flow for low Rew, then lagging up to 25º behind for the transitional 

Rew experiments, and finally returning slightly ahead about 5º for high Rew. Further investigation 

into this effect revealed the presence of two distinct peaks of bed shear stress in the half-cycle for 

Rew in the transition regime. One peak was located in the acceleration stage and was related to 

the laminar behavior of the boundary layer. The other peak was found in the decelerating stage 

and was related to the turbulent behavior of the boundary layer. For low Rew, the laminar peak 

dominated, while for high Rew the turbulent peak dominated. This turbulent peak slowly shifted 

from around phase 120º for low Rew towards phase 85º for the higher Rew. Results in the 
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literature had never highlighted this effect before. This finding is expected to have significant 

implications for the entrainment and transport of sediment near the bed in unsteady flows. 

 

Investigation of the viscous sublayer revealed that the classic steady flow threshold of z+ = 5 

doesn’t work well for oscillatory flows. A new method was developed to calculate the thickness 

of the viscous sublayer taking into account the ratio of viscous to turbulent forces near the bed. 

The results revealed the existence of a laminar zone in the early phases of the half-cycle where 

viscous sublayer thickness grows, followed by a transition, before turbulence from the upper part 

of the boundary layer gets near the bed compressing the viscous sublayer down. The turbulent 

zone extended towards the earlier phases of the half-cycle as Rew increased. For the highest Rew 

experiment, the thickness of the viscous sublayer in the turbulent zone was about 0.15 mm. 

 

The viscous sublayer analysis provided indirect evidence of the velocity profile becoming fully 

developed turbulent in the decelerating part of the half-cycle, in agreement with the observations 

made in the mean velocity analysis. Altogether, the results of this work show how turbulence 

effects compete with viscous effects during the transition regime, and how eventually the 

turbulence effects dominate close to the bottom as Rew increases. 

 

Finally, all these observations highlight the importance of having measurements so close to the 

bed, which where only possible with the high spatial resolution provided by the LDV in 

combination with the traverse system. A different instrument that was not capable of measuring 

within 1 mm from the bed would have completely misrepresented most of the key findings 

observed inside the oscillatory boundary layer. 

 

10.2 Future work 

A vast amount of data was collected during the 10 experiments in this work, however the 

analysis presented was not exhaustive and could be extended further. Of particular interest would 

be the analysis of the turbulent kinetic energy budget, taking into account all the terms in the 

equation including production, transport and dissipation of turbulence. This could be useful to 

provide a better understanding of the complete energy balance in oscillatory flows. 
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In addition, a good complement to this analysis would be to perform numerical simulations of 

oscillatory boundary layer flows using a CFD environment (such as OpenFoam or any other 

commercial package), in a similar way to Pedocchi et al. (2011). The results of this work could 

be very useful in the validation of such simulations. They could be performed for different 

scales, such as LES, RANS and DNS, and will help understand some of the more complicated 

effects that were difficult to capture during the experiments. 

 

Also, several authors have shown the existence of coherent structures in the oscillatory boundary 

layer, such as vortex tubes or turbulent spots. Due to the limitations of the LDV technique, it was 

not possible to capture these structures, although indirect evidence can be seen in the turbulence 

analysis performed. Further experiments using PIV could be used to capture these effects in full 

detail. 

 

Finally, it would be very interesting to explore in detail the implications of these results for 

sediment transport. In this regard, a Lagrangean model for tracking sediment particles could be 

used, in which the flow and shear stress characteristics could be fed from the experimental 

results of this work or directly from CFD results. Qualitative and also quantitative analyses could 

be done in order to understand the relation of the flow characteristics observed in these 

experiments with sediment transport and bed morphology under oscillatory flows. 
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APPENDIX A 

COMPUTER CODE FOR PROCESSING RAW LDV DATA         
(IN MATLAB©) 
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LDV_PROCESSING 

Program to read raw data from LDV measurements and process it to obtain a clean set of data that can be 
later analyzed. Applied to data from LDV measurements from experiments in the HydroLab. 

Contents 

 Main routine 

 ReadPositions_LDV 

 ReadData_LDV 

 SelectData_LDV 

 InterpData_LDV 

 Transform_LDV 

 ZeroLevel_LDV 

 CheckData_LDV 

Main routine 

% LDV_PROCESSING 

% Program to read raw data from LDV measurements and process it 

% to obtain a clean set of data that can be later analyzed. 

% Applied to data from LDV measurements from experiments in the HydroLab. 

% 

% JM Mier 

% Ven Te Chow Hydrosystems Laboratory, UIUC 

% May 2009 

% Revised March 2012 

% 

 

% Data files location 

dir_read = uigetdir('C:\USERS\JM MIER\Research\Thesis exps','Select Path for RAW DATA:'); 

dir_save = uigetdir(dir_read,'Select Path for PROCESSING RESULTS:'); 

dir_clean = uigetdir(dir_save,'Select Path for CLEAN DATA:'); 

file_traverse = dir([dir_read,'\*.txt']); 

file_list = dir([dir_read,'\*.csv']); 

 

% Display experiment name 

dir_read_dividers = find(dir_read=='\'); 

disp(' '); 

disp(['Flume:           ',dir_read(dir_read_dividers(end-3)+1:dir_read_dividers(end-2)-1)]); 

disp(['Project:         ',dir_read(dir_read_dividers(end-2)+1:dir_read_dividers(end-1)-1)]); 

disp(['Experiment:      ',dir_read(dir_read_dividers(end-1)+1:dir_read_dividers(end-0)-1)]); 

disp(['LDV_Processing:  ',dir_read(dir_read_dividers(end-0)+1:end)]); 

 

% Case example to plot 

disp(' '); 

X_case = input('X_case = '); 

Y_case = input('Y_case = '); 
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Z_case = input('Z_case = '); 

 

% Read raw velocity data 

[X Y Z] = ReadPositions_LDV(file_traverse, dir_read);         % m 

[T1_raw T2_raw T3_raw V1_raw V2_raw V3_raw] = ReadData_LDV(file_list, dir_read, X, Y, Z, X_case, Y_case, 

Z_case);         % m/s 

% Note that velocities may or may not have been transformed yet into U,V,W cartesian reference 

 

% Cycles detection and filtering of bad data points 

[T1_sel T2_sel T3_sel V1_sel V2_sel V3_sel n_cycles_T1 n_cycles_T2 n_cycles_T3 zeroT_pos_T1 zeroT_pos_T2 

zeroT_pos_T3 Ts] = SelectData_LDV(dir_save, X, Y, Z, T1_raw, T2_raw, T3_raw, V1_raw, V2_raw, V3_raw, 

X_case, Y_case, Z_case, rep); 

 

% Even-time sampling 

[T_even V1_even V2_even V3_even n_cycles_T_even Fs a] = InterpData_LDV(X, Y, Z, T1_sel, T2_sel, T3_sel, 

V1_sel, V2_sel, V3_sel, n_cycles_T1, n_cycles_T2, n_cycles_T3, zeroT_pos_T1, zeroT_pos_T2, zeroT_pos_T3, 

Ts, X_case, Y_case, Z_case, dir_save); 

% A lot of good data is discarded in this process 

% and a lot of points will be empty because of lack of good interpolation conditions 

 

% Transformation matrix 

% Convert V1,V2,V3 from LDV reference system into U,V,W in cartesian axis reference. 

% This can only be done after we have even-time sampled data 

[U V W] = Transform_LDV(X, Y, Z, V1_even, V2_even, V3_even, T_even, X_case, Y_case, Z_case, dir_save); 

 

% Conversion from cell structures to 5D matrices (easier to handle) 

% Implies having the same number of elements in every cell 

% Padding with NaNs to handle different number of cycles at each location 

n_cycles = n_cycles_T_even; 

n_cycles_max = max(max(max(n_cycles))); 

x = X; 

y = Y; 

z = Z; 

t = T_even; 

u = NaN(numel(x),numel(y),numel(z),n_cycles_max, numel(t)); 

v = NaN(numel(x),numel(y),numel(z),n_cycles_max, numel(t)); 

w = NaN(numel(x),numel(y),numel(z),n_cycles_max, numel(t)); 

for i = 1 : numel(x) 

    for j = 1 : numel(y) 

        for k = 1 : numel(z) 

            for nc = 1 : n_cycles(i,j,k) 

                u(i,j,k,nc,:) = U{i,j,k}(nc,:); 

                v(i,j,k,nc,:) = V{i,j,k}(nc,:); 

                w(i,j,k,nc,:) = W{i,j,k}(nc,:); 

            end 

        end 

    end 

end 

 

% For now on, only this variables: t,x,y,z,u,v,w 

% After this point, all locations have same number of cycles 

 

% Calculate real z=0 level (z0) 

% Needs to be calculated for every (x,y) location 

z0 = zeros(numel(x),numel(y)); 

for i = 1 : numel(x) 
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    for j = 1 : numel(y) 

        z0(i,j) = ZeroLevel_LDV(z,t(1,:),u(i,j,:,:,:),Ts,dir_save); 

    end 

end 

 

% Quality control of data 

CheckData_LDV (x,y,z,t(1,:),u,v,w,n_cycles,X_case,Y_case,Z_case,dir_save,Ts,Fs,a); 

% If data doesn't look good, repeat the processing, or check the original raw data. 

 

% Save clean data 

file_save = 'Run_clean-all.mat'; 

save([dir_clean '\' file_save], 

'x','y','z','z0','t','u','v','w','n_cycles','Ts','Fs','a','X_case','Y_case','Z_case'); 

 

% Final statements 

disp('LDV processing finished!'); 

% end of program 

ReadPositions_LDV 

function [X Y Z] = ReadPositions_LDV(file_traverse, dir_name) 

% READPOSITIONS_LDV 

% Function to read LDV measurement positions from 

% text file (.txt) with columns (x,y,z). 

% ONLY these 3 columns must be present in the file. 

% 

% file_traverse: file in the folder containing the traverse info 

% dir_name: folder where the files are 

% 

% JM Mier 

% May 2009 

% 

 

% Input parameters about the file 

line1 = 1;                      % first line of data (to get rid of headers) 

column1 = 1;                    % first column of data (to get rid of headers) 

 

file = file_traverse.name; 

file_fullpath = [dir_name '\' file]; 

 

% Reading the data 

data = dlmread(file_fullpath,'\t',line1-1, column1-1);      % first line/column to read is 0, for this  

x = data(:,1)/1000;              % position of data measurements in the horizontal-longitudinal 

y = data(:,2)/1000;              % position of data measurements in the horizontal-transversal 

z = data(:,3)/1000;              % position of data measurements in the vertical 

 

% Obtaining the grid locations of the LDV measurements for each axis 

X = unique(x); 

Y = unique(y); 

Z = unique(z); 

 

% end of function 

end 
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ReadData_LDV 

function [T1 T2 T3 V1 V2 V3] = ReadData_LDV(file_list, dir_name, X, Y, Z, X_case, Y_case, Z_case) 

% READDATA_LDV 

% Function to read data from text files with columns 

% and transform it into matrices. 

% Data MUST have been taken first moving in Z, 

% then in Y, and last in X. 

% 

% file_list: list of files in the folder 

% dir_name: folder where the files are 

% X, Y, Z: vectors containing the coordinates of the measurement locations in the flume 

% X_case, Y_case, Z_case: coordinates of the location of the case to show in the plots 

% 

% JM Mier 

% Ven Te Chow Hydrosystems Laboratory, UIUC 

% May 2009 

% Revised: March 2012 

% 

 

% Input parameters about the files 

line1 = 3;                      % first line of data (to get rid of headers) 

column1 = 1;                    % first column of data (to get rid of headers) 

 

T1 = cell(numel(X),numel(Y),numel(Z));        % preallocation for speed 

T2 = cell(numel(X),numel(Y),numel(Z));        % preallocation for speed 

T3 = cell(numel(X),numel(Y),numel(Z));        % preallocation for speed 

V1 = cell(numel(X),numel(Y),numel(Z));        % preallocation for speed 

V2 = cell(numel(X),numel(Y),numel(Z));        % preallocation for speed 

V3 = cell(numel(X),numel(Y),numel(Z));        % preallocation for speed 

 

% Main loop (through space) 

hw = waitbar(0,'Reading raw data files ...'); set(hw,'Name',[num2str(round(0*100)),' %']); drawnow; 

 

for i = 1 : numel(X)    %numel(file_list) 

    for j = 1 : numel(Y) 

        for k = 1 : numel(Z) 

            n_file = (i-1)*numel(Y)*numel(Z) + (j-1)*numel(Z) + k; 

            file = file_list(n_file).name; 

            file_fullpath = [dir_name '\' file]; 

 

% Reading the data 

data = dlmread(file_fullpath,',',line1-1,column1-1);      % first line/column to read is 0, for this 

dlmread function. (',' means delimited by commas) 

t1 = data(:,4);              % time of data measurements in channel 1 

v1 = data(:,5);              % velocity measurements in channel 1 

t2 = data(:,6);              % time of data measurements in channel 2 

v2 = data(:,7); %zeros(numel(u),1);      % velocity measurements in channel 2 

t3 = data(:,8);              % time of data measurements in channel 3 

v3 = data(:,9);              % velocity measurements in channel 3 

 

% Assign default value for empty data 

% dlmread gives a value of "0" for empty data, thus when both t=0 and v=0 means it was empty data 

% Use "-1" because it will be removed later on during the processing 

t1(t1==0 & v1==0) = -1; 

t2(t2==0 & v2==0) = -1; 
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t3(t3==0 & v3==0) = -1; 

 

% Data conversion into a matrix (X,Y,Z,S) 

T1{i,j,k} = t1;               % store in a cell matrix because every file can have a different number of 

samples, so this dimension is free in a cell structure 

T2{i,j,k} = t2;               % store in a cell matrix because every file can have a different number of 

samples, so this dimension is free in a cell structure 

T3{i,j,k} = t3;               % store in a cell matrix because every file can have a different number of 

samples, so this dimension is free in a cell structure 

V1{i,j,k} = v1;               % store in a cell matrix because every file can have a different number of 

samples, so this dimension is free in a cell structure 

V2{i,j,k} = v2;               % store in a cell matrix because every file can have a different number of 

samples, so this dimension is free in a cell structure 

V3{i,j,k} = v3;               % store in a cell matrix because every file can have a different number of 

samples, so this dimension is free in a cell structure 

 

pw = n_file/numel(file_list); 

waitbar(pw,hw); set(hw,'Name',[num2str(round(pw*100)),' %']); drawnow; 

 

% end of main loop 

        end 

    end 

end 

close(hw); 

 

% end of function 

end 

SelectData_LDV 

function [T1 T2 T3 V1 V2 V3 n_cycles_T1 n_cycles_T2 n_cycles_T3 zeroT_pos_T1 zeroT_pos_T2 zeroT_pos_T3 

Ts] = SelectData_LDV(dir_name, X, Y, Z, T1_raw, T2_raw, T3_raw, V1_raw, V2_raw, V3_raw, X_case, Y_case, 

Z_case, rep) 

% SELECTDATA_LDV 

% Function to detect the cycles of the data and also to select and filter 

% the good part of the raw data obtained with LDV. 

% 

% X, Y, Z: vectors containing the coordinates of the measurement locations in the flume 

% T1_raw, T2_raw, T3_raw, V1_raw, V2_raw, V3_raw: raw measurements of velocities and time 

% X_case, Y_case, Z_case: coordinates of the location of the case to show in the plots 

% rep: control variable to indicate if this routine is run repeatedly, so that certain parts of the code 

don't get executed 

% 

% ** It is ready to take differente number of data points in each channel 

% ** However, results would be nicer with same number of data points in each channel (although they may 

have different time stamps) ** 

% ** Use coincidence mode to achieve that (even with a rough coincidence interval) ** 

% 

% JM Mier 

% Ven Te Chow Hydrosystems Laboratory, UIUC 

% May 2009 

% Revised: March 2012 

% 
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% Cycles detection 

% Identify first row of data after sync pulse in each bin 

% and compute number of cycles at each location 

for i = 1 : numel(X) 

    for j = 1 : numel(Y) 

        for k = 1 : numel(Z) 

            zeroT_pos_T1_raw{i,j,k} = find(T1_raw{i,j,k}>circshift(T1_raw{i,j,k},-1))+1; 

            zeroT_pos_T2_raw{i,j,k} = find(T2_raw{i,j,k}>circshift(T2_raw{i,j,k},-1))+1; 

            zeroT_pos_T3_raw{i,j,k} = find(T3_raw{i,j,k}>circshift(T3_raw{i,j,k},-1))+1; 

            % when one channel has no data at some particular location (x,y,z) 

            if numel(zeroT_pos_T1_raw{i,j,k}) == 0;  zeroT_pos_T1_raw{i,j,k} = [1]; end; 

            if numel(zeroT_pos_T2_raw{i,j,k}) == 0;  zeroT_pos_T2_raw{i,j,k} = [1]; end; 

            if numel(zeroT_pos_T3_raw{i,j,k}) == 0;  zeroT_pos_T3_raw{i,j,k} = [1]; end; 

            % for the case of steady flows (only one cycle) 

            if (numel(zeroT_pos_T1_raw{i,j,k}) == 1 && numel(zeroT_pos_T2_raw{i,j,k}) == 1 && 

numel(zeroT_pos_T3_raw{i,j,k}) == 1) 

                zeroT_pos_T1_raw{i,j,k} = [1;zeroT_pos_T1_raw{i,j,k}]; 

                zeroT_pos_T2_raw{i,j,k} = [1;zeroT_pos_T2_raw{i,j,k}]; 

                zeroT_pos_T3_raw{i,j,k} = [1;zeroT_pos_T3_raw{i,j,k}]; 

            end 

            n_cycles_T1_raw(i,j,k) = numel(zeroT_pos_T1_raw{i,j,k})-1;    % the -1 supresses one extra 

count from circshift; the last cycle, which is usually incomplete is still considered, since the data 

points are still good data; the first cycle, on the contrary, is always incomplete and wrong data, and 

never makes it into the count. 

            n_cycles_T2_raw(i,j,k) = numel(zeroT_pos_T2_raw{i,j,k})-1;    % the -1 supresses one extra 

count from circshift; the last cycle, which is usually incomplete is still considered, since the data 

points are still good data; the first cycle, on the contrary, is always incomplete and wrong data, and 

never makes it into the count. 

            n_cycles_T3_raw(i,j,k) = numel(zeroT_pos_T3_raw{i,j,k})-1;    % the -1 supresses one extra 

count from circshift; the last cycle, which is usually incomplete is still considered, since the data 

points are still good data; the first cycle, on the contrary, is always incomplete and wrong data, and 

never makes it into the count. 

        end 

    end 

end 

 

% Discard first cycle 

% Will only have effect in oscillatory flow, where the first cycle is incomplete and data has wrong time 

stamp 

for i = 1 : numel(X) 

    for j = 1 : numel(Y) 

        for k = 1 : numel(Z) 

 

            % New vectors T1,T2,T3,V1,V2,V3 

            if rep == 1         % Remove first cycle data only when this routine is executed for the 

first time 

                V1{i,j,k} = V1_raw{i,j,k}(zeroT_pos_T1_raw{i,j,k}(1):end); 

                V2{i,j,k} = V2_raw{i,j,k}(zeroT_pos_T2_raw{i,j,k}(1):end); 

                V3{i,j,k} = V3_raw{i,j,k}(zeroT_pos_T3_raw{i,j,k}(1):end); 

                T1{i,j,k} = T1_raw{i,j,k}(zeroT_pos_T1_raw{i,j,k}(1):end); 

                T2{i,j,k} = T2_raw{i,j,k}(zeroT_pos_T2_raw{i,j,k}(1):end); 

                T3{i,j,k} = T3_raw{i,j,k}(zeroT_pos_T3_raw{i,j,k}(1):end); 

            elseif rep == 2     % Don't remove first cycle data when this routine is executed subsequent 

times 

                V1{i,j,k} = V1_raw{i,j,k}; 

                V2{i,j,k} = V2_raw{i,j,k}; 
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                V3{i,j,k} = V3_raw{i,j,k}; 

                T1{i,j,k} = T1_raw{i,j,k}; 

                T2{i,j,k} = T2_raw{i,j,k}; 

                T3{i,j,k} = T3_raw{i,j,k}; 

            end 

 

            % New zeroT positons and number of cycles 

            zeroT_pos_T1{i,j,k} = [1 ; find(T1{i,j,k}>circshift(T1{i,j,k},-1))+1]; 

            zeroT_pos_T2{i,j,k} = [1 ; find(T2{i,j,k}>circshift(T2{i,j,k},-1))+1]; 

            zeroT_pos_T3{i,j,k} = [1 ; find(T3{i,j,k}>circshift(T3{i,j,k},-1))+1]; 

 

            n_cycles_T1(i,j,k) = numel(zeroT_pos_T1{i,j,k})-1; 

            n_cycles_T2(i,j,k) = numel(zeroT_pos_T2{i,j,k})-1; 

            n_cycles_T3(i,j,k) = numel(zeroT_pos_T3{i,j,k})-1; 

        end 

    end 

end 

 

% We are not discarding the last cycle (usually not complete, but good data points), 

% because it is still useful for the interpolation. 

 

% Plot number of cycles 

figure() 

hb = bar3h([squeeze(n_cycles_T1(:,Y_case,:)) squeeze(n_cycles_T2(:,Y_case,:)) 

squeeze(n_cycles_T3(:,Y_case,:))],'grouped'); 

set(hb,'EdgeColor','none'); colormap([0 1 0;0 0 1;1 0 1]); 

legend('V1','V2','V3'); 

title(['Number of cycles for points in section:  Y = ', num2str(Y(Y_case)*1000), ' mm']); 

xlabel('X locations'); 

ylabel('# cycles'); 

zlabel('Z locations'); 

view([-65 22]); 

set(gcf,'position',[228 228 560 420]);          % Back to original size in left window 

 

% Portion of good data selection ("chopping") 

% Period of the signal (for steady flow, input the total duration of the signal to analyze) 

Ts = input('Period (unsteady) or Max duration (steady) of input signal (in seconds) = '); 

for i = 1 : numel(X) 

    for j = 1 : numel(Y) 

        for k = 1 : numel(Z) 

            % New vectors T1,T2,T3,V1,V2,V3 

            V1{i,j,k} = V1{i,j,k}(find(T1{i,j,k} >= 0 & T1{i,j,k} < Ts)); 

            V2{i,j,k} = V2{i,j,k}(find(T2{i,j,k} >= 0 & T2{i,j,k} < Ts)); 

            V3{i,j,k} = V3{i,j,k}(find(T3{i,j,k} >= 0 & T3{i,j,k} < Ts)); 

            T1{i,j,k} = T1{i,j,k}(find(T1{i,j,k} >= 0 & T1{i,j,k} < Ts)); 

            T2{i,j,k} = T2{i,j,k}(find(T2{i,j,k} >= 0 & T2{i,j,k} < Ts)); 

            T3{i,j,k} = T3{i,j,k}(find(T3{i,j,k} >= 0 & T3{i,j,k} < Ts)); 

 

            % New zeroT positons and number of cycles 

            zeroT_pos_T1{i,j,k} = [1 ; find(T1{i,j,k}>circshift(T1{i,j,k},-1))+1]; 

            zeroT_pos_T2{i,j,k} = [1 ; find(T2{i,j,k}>circshift(T2{i,j,k},-1))+1]; 

            zeroT_pos_T3{i,j,k} = [1 ; find(T3{i,j,k}>circshift(T3{i,j,k},-1))+1]; 

 

            n_cycles_T1(i,j,k) = numel(zeroT_pos_T1{i,j,k})-1; 

            n_cycles_T2(i,j,k) = numel(zeroT_pos_T2{i,j,k})-1; 

            n_cycles_T3(i,j,k) = numel(zeroT_pos_T3{i,j,k})-1; 
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        end 

    end 

end 

 

% Number of cycles to analyze (for steady flow, usually input "1") 

Nc = input('Max number of cycles to analyze (for steady flow =1) = '); 

for i = 1 : numel(X) 

    for j = 1 : numel(Y) 

        for k = 1 : numel(Z) 

            % New vectors T1,T2,T3,V1,V2,V3 

            V1{i,j,k} = 

V1{i,j,k}(zeroT_pos_T1{i,j,k}(1):zeroT_pos_T1{i,j,k}(min([n_cycles_T1(i,j,k),Nc])+1)-1); 

            V2{i,j,k} = 

V2{i,j,k}(zeroT_pos_T2{i,j,k}(1):zeroT_pos_T2{i,j,k}(min([n_cycles_T2(i,j,k),Nc])+1)-1); 

            V3{i,j,k} = 

V3{i,j,k}(zeroT_pos_T3{i,j,k}(1):zeroT_pos_T3{i,j,k}(min([n_cycles_T3(i,j,k),Nc])+1)-1); 

            T1{i,j,k} = 

T1{i,j,k}(zeroT_pos_T1{i,j,k}(1):zeroT_pos_T1{i,j,k}(min([n_cycles_T1(i,j,k),Nc])+1)-1); 

            T2{i,j,k} = 

T2{i,j,k}(zeroT_pos_T2{i,j,k}(1):zeroT_pos_T2{i,j,k}(min([n_cycles_T2(i,j,k),Nc])+1)-1); 

            T3{i,j,k} = 

T3{i,j,k}(zeroT_pos_T3{i,j,k}(1):zeroT_pos_T3{i,j,k}(min([n_cycles_T3(i,j,k),Nc])+1)-1); 

 

            % New zeroT positons and number of cycles 

            zeroT_pos_T1{i,j,k} = [1 ; find(T1{i,j,k}>circshift(T1{i,j,k},-1))+1]; 

            zeroT_pos_T2{i,j,k} = [1 ; find(T2{i,j,k}>circshift(T2{i,j,k},-1))+1]; 

            zeroT_pos_T3{i,j,k} = [1 ; find(T3{i,j,k}>circshift(T3{i,j,k},-1))+1]; 

 

            n_cycles_T1(i,j,k) = numel(zeroT_pos_T1{i,j,k})-1; 

            n_cycles_T2(i,j,k) = numel(zeroT_pos_T2{i,j,k})-1; 

            n_cycles_T3(i,j,k) = numel(zeroT_pos_T3{i,j,k})-1; 

        end 

    end 

end 

 

% Remove individual cycles 

p = menu('Remove any individual cycles?','Yes','No'); 

 

if p == 1 

 

    disp(' '); 

    disp('Analysing individual cycles:'); 

 

    n_cycles_T = zeros(numel(X),numel(Y),numel(Z)); 

 

    figure(); 

    hp1 = subplot(3,1,1); 

    hp2 = subplot(3,1,2); 

    hp3 = subplot(3,1,3); 

    linkaxes([hp1 hp2 hp3],'x'); 

    set(gcf,'position',[1 80 1024 600]);          % Maximizes figure window 

 

    % Loop through all files and plot the data 

    for i = 1 : numel(X) 

        for j = 1 : numel(Y) 

            for k = 1 : numel(Z) 
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                t1p = T1{i,j,k}; 

                v1p = V1{i,j,k}; 

                cla(hp1); 

                plot(hp1,t1p,v1p,'.g','MarkerSize',1); 

                legend(hp1,'V1','Location','Best'); 

                title(hp1,['Data selection at z = ', num2str(Z(k)*1000), ' mm']); 

                ylabel(hp1,'Velocity (m/s)'); 

 

                t2p = T2{i,j,k}; 

                v2p = V2{i,j,k}; 

                cla(hp2); 

                plot(hp2,t2p,v2p,'.b','MarkerSize',1); 

                legend(hp2,'V2','Location','Best'); 

                ylabel(hp2,'Velocity (m/s)'); 

 

                t3p = T3{i,j,k}; 

                v3p = V3{i,j,k}; 

                cla(hp3); 

                plot(hp3,t3p,v3p,'.m','MarkerSize',1); 

                legend(hp3,'V3','Location','Best'); 

                xlabel(hp3,'Time (s)'); 

                xlim([0 Ts]); 

                ylabel(hp3,'Velocity (m/s)'); 

 

                r = input(['Plotting: Z_case = ', num2str(k),'. Remove any cycles at this location? 

(Yes=1 , No=0): ']); 

                while r == 1 

                    n_cycles_T(i,j,k) = max([n_cycles_T1(i,j,k) n_cycles_T2(i,j,k) n_cycles_T3(i,j,k)]);        

% Max number of cycles in any of the 3 channels, for this location (X,Y,Z) 

                    c = 0;      % Count of number of cycles deleted at this location 

 

                    for nc = 1 : n_cycles_T(i,j,k) 

 

                        nc_1 = min([nc , n_cycles_T1(i,j,k)+c]);              % In case the 3 channels 

don't have the same number of cycles 

                        t1p = T1{i,j,k}(zeroT_pos_T1{i,j,k}(1):zeroT_pos_T1{i,j,k}(nc_1+1-c)-1); 

                        v1p = V1{i,j,k}(zeroT_pos_T1{i,j,k}(1):zeroT_pos_T1{i,j,k}(nc_1+1-c)-1); 

                        cla(hp1); 

                        plot(hp1,t1p,v1p,'.g','MarkerSize',1); 

                        legend(hp1,'V1','Location','Best'); 

                        title(hp1,['Data selection at z = ', num2str(Z(k)*1000), ' mm']); 

                        ylabel(hp1,'Velocity (m/s)'); 

 

                        nc_2 = min([nc , n_cycles_T2(i,j,k)+c]);              % In case the 3 channels 

don't have the same number of cycles 

                        t2p = T2{i,j,k}(zeroT_pos_T2{i,j,k}(1):zeroT_pos_T2{i,j,k}(nc_2+1-c)-1); 

                        v2p = V2{i,j,k}(zeroT_pos_T2{i,j,k}(1):zeroT_pos_T2{i,j,k}(nc_2+1-c)-1); 

                        cla(hp2); 

                        plot(hp2,t2p,v2p,'.b','MarkerSize',1); 

                        legend(hp2,'V2','Location','Best'); 

                        ylabel(hp2,'Velocity (m/s)'); 

 

                        nc_3 = min([nc , n_cycles_T3(i,j,k)+c]);              % In case the 3 channels 

don't have the same number of cycles 

                        t3p = T3{i,j,k}(zeroT_pos_T3{i,j,k}(1):zeroT_pos_T3{i,j,k}(nc_3+1-c)-1); 
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                        v3p = V3{i,j,k}(zeroT_pos_T3{i,j,k}(1):zeroT_pos_T3{i,j,k}(nc_3+1-c)-1); 

                        cla(hp3); 

                        plot(hp3,t3p,v3p,'.m','MarkerSize',1); 

                        legend(hp3,'V3','Location','Best'); 

                        xlabel(hp3,'Time (s)'); 

                        xlim([0 Ts]); 

                        ylabel(hp3,'Velocity (m/s)'); 

 

                        rr = input(['Plotting: Z_case = ', num2str(k), ', nc = ', num2str(nc),'. Remove 

this cycle? (Yes=1 , No=0): ']); 

                        if rr == 1 

                            % New T1,T2,T3 and V1,V2,V3 vectors 

                            if nc <= nc_1; V1{i,j,k}(zeroT_pos_T1{i,j,k}(nc-c):zeroT_pos_T1{i,j,k}(nc+1-

c)-1) = []; end; 

                            if nc <= nc_2; V2{i,j,k}(zeroT_pos_T2{i,j,k}(nc-c):zeroT_pos_T2{i,j,k}(nc+1-

c)-1) = []; end; 

                            if nc <= nc_3; V3{i,j,k}(zeroT_pos_T3{i,j,k}(nc-c):zeroT_pos_T3{i,j,k}(nc+1-

c)-1) = []; end; 

                            if nc <= nc_1; T1{i,j,k}(zeroT_pos_T1{i,j,k}(nc-c):zeroT_pos_T1{i,j,k}(nc+1-

c)-1) = []; end; 

                            if nc <= nc_2; T2{i,j,k}(zeroT_pos_T2{i,j,k}(nc-c):zeroT_pos_T2{i,j,k}(nc+1-

c)-1) = []; end; 

                            if nc <= nc_3; T3{i,j,k}(zeroT_pos_T3{i,j,k}(nc-c):zeroT_pos_T3{i,j,k}(nc+1-

c)-1) = []; end; 

 

                            % New zeroT positons and number of cycles 

                            zeroT_pos_T1{i,j,k} = [1 ; find(T1{i,j,k}>circshift(T1{i,j,k},-1))+1]; 

                            zeroT_pos_T2{i,j,k} = [1 ; find(T2{i,j,k}>circshift(T2{i,j,k},-1))+1]; 

                            zeroT_pos_T3{i,j,k} = [1 ; find(T3{i,j,k}>circshift(T3{i,j,k},-1))+1]; 

 

                            n_cycles_T1(i,j,k) = numel(zeroT_pos_T1{i,j,k})-1; 

                            n_cycles_T2(i,j,k) = numel(zeroT_pos_T2{i,j,k})-1; 

                            n_cycles_T3(i,j,k) = numel(zeroT_pos_T3{i,j,k})-1; 

 

                            c = c+1;      % Count of number of cycles deleted at this location 

                        end 

 

                    end     % Loop in number of cycles (nc) 

 

                    rrr = 0; 

                    while (isempty(rrr) || rrr==0)                          % Loop to allow repeat at 

the same location 

                        rrr = input('Continue to next location? (Yes=1 , Repeat=2): '); 

                        if rrr == 1; r = 0; end; 

                    end 

 

                end         % end of if statement to remove any cycles at this location 

 

            end 

        end 

    end         % Close loop through cases 

    disp('End of analysing individual cycles'); 

    set(gcf,'position',[228 228 560 420]);          % Back to original size in left window 

end 

 

% Remove bad points from reflections/saturation manually 
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% (based on data rate) 

p = menu('Remove bad points from reflections/saturation?','Yes','No'); 

 

if p == 1 

 

    disp(' '); 

    disp('Analysing bad points from reflections/saturation:'); 

 

    hf = figure(); 

    hp1 = subplot(3,1,1); 

    hp2 = subplot(3,1,2); 

    hp3 = subplot(3,1,3); 

    linkaxes([hp1 hp2 hp3],'x'); 

    set(gcf,'position',[1 80 1024 600]);          % Maximizes figure window 

 

    % Loop through all files and plot the data 

    for i = 1 : numel(X) 

        for j = 1 : numel(Y) 

            for k = 1 : numel(Z) 

 

                t1p = T1{i,j,k}; 

                v1p = V1{i,j,k}; 

                d1p = abs(1./(T1{i,j,k}-circshift(T1{i,j,k},1))); 

                cla(hp1); 

                plot(hp1,t1p,v1p,'.g','MarkerSize',1); 

                legend(hp1,'V1','Location','Best'); 

                title(hp1,['Data selection at z = ', num2str(Z(k)*1000), ' mm']); 

                ylabel(hp1,'Velocity (m/s)'); 

 

                t2p = T2{i,j,k}; 

                v2p = V2{i,j,k}; 

                d2p = abs(1./(T2{i,j,k}-circshift(T2{i,j,k},1))); 

                cla(hp2); 

                plot(hp2,t2p,v2p,'.b','MarkerSize',1); 

                legend(hp2,'V2','Location','Best'); 

                ylabel(hp2,'Velocity (m/s)'); 

 

                t3p = T3{i,j,k}; 

                v3p = V3{i,j,k}; 

                d3p = abs(1./(T3{i,j,k}-circshift(T3{i,j,k},1))); 

                cla(hp3); 

                plot(hp3,t3p,v3p,'.m','MarkerSize',1); 

                legend(hp3,'V3','Location','Best'); 

                xlabel(hp3,'Time (s)'); 

                xlim(hp3,[0 Ts]); 

                ylabel(hp3,'Velocity (m/s)'); 

 

                r = input(['Plotting: Z_case = ', num2str(k),'. Remove any data points at this location? 

(Yes=1 , No=0): ']); 

                if r == 1 

 

                    % New figure with velocities and data rates for one channel 

                    hff = figure(); 

                    hpv = subplot(2,1,1); 

                    hpd = subplot(2,1,2); 

                    linkaxes([hpv hpd],'x'); 
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                    set(gcf,'position',[1 80 1024 600]);          % Maximizes figure window 

 

                    for ch = 1 : 3          % Loop in each channel, with new plot of velocities and data 

rates together only for that channel 

 

                        if ch==1; tp = t1p; vp = v1p; dp = d1p; sp = '.g'; end;    % tp = 

eval(['t',num2str(ch),'p']);           % Time variable 

                        if ch==2; tp = t2p; vp = v2p; dp = d2p; sp = '.b'; end;    % vp = 

eval(['v',num2str(ch),'p']);           % Velocity variable 

                        if ch==3; tp = t3p; vp = v3p; dp = d3p; sp = '.m'; end;    % dp = 

eval(['d',num2str(ch),'p']);           % Data rate variable 

 

                        cla(hpv); hold(hpv,'off'); 

                        plot(hpv,tp,vp,sp,'MarkerSize',1); hold(hpv,'on'); 

                        legend(hpv,['V',num2str(ch)],'Location','Best'); 

                        ylabel(hpv,'Velocity (m/s)'); 

                        title(hpv,['Data selection at z = ', num2str(Z(k)*1000), ' mm']); 

 

                        cla(hpd); hold(hpd,'off'); 

                        plot(hpd,tp,dp,sp,'MarkerSize',10); hold(hpd,'on'); 

                        legend(hpd,['Ch. ',num2str(ch)],'Location','Best'); 

                        xlabel(hpd,'Time (s)'); 

                        xlim([0 Ts]); 

                        ylabel(hpd,'Data rate (Hz)'); 

 

                        % Remove points using automatic detection algorithm 

                        aa = input('Show auto detection of bad points? (Yes=1 , No=0): '); 

                        while aa == 1 

                            % Percentile plot 

                            hfff = figure; 

                            plot([0:1:100],prctile(dp,[0:1:100])); 

                            xlabel('Percentile (%)'); 

                            ylabel('Data Rate (Hz)'); 

 

                            dr_pct = 50;            % Percentile of the data rate to apply auto 

detection of bad points 

                            n_sum = 10;              % Number of adjacent points that need to be over 

the percentile to be identified as bad points 

                            aaa = 0; 

                            while aaa == 0           % Loop to be able to adjust parameters multiple 

times for the same channel 

                                % Thresholding criteria 

                                dp_overpct = dp > prctile(dp,dr_pct); 

                                dp_overpct_sum = zeros(size(dp)); 

                                for n = 1 : n_sum 

                                    dp_overpct_sum = dp_overpct_sum + circshift(dp_overpct,-(n-1)); 

                                end 

                                dp_badpoints = zeros(size(dp)); 

                                for n = 1 : n_sum 

                                    dp_badpoints = dp_badpoints | circshift(dp_overpct_sum==n_sum,n-1); 

                                end 

                                dp_badpoints = dp_badpoints & dp_overpct; 

 

                                % Show potential bad points in the graph 

                                figure(hff); 

                                hpva = plot(hpv,tp(dp_badpoints),vp(dp_badpoints),'sr','MarkerSize',2); 



 177

                                hpda = plot(hpd,tp(dp_badpoints),dp(dp_badpoints),'sr','MarkerSize',10); 

 

                                ppp = input(['Percentile = ',num2str(dr_pct),'%, Adjacent points = 

',num2str(n_sum),'. Try other parameters? (Yes=1 , No=0): ']); 

                                if ppp == 1 

                                    figure(hfff); 

                                    dr_pct = input('Enter percentile of data rate (0-100): '); if 

isempty(dr_pct); dr_pct = 50; end; 

                                    n_sum = input('Enter minimum number of adjacent points: '); if 

isempty(n_sum); n_sum = 10; end; 

                                    delete([hpva,hpda]);        % Delete auto detection symbols in plot 

                                else 

                                    aaa = 1; 

                                    apply_auto = input('Delete points from auto detection? (Yes=1 , 

No=0): '); 

                                end 

                            end 

 

                            if apply_auto == 1 

                                % Modify variables, writing NaN where 'brushedData' was not NaN 

(selected point) 

                                tp(dp_badpoints) = NaN; 

                                vp(dp_badpoints) = NaN; 

                                dp(dp_badpoints) = NaN; 

 

                                % Update plot 

                                cla(hpv); 

                                plot(hpv,tp,vp,sp,'MarkerSize',1); hold(hpv,'on'); 

                                legend(hpv,['V',num2str(ch)],'Location','Best'); 

                                ylabel(hpv,'Velocity (m/s)'); 

                                title(hpv,['Data selection at z = ', num2str(Z(k)*1000), ' mm']); 

 

                                cla(hpd); 

                                plot(hpd,tp,dp,sp,'MarkerSize',10); hold(hpd,'on'); 

                                legend(hpd,['Ch. ',num2str(ch)],'Location','Best'); 

                                xlabel(hpd,'Time (s)'); 

                                %xlim(hpd,[0 Ts]); 

                                ylabel(hpd,'Data rate (Hz)'); 

                            else 

                                delete([hpva,hpda]);        % Delete auto detection symbols in plot 

                            end 

                            close(hfff);    % Close percentile plot 

                            aa_input = input('Repeat auto detection of bad points? (Yes=1 , No=0): '); 

                            if aa_input == 1; aa = 1; else aa = 0; end;  % Exit condition of while loop 

                        end         % End of removing points automatically 

 

                        % Remove points manually 

                        rr = input('Remove points manually? (Yes=1 , No=0): '); 

                        if rr == 1 

 

                            hpva = []; 

                            hpda = []; 

                            rrr = 0; 

                            while rrr == 0                                           % Loop to be able 

to brush multiple times at the same location 

                                % Select points manually from the graph 



 178

                                brush(hff,'on'); 

                                rrr_input = input('Manually SELECT data points to delete. When done 

choose (Show=0, Delete=1, Continue=2): '); 

                                if rrr_input==2; rrr = 1; end;      % Exit condition of while loop 

 

                                % Get the data points selected 

                                hBrushLineV = findall(hpv,'tag','Brushing'); 

                                hBrushLineD = findall(hpd,'tag','Brushing'); 

 

                                if isempty(hBrushLineV); brushedDataV = {NaN(1,numel(tp)) , 

NaN(1,numel(vp))};            % When no points are brushed for this channel 'brushedData' is all NaNs. 

                                else                        brushedDataV = get(hBrushLineV, 

{'Xdata','Ydata'}); end; 

                                if isempty(hBrushLineD); brushedDataD = {NaN(1,numel(tp)) , 

NaN(1,numel(dp))};            % When no points are brushed for this channel 'brushedData' is all NaNs. 

                                else                        brushedDataD = get(hBrushLineD, 

{'Xdata','Ydata'}); end; 

 

                                brush(hff,'off'); 

 

                                % Show selection in the other graph not brushed 

                                delete([hpva,hpda]);        % Delete previous selection in the other 

graph not brushed 

                                hpva = 

plot(hpv,tp(~isnan(brushedDataD{1})),vp(~isnan(brushedDataD{2})),'sr','MarkerSize',2); 

                                hpda = 

plot(hpd,tp(~isnan(brushedDataV{1})),dp(~isnan(brushedDataV{2})),'sr','MarkerSize',10); 

 

                                if rrr_input == 1             % Delete selected points and redraw 

                                    % Modify variables, writing NaN where 'brushedData' was not NaN 

(selected point) 

                                    tp(~isnan(brushedDataV{1})) = NaN; tp(~isnan(brushedDataD{1})) = 

NaN; 

                                    vp(~isnan(brushedDataV{2})) = NaN; vp(~isnan(brushedDataD{2})) = 

NaN; 

                                    dp(~isnan(brushedDataV{2})) = NaN; dp(~isnan(brushedDataD{2})) = 

NaN; 

 

                                    % Update plot 

                                    cla(hpv); 

                                    plot(hpv,tp,vp,sp,'MarkerSize',1); hold(hpv,'on'); 

                                    legend(hpv,['V',num2str(ch)],'Location','Best'); 

                                    ylabel(hpv,'Velocity (m/s)'); 

                                    title(hpv,['Data selection at z = ', num2str(Z(k)*1000), ' mm']); 

 

                                    cla(hpd); 

                                    plot(hpd,tp,dp,sp,'MarkerSize',10); hold(hpd,'on'); 

                                    legend(hpd,['Ch. ',num2str(ch)],'Location','Best'); 

                                    xlabel(hpd,'Time (s)'); 

                                    %xlim(hpd,[0 Ts]); 

                                    ylabel(hpd,'Data rate (Hz)'); 

 

                                    hpda = []; 

                                    hpva = []; 

                                end 

                            end 
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                        end         % End of removing points manually 

 

                        % Assign results back to each channel 

                        if ch==1; t1p = tp; v1p = vp; d1p = dp; end; 

                        if ch==2; t2p = tp; v2p = vp; d2p = dp; end; 

                        if ch==3; t3p = tp; v3p = vp; d3p = dp; end; 

 

                    end          % End of loop for each channel 

 

                    close(hff);     % Close detailed figure 

 

                    % Count number of data points deleted 

                    c1 = numel(find(isnan(v1p))); 

                    c2 = numel(find(isnan(v2p))); 

                    c3 = numel(find(isnan(v3p))); 

 

                    % Delete all selected values (which became NaN) from the variables 

                    % New T1,T2,T3 and V1,V2,V3 vectors 

                    V1{i,j,k}(isnan(v1p)) = []; 

                    V2{i,j,k}(isnan(v2p)) = []; 

                    V3{i,j,k}(isnan(v3p)) = []; 

                    T1{i,j,k}(isnan(t1p)) = []; 

                    T2{i,j,k}(isnan(t2p)) = []; 

                    T3{i,j,k}(isnan(t3p)) = []; 

 

                    % New zeroT positons and number of cycles 

                    zeroT_pos_T1{i,j,k} = [1 ; find(T1{i,j,k}>circshift(T1{i,j,k},-1))+1]; 

                    zeroT_pos_T2{i,j,k} = [1 ; find(T2{i,j,k}>circshift(T2{i,j,k},-1))+1]; 

                    zeroT_pos_T3{i,j,k} = [1 ; find(T3{i,j,k}>circshift(T3{i,j,k},-1))+1]; 

 

                    n_cycles_T1(i,j,k) = numel(zeroT_pos_T1{i,j,k})-1; 

                    n_cycles_T2(i,j,k) = numel(zeroT_pos_T2{i,j,k})-1; 

                    n_cycles_T3(i,j,k) = numel(zeroT_pos_T3{i,j,k})-1; 

 

                    % Display confirmation message of data points deleted 

                    disp(['Deleted data points: ch.1 = ',num2str(c1),', ch.2 = ',num2str(c2),', ch.3 = 

',num2str(c3)]); 

 

                end         % end of if statement to remove any data points at this location 

 

            end 

        end 

    end         % Close loop through cases 

    disp('End of analysing bad points from reflections/saturation'); 

    set(gcf,'position',[228 228 560 420]);          % Back to original size in left window 

end 

 

% Remove spikes and outliers manually 

p = menu('Remove any individual data points (outliers)?','Yes','No'); 

 

if p == 1 

 

    disp(' '); 

    disp('Analysing individual data points:'); 

 

    hf = figure(); 
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    hp1 = subplot(3,1,1); 

    hp2 = subplot(3,1,2); 

    hp3 = subplot(3,1,3); 

    linkaxes([hp1 hp2 hp3],'x'); 

    set(gcf,'position',[1 80 1024 600]);          % Maximizes figure window 

 

    % Loop through all files and plot the data 

    for i = 1 : numel(X) 

        for j = 1 : numel(Y) 

            for k = 1 : numel(Z) 

 

                t1p = T1{i,j,k}; 

                v1p = V1{i,j,k}; 

                cla(hp1); 

                plot(hp1,t1p,v1p,'.g','MarkerSize',10); 

                legend(hp1,'V1','Location','Best'); 

                title(hp1,['Data selection at z = ', num2str(Z(k)*1000), ' mm']); 

                ylabel(hp1,'Velocity (m/s)'); 

 

                t2p = T2{i,j,k}; 

                v2p = V2{i,j,k}; 

                cla(hp2); 

                plot(hp2,t2p,v2p,'.b','MarkerSize',10); 

                legend(hp2,'V2','Location','Best'); 

                ylabel(hp2,'Velocity (m/s)'); 

 

                t3p = T3{i,j,k}; 

                v3p = V3{i,j,k}; 

                cla(hp3); 

                plot(hp3,t3p,v3p,'.m','MarkerSize',10); 

                legend(hp3,'V3','Location','Best'); 

                xlabel(hp3,'Time (s)'); 

                xlim([0 Ts]); 

                ylabel(hp3,'Velocity (m/s)'); 

 

                r = input(['Plotting: Z_case = ', num2str(k),'. Remove any data points at this location? 

(Yes=1 , No=0): ']); 

                if r == 1 

 

                    rr = 0; 

                    while rr == 0                                           % Loop to be able to brush 

multiple times at the same location 

                        % Select points manually from the graph 

                        brush on; 

                        rr_input = input('Manually SELECT data points to be deleted from the graph. When 

done choose (Redraw=0, Continue=1): '); 

                        if rr_input == 1; rr = 1; end; 

 

                        % Get the data points selected 

                        hBrushLine1 = findall(hp1,'tag','Brushing'); 

                        hBrushLine2 = findall(hp2,'tag','Brushing'); 

                        hBrushLine3 = findall(hp3,'tag','Brushing'); 

 

                        if isempty(hBrushLine1); brushedData1 = {NaN(1,numel(t1p)) , NaN(1,numel(v1p))};            

% When no points are brushed for this channel 'brushedData' is all NaNs. 
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                        else                        brushedData1 = get(hBrushLine1, {'Xdata','Ydata'}); 

end; 

                        if isempty(hBrushLine2); brushedData2 = {NaN(1,numel(t2p)) , NaN(1,numel(v2p))};            

% When no points are brushed for this channel 'brushedData' is all NaNs. 

                        else                        brushedData2 = get(hBrushLine2, {'Xdata','Ydata'}); 

end; 

                        if isempty(hBrushLine3); brushedData3 = {NaN(1,numel(t3p)) , NaN(1,numel(v3p))};            

% When no points are brushed for this channel 'brushedData' is all NaNs. 

                        else                        brushedData3 = get(hBrushLine3, {'Xdata','Ydata'}); 

end; 

 

                        % Remove the data points from the plot 

                        RemovePointsCallback = @datamanager.dataEdit; 

                        RemovePointsCallback(hf,[],'replace',NaN);     % Writes NaNs to the brushed 

points 

 

                        brush off; 

 

                        % Modify variables, writing NaN where 'brushedData' was not NaN (selected point) 

                        t1p(~isnan(brushedData1{1})) = NaN; 

                        t2p(~isnan(brushedData2{1})) = NaN; 

                        t3p(~isnan(brushedData3{1})) = NaN; 

                        v1p(~isnan(brushedData1{2})) = NaN; 

                        v2p(~isnan(brushedData2{2})) = NaN; 

                        v3p(~isnan(brushedData3{2})) = NaN; 

                    end 

 

                    % Count number of data points deleted 

                    c1 = numel(find(isnan(v1p))); 

                    c2 = numel(find(isnan(v2p))); 

                    c3 = numel(find(isnan(v3p))); 

 

                    % Delete all selected values (which became NaN) from the variables 

                    % New T1,T2,T3 and V1,V2,V3 vectors 

                    V1{i,j,k}(isnan(v1p)) = []; 

                    V2{i,j,k}(isnan(v2p)) = []; 

                    V3{i,j,k}(isnan(v3p)) = []; 

                    T1{i,j,k}(isnan(t1p)) = []; 

                    T2{i,j,k}(isnan(t2p)) = []; 

                    T3{i,j,k}(isnan(t3p)) = []; 

 

                    % New zeroT positons and number of cycles 

                    zeroT_pos_T1{i,j,k} = [1 ; find(T1{i,j,k}>circshift(T1{i,j,k},-1))+1]; 

                    zeroT_pos_T2{i,j,k} = [1 ; find(T2{i,j,k}>circshift(T2{i,j,k},-1))+1]; 

                    zeroT_pos_T3{i,j,k} = [1 ; find(T3{i,j,k}>circshift(T3{i,j,k},-1))+1]; 

 

                    n_cycles_T1(i,j,k) = numel(zeroT_pos_T1{i,j,k})-1; 

                    n_cycles_T2(i,j,k) = numel(zeroT_pos_T2{i,j,k})-1; 

                    n_cycles_T3(i,j,k) = numel(zeroT_pos_T3{i,j,k})-1; 

 

                    % Display confirmation message of data points deleted 

                    disp(['Deleted data points: ch.1 = ',num2str(c1),', ch.2 = ',num2str(c2),', ch.3 = 

',num2str(c3)]); 

 

                end         % end of if statement to remove any data points at this location 
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            end 

        end 

    end         % Close loop through cases 

    disp('End of analysing individual data points'); 

    set(gcf,'position',[228 228 560 420]);          % Back to original size in left window 

end 

 

% Shift data 

% Make starting point of cycle to be at a particular phase (usually for oscillatory flow to correct 

trigger sync pulse delay) 

p = menu('Shift data to correct trigger sync pulse delay?','Yes','No'); 

 

if p == 1 

 

    disp(' '); 

    disp('Trigger sync pulse delay correction:'); 

 

    ch = 0; 

    while ch==0 

        ch = input('Select reference channel for sync pulse (1,2,3): '); 

        if isempty(ch) || ischar(ch) || ((ch~=1) && (ch~=2) && (ch~=3)) 

            disp('Error: wrong channel input.'); 

            ch = 0;                             % The input channel statement keeps being displayed 

until it gets a correct value (1,2,3) 

        end 

    end 

    T_shift1 = eval(['T', num2str(ch)]); 

    V_shift1 = eval(['V', num2str(ch)]); 

 

    Zout = input('Set distance from wall to consider outer flow conditions (in meters): '); %0.1;  % 

Distance from wall to consider outer flow conditions (m) 

 

    for i = 1 : numel(X) 

        for j = 1 : numel(Y) 

 

            % Calculate phase shift for each Z location in the outer flow 

            Zout_loc = find(Z>=Zout); 

            hw = waitbar(0,'Calculating phase shift ...'); set(hw,'Name',[num2str(round(0*100)),' %']); 

drawnow; 

            for k = Zout_loc(1) : Zout_loc(end) 

                [cfit1,gof1] = fit(T_shift1{i,j,k},V_shift1{i,j,k},'sin8'); 

                x_fit1 = [0:Ts/10000:Ts]; 

                y_fit1(k,:) = cfit1(x_fit1); 

                [max_value,max_loc] = max(y_fit1(k,:)); 

                time_shift(k) = x_fit1(max_loc)-0;      % Taking t=0 as reference 

 

                pw = (k-Zout_loc(1)+1)/(Zout_loc(end)-Zout_loc(1)+1); 

                waitbar(pw,hw); set(hw,'Name',[num2str(round(pw*100)),' %']); drawnow; 

            end 

            close(hw); 

 

            % Plot of original data before phase shift 

            hf = figure(); 

            for k = Zout_loc(1) : Zout_loc(end) 

                hp(k) = plot(T_shift1{i,j,k},V_shift1{i,j,k},'.c','MarkerSize',1); hold on; 

            end 
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            hp_group = hggroup; set(hp(Zout_loc(1):Zout_loc(end)),'Parent',hp_group); 

set(get(get(hp_group,'Annotation'),'LegendInformation'),'IconDisplayStyle','on');    % Groups all legend 

entries into one 

 

            y_fit_mean = mean(y_fit1(Zout_loc(1):Zout_loc(end),:),1); 

            plot(x_fit1,y_fit_mean,'-b'); 

            title('Analysis of phase shift due to trigger sync pulse'); 

            xlabel('Time (s)'); 

            ylabel('Velocity (m/s)'); 

            xlim([0 Ts]); 

            y_limits_auto = get(gca,'YLim'); 

 

            % Calculate mean phase shift 

            if (max(time_shift(Zout_loc(1):Zout_loc(end)))-

min(time_shift(Zout_loc(1):Zout_loc(end))))>Ts/2     % To avoid errors with having values of time shift 

at +360º 

                time_shift(time_shift>Ts/2) = time_shift(time_shift>Ts/2) - Ts; 

            end 

 

            time_shift_mean = mean(time_shift(Zout_loc(1):Zout_loc(end))); 

            phase_shift_mean = time_shift_mean/Ts*360; 

 

            disp(['Trigger pulse phase shift = ', num2str(phase_shift_mean) , 'º']); 

 

            % Apply phase shift 

            c = input('Apply trigger pulse phase shift correction? (No=0, Yes=1, Custom=2): '); 

 

            if c==2 

                phase_shift_mean = input('Enter custom value for phase shift (deg): '); 

                time_shift_mean = phase_shift_mean*Ts/360; 

            end 

 

            if c==1 || c==2     % Correct for trigger phase shift 

                for k = 1 : numel(Z) 

                    % New vectors T1,T2,T3 (V1,V2,V3 don't change) 

                    T1{i,j,k} = T1{i,j,k} - time_shift_mean;  T1{i,j,k}(T1{i,j,k}<0) = 

T1{i,j,k}(T1{i,j,k}<0) + Ts;  T1{i,j,k}(T1{i,j,k}>=Ts) = T1{i,j,k}(T1{i,j,k}>=Ts) - Ts; 

                    T2{i,j,k} = T2{i,j,k} - time_shift_mean;  T2{i,j,k}(T2{i,j,k}<0) = 

T2{i,j,k}(T2{i,j,k}<0) + Ts;  T2{i,j,k}(T2{i,j,k}>=Ts) = T2{i,j,k}(T2{i,j,k}>=Ts) - Ts; 

                    T3{i,j,k} = T3{i,j,k} - time_shift_mean;  T3{i,j,k}(T3{i,j,k}<0) = 

T3{i,j,k}(T3{i,j,k}<0) + Ts;  T3{i,j,k}(T3{i,j,k}>=Ts) = T3{i,j,k}(T3{i,j,k}>=Ts) - Ts; 

 

                    % New zeroT positons and number of cycles 

                    zeroT_pos_T1{i,j,k} = [1 ; find(T1{i,j,k}>circshift(T1{i,j,k},-1))+1]; 

                    zeroT_pos_T2{i,j,k} = [1 ; find(T2{i,j,k}>circshift(T2{i,j,k},-1))+1]; 

                    zeroT_pos_T3{i,j,k} = [1 ; find(T3{i,j,k}>circshift(T3{i,j,k},-1))+1]; 

 

                    n_cycles_T1(i,j,k) = numel(zeroT_pos_T1{i,j,k})-1; 

                    n_cycles_T2(i,j,k) = numel(zeroT_pos_T2{i,j,k})-1; 

                    n_cycles_T3(i,j,k) = numel(zeroT_pos_T3{i,j,k})-1; 

 

                end 

 

                % Calculate new fit line after shift 

                T_shift2 = eval(['T', num2str(ch)]); 

                V_shift2 = eval(['V', num2str(ch)]); 
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                hw = waitbar(0,'Calculating new fit ...'); set(hw,'Name',[num2str(round(0*100)),' %']); 

drawnow; 

                for k = Zout_loc(1) : Zout_loc(end) 

                    [cfit2,gof2] = fit(T_shift2{i,j,k},V_shift2{i,j,k},'sin8'); 

                    x_fit2 = [0:Ts/10000:Ts]; 

                    y_fit2(k,:) = cfit2(x_fit2); 

 

                    pw = (k-Zout_loc(1)+1)/(Zout_loc(end)-Zout_loc(1)+1); 

                    waitbar(pw,hw); set(hw,'Name',[num2str(round(pw*100)),' %']); drawnow; 

                end 

                close(hw); 

 

                % Plot of data after phase shift 

                figure(hf); 

                y_fit_mean = mean(y_fit2(Zout_loc(1):Zout_loc(end),:),1); 

                plot(x_fit2,y_fit_mean,'-r'); 

                legend('Data before shift','Fit before shift','Fit after shift'); 

                xlim([0 Ts]); 

                ylim(y_limits_auto); 

                file_save = [dir_name,'\Trigger pulse phase shift correction','.jpg']; 

                saveas(gcf,file_save,'jpg'); 

 

            else 

               disp('No trigger pulse phase shift correction was applied.'); 

            end 

 

        end 

    end 

end 

 

% Remove cycles with only one data point 

% (to avoid problems in the interpolation routine later on) 

for i = 1 : numel(X) 

    for j = 1 : numel(Y) 

        for k = 1 : numel(Z) 

            % New vectors T1,T2,T3,V1,V2,V3 

            V1{i,j,k}(zeroT_pos_T1{i,j,k}(find(zeroT_pos_T1{i,j,k}-circshift(zeroT_pos_T1{i,j,k},-1)==-

1))) = []; 

            V2{i,j,k}(zeroT_pos_T2{i,j,k}(find(zeroT_pos_T2{i,j,k}-circshift(zeroT_pos_T2{i,j,k},-1)==-

1))) = []; 

            V3{i,j,k}(zeroT_pos_T3{i,j,k}(find(zeroT_pos_T3{i,j,k}-circshift(zeroT_pos_T3{i,j,k},-1)==-

1))) = []; 

            T1{i,j,k}(zeroT_pos_T1{i,j,k}(find(zeroT_pos_T1{i,j,k}-circshift(zeroT_pos_T1{i,j,k},-1)==-

1))) = []; 

            T2{i,j,k}(zeroT_pos_T2{i,j,k}(find(zeroT_pos_T2{i,j,k}-circshift(zeroT_pos_T2{i,j,k},-1)==-

1))) = []; 

            T3{i,j,k}(zeroT_pos_T3{i,j,k}(find(zeroT_pos_T3{i,j,k}-circshift(zeroT_pos_T3{i,j,k},-1)==-

1))) = []; 

 

            % New zeroT positons and number of cycles 

            zeroT_pos_T1{i,j,k} = [1 ; find(T1{i,j,k}>circshift(T1{i,j,k},-1))+1]; 

            zeroT_pos_T2{i,j,k} = [1 ; find(T2{i,j,k}>circshift(T2{i,j,k},-1))+1]; 

            zeroT_pos_T3{i,j,k} = [1 ; find(T3{i,j,k}>circshift(T3{i,j,k},-1))+1]; 

 

            n_cycles_T1(i,j,k) = numel(zeroT_pos_T1{i,j,k})-1; 
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            n_cycles_T2(i,j,k) = numel(zeroT_pos_T2{i,j,k})-1; 

            n_cycles_T3(i,j,k) = numel(zeroT_pos_T3{i,j,k})-1; 

        end 

    end 

end 

 

% Check for empty variables 

% If T1,T2,T3,V1,V2,V3 became empty at any locations after all the data 

% selection process, we need to give some dummy value for 1 cycle to avoid 

% problems in the following routines. 

% It won't affect the results since the even-time interpolation routine 

% will give NaNs at these locations. 

for i = 1 : numel(X) 

    for j = 1 : numel(Y) 

        for k = 1 : numel(Z) 

            % New vectors T1,T2,T3,V1,V2,V3 

            if isempty(T1{i,j,k}); T1{i,j,k} = [0;Ts]; V1{i,j,k} = [0;0]; end; 

            if isempty(T2{i,j,k}); T2{i,j,k} = [0;Ts]; V2{i,j,k} = [0;0]; end; 

            if isempty(T3{i,j,k}); T3{i,j,k} = [0;Ts]; V3{i,j,k} = [0;0]; end; 

 

            % New zeroT positons and number of cycles 

            zeroT_pos_T1{i,j,k} = [1 ; find(T1{i,j,k}>circshift(T1{i,j,k},-1))+1]; 

            zeroT_pos_T2{i,j,k} = [1 ; find(T2{i,j,k}>circshift(T2{i,j,k},-1))+1]; 

            zeroT_pos_T3{i,j,k} = [1 ; find(T3{i,j,k}>circshift(T3{i,j,k},-1))+1]; 

 

            n_cycles_T1(i,j,k) = numel(zeroT_pos_T1{i,j,k})-1; 

            n_cycles_T2(i,j,k) = numel(zeroT_pos_T2{i,j,k})-1; 

            n_cycles_T3(i,j,k) = numel(zeroT_pos_T3{i,j,k})-1; 

        end 

    end 

end 

 

% end of function 

end 

InterpData_LDV 

function [T_even V1_even V2_even V3_even n_cycles_T_even Fs a] = InterpData_LDV(X, Y, Z, T1_sel, T2_sel, 

T3_sel, V1_sel, V2_sel, V3_sel, n_cycles_T1, n_cycles_T2, n_cycles_T3, zeroT_pos_T1, zeroT_pos_T2, 

zeroT_pos_T3, Ts, X_case, Y_case, Z_case, dir_save) 

% INTERPDATA_LDV 

% Function to interpolate the raw data obtained 

% with LDV and transform it into even-time sampled data. 

% 

% X, Y, Z: vectors containing the coordinates of the measurement locations in the flume 

% T1_sel, T2_sel, T3_sel, V1_sel, V2_sel, V3_sel: velocities and time selected after chopping and 

filtering 

% n_cycles_T1, n_cycles_T2, n_cycles_T3: matrix with number of cycles measured at each location 

% zeroT_pos_T1, zeroT_pos_T2, zeroT_pos_T3: matrix with the positions of the first time stamp in every 

cycle in vector T, for each location 

% Ts: sampling interval (unid) or period of cycle (osc) 

% X_case, Y_case, Z_case: coordinates of the location of the case to show in the plots 

% dir_save: path of the directory in which to save the figures 

% 
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% JM Mier 

% Ven Te Chow Hydrosystems Laboratory, UIUC 

% May 2009 

% Revised v2: March 2012. Incorporated independent analysis for each channel and no need to have data in 

coincidence mode 

% Revised v3: June 2012. Incorporated secondary interpolation pass based on "nearest" to avoid loosing 

too many data points when data rates are small 

% 

 

% Preliminary analysis of data rates 

disp(' '); 

disp('Preliminary analysis of Data Rates:'); 

 

% Loop the 3 channels (since T1,T2,T3 are different a priori, although very similar, depending on the 

goodness of the coincidence of the channels) 

hf1 = figure(); 

hf2 = figure(); 

color_linea = {[0 1 0];[0 0 1];[1 0 1]}; 

 

for ch = 1 : 3 

 

    if ch == 1;      T = T1_sel; n_cycles = n_cycles_T1; zeroT_pos = zeroT_pos_T1; 

    elseif ch == 2;  T = T2_sel; n_cycles = n_cycles_T2; zeroT_pos = zeroT_pos_T2; 

    elseif ch == 3;  T = T3_sel; n_cycles = n_cycles_T3; zeroT_pos = zeroT_pos_T3; 

    end 

 

    % Identify min, max, p10, p50, p90 data rates of the ensemble 

    clear T_minus dT_dif dT_dif_min dT_dif_max dT_dif_10 dT_dif_50 dT_dif_90; 

    for i = 1 : numel(X) 

        for j = 1 : numel(Y) 

            for k = 1 : numel(Z) 

                T_minus1{i,j,k} = circshift(T{i,j,k},-1); 

                dT_dif{i,j,k} = T_minus1{i,j,k}-T{i,j,k}; 

                dT_dif{i,j,k}(dT_dif{i,j,k}<0) = NaN; 

                dT_dif_min(i,j,k) = min(dT_dif{i,j,k}(zeroT_pos{i,j,k}(1):zeroT_pos{i,j,k}(end)-1)); 

                dT_dif_max(i,j,k) = max(dT_dif{i,j,k}(zeroT_pos{i,j,k}(1):zeroT_pos{i,j,k}(end)-1)); 

                dT_dif_10(i,j,k) = prctile(dT_dif{i,j,k}(zeroT_pos{i,j,k}(1):zeroT_pos{i,j,k}(end)-

1),10); 

                dT_dif_50(i,j,k) = prctile(dT_dif{i,j,k}(zeroT_pos{i,j,k}(1):zeroT_pos{i,j,k}(end)-

1),50); 

                dT_dif_90(i,j,k) = prctile(dT_dif{i,j,k}(zeroT_pos{i,j,k}(1):zeroT_pos{i,j,k}(end)-

1),90); 

            end 

        end 

    end 

 

    % Plot dT_dif 

    figure(hf1); 

    hs1(ch) = subplot(3,1,ch,'Parent',hf1); 

    plot(hs1(ch),dT_dif{X_case,Y_case,Z_case},'Color',color_linea{ch}); 

    legend(hs1(ch),{['V',num2str(ch)]}); 

    if ch == 1; title(hs1(ch),['Time stamp differences at point:  (', num2str(X(X_case)*1000), ', ', 

num2str(Y(Y_case)*1000), ', ', num2str(Z(Z_case)*1000), ') mm']); end; 

    if ch == 3; xlabel(hs1(ch),'Data count (#)'); end; 

    ylabel(hs1(ch),'time (s)'); 

    ylim(hs1(ch),[-0.01 max(dT_dif{X_case,Y_case,Z_case})]); 
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    set(hf1,'position',[228 228 560 420]);          % Back to original size in left window 

 

 

    DataRate_min = min(min(min(1./dT_dif_max))); 

    DataRate_max = max(max(max(1./dT_dif_min))); 

    DataRate_10 = mean(mean(mean(1./dT_dif_10))); 

    DataRate_50 = mean(mean(mean(1./dT_dif_50))); 

    DataRate_90 = mean(mean(mean(1./dT_dif_90))); 

    %dT_dif_pos = find(min(dT_dif)); 

    disp(sprintf('Data Rates (Hz) for Channel %g: min = %g, max = %g, p10 = %g, p50 = %g, p90 = 

%g',ch,DataRate_min,DataRate_max,DataRate_10,DataRate_50,DataRate_90)); 

 

    % Plot Data Rates 

    %figure(hf2); 

    if ch == 1; ha2 = axes('Parent',hf2); end; 

    plot(ha2,1./squeeze(dT_dif_10(X_case,Y_case,:)),[1:numel(Z)],'-.','Color',color_linea{ch}); 

hold(ha2,'on'); 

    plot(ha2,1./squeeze(dT_dif_50(X_case,Y_case,:)),[1:numel(Z)],'-','Color',color_linea{ch}); 

    plot(ha2,1./squeeze(dT_dif_90(X_case,Y_case,:)),[1:numel(Z)],'--','Color',color_linea{ch}); 

    if ch == 1 

        set(ha2,'XScale','log'); 

        legend(ha2,'10%','50%','90%'); 

        title(ha2,['Data Rates percentiles for V1,V2,V3 at profile:  X = ', num2str(X(X_case)*1000), ' 

mm ,  Y = ', num2str(Y(Y_case)*1000), ' mm']); 

        xlabel(ha2,'Data Rate (Hz)'); 

        ylabel(ha2,'Z location'); 

        %view([90 -90]); 

        set(hf2,'position',[228 228 560 420]);          % Back to original size in left window 

    end 

    hp22(ch) = plot(ha2,1./squeeze(dT_dif_50(X_case,Y_case,:)),[1:numel(Z)],'-

','Color',color_linea{ch});   % Need to repeat this line only for the second legend box. 

end 

 

% Even-time sampling - final interpolation (linear) of velocities 

disp(' '); 

disp('Final interpolation for even-time sampling:'); 

 

% based on a*dT criteria 

a = input('alpha (for a*dT) = ');   % Optimization parameter defining interval a*dT 

Fs = input('Fs (Hz) = '); 

dT = 1/Fs; 

T_even = roundn(0:dT:Ts-dT,-6);     % Round to 6 decimal positions, to avoid possible errors in the 

interpolation 

 

for ch = 1 : 3                       % For each of the 3 channels 

    if ch == 1;      T = T1_sel; n_cycles = n_cycles_T1; zeroT_pos = zeroT_pos_T1; V = V1_sel; 

    elseif ch == 2;  T = T2_sel; n_cycles = n_cycles_T2; zeroT_pos = zeroT_pos_T2; V = V2_sel; 

    elseif ch == 3;  T = T3_sel; n_cycles = n_cycles_T3; zeroT_pos = zeroT_pos_T3; V = V3_sel; 

    end 

 

    n_nans = zeros(numel(X),numel(Y),numel(Z)); 

    n_points = zeros(numel(X),numel(Y),numel(Z)); 

    ratio_new_old = zeros(numel(X),numel(Y),numel(Z)); 

    V_mean = zeros(numel(X),numel(Y),numel(Z)); 

    V_rms = zeros(numel(X),numel(Y),numel(Z)); 

    V_even = cell(numel(X),numel(Y),numel(Z)); 
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    n_cycles_T_even = zeros(numel(X),numel(Y),numel(Z)); 

 

    for i = 1 : numel(X) 

        for j = 1 : numel(Y) 

            for k = 1 : numel(Z) 

                % Padding with NaNs in case all 3 channels don't have the same number of cycles 

                % It is still ok if number of cycles is different at different locations (will be 

corrected later) 

                n_cycles_T_even(i,j,k) = max([n_cycles_T1(i,j,k) n_cycles_T2(i,j,k) 

n_cycles_T3(i,j,k)]);        % Max number of cycles in any of the 3 channels, for this location (X,Y,Z) 

                V_even{i,j,k} = NaN(n_cycles_T_even(i,j,k),numel(T_even)); 

 

                for nc = 1 : n_cycles(i,j,k) 

                    clear T_pos T_pos_i T_pos_ip1 T_i T_ip1; 

                    % Positions where T_even falls within vector T 

                    T_pos = interp1(T{i,j,k}(zeroT_pos{i,j,k}(nc):zeroT_pos{i,j,k}(nc+1)-

1),zeroT_pos{i,j,k}(nc):zeroT_pos{i,j,k}(nc+1)-1,T_even); 

                        if isempty(find(abs(isnan(T_pos)-1))); continue; end;   % If there are no 

elements to interpolate in this cycle (nc), then continue to next cycle (all values will be given NaNs 

from the initialization of U_even). Otherwise the code could break due to empty matrices []. 

                    T_pos_i = floor(T_pos); 

                    T_pos_ip1 = ceil(T_pos); 

                    % Left bounds of T for T_even 

                    T_i(find(abs(isnan(T_pos_i)-1))) = T{i,j,k}(T_pos_i(find(abs(isnan(T_pos_i)-1)))); 

                    if nc == 1          % For the first cycle, there is NaN to the left of the first 

point, if no data point exists. 

                        T_i(1:find(find(isnan(T_pos_i))<numel(T_i),1,'last')) = NaN; 

                    else                % For the rest, there is the previous cycle to the left of the 

first point, so that we get continuity between cycles. 

                        T_i(1:find(find(isnan(T_pos_i))<numel(T_i),1,'last')) = 

T{i,j,k}(zeroT_pos{i,j,k}(nc)-1) - Ts; 

                    end 

                    T_i(numel(T_i)+1:numel(T_even)) = T_i(end); 

                    % Right bounds of T for T_even 

                    T_ip1(find(abs(isnan(T_pos_ip1)-1))) = T{i,j,k}(T_pos_ip1(find(abs(isnan(T_pos_ip1)-

1)))); 

                    T_ip1(1:find(find(isnan(T_pos_ip1))<numel(T_ip1),1,'last')) = 

T_ip1(find(find(isnan(T_pos_ip1))<numel(T_ip1),1,'last')+1); 

                    if nc == n_cycles(i,j,k)        % For the last cycle, there is NaN to the right of 

the last point, if no data point exists. 

                        T_ip1(numel(T_ip1)+1:numel(T_even)) = NaN; 

                    else                            % For the rest, there is the next cycle to the right 

of the last point, so that we get continuity between cycles. 

                        T_ip1(numel(T_ip1)+1:numel(T_even)) = T{i,j,k}(zeroT_pos{i,j,k}(nc+1)) + Ts; 

                    end 

 

    % Do interpolation only if there are real points within a close range of +-a*dT (T_i and T_ip1) both 

sides of the interpolated point (T_even). 

    % Otherwise store NaN value. Values out of the range of the data will become NaN as well (first and 

last cycles). 

                    if n_cycles(i,j,k) == 1             % For the case with only one cycle, don't do 

continuity either at begining or end of the cycle: [U(nc)_all] 

                        V_even{i,j,k}(nc,find(T_even-T_i<=a*dT & T_ip1-T_even<=a*dT)) = 

interp1([T{i,j,k}(zeroT_pos{i,j,k}(nc):zeroT_pos{i,j,k}(nc+1)-1)] , 

[V{i,j,k}(zeroT_pos{i,j,k}(nc):zeroT_pos{i,j,k}(nc+1)-1)] , T_even(find(T_even-T_i<=a*dT & T_ip1-

T_even<=a*dT)),'linear'); 
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                    elseif nc == 1                      % For the first cycle, we can only give 

continuity at the end of the cycle: [U(nc)_all;U(nc+1)_1] 

                        V_even{i,j,k}(nc,find(T_even-T_i<=a*dT & T_ip1-T_even<=a*dT)) = 

interp1([T{i,j,k}(zeroT_pos{i,j,k}(nc):zeroT_pos{i,j,k}(nc+1)-1) ; T{i,j,k}(zeroT_pos{i,j,k}(nc+1))+Ts] 

, [V{i,j,k}(zeroT_pos{i,j,k}(nc):zeroT_pos{i,j,k}(nc+1)-1) ; V{i,j,k}(zeroT_pos{i,j,k}(nc+1))] , 

T_even(find(T_even-T_i<=a*dT & T_ip1-T_even<=a*dT)),'linear'); 

                    elseif nc == n_cycles(i,j,k)        % For the last cycle, we can only give 

continuity at the beginning of the cycle: [U(nc-1)_last;U(nc)] 

                        V_even{i,j,k}(nc,find(T_even-T_i<=a*dT & T_ip1-T_even<=a*dT)) = 

interp1([T{i,j,k}(zeroT_pos{i,j,k}(nc)-1)-Ts ; T{i,j,k}(zeroT_pos{i,j,k}(nc):zeroT_pos{i,j,k}(nc+1)-1)] 

, [V{i,j,k}(zeroT_pos{i,j,k}(nc)-1) ; V{i,j,k}(zeroT_pos{i,j,k}(nc):zeroT_pos{i,j,k}(nc+1)-1)] , 

T_even(find(T_even-T_i<=a*dT & T_ip1-T_even<=a*dT)),'linear'); 

                    else                                % For the rest cycles, we give continuity at the 

beginning and end of the cycle: [U(nc-1)_last;U(nc)_all;U(nc+1)_1] 

                        V_even{i,j,k}(nc,find(T_even-T_i<=a*dT & T_ip1-T_even<=a*dT)) = 

interp1([T{i,j,k}(zeroT_pos{i,j,k}(nc)-1)-Ts ; T{i,j,k}(zeroT_pos{i,j,k}(nc):zeroT_pos{i,j,k}(nc+1)-1) ; 

T{i,j,k}(zeroT_pos{i,j,k}(nc+1))+Ts] , [V{i,j,k}(zeroT_pos{i,j,k}(nc)-1) ; 

V{i,j,k}(zeroT_pos{i,j,k}(nc):zeroT_pos{i,j,k}(nc+1)-1) ; V{i,j,k}(zeroT_pos{i,j,k}(nc+1))] , 

T_even(find(T_even-T_i<=a*dT & T_ip1-T_even<=a*dT)),'linear'); 

                    end 

 

    % Use nearest real point when there is only one point close to the T_even point and so interpolation 

would give NaN. 

    % This method helps to not loose too many points at the locations close to the wall where data rates 

are very small. 

    % Need to be careful not to take points far away from the T_even point. This distance should be kept 

very small relative to the cycle length (about 1/1000) so that the effect of doing this "nearest" 

approximation doesn't distort the resulting statistics. 

                    if n_cycles(i,j,k) == 1             % For the case with only one cycle, don't do 

continuity either at begining or end of the cycle: [U(nc)_all] 

                        V_even{i,j,k}(nc,find(T_even-T_i<=min(a*dT,Ts/1000) & T_ip1-T_even>a*dT)) = 

interp1([T{i,j,k}(zeroT_pos{i,j,k}(nc):zeroT_pos{i,j,k}(nc+1)-1)] , 

[V{i,j,k}(zeroT_pos{i,j,k}(nc):zeroT_pos{i,j,k}(nc+1)-1)] , T_even(find(T_even-T_i<=min(a*dT,Ts/1000) & 

T_ip1-T_even>a*dT)),'nearest'); 

                        V_even{i,j,k}(nc,find(T_even-T_i>a*dT & T_ip1-T_even<=min(a*dT,Ts/1000))) = 

interp1([T{i,j,k}(zeroT_pos{i,j,k}(nc):zeroT_pos{i,j,k}(nc+1)-1)] , 

[V{i,j,k}(zeroT_pos{i,j,k}(nc):zeroT_pos{i,j,k}(nc+1)-1)] , T_even(find(T_even-T_i>a*dT & T_ip1-

T_even<=min(a*dT,Ts/1000))),'nearest'); 

                    elseif nc == 1                      % For the first cycle, we can only give 

continuity at the end of the cycle: [U(nc)_all;U(nc+1)_1] 

                        V_even{i,j,k}(nc,find(T_even-T_i<=min(a*dT,Ts/1000) & T_ip1-T_even>a*dT)) = 

interp1([T{i,j,k}(zeroT_pos{i,j,k}(nc):zeroT_pos{i,j,k}(nc+1)-1) ; T{i,j,k}(zeroT_pos{i,j,k}(nc+1))+Ts] 

, [V{i,j,k}(zeroT_pos{i,j,k}(nc):zeroT_pos{i,j,k}(nc+1)-1) ; V{i,j,k}(zeroT_pos{i,j,k}(nc+1))] , 

T_even(find(T_even-T_i<=min(a*dT,Ts/1000) & T_ip1-T_even>a*dT)),'nearest'); 

                        V_even{i,j,k}(nc,find(T_even-T_i>a*dT & T_ip1-T_even<=min(a*dT,Ts/1000))) = 

interp1([T{i,j,k}(zeroT_pos{i,j,k}(nc):zeroT_pos{i,j,k}(nc+1)-1) ; T{i,j,k}(zeroT_pos{i,j,k}(nc+1))+Ts] 

, [V{i,j,k}(zeroT_pos{i,j,k}(nc):zeroT_pos{i,j,k}(nc+1)-1) ; V{i,j,k}(zeroT_pos{i,j,k}(nc+1))] , 

T_even(find(T_even-T_i>a*dT & T_ip1-T_even<=min(a*dT,Ts/1000))),'nearest'); 

                    elseif nc == n_cycles(i,j,k)        % For the last cycle, we can only give 

continuity at the beginning of the cycle: [U(nc-1)_last;U(nc)] 

                        V_even{i,j,k}(nc,find(T_even-T_i<=min(a*dT,Ts/1000) & T_ip1-T_even>a*dT)) = 

interp1([T{i,j,k}(zeroT_pos{i,j,k}(nc)-1)-Ts ; T{i,j,k}(zeroT_pos{i,j,k}(nc):zeroT_pos{i,j,k}(nc+1)-1)] 

, [V{i,j,k}(zeroT_pos{i,j,k}(nc)-1) ; V{i,j,k}(zeroT_pos{i,j,k}(nc):zeroT_pos{i,j,k}(nc+1)-1)] , 

T_even(find(T_even-T_i<=min(a*dT,Ts/1000) & T_ip1-T_even>a*dT)),'nearest'); 

                        V_even{i,j,k}(nc,find(T_even-T_i>a*dT & T_ip1-T_even<=min(a*dT,Ts/1000))) = 

interp1([T{i,j,k}(zeroT_pos{i,j,k}(nc)-1)-Ts ; T{i,j,k}(zeroT_pos{i,j,k}(nc):zeroT_pos{i,j,k}(nc+1)-1)] 



 190

, [V{i,j,k}(zeroT_pos{i,j,k}(nc)-1) ; V{i,j,k}(zeroT_pos{i,j,k}(nc):zeroT_pos{i,j,k}(nc+1)-1)] , 

T_even(find(T_even-T_i>a*dT & T_ip1-T_even<=min(a*dT,Ts/1000))),'nearest'); 

                    else                                % For the rest cycles, we give continuity at the 

beginning and end of the cycle: [U(nc-1)_last;U(nc)_all;U(nc+1)_1] 

                        V_even{i,j,k}(nc,find(T_even-T_i<=min(a*dT,Ts/1000) & T_ip1-T_even>a*dT)) = 

interp1([T{i,j,k}(zeroT_pos{i,j,k}(nc)-1)-Ts ; T{i,j,k}(zeroT_pos{i,j,k}(nc):zeroT_pos{i,j,k}(nc+1)-1) ; 

T{i,j,k}(zeroT_pos{i,j,k}(nc+1))+Ts] , [V{i,j,k}(zeroT_pos{i,j,k}(nc)-1) ; 

V{i,j,k}(zeroT_pos{i,j,k}(nc):zeroT_pos{i,j,k}(nc+1)-1) ; V{i,j,k}(zeroT_pos{i,j,k}(nc+1))] , 

T_even(find(T_even-T_i<=min(a*dT,Ts/1000) & T_ip1-T_even>a*dT)),'nearest'); 

                        V_even{i,j,k}(nc,find(T_even-T_i>a*dT & T_ip1-T_even<=min(a*dT,Ts/1000))) = 

interp1([T{i,j,k}(zeroT_pos{i,j,k}(nc)-1)-Ts ; T{i,j,k}(zeroT_pos{i,j,k}(nc):zeroT_pos{i,j,k}(nc+1)-1) ; 

T{i,j,k}(zeroT_pos{i,j,k}(nc+1))+Ts] , [V{i,j,k}(zeroT_pos{i,j,k}(nc)-1) ; 

V{i,j,k}(zeroT_pos{i,j,k}(nc):zeroT_pos{i,j,k}(nc+1)-1) ; V{i,j,k}(zeroT_pos{i,j,k}(nc+1))] , 

T_even(find(T_even-T_i>a*dT & T_ip1-T_even<=min(a*dT,Ts/1000))),'nearest'); 

                    end 

 

                end             % end for "nc" cycle 

    % Check number of NaNs and good points ** It would be the same for all three colors if we were 

sampling in coincidence mode, so they all have the same timing ** 

                n_nans(i,j,k) = sum(sum(isnan(V_even{i,j,k}),2))/numel(V_even{i,j,k}); 

                n_points(i,j,k) = (numel(V_even{i,j,k})-

sum(sum(isnan(V_even{i,j,k}),2)))/numel(V_even{i,j,k}); 

                ratio_new_old(i,j,k) = (numel(V_even{i,j,k})-

sum(sum(isnan(V_even{i,j,k}),2)))/numel(V{i,j,k}); 

 

    % Compute mean (in time) and standard deviation for each point 

                V_mean(i,j,k) = nanmean(nanmean(V_even{i,j,k},2)); 

                V_rms(i,j,k) = nanmean(nanstd(V_even{i,j,k},0,2)); 

            end 

        end 

    end 

 

    if ch == 1;      V1_even = V_even; n_nans_V1 = n_nans; n_points_V1 = n_points; ratio_new_old_V1 = 

ratio_new_old; V1_mean = V_mean; V1_rms = V_rms; 

    elseif ch == 2;  V2_even = V_even; n_nans_V2 = n_nans; n_points_V2 = n_points; ratio_new_old_V2 = 

ratio_new_old; V2_mean = V_mean; V2_rms = V_rms; 

    elseif ch == 3;  V3_even = V_even; n_nans_V3 = n_nans; n_points_V3 = n_points; ratio_new_old_V3 = 

ratio_new_old; V3_mean = V_mean; V3_rms = V_rms; 

    end 

 

end             % end of loop for each channel 

 

% end of function 

end 

Transform_LDV 

function [U V W] = Transform_LDV(X, Y, Z, V1_even, V2_even, V3_even, T_even, X_case, Y_case, Z_case, 

dir_save) 

% TRANSFORM_LDV 

% Function to transform LDV velocities V1,V2,V3 (in probe non-orthogonal reference system) 

% into U,V,W (in orthogonal cartesian reference system), given the angles of the probe 

% (pitch, rotation, yaw) and the half-angles of the beams (alpha (ch.1), beta (ch.2), gamma (ch.3)) 

% 

% X, Y, Z: vectors containing the coordinates of the measurement locations in the flume 
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% V1_even,V2_even,V3_even: velocities for each channel in probe reference system 

% T_even: time vector for even-time data of velocities 

% X_case, Y_case, Z_case: coordinates of the location of the case to show in the plots 

% dir_save: path of the directory in which to save the figures 

% ** Must be already in even-time sampled form, so that the triplets of velocity measurements correspond 

to each other in the same instant in time 

% ** Also, must have same number of data points!! 

% 

% JM Mier 

% Ven Te Chow Hydrosystems Laboratory, UIUC 

% March 2012 

% 

 

% Input data 

% probe angles in air 

pitch = -1.0 %-4.9 %input('enter pitch angle = '); 

rotation = 90 %input('enter rotation angle = '); 

yaw = 0 %input('enter yaw angle = '); 

 

% beam half-angles in air 

alpha = 1.98 %3.95 %input('enter half-angle ch.1 (green) = '); 

beta = 3.95 %input('enter half-angle ch.2 (blue) = '); 

gamma = 2.35 %input('enter half-angle ch.3 (violet) = '); 

 

% ** CAREFUL! Use UNDERWATER angles if measuring in water! ** 

w = menu({'Measuring underwater?' ;'(will correct half-angles)'},'Yes','No'); 

if w == 1 

    n_water = 1.32;         % Refraction coefficient of water 

    n_air = 1.00;           % Refraction coefficient of air 

 

    % Apply Snell law (n1 * sin k1 = n2 * sin k2) 

    pitch = asin(sin(pitch/180*pi())*n_air/n_water)*180/pi(); 

    rotation = asin(sin(rotation/180*pi())*n_air/n_water)*180/pi(); 

    yaw = asin(sin(yaw/180*pi())*n_air/n_water)*180/pi(); 

    alpha = asin(sin(alpha/180*pi())*n_air/n_water)*180/pi(); 

    beta = asin(sin(beta/180*pi())*n_air/n_water)*180/pi(); 

    gamma = asin(sin(gamma/180*pi())*n_air/n_water)*180/pi(); 

end 

 

% Transformation matrix 

% such that (V1,V2,V3) = M * (U,V,W) 

% see TSI manual for more info 

% ** CAREFUL! Transformation matrix depends on the arrangement of the LDV probes and beams! ** 

 

% For 3D measurements with 

% side: 5-beam probe (green vertical + , blue horizontal -) 

% top: 2-beam subm probe (violet spanwise +) 

 

M = [0 sin((alpha-pitch)/180*pi()) cos((alpha-pitch)/180*pi()) ; ... 

    -1 0 0; ... 

    0 1 0]; 

 

disp(' '); 

disp('Transformation matrix:'); 

disp(['      ','  U        ','  V        ','  W        ']); 

disp([['Ch.1  ';'Ch.2  ';'Ch.3  '],num2str(roundn(M,-4))]); 
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% Inverse matrix 

% such that (U,V,W) = MM * (V1,V2,V3) 

MM = inv(M); 

 

disp(' '); 

disp('Inverse matrix:'); 

disp(['  ','   Ch.1     ','   Ch.2     ','   Ch.3     ']); 

disp([['U  ';'V  ';'W  '],num2str(roundn(MM,-4))]); 

 

% Transformed velocities 

U = cell(numel(X),numel(Y),numel(Z)); 

V = cell(numel(X),numel(Y),numel(Z)); 

W = cell(numel(X),numel(Y),numel(Z)); 

 

for i = 1 : numel(X) 

    for j = 1 : numel(Y) 

        for k = 1 : numel(Z) 

%            U{i,j,k} = MM(1,1) .* V1_even{i,j,k} + MM(1,2) .* V2_even{i,j,k} + MM(1,3) .* 

V3_even{i,j,k}; 

%            V{i,j,k} = MM(2,1) .* V1_even{i,j,k} + MM(2,2) .* V2_even{i,j,k} + MM(2,3) .* 

V3_even{i,j,k}; 

%            W{i,j,k} = MM(3,1) .* V1_even{i,j,k} + MM(3,2) .* V2_even{i,j,k} + MM(3,3) .* 

V3_even{i,j,k}; 

 

            % Simplified for the 3D case in particular to avoid NaNs from one channel to give NaNs on 

everything else 

            V3_even_nonnan{i,j,k} = V3_even{i,j,k}; 

            V3_even_nonnan{i,j,k}(isnan(V3_even{i,j,k})) = 0; 

            U{i,j,k} =                           + MM(1,2) .* V2_even{i,j,k}                            

; 

            V{i,j,k} =                                                       + MM(2,3) .* 

V3_even{i,j,k}; 

            W{i,j,k} = MM(3,1) .* V1_even{i,j,k}                             + MM(3,3) .* 

V3_even_nonnan{i,j,k}; 

        end 

    end 

end 

 

% end of function 

end 

ZeroLevel_LDV 

function z0 = ZeroLevel_LDV(z,t,u,Ts,dir_save) 

% ZEROLEVEL_LDV 

% Function to calculate the real z=0 level of the bed from a LDV profile. 

% 

% z: vector containing the coordinates of the measurement locations in the flume 

% t: processed time vector 

% u: processed velocity in streamwise direction 

% Ts: cycle duration 

% dir_save: path of the directory in which to save the figures 

% 
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% JM Mier 

% Ven Te Chow Hydrosystems Laboratory, UIUC 

% April 2013 

% 

 

% OSCILLATORY FLOW ONLY %% 

% May 2013 - It can work for unidirectional flow as well, although be cautious 

 

disp(' '); 

disp('Calculation of z=0 level:'); 

 

%dt = t(2)-t(1); 

%Ts = roundn((t(end)-t(1))+dt,-2); 

phi = roundn(t/Ts*360,-2); 

 

% Mean velocity profiles (U only) 

% Average velocity cycle (ensemble average in cycles (nc) for every (x,y,z) location) 

u_mean = nanmean(u,4);          % Results in u_mean(1,1,z,1,phi) 

u_mean_smooth = SmoothPlot_LDV(u_mean,5,4,1); 

u_mean_smooth = SmoothPlot_LDV2(u_mean_smooth,repmat(shiftdim(z,-2),[1,1,1,1,numel(phi)]),3,2,0); 

 

% Plot 

n_phi_plot = input(['Select number of profiles to plot (max=' , num2str(numel(phi)) , '): ']);      % 

Number of lines to plot in profiles 

n_phi_plot = min(n_phi_plot, numel(phi)); 

phi_plot = phi(1 : roundn(numel(phi)/n_phi_plot,0) : numel(phi));               % Phases to plot 

 

figure1 = figure(); 

for h = 1 : numel(phi_plot) 

    phi_pos(h) = find(phi==phi_plot(h)); 

    u_prof = squeeze(u_mean_smooth(:,:,:,:,phi_pos(h))); 

    figure(figure1); 

    hp = plot(u_prof,z,'o','MarkerSize',2); hc{h} = get(hp,'Color'); hold all; 

    pause(0.1); 

end 

 

figure(figure1); 

legend(num2str(phi_plot'),4); 

title('Mean Velocity (smoothed) profiles (X\_av , NC\_av)  -  U_m_e_a_n (m/s)'); 

xlabel('U_m_e_a_n (m/s)'); 

ylabel('z (m)'); 

ylim([0 0.001]); 

xlim([min([0,get(gca,'XLim')]) , max(get(gca,'XLim'))]); 

 

% Linear fit to the bottom points in profile 

% Such that z = m*u + b 

Zloc1_fit = input('Select first Z location from the bottom to include in fit: '); 

Zloc2_fit = input('Select last Z location from the bottom to include in fit: '); 

cfit1 = cell(numel(phi),1); 

gof1 = cell(numel(phi),1); 

for h = 1 : numel(phi) 

    [cfit1{h},gof1{h}] = 

fit(squeeze(u_mean_smooth(:,:,Zloc1_fit:Zloc2_fit,:,h)),z(Zloc1_fit:Zloc2_fit),'poly1'); 

    m1(h) = cfit1{h}.p1; 

    b1(h) = cfit1{h}.p2; 

end 
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% Plot fit lines with data 

for h = 1 : numel(phi_plot) 

    phi_pos(h) = find(phi==phi_plot(h)); 

    z_lines_prof = [b1(phi_pos(h));z]; 

    u_lines_prof = (z_lines_prof-b1(phi_pos(h)))./m1(phi_pos(h)); 

    figure(figure1); 

%    hp = plot(u_prof,z,'o','MarkerSize',2); hc = get(hp,'Color'); hold all; 

    hpp = plot(u_lines_prof,z_lines_prof,'-','MarkerSize',2,'Color',hc{h}); 

set(get(get(hpp,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); % Exclude line from 

legend); 

    pause(0.1); 

end 

saveas(gcf,[dir_save '\Zero-level calculation_linear fit'],'jpg'); 

 

% Result of fit 

% Method A: Calculation of z0 assuming all profiles meet at u=0 

 

% Phases to use are only those with a developed profile (near u_max) 

phi_loc_u_high = (abs(squeeze(u_mean_smooth(:,:,1,:,:)))>max(squeeze(u_mean_smooth(:,:,1,:,:)))/2); 

 

% Average 'b', taking only those profiles with higher velocity to avoid 

% bad results near zero velocity profiles 

b1_mean = mean(b1(phi_loc_u_high)); 

 

% Plot 'b' coefficient 

figure 

plot(phi,b1); hold on; 

plot(phi(phi_loc_u_high),b1(phi_loc_u_high),'or'); 

legend('all values','used for z0'); 

title('Coefficient of linear fit to find z=0 level'); 

xlabel('Phi (º)'); 

ylabel('b (m)'); 

xlim([0 360]); 

ylim([b1_mean-0.0005 b1_mean+0.0005]); 

saveas(gcf,[dir_save '\Zero-level calculation_coefficient'],'jpg'); 

 

% Show result (rounded to 1 micron increments) 

z0_coef = b1_mean; 

disp(['A) Coefficient method: z0 = ',num2str(roundn(z0_coef,-6)*1000),' mm']); 

 

% Method B: Calculation of z0 from statistics of linear fit lines crossing points (doesn't assume u=0) 

% Find the crossing point of each line with all the others 

% line1: y1 = m1 x1 + b1 

% line2: y2 = m2 x2 + b2 

% Crossing point: y1 = y2 and x1 = x2, so: 

% m1 x + b1 = m2 x + b2 ; x = (b2-b1)/(m1-m2) ; y = m1 x + b1 

% If we call x = u, and y = z, then: z0 (z=0 level) would be the mean of all 'y', and u0 (bottom drift) 

would be the mean of all 'x' 

 

m1_matrix = repmat(m1,[numel(phi) 1]); 

b1_matrix = repmat(b1,[numel(phi) 1]); 

m2_matrix = repmat(m1',[1 numel(phi)]); 

b2_matrix = repmat(b1',[1 numel(phi)]); 

 

x_crossing_matrix = (b2_matrix-b1_matrix)./(m1_matrix-m2_matrix); 
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x_crossing_matrix(~(tril(ones(numel(phi)),-20) + triu(ones(numel(phi)),20))) = NaN;    % Exclude 

intersections between neighboring lines (diagonal) 

x_crossing_matrix(fliplr(~(tril(ones(numel(phi)),-20) + triu(ones(numel(phi)),20)))) = NaN;    % Exclude 

intersections between lines symmetric respect to the velocity peak (antidiagonal) 

x_crossing_matrix(~phi_loc_u_high,:) = NaN;       % Select only the phases with a developed profile 

(near u_max) 

x_crossing_matrix(:,~phi_loc_u_high) = NaN;       % Select only the phases with a developed profile 

(near u_max) 

 

y_crossing_matrix = m1_matrix.*x_crossing_matrix + b1_matrix; 

 

% Transform matrices into a continuous vector of crossing points (x,y) 

x_crossing_vector = x_crossing_matrix(~isnan(x_crossing_matrix)); 

y_crossing_vector = y_crossing_matrix(~isnan(x_crossing_matrix)); 

 

% Check in case there are no valid crossing points to use for calculations 

if isempty(x_crossing_vector) 

    z0_crossing = []; 

    disp('B) Crossing points method: z0 = (unable to calculate)'); 

 

else 

    % Plot lines crossing points 

    figure 

    plot(x_crossing_vector,y_crossing_vector,'.'); hold on; 

    plot(nanmean(x_crossing_matrix,2),nanmean(y_crossing_matrix,2),'oc'); 

    legend('all points','average per phase'); 

    title('Crossing points between lines of linear fit to find z=0 level'); 

    xlabel('U (m/s)'); 

    ylabel('z (m)'); 

 

    % Statistics for x (u) 

    x_bin_edge = [-max(max(u_mean_smooth)):0.001:max(max(u_mean_smooth))]; 

    x_count = histc(x_crossing_vector,x_bin_edge); 

    x_threshold = x_bin_edge(x_count>0.1*max(x_count)); 

    x_mean = mean(x_crossing_vector(x_crossing_vector>x_threshold(1) & 

x_crossing_vector<x_threshold(end))); 

    x_mode = mode(roundn(x_crossing_vector,-3)); 

 

    % Statistics for y (z) 

    y_bin_edge = [-0.001:0.000001:0.001]; 

    y_count = histc(y_crossing_vector,y_bin_edge); 

    y_threshold = y_bin_edge(y_count>0.1*max(y_count)); 

    y_mean = mean(y_crossing_vector(y_crossing_vector>y_threshold(1) & 

y_crossing_vector<y_threshold(end))); 

    y_mode = mode(roundn(y_crossing_vector,-6)); 

 

    % Include results in plot 

    plot(x_mean,y_mean,'sr'); 

    plot(nanmean(nanmean(x_crossing_matrix)),nanmean(nanmean(y_crossing_matrix)),'sm'); 

    plot(x_mode,y_mode,'^r'); 

    plot(mode(roundn(nanmean(x_crossing_matrix),-3)),mode(roundn(nanmean(y_crossing_matrix),-6)),'^m'); 

    legend('all points','average per phase','Mean (all points)','Mean (avg per phase)','Mode (all 

points)','Mode (avg per phase)'); 

    xlim([x_mean-0.2 x_mean+0.2]); 

    ylim([y_mean-0.0001 y_mean+0.0001]); 

    saveas(gcf,[dir_save '\Zero-level calculation_crossing points'],'jpg'); 
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    % Show result (rounded to 1 micron increments) 

    z0_crossing = y_mean; 

    disp(['B) Crossing points method: z0 = ',num2str(roundn(z0_crossing,-6)*1000),' mm']); 

end 

 

% Choose which method to take as final result 

% The result from method B) should be more accurate. 

method = 0; 

while method==0         % Loop to keep asking for answer until a valid choice is selected 

    method = input('Choose method for z0 (Method A)=1 , Method B)=2 , Custom=3): '); 

    if     method==1; z0 = z0_coef; 

    elseif method==2; z0 = z0_crossing; 

    elseif method==3; z0 = input('Enter z0 value (in mm): ')/1000; 

    else              method = 0; 

    end 

end 

 

% Round z0 to 10 microns increments 

z0 = roundn(z0,-5); 

disp(['Final value (rounded to 10 microns increments): z0 = ',num2str(z0*1000),' mm']); 

 

% end of function 

end 

CheckData_LDV 

function [] = CheckData_LDV(x,y,z,t,u,v,w,n_cycles,X_case,Y_case,Z_case,dir_save,Ts,Fs,a) 

% CHECKDATA_LDV 

% Function to generate several figures to double-check the quality 

% of the LDV data after processing. 

% 

% x, y, z: vectors containing the coordinates of the measurement locations in the flume 

% t, u, v, w: processed time and velocities 

% n_cycles: number of cycles measured at each location 

% X_case, Y_case, Z_case: coordinates of the location of the case to show in the plots 

% dir_save: path of the directory in which to save the figures 

% Ts: cycle duration 

% Fs: sampling frequency 

% a: interval amplitude for even-time interpolation routine, such that Interval = +-a*dT 

% 

% JM Mier 

% Ven Te Chow Hydrosystems Laboratory, UIUC 

% May 2009 

% Revised: March 2012 - 2D plots of running average velocities 

% Revised: August 2012 - 2D plots of running RMS velocities 

% Revised: May 2013 - 2D plots of percent error of running average and running RMS 

% 

 

% OSCILLATORY FLOW ONLY %% 

% May 2013 - It can work for unidirectional flow as well, although be cautious 

 

% Number of valid data points after processing 

%Ts = roundn((t(end)-t(1))+1/Fs,-2); 
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phi = roundn(t/Ts*360,-2); 

for i = 1 : numel(x) 

    for j = 1 : numel(y) 

        Plot_LDV_contours(phi,z,squeeze(sum(~isnan(u(i,j,:,:,:)),4)),'Valid data 

points','U_n_\__p_o_i_n_t_s','#',dir_save,'Unp'); 

        Plot_LDV_contours(phi,z,squeeze(sum(~isnan(v(i,j,:,:,:)),4)),'Valid data 

points','V_n_\__p_o_i_n_t_s','#',dir_save,'Vnp'); 

        Plot_LDV_contours(phi,z,squeeze(sum(~isnan(w(i,j,:,:,:)),4)),'Valid data 

points','W_n_\__p_o_i_n_t_s','#',dir_save,'Wnp'); 

    end 

end 

 

% Number of cycles that need to be measured 

% Limit the amount of data because the routine is very computer intensive 

n_cycles_limit = 1024; 

n_cycles = 

min(cat(numel(size(n_cycles))+1,ones(size(n_cycles)).*n_cycles_limit,n_cycles),[],numel(size(n_cycles))+

1); 

%n_cycles_min = min(min(min(n_cycles))); 

n_cycles_max = max(max(max(n_cycles))); 

 

% 1- Mean Velocity criteria 

 

% 1a- Ensemble averaged velocities 

% Average velocity cycle (ensemble average in cycles (nc) and in space (x) for every (y,z) locations) 

u_mean = nanmean(nanmean(u,4),1); 

v_mean = nanmean(nanmean(v,4),1); 

w_mean = nanmean(nanmean(w,4),1); 

 

% 1b- Running average velocities 

% Average criterion (signal at every (y,z) location) 

% running average over time (over cycles nc) 

u_rmean = zeros(size(u(:,:,:,1:n_cycles_max,:))); 

v_rmean = zeros(size(v(:,:,:,1:n_cycles_max,:))); 

w_rmean = zeros(size(w(:,:,:,1:n_cycles_max,:))); 

for nc = 1 : n_cycles_max 

    u_rmean(:,:,:,nc,:) = nanmean(nanmean(u(:,:,:,1:nc,:),4),1); 

    v_rmean(:,:,:,nc,:) = nanmean(nanmean(v(:,:,:,1:nc,:),4),1); 

    w_rmean(:,:,:,nc,:) = nanmean(nanmean(w(:,:,:,1:nc,:),4),1); 

end 

 

% 1c- 2D plots of running average for several phases at one particular location (X,Y,Z), in the u-nc 

plane 

% Plot for all locations 

p = menu('Plot of running average?','Yes','No'); 

 

if p == 1 

    s = menu('Save pictures?','Yes','No'); 

 

    % X_case, Y_case, Z_case can be single values or vectors 

    c = menu('Number of cases?','One','All'); 

    if c == 1 

        X_cases = X_case; 

        Y_cases = Y_case; 

        Z_cases = Z_case; 

    else 
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        X_cases = 1:numel(x); 

        Y_cases = 1:numel(y); 

        Z_cases = 1:numel(z); 

    end 

 

    n_lines = 5;                                   % Number of phases to plot 

    n_lines = min(n_lines, numel(t)); 

 

    figure(); 

    hp1 = subplot(3,1,1); hold on; 

    hp2 = subplot(3,1,2); hold on; 

    hp3 = subplot(3,1,3); hold on; 

    linkaxes([hp1 hp2 hp3],'x'); 

    set(gcf,'position',[1 80 1024 600]);            % Maximizes figure window 

 

    % Loop through all files requested 

    for i = 1 : numel(X_cases) 

        for j = 1 : numel(Y_cases) 

            for k = 1 : numel(Z_cases) 

 

                leyenda1 = []; 

%                leyenda2 = []; 

%                leyenda3 = []; 

                cla(hp1); 

                cla(hp2); 

                cla(hp3); 

                tp = t; 

                np = 1:n_cycles_max; 

 

                for h = 1 : roundn(numel(tp)/n_lines,0) : numel(tp)     % loop in number of phases to 

plot (n_lines) 

 

                    up = squeeze(u_rmean(X_cases(i),Y_cases(j),Z_cases(k),np,h)); 

                    upp = squeeze(u(X_cases(i),Y_cases(j),Z_cases(k),np,h)); 

                    plot(hp1,np,up,'-','color',[h/numel(tp) 0 1-h/numel(tp)]); % hold on; 

                    handlep = plot(hp1,np,upp,'.','color',[h/numel(tp) 0 1-

h/numel(tp)],'MarkerSize',10); hold on; 

set(get(get(handlep,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); % Exclude line from 

legend 

                    leyenda1 = [leyenda1 ; ['Phi = ',num2str(roundn((h-

1)/numel(tp)*360,0),'%03.0f'),'º']]; 

 

                    vp = squeeze(v_rmean(X_cases(i),Y_cases(j),Z_cases(k),np,h)); 

                    vpp = squeeze(v(X_cases(i),Y_cases(j),Z_cases(k),np,h)); 

                    plot(hp2,np,vp,'-','color',[h/numel(tp) 0 1-h/numel(tp)]); % hold on; 

                    handlep = plot(hp2,np,vpp,'.','color',[h/numel(tp) 0 1-

h/numel(tp)],'MarkerSize',10); hold on; 

set(get(get(handlep,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); % Exclude line from 

legend 

 

                    wp = squeeze(w_rmean(X_cases(i),Y_cases(j),Z_cases(k),np,h)); 

                    wpp = squeeze(w(X_cases(i),Y_cases(j),Z_cases(k),np,h)); 

                    plot(hp3,np,wp,'-','color',[h/numel(tp) 0 1-h/numel(tp)]); % hold on; 

                    handlep = plot(hp3,np,wpp,'.','color',[h/numel(tp) 0 1-

h/numel(tp)],'MarkerSize',10); hold on; 

set(get(get(handlep,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); % Exclude line from 

legend 
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                end                     % end of loop in number of phases 

 

                xlim([np(1)-1 np(end)+1]); 

                legend(hp1,leyenda1); 

                title(hp1,['Running average along the cycles, for several phases, at z = ', 

num2str(z(Z_cases(k))*1000), ' mm']); 

                xlabel(hp3,'NC (-)'); 

                ylabel(hp1,'u (m/s)'); 

                ylabel(hp2,'v (m/s)'); 

                ylabel(hp3,'w (m/s)'); 

 

                if s == 1 

                    file_save = [dir_save,'\Running average along 

cycles_z=',num2str(z(Z_cases(k))*1000),'mm_Fs=',num2str(Fs),',a=',num2str(a),'.jpg']; 

                    saveas(gcf,file_save,'jpg'); 

                end 

 

                if c == 2 

                    input(['Plotting: Z_case = ', num2str(Z_cases(k)),'. Press enter to continue.']); 

                end 

            end 

        end 

    end         % Close loop through cases 

    if c == 2; disp('End of plots'); end; 

    set(gcf,'position',[228 228 560 420]);          % Back to original size in left window 

end 

 

% 1d- Percentage error (pe) in the running average (with respect peak to peak (ptp) value to avoid DIV0) 

pe_u_rmean = zeros(size(u(:,:,:,1:n_cycles_max,:))); 

pe_v_rmean = zeros(size(v(:,:,:,1:n_cycles_max,:))); 

pe_w_rmean = zeros(size(w(:,:,:,1:n_cycles_max,:))); 

ptp_u_mean = abs(max(u_mean,[],5)); %abs(max(u_mean,[],5))+abs(min(u_mean,[],5)); 

ptp_v_mean = abs(max(u_mean,[],5)); %abs(max(v_mean,[],5))+abs(min(v_mean,[],5)); 

ptp_w_mean = abs(max(u_mean,[],5)); %abs(max(w_mean,[],5))+abs(min(w_mean,[],5)); 

% We use the ptp of u for the three components to be able to compare among 

% them, avoiding very small values of ptp for the components with near zero average 

 

for nc = 1 : n_cycles_max 

    pe_u_rmean(:,:,:,nc,:) = abs((u_rmean(:,:,:,nc,:)-u_mean(:,:,:,1,:)))./repmat(ptp_u_mean,[1 1 1 1 

numel(t)]); 

    pe_v_rmean(:,:,:,nc,:) = abs((v_rmean(:,:,:,nc,:)-v_mean(:,:,:,1,:)))./repmat(ptp_v_mean,[1 1 1 1 

numel(t)]); 

    pe_w_rmean(:,:,:,nc,:) = abs((w_rmean(:,:,:,nc,:)-w_mean(:,:,:,1,:)))./repmat(ptp_w_mean,[1 1 1 1 

numel(t)]); 

end 

 

% 1e- 2D plots of percent error for several phases at each particular location (X,Y,Z), in the pe-nc 

plane 

% Plot for all locations 

p = menu('Plot of percent error in the running average?','Yes','No'); 

 

if p == 1 

    s = menu('Save pictures?','Yes','No'); 
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    % X_case, Y_case, Z_case can be single values or vectors 

    c = menu('Number of cases?','One','All'); 

    if c == 1 

        X_cases = X_case; 

        Y_cases = Y_case; 

        Z_cases = Z_case; 

    else 

        X_cases = 1:numel(x); 

        Y_cases = 1:numel(y); 

        Z_cases = 1:numel(z); 

    end 

 

    n_lines = 5;                                   % Number of phases to plot 

    n_lines = min(n_lines, numel(t)); 

 

    figure(); 

    hp1 = subplot(3,1,1); hold on; 

    hp2 = subplot(3,1,2); hold on; 

    hp3 = subplot(3,1,3); hold on; 

    linkaxes([hp1 hp2 hp3],'x'); 

    set(gcf,'position',[1 80 1024 600]);            % Maximizes figure window 

 

    % Loop through all files requested 

    for i = 1 : numel(X_cases) 

        for j = 1 : numel(Y_cases) 

            for k = 1 : numel(Z_cases) 

 

                leyenda1 = []; 

                cla(hp1); 

                cla(hp2); 

                cla(hp3); 

                tp = t; 

                np = 1:n_cycles_max; 

 

                for h = 1 : roundn(numel(tp)/n_lines,0) : numel(tp)     % loop in number of phases to 

plot (n_lines) 

 

                    up = squeeze(pe_u_rmean(X_cases(i),Y_cases(j),Z_cases(k),np,h)*100); 

                    plot(hp1,np,up,'-','color',[0 h/numel(tp) 1-h/numel(tp)]); % hold on; 

                    leyenda1 = [leyenda1 ; ['Phi = ',num2str(roundn((h-

1)/numel(tp)*360,0),'%03.0f'),'º']]; 

 

                    vp = squeeze(pe_v_rmean(X_cases(i),Y_cases(j),Z_cases(k),np,h)*100); 

                    plot(hp2,np,vp,'-','color',[0 h/numel(tp) 1-h/numel(tp)]); % hold on; 

 

                    wp = squeeze(pe_w_rmean(X_cases(i),Y_cases(j),Z_cases(k),np,h)*100); 

                    plot(hp3,np,wp,'-','color',[0 h/numel(tp) 1-h/numel(tp)]); % hold on; 

                end                     % end of loop in number of phases 

 

                % Plot tolerance lines 

                tolerance = 0.01;       % tolerance +/-, per unit. 

 

                upp = ones(size(up))*tolerance*100; 

                handlep = plot(hp1,np,upp,'-r'); 

set(get(get(handlep,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); % Exclude line from 

legend 
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                vpp = ones(size(vp))*tolerance*100; 

                handlep = plot(hp2,np,vpp,'-r'); 

set(get(get(handlep,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); % Exclude line from 

legend 

                wpp = ones(size(wp))*tolerance*100; 

                handlep = plot(hp3,np,wpp,'-r'); 

set(get(get(handlep,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); % Exclude line from 

legend 

 

                % Axes decoration 

                ylim(hp1,[0,20]); 

                ylim(hp2,[0,20]); 

                ylim(hp3,[0,20]); 

                xlim([np(1)-1 np(end)+1]); 

                legend(hp1,leyenda1); 

                title(hp1,['Percent error for the running average along the cycles, at z = ', 

num2str(z(Z_cases(k))*1000), ' mm']); 

                xlabel(hp3,'NC (-)'); 

                ylabel(hp1,'Error in u_m_e_a_n (%)'); 

                ylabel(hp2,'Error in v_m_e_a_n (%)'); 

                ylabel(hp3,'Error in w_m_e_a_n (%)'); 

 

                if s == 1 

                    file_save = [dir_save,'\Running average_percent 

error_z=',num2str(z(Z_cases(k))*1000),'mm_Fs=',num2str(Fs),',a=',num2str(a),'.jpg']; 

                    saveas(gcf,file_save,'jpg'); 

                end 

 

                if c == 2 

                    input(['Plotting: Z_case = ', num2str(Z_cases(k)),'. Press enter to continue.']); 

                    %pause 

                end 

            end 

        end 

    end         % Close loop through cases 

    if c == 2; disp('End of plots'); end; 

    set(gcf,'position',[228 228 560 420]);          % Back to original size in left window 

end 

 

 

% 2- RMS Velocity criteria 

 

% 2a- Fluctuating velocities 

% Fluctuations with respect the average cycle (ensemble average in cycles (nc) and in space (x) for 

every (y,z) locations) 

uf = u - repmat(nanmean(u,4),[1 1 1 size(u,4) 1]); 

vf = v - repmat(nanmean(v,4),[1 1 1 size(v,4) 1]); 

wf = w - repmat(nanmean(w,4),[1 1 1 size(w,4) 1]); 

 

% RMS velocities 

u_rms = nanmean(nanstd(u,0,4),1); 

v_rms = nanmean(nanstd(v,0,4),1); 

w_rms = nanmean(nanstd(w,0,4),1); 

 

% 2b- Running RMS velocities 

% RMS criterion (signal at every (y,z) location) 
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% running RMS over time (over cycles nc) 

u_rrms = zeros(size(u(:,:,:,1:n_cycles_max,:))); 

v_rrms = zeros(size(v(:,:,:,1:n_cycles_max,:))); 

w_rrms = zeros(size(w(:,:,:,1:n_cycles_max,:))); 

for nc = 1 : n_cycles_max 

    u_rrms(:,:,:,nc,:) = nanmean(nanstd(u(:,:,:,1:nc,:),0,4),1); 

    v_rrms(:,:,:,nc,:) = nanmean(nanstd(v(:,:,:,1:nc,:),0,4),1); 

    w_rrms(:,:,:,nc,:) = nanmean(nanstd(w(:,:,:,1:nc,:),0,4),1); 

end 

 

% 2c- 2D plots of running RMS for several phases at one particular location (X,Y,Z), in the u-nc plane 

% Plot for all locations 

p = menu('Plot of running RMS?','Yes','No'); 

 

if p == 1 

    s = menu('Save pictures?','Yes','No'); 

 

    % X_case, Y_case, Z_case can be single values or vectors 

    c = menu('Number of cases?','One','All'); 

    if c == 1 

        X_cases = X_case; 

        Y_cases = Y_case; 

        Z_cases = Z_case; 

    else 

        X_cases = 1:numel(x); 

        Y_cases = 1:numel(y); 

        Z_cases = 1:numel(z); 

    end 

 

    n_lines = 5;                                   % Number of phases to plot 

    n_lines = min(n_lines, numel(t)); 

 

    figure(); 

    hp1 = subplot(3,1,1); hold on; 

    hp2 = subplot(3,1,2); hold on; 

    hp3 = subplot(3,1,3); hold on; 

    linkaxes([hp1 hp2 hp3],'x'); 

    set(gcf,'position',[1 80 1024 600]);            % Maximizes figure window 

 

    % Loop through all files requested 

    for i = 1 : numel(X_cases) 

        for j = 1 : numel(Y_cases) 

            for k = 1 : numel(Z_cases) 

 

                leyenda1 = []; 

                cla(hp1); 

                cla(hp2); 

                cla(hp3); 

                tp = t; 

                np = 1:n_cycles_max; 

 

                for h = 1 : roundn(numel(tp)/n_lines,0) : numel(tp)     % loop in number of phases to 

plot (n_lines) 

 

                    up = squeeze(u_rrms(X_cases(i),Y_cases(j),Z_cases(k),np,h)); 

                    upp = squeeze(abs(uf(X_cases(i),Y_cases(j),Z_cases(k),np,h))); 
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                    plot(hp1,np,up,'-','color',[h/numel(tp) 0 1-h/numel(tp)]); % hold on; 

                    handlep = plot(hp1,np,upp,'.','color',[h/numel(tp) 0 1-

h/numel(tp)],'MarkerSize',10); hold on; 

set(get(get(handlep,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); % Exclude line from 

legend 

                    leyenda1 = [leyenda1 ; ['Phi = ',num2str(roundn((h-

1)/numel(tp)*360,0),'%03.0f'),'º']]; 

 

                    vp = squeeze(v_rrms(X_cases(i),Y_cases(j),Z_cases(k),np,h)); 

                    vpp = squeeze(abs(vf(X_cases(i),Y_cases(j),Z_cases(k),np,h))); 

                    plot(hp2,np,vp,'-','color',[h/numel(tp) 0 1-h/numel(tp)]); % hold on; 

                    handlep = plot(hp2,np,vpp,'.','color',[h/numel(tp) 0 1-

h/numel(tp)],'MarkerSize',10); hold on; 

set(get(get(handlep,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); % Exclude line from 

legend 

 

                    wp = squeeze(w_rrms(X_cases(i),Y_cases(j),Z_cases(k),np,h)); 

                    wpp = squeeze(abs(wf(X_cases(i),Y_cases(j),Z_cases(k),np,h))); 

                    plot(hp3,np,wp,'-','color',[h/numel(tp) 0 1-h/numel(tp)]); % hold on; 

                    handlep = plot(hp3,np,wpp,'.','color',[h/numel(tp) 0 1-

h/numel(tp)],'MarkerSize',10); hold on; 

set(get(get(handlep,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); % Exclude line from 

legend 

 

                end                     % end of loop in number of phases 

 

                xlim([np(1)-1 np(end)+1]); 

                legend(hp1,leyenda1); 

                title(hp1,['Running RMS along the cycles, for several phases, at z = ', 

num2str(z(Z_cases(k))*1000), ' mm']); 

                xlabel(hp3,'NC (-)'); 

                ylabel(hp1,'u'' , u_R_M_S (m/s)'); 

                ylabel(hp2,'v'' , v_R_M_S (m/s)'); 

                ylabel(hp3,'w'' , w_R_M_S (m/s)'); 

 

                if s == 1 

                    file_save = [dir_save,'\Running RMS along 

cycles_z=',num2str(z(Z_cases(k))*1000),'mm_Fs=',num2str(Fs),',a=',num2str(a),'.jpg']; 

                    saveas(gcf,file_save,'jpg'); 

                end 

 

                if c == 2 

                    input(['Plotting: Z_case = ', num2str(Z_cases(k)),'. Press enter to continue.']); 

                end 

            end 

        end 

    end         % Close loop through cases 

    if c == 2; disp('End of plots'); end; 

    set(gcf,'position',[228 228 560 420]);          % Back to original size in left window 

end 

 

% 2d- Percentage error (pe) in the running RMS (with respect the final value of RMS calculated with all 

cycles available) 

pe_u_rrms = zeros(size(u(:,:,:,1:n_cycles_max,:))); 

pe_v_rrms = zeros(size(v(:,:,:,1:n_cycles_max,:))); 

pe_w_rrms = zeros(size(w(:,:,:,1:n_cycles_max,:))); 



 204

for nc = 1 : n_cycles_max 

    pe_u_rrms(:,:,:,nc,:) = abs((u_rrms(:,:,:,nc,:)-u_rms(:,:,:,1,:)))./u_rms(:,:,:,1,:); 

    pe_v_rrms(:,:,:,nc,:) = abs((v_rrms(:,:,:,nc,:)-v_rms(:,:,:,1,:)))./v_rms(:,:,:,1,:); 

    pe_w_rrms(:,:,:,nc,:) = abs((w_rrms(:,:,:,nc,:)-w_rms(:,:,:,1,:)))./w_rms(:,:,:,1,:); 

end 

 

% 2e- 2D plots of percent error for several phases at each particular location (X,Y,Z), in the pe-nc 

plane 

% Plot for all locations 

p = menu('Plot of percent error in the running RMS?','Yes','No'); 

 

if p == 1 

    s = menu('Save pictures?','Yes','No'); 

 

    % X_case, Y_case, Z_case can be single values or vectors 

    c = menu('Number of cases?','One','All'); 

    if c == 1 

        X_cases = X_case; 

        Y_cases = Y_case; 

        Z_cases = Z_case; 

    else 

        X_cases = 1:numel(x); 

        Y_cases = 1:numel(y); 

        Z_cases = 1:numel(z); 

    end 

 

    n_lines = 5;                                   % Number of phases to plot 

    n_lines = min(n_lines, numel(t)); 

 

    figure(); 

    hp1 = subplot(3,1,1); hold on; 

    hp2 = subplot(3,1,2); hold on; 

    hp3 = subplot(3,1,3); hold on; 

    linkaxes([hp1 hp2 hp3],'x'); 

    set(gcf,'position',[1 80 1024 600]);            % Maximizes figure window 

 

    % Loop through all files requested 

    for i = 1 : numel(X_cases) 

        for j = 1 : numel(Y_cases) 

            for k = 1 : numel(Z_cases) 

 

                leyenda1 = []; 

                cla(hp1); 

                cla(hp2); 

                cla(hp3); 

                tp = t; 

                np = 1:n_cycles_max; 

 

                for h = 1 : roundn(numel(tp)/n_lines,0) : numel(tp)     % loop in number of phases to 

plot (n_lines) 

 

                    up = squeeze(pe_u_rrms(X_cases(i),Y_cases(j),Z_cases(k),np,h)*100); 

                    plot(hp1,np,up,'-','color',[0 h/numel(tp) 1-h/numel(tp)]); % hold on; 

                    leyenda1 = [leyenda1 ; ['Phi = ',num2str(roundn((h-

1)/numel(tp)*360,0),'%03.0f'),'º']]; 
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                    vp = squeeze(pe_v_rrms(X_cases(i),Y_cases(j),Z_cases(k),np,h)*100); 

                    plot(hp2,np,vp,'-','color',[0 h/numel(tp) 1-h/numel(tp)]); % hold on; 

 

                    wp = squeeze(pe_w_rrms(X_cases(i),Y_cases(j),Z_cases(k),np,h)*100); 

                    plot(hp3,np,wp,'-','color',[0 h/numel(tp) 1-h/numel(tp)]); % hold on; 

                end                     % end of loop in number of phases 

 

                % Plot tolerance lines 

                tolerance = 0.01;       % tolerance +/-, per unit. 

                upp = ones(size(up))*tolerance*100; 

                handlep = plot(hp1,np,upp,'-r'); 

                vpp = ones(size(vp))*tolerance*100; 

                handlep = plot(hp2,np,vpp,'-r'); 

                wpp = ones(size(wp))*tolerance*100; 

                handlep = plot(hp3,np,wpp,'-r');  

 

                % Axes decoration 

                ylim(hp1,[0,20]); 

                ylim(hp2,[0,20]); 

                ylim(hp3,[0,20]); 

                xlim([np(1)-1 np(end)+1]); 

                legend(hp1,leyenda1); 

                title(hp1,['Percent error for the running RMS along the cycles, at z = ', 

num2str(z(Z_cases(k))*1000), ' mm']); 

                xlabel(hp3,'NC (-)'); 

                ylabel(hp1,'Error in u_R_M_S (%)'); 

                ylabel(hp2,'Error in v_R_M_S (%)'); 

                ylabel(hp3,'Error in w_R_M_S (%)'); 

                if s == 1 

                    file_save = [dir_save,'\Running RMS_percent 

error_z=',num2str(z(Z_cases(k))*1000),'mm_Fs=',num2str(Fs),',a=',num2str(a),'.jpg']; 

                    saveas(gcf,file_save,'jpg'); 

                end 

                if c == 2 

                    input(['Plotting: Z_case = ', num2str(Z_cases(k)),'. Press enter to continue.']); 

                end 

            end 

        end 

    end         % Close loop through cases 

    if c == 2; disp('End of plots'); end; 

    set(gcf,'position',[228 228 560 420]);          % Back to original size in left window 

end 

% end of function 

 
Published with MATLAB® 7.14 
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APPENDIX B 

COMPUTER CODE FOR ANALYSIS OF LDV DATA                  
(IN MATLAB©) 
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LDV_ANALYSIS 

Program to read, analyze and plot data from text files. Applied to data from LDV measurements from 
experiments in the HydroLab. 

Contents 

 Main routine 

 MEAN FLOW ANALYSIS 

 TURBULENCE ANALYSIS 

 BED SHEAR STRESS CALCULATION 

 BOUNDARY LAYER PARAMETERS 

 QUADRANT ANALYSIS 

 UNCERTAINTY ANALYSIS 

Main routine 

% LDV_ANALYSIS 

% Program to read, analyze and plot data from text files. 

% Applied to data from LDV measurements from experiments in the HydroLab. 

% 

% JM Mier 

% Ven Te Chow Hydrosystems Laboratory, UIUC 

% May 2009 

% Revised: March 2012 

% 

 

% Files location 

% Directories to read data from and save results into 

dir_read = uigetdir('C:\USERS\JM MIER\Research\Thesis exps','Select Path for DATA:'); 

dir_save = uigetdir(dir_read,'Select Path for RESULTS:'); 

 

% Generate list of data files 

file_traverse = dir([dir_read,'\*.txt']); 

file_list = dir([dir_read,'\*.csv']); 

file_matlab = dir([dir_read,'\*.mat']); 

 

% Experiment conditions 

% Display experiment name 

dir_read_dividers = find(dir_read=='\'); 

disp(' '); 

disp(['Flume:           ',dir_read(dir_read_dividers(end-3)+1:dir_read_dividers(end-2)-1)]); 

disp(['Project:         ',dir_read(dir_read_dividers(end-2)+1:dir_read_dividers(end-1)-1)]); 

disp(['Experiment:      ',dir_read(dir_read_dividers(end-1)+1:dir_read_dividers(end-0)-1)]); 

disp(['LDV_Analysis:    ',dir_read(dir_read_dividers(end-0)+1:end)]); 

 

% Nominal case values 

disp(' '); 

disp('Nominal case values:'); 
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T_nom = input(' Period of oscillation (s) = ');          % Period of oscillation (s) 

A_nom = input(' Half-amplitude of oscillation (m) = ');  % Half-amplitude of oscillation (m) 

ro_nom = 1000;                                          % Density of water (kg/m3) 

nu_nom = 10^(-6);                                       % Kinematic viscosity of water (m2/s) 

Umax_nom = 2*pi*A_nom/T_nom;                            % Max velocity of the oscillation (m/s) 

Rew_nom = Umax_nom*A_nom/nu_nom;                        % Wave Reynolds number 

Tau_b_max_laminar_nom = ro_nom*Umax_nom^2/Rew_nom^0.5;  % Max bed shear stress in laminar conditions 

(N/m2) 

 

disp([' Umax_nom = ',num2str(roundn(Umax_nom,-3)),' m/s']); 

disp([' Rew_nom = ',num2str(roundn(Rew_nom,3)),' = ',num2str(roundn(Rew_nom/10^6,-2)),' x10^6']); 

disp([' Tau_b_max_laminar_nom = ',num2str(roundn(Tau_b_max_laminar_nom,-2)),' N/m2']); 

 

% Physical parameters 

disp(' '); 

disp('Physical parameters:'); 

 

g = 9.81; %input(' Gravitational acceleration (m/s2) = ');                       % Gravitational 

acceleration (m/s2) 

Temp = input(' Temperature of fluid (ºC) = ');                                   % Input fluid 

temperature (ºC) 

ro = (1 - ((Temp+288.9414)*(Temp-3.9863)^2)/(508929.2*(Temp+68.12963)))*1000;   % Density of water 

(kg/m3) 

nu = 1.79*10^(-6)/(1+0.03368*Temp+0.00021*Temp^2);                              % Kinematic viscosity of 

water (m2/s) 

 

disp([' Density of water (ro) = ',num2str(roundn(ro,0)),' kg/m3']); 

disp([' Kinematic viscosity of water (nu) = ',num2str(roundn(nu*10^6,-2)),' x10^-6  m2/s']); 

 

% Read clean data 

disp(' '); 

disp('Loading data from .mat file...'); 

load([dir_read '\' file_matlab(1).name]); 

 

% Use corrected z=0 level 

% When reading data from text files, the correction may have been already applied in the 'Test grid.txt' 

file 

z = z - z0; 

 

% Get sampling frequency of the data set and cycle duration 

disp([' Max number of cycles (Nmax) = ',num2str(roundn(max(max(max(n_cycles))),0)),' cycles']); 

disp([' Cycle duration (Ts) = ',num2str(roundn(Ts,0)),' s']); 

disp([' Sampling Frequency (Fs) = ',num2str(roundn(Fs,0)),' Hz']); 

 

% Phase conversion 

% Convert even time stamps into degrees of phase 

phi_delta = 1/Fs*360/Ts; 

disp([' Phase increment available: ',num2str(phi_delta),'º']); 

phi_ini = input([' Initial phase at trigger (-180º to +180º , multiple of ',num2str(phi_delta),'º) = 

']);            % Phase = 0º is the upward zero crossing of the pistons (max horizontal velocity to the 

+X) 

phi = roundn(interp1([0,Ts],[phi_ini,phi_ini+360],t(1,:)),-2);      % Round to avoid decimal errors 

phi = phi + 360*(phi<0); 

phi = phi - 360*(phi>=360); 

disp([' Phases available: ',num2str(phi)]); 
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% Shift 5D matrices to get phi=0 at the first element of the "phi" dimension 

% (avoids problems with contour plots) 

phi_shift = find(phi<circshift(phi,[0 1]))-1; 

phi = circshift(phi,[0 -phi_shift]); 

u = circshift(u,[0 0 0 0 -phi_shift]); 

v = circshift(v,[0 0 0 0 -phi_shift]); 

w = circshift(w,[0 0 0 0 -phi_shift]); 

 

% Data analysis parameters 

% Select distance for outer flow 

Zout = input(' Set distance from bottom to consider outer flow conditions (in meters): '); %0.1;  % 

Distance from bottom to consider outer flow conditions (m) 

Zout_loc = find(roundn(z,-3)>=Zout,1,'first'); 

 

% Select minimum number of points needed for averages and standard deviations 

n_min_ave = 3;            % Minimum number of points in a series to compute mean values. Otherwise will 

give NaN. (From observation, 1 is enough, 3 is ok, 10 is good). 

n_min_std = 5;            % Minimum number of points in a series to compute rms values. Otherwise will 

give NaN. (From observation, 2 is enough, 5 is ok, 10 is good). 

n_min_skew = 7;           % Minimum number of points in a series to compute skewness values. Otherwise 

will give NaN. (From observation, 3 is enough, 7 is ok, 10 is good). 

% ** n_min_std NEEDS TO BE AT LEAST 2!! ** (Otherwise, if there is only 1 data point, std calculation 

will give 0, which is not good) 

% ** n_min_skew NEEDS TO BE AT LEAST 3!! ** (Otherwise, if there is only 2 data points, skew calculation 

will give 0, which is not good) 

MEAN FLOW ANALYSIS 

% MEAN FLOW ANALYSIS 

% Ensemble average in cycles (nc). Dimensions remaining: (x,y,z,1,phi) 

% Spatial average in longitudinal (x). Dimensions remaining: (1,y,z,1,phi) 

 

% Mean Velocities 

u_mean = nanmean(nanmean(u,4),1); u_mean(sum(~isnan(u),4)< n_min_ave) = NaN;     % Second statement 

included to avoid the calculation of MEAN in data sets with very few data points (which could bias all 

subsequent calculations). 

v_mean = nanmean(nanmean(v,4),1); v_mean(sum(~isnan(v),4)< n_min_ave) = NaN;     % Second statement 

included to avoid the calculation of MEAN in data sets with very few data points (which could bias all 

subsequent calculations). 

w_mean = nanmean(nanmean(w,4),1); w_mean(sum(~isnan(w),4)< n_min_ave) = NaN;     % Second statement 

included to avoid the calculation of MEAN in data sets with very few data points (which could bias all 

subsequent calculations). 

 

% Outer flow velocity 

u_mean_out = nanmean(u_mean(:,:,Zout_loc+1:end,:,:),3);                 % Outer flow velocity 

u_mean_out_ref = Umax_nom*sind(phi);                                    % Reference velocity cycle from 

sine wave 

 

% Max velocity of the outer flow (m/s) 

u_mean_out_max = (max(u_mean_out)+abs(min(u_mean_out)))/2; 

 

% Phase of Umax in outer flow (gives 2 values, one for each half-cycle) 

phi_loc_u_out_max = [find(u_mean_out==max(u_mean_out)) , find(u_mean_out==min(u_mean_out))]; 
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TURBULENCE ANALYSIS 

% TURBULENCE ANALYSIS 

% Ensemble calculations in cycles (nc). Dimensions remaining: (x,y,z,1,phi) 

% Spatial average in longitudinal (x). Dimensions remaining: (1,y,z,1,phi) 

 

% Velocity fluctuations (u',v',w') 

% uf = u - u_mean 

% Calculation of fluctuating velocities (u',v',w') before any ensemble averaging 

uf = u - repmat(u_mean,[size(u,1) 1 1 size(u,4) 1]); 

vf = v - repmat(v_mean,[size(v,1) 1 1 size(v,4) 1]); 

wf = w - repmat(w_mean,[size(w,1) 1 1 size(w,4) 1]); 

 

% RMS Velocities 

% u_rms = sqrt(mean(uf^2)) = std(u) 

u_rms = nanmean(nanstd(u,0,4),1); u_rms(sum(~isnan(u),4)< n_min_std) = NaN;     % Second statement 

included to avoid the calculation of STD in data sets with very few data points (when only 1 data point, 

we were getting u_rms = 0, which biases all subsequent calculations). 

v_rms = nanmean(nanstd(v,0,4),1); v_rms(sum(~isnan(v),4)< n_min_std) = NaN;     % Second statement 

included to avoid the calculation of STD in data sets with very few data points (when only 1 data point, 

we were getting u_rms = 0, which biases all subsequent calculations). 

w_rms = nanmean(nanstd(w,0,4),1); w_rms(sum(~isnan(w),4)< n_min_std) = NaN;     % Second statement 

included to avoid the calculation of STD in data sets with very few data points (when only 1 data point, 

we were getting u_rms = 0, which biases all subsequent calculations). 

 

% Turbulence Intensity 

% uf2_mean = mean(uf x uf) 

uf2_mean = nanmean(nanmean(uf.*uf,4),1); uf2_mean(sum(~isnan(uf.*uf),4)< n_min_ave) = NaN;     % Second 

statement included to avoid the calculation of MEAN in data sets with very few data points (which could 

bias all subsequent calculations). 

vf2_mean = nanmean(nanmean(vf.*vf,4),1); vf2_mean(sum(~isnan(vf.*vf),4)< n_min_ave) = NaN;     % Second 

statement included to avoid the calculation of MEAN in data sets with very few data points (which could 

bias all subsequent calculations). 

wf2_mean = nanmean(nanmean(wf.*wf,4),1); wf2_mean(sum(~isnan(wf.*wf),4)< n_min_ave) = NaN;     % Second 

statement included to avoid the calculation of MEAN in data sets with very few data points (which could 

bias all subsequent calculations). 

 

% Turbulent Kinetic Energy 

% tke = 1/2(uf2_mean + vf2_mean + wf2_mean) 

% e = ro*tke = 1/2*ro*(uf2_mean + vf2_mean + wf2_mean) 

% With the formula below, 'tke' will be calculated when at least one of the three components has a non-

Nan value, however, that could introduce some bias, since we don't know how much the NaN components 

could contribute. 

tke = 1/2*nansum(cat(numel(size(uf2_mean))+1, uf2_mean , vf2_mean , wf2_mean),numel(size(uf2_mean))+1); 

% When using the 'nansum' formula, we need to make a provision for the case when all three components 

are NaNs, so that the result won't be '0', but NaN. 

tke(isnan(uf2_mean) & isnan(vf2_mean) & isnan(wf2_mean)) = NaN; 

 

% Reynolds Shear Stress 

% Rij = -ro x mean(ufi x ufj) 

uf_vf_mean = nanmean(nanmean(uf.*vf,4),1); uf_vf_mean(sum(~isnan(uf.*vf),4)< n_min_ave) = NaN;     % 

Second statement included to avoid the calculation of MEAN in data sets with very few data points (which 

could bias all subsequent calculations). 

uf_wf_mean = nanmean(nanmean(uf.*wf,4),1); uf_wf_mean(sum(~isnan(uf.*wf),4)< n_min_ave) = NaN;     % 

Second statement included to avoid the calculation of MEAN in data sets with very few data points (which 

could bias all subsequent calculations). 
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vf_wf_mean = nanmean(nanmean(vf.*wf,4),1); vf_wf_mean(sum(~isnan(vf.*wf),4)< n_min_ave) = NaN;     % 

Second statement included to avoid the calculation of MEAN in data sets with very few data points (which 

could bias all subsequent calculations). 

 

Rxy = -ro * uf_vf_mean; 

Rxz = -ro * uf_wf_mean; 

Ryz = -ro * vf_wf_mean; 

 

% Viscous Shear Stress 

% tau_v = ro x nu x dui_mean/dxj 

% Only XZ is considered (which produces shear stress in the direction of the main flow) 

du_mean_dz = (circshift(u_mean,[0 0 -1 0 0])-circshift(u_mean,[0 0 1 0 

0]))./(circshift(repmat(shiftdim(z,-2),[1 numel(y) 1 1 numel(phi)]),[0 0 -1 0 0])-

circshift(repmat(shiftdim(z,-2),[1 numel(y) 1 1 numel(phi)]),[0 0 1 0 0]));     % Central scheme: dudz = 

(u_zp1-u_zm1)/(zp1-zm1). Need to make a correction for z=1 and z=end. 

du_mean_dz(:,:,1,:,:) = (u_mean(:,:,2,:,:)-u_mean(:,:,1,:,:))./(z(2)-z(1));                                                   

% Correction for z=1. 

du_mean_dz(:,:,end,:,:) = (u_mean(:,:,end,:,:)-u_mean(:,:,end-1,:,:))./(z(end)-z(end-1));                                     

% Correction for z=end. 

tau_v_xz = ro*nu*du_mean_dz; 

 

% Total Shear Stress (viscous + turbulent components) 

% tau = tau_v + Rij 

% Only XZ is considered (which produces shear stress in the direction of the main flow) 

% With the formula below, 'tau' will be calculated when at least one of the two components has a non-Nan 

value, however, that could introduce some bias, since we don't know how much the NaN components could 

contribute. 

tau_xz_comp = nansum(cat(numel(size(tau_v_xz))+1, tau_v_xz , Rxz),numel(size(tau_v_xz))+1); 

% When using the 'nansum' formula, we need to make a provision for the case when all two components are 

NaNs, so that the result won't be '0', but NaN. 

tau_xz_comp(isnan(tau_v_xz) & isnan(Rxz)) = NaN; 

 

% Turbulence Production 

% Pij = - mean(ufi x ufj) x dui_mean/dxj 

% Only XZ is considered (which produces turbulence in the direction of the main flow) 

P_xz = - uf_wf_mean .* du_mean_dz; 

 

% Eddy viscosity 

% nu_t_ij = - mean(ufi x ufj) / (dui_mean/dxj + duj_mean/dxi) 

% Only XZ is considered (which produces turbulence in the direction of the main flow) 

nu_t_xz = - uf_wf_mean ./ du_mean_dz; 

 

% Remove nu_t from places with very small gradient to avoid unrealistically large values 

nu_t_xz(abs(du_mean_dz)<max(max(abs(du_mean_dz)))*0.0001) = NaN; 

nu_t_xz(:,:,z<0.0001,:,:) = NaN; 

 

% Remove nu_t for z locations outside boundary layer 

% Find trace of du/dz=0 lines 

du_dz_zero_pos_matrix = squeeze(sign(du_mean_dz).*sign(circshift(du_mean_dz,[0 0 1 0 0]))); 

delta_max_pos = find(z<=delta_max,1,'last'); 

for h = 1 : numel(phi) 

    du_dz_zero_pos = find(du_dz_zero_pos_matrix(2:end,h)==-1)+1; 

    du_dz_zero_pos_first(1,h) = min(du_dz_zero_pos(1),delta_max_pos+3); 

    du_dz_zero_pos_second(1,h) = 

min([du_dz_zero_pos(du_dz_zero_pos>du_dz_zero_pos_first(1,h)+9);delta_max_pos+3]); 

end 

du_dz_zero_plot = z(max([du_dz_zero_pos_first;du_dz_zero_pos_second],[],1)-1); 
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% Remove nu_t for z locations outside boundary layer 

for h = 1 : numel(phi) 

    nu_t_xz(:,:,z>du_dz_zero_plot(h),:,h) = NaN; 

end 

 

% Skewness of velocity fluctuations 

% Using the standard definition of skewness (it gives the same result whether using u or uf) 

u_skew = nanmean(skewness(u,1,4),1); u_skew(sum(~isnan(u),4)< n_min_skew) = NaN;     % Second statement 

included to avoid the calculation of STD in data sets with very few data points (when only 1 data point, 

we were getting u_rms = 0, which biases all subsequent calculations). 

v_skew = nanmean(skewness(v,1,4),1); v_skew(sum(~isnan(v),4)< n_min_skew) = NaN;     % Second statement 

included to avoid the calculation of STD in data sets with very few data points (when only 1 data point, 

we were getting u_rms = 0, which biases all subsequent calculations). 

w_skew = nanmean(skewness(w,1,4),1); w_skew(sum(~isnan(w),4)< n_min_skew) = NaN;     % Second statement 

included to avoid the calculation of STD in data sets with very few data points (when only 1 data point, 

we were getting u_rms = 0, which biases all subsequent calculations). 

BED SHEAR STRESS CALCULATION 

% BED SHEAR STRESS 

% tau_b 

% Only XZ is considered (which produces shear stress in the direction of the main flow) 

 

% Aux variables 

% Phases near u_max 

phi_loc_u_high = (abs(squeeze(u_mean_out(:,1,:,:,:)))>max(squeeze(u_mean_out(:,1,:,:,:)))/2); 

 

% A) From extrapolation of tau down to the bottom 

%-- A4) Evaluate tau at a particular location near the bottom 

Zb_loc = input(' Select Z location from the bottom to evaluate Tau_b from Tau_xz: ');             % Z 

location where to evaluate tau_b 

Zb = mean(z(Zb_loc));         % Elevation of bottom where to evaluate tau_b (m) 

tau_b_xz_comp = nanmean(tau_xz_comp(:,:,Zb_loc,:,:),3); 

 

% C) From fit of u* to linear profiles, then tau_b = ro x u*2 

tau_b_xz_linearfit = zeros(1,numel(y),1,1,numel(phi)); 

for j = 1 : numel(y) 

 

    % Plot bottom points of u_mean profile 

    figure1 = figure(); 

    for h = 1 : numel(phi_plot) 

        phi_pos = find(phi==phi_plot(h)); 

        u_prof = squeeze(u_mean(:,j,:,:,phi_pos)); 

        figure(figure1); 

        hp = plot(u_prof,z,'o','MarkerSize',2); hc{h} = get(hp,'Color'); hold all; 

        pause(0.1); 

    end 

    figure(figure1); 

    legend(num2str(phi_plot'),4); 

    title('Mean Velocity profiles (X\_av , NC\_av)  -  U_m_e_a_n (m/s)'); 

    xlabel('U_m_e_a_n (m/s)'); 

    ylabel('z (m)'); 

    ylim([0 0.001]); 

    xlim([min([0,get(gca,'XLim')]) , max([0,get(gca,'XLim')])]); 
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    % Linear fit to the bottom points in profile 

    % Such that u = m*z + b (in theory, b=0 and m=u*2/nu) 

    Zloc1_fit = input(' Select first Z location from the bottom to include for linear fit: '); 

    Zloc2_fit = input(' Select last Z location from the bottom to include for linear fit: '); 

 

    cfit1 = cell(numel(phi),1); 

    gof1 = cell(numel(phi),1); 

    m1 = zeros(1,numel(phi)); 

    b1 = zeros(1,numel(phi)); 

    for h = 1 : numel(phi) 

        zfit = z(Zloc1_fit:Zloc2_fit); 

        ufit = squeeze(u_mean(:,j,Zloc1_fit:Zloc2_fit,:,h)); 

        if sum(~isnan(ufit)) < 2    % To avoid error when doing fit with less than 2 data points 

            m1(h) = NaN; 

            b1(h) = NaN; 

        else 

            [cfit1{h},gof1{h}] = fit(zfit(~isnan(ufit)),ufit(~isnan(ufit)),'poly1'); 

            m1(h) = cfit1{h}.p1; 

            b1(h) = cfit1{h}.p2; 

        end 

        tau_b_xz_linearfit(:,j,:,:,h) = ro*nu*m1(h); 

    end 

 

    % Plot fit lines with data 

    for h = 1 : numel(phi_plot) 

        phi_pos = find(phi==phi_plot(h)); 

        z_lines_prof = [0;z]; 

        u_lines_prof = (m1(phi_pos).*z_lines_prof + b1(phi_pos)); 

        figure(figure1); 

        hpp = plot(u_lines_prof,z_lines_prof,'-','MarkerSize',2,'Color',hc{h}); 

set(get(get(hpp,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); % Exclude line from 

legend); 

        pause(0.1); 

    end 

    my_saveas(gcf,[dir_save '\Tau_b_linearfit calculation'],'jpg'); 

end 

 

% D) From fit of u* to logarithmic profiles, then tau_b = ro x u*2 

% In a U_mean vs logZ plot, the logarithmic region should show as a 

% straight line. 

% In oscillatory flow, the straight portion of the velocity profile 

% happens at different Z for each phase, so we need to find a way to find 

% that Z automatically. 

% We do that by looking for the Z location where the slope (using logZ) 

% becomes constant (i.e. the curvature is zero). 

 

tau_b_xz_logfit = zeros(1,numel(y),1,1,numel(phi)); 

for j = 1 : numel(y) 

 

    % Plot points of u_mean profile (log scale) 

    figure1 = figure(); 

    for h = 1 : numel(phi_plot) 

        phi_pos = find(phi==phi_plot(h)); 

        u_prof = squeeze(u_mean(:,j,:,:,phi_pos)); 

        figure(figure1); 

        hp = plot(u_prof,z,'o','MarkerSize',2); hc{h} = get(hp,'Color'); hold all; 
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        pause(0.1); 

    end 

    figure(figure1); 

    legend(num2str(phi_plot'),4); 

    title('Mean Velocity profiles (X\_av , NC\_av)  -  U_m_e_a_n (m/s)'); 

    xlabel('U_m_e_a_n (m/s)'); 

    ylabel('z (m)'); 

    set(gca,'YScale','log'); 

    ylim([0.0001 roundn(max(z),-2)]); 

    xlim([min([0,get(gca,'XLim')]) , max([0,get(gca,'XLim')])]); 

    drawnow; 

 

    % Slope of mean velocity profiles in logZ scale 

    du_mean_dzlog = (circshift(u_mean,[0 0 -1 0 0])-circshift(u_mean,[0 0 1 0 

0]))./(circshift(repmat(shiftdim(log(z),-2),[1 numel(y) 1 1 numel(phi)]),[0 0 -1 0 0])-

circshift(repmat(shiftdim(log(z),-2),[1 numel(y) 1 1 numel(phi)]),[0 0 1 0 0]));     % Central scheme: 

dudz = (u_zp1-u_zm1)/(zp1-zm1). Need to make a correction for z=1 and z=end. 

    du_mean_dzlog(:,:,1,:,:) = (u_mean(:,:,2,:,:)-u_mean(:,:,1,:,:))./(log(z(2))-log(z(1)));                                  

% Correction for z=1. 

    du_mean_dzlog(:,:,end,:,:) = (u_mean(:,:,end,:,:)-u_mean(:,:,end-1,:,:))./(log(z(end))-log(z(end-

1)));                                                                                                                         

% Correction for z=end. 

 

    % Curvature of mean velocity profiles in logZ scale 

    du_mean_dz2log = (circshift(du_mean_dzlog,[0 0 -1 0 0])-circshift(du_mean_dzlog,[0 0 1 0 

0]))./(circshift(repmat(shiftdim(log(z),-2),[1 numel(y) 1 1 numel(phi)]),[0 0 -1 0 0])-

circshift(repmat(shiftdim(log(z),-2),[1 numel(y) 1 1 numel(phi)]),[0 0 1 0 0]));     % Central scheme: 

dudz = (u_zp1-u_zm1)/(zp1-zm1). Need to make a correction for z=1 and z=end. 

    du_mean_dz2log(:,:,1,:,:) = (du_mean_dzlog(:,:,2,:,:)-du_mean_dzlog(:,:,1,:,:))./(log(z(2))-

log(z(1)));                                                                                                                   

% Correction for z=1. 

    du_mean_dz2log(:,:,end,:,:) = (du_mean_dzlog(:,:,end,:,:)-du_mean_dzlog(:,:,end-

1,:,:))./(log(z(end))-log(z(end-1)));                                                                                         

% Correction for z=end. 

 

    % Logarithmic fit to the points in profile 

    % Such that u = m*ln(z) + b (in theory: u/u* = 1/K ln(z/k0) + Bs, so b = -u*/K ln(k0) + u*Bs  and  m 

= u*/K , with K=0.41 von Karman) 

    cfit1 = cell(numel(phi),1); 

    gof1 = cell(numel(phi),1); 

    m1 = zeros(1,numel(phi)); 

    b1 = zeros(1,numel(phi)); 

    for h = 1 : numel(phi) 

        % Method 2 for Zloc_fit 

        % Zloc_fit are different for every phase and are obtained from the points between curvature 

peaks 

        curvature_profile = squeeze(du_mean_dz2log(:,j,:,:,h))*sign(squeeze(u_mean_out(:,j,:,:,h))); 

        curvature_peaks = (curvature_profile(1:Zout_loc-1)<circshift(curvature_profile(1:Zout_loc-1),-1) 

& curvature_profile(1:Zout_loc-1)<circshift(curvature_profile(1:Zout_loc-1),1)); 

        Zloc_fit = 1 + find(curvature_peaks(2:end-1));      % Removes possible false peak detected at 

bottom or top of profile 

        if isempty(Zloc_fit); Zloc_fit = 1; end;            % Just to avoid errors when it doesn't find 

any curvature peaks 

        Zloc1_fit = Zloc_fit(min(1,numel(Zloc_fit))); Zloc1_fit = max(Zloc1_fit,1); 

        Zloc2_fit = Zloc_fit(min(2,numel(Zloc_fit))); Zloc2_fit = min(Zloc2_fit,numel(z)); 

 

        zfit = log(z(Zloc1_fit:Zloc2_fit)); 
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        ufit = squeeze(u_mean(:,j,Zloc1_fit:Zloc2_fit,:,h)); 

        if sum(~isnan(ufit)) < 2    % To avoid error when doing fit with less than 2 data points 

            m1(h) = NaN; 

            b1(h) = NaN; 

        else 

            [cfit1{h},gof1{h}] = fit(zfit(~isnan(ufit)),ufit(~isnan(ufit)),'poly1'); 

            m1(h) = cfit1{h}.p1; 

            b1(h) = cfit1{h}.p2; 

        end 

        tau_b_xz_logfit(:,j,:,:,h) = sign(m1(h))*ro*(0.41*m1(h))^2; 

    end 

 

    % Plot fit lines with data 

    for h = 1 : numel(phi_plot) 

        phi_pos = find(phi==phi_plot(h)); 

        z_lines_prof = [0;z]; 

        u_lines_prof = (m1(phi_pos).*log(z_lines_prof) + b1(phi_pos)); 

        figure(figure1); 

        hpp = plot(u_lines_prof,z_lines_prof,'-','MarkerSize',2,'Color',hc{h}); 

set(get(get(hpp,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); % Exclude line from 

legend); 

        pause(0.1); 

    end 

    my_saveas(gcf,[dir_save '\Tau_b_logfit calculation'],'jpg'); 

 

end 

 

% Use this fit only for phases near the velocity maximum (it doesn't work near the flow reversal) 

tau_b_xz_logfit(:,:,:,:,~phi_loc_u_high) = NaN; 

 

% E) Average with all methods 

tau_b_xz_avg = nanmean(cat(6,tau_b_xz_comp,tau_b_xz_linearfit),6); 

 

% Phase of Tau_b_max (gives 2 values, one for each half-cycle) 

phi_loc_tau_b_max = [find(tau_b_xz_avg==max(tau_b_xz_avg)) , find(tau_b_xz_avg==min(tau_b_xz_avg))]; 

BOUNDARY LAYER PARAMETERS 

% BOUNDARY LAYER PARAMETERS 

% Boundary layer thickness (delta) 

% Defined as the height where the velocity peak is in a vertical profile 

velocity_peak_right = zeros(1,numel(phi)); 

velocity_peak_left = zeros(1,numel(phi)); 

Zloc_peak_right = zeros(1,numel(phi)); 

Zloc_peak_left = zeros(1,numel(phi)); 

delta_right = zeros(1,numel(phi)); 

delta_left = zeros(1,numel(phi)); 

for h = 1 : numel(phi) 

    velocity_profile = squeeze(u_mean(:,j,:,:,h)); %*sign(squeeze(u_mean_out(:,1,:,:,h))); 

    [velocity_peak_right(h),Zloc_peak_right(h)] = max(velocity_profile(1:Zout_loc-1)); 

    [velocity_peak_left(h),Zloc_peak_left(h)] = min(velocity_profile(1:Zout_loc-1)); 

    delta_right(h) = z(Zloc_peak_right(h)); 

    delta_left(h) = z(Zloc_peak_left(h)); 

end 
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% Take delta only when velocity peak is positive (for delta right) or negative (for delta left) 

delta_right(velocity_peak_right<0) = NaN; 

delta_left(velocity_peak_left>0) = NaN; 

 

% Delta can not get thinner after reaching all the way out 

delta_right(find(Zloc_peak_right==Zout_loc-1,1,'last')+1:find(isnan(delta_right),1,'first')) = NaN; 

delta_left([1:find(isnan(delta_left),1,'first') , find(Zloc_peak_left==Zout_loc-1,1,'last')+1:end]) = 

NaN; 

 

% Reference delta is computed at the phase of max u_out: 

delta_u_out_max = (delta_right(u_mean_out==max(u_mean_out)) + 

delta_left(u_mean_out==min(u_mean_out)))/2; 

delta_max = (max(delta_right) + max(delta_left))/2; 

 

% Vertical scaling in boundary layer 

% z_scale_out = delta 

z_scale_out = zeros(size(u_mean_out)); 

z_scale_out(:,1,:,:,1:numel(phi)) = max([delta_right;delta_left],[],1); 

 

% Shear Velocity 

% Classic tau_b = rho x u*^2, so u* = sqrt(tau_b/rho) 

 

% A) From tau_b (visc + turb) components 

u_star_comp = sign(tau_b_xz_comp).*(abs(tau_b_xz_comp)/ro).^0.5; 

u_star_comp_max = (max(u_star_comp)+abs(min(u_star_comp)))/2; 

 

% C) From fit to linear profiles 

u_star_linearfit = sign(tau_b_xz_linearfit).*(abs(tau_b_xz_linearfit)/ro).^0.5; 

u_star_linearfit_max = (max(u_star_linearfit)+abs(min(u_star_linearfit)))/2; 

 

% D) From fit to logarithmic profiles 

u_star_logfit = sign(tau_b_xz_logfit).*(abs(tau_b_xz_logfit)/ro).^0.5; 

u_star_logfit_max = (max(u_star_logfit)+abs(min(u_star_logfit)))/2; 

 

% E) Average with all methods 

% Due to the nature of the oscillatory flow, the values of u* from the 

% logarithmic fit will have a lag with respect to the values obtained near 

% the bed. 

% If the logarithmic fit is included to compute the average, the phase 

% should be shifted according to the phase difference between the peaks. 

u_star_avg = sign(tau_b_xz_avg).*(abs(tau_b_xz_avg)/ro).^0.5; 

u_star_avg_max = (max(u_star_avg)+abs(min(u_star_avg)))/2; 

 

% Phases near u_star_max 

phi_loc_u_star_high = (abs(squeeze(u_star_avg(:,1,:,:,:)))>max(squeeze(u_star_avg(:,1,:,:,:)))/2); 

 

% Wave friction factor 

% Typically Tau_b = ro u*^2, but also Tau_b = ro Cf U^2, where Cf is friction coefficient. 

% In wave boundary layers fw = 2Cf, so fw = 2 (u*/U)^2 

% It changes on every phase!! 

fw_avg = 2.*(u_star_avg./u_mean_out).^2; 

 

% Discard points near u=0 to avoid division by '0' 

fw_avg(:,:,:,:,~phi_loc_u_high) = NaN; 

 

% Reference fw is computed at the phase of max u_star: 
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fw_avg_u_star_max = (fw_avg(u_star_avg==max(u_star_avg)) + fw_avg(u_star_avg==min(u_star_avg)))/2; 

fw_avg_u_out_max = (fw_avg(u_mean_out==max(u_mean_out)) + fw_avg(u_mean_out==min(u_mean_out)))/2; 

 

% Vertical scaling in viscous sublayer 

% z_scale_in = nu/u* 

% It changes on every phase!! 

z_scale_in_avg = nu./abs(u_star_avg); 

 

% Discard points near u_star=0 to avoid division by '0' 

z_scale_in_avg(:,:,:,:,~phi_loc_u_star_high) = NaN; 

 

% Reference Zv is computed at the phase of max u_star: 

z_scale_in_avg_u_star_max = (z_scale_in_avg(u_star_avg==max(u_star_avg)) + 

z_scale_in_avg(u_star_avg==min(u_star_avg)))/2; 

 

% Viscous sublayer thickness (delta_v) 

 

%-- Method 1: Using the vicous length scale 

% delta_v = 11.6 z_scale_in = 11.6 nu/u*    % Divide between viscous and log-law zones in steady flows 

% delta_v = 5 z_scale_in = 5 nu/u*          % Purely viscous zone limit 

 

% This method proved not to give good results for oscillatory flows, 

% because the flow is unsteady and the viscous sublayer develops 

% differently than in steady flows, which is what this method is based on. 

 

delta_v_116 = 11.6.*squeeze(z_scale_in_avg(:,1,:,:,:))'; 

delta_v_5 = 5.*squeeze(z_scale_in_avg(:,1,:,:,:))'; 

 

%-- Method 2: from linear velocity profiles near bottom 

% Instead of calculating it using the viscous length scale (nu/u*), which 

% may not apply for oscillatory flows?? 

% So we find the distance from the bottom where velocity profiles are linear 

% for each phase, which is also where d(tau)/dz = 0 

 

% This method didn't work well, since the velocity profiles may not be 

% linear near the bottom even though we might be inside the viscous 

% sublayer. 

 

%-- Method 3: From oscillatory flow theory (laminar regime only) 

% From Hino et al. (1983), it is mentioned that the thickness of viscous 

% sublayer can be predicted in the laminar regime from Rayleigh theory, 

% being proportional to (nu*t)^0.5 

 

% In this formula the time 't' needs to be adjusted to the starting point 

% of the cycle for the near bed layer. In the case of the pure laminar 

% regime goes 45º in advance of the outer flow, for other Rew, an 

% appropriate value needs to be used. 

 

% Find the zero crossing of u_star, which indicates more or less the starting point of the cycle near 

bed 

% Assumes u_star positive for first half-cycle and negative for second half-cycle 

phi_pos = find(squeeze(u_star_avg(:,1,:,:,:))'<=0 & phi>=90 & phi<=270 & 

~isnan(squeeze(u_star_avg(:,1,:,:,:))'),1,'first'); 

phi_pos_m1 = find(squeeze(u_star_avg(:,1,:,:,:))'>=0 & phi>=90 & phi<=270 & 

~isnan(squeeze(u_star_avg(:,1,:,:,:))'),1,'last'); 
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phi_dif_Rayleigh = 

interp1q(squeeze(u_star_avg(:,1,:,:,[phi_pos,phi_pos_m1])),phi([phi_pos,phi_pos_m1])',0) - 180; 

% Calculate delta_v 

delta_v_Rayleigh(1,:) = (nu*(phi-phi_dif_Rayleigh-0)/360*T).^0.5; 

delta_v_Rayleigh(2,:) = (nu*(phi-phi_dif_Rayleigh-180)/360*T).^0.5; 

delta_v_Rayleigh(3,:) = (nu*(phi-phi_dif_Rayleigh-360)/360*T).^0.5; 

delta_v_Rayleigh(imag(delta_v_Rayleigh)~=0) = NaN; 

delta_v_Rayleigh(:,find(isnan(delta_v_Rayleigh(1,:)),1,'last')) = NaN; 

delta_v_Rayleigh(:,find(isnan(delta_v_Rayleigh(2,:)),1,'last')) = NaN; 

delta_v_Rayleigh(:,find(isnan(delta_v_Rayleigh(3,:)),1,'last')) = NaN; 

delta_v_Rayleigh_all = min(delta_v_Rayleigh,[],1); 

 

%-- Method 4: Using the definition of viscous sublayer 

% Go back to the basic definition of viscous sublayer, where viscous forces 

% are important compared to turbulent forces. 

% Use a ratio of viscous force (from tau_v) to turbulent force (from tke), 

% and establish an appropriate threshold that determines where the viscous 

% zone limit can be set. 

 

ratio_VT = tau_v_xz./(0.5*ro*uf2_mean);    % Using only the tke from U component 

 

% The value of the ratio_VT that defines the viscous zone limit can be 

% calculated from an analogy with the criteria used in steady flows: 

% From steady flows (Nezu & Nakagawa, 1993), for z+=5 (pure viscous zone limit), we have that 

u_rms/u_star = 1.8 

% Also, near the bed we can say that tau_v ~= ro*u_star^2 

% So, ratio_VT = tau_v / tke ~= ro*u_star^2 / (1/2*ro*(u_rms^2+v_rms^2+w_rms^2)). For full tke, with 3 

components. 

% So, ratio_VT = tau_v / tke_u ~= ro*u_star^2 / (1/2*ro*(u_rms^2)). A simplification when only u_rms is 

known near bed. 

% This results in ratio_VT_threshold = 2*(u_star/u_rms)^2 = 0.62 

ratio_VT_threshold = 0.62; 

 

%Find line of ratio_VT_threshold, starting from the bed 

ratio_VT_line = zeros(2,numel(phi)); 

for line = 1 : 2    % One line for each half-cycle 

ratio_VT = -ratio_VT;   % Change sign of ratio, to detect both lines independently, when flow is going 

right and going left. This will allow the lines to overlap for certain phases. 

for h = 1 : numel(phi) 

    line_pos = find(squeeze(ratio_VT(:,1,:,:,h))<=ratio_VT_threshold & 

[1;squeeze(ratio_VT(:,1,2:end,:,h))-squeeze(ratio_VT(:,1,1:end-1,:,h))<=0] & 

squeeze(ratio_VT(:,1,:,:,h))>=0,1,'first'); 

    line_pos_m1 = line_pos - 1; 

    if line_pos_m1==0; line_pos_m1 = 1; 

    elseif all(isnan(ratio_VT(:,1,1:line_pos_m1,:,h))); line_pos_m1 = NaN; 

    else line_pos_m1 = find(~isnan(ratio_VT(:,1,1:line_pos_m1,:,h)),1,'last'); 

    end 

    %ratio_VT_line(h) = z(line_pos); 

    if isnan(line_pos_m1); ratio_VT_line(line,h) = NaN; 

    else ratio_VT_line(line,h) = interp1q(ratio_VT(:,1,[line_pos,line_pos_m1],:,h), 

z([line_pos,line_pos_m1]),ratio_VT_threshold); 

    end 

end 

end 

delta_v_ratio_VT = max(ratio_VT_line,[],1); 
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% Reference delta_v is computed at the phase of max u_star: 

delta_v_ratio_VT_u_star_max = (delta_v_ratio_VT(u_star_avg==max(u_star_avg)) + 

delta_v_ratio_VT(u_star_avg==min(u_star_avg)))/2; 

 

% Phase difference between Tau_b_max and U_max 

% Phase lead of Tau_b_max with respect to Umax (positive means Tau_b_max happens before Umax) 

phi_lead_right_avg = phi(phi_loc_u_out_max(1))-phi(phi_loc_tau_b_max(1)); 

phi_lead_left_avg = phi(phi_loc_u_out_max(2))-phi(phi_loc_tau_b_max(2)); 

phi_lead_avg = (phi_lead_right_avg + phi_lead_left_avg)/2; 

QUADRANT ANALYSIS 

% QUADRANT ANALYSIS 

%Analysis of u'w' based on 4 quadrants: 

%Q1: u'>0 & w'>0 (outward interaction) 

%Q2: u'<0 & w'>0 (ejection) 

%Q3: u'<0 & w'<0 (inward interaction) 

%Q4: u'>0 & w'<0 (sweep) 

%In the case of oscillatory flow, there is a catch: quadrant analysis is 

%based on the interactions of u' with respect to the mean flow u_mean. So 

%during the phases of returning flow, a negative fluctuation (u'<0) will 

%indeed go with the mean flow (u_mean<0), and so will be a Q1 or Q4, not Q2 or Q3. 

%A threshold (H) is defined to consider relevant interactions, such that: |u'w'| > H(u'w') 

 

% Calculate quadrant number and magnitude for each data point at each location 

Qn = zeros(size(uf));       % Quadrant number 

Qn(or(uf>0 & repmat(u_mean,[1,1,1,size(uf,4),1])>0 , uf<0 & repmat(u_mean,[1,1,1,size(uf,4),1])<0) & 

wf>0) = 1; 

Qn(or(uf<0 & repmat(u_mean,[1,1,1,size(uf,4),1])>0 , uf>0 & repmat(u_mean,[1,1,1,size(uf,4),1])<0) & 

wf>0) = 2; 

Qn(or(uf<0 & repmat(u_mean,[1,1,1,size(uf,4),1])>0 , uf>0 & repmat(u_mean,[1,1,1,size(uf,4),1])<0) & 

wf<0) = 3; 

Qn(or(uf>0 & repmat(u_mean,[1,1,1,size(uf,4),1])>0 , uf<0 & repmat(u_mean,[1,1,1,size(uf,4),1])<0) & 

wf<0) = 4; 

 

Qmag = abs(uf.*wf);       % Quadrant magnitude 

 

% Calculate quadrant threshold 

Hcoef = 2; 

%Analyzed the effect of the Hcoef, seems 2 is a good number. 

Hmag = Hcoef * nanmean(nanmean(Qmag,4),1); Hmag(sum(~isnan(Qmag),4)< n_min_ave) = NaN;     % Second 

statement included to avoid the calculation of MEAN in data sets with very few data points (which could 

bias all subsequent calculations). 

%Threshold defined using the mean of Qmag along all cycles for each phase at each location 

Hmag = repmat(Hmag,[size(Qmag,1),1,1,size(Qmag,4),1]);      % To keep the same size as Qmag 

 

% Calculate which points are above the threshold 

Qsup = zeros(size(Qn)); 

Qsup = Qmag>Hmag; 

 

% Calculate dominant quadrant for each phase at each location 

%There might be several points above the threshold in all 4 different 

%quadrants, so we need to decide which quadrant is dominant, if any. 
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%Criteria 3: Compare the magnitude of the sum(uf.wf) of all points above the threshold in each quadrant 

Qmag_sum = zeros(size(mean(Qmag,4))); 

Qmag_sum(:,:,:,1,:) = nansum((Qmag-Hmag)./Hmag.*(Qsup & Qn==1),4); 

Qmag_sum(:,:,:,2,:) = nansum((Qmag-Hmag)./Hmag.*(Qsup & Qn==2),4); 

Qmag_sum(:,:,:,3,:) = nansum((Qmag-Hmag)./Hmag.*(Qsup & Qn==3),4); 

Qmag_sum(:,:,:,4,:) = nansum((Qmag-Hmag)./Hmag.*(Qsup & Qn==4),4); 

 

[~,Qn_dom] = max(Qmag_sum,[],4); 

Qn_dom(sum(Qsup,4)==0) = NaN; 

UNCERTAINTY ANALYSIS 

% UNCERTAINTY ANALYSIS 

% Standard error of X_mean = standard deviation of X / sqrt(N)      % Has units of X 

% Percent error = Standard error / X_mean * 100                     % In percentage 

% See Benedict and Gould (1996) for reference on how to calculate standard deviation for common 

turbulence statistics 

 

% Mean velocity (u_mean) 

u_std = nanmean(nanstd(u,0,4),1); u_std(sum(~isnan(u),4)< n_min_ave) = NaN;     % Standard deviation. 

Second statement included to avoid the calculation of STD in data sets with very few data points. 

u_N = sum(~isnan(u),4);                                                     % Number of valid data 

points 

u_ste = u_std./sqrt(u_N);                                                   % Standard error 

u_ste_pct = u_ste./max(cat(6,abs(u_mean),u_rms),[],6) *100;                 % Percent error, using the 

largest of u_mean and u_rms, to be more realistic, but avoiding divisions by zero as well. 

 

% Turbulence Intensities (uf2_mean , vf2_mean , wf2_mean) 

uf2 = uf.*uf; 

vf2 = vf.*vf; 

wf2 = wf.*wf; 

 

uf2_std = nanmean(nanstd(uf2,0,4),1); uf2_std(sum(~isnan(uf2),4)< n_min_ave) = NaN;     % Standard 

deviation. Second statement included to avoid the calculation of STD in data sets with very few data 

points. 

vf2_std = nanmean(nanstd(vf2,0,4),1); vf2_std(sum(~isnan(vf2),4)< n_min_ave) = NaN;     % Standard 

deviation. Second statement included to avoid the calculation of STD in data sets with very few data 

points. 

wf2_std = nanmean(nanstd(wf2,0,4),1); wf2_std(sum(~isnan(wf2),4)< n_min_ave) = NaN;     % Standard 

deviation. Second statement included to avoid the calculation of STD in data sets with very few data 

points. 

 

uf2_N = sum(~isnan(uf2),4);                                                     % Number of valid data 

points 

vf2_N = sum(~isnan(vf2),4);                                                     % Number of valid data 

points 

wf2_N = sum(~isnan(wf2),4);                                                     % Number of valid data 

points 

 

uf2_ste = uf2_std./sqrt(uf2_N);                                                   % Standard error 

vf2_ste = vf2_std./sqrt(vf2_N);                                                   % Standard error 

wf2_ste = wf2_std./sqrt(wf2_N);                                                   % Standard error 

 

uf2_ste_pct = uf2_ste./uf2_mean *100;                                        % Percent error 
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vf2_ste_pct = vf2_ste./vf2_mean *100;                                        % Percent error 

wf2_ste_pct = wf2_ste./wf2_mean *100;                                        % Percent error 

 

uf2_ste_pct(uf2_ste_pct>100) = 100;                                             % To avoid spikes that 

could distort the scale 

vf2_ste_pct(vf2_ste_pct>100) = 100;                                             % To avoid spikes that 

could distort the scale 

wf2_ste_pct(wf2_ste_pct>100) = 100;                                             % To avoid spikes that 

could distort the scale 

 

% RMS Velocities (u_rms , v_rms , w_rms) 

% From statistics, percent error of Urms = 1/2 of percent error of uf2_mean 

u_rms_ste_pct = uf2_ste_pct/2;                                              % Percent error 

v_rms_ste_pct = vf2_ste_pct/2;                                              % Percent error 

w_rms_ste_pct = wf2_ste_pct/2;                                              % Percent error 

 

% Reynolds Stresses (uf_wf_mean) 

uf_wf = uf.*wf; 

uf_wf_std = nanmean(nanstd(uf_wf,0,4),1); uf_wf_std(sum(~isnan(uf_wf),4)< n_min_ave) = NaN;     % 

Standard deviation. Second statement included to avoid the calculation of STD in data sets with very few 

data points. 

uf_wf_N = sum(~isnan(uf_wf),4);                                             % Number of valid data 

points 

uf_wf_ste = uf_wf_std./sqrt(uf_wf_N);                                       % Standard error 

uf_wf_ste_pct = uf_wf_ste./(u_rms.*w_rms) *100;                             % Percent error, using Urms 

and Wrms since uf_wf_mean has value close to zero, and can cause division by very small numbers, giving 

unrealistic results 

 

% Skewness of velocity fluctuations (uf3_mean , vf3_mean , wf3_mean) 

uf3 = uf.*uf.*uf; 

vf3 = vf.*vf.*vf; 

wf3 = wf.*wf.*wf; 

 

uf3_std = nanmean(nanstd(uf3,0,4),1); uf3_std(sum(~isnan(uf3),4)< n_min_skew) = NaN;     % Standard 

deviation. Second statement included to avoid the calculation of STD in data sets with very few data 

points. 

vf3_std = nanmean(nanstd(vf3,0,4),1); vf3_std(sum(~isnan(vf3),4)< n_min_skew) = NaN;     % Standard 

deviation. Second statement included to avoid the calculation of STD in data sets with very few data 

points. 

wf3_std = nanmean(nanstd(wf3,0,4),1); wf3_std(sum(~isnan(wf3),4)< n_min_skew) = NaN;     % Standard 

deviation. Second statement included to avoid the calculation of STD in data sets with very few data 

points. 

 

uf3_N = sum(~isnan(uf3),4);                                                     % Number of valid data 

points 

vf3_N = sum(~isnan(vf3),4);                                                     % Number of valid data 

points 

wf3_N = sum(~isnan(wf3),4);                                                     % Number of valid data 

points 

 

uf3_ste = uf3_std./sqrt(uf3_N);                                                   % Standard error 

vf3_ste = vf3_std./sqrt(vf3_N);                                                   % Standard error 

wf3_ste = wf3_std./sqrt(wf3_N);                                                   % Standard error 

 

uf3_ste_pct = uf3_ste./(u_rms.^3) *100;                                        % Percent error 

vf3_ste_pct = vf3_ste./(v_rms.^3) *100;                                        % Percent error 
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wf3_ste_pct = wf3_ste./(w_rms.^3) *100;                                        % Percent error 

 

uf3_ste_pct(uf3_ste_pct>100) = 100;                                             % To avoid spikes that 

could distort the scale 

vf3_ste_pct(vf3_ste_pct>100) = 100;                                             % To avoid spikes that 

could distort the scale 

wf3_ste_pct(wf3_ste_pct>100) = 100;                                             % To avoid spikes that 

could distort the scale 

 

% Turbulent kinetic energy (tke) 

% We use the property of the sum of errors, such that: standard error of (X+Y) = Standard error of X + 

Standard error of Y 

tke_ste = 1/2 * nansum(cat(6,uf2_ste,vf2_ste,wf2_ste),6);                              % Standard error 

tke_ste_pct = tke_ste./tke *100;                                            % Percent error 

 

% Save all variables in MatLab format 

file_save = 'LDV_analysis-all.mat'; 

save([dir_save '\' file_save]); 

 
Published with MATLAB® 7.14 
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APPENDIX C 

EXPERIMENTAL DATA 
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C.1 Experiment no. 1 

 

C.1.1 Main parameters 

Temp ρ ν T 2a U out_max Re w N max

Exp no. (ºC) (kg/m3) (m2/s) (s) (m) (m/s) (-) (cycles)
1 18.0 998.62 1.07E-06 10 0.468 0.147 3.2E+04 130  

 

U * max τ b_max Δφ f w_ref Z v_min δ v_90 δ 90 δ top

Exp no. (m/s) (N/m2) (deg) (-) (mm) (mm) (mm) (mm)
1 0.011 0.11 39.5 0.0102 0.102 3.672 4.7 9  

 

C.1.2 Outer flow velocity 

 

C.1.3 Boundary layer thickness 

 
 



 225

C.1.4 Mean velocities 

C.1.4.1 Contour plots 

 

 

 
 

 

 



 226

C.1.4.2 Profile plots 

 

 

 
 

 

 

 



 227

C.1.4.3 Evolution plots 

 

 

 
 

 

 

 



 228

C.1.5 RMS velocity fluctuations 

C.1.5.1 Contour plots 
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C.1.5.2 Profile plots 

 

 

 
 

 

 



 230

C.1.5.3 Evolution plots 

 

 

 
 

 

 



 231

C.1.6 Turbulent kinetic energy 

C.1.6.1 Contour plot 

 
C.1.6.2 Profile plot 

 
C.1.6.3 Evolution plot 

 
 



 232

C.1.7 Turbulent shear stress (Reynolds shear stress) 

C.1.7.1 Contour plot 

 
C.1.7.2 Profile plot 

 
C.1.7.3 Evolution plot 

 
 



 233

C.1.8 Viscous shear stress 

C.1.8.1 Contour plot 

 
C.1.8.2 Profile plot 

 
C.1.8.3 Evolution plot 

 
 



 234

C.1.9 Total shear stress 

C.1.9.1 Contour plot 

 
C.1.9.2 Profile plot 

 
C.1.9.3 Evolution plot 

 
 



 235

C.1.10 Turbulence production 

 

C.1.11 Turbulent viscosity (Eddy viscosity) 

 

C.1.12 Quadrant analysis 

 
 

 



 236

C.1.13 Skewness of velocity fluctuations 

 

 

 
 

 

 



 237

C.1.14 Bed shear stress 

 

C.1.15 Shear velocity 

 

C.1.16 Wave friction factor 

 
 

 



 238

C.1.17 Viscous length scale 

 

C.1.18 Viscous sublayer thickness 

 
 

 



 239

C.1.19 Number of valid data points 

 

 

 
 

 



 240

C.1.20 Percent error of mean velocity 

 

C.1.21 Percent error of turbulent kinetic energy 

 

C.1.22 Percent error of Reynolds shear stress 

 
 

 



 241

C.1.23 Percent error of RMS velocity fluctuations 
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C.2 Experiment no. 2 

 

C.2.1 Main parameters 

Temp ρ ν T 2a U out_max Re w N max

Exp no. (ºC) (kg/m3) (m2/s) (s) (m) (m/s) (-) (cycles)
2 16.6 998.87 1.11E-06 10 0.761 0.239 8.2E+04 130  

 

U * max τ b_max Δφ f w_ref Z v_min δ v_90 δ 90 δ top

Exp no. (m/s) (N/m2) (deg) (-) (mm) (mm) (mm) (mm)
2 0.014 0.21 39.0 0.0073 0.077 2.655 4.5 12  

 

C.2.2 Outer flow velocity 

 

C.2.3 Boundary layer thickness 
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C.2.4 Mean velocities 

C.2.4.1 Contour plots 

 

 

 
 

 

 



 244

C.2.4.2 Profile plots 

 

 

 
 

 

 

 



 245

C.2.4.3 Evolution plots 
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C.2.5 RMS velocity fluctuations 

C.2.5.1 Contour plots 

 

 

 
 

 

 



 247

C.2.5.2 Profile plots 

 

 

 
 

 

 



 248

C.2.5.3 Evolution plots 

 

 

 
 

 

 

 



 249

C.2.6 Turbulent kinetic energy 

C.2.6.1 Contour plot 

 
C.2.6.2 Profile plot 

 
C.2.6.3 Evolution plot 

 
 



 250

C.2.7 Turbulent shear stress (Reynolds shear stress) 

C.2.7.1 Contour plot 

 
C.2.7.2 Profile plot 

 
C.2.7.3 Evolution plot 

 
 



 251

C.2.8 Viscous shear stress 

C.2.8.1 Contour plot 

 
C.2.8.2 Profile plot 

 
C.2.8.3 Evolution plot 

 
 



 252

C.2.9 Total shear stress 

C.2.9.1 Contour plot 

 
C.2.9.2 Profile plot 

 
C.2.9.3 Evolution plot 

 
 



 253

C.2.10 Turbulence production 

 

C.2.11 Turbulent viscosity (Eddy viscosity) 

 

C.2.12 Quadrant analysis 

 
 

 



 254

C.2.13 Skewness of velocity fluctuations 

 

 

 
 

 

 



 255

C.2.14 Bed shear stress 

 

C.2.15 Shear velocity 

 

C.2.16 Wave friction factor 

 
 

 



 256

C.2.17 Viscous length scale 

 

C.2.18 Viscous sublayer thickness 

 
 

 



 257

C.2.19 Number of valid data points 

 

 

 
 

 



 258

C.2.20 Percent error of mean velocity 

 

C.2.21 Percent error of turbulent kinetic energy 

 

C.2.22 Percent error of Reynolds shear stress 

 
 

 



 259

C.2.23 Percent error of RMS velocity fluctuations 

 

 

 
 

 

 



 260

C.3 Experiment no. 3 

 

C.3.1 Main parameters 

Temp ρ ν T 2a U out_max Re w N max

Exp no. (ºC) (kg/m3) (m2/s) (s) (m) (m/s) (-) (cycles)
3 23.2 997.52 9.45E-07 10 0.958 0.301 1.5E+05 130  

 

U * max τ b_max Δφ f w_ref Z v_min δ v_90 δ 90 δ top

Exp no. (m/s) (N/m2) (deg) (-) (mm) (mm) (mm) (mm)
3 0.016 0.26 37.5 0.0057 0.059 0.693 7.3 19  

 

C.3.2 Outer flow velocity 

 

C.3.3 Boundary layer thickness 
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C.3.4 Mean velocities 

C.3.4.1 Contour plots 

 

 

 
 

 

 



 262

C.3.4.2 Profile plots 

 

 

 
 

 

 



 263

C.3.4.3 Evolution plots 

 

 

 
 

 

 



 264

C.3.5 RMS velocity fluctuations 

C.3.5.1 Contour plots 

 

 

 
 

 

 



 265

C.3.5.2 Profile plots 

 

 

 
 

 

 



 266

C.3.5.3 Evolution plots 

 

 

 
 

 

 



 267

C.3.6 Turbulent kinetic energy 

C.3.6.1 Contour plot 

 
C.3.6.2 Profile plot 

 
C.3.6.3 Evolution plot 

 
 



 268

C.3.7 Turbulent shear stress (Reynolds shear stress) 

C.3.7.1 Contour plot 

 
C.3.7.2 Profile plot 

 
C.3.7.3 Evolution plot 

 
 



 269

C.3.8 Viscous shear stress 

C.3.8.1 Contour plot 

 
C.3.8.2 Profile plot 

 
C.3.8.3 Evolution plot 

 
 



 270

C.3.9 Total shear stress 

C.3.9.1 Contour plot 

 
C.3.9.2 Profile plot 

 
C.3.9.3 Evolution plot 

 
 



 271

C.3.10 Turbulence production 

 

C.3.11 Turbulent viscosity (Eddy viscosity) 

 

C.3.12 Quadrant analysis 

 
 

 



 272

C.3.13 Skewness of velocity fluctuations 

 

 

 
 

 

 



 273

C.3.14 Bed shear stress 

 

C.3.15 Shear velocity 

 

C.3.16 Wave friction factor 

 
 

 



 274

C.3.17 Viscous length scale 

 

C.3.18 Viscous sublayer thickness 

 
 

 



 275

C.3.19 Number of valid data points 

 

 

 
 

 



 276

C.3.20 Percent error of mean velocity 

 

C.3.21 Percent error of turbulent kinetic energy 

 

C.3.22 Percent error of Reynolds shear stress 

 
 

 



 277

C.3.23 Percent error of RMS velocity fluctuations 
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C.4 Experiment no. 4 

 

C.4.1 Main parameters 

Temp ρ ν T 2a U out_max Re w N max

Exp no. (ºC) (kg/m3) (m2/s) (s) (m) (m/s) (-) (cycles)
4 23.6 997.42 9.36E-07 10 1.159 0.364 2.3E+05 130  

 

U * max τ b_max Δφ f w_ref Z v_min δ v_90 δ 90 δ top

Exp no. (m/s) (N/m2) (deg) (-) (mm) (mm) (mm) (mm)
4 0.017 0.28 36.5 0.0043 0.056 0.326 8.6 22  

 

C.4.2 Outer flow velocity 

 

C.4.3 Boundary layer thickness 
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C.4.4 Mean velocities 

C.4.4.1 Contour plots 

 

 

 
 

 



 280

C.4.4.2 Profile plots 

 

 

 
 

 

 



 281

C.4.4.3 Evolution plots 

 

 

 
 

 

 



 282

C.4.5 RMS velocity fluctuations 

C.4.5.1 Contour plots 

 

 

 
 

 



 283

C.4.5.2 Profile plots 

 

 

 
 

 

 



 284

C.4.5.3 Evolution plots 

 

 

 
 

 

 



 285

C.4.6 Turbulent kinetic energy 

C.4.6.1 Contour plot 

 
C.4.6.2 Profile plot 

 
C.4.6.3 Evolution plot 

 
 



 286

C.4.7 Turbulent shear stress (Reynolds shear stress) 

C.4.7.1 Contour plot 

 
C.4.7.2 Profile plot 

 
C.4.7.3 Evolution plot 

 
 



 287

C.4.8 Viscous shear stress 

C.4.8.1 Contour plot 

 
C.4.8.2 Profile plot 

 
C.4.8.3 Evolution plot 

 
 



 288

C.4.9 Total shear stress 

C.4.9.1 Contour plot 

 
C.4.9.2 Profile plot 

 
C.4.9.3 Evolution plot 

 
 



 289

C.4.10 Turbulence production 

 

C.4.11 Turbulent viscosity (Eddy viscosity) 

 

C.4.12 Quadrant analysis 

 
 

 



 290

C.4.13 Skewness of velocity fluctuations 

 

 

 
 

 

 



 291

C.4.14 Bed shear stress 

 

C.4.15 Shear velocity 

 

C.4.16 Wave friction factor 

 
 

 



 292

C.4.17 Viscous length scale 

 

C.4.18 Viscous sublayer thickness 

 
 

 



 293

C.4.19 Number of valid data points 

 

 

 
 

 



 294

C.4.20 Percent error of mean velocity 

 

C.4.21 Percent error of turbulent kinetic energy 

 

C.4.22 Percent error of Reynolds shear stress 

 
 

 



 295

C.4.23 Percent error of RMS velocity fluctuations 
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C.5 Experiment no. 5 

 

C.5.1 Main parameters 

Temp ρ ν T 2a U out_max Re w N max

Exp no. (ºC) (kg/m3) (m2/s) (s) (m) (m/s) (-) (cycles)
5 27.5 996.41 8.59E-07 10 1.261 0.396 2.9E+05 130  

 

U * max τ b_max Δφ f w_ref Z v_min δ v_90 δ 90 δ top

Exp no. (m/s) (N/m2) (deg) (-) (mm) (mm) (mm) (mm)
5 0.018 0.32 -26.5 0.0041 0.048 - 9.2 25  

 

C.5.2 Outer flow velocity 

 

C.5.3 Boundary layer thickness 

 
 



 297

C.5.4 Mean velocities 

C.5.4.1 Contour plots 

 

 

 
 

 

 



 298

C.5.4.2 Profile plots 

 

 

 
 

 

 



 299

C.5.4.3 Evolution plots 

 

 

 
 

 



 300

C.5.5 RMS velocity fluctuations 

C.5.5.1 Contour plots 

 

 

 
 

 



 301

C.5.5.2 Profile plots 

 

 

 
 

 



 302

C.5.5.3 Evolution plots 

 

 

 
 

 



 303

C.5.6 Turbulent kinetic energy 

C.5.6.1 Contour plot 

 
C.5.6.2 Profile plot 

 
C.5.6.3 Evolution plot 

 
 



 304

C.5.7 Turbulent shear stress (Reynolds shear stress) 

C.5.7.1 Contour plot 

 
C.5.7.2 Profile plot 

 
C.5.7.3 Evolution plot 

 
 



 305

C.5.8 Viscous shear stress 

C.5.8.1 Contour plot 

 
C.5.8.2 Profile plot 

 
C.5.8.3 Evolution plot 

 
 



 306

C.5.9 Total shear stress 

C.5.9.1 Contour plot 

 
C.5.9.2 Profile plot 

 
C.5.9.3 Evolution plot 

 
 



 307

C.5.10 Turbulence production 

 

C.5.11 Turbulent viscosity (Eddy viscosity) 

 

C.5.12 Quadrant analysis 

 
 

 



 308

C.5.13 Skewness of velocity fluctuations 

 

 

 
 

 



 309

C.5.14 Bed shear stress 

 

C.5.15 Shear velocity 

 

C.5.16 Wave friction factor 

 
 

 



 310

C.5.17 Viscous length scale 

 

C.5.18 Viscous sublayer thickness 

 
 

 



 311

C.5.19 Number of valid data points 

 

 

 
 

 



 312

C.5.20 Percent error of mean velocity 

 

C.5.21 Percent error of turbulent kinetic energy 

 

C.5.22 Percent error of Reynolds shear stress 

 
 

 



 313

C.5.23 Percent error of RMS velocity fluctuations 
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C.6 Experiment no. 6 

 

C.6.1 Main parameters 

Temp ρ ν T 2a U out_max Re w N max

Exp no. (ºC) (kg/m3) (m2/s) (s) (m) (m/s) (-) (cycles)
6 27.0 996.54 8.68E-07 10 1.362 0.428 3.4E+05 130  

 

U * max τ b_max Δφ f w_ref Z v_min δ v_90 δ 90 δ top

Exp no. (m/s) (N/m2) (deg) (-) (mm) (mm) (mm) (mm)
6 0.023 0.52 -16.0 0.0057 0.038 0.172 9.8 30  

 

C.6.2 Outer flow velocity 

 

C.6.3 Boundary layer thickness 

 
 



 315

C.6.4 Mean velocities 

C.6.4.1 Contour plots 

 

 

 
 

 



 316

C.6.4.2 Profile plots 

 

 

 
 

 



 317

C.6.4.3 Evolution plots 

 

 

 
 

 



 318

C.6.5 RMS velocity fluctuations 

C.6.5.1 Contour plots 

 

 

 
 

 



 319

C.6.5.2 Profile plots 

 

 

 
 

 



 320

C.6.5.3 Evolution plots 

 

 

 
 

 



 321

C.6.6 Turbulent kinetic energy 

C.6.6.1 Contour plot 

 
C.6.6.2 Profile plot 

 
C.6.6.3 Evolution plot 

 
 



 322

C.6.7 Turbulent shear stress (Reynolds shear stress) 

C.6.7.1 Contour plot 

 
C.6.7.2 Profile plot 

 
C.6.7.3 Evolution plot 

 
 



 323

C.6.8 Viscous shear stress 

C.6.8.1 Contour plot 

 
C.6.8.2 Profile plot 

 
C.6.8.3 Evolution plot 

 
 



 324

C.6.9 Total shear stress 

C.6.9.1 Contour plot 

 
C.6.9.2 Profile plot 

 
C.6.9.3 Evolution plot 

 
 



 325

C.6.10 Turbulence production 

 

C.6.11 Turbulent viscosity (Eddy viscosity) 

 

C.6.12 Quadrant analysis 

 
 

 



 326

C.6.13 Skewness of velocity fluctuations 

 

 

 
 

 



 327

C.6.14 Bed shear stress 

 

C.6.15 Shear velocity 

 

C.6.16 Wave friction factor 

 
 

 



 328

C.6.17 Viscous length scale 

 

C.6.18 Viscous sublayer thickness 

 
 

 



 329

C.6.19 Number of valid data points 

 

 

 
 

 



 330

C.6.20 Percent error of mean velocity 

 

C.6.21 Percent error of turbulent kinetic energy 

 

C.6.22 Percent error of Reynolds shear stress 

 
 

 



 331

C.6.23 Percent error of RMS velocity fluctuations 

 

 

 
 

 



 332

C.7 Experiment no. 7 

 

C.7.1 Main parameters 

Temp ρ ν T 2a U out_max Re w N max

Exp no. (ºC) (kg/m3) (m2/s) (s) (m) (m/s) (-) (cycles)
7 26.5 996.68 8.77E-07 10 1.566 0.492 4.4E+05 130  

 

U * max τ b_max Δφ f w_ref Z v_min δ v_90 δ 90 δ top

Exp no. (m/s) (N/m2) (deg) (-) (mm) (mm) (mm) (mm)
7 0.024 0.58 -7.0 0.0048 0.036 - 11.7 35  

 

C.7.2 Outer flow velocity 

 

C.7.3 Boundary layer thickness 

 
 



 333

C.7.4 Mean velocities 

C.7.4.1 Contour plots 

 

 

 
 



 334

C.7.4.2 Profile plots 

 

 

 
 

 



 335

C.7.4.3 Evolution plots 

 

 

 
 

 



 336

C.7.5 RMS velocity fluctuations 

C.7.5.1 Contour plots 

 

 

 
 

 



 337

C.7.5.2 Profile plots 

 

 

 
 

 



 338

C.7.5.3 Evolution plots 

 

 

 
 

 



 339

C.7.6 Turbulent kinetic energy 

C.7.6.1 Contour plot 

 
C.7.6.2 Profile plot 

 
C.7.6.3 Evolution plot 

 
 



 340

C.7.7 Turbulent shear stress (Reynolds shear stress) 

C.7.7.1 Contour plot 

 
C.7.7.2 Profile plot 

 
C.7.7.3 Evolution plot 

 
 



 341

C.7.8 Viscous shear stress 

C.7.8.1 Contour plot 

 
C.7.8.2 Profile plot 

 
C.7.8.3 Evolution plot 

 
 



 342

C.7.9 Total shear stress 

C.7.9.1 Contour plot 

 
C.7.9.2 Profile plot 

 
C.7.9.3 Evolution plot 

 
 



 343

C.7.10 Turbulence production 

 

C.7.11 Turbulent viscosity (Eddy viscosity) 

 

C.7.12 Quadrant analysis 

 
 

 



 344

C.7.13 Skewness of velocity fluctuations 

 

 

 
 

 



 345

C.7.14 Bed shear stress 

 

C.7.15 Shear velocity 

 

C.7.16 Wave friction factor 

 
 

 



 346

C.7.17 Viscous length scale 

 

C.7.18 Viscous sublayer thickness 

 
 

 



 347

C.7.19 Number of valid data points 

 

 

 
 

 



 348

C.7.20 Percent error of mean velocity 

 

C.7.21 Percent error of turbulent kinetic energy 

 

C.7.22 Percent error of Reynolds shear stress 

 
 

 



 349

C.7.23 Percent error of RMS velocity fluctuations 
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C.8 Experiment no. 8 

 

C.8.1 Main parameters 

Temp ρ ν T 2a U out_max Re w N max

Exp no. (ºC) (kg/m3) (m2/s) (s) (m) (m/s) (-) (cycles)
8 24.5 997.20 9.17E-07 10 1.770 0.556 5.4E+05 130  

 

U * max τ b_max Δφ f w_ref Z v_min δ v_90 δ 90 δ top

Exp no. (m/s) (N/m2) (deg) (-) (mm) (mm) (mm) (mm)
8 0.026 0.70 -7.5 0.0045 0.035 - 13.4 40  

 

C.8.2 Outer flow velocity 

 

C.8.3 Boundary layer thickness 

 
 



 351

C.8.4 Mean velocities 

C.8.4.1 Contour plots 

 

 

 
 

 



 352

C.8.4.2 Profile plots 

 

 

 
 

 



 353

C.8.4.3 Evolution plots 

 

 

 
 

 



 354

C.8.5 RMS velocity fluctuations 

C.8.5.1 Contour plots 

 

 

 
 

 



 355

C.8.5.2 Profile plots 

 

 

 
 

 



 356

C.8.5.3 Evolution plots 

 

 

 
 

 



 357

C.8.6 Turbulent kinetic energy 

C.8.6.1 Contour plot 

 
C.8.6.2 Profile plot 

 
C.8.6.3 Evolution plot 

 
 



 358

C.8.7 Turbulent shear stress (Reynolds shear stress) 

C.8.7.1 Contour plot 

 
C.8.7.2 Profile plot 

 
C.8.7.3 Evolution plot 

 
 



 359

C.8.8 Viscous shear stress 

C.8.8.1 Contour plot 

 
C.8.8.2 Profile plot 

 
C.8.8.3 Evolution plot 

 
 



 360

C.8.9 Total shear stress 

C.8.9.1 Contour plot 

 
C.8.9.2 Profile plot 

 
C.8.9.3 Evolution plot 

 
 



 361

C.8.10 Turbulence production 

 

C.8.11 Turbulent viscosity (Eddy viscosity) 

 

C.8.12 Quadrant analysis 

 
 

 



 362

C.8.13 Skewness of velocity fluctuations 

 

 

 
 

 



 363

C.8.14 Bed shear stress 

 

C.8.15 Shear velocity 

 

C.8.16 Wave friction factor 

 
 

 



 364

C.8.17 Viscous length scale 

 

C.8.18 Viscous sublayer thickness 

 
 

 



 365

C.8.19 Number of valid data points 

 

 

 
 

 



 366

C.8.20 Percent error of mean velocity 

 

C.8.21 Percent error of turbulent kinetic energy 

 

C.8.22 Percent error of Reynolds shear stress 

 
 

 



 367

C.8.23 Percent error of RMS velocity fluctuations 

 

 

 
 

 



 368

C.9 Experiment no. 9 

 

C.9.1 Main parameters 

Temp ρ ν T 2a U out_max Re w N max

Exp no. (ºC) (kg/m3) (m2/s) (s) (m) (m/s) (-) (cycles)
9 18.1 998.61 1.07E-06 10 2.069 0.650 6.3E+05 130  

 

U * max τ b_max Δφ f w_ref Z v_min δ v_90 δ 90 δ top

Exp no. (m/s) (N/m2) (deg) (-) (mm) (mm) (mm) (mm)
9 0.037 1.34 6.0 0.0063 0.029 0.169 17.0 45  

 

C.9.2 Outer flow velocity 

 

C.9.3 Boundary layer thickness 

 
 



 369

C.9.4 Mean velocities 

C.9.4.1 Contour plots 

 

 

 
 

 



 370

C.9.4.2 Profile plots 

 

 

 
 

 



 371

C.9.4.3 Evolution plots 

 

 

 
 

 



 372

C.9.5 RMS velocity fluctuations 

C.9.5.1 Contour plots 

 

 

 
 

 



 373

C.9.5.2 Profile plots 

 

 

 
 

 



 374

C.9.5.3 Evolution plots 

 

 

 
 

 



 375

C.9.6 Turbulent kinetic energy 

C.9.6.1 Contour plot 

 
C.9.6.2 Profile plot 

 
C.9.6.3 Evolution plot 

 
 



 376

C.9.7 Turbulent shear stress (Reynolds shear stress) 

C.9.7.1 Contour plot 

 
C.9.7.2 Profile plot 

 
C.9.7.3 Evolution plot 

 
 



 377

C.9.8 Viscous shear stress 

C.9.8.1 Contour plot 

 
C.9.8.2 Profile plot 

 
C.9.8.3 Evolution plot 

 
 



 378

C.9.9 Total shear stress 

C.9.9.1 Contour plot 

 
C.9.9.2 Profile plot 

 
C.9.9.3 Evolution plot 

 
 



 379

C.9.10 Turbulence production 

 

C.9.11 Turbulent viscosity (Eddy viscosity) 

 

C.9.12 Quadrant analysis 

 
 

 



 380

C.9.13 Skewness of velocity fluctuations 

 

 

 
 

 



 381

C.9.14 Bed shear stress 

 

C.9.15 Shear velocity 

 

C.9.16 Wave friction factor 

 
 

 



 382

C.9.17 Viscous length scale 

 

C.9.18 Viscous sublayer thickness 

 
 

 



 383

C.9.19 Number of valid data points 

 

 

 
 

 



 384

C.9.20 Percent error of mean velocity 

 

C.9.21 Percent error of turbulent kinetic energy 

 

C.9.22 Percent error of Reynolds shear stress 

 
 

 



 385

C.9.23 Percent error of RMS velocity fluctuations 
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C.10 Experiment no. 10 

 

C.10.1 Main parameters 

Temp ρ ν T 2a U out_max Re w N max

Exp no. (ºC) (kg/m3) (m2/s) (s) (m) (m/s) (-) (cycles)
10 20.0 998.23 1.02E-06 10 2.368 0.744 8.7E+05 130  

 

U * max τ b_max Δφ f w_ref Z v_min δ v_90 δ 90 δ top

Exp no. (m/s) (N/m2) (deg) (-) (mm) (mm) (mm) (mm)
10 0.039 1.51 2.0 0.0054 0.026 0.150 17.7 45  

 

C.10.2 Outer flow velocity 

 

C.10.3 Boundary layer thickness 

 
 



 387

C.10.4 Mean velocities 

C.10.4.1 Contour plots 

 

 

 
 

 



 388

C.10.4.2 Profile plots 

 

 

 
 

 



 389

C.10.4.3 Evolution plots 

 

 

 
 

 



 390

C.10.5 RMS velocity fluctuations 

C.10.5.1 Contour plots 

 

 

 
 

 



 391

C.10.5.2 Profile plots 

 

 

 
 

 



 392

C.10.5.3 Evolution plots 

 

 

 
 

 



 393

C.10.6 Turbulent kinetic energy 

C.10.6.1 Contour plot 

 
C.10.6.2 Profile plot 

 
C.10.6.3 Evolution plot 

 
 



 394

C.10.7 Turbulent shear stress (Reynolds shear stress) 

C.10.7.1 Contour plot 

 
C.10.7.2 Profile plot 

 
C.10.7.3 Evolution plot 
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C.10.8 Viscous shear stress 

C.10.8.1 Contour plot 

 
C.10.8.2 Profile plot 

 
C.10.8.3 Evolution plot 
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C.10.9 Total shear stress 

C.10.9.1 Contour plot 

 
C.10.9.2 Profile plot 

 
C.10.9.3 Evolution plot 
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C.10.10 Turbulence production 

 

C.10.11 Turbulent viscosity (Eddy viscosity) 

 

C.10.12 Quadrant analysis 
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C.10.13 Skewness of velocity fluctuations 
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C.10.14 Bed shear stress 

 

C.10.15 Shear velocity 

 

C.10.16 Wave friction factor 

 
 

 



 400

C.10.17 Viscous length scale 

 

C.10.18 Viscous sublayer thickness 
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C.10.19 Number of valid data points 
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C.10.20 Percent error of mean velocity 

 

C.10.21 Percent error of turbulent kinetic energy 

 

C.10.22 Percent error of Reynolds shear stress 
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C.10.23 Percent error of RMS velocity fluctuations 
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