
THE DELAY COMPOSITION THEOREM ON PIPELINE SYSTEMS WITH
NON-PREEMPTIVE PRIORITY VARYING SCHEDULING ALGORITHMS

BY

YI LU

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Adviser:

Professor Tarek Abdelzaher

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158302142?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The delay composition theorem, by taking into account the fact that pipeline systems allow

concurrent execution, expresses the upper-bounded delay of a real-time task as the sum of

two summations, where the first one is linear to the number of stages of the system, and the

second one is linear to the number of tasks running on the system. The schedulability analysis

based on delay composition theorem performs better than traditional analysis techniques.

In this paper we break one assumption that has been hold by previous works on delay

composition theorem, namely each task has the same relative priority across all stages. We

extend the theorem to pipeline systems running non-preemptive scheduling algorithm which

may assign different relative priorities to a task on different stages.

ii

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION...1

CHAPTER 2: RELATED WORKS..3

CHAPTER 3: SYSTEM MODEL..6

CHAPTER 4: DELAY IN A PRIORITY VARYING PIPELINE (NON-PREEMPTIVE)....8

CHAPTER 5: REDUCTION TO UNIPROCESSOR..15

CHAPTER 6: EXAMPLE..17

CHAPTER 7: EVALUATION..20

CHAPTER 8: CONCLUSION..30

REFERENCES...31

iii

CHAPTER 1

INTRODUCTION

Understanding the behavior of a real-time task and being able to bound its end-to-end

delay are fundamental topics in real-time embedded systems. Today as the scale of real-time

systems increases with more processing units and tasks involved in, the task of predicting

the behavior of real-time tasks becomes even more challenging while urgent. Consider a

distributed embedded system comprising of several autonomous processing units, or compo-

nents, each of which serves certain functionality. A real-time task may consist of a sequence

of subtasks which require processing on different components. Since these components are

autonomous, each of them could use different algorithms to schedule the subtasks. There-

fore, a task may have different priorities on different components. From the perspective of

a real-time task, it is executing on a pipeline system in which its priority varies across the

stages.

The delay composition theorem (DCT) aims to bound the end-to-end delay experienced

by any task on a pipeline as a function of the execution times of higher-priority tasks

[Praveen07]. Taking into account the fact that the pipeline system allows concurrent ex-

ecution, DCT derives and expresses the upper-bounded delay of a task as the sum of two

summations, where the first one is proportional to the number of stages of the pipeline, and

the second one is proportional to the number of tasks in the set. Although the delay compo-

sition theorem is a powerful tool for real-time scheduling analysis, one assumption it makes,

that each task is assigned the same relative priority across all stages in the pipeline, limits

the scope of application of the theorem. This assumption is also held by later extensions of

the theorem to acyclic [Praveen ECRTS08] and cyclic [Praveen 09] distributed systems.

In this paper, we will release this constraint and extend the delay composition theorem to

pipeline systems running non-preemptive scheduling algorithms where the relative priority

of a task might change across stages. In this paper, we call a scheduling which may assign

different priorities to a task on different stages a priority varying scheduling algorithm. We

1

assume that different invocations of a task have the same priority on each stage, and how a

task’s priority changes across stages is pre-known. No assumption is made on the periodicity

of the task set.

The rest of this paper is structured as following: in Chapter 2 we briefly review several

related works; in Chapter 3 we describe the system model; in Chapter 4 we present our

extended theorem and its proof; in Chapter 5 we show the systematic reduction of a pipeline

running non-preemptive priority varying scheduling algorithm to an equivalent uniprocessor

to which schedulability analysis techniques developed for uniprocessor can be applied; Chap-

ter 6 presents a specific example of applying the theorem developed in this paper to bound

the delay of tasks executing on a pipeline system running non-preemptive priority varying

scheduling algorithm; Chapter 7 presents the evaluation of our extended delay composition

theorem; we discuss future work and conclude this paper in Chapter 8.

2

CHAPTER 2

RELATED WORKS

2.1 A Brief History of Delay Composition Theorem

[1] gives the delay composition theorem for a pipeline system with the assumption that

the pipeline is running a preemptive scheduling algorithm with each task assigned the same

relative priority across all stages. Compared to offline schedulability tests which break the

end-to-end deadline into per-stage deadlines and apply tests for uniprocessor on each stage,

the delay composition theorem is much less pessimistic. This is because the worst case

assumption made by these scheduling analysis, namely the task of interest and all the other

tasks with higher priority will arrive at each stage simultaneously (therefore the higher

priority tasks will execute first and delay the task of interest), is not true for every stage.

The delay composition theorem was extended in [3] to pipelines running non-preemptive

scheduling algorithm.

[4] extends the delay composition theorem to distributed systems that are represented

by directed acyclic graphs (DAGs). To derive the expression of delay in a distributed sys-

tem, the paper uses a reduction-based method: it transforms the distributed system into a

pipeline system where the worst case delay of a task cannot be lower than that in the original

system. It then applies the theorem already developed in [1] to bound the delay of a task in

the reduced pipeline system. Two different expressions are derived for distributed systems

running preemptive or non-preemptive scheduling algorithms, respectively. [2] presents the

delay composition algebra, which systematically reduces a distributed system (DAG) to an

equivalent uniprocessor. The reduced system can be analyzed using existing scheduling tech-

niques for uniprocessors. [5] further extends the delay composition theorem to distributed

systems with task graphs that may contain cycles.

In all the works on delay composition theorem so far, it was assumed that each task is

assigned the same priority across all stages.

3

2.2 Other Related Works

Real-time scheduling on distributed systems consisting of independent components has

been addressed by [8] [9]. The fundemental approach is to divide the end-to-end deadline of

tasks into per-stage deadlines and then apply schedulability tests for uniprocessor on each

stage independently to determine if the subtasks are schedulable. A set of real-time tasks

is declared to be schedulable if all subtasks on all stages are schedulable. In this paper,

we call this type of analysis techniques the traditional per-stage analysis. The problem of

traditional per-stage analysis is that it does not take into account the inherent parallelism

in the execution of different stages and assumes a worst arrival pattern on every stage.

Therefore, the per-stage analysis will be pessimistic as the number of stages increases.

Holistic analysis [10] uses release jitter and offset of tasks to characterize their arrival

patterns on each stage in the distributed system. Particularly, it takes the response time

on one stage as jitter for the subsequent stage. By applying this process on each stage

successively, an upper bound of delay for each task invocation can be derived. [11] extends

the holistic analysis based on response time analysis with the ability of managing hetero-

geneous distributed systems of components using either fixed priority scheduling (FP) or

earliest deadline first (EDF). The paper also integrates optimization techniques for the as-

signment of priorities [12] and scheduling deadlines [13] into one algorithm called HOSPA

(Heuristic Optimized Scheduling Parameters Assignment), which allows the optimization

of heterogeneous systems. Unlike the traditional per-stage method, holistic analysis does

not divide end-to-end deadlines of tasks into per-stage deadlines. However, by taking the

response time on previous stage as the jitter, it implicitly considers that a job is delayed

by the same higher-priority jobs on each stage of the pipeline. For this reason, the holistic

analysis becomes more pessimistic for pipelines with large number of stages.

Real-time calculus [14] extends the concepts in network calculus [15] to real-time schedul-

4

ing. This technique characterizes a processing unit by a request function and a capability

function. It then derives a request curve that specifies the maximum incoming request within

a time interval and a deliver curve that specifies the minimum (or guaranteed) processing

within a time interval. By comparing the remaining capability of a processing unit and the

demand of a real-time task, it determines whether deadline of the task is met or not.

5

CHAPTER 3

SYSTEM MODEL

Consider a multistage data processing pipeline. A set of real-time tasks arrive at the

pipeline and require execution on the system. These tasks can be either periodic or aperordic.

Each task has its invocations, which are called jobs. In the system, it is possible that different

jobs have the same priority, for instance, when they are the invocations of a common task.

In this case, we assume there is a tie-breaking rule (e.g. FIFO) among such jobs, and taking

that into account, we can still assume that each individual job has its own priority.

By the definition of pipeline, we assume that all jobs will execute on all stages of the

pipeline in the same order. Let the number of stages of the pipeline be N , then each job

executes in the sequence of stage 1, stage 2,. . . , stage N . Each job i, or Ji, arrives at the

system at time Ai, and has a relative end-to-end deadline Di, which means that Ji has

to leave the system by time Ai + Di. Assume that the pipeline system is running a non-

preemptive priority varying scheduling algorithm so that each task’s priority may change

across stages. Let ρi,j denote the priority of Ji on stage j, and its value is between 1 and the

number of tasks running on the pipeline. Assume a smaller integer value indicates a higher

priority, therefore 1 implies the highest priority. Let Ci,j denote the computation time of Ji

on stage j, also referred as stage execution time. Assume that different invocations belonging

to each task have the same per-stage priority and stage execution time.

Without loss of generality, let Jt denote the task whose delay we want to bound. Note

that in order to reduce the ambiguity that might be raised by naming a task in such a

system using explicit integers, in this paper we are using alphabet letters to denote jobs.

Let S denote the set of all jobs Ji whose execution intervals [Ai, Ai +Di] overlap with that

of Jt ([At, At +Dt]). S includes Jt. Note that a job whose arrival is after the deadline of Jt

or whose deadline is before the arrival of Jt has no effect on the delay of Jt, and therefore

should be ignored.

Let Ci,max denote the maximum stage execution time of Ji across all stages, i.e.

6

Ci,max = max1≤j≤N Ci,j

Now we are ready to derive an upper bound of delay for Jt.

7

CHAPTER 4

DELAY IN A PRIORITY VARYING PIPELINE (NON-PREEMPTIVE)

In this section we derive an upper bound of end-to-end delay a real-time job experiences

in a pipeline system running non-preemptive priority varying scheduling algorithm.

To bound the end-to-end delay of Jt, let’s define the notion busy execution trace, which

is a sequence of continuous intervals of continuous processing on successive stages of the

pipeline that collectively add up to the total delay of Jt [5]. Note that there may exist

several execution traces satisfying this definition. In order to reduce the number of differ-

ent possibilities, let’s further require that the processing interval of the trace ends at a job

boundary on each stage. This leads to the formal definition of a busy execution trace as

following:

Definition 1: A Busy Execution Trace through all stages of the pipeline is a sequence

of contiguous intervals starting with the arrival of Jt on stage 1 and ending with the finish

time of Jt on stage N , where (i) each interval represents a stretch of continuous processing

on one stage j of the pipeline, (ii) the interval on stage j ends at the finish time of some

job on the stage, (iii) successive intervals are contiguous in that the end time of one interval

on stage j is the start time of the next interval on stage j + 1, and (iv) successive intervals

execute on consecutive stages of the pipeline.

Figure 1 illustrates the concept of busy execution trace. Three execution traces (red,

green, and blue) are presented in the figure. Among these traces, only the red and the

green ones satisfy the definition of busy execution trace. The blue trace fails to satisfy the

definition since it runs into idle time and ends before the finish time of Jt.

Let’s define the end section of a job as following:

Definition 2: The End Section of Ji (with respect to Jt), where i 6= t, is the last execution

section of Ji that precedes section of Jt in the same continuous execution section. The End

Section of Jt is its execution section on the N -th stage.

8

In Figure 2, each job’s end section is marked with a red diamond. Note that in this paper, we

call those sections of a job before its end section the non-end sections of this job (with respect

to Jt). Those execution sections of a job after its end section are NOT its non-end sections.

For instance, in Figure 2 we can see that the end section of Jb is on stage 2. Therefore, the

execution section of Jb on stage 1 is its non-end section. Jb’s execution section on stage 3 is

not its non-end section; we simply do not care about it because it can have no effect on the

delay of Jt.

Let’s now define a special case of busy execution trace, the the earliest traversal trace, as

following:

Definition 3: An Earliest Traversal Trace is a busy execution trace in which the end of an

interval on stage j coincides with the finish time of the first non-end section of a job.

The red trace in Figure 1 is the earliest traversal trace. Observe that bounding the end-

to-end delay of Jt is equivalent to bounding the length of earliest traversal trace, which can

be divided into two complementary categories: (i) contribution of non-end sections and (ii)

contribution of end sections. The following two lemmas give an upper bound for each of

them respectively.

Lemma 1: The total contribution of non-end sections to the earliest traversal trace is

upper-bounded by

N−1∑
j=1

max
Ji∈S

Ci,j (stage-addative)

Proof. Each stage other than the last stage has only one first non-end section (there is no

non-end section at stage N). Therefore, there are N − 1 terms of non-end sections in the

earliest traversal trace. By definition, The execution time of the non-end section on stage j

is less than or equal to max
Ji∈S

Ci,j. The execution time of all these N − 1 terms is therefore

upper-bounded by
N−1∑
j=1

max
Ji∈S

Ci,j.

Lemma 2: The total contribution of end sections to the earliest traversal trace is upper-

bounded by

9

∑
Ji∈S

Ci,max (job-addative)

Proof. Each job has only one end section (with respect to Jt). By definition, the execution

time of Ji’s end section is less than or equal to Ci,max. The execution time of all jobs’ end

sections is therefore upper-bounded by
∑
Ji∈S

Ci,max.

The following theorem gives the upper bound of Jt’s delay in a pipeline running non-

preemptive priority varying scheduling algorithm.

Theorem 1. In a N-stage pipeline system running a non-preemptive priority varying

scheduling algorithm which may assign different relative priority to a job across different

stages, the end-to-end delay of Jt can be composed from the execution parameters of other

jobs that delay it (denoted by set S) as following:

Delay(Jt) ≤
N−1∑
j=1

max
Ji∈S

Ci,j +
∑
Ji∈S

Ci,max (1)

Proof. By adding the contributions of non-end sections (Lemma 1) and end sections (Lemma

2), we get an upper bound of length of the earliest traversal trace, which, by definition, is

equivalent to an upper bound of the end-to-end delay of Jt.

This formula shows that bounding the end-to-end delay of a job Jt in a pipeline with

non-preemptive priority varying scheduling policy is equivalent to bounding the delay of the

same job in a pipeline running non-preemptive scheduling algorithm where each job has the

same priority across all stages, with Jt being the lowest priority job in the system. This

can be pessimistic, since Jt may now be delayed by any other job, especially jobs with long

relative deadline, whose average stage execution time tend to be long as well.

However, if we restrict the range that a job’s priority can change from its base priority,

then the behavior of jobs can be better predicted. In this case we get a less pessimistic

bound than formula 1.

Consider a pipeline system running a set of tasks with a non-preemptive policy. Let ρi

be the base priority of Ji, which can be determined by Ji’s period, in the case that all tasks

10

are periodic and the pipeline is using rate monotonic scheduling. Let x denote the maximum

value by which a job’s priority could increase or decrease from its base priority, and assume

that it is the same for all tasks. Then each job Ji’s per-stage priority ranges from ρi − x to

ρi + x, inclusively.

To bound the end-to-end delay of Jt, we can now divide S into two subsets SH and SL

(Figure 3), where SH includes all jobs whose base priorities are in the range [1, ρt + x], and

SL includes all jobs whose base priorities are in the range [ρt − x, n], where n is the total

number of real-time tasks. Note that SH and SL overlap on the jobs whose base priorities

are in [ρt− x, ρt + x], so that all possible delay and block cases, including the worst one, are

covered.This gives the following corollary:

Corollary 1. In an N-stage pipeline system using a non-preemptive scheduling policy with a

restricted amount of priority change allowed, the end-to-end delay of a job Jt can be composed

from the execution parameters of other jobs that delay it (denoted by set S) as following:

Delay(Jt) ≤
∑

Ji∈SH

Ci,max +
N−1∑
j=1

max
Ji∈SH

Ci,j +
N∑
j=1

max
Ji∈SL

Ci,j (2)

Proof. This follows from the non-preemptive pipeline delay composition theorem in [3], with

Jt has a fixed priority of ρt and each job Ji in SH and SL has a fixed priority of ρi across all

stages.

For large value of x such that SH = SL = S, which means there is no restriction on priority

change, formula (2) is even more pessimistic than (1) because of the extra term
N∑
j=1

max
Ji∈SL

Ci,j

at the end. However, for small value of x, we could expect Corollary 1 to outperform

Theorem 1. We will see this later in the evaluation section.

11

Figures

Figure 1. Three Traces

12

Figure 2. End/Non-End Sections

13

Figure 3. SH and SL

14

CHAPTER 5

REDUCTION TO UNIPROCESSOR

Applying the extended delay composition theorem to a pipeline running non-preemtive

priority varying scheduling algorithm, the schedulability analysis of the pipeline can be

reduced to that of an equivalent uniprocessor system with preemptive scheduling algorithm

as following:

• Each job Ji other than Jt is replaced by a uniprocessor job J∗i of higher priority with

execution time C∗i = Ci,max (the maximum stage execution time of Ji) and the same deadline

as Ji in the original system.

• Jt is replaced by a uniprocessor job J∗t of the lowest priority with execution time C∗t =

Ct,max+
N−1∑
j=1

max
Ji∈S

Ci,j (the maximum stage execution time of Jt plus the stage-addative term)

and the same deadline as Jt in the original system.

The above transformation is based on Theorem 1 and note that J∗t in the reduced

system has the lowest priority since it can potentially be delayed by all the other jobs in

the original pipeline system. For the special case where only a restricted amount of priority

change is allowed, the reduction to a uniprocessor with preemptive scheduling can be done

based on Corollary 1 as following:

• Each job Ji in SH (i 6= t) is replaced by a uniprocessor job J∗i with priority ρ∗i = max(ρt, ρi),

i.e. the higher one of Ji and Jt’s base priories, and execution time C∗i = Ci,max (the maximum

stage execution time of Ji) and the same deadline as Ji in the original system.

• Jt is replaced by a uniprocessor job J∗t with priority ρ∗t = ρt and execution time C∗t =

Ct,max +
N−1∑
j=1

max
Ji∈SH

Ci,j +
N∑
j=1

max
Ji∈SL

Ci,j (the maximum stage execution time of Jt plus the last

two terms in formula 2) and the same deadline as Jt in the original system.

If J∗t is schedulable in the reduced uniprocessor system, so is Jt in the original pipeline

system, since the upper bound of delay for Jt is less than the delay of J∗t , which is at least

the sum of execution times of all higher-priority jobs J∗i and itself. Note that we reduce the

original pipeline system running a non-preemptive algorithm to a uniprocessor system with

15

a preemptive algorithm, since we only care about relating the delays of Jt and J∗t in their

corresponding systems.

For periodic tasks, jobs in the reduced uniprocessor that are invocations of the same

task can be grouped together when doing analysis. After the reduction, schedulability tests

for single processor such as the exact test [7] can be applied to the resultant uniprocessor

system. For a set of n periodic tasks with period equal to end-to-end deadline, the exact

test for the pipeline system without restriction on priority change would be:

R
(0)
t = C∗t

R
(k)
t = C∗t +

n∑
i=1,i 6=t

⌈
R

(k−1)
t

Pi

⌉
C∗i

In the case that a restriction on range of priority change is enforced, the recursive term would

become:

R
(k)
t = C∗t +

m∑
i=1,i 6=t

⌈
R

(k−1)
t

Pi

⌉
C∗i

where m = |SH | ≤ n, and SH is the set of all jobs whose base priorities are in the range [1,

ρt + x]. In both cases, J∗t is schedulable if we reach R
(k)
t = R

(k−1)
t < Dt. Otherwise it is not

schedulable.

Other schedulability tests for singe processor can be applied to the pipeline system in a

similar manner. We denote the process of reducing a pipeline system to an equivalent unipro-

cessor and then applying analysis techniques for uniprocessor to determine the schedulability

of a task set the Meta-Schedulability Test.

16

CHAPTER 6

EXAMPLE

In this section we will use a simple but illustrative example to show that the delay

composition theorem based meta-schedulability test can result in a tighter delay bound for

real-time tasks running on a distributed pipeline of autonomous components, each of which

uses non-preemptive fixed priority scheduling policy.

Consider a three-stage pipeline with two periodic tasks Ta and Tb (Figure 4). The task

on top in a stage represents the higher-priority task in that particular stage, i.e. Ta has a

higher priority in stage 1 and 3 while a lower priority in stage 2. Let the period of these

two tasks, Pa and Pb, be equal to their end-to-end deadline, which is 5 units for both of

them. For simplicity, let the computation time for each task on every stage be 1 unit. The

objective is to estimate the delay and schedulability of each task.

Let us first use holistic analysis [11] to analyze this system. Starting from stage 1, we

apply the response time analysis for each task to compute its delay; the task delay computed

in one stage will be its jitter in the next stage. The jitters for both tasks, ja and jb, are

initialized to zero.

•Stage 1 (ρa > ρb):

ja = 0, jb = 0

w
(0)
a = Ca,1 +Ba,1 = 1 + 1 = 2

w
(1)
a = Ca,1 +Ba,1 = 1 + 1 = 2 = w

(0)
a

Therefore, Ra = ja + w
(1)
a = 2

w
(0)
b = Cb,1 +Bb,1 = 1 + 0 = 1

w
(1)
b = Cb,1 +Bb,1 +

⌈
ja+w

(0)
b

Pa

⌉
Ca,1 = 1 +

⌈
0+1
5

⌉
∗ 1 = 2

w
(2)
b = 1 +

⌈
0+2
5

⌉
∗ 1 = 2 = w

(1)
b

Therefore, Rb = jb + w
(2)
b = 2

•Stage 2 (ρb > ρa):

ja = 2, jb = 2

17

w
(0)
a = Ca,2 +Ba,2 = 1 + 0 = 1

w
(1)
a = Ca,2 +Ba,2 +

⌈
jb+w

(0)
a

Pb

⌉
Cb,2 = 1 +

⌈
2+1
5

⌉
∗ 1 = 2

w
(2)
a = 1 +

⌈
2+2
5

⌉
∗ 1 = 2 = w

(1)
a

Therefore, Ra = ja + w
(2)
a = 4

w
(0)
b = Cb,2 +Bb,2 = 1 + 1 = 2

w
(1)
b = 1 + 1 = 2 = w

(0)
b

Therefore, Rb = jb + w
(1)
b = 4

•Stage 3 (ρa > ρb):

ja = 4, jb = 4

w
(0)
a = Ca,3 +Ba,3 = 1 + 1 = 2

w
(1)
a = Ca,3 +Ba,3 = 1 + 1 = 2 = w

(0)
a

Therefore, Ra = ja + w
(1)
a = 6 > 5

Since the response time of Ta exceeds its deadline, we declare that the task set is not

schedulable. Now let’s use the delay composition theorem based meta-schedulability test to

analyze this system. To test the schedulability of Ta, we need to first reduce the pipeline

into a uniprocessor in which T ∗a has the lowest priority. Following the reduction procedure in

section 5, we have a reduced uniprocessor running preemptive policy with 2 tasks: a higher

priority task T ∗b , with execution time C∗b = Cb,max = 1 and period (equal to deadline) P ∗b = 5,

and a lower priority task T ∗a , with C∗a = Ca,max +
2∑
j=1

max
i∈{a,b}

Ci,j = 1 + 2 = 3 and P ∗a = 5.

Applying the response time analysis on the reduced uniprocessor, we have:

R
(0)
a = C∗a = 3

R
(1)
a = C∗a +

⌈
R

(0)
a

P ∗
b

⌉
C∗b = 3 + 1 = 4

R
(2)
a = 3 +

⌈
4
5

⌉
∗ 1 = 4 = R

(1)
a < 5

T ∗a meets its deadline in the reduced uniprocessor, so does Ta in the original pipeline

system. Similarly, by reducing the pipeline into a uniprocessor with T ∗b being the lower

priority task and then applying response time analysis, we will find that T ∗b and Tb are

schedulable in their corresponding systems.

18

Figures

Figure 4. A Three-Stage Pipeline with Two Real-Time Tasks

19

CHAPTER 7

EVALUATION

In this section we will evaluated the performance of our meta-schedulability analysis

using simulation. The meta-schedulability analysis first reduces the pipeline to an equivalent

uniprocessor based on section 6, and then applies schedulability tests for single processor to

analyze schedulability of the task set. In our paper we will use the response time analysis

(RTA). We will compare the performance of our technique against that of holistic analysis

and traditional per-stage analysis, each of which is based on RTA. For each analysis method

we implement an admission controller. When a new task arrives, the controller will first

tentatively add it to the task set (starting from empty). It will then determine if the current

set is schedulable using corresponding schedulability test. If the set is schedulable after

the new task arrives, the controller will admit the new task; otherwise the new task will be

dropped. The default pipeline system (labeled as ‘simulation’) in which there is no admission

control will just keep adding new tasks until actual deadline missing occurs.

In the rest of this section, we will refer to the average per-stage utilization by the term

utilization. Each point in the figures represent the average values obtained from 100 execu-

tions of the simulator, with each execution running until any job misses its deadline. In the

simulation, we assume all tasks are periodic and each task’s period is equal to its end-to-end

deadline, which is chosen as 10βa simulation seconds, where β is uniformly varying between

0 and DR (deadline ratio parameter), and a = 500 ∗ N , where N is the number of stages

of the pipeline. By choosing deadlines of tasks in this way, the maximum ratio of two tasks’

deadlines will be 10DR. Therefore, the larger the value of DR, the wider the range of tasks’

deadlines. The default value of DR is 1.0, which means that task deadlines can differ as

much as 10 times. The priority of each task may vary across stages of the pipeline. By

default, the per-stage priority of a task is assigned to be a random integer between 1 and

n, where n is the number of all tasks. In the special case where each job’s priority can only

change a restricted amount, we will assign tasks’ base priorities according to rate monotonic

20

scheduling, so that a task with shorter period will have a higher base priority. We assume

that different invocations of a task have the same priority on each stage. The stage execution

time of each task is chosen based on the task resolution parameter, which measures the ratio

of the total execution time of a task over all stages to its deadline. The stage execution

time of a task is chosen from a uniform distribution with mean equal to Dτ
N

, where D is the

deadline of the task and τ is the task resolution (default value being 1 : 50). The stage

execution time ranges from 10 percent on both sides of the mean.

Let’s first see the performance of our analysis in the default case where there is NO

restriction on how jobs’ per-stage priorities can change.

Figure 5 shows the average per-stage utilization for different number of stages (N) of the

pipeline with DR equal to 1.0. The utilization for traditional per-stage analysis decreases as

the number of stages increases. This is because it assumes a worst-case job arrival pattern

at each stage. Specifically, each job at each stage is assumed to be delayed by all jobs with

higher priority on that stage, and also delayed by one lower priority job with the maximum

execution time on the stage. The holistic analysis does not divide the end-to-end deadline

of tasks into per-stage deadline. However, by taking the response time up to current stage

as the jitter for the next one, it implicitly assumes that a job is delayed by the same job on

every stage of the pipeline where that job has a higher priority. Therefore, the utilization for

holistic analysis decreases when there are more stages in the pipeline. For different number

of pipeline stages, the utilization for the meta-schedulability test is higher than those of

the other two tests and is almost the same across different N . This is because the meta-

schedulability test takes into account the overlap of execution on different pipeline stages, a

feature of the delay composition theorem.

We conducted experiments to see how different values of deadline ratio can affect the

utilization of different analysis tools, and plotted the curses along with that of the default

system without any admission control in Figure 6. In these experiments all system pa-

rameters are the same except the deadline ratio parameter (note that a larger value of DR

21

indicates a wider range of task deadlines), and the number of pipeline stages is set to its

default value of 5. For all four curves in the figure, the utilization increases with DR initially

and then decreases after certain value. This is because for larger value of DR, it happens

more frequently that only one stage of the pipeline is executing a job with long execution

time while other following stages are idle and waiting for the stage to finish processing that

job, therefore decreasing the average utilization of the pipeline. The figure shows that the

holistic analysis and the traditional per-stage test start to suffer at a smaller DR (around

1.0) than the meta-schedulability test (DR close to 1.2).

We took one step further and tested how different number of stages and deadline ratios

affect the utilization for the two analysis methods and plotted the result in Figure 7.

The following experiments evaluate the performance of meta-schedulability analysis in

the special case where there is a Restriction on the amount that a task’s Priority can Change

from its base priority (RPC). The default value of system parameters are the same as before,

with N equal to 5, DR equal to 1.0, and τ equal to 1 : 50. Here the base priority of each

job is assigned according to rate monotonic scheduling. The maximum amount of priority

change x is expressed as a fraction of the total number of tasks running on the pipeline,

with default value being 0.1 ∗ n. Therefore, each job Ji’s per-stage priorities are uniformly

distributed over the range of [ρi−0.1∗n, ρi+0.1∗n], where ρi is Ji’s base priority. We break

tie among jobs with the same priority on a stage using FIFO. Note that for now the priority

distribution is uniform; developing more intelligent and efficient priority distribution can be

a potential work in the future.

Figure 8 shows the average per-stage utilization for different number of pipeline stages.

As expected, the utilization for meta-schedulability test is almost constant across different

values of N , while those for the holistic analysis and traditional per-stage test decrease as

N increases. A comparison between meta-schedulability tests (RTA) in systems with or

without restriction on priority change (Figures 5 & 8) shows that the test in default system

where a task’s priority changes without restriction has a lower utilization. This is because

22

the restriction on priority change makes the tasks’ behavior more predictable, and we do not

have to assume the lowest priority for each job in the reduced uniprocessor when computing

its bound of delay, as we did in the default system.

We conducted experiments to measure the utilization of tests for different values of DR

and plotted the result in Figure 9.

Figure 10 shows the result of experiments measuring utilization for different values of

x, which is the maximum amount of priority change from each job’s base priority. We did

the experiments for x values of 0 (full restriction: no priority change allowed), 10% of n,

20% of n, 50% of n (half restriction), and n (no restriction). As the value of x increases,

jobs’ behavior becomes more random and unpredictable, and each job can potentially be

delayed by more other jobs. For all tests, this results in a more pessimistic bound of delay

and therefore lowers utilization of the pipeline.

23

Figures

Figure 5. Utilization for different number of stages in the pipeline

24

Figure 6. Utilization for different values of deadline ratio parameter

25

Figure 7. Utilization for different number of stages and deadline ratios

26

Figure 8. Utilization for different number of stages in the pipeline under

restricted priority change

27

Figure 9. Utilization for different values of deadline ratio parameter under

restricted priority change

28

Figure 10. Utilization for different amount of priority change allowed

29

CHAPTER 8

CONCLUSION

The growth in research and application of large-scale distributed systems calls for more

efficient real-time analysis techniques for the system. Schedulability tests based on the delay

composition theorem can be a powerful analysis tool for distributed systems, since the theo-

rem takes parallel execution of real-time tasks into account and therefore is less pessimistic

compared to traditional per-stage analysis and holistic analysis. The only limitation of pre-

vious works on the delay composition theorem is that it assumes each job has fixed priority

across all processing units, which is not a realistic assumption for large distributed systems

comprising of autonomous processing units, each of which may use different scheduling poli-

cies. From the perspective of a particular real-time task running on the system, it may be

assigned different priorities across processing units.

In this paper we broke that assumption held by previous works on the delay composition

theorem by extending the theorem to pipeline systems running non-preemptive scheduling

algorithms which may assign different priorities to a task on different stages. We further

studied how to bound the delay of a task when there is a restriction on the range a task’s per-

stage priority can change from its base priority. A method for systematically reducing the

pipeline system to an equivalent uniprocessor is presented so that analysis tool for uniproces-

sor, such as the response time analysis, can be applied to the reduced system. We evaluated

the performance of real-time analysis based on our extended theorem using simulation, and

showed that our analysis technique gives higher average utilization than traditional per-stage

analysis and holistic analysis.

Extending the theorem to more general distributed systems with preemptive or non-

preemptive scheduling algorithms can be potential work for the future.

30

REFERENCES

[1] P. Jayachandran and T. Abdelzaher. A delay composition theorem for real-time
pipelines. In ECRTS, pages 29-38, July 2007.

[2] P. Jayachandran and T. Abdelzaher. Delay composition algebra: A reduction-based
schedulability algebra for distributed real-time systems. In RTSS, pages 259-269, De-
cember 2008.

[3] P. Jayachandran and T. Abdelzaher. Delay composition in preemptive and non-
preemptive real-time pipelines. Invited to Real-Time Systems Journal: Special Issue
on ECRTS’07, 40(3):290-320, December 2008.

[4] P. Jayachandran and T. Abdelzaher. Transforming acyclic distributed systems into
equivalent uniprocessors under preemptive and non-preemptive scheduling. In ECRTS,
pages 233-242, July 2008.

[5] P. Jayachandran and T. Abdelzaher. End-to-end delay analysis of distributed systems
with cycles in the task graph. In ECRTS, July 2009.

[6] C. L. Liu and J. W. Layland. Scheduling algorithms for mul- tiprogramming in a hard-
real-time environment. Journal of ACM, 20 (1): 46-61, 1973.

[7] A. N. Audsley, A. Burns, M. Richardson, and K. Tindell. Applying new scheduling
theory to static priority pre-emptive scheduling. Software Engineering, pages 284-292,
1993.

[8] B. Kao and H. Garcia-Molina. Deadline assignment in a distributed soft real-time sys-
tem. IEEE Transactions on Parallel and Distributed Systems, 8 (12): 1268-1274, 1997.

[9] S. Chatterjee and J. Strosnider. Distributed pipeline scheduling: End-to-end analysis of
heterogeneous multi-resource real-time systems. In IEEE International Conference on
Distributed Computing Systems, pages 204-211, May 1995.

[10] K. Tindell and J. Clark. Holistic schedulability analysis for distributed hard real-time
systems. Elsevier Microprocessing and Microprogramming, 40 (2-3): 117-134, 1994.

[11] J. M. Rivas, J. J. Gutirrez, J. C. Palencia, and M. Gonzlez Harbour. Schedulability
Analysis and Optimization of Heterogeneous EDF and FP Distributed Real-Time Sys-
tems. In ECRTS, 2011.

[12] J.J. Gutirrez, and M. Gonzlez Harbour. Optimized Priority Assignment for Tasks and
Messages in Distributed Real-Time Systems. Proceedings of 3rd Workshop on Parallel
and Distributed Real-Time Systems, Santa Barbara (California), pages 124-132, 1995

31

[13] J. M. Rivas, J. J. Gutirrez, J. C. Palencia, and M. Gonzlez Harbour. Optimized Deadline
Assignment and Schedulability Analysis for Distributed Real-Time Systems with Local
EDF Scheduling. 8th International Conference on Embedded Systems and Applications,
in WORLDCOMP, 2010.

[14] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling hard
real-time systems. Proceedings of the IEEE International Symposium on Circuits and
Systems, vol 4, 101-104, 2000.

[15] J.Y. Le Boudec, and P. Thiran. Network Calculus: a theory of deterministic queuing
systems for the Internet. Springer, 2001.

32

