

MULTI-SENSOR GUIDANCE OF AN AGRICULTURAL ROBOT

BY

HAO GAN

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Masters of Science in Agricultural & Biological Engineering

In the Graduate College of the

University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Advisor:

 Associate Professor Tony E. Grift

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158302129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

ABSTRACT

The increasing demand for high-density soil data, and the high labor cost associated with

manual methods, have encouraged the development of autonomous alternatives. In this study, a

mobile robot named ‘AgTracker’ was developed as a platform for an autonomous soil sampling

machine. The robot, equipped with a low-accuracy GPS, a LIDAR scanner, an electronic compass

visited human-defined locations through its auto-navigation system. This system also had a user-

friendly interface, which enabled operators to set waypoints by clicking on Google Maps®.

Locations could also be remotely monitored in real time through this interface. An Xbee wireless

network was built to make the remote waypoints set up and monitoring possible.

The robot was tested on campus of University of Illinois at Urbana-Champaign. It could

visit waypoints one by one successfully in most cases. The robot’s localization errors, which were

the distances between its true visited locations and set waypoints, were evaluated. An average error

within 0.2 m was achieved.

iii

To father, mother, and Hongping

iv

ACKNOWLEDGEMENTS

First, I am very grateful to have Dr. Tony Grift as my advisor. He encouraged me to explore

in the field of agricultural robotics and inspired me to try new ideas. With his expert guidance, I

was able to learn and improve a lot on the road. This research would not have been possible without

his support and guidance. I would also like to thank my committee members Dr. Sunil Mathanker

and Dr. Krishnan, for their advice on improving my research and thesis. I wish I could have had

more discussion with them so that I could accomplish more in the research. I would also like to

thank Dr. Alan Hansen for his continuous guidance and support during my whole graduate study

period. I was able to explore more aspects in the agricultural field with his help.

I am also very thankful to have many friends and colleagues in my department. I truly

enjoyed working with Mr. Liang Tao, Dr. Haibo Huang, Mr. Robert Reis and Ms. Wei Zhao. Their

assistance, cooperation, and friendship were important to my research life in the department.

Last but not least, I would like to express my thankfulness to many friends I met here in

Champaign, Tyler Penn, Kellie Warren Penn, Gary Umphrey, Aaron Bird. Because of them, I

could not only study with brilliant researchers, but also have a wonderful experience in learning

the culture and enjoy my life in a different country.

v

TABLE OF CONTENTS

LIST OF ABBREVIATIONS .. viii

CHAPTER 1 INTRODUCTION ... 1

1.1 RESEARCH MOTIVATION .. 1

1.2 OBJECTIVES .. 4

CHAPTER 2 LITERATURE REVIEW ... 5

2.1 GPS LOCALIZATION FOR MOBILE ROBOTS ... 5

2.2 GPS-ALONE NAVIGATION .. 6

2.3 GPS-AUGMENTED NAVIGATION ... 6

2.3.1 Odometer Assisted GPS Navigation ... 7

2.3.2 GPS Assisted Inertial Navigation System ... 7

2.4 LIDAR BASED LOCALIZATION FOR MOBILE ROBOTS .. 8

2.4.1 Landmarks ... 9

2.4.2 Scan matching .. 9

2.4.3 Map building .. 10

2.5 LITERATURE SUMMARY .. 10

CHAPTER 3 MATERIALS AND METHODS ... 12

3.1 AGTRACKER PLATFORM ... 12

3.1.1 Drive train .. 13

3.1.2 Electrical Motor Control Unit ... 13

3.2 REMOTE CONTROL UNIT .. 14

3.2.1 Hardware ... 14

3.2.2 Software ... 15

3.3 AUTO-NAVIGATION SYSTEM .. 15

vi

3.3.1 System Architecture.. 16

3.3.2 GPS Control Unit ... 17

3.3.3 XBee Wireless Communication .. 20

3.3.4 LIDAR Control Unit ... 22

3.3.5 Combination of GPS and LIDAR Control Unit .. 26

3.3.6 Google Map Waypoint Control Unit .. 26

3.3.7 Camera Triggering Unit .. 27

CHAPTER 4 EXPERIMENTS AND RESULTS ... 28

4.1 REMOTE CONTROL ... 28

4.2 GPS NAVIGATION... 28

4.2.1 Data processing ... 28

4.2.2 Experiment Design ... 30

4.2.3 Results and Discussion... 31

4.3 LIDAR NAVIGATION .. 31

4.3.1 LIDAR Navigation Frame .. 32

4.3.2 Data Processing ... 32

4.3.3 Experiment Design ... 33

4.3.4 Results and Discussion... 33

4.4 GPS AND LIDAR COMBINED NAVIGATION .. 36

4.4.1 Transformation between GPS navigation frame and LIDAR navigation frame................................. 36

4.4.2 Experiment Design ... 37

4.4.3 Results and Discussion... 38

4.5 COMPARISON AMONG NAVIGATION SYSTEMS ... 39

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS .. 40

5.1 SUMMARY .. 40

5.2 RECOMMENDATIONS FOR FUTURE WORK ... 41

5.2.1 Improving control algorithms .. 41

vii

5.2.2 Adding Inertial sensors .. 42

5.2.3 Using vision-aided inertial navigation system ... 42

5.2.4 Using wifi network ... 43

5.2.5 Software implementation .. 43

REFERENCES ... 44

APPENDIX A: ARDUINO IMPLEMENTATION CODE ... 48

APPENDIX B: MATLAB IMPLEMENTATION CODE .. 60

LIDAR_GPS CONTROL.M.. 60

PLOT_GOOGLE MAP.M ... 65

GPS_INITILIZE.. 77

LIDAR_INITIALIZE .. 79

CONVERT_GPS_TO_LIDAR .. 82

GPS_TO_LIDAR ... 83

READ_GPSXBEE_NEW4 ... 83

LIDAR_COMMUNICATION ... 85

LIDAR_READ .. 88

viii

LIST OF ABBREVIATIONS

USDA United States Department of Agriculture

NRCS Natural Resources Conservation Service

GPS Global Positioning System

GNSS Global Navigation Satellite System

GLONASS Global Navigation Satellite System

RTK Real-Time Kinematic

INS Inertial Navigation System

IMU Inertial Measurement Unit

LIDAR Light Detection and Ranging

NMEA National Marine Electronics Association

UIUC University of Illinois at Urbana-Champaign

API Application Programming Interface

URL Uniform Resource Locator

1

CHAPTER 1 INTRODUCTION

 The impetus to develop methods and techniques to collect agricultural data is increasing,

because agricultural surveys have been used worldwide for estimating agricultural resources

(Piersimoni & Bee, 2010). Among existing surveys in agriculture, soil sampling has been used

frequently. As the basis of agricultural systems, soil provides critical resources such as nutrition

and water for crops. The objective of soil sampling is to measure the average nutrition level of a

field and the variability of nutrients of regions in a field (Richard & Gary, 1994). Based on field

types and conditions, soil sampling methods can vary. Major sampling methods include

judgmental sampling and random sampling. Both methods require expensive labor if the size of a

field is large (Carter, 1993). Thus, automated sampling methods are necessary in order to make

accurate and detailed soil maps. Autonomous robots which have been researched by many

institutes are potentially ideal candidates for conducting auto-sampling tasks. An effective auto-

sampling robot should consist of (1) an autonomous field navigation system (2) equipment for

taking samples and (3) units for sample storage. Among those three requirements, developing an

autonomous field navigation system is the most difficult because it requires the system to be able

to deal with varying weather and field conditions. In this thesis, the development of an autonomous

navigation robot which can be used in varying weather conditions and on flat fields is described.

1.1 Research Motivation

Soils are regarded as main contributors for food production, and the demand for real-time

soil data is increasing dramatically. The resolutions of existing soil maps are very low, which is

not helpful for most land management (Sanchez, et al., 2009, p. 325). Figure 1.1 and Figure 1.2

show the soil maps of Illinois, USA (USDA-NRCS, 2014). These maps provide users with general

2

information of local soil types and contents. However, to plan and manage individual farmlands,

more precise and up-to-date information of each field is required.

To obtain accurate soil data in each field, sampling soil is an essential step. Based on field

conditions and usages, soil sampling can be divided into judgmental and random samplings.

Judgmental sampling is a method in which sampling densities vary, based on observable

conditions of different regions of farmlands. The accuracy of this method is hard to estimate

because it depends on investigators’ experience when planning sampling points. Random

sampling, on the other hand, does not rely on investigators’ judgments, but its accuracy is affected

by sampling sizes. Intuitively, the larger the sampling size, the more accurate results can be

expected. However, when the sampling size is large enough to a certain level, increasing sampling

numbers in unit areas helps little in increasing accuracy. Based on Carter (1993), in most cases, 25

sampling points in 0.5 ha is the maximum, while 10 sampling points is the minimum. Figure 1.3

Figure 1.1 Brief Description of Classes Figure 1.2 Prime Farmland

3

shows the comparison of soil maps with varying numbers of sampling sizes (Richard, 1994). In

general, when the field size is large, the sampling size is always required to be large in order to

build accurate soil maps.

An autonomous sampling robot is desirable to relieve humans from expensive labor for

collecting large numbers of soil samples. As mentioned previously, three stages are necessary for

the robot to accomplish sampling tasks; The robot should firstly have an autonomous navigation

system which can guide itself in fields to visit all sampling points. The navigation system has to

be reliable under most weather and field conditions. Secondly, at each sampling point, the robot

should be able to collect soil samples with proper tools. Finally, on the robot, there should be

Figure 1.3 Comparison of built soil map with different sampling sizes

4

enough space for separating and storing soil samples. Since there are already well designed soil

sampling tools in markets, and designing of storage space is not difficult, developing a robot with

a robust autonomous navigation system becomes the core for a sampling robot. Noticing that most

farmlands in the mid-west of the United States are relatively flat, and to make the task easy in the

first step, the developed robot was aimed at flat farmlands.

1.2 Objectives

This objective of this study is to develop a robot with the ability to navigate itself in flat

fields. To be specific, the robot can be controlled remotely by an operator. The operator should be

able to set locations of sampling points and monitor the positions of the robot. Besides, image data

of soil at each sampling point are also desired in order to better estimate status of soils around

sampling points. With the above requirements, the specific objectives of this study are listed as

follows:

(1) Develop a robust positioning system with an accuracy better than 1 m;

(2) Build wireless communication network

(3) Add a Google map for setting up sampling points

(4) Create a real-time display of robot positions and trajectories

5

CHAPTER 2 LITERATURE REVIEW

This chapter illustrates research and techniques related to ground mobile robot navigation

problems. Section 2.1 discusses various methods related to GPS on localization problems. Section

2.2 discusses the usage of LIDAR on navigating mobile robots.

2.1 GPS Localization for Mobile Robots

The Global Positioning System (GPS) is a widely used navigation system in North

America. It is one of the three major Global Navigation Satellite Systems (GNSSs) in the world,

the other two being GLONASS and Galileo, developed in Russia and Europe respectively (Farrell,

2008). The principle of GPS localization is to measure the distances between a GPS receiver and

several satellites. This is achieved by multiplying the speed of signals which is the speed of light

in principle, and measuring the signal’s travel time from a satellite to the receiver. Errors occur in

both the measurements of the speed of the signals and travelling time, which are caused by

atmospheric interface, multipath interface and so on. Because of those errors, corrections methods

have been developed depending types of received signals. There are two types of signal

measurements used for GPS being pseudorange or code phase measurement and carrier phase

measurement (Feuerbacher & Stoewer, 2006). The pseudorange measurement is the most common

method which is for civil use while the carrier phase measurement is typically for military use

because of its high price. Based on these two types of measurements, GPS navigation applications

can be divided into GPS-alone navigation and GPS-Augmented navigation.

6

2.2 GPS-alone Navigation

Localization for mobile robots usually requires higher accuracy than automobile navigation

in cities so that a high accuracy GPS is necessary if GPS is the only position localization tool.

Among existing accurate GPSs, differential GPS (DGPS) and real-time kinematic GPS (RTK

GPS) are mostly used for projects. Raible, Blaich & Bittel, (2010) developed a DGPS system

equipped with two GPS receivers. The system worked with single frequency carrier phase

observation and a Kalman Filter was used to estimate the system status. This system provided high

accuracy in both static and dynamic states while keeping its price low. However, the limitation

was that its accuracy was easily affected by weather. RTK GPS provides a higher accuracy than

DGPS, it reaches centimeter level or sub-centimeter level. Sukkarieh, Nebot & Durrant-Whyte

(1999) conducted a project on path tracking of vehicles for agricultural usage where vehicle sliding

happened frequently. An RTK GPS was used to provide accurate positioning while a model was

built to estimate the vehicle’s sliding magnitude. The major errors in the path tracking task were

due to the sliding estimation model while the RTK GPS had a satisfactory performance, but at a

relatively high price.

There has been ample research on improving GPSs’ accuracy. However, GPS-alone

navigation for mobile robots was not very popular because neither DGPS nor RTK GPS could

meet the basic requirements for most robots, being robust and low-cost. Thus, GPS for robot

guidance is typically augmented with additional sensors in a sensor fusion arrangement.

2.3 GPS-Augmented Navigation

 GPS-Augmented navigation is a method in which multiple sensors are added to provide

guidance information together with GPS. The most common GPS-Augmented navigation is dead

reckoning which uses an odometer or inertial sensors.

7

2.3.1 Odometer Assisted GPS Navigation

A GPS unit has to receive signals from at least four satellites which have to be in the line

of sight of the receiver. A GPS may have poor performance or lose its position when the sky is

blocked or partially blocked by tall objects. That problem could happen when a robot is running

in places such as city’s urban canyons and streets with high buildings surrounding it (Geier, 1996).

An odometer can assist the GPS and provide a mobile robot with location information for a short

time when the GPS loses full connection with satellites. Ohno, Tsubouchi, Shigematsu, & Yuta

(2004) combined a DGPS with an odometer to test the accuracy of robot navigation when GPS

signal was poor. This method not only helped with robot localization when satellites could not be

viewed directly from GPS, but also to deal with GPS multi-path errors, where the signal from a

satellite does not follow a straight path to the receivers, but reflects off objects such as tall

buildings. However, the method suffered from incremental errors caused by wheel slip, a common

limitation in most odometer assisted GPS navigation. Thus, to obtain more reliable and accurate

navigation information, more advanced methods are necessary.

2.3.2 GPS Assisted Inertial Navigation System

Inertial Navigation System (INS) which depend on mechanics laws usually contain three

accelerometers and three gyroscopes. By combining these two sets of measurements, theoretically,

the system is able to calculate its position (Titterton & Weston, 2004). However, due to the bias

of INS alignment and errors in accelerometers and gyroscopes, additional information of position

or attitudes of the system are essential, which can be provided by a low-cost low accuracy GPS

unit.

Most GPS assisted INS applications contain an IMU and a low cost GPS unit. The major

difference among existing GPS/INS applications lies in their method of data fusion. Particularly,

8

various types of Kalman Filter were applied to fuse IMU and GPS data. Sukkarieh, et al. (1999)

developed a high integrity navigation system in which a strap-down IMU was aided by either a

standard or carrier phase GPS. A standard Kalman Filter was used to detect errors in both GPS

and IMU, whereas status such as positions, velocities, and attitude were estimated in real-time.

The accuracy of the system depended upon the accuracy of GPS and the alignment process that

estimates the vehicle’s initial status. Because a standard Kalman Filter was not capable of

estimating the status with high accuracy, more research was done with advanced Kalman Filter

techniques. Qi & Moore (2002) created a direct Kalman Filter approach to fuse GPS and INS

where nonlinearities from both sensors were processed prior to use by the Kalman Filter. Sasiadek

& Wang (1999) used a fuzzy Kalman Filter to fuse simulated IMU and GPS signals. Based on

simulated data, the positioning accuracy was improved, though no field experiment was done.

Besides using an advanced Kalman Filter, some researchers added more sensors to help with status

estimation. For instance, Zhang, Gu, Milios, & Huynh (2005) added a digital compass to the

traditional IMU/GPS system to provide it with high frequency heading measurements. Those

measurements together with GPS measurements were used for status corrections. The correction

process was implemented by an extended Kalman Filter in which vehicle’s status could be

accurately estimated. There were many other applications of IMU/GPS systems that used Kalman

Filters, they mainly varied in the type of Kalman Filter used.

2.4 LIDAR Based Localization for Mobile Robots

Light Detection and Ranging (LIDAR) technology has been used widely in navigating

mobile robots. Existing LIDAR related navigation methods for robots can be divided into three

major categories, although these robots could have very different applications. Those three

categories are methods related to 1) landmarks, 2) scan matching, and 3) map building.

9

2.4.1 Landmarks

Landmarks, either natural or artificial, are observable features that a robot can recognize

from a wide range of locations using its sensors (Borenstein, Everett, Feng, & Wehe, 1997). The

idea of navigating using landmarks is simple: In a known environment, a robot measures its relative

position to a landmark and updates its position information based on a known map (Núñez, Vá

zquez-Martín, Del Toro, Bandera, & Sandoval, 2008). Many researchers have used this idea to

guide robots: Roumeliotis & Bekey, (2000) used features such as walls and corners as landmarks

to navigate a robot in an indoor environment. Trees have also been used as landmarks for outdoor

navigation (Zhang, Xie, & Adams). There were also some novel ideas on using landmarks.

Kurazume & Hirose (1998) developed a cooperative method, in which several robots moved based

on each other’s positions. In that process, one robot stopped as a landmark and other robots moved

based on that stationary robot’s position. Next, a second robot stopped as a new landmark and all

other robots moved based on the position of that second one. Robots continued this process until

they all reached their desired positions.

Using landmarks is simple method of navigation, because it does not need many

calculations and post processing. However, to use this method, a map needs to be known in

advance. Because of this limitation, the landmark method is not suitable in many situations.

2.4.2 Scan matching

Scan matching is a process where two range scans are compared in order to find the

translation and rotation of the second scan relative to the first one. Gutmann, Weigel, & Nebel

(2001) developed a method for self-location of soccer robots using scan matching. They used a

line matching algorithm to extract line segments from a scan and matched them with an a priori

known map. This method can be extended into any polygon shaped field, but only in a small scale

10

environment. Diosi & Kleeman (2004) fused sonar and laser range finder data to generate a method

for simultaneous localization and mapping. Sonar and laser readings were combined in this

method. Point features from sonar reading were used together with line segments from a laser

range finder. In this way, errors due to measurements from a single sensor can be removed

effectively. Scan matching is fast and does not require expensive post-processing calculations.

However, to use this method the surrounding environment must contain detectable features.

2.4.3 Map building

Rencken (1993) defined the map building problem as “Given the robot's position and a set

of measurements, what are the sensors seeing?” As the “sensor”, a LIDAR was usually mounted

on a robot to explore and scan in an unknown environment. A computer built a map of the

environment based on the scans. Fu, Liu, Gao, & Gai (2007) used a laser range finder and a camera

to build a 2D map and vertical edges of an indoor environment. Surmann, Lingemann, Nüchter, &

Hertzberg (2001) constructed a 3D range finder based on a 2D range finder and obtained a 3D map

of an indoor environment. Cole & Newman (2006) used a similar method to build a 3D map of an

outdoor environment. The method of map building gives more information of the environment and

offers more options for the robot to perform different tasks based on built 2D or 3D maps.

However, this method usually requires more sensors and more expensive post processing.

2.5 Literature summary

Typical navigation methods associated with GPS and LIDAR in literature were presented.

Low-cost GPS, although widely used as a navigation tool, is limited by weather and environmental

conditions. Therefore, to provide accurate positioning, it needs to be aided by reliable high rate

sensors such as accelerometers and gyroscopes. LIDAR can measure distances of objects relative

to itself with a high accuracy in a relatively short range, while the accuracy is inversely

11

proportional to the range of an object. In addition, objects must be distinct in shape from their

surroundings. Thus, its usage was limited to short range detections, scan matching, and map

building. By studying features of both GPS and LIDAR, and considering the conditions of fields

where a robot would be traversing, a combination of GPS and LIDAR was tested in this project.

12

CHAPTER 3 MATERIALS AND METHODS

This chapter has three sections, which will cover most materials and methods used in the

project. In section 3.1, the AgTracker platform, which was the base of the robot, will be briefly

introduced. Section 3.2 will be focused on a remote control unit that required real time human

operation. The auto-control unit was the most important part of this robot and will be described in

section 3.3. Equipment and methods involved in more than one sections or units will be discussed

only once when they are firstly mentioned.

In this project, the aim was to navigate a robot in a farm field which has following features:

long range – about 50 by 90 square meters; flat – no obstacles in this field; uniform environment

– absence of landmarks – no distinct object can be seen in the whole field. By analyzing all the

features above and all existing methods, the decision was made to choose a method similar to using

a landmark to approach the task. However, it has significant differences because the landmark in

our method is moving and the laser range finder is stationary. In this research, an agricultural robot

named “AgTracker” was used as the basis for navigation experiments.

3.1 AgTracker platform

The AgTracker platform is a simple, stable robot (Grift & Kasten, 2005; Grift, Kondo, &

Ting, 2008; Xue, Zhang, & Grift, 2012; Bac, Grift, & Menezes, 2011; Xue & Grift, 2011). It

features skid steering which allows the robot to move forward/backward, turn and spin easily. It

mainly consisted of a drive train, batteries, and two DC motor controller boards. The original

control hardware consisted of an obsolete BasicAtom microcontroller, which was replaced with a

modern Arduino controller.

13

3.1.1 Drive train

The drive train of AgTracker features two motors (Astroflight 940P Geared Motor), from

which power was geared down to four wheels as shown in figure 3.1. The transmission ratio

between the motors and the wheels was 18:1. One advantage of this system is that it features two

drive motors, which control the left and right wheels independently. This enabled AgTracker to

spin turn even on a soil surface.

Figure 3.1 AgTracker drive train

3.1.2 Electrical Motor Control Unit

The electrical motor control unit comprised a custom made controller board and two motor

controller boards (see figures 3.2 and 3.3). The custom made controller board functioned as an

interface between a BasicAtom microcontroller and two motor controller boards. Its main usage

for this project was to generate PWM signals from microcontroller to motor controller boards,

which then controlled the speed and direction of the drive motors.

14

3.2 Remote Control Unit

Because the remote control unit was stable, it was built to control the robot manually in

cases where auto-control was not necessary or did not work. This unit was insensitive to

surrounding environment and would work well as long as its two components – transmitter and

receiver, were in range.

3.2.1 Hardware

The robot was remote controlled using a 4 channel 72 MHz unit (Tower Hobbies 3000),

with a range of approximately 500 meter. Since the robot was steered using skid steering, it only

required two channels. Figure 3.4 shows the transmitter for this unit.

Figure 3.2 custom made controller

board
Figure 3.3 motor controller board

15

Figure 3.4 transmitter of tower hobbies system 3000

3.2.2 Software

The code that converts the analog signals from the remote control receiver into digital

signals, was written in C/C++ within a software development kit (Arduino 1.0.5 R2 for Windows,

Arduino SA). The digital signals were sent to the motor controller board to control wheels’ speeds.

Implementation codes can be found in Appendix A.

3.3 Auto-Navigation System

The Auto-Navigation System comprised a feedback network, containing a GPS unit,

LIDAR, wireless communication network, Google map waypoint control unit, real-time

monitoring, and camera control unit. Figure 3.5 shows how these units worked as a system.

16

Computer
Running
MATLAB

Microcontroller
Arduino

Mega2560

GPS
Unit

LIDAR
Unit

Camera
Unit

Real Time
Display

Google
Map

Xbee Wireless
Network

Output

Input

Input

Command

Output Input

Figure 3.5 Auto-navigation system

To navigate the robot to a desired waypoint, first, a map of a user selected area was plotted,

using Google Maps ® functionality (see Section 3.3.6). Waypoints can be selected by either

clicking on the map or using pre-defined locations. Secondly, based on present location of the

robot and waypoint locations, the system would drive the robot to visit waypoints one by one based

on the input order, using GPS signals and LIDAR signals. At last, at each waypoint, the camera

control unit would trigger a facedown camera in the front of the robot to take pictures. This process

would not stop until the robot had visited all waypoints.

3.3.1 System Architecture

The auto-navigation system was similar to a human system which is made of brain, sensory

organs, and the nervous system. The computer had all the intelligence, and it is given a task which

17

was to visit waypoints in this project. Next it analyzes signals from all sensors including GPS,

LIDAR, compass and web-based google map and, finally, send commands back to sensors. All the

sensors would receive signals in real time and transmit them to the computer. The bridge between

the computer and sensors were the internet and an XBee wireless network (See Section 3.3.3).

3.3.2 GPS Control Unit

The GPS unit was one of the two independent navigation systems of the robot while the

other one was LIDAR control unit. It had the ability to guide the robot from one point to another

by itself when GPS signals were unavailable.

3.3.2.1 Hardware

The GPS Control Unit’s guidance relied on a GPS receiver, an electronic compass, two

controllers, a microcontroller and a laptop computer. A GARMIN GPS V (Figure 3.6) was used

to receive satellite signals. A two dimensional position (latitude and longitude) was calculated

when at least three satellites were locked onto and a three dimensional position (latitude, longitude

and altitude) was calculated if at least four satellites signals were received. The position accuracy

of the GPS was about nineteen feet on clear days when WAAS, a system of satellites and ground

reference stations that improves position accuracy, was enabled. A standard NMEA sentence

would then be sent every two seconds from the receiver to a computer.

18

Figure 3.6 Garmin GPS V

A three-axis electronic compass was used to determine the robot’s heading (PARALLAX

HMC5883L). It measured the Earth’s magnetic field and output three values representing magnetic

strength of three orientations X, Y, Z, as shown in Figure 3.7. One of the product’s three standard

mounting orientations was chosen, where the X-axis was the forward reference direction, Y-axis

was the other horizontal reference direction and Z-axis was the vertical reference direction. The

true heading of the compass can be calculated using only values of X-axis and Y-axis with the

knowledge of local declination angle which can be checked online. The calculation process is

shown below. The maximum output rate is 160 Hz with an accuracy of 1 to 2 degrees.

Direction (y>0) = 90 - [arcTAN(x/y)]*180/π

Direction (y<0) = 270 - [arcTAN(x/y)]*180/π

Direction (y=0, x<0) = 180.0

Direction (y=0, x>0) = 0.0

Heading = Direction ± Declination angle

(Honeywell AN-203)

19

Figure 3.7 PARALLAX three axis HMC5883L electronic compass

The microcontroller used in this research was the Arduino Mega 2560 (Figure 3.8), which

features 16 analog input pins, 54 digital input/output pins, a pair of I2C pins and 4 pairs of hardware

serial pins. Two I2C pins (20 and 21) were used to receive compass values. A pair of serial pins

(pin 3 and pin 4) were used to receive GPS sentences. Another pair of serial pins (pin 5 and pin 6)

was used for XBee wireless communication.

Figure 3.8 Arduino Mega 2560 controller

A DELL VOSTRO laptop was selected to execute auto-control operations using MATLAB

R2013b. It was equipped with an Intel(R) Core(TM) i5 CPU and 3.0 GB RAM. It had a 64-bit

20

operating system running under Windows 7 Enterprise. It also had three USB ports, where two of

them were used to receive sensors’ data.

3.3.2.2 Software

Arduino 1.0.5 R2 and MATLAB R2013b were the two major software packages used for

this unit. Note that code was written in Arduino 1.0.5 R2, downloaded into Arduino mega 2560

microcontroller and executed continuously when the microcontroller was powered up. Detailed

implementation code is in Appendix i.

3.3.2.3 Control Loop

Location and heading signals from the GPS control unit and compass were firstly received

by the Arduino microcontroller. Next, the Arduino controller translates the signals, organizes them

into one sentence, and transmits this sentence to the computer through the XBee wireless module.

Simultaneously, the MATLAB program compares the true heading of the robot with the desired

heading calculated by connecting the robot’s current location and its target location. From this

comparison, MATLAB’s program calculates the required speeds of the left and right wheels. The

speed values were sent back to the microcontroller at the end for controlling wheels’ speeds. This

was a continuous process before the robot arrived at its destination.

3.3.3 XBee Wireless Communication

A pair of Digi XBee Pro RF modules and Arduino compatible XBee shields were used to

implement wireless communication in this project. The communication was built by pairing two

XBee modules manually through software (X-CTU). To pair the modules, they must be in the

same network and channel, which were set by ID and CH in modem configuration. The setting of

destination addresses (DH and DL parameter in modem configuration) determined whether this

two modules could communicate. Their settings are described as follows:

21

If DH of XBee1 is set as A and DL of XBee1 is set as B, then for XBee2, its DH should be

B and DL should be A. A and B represent numbers between 0 and 0×FFFF. Figure 3.9 shows the

main modifications to the XBees’ modem configuration. The Arduino Xbee shield allowed data

to be sent and received wirelessly between the serial ports on the Arduino Mega2560 and a

computer. As Figure 3.10 shows, XBee1 was connected to the Mega2560 through the XBee shield

and XBee2 was connected to computer through a USB port. The communication was fast and

stable and its range could be as far as 1 mile outdoors and 300 feet indoors.

Figure 3.9 Major modifications in Xbee’s modem configuration

22

Figure 3.10 Xbee connected to Arduino Mega 2560 through an Xbee shield

3.3.4 LIDAR Control Unit

The LIDAR Control unit as mentioned before, is capable of guiding the robot to

destinations by itself. It was more accurate and stable than the GPS control unit, but it has major

limitations such as having a short range and requiring flat fields.

3.3.4.1 Hardware

The system consisted of a computer, a SICK LIDAR LMS 291, a PARALLAX three axis

HMC5883L electronic compass and two 12 volt batteries. There was no specific requirement for

the computer and batteries as long as the computer could run MATLAB R2013b and the batteries

could provide 24 volt. In this unit, the same DELL VOSTRO laptop computer was used to execute

tasks. The compass was the same as introduced in the GPS control unit. The LIDAR LMS 291

was the key part of this unit. It measured the travel time of a laser pulse between the LIDAR and

any object around it. There are five range and accuracy modes as listed below (© SICK AG · Auto

23

Ident · Germany). The selection of ranges and modes was based on the needs of our study and will

be discussed in section 4.3.3. The location of the LMS needed to be adjustable. A custom frame

allowed for mounting the LIDAR unit on any other structures (Figure 3.11). Since the location of

the LIDAR was fixed, communication between it and the computer was implemented using a 5

meter long cable with an RS232 connector. A RS232 – USB converter was used to interface the

serial output from the LIDAR with the laptop computer.

Table 3.1 LIDAR mode and angular range options

Angular

Range

Angular

Resolution

Number of Data

Values

0˚ - 100˚ 1˚ 101

0˚ - 100˚ 0.5˚ 201

0˚ - 100˚ 0.25˚ 401

0˚ - 180˚ 1˚ 181

0˚ - 180˚ 0.5˚ 361

Mode

Measurement/Detection

Range

mm Mode 0 - 8191mm = 8.191m

cm Mode 0 - 8191cm = 81.91m

24

Figure 3.11 Modifications to the LIDAR unit

3.3.4.2 Software

The control software of the LIDAR unit was written in MATLAB R2013b (MathWorks,

Natick, Massachusetts). The procedure of communication setup and control commands were based

on Quick Manual for LMS Communication Setup version 1.1. All implementation code is listed

in Appendix i. To test the status of the LIDAR unit, an existing program was used, which provided

real time display of objects’ locations (Figure 3.12).

25

Figure 3.12 MATLAB GUI interface for LIDAR data acquisition (courtesy of Dr. Lei Zhang, UIUC)

3.3.4.3 Control Loop

The structure of the LIDAR control unit is similar to that of the GPS control unit. The

LIDAR would detect the relative position of the robot with respect to itself and compare it with

the destination. Note that because the LIDAR would scan any objects in its range, the program

needed to filter all stationary objects by collecting many sets of data and remove those positions

that remained constant, leaving the only moving object as the robot. Next, a targeted moving

direction would be determined by calculation. That direction would be compared again with the

robot’s true heading provided by the electronic compass through the XBee wireless module. Based

26

on the above information, the program would calculate the required left and right wheel speeds

and finally send them back to Arduino microcontroller. This control loop continued until the robot

reached all of its target waypoints.

3.3.5 Combination of GPS and LIDAR Control Unit

While both the GPS and LIDAR control units were able to guide the robot individually,

integration of these units offered a faster, more accurate and reliable method. The integration

comprised only software adaptations, which allows for reverting back to single sensor if the other

would fail, or considered redundant. After integration, the program executed the following steps.

Firstly, an initial robot position based on GPS was acquired by averaging 10 GPS data

points. The initial position was recorded as a [Lat0, Lon0] pair. Secondly, an initial position was

acquired from the LIDAR. The same initial position recorded by LIDAR was marked as a [X0,

Y0] pair. Both initial positions were obtained while keeping the robot stationary. Thirdly, an

algorithm was generated to calculate a one on one match between [Lat0, Lon0] and [X0, Y0]. This

algorithm would be used throughout the process to match the GPS position with the LIDAR

position received at the same time. Note that since LIDAR was more accurate than GPS, if the

GPS and LIDAR positions did not match, the program would rely on the LIDAR generated

positions. Finally, by analyzing the robot’s current location and its destination, the program would

generate a solution to guiding its next-step movement. If the location information from only one

unit, GPS or LIDAR, was received, the program would use it to guide the robot.

3.3.6 Google Map Waypoint Control Unit

The Google map waypoint control unit was a user interface created using the Google map

image API, a web service developed by Google. It enables users to create map images on a web

page by sending URL parameters through a standard HTTP request (Static Maps API V2

27

Developer Guide, 2014). To display map images in MATLAB rather than on a web page, a

MATLAB function created by Zohar Bar (2013) was applied. This function would take geographic

locations, latitude, and longitude as input variables and display a google map image covering those

locations. The waypoint control interface then enabled users to set waypoints by clicking on the

displayed map or by manually entering precise latitude and longitude pairs.

3.3.7 Camera Triggering Unit

To obtain images of the area in front of the robot, an iPhone 4 with a camera trigger

mechanism was used. The mounting height of the iPhone 4 was 45 cm above ground in which case

its camera would take a picture of a 60 cm by 40 cm rectangular area when triggered. The iPhone

4 was inserted into a 3D printed case, mounted on a frame protruding from the front of the robot.

The triggering of the iPhone was achieved by pushing one of its buttons with a solenoid. Since for

proper action, the solenoid requires a rather large current which cannot be supplied by the Arduino

Mega 2560’s digital pins, a solid state relay (SSR) was used that only required an input in the range

from 3 to 32V. A second advantage of the SSR was that it provides galvanic isolation through

opto-coupling. When the robot arrived at each waypoint, the MATLAB program sent a signal to

set the digital pin to high and the iPhone would take pictures.

28

CHAPTER 4 EXPERIMENTS AND RESULTS

In this chapter, experiment design and evaluation of AgTracker’s performance are

presented. Performance of remote control unit is shown in section 4.1. Section 4.2 and section 4.3

discuss GPS and LIDAR guidance respectively. In section 4.4, the combination of GPS and

LIDAR guidance and its evaluation are presented. Section 4.5 elaborates on the Google Map API

interface.

4.1 Remote Control

As mentioned in chapter 3, the remote control unit allowed for manual robot manipulation

in cases where the auto-control system was not in use, for instance, to move the robot from and

indoor location to an outdoor test field. Because the task was simple, the requirements of the

remote control unit’s range and sensitivity was not high. However, it had to be robust to ensure

safety. The unit’s robustness was tested before the auto-control system was completed and during

eleven months of testing, it never failed, indicating that the system was robust and reliable.

4.2 GPS Navigation

 GPS navigation was tested and the results were evaluated for comparison with LIDAR

and GPS/LIDAR navigation later in section 4.5.

4.2.1 Data processing

To guide the robot, the GPS navigation unit received information from the Garmin GPS V

and the PARALLAX electronic compass. The GPS provided location data in latitude/longitude

pairs and the compass transmitted heading data in degrees. The data transmitting frequency of the

GPS and compass were 0.5 Hz and 20 Hz respectively, whereas the maximum transmitting

29

frequency of the compass was 160 Hz. However, due to the low speed of the robot, 20 Hz was

sufficient which saved memory space and improved processing speed. Since the update frequency

of headings was much higher than that of locations, the system would regard the location of the

robot to be constant before the next GPS data was received while controlling the speed of its wheels

solely based on the updated heading information. This was a reasonable assumption, because the

calculated direction of the line which connected the target location and the robot’s location would

not change much in a short time, especially when the robot is far from its target waypoint. When

the robot moved closer to its target, the system slowed down the travel speed of the robot which

alleviated the problem of low frequency data updates from the GPS. The change in target direction

when the robot is far from its destination is shown in Figure 4.1, and when the robot is near its

destination in Figure 4.2.

Figure 4.1 target direction change of α in a short time period when the robot is far from its destination

30

Figure 4.2 target direction change of β in a short time period when the robot is near its destination

4.2.2 Experiment Design

The experiment design for GPS navigation involved two factors, 1) selection of the

experiment location and 2) selection of waypoints. The tests took place at the south quad of

University of Illinois at Urbana-Champaign (Figure 4.3). The south quad is a flat lawn with a

dimension of about 75 m × 120 m. Trees were present, but they were all located close to the edge

of the field, and did not obstruct the experiments. The robot was driven to an arbitrary location on

the quad under remote control. Ten GPS data points were taken and averaged when the robot was

stationary to obtain an accurate initial position. Next, a waypoint was selected by clicking on the

Google map interface. The waypoints were chosen approximately 40 meters away from the initial

position so that the robot’s performance of approaching a destination from far to close waypoints

could be observed. This process was repeated 10 times.

31

Figure 4.3 South quad in University of Illinois at Urbana-Champaign

4.2.3 Results and Discussion

The result for the experiments with solely GPS navigation showed that the robot never

reached any waypoints and continued indefinitely. This was expected because the accuracy of the

GPS was about 6 meters which was sufficient for guiding to robot toward a waypoint, but

insufficient to reach it; When the distance between the robot and the waypoint was less than the

GPS’s accuracy (6m), the position of the robot relative to the waypoint became uncertain.

Therefore, it would turn randomly due to the random error of GPS signals.

4.3 LIDAR Navigation

LIDAR Navigation was tested and results of the test were evaluated for comparison with

GPS navigation and GPS/LIDAR navigation in section 4.5.

32

4.3.1 LIDAR Navigation Frame

The LIDAR navigation frame was a 2D coordinate system. The system was defined as

follows: the location of the LIDAR was the origin, x axis was the direction parallel to the LIDAR’s

baseline and y axis was the direction vertical to the baseline (Figure 4.4). The range for x value

was negative infinity to positive infinity and the range for y value was zero to positive infinity.

4.3.2 Data Processing

To guide the robot, the LIDAR navigation unit received data from the SICK LMS 291 unit

and the PARALLAX electronic compass. The LIDAR provided location data in [x, y] pairs in

centimeters in the LIDAR navigation frame and the compass transmitted heading information in

degrees. The data transmitting frequency of the LIDAR was 1 Hz while the update frequency of

the compass remained at 20 Hz. The information update strategy when calculating the robot’s

wheel speeds was the same as that for GPS navigation, being that the system would regard the

location of the robot constant before the next LIDAR data was received and controlling the speed

of the wheels solely based on the updated heading information.

LIDAR

y

x
baseline

Figure 4.4 LIDAR’s coordinate system

33

4.3.3 Experiment Design

The Experiment Design for LIDAR navigation contained three factors: 1) selection of

experiment location, 2) selection of LIDAR setting and 3) selection of waypoints. The test was

also conducted on the south quad of University of Illinois at Urbana-Champaign. The LIDAR

scanner was mounted at the south end center of the quad facing north. Note that there is no specific

requirement of where the LIDAR scanner should be placed; the sole reason for the chosen location

was that the ground surface was flat.

To detect the robot at all times, the LIDAR scanner needed to be at the same height as the

robot. The robot was taken to the location of the LIDAR scanner under remote control. After all

systems were checked and ready, the first step was to select a proper setting including range and

mode of LIDAR from Table 3.2. Because the LIDAR aperture had to be 180 degrees, and the range

was further than 8.2 meters, the range and mode selected were [0˚ - 180˚], 0.5˚ and cm Mode. This

mode allows a detection range of 82 meters and, with an angular resolution of 0.5 ˚, had a potential

localization accuracy better 0.65 meters with its range. After the range and mode were set up, the

LIDAR was given 30 seconds to localize stationary objects such as trees, which were filtered. The

last step was to select a waypoint. As in the GPS navigation test, the process was repeated 10 times

and waypoints were selected in a range from approximately 30 to 70 meters from the initial

position so that the robot’s performance of approaching a destination from being far to being close

could be observed.

4.3.4 Results and Discussion

The results are shown in two aspects: one is the display of the robot’s trajectories which

represent the robustness of LIDAR detection, and the other is the accuracy of LIDAR localization.

Figure 4.5 and Figure 4.6 show two trajectories during the experiment. It can be seen that during

34

the navigation process, there were only two to three outliers, which were due to detection errors.

Since the outliers were few, they did not affect the decision making process for controlling wheel

speeds.

The evaluation of accuracy of LIDAR navigation was to measure the distance between

waypoints and robot’s stop points. Statistical results for the ten runs are shown in Table 4.1 and

Table 4.2. From the Table 4.2, it can be shown that the mean error was 0.194 m with a maximum

error of 0.8 m. Note that, the maximum error occurred in test number 6, when the LIDAR detected

outliers, so that the system estimated the position of the robot incorrectly. Figure 4.7 shows the

LIDAR detected trajectory of test number 6 in which the waypoint was set at [0 mm, 2800 mm].

The small blue circle at position around [200 mm, 3500 mm] was detected at last moment of that

run, and it was averaged with some other blue circles at position around [0 mm, 26 mm], which

was the true location of the robot. The averaged location happened to be near to location [0 mm,

Figure 4.5 Robot’s trajectory 1 Figure 4.6 Robot’s trajectory 2

35

2800 mm], which made the system stop the robot. Considering that situation would rarely happen,

and if the test number 6 is removed from table 4.1, the average error decreases to 0.127 m.

Table 4.1 LIDAR localization errors in experiment

Localization Error in 10 tests (m)

1 2 3 4 5 6 7 8 9 10

0.07 0.13 0.25 0.05 0.2 0.8 0.06 0.12 0.09 0.17

Table 4.2 Statistics of errors of LIDAR localization

Average

Error

(m)

Average Error

with outlier

removed (m)

Max

Error

(m)

Min

Error

(m)

Error

Standard

Deviation

0.194 0.127 0.8 0.05 0.064

Figure 4.8 the robot’s trajectory of test number 6

36

4.4 GPS and LIDAR Combined Navigation

The combined GPS/LIDAR navigation was tested at the same place with GPS navigation

and LIDAR navigation and its results were evaluated for comparison with those two navigation

systems in section 4.5.

4.4.1 Transformation between GPS navigation frame and LIDAR navigation frame

In the combined navigation system, the first step was to find the frame transformation

matrix which would convert [Latitude, Longitude] pairs to [x, y] pairs. GPS data [Latitude,

Longitude] pairs were taken in the earth frame in which the y axis points to the north and x axis

points to the east. LIDAR data [x, y] pairs were taken in the self-defined navigation frame in which

the y axis was set to point the north and x axis was set to point the east. Thus, the frame

transformation matrix was simplified into a scale transformation matrix. The transformation matrix

was defined as Ce
n. The state space equation is shown as the follows.

37

2

2 2 2 2

2 2

2 2 2

0 0

0 0

180 cos(Latitude(P 0) 180)

(cos(Lat 180)) (sin(Lat 180))

180

(cos(Lat 180)) (sin(Lat 180

lon

lat

lon

lat

x F Lat Lat

y F Lon Lon

a
F

a b

a b
F

a b

 2))

,

distance corresponding to 1 degree change in latitude

 distance corresponding to 1 degree change in longitude

6378137

6356752.3142

0 position of the starting point

 GPS lat

lon

lat

Where

F

F

a m

b m

P

Lat

 itude data of robot location

 GPS longitude data of robot location

0 GPS latitude data of robot initial location

0 GPS longitude data of robot initial location

Lon

Lat

Lon

4.4.2 Experiment Design

The experiment design for the combined navigation was virtually identical to that of the

LIDAR navigation experiment, because the LIDAR was the main information source for

navigation. One difference was in the step of waypoints selection that multi-waypoints were

selected in a single run to test the robustness of the control loop.

38

4.4.3 Results and Discussion

The results for the combined navigation included two parts: one is the display of robot

trajectories and the other is the evaluation of navigation errors. Figure 4.7 and Figure 4.8 show the

robot’s trajectories with multiple-waypoints.

Evaluation of the accuracy of the combined navigation is shown in Table 4.2. The mean

error was 0.20 m with a maximum error of 0.33 m.

Table 4.3 Combined navigation error in experiment

Localization Error in 10 tests (m)

1 2 3 4 5 6 7 8 9 10

0.25 0.20 0.13 0.07 0.33 0.15 0.25 0.28 0.17 0.19

Table 4.4 Statistics of Errors of combined navigation

Average

Error

(m)

Max

Error

(m)

Min

Error

(m)

Error

Standard

Deviation

0.20 0.33 0.07 0.077

Figure 4.9 Robot’s trajectory 3 Figure 4.10 Robot’s trajectory 4

39

4.5 Comparison among navigation systems

The results of three navigation systems were compared. The GPS navigation system

offered localization information which could be used directly with Google maps. However, this

method was not suitable for precise navigation, due to the low accuracy of GPS localization.

The LIDAR navigation system provided accurate positioning which allowed the robot to

visit waypoints accurately with information of the positions of waypoints relative to the LIDAR

scanner. The combined navigation had an accurate localization similar to LIDAR navigation. The

accuracy was a little lower because the combined system had slower information update speed and

the transformation between LIDAR frame and GPS navigation frame involved more errors.

However, the combined navigation provided a convenient interface, where knowledge of relative

position of waypoints to LIDAR was not required, while keeping the accuracy high. Additionally,

the combined navigation compared the position information from GPS and LIDAR, and would

exclude locations that did not match between these GPS and LIDAR. Thus, the chances of having

outliers would decrease.

40

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

The first part summarizes the work and achievement of this project, and addresses the

objectives listed in section 1.2. The second part will present the insights and insufficiencies of this

work.

5.1 Summary

A remote control network was built to manually control the robot. A Tower Hobbies

System 3000 4 FM radio was selected as a remote control. A 2D control strategy was written that

with its help the robot could move forward, move backward, turn forward left, turn forward right,

turn backward left, turn backward right, perform left and right spin turns. The radio based remote

control was very robust.

A GPS auto-navigation system was built for outdoor positioning. The GPS navigation

system which consisted of a Garmin V GPS, a Parallax electronic compass as input hardware,

could provide location and heading information for the robot. Its accuracy was about 6 meters

relying on the accuracy of the GPS. The system could provide reliable information in outdoor

situation when good weather was available.

A LIDAR auto-navigation system was developed for outdoor and indoor guidance. The

LIDAR navigation system included a SICK LIDAR scanner and a Parallax electronic compass. It

was capable to guide the robot in both indoor and outdoor conditions. Its accuracy of its positioning

on the axis parallel to LIDAR’S baseline decreased linearly with an increasing range. However,

the system could still achieve an accuracy of about 50 cm in the range of up to 80 meters.

41

The combination of GPS and LIDAR guidance provided more reliable navigation for the

robot. The fused system made use of information from the GPS, the LIDAR and the compass for

outdoor navigation. The accuracy of the system was evaluated based on experiments and it was

about the same with the accuracy of LIDAR navigation system. Its advantage was that it was more

robust than LIDAR navigation system because when working field was not perfectly even, LIDAR

could temporarily lose the robot, in which case, the GPS could still offer position data. Both the

LIDAR navigation and the combined navigation systems accomplished the goal of 1 m positioning

accuracy set in section 1.2.

Google maps were used to offer easy user interface for setting waypoints. A local google

map were plotted at the beginning of each navigation task and users could set waypoints by

clicking on the map or typing in latitude and longitude pairs in known in advance. Thus, objective

(3) listed in section 1.2 was accomplished.

The Xbee wireless communication network provided data transmission between the robot

and the computer with up to 9600 baud rate. Transmitted position data was shown on the computer

for users to monitor the positions and trajectories of the robot in real-time. Thus, both objective

(2) and (4) were achieved.

5.2 Recommendations for Future Work

Regarding the limitations of the robot such as requiring flat work field, having short range,

having low accuracy, and requiring good weather if using GPS, the usage of the robot will also be

limited. More work can be done to make the robot more applicable.

5.2.1 Improving control algorithms

Algorithms can be developed to improve the positioning accuracy if accuracy of sensors is

better studied. A Kalman Filter can be implemented to fuse GPS and LIDAR data if the covariance

42

matrixes of both sensors’ errors can be estimated in real-time. This can be achieved by doing pre-

experiment of GPS and LIDAR units. For example, the accuracy of LIDAR positioning can be

measured with respect to different distances and the accuracy of GPS in good weather can easily

be studied. With the predefined covariance matrixes of errors, Kalman Filter can probably give a

much better estimation of the robot’s position.

5.2.2 Adding Inertial sensors

Inertial sensors including accelerometers and gyroscopes can measure the robot’s motion

with a high frequency, which make them suitable for real time positioning if the initial position

and heading is known. As mentioned in chapter 2, by adding inertial sensors, Kalman Filters will

be used to fuse the inertial data and position data from either the GPS or the LIDAR. The limitation

of requiring flat working field and having short range will be removed in good weather and the

positioning accuracy could be improved dramatically.

5.2.3 Using vision-aided inertial navigation system

A robot with a vision-aided inertial navigation system has the potential to solve problems

of all the limitations mentioned at the beginning of section 5.2. The basic control algorithm is still

a Kalman Filter, where positioning errors from vision information are normally distributed. If the

positioning errors are not normally distributed, a Bayesian filter can be used instead of Kalman

filter to estimate the robot’s status including positions, speeds, and attitudes. The advantages of

this method are that the robot can work in any weather condition as long as working fields are

visible. The shapes and levels of flatness will not be significant factors because in principle both

sensors can work without well independent of the field conditions.

At last, there is no limitation of ranges when batteries’ life and wireless communication

are not concerns. This method, however, requires much more post data processing and may have

43

a limitation of processing speed of image data if algorithms are not developed properly or the

computer’s ability of processing data is not fast enough.

5.2.4 Using wifi network

As Xbee wireless communication usually has short ranges, it will be a major concern for

limiting work ranges of the robot. A wifi communication does not have this limitation if both the

control center which is the laptop in this project, and the robot are covered with wifi. This, of

course, requires more investment to build a huge wifi network in the robot’s working area, which

may not realistic.

5.2.5 Software implementation

The major software used in this project was MATLAB, which is expensive for individual

users and its processing speed is far from satisfactory if vision data are used. Possible solutions

should have features such as requiring low-cost or being free to use and faster processing speeds.

Potential candidates include Python and OpenCV. However, experiment need to be done to test if

they are suitable for specific tasks.

44

REFERENCES

Bac, W., Grift, T., & Menezes, G. (2011). Development of a tabletop guidance system for

educational robots. Applied Engineering in Agriculture, 27(5): 829-838.

Borenstein, J., Everett, H. R., Feng, L., & Wehe, D. (1997). Mobile robot positioning-sensors and

techniques. AVAL COMMAND CONTROL AND OCEAN SURVEILLANCE CENTER RDT

AND E DIV SAN DIEGO CA.

Carter, M. (1993). Soil sampling and methods of analysis. CRC Press.

Cole, D. M., & Newman, P. M. (2006). Using laser range data for 3D SLAM in outdoor

environments. Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE

International Conference.

Diosi, A., & Kleeman, L. (2004). Advanced sonar and laser range finder fusion for simultaneous

localization and mapping. ntelligent Robots and Systems, 2004.(IROS 2004). Proceedings.

2004 IEEE/RSJ International Conference.

Farrell, J. (2008). Aided navigation: GPS with high rate sensors. New York: McHill.

Feuerbacher, B., & Stoewer, H. (2006). Utilization of Space: today and tomorrow. Springer.

Fu, S., Liu, H. Y., Gao, L., & Gai, Y. X. (2007). LAM for mobile robots using laser range finder

and monocular vision. Mechatronics and Machine Vision in Practice, 2007. M2VIP 2007.

14th International Conference.

Geier, G. J. (1996). Odometer assisted GPS navigation method. U.S. Patent No. 5,525,998.

Washington, DC: U.S. Patent and Trademark Office.

45

Grift, T. E., & Kasten, M. N. (2005). Robotics in agriculture: Asimov meets corn. In: Proc. 2005

Illinois Crop Protection Technology Conference. Urbana, IL.

Grift, T., Kondo, N., & Ting, K. (2008). Review of automation and robotics for the bio-industry.

Journal of Biomechatronics Engineering, 1(1):37-54.

Gutmann, J. S., Weigel, T., & Nebel, B. (2001). A fast, accurate and robust method for self-

localization in polygonal environments using laser range finders. Advanced Robotics, 651-

667.

Kurazume, R., & Hirose, S. (1998). Study on cooperative positioning system: optimum moving

strategies for CPS-III. Robotics and Automation, 1998. Proceedings. 1998 IEEE

International Conference.

Núñez, P., Vázquez-Martín, R., Del Toro, J. C., Bandera, A., & Sandoval, F. (2008). Natural

landmark extraction for mobile robot navigation based on an adaptive curvature estimation.

obotics and Autonomous Systems, 247-264.

Ohno, K., Tsubouchi, T., Shigematsu, B., & Yuta, S. I. (2004). Differential GPS and odometry-

based outdoor navigation of a mobile robot. Advanced Robotics, 611-635.

Piersimoni, F., & Bee, M. (2010). Agricultural survey methods.

Qi, H., & Moore, J. B. (2002). Direct Kalman filtering approach for GPS/INS integration.

Aerospace and Electronic Systems, IEEE Transactions on 38.2 , 687-693.

Raible, J., Blaich, M., & Bittel, O. (2010). Differential GPS supported navigation for a mobile

robot. Intelligent Autonomous Vehicles, 7, 318-323.

Rencken, W. D. (1993). Concurrent localisation and map building for mobile robots using

ultrasonic sensors. Intelligent Robots and Systems' 93, IROS'93. Proceedings of the 1993

IEEE/RSJ International Conference.

46

Richard, B. F., & Gary, W. H. (1994). Soil Sampling for Precision Agriculture.

Roumeliotis, S. I., & Bekey, G. A. (2000). Segments: A layered, dual-kalman filter algorithm for

indoor feature extraction. Proceedings. 2000 IEEE/RSJ International Conference .

Sanchez, P. A., Ahamed, S., Carré, F., Hartemink, A. E., Hempel, J., Huising, J., & Lagacherie, P.

(2009). Digital soil map of the world. Science, 325.

Sasiadek, J. Z., & Wang, Q. (1999). Sensor fusion based on fuzzy Kalman filtering for autonomous

robot vehicle. In Robotics and Automation, 1999. Proceedings. 1999 IEEE International

Conference on, 2970-2975.

Sukkarieh, S., Nebot, E. M., & Durrant-Whyte, H. F. (1999). A high integrity IMU/GPS navigation

loop for autonomous land vehicle applications. Robotics and Automation, IEEE

Transactions on 15(3), 572-578.

Surmann, H., Lingemann, K., Nüchter, A., & Hertzberg, J. (2001). A 3D laser range finder for

autonomous mobile robots. roceedings of the 32nd ISR (International Symposium on

Robotics).

Titterton, D., & Weston, J. (2004). Strapdown Inertial Navigation Technology. IET.

Xue, J. L., Zhang, & Grift, T. (2012). Variable field of view-machine vision based row guidance

of an agricultural robot. Computers and Electronics in Agriculture, 84: 85-91.

Xue, J., & Grift, T. (2011). Agricultural robot turning in the headland of corn fields. Applied

Mechanics and Materials, 63-64, 780-784.

Zhang, P., Gu, J., Milios, E. E., & Huynh, P. (2005). Navigation with IMU/GPS/Digital Compass

with. Mechatronics and Automation, 2005 IEEE International Conference, 1497-1502.

47

Zhang, S., Xie, L., & Adams, M. D. (n.d.). Feature extraction for outdoor mobile robot navigation

based on a modified Gauss–Newton optimization approach. obotics and Autonomous

Systems, 277-287.

48

APPENDIX A: ARDUINO IMPLEMENTATION CODE

#include <Wire.h>

#include <math.h>

//#include <SoftwareSerial.h>

//---

// read GPS data setting

//#define rxPin 2

//#define txPin 3 // GPS serial communication ports

//SoftwareSerial gps = SoftwareSerial(rxPin,txPin);

int index1=0;

char GPSString[56];

char NonString[4];

//--

#define Addr 0x1E // 7-bit address of HMC5883

compass

int compass_start = 1;

int remotePin = A0; //set the input pin for remote

control switch

int RC = 0;

int remote = 0;

const int LwheelPin = 10;

const int RwheelPin = 11;

const int DIS_r = 8;

const int S_r = 9;

const int S_l = 12;

const int DIS_l = 13;

word speed_ll;

word speed_rr;

int speed_l =0;

int speed_r =0;

word THRO_puls;

word RUDD_puls;

word THRO_speed;

word RUDD_speed;

byte back_factor;

byte rob_drive_mod;

// 0 = stop, spinturn left or spinturn right

// 1 = forwards

// 2 = backwards

49

byte drive_modus;

// 1 = forwards

// 2 = backwards

// 3 = spinturn left

// 4 = spinturn right

//-----Preferences RC-----

const int MIN_RUDD = 1000;

const int MIN_THRO = 1180;

const int MIDDLE_RUDD = 1470;

const int MIDDLE_THRO = 1540;

const int MAX_RUDD = 1850;

const int MAX_THRO = 1910;

const int deadband = 50;

//--------------------------

// Pins 22 and 24 are available for receiving signal

const int RUDD = 22;

const int THRO = 24;

//--------------------------

void setup(){

 pinMode(DIS_r,OUTPUT);

 pinMode(S_r,OUTPUT);

 pinMode(S_l,OUTPUT);

 pinMode(DIS_l,OUTPUT);

 pinMode(RUDD,INPUT);

 pinMode(THRO,INPUT);

 Serial.begin(9600);

 // compass set up

 Wire.begin();

 // Set operating mode to continuous

 Wire.beginTransmission(Addr);

 Wire.write(byte(0x02));

 Wire.write(byte(0x00));

 Wire.endTransmission();

 // Read GPS set up

 //pinMode(rxPin, INPUT);

 //pinMode(txPin, OUTPUT);

 //gps.begin(4800);

 Serial3.begin(4800);

}

50

void loop(){

 remote_control();

 if (remote ==1)

 {

 check_channels();

 drive();

 }

 else

 {

 //d_modus_1();

 gps_control();

 }

}

void remote_control(){

 RC = analogRead(remotePin);

 if(RC > 50)

 {

 remote = 1;

 }

 else

 {

 remote =0;

 }

}

void stop_robot(){

 analogWrite(LwheelPin,0);

 analogWrite(RwheelPin,0);

 loop();

}

void check_channels(){

 THRO_puls = pulseIn(THRO,HIGH);

 RUDD_puls = pulseIn(RUDD,HIGH);

 if ((THRO_puls > MAX_THRO || THRO_puls < MIN_THRO)

||(RUDD_puls > MAX_RUDD || RUDD_puls < MIN_RUDD)){

 rob_drive_mod = 0;

 stop_robot();

 }

 if ((THRO_puls > (MIDDLE_THRO - deadband)) && (THRO_puls <

(MIDDLE_THRO + deadband)))

 {

51

 rob_drive_mod = 0;

 speed_r = 0;

 speed_l = 0;

 }

 else if(THRO_puls < (MIDDLE_THRO - deadband))

 {

 rob_drive_mod = 1;

 THRO_speed = (MIDDLE_THRO - THRO_puls) * 11/2;

 if (THRO_speed > 2048) {

 THRO_speed = 2000;

 }

 }

 else if(THRO_puls > (MIDDLE_THRO + deadband))

 {

 rob_drive_mod = 2;

 THRO_speed = (THRO_puls - MIDDLE_THRO) * 11/2;

 if (THRO_speed > 2048){

 THRO_speed = 2000;

 }

 }

}

void drive(){

 if (rob_drive_mod == 0){

 if ((RUDD_puls >= (MIDDLE_RUDD - deadband)) && (RUDD_puls

<= (MIDDLE_RUDD + deadband)))

 {

 stop_robot();

 }

 else if(RUDD_puls < (MIDDLE_RUDD - deadband))

 {

 RUDD_speed = (MIDDLE_RUDD - RUDD_puls) * 3;

 spinturn_left();

 }

 else if(RUDD_puls > (MIDDLE_RUDD + deadband))

 {

 RUDD_speed = (RUDD_puls - MIDDLE_RUDD) * 3;

 spinturn_right();

 }

 }

 if(rob_drive_mod == 1){

 if(drive_modus != 1){

 d_modus_1();

 }

52

 if((RUDD_puls >= (MIDDLE_RUDD - deadband)) && (RUDD_puls <=

(MIDDLE_RUDD + deadband)))

 {

 speed_l = THRO_speed;

 speed_r = THRO_speed;

 }

 else if(RUDD_puls > (MIDDLE_RUDD + deadband))

 {

 speed_l = THRO_speed;

 RUDD_speed = THRO_speed/2;

 speed_r = RUDD_speed;

 }

 else if(RUDD_puls < (MIDDLE_RUDD - deadband))

 {

 speed_r = THRO_speed;

 RUDD_speed = THRO_speed/2;

 speed_l = RUDD_speed;

 }

 }

 if(rob_drive_mod == 2){

 if (drive_modus != 2)

 {

 d_modus_2();

 }

 if((RUDD_puls >= (MIDDLE_RUDD - deadband)) && (RUDD_puls <=

(MIDDLE_RUDD + deadband)))

 {

 speed_l = THRO_speed;

 speed_r = THRO_speed;

 }

 else if(RUDD_puls > (MIDDLE_RUDD + deadband))

 {

 speed_l = THRO_speed;

 RUDD_speed = THRO_speed/2;

 speed_r = RUDD_speed;

 }

 else if(RUDD_puls < (MIDDLE_RUDD - deadband))

 {

 speed_r = THRO_speed;

 RUDD_speed = THRO_speed/2;

 speed_l = RUDD_speed;

 }

 }

 speed_ll = map(speed_l,0,2047,0,255);

 speed_rr = map(speed_r,0,2047,0,255);

 analogWrite(LwheelPin, speed_ll);

53

 analogWrite(RwheelPin, speed_rr);

}

void spinturn_left(){

 if (drive_modus != 3){

 d_modus_3();

 }

 if (RUDD_speed >= 1500)

 {

 speed_l = 1500;

 speed_r = 1500;

 }

 else

 {

 speed_l = RUDD_speed;

 speed_r = RUDD_speed;

 }

 speed_ll = map(speed_l,0,2047,0,255);

 speed_rr = map(speed_r,0,2047,0,255);

 analogWrite(LwheelPin, speed_ll);

 analogWrite(RwheelPin, speed_rr);

}

void spinturn_right(){

 if (drive_modus != 4){

 d_modus_4();

 }

 if (RUDD_speed >= 1500)

 {

 speed_l = 1500;

 speed_r = 1500;

 }

 else

 {

 speed_l = RUDD_speed;

 speed_r = RUDD_speed;

 }

 speed_ll = map(speed_l,0,2047,0,255);

 speed_rr = map(speed_r,0,2047,0,255);

 analogWrite(LwheelPin, speed_ll);

 analogWrite(RwheelPin, speed_rr);

}

void d_modus_1(){

54

 digitalWrite(DIS_l,HIGH);

 digitalWrite(DIS_r,HIGH);

 delay(1);

 digitalWrite(S_r,LOW);

 digitalWrite(S_l,HIGH);

 delay(1);

 digitalWrite(DIS_l,LOW);

 digitalWrite(DIS_r,LOW);

 drive_modus = 1;

}

void d_modus_2(){

 digitalWrite(DIS_l,HIGH);

 digitalWrite(DIS_r,HIGH);

 delay(1);

 digitalWrite(S_r,HIGH);

 digitalWrite(S_l,LOW);

 delay(1);

 digitalWrite(DIS_l,LOW);

 digitalWrite(DIS_r,LOW);

 drive_modus = 2;

}

void d_modus_3(){

 digitalWrite(DIS_l,HIGH);

 digitalWrite(DIS_r,HIGH);

 delay(1);

 digitalWrite(S_r,HIGH);

 digitalWrite(S_l,HIGH);

 delay(1);

 digitalWrite(DIS_l,LOW);

 digitalWrite(DIS_r,LOW);

 drive_modus = 3;

}

void d_modus_4(){

 digitalWrite(DIS_l,HIGH);

 digitalWrite(DIS_r,HIGH);

 delay(1);

 digitalWrite(S_r,LOW);

 digitalWrite(S_l,LOW);

 delay(1);

 digitalWrite(DIS_l,LOW);

 digitalWrite(DIS_r,LOW);

55

 drive_modus = 4;

}

void gps_control(){

 //read_gps_data();

 char* StrGPS=read_gps_data();

 if

(StrGPS[0]=='$'&&StrGPS[1]=='G'&&StrGPS[2]=='P'&&StrGPS[3]=='R'&

&StrGPS[4]=='M'&&StrGPS[5]=='C'){

 char* StrHeading=compass_matlab();

 char Sendoutstring[100];

 Sendoutstring[0]= 0;

 strcat(Sendoutstring,StrGPS);

 strcat(Sendoutstring,StrHeading);

 Serial.println(Sendoutstring);

 }

 else if

(StrGPS[0]=='N'&&StrGPS[1]=='o'&&StrGPS[2]=='n'&&StrGPS[3]=='e')

{

 char* StrHeading=compass_matlab();

 char Sendoutstring[100];

 Sendoutstring[0]=0;

 strcat(Sendoutstring,StrGPS);

 strcat(Sendoutstring,StrHeading);

 Serial.println(Sendoutstring);

 delay(250);

 }

 if(Serial.available() > 0)

 {

 delay(5);

 char incomdirec = Serial.read();

 int intergerValue = 0;

 while(1){

 char incomint = Serial.read();

 if (incomint == '\n') break;

 intergerValue *= 10;

 intergerValue = ((incomint - 48) + intergerValue);

 delay(5);

 }

 speed_l = intergerValue;

56

 intergerValue = 0;

 while(1){

 char incomint = Serial.read();

 if (incomint == '\n') break;

 intergerValue *= 10;

 intergerValue = ((incomint - 48) + intergerValue);

 delay(5);

 }

 speed_r = intergerValue;

 Serial.println(speed_l,DEC);

 Serial.println(speed_r,DEC);

 if(incomdirec=='a')

 {

 digitalWrite(DIS_l,HIGH);

 digitalWrite(DIS_r,HIGH);

 delay(1);

 digitalWrite(S_r,LOW);

 digitalWrite(S_l,HIGH);

 delay(1);

 digitalWrite(DIS_l,LOW);

 digitalWrite(DIS_r,LOW);

 analogWrite(LwheelPin, speed_l);

 analogWrite(RwheelPin, speed_r);

 }

 else if(incomdirec=='b')

 {

 digitalWrite(DIS_l,HIGH);

 digitalWrite(DIS_r,HIGH);

 delay(1);

 digitalWrite(S_r,LOW);

 digitalWrite(S_l,LOW);

 delay(1);

 digitalWrite(DIS_l,LOW);

 digitalWrite(DIS_r,LOW);

 speed_l = speed_l-180;

 speed_r = speed_r-180;

 analogWrite(LwheelPin, speed_l);

 analogWrite(RwheelPin, speed_r);

 }

 else if (incomdirec=='c')

 {

 digitalWrite(DIS_l,HIGH);

 digitalWrite(DIS_r,HIGH);

57

 delay(1);

 digitalWrite(S_r,HIGH);

 digitalWrite(S_l,HIGH);

 delay(1);

 digitalWrite(DIS_l,LOW);

 digitalWrite(DIS_r,LOW);

 speed_l = speed_l-180;

 speed_r = speed_r-180;

 analogWrite(LwheelPin, speed_l);

 analogWrite(RwheelPin, speed_r);

 }

 Serial.println(incomdirec);

 }

 }

char* compass_matlab() {

 int x, y, z;

 float theta;

 float heading;

 // Initiate communications with compass

 Wire.beginTransmission(Addr);

 Wire.write(byte(0x03)); // Send request to X MSB register

 Wire.endTransmission();

 Wire.requestFrom(Addr, 6); // Request 6 bytes; 2 bytes per

axis

 if(Wire.available() <=6) { // If 6 bytes available

 x = Wire.read() << 8 | Wire.read();

 z = Wire.read() << 8 | Wire.read();

 y = Wire.read() << 8 | Wire.read();

 // Calculate heading when the magnetometer is level, then

correct for signs of axis.

 heading = atan2(y,x);

 // Your mrad result / 1000.00 (to turn it into radians).

 float declinationAngle = 3.02/180*PI;

 // If you have an EAST declination, use += declinationAngle,

if you have a WEST declination, use -= declinationAngle

 heading += declinationAngle;

 // Correct for when signs are reversed.

 if(heading < 0)

 heading += 2*PI;

 // Check for wrap due to addition of declination.

 if(heading > 2*PI)

58

 heading -= 2*PI;

 // Convert radians to degrees for readability.

 float headingDegrees = heading * 180/M_PI;

 char headingstring[10];

 dtostrf(headingDegrees,2,2,headingstring);

 return headingstring;

 delay(10);

 }

}

char* read_gps_data(){

 char incomingByte;

 if (Serial3.available()>0){ //capture NMEA sentence and

print to serial window

 delay(5);

 if(Serial3.read()=='$'){

 GPSString[0]='$';

 delay(5);

 for (index1 = 1; index1 < 55; index1 = index1 + 1) {

 if (Serial3.available()){

 delay(7);

 incomingByte = Serial3.read();

 GPSString[index1] = incomingByte;

 }

 }

 GPSString[55] = '|';

 if

(GPSString[0]=='$'&&GPSString[1]=='G'&&GPSString[2]=='P'&&GPSStr

ing[3]=='R'&&GPSString[4]=='M'&&GPSString[5]=='C'){

 return GPSString;

 }

 else{

 NonString[0]='N';

 NonString[1]='o';

 NonString[2]='n';

 NonString[3]='e';

 return NonString;

59

 }

 delay(100);

 }

 else{

 NonString[0]='N';

 NonString[1]='o';

 NonString[2]='n';

 NonString[3]='e';

 return NonString;

 }

 }

 else{

 NonString[0]='N';

 NonString[1]='o';

 NonString[2]='n';

 NonString[3]='e';

 return NonString;

 }

}

60

APPENDIX B: MATLAB IMPLEMENTATION CODE

LIDAR_GPS Control.m

clear all;

global Serial_Port;

global Navi;

Kv = 0.3;

Kh = 0.5;

% XWay = 0;

% YWay = 3000;

X_collect = [];

Y_collect = [];

Waypoint = 3;

% Plot google map and generate waypoints

Latset = [40.102493998448665 40.101406639707236

40.101414846253384 40.10250630807077];

Lonset = [-88.22759091854095 -88.22758555412292 -

88.22667360305786 -88.22667360305786];

plot(Lonset,Latset,'.r','MarkerSize',10);

plot_google_map;

[Lon_Way, Lat_Way]=ginput(Waypoint);

% Initialize GPS to get accurate position

Navi = serial('COM13', 'BaudRate',

9600,'InputBufferSize',2048);

Navi.ReadAsyncMode = 'manual';

[Lon0,Lat0]= GPS_Initialize;

% Initialize LIDAR to remove all stationary objects

[X1,Y1]=LIDAR_Initialize;

% Start robot--move it to the area where LIDAR can see

fopen(Navi);

fprintf(Navi,'%s', 'a');

fprintf(Navi,'%d\n',250);

fprintf(Navi,'%d\n',250);

pause(2);

fprintf(Navi,'%s','a');

fprintf(Navi,'%d\n',0);

fprintf(Navi,'%d\n',0);

pause(0.01);

fclose(Navi);

61

disp('GOOOOOOOO');

pause(2);

% Convert [Lat0,Lon0] to LIDAR coordinate [X0,Y0]

[X0,Y0] = ConvertGPS2LIDAR(X1,Y1);

 fopen(Navi);

for i= 1:Waypoint

 X_Old = 0;

 Y_Old = 0;

 DistOld = 10000;

 Lspeed = 0;

 Rspeed = 0;

 Dist = 10000;

 HeadWayOld = 0;

 HeadingOld = 0;

 LonWay = Lon_Way(i);

 LatWay = Lat_Way(i);

 % Convert [LonWay,LatWay] to LIDAR coordinate[Xway,Yway]

 [XWay,YWay] = GPS2LIDAR(LonWay,LatWay,Lon0,Lat0,X0,Y0);

 %---

 % start control

 while(Dist>100)

 % Read GPS data

 [Lon,Lat,Heading]=readGPS_xbee_new4(Lspeed,Rspeed);

 if isempty(Heading)

 Heading = HeadingOld;

 end

 HeadingOld = Heading;

 % Convert [Lon,Lat] to LIDAR coordinate [Xway,Yway]

 [X_gps,Y_gps] = GPS2LIDAR(Lon,Lat,Lon0,Lat0,X0,Y0);

 % Get LIDAR [X,Y]

 [X_lidar,Y_lidar]= LIDAR_read(X1,Y1);

 Dist = 1000;

 [X_true,Y_true]=

Data_analysis(X_gps,Y_gps,X_lidar,Y_lidar,X_Old,Y_Old);

 X_collect = [X_collect X_true];

 Y_collect = [Y_collect Y_true];

 XNew = X_true;

 YNew = Y_true;

 X_Old = X_true;

 Y_Old = Y_true;

 Dist = sqrt((XNew-XWay)^2+(YNew-YWay)^2);

 % Calculate HeadWay-----------------------------------

--

 if XWay == XNew

 if YWay < YNew

 HeadWay = 180;

62

 elseif YWay > YNew

 HeadWay = 0;

 else

 HeadWay = 0;

 end

 end

 if YNew == YWay

 if XNew < XWay %Moving West

 HeadWay = 90;

 elseif XNew > XWay

 HeadWay = 270; % Moving East

 else

 HeadWay = 0; % Stationary

 end

 end

 % 1st quadrant

 if ((XWay> XNew) & (YWay > YNew))

 HeadWay = 180/pi*tanh(abs(XNew - XWay) / abs(YWay -

YNew));

 end

 % 2nd quadrant

 if ((XWay > XNew) & (YWay < YNew))

 HeadWay = 90 + 180/pi*tanh(abs(YNew - YWay) /

abs(XNew - XWay));

 end

 % 3rd quadrant

 if ((XWay < XNew) & (YWay < YNew))

 HeadWay = 180 + 180/pi*tanh(abs(XWay - XNew) /

abs(YNew - YWay));

 end

 % 4th quadrant

 if ((XWay < XNew) & (YWay > YNew))

 HeadWay = 270 + 180/pi*tanh(abs(YWay - YNew) /

abs(XWay - XNew));

 end

 %---

 Velocity = Kv*Dist;

 if Velocity > 150

 Velocity = 150;

 end

 R = Kh*(HeadWay - Heading);

63

 if HeadWay>60 & HeadWay<180

 if (Heading<HeadWay+60) & (Heading>HeadWay-60)

 Lspeed = Velocity+R;

 Rspeed = Velocity-R;

 elseif (Heading>=HeadWay+60)&(Heading<HeadWay+180)

 Lspeed = -250;

 Rspeed = 250;

 else

 Lspeed = 250;

 Rspeed = -250;

 end

 elseif (HeadWay>=180)&(HeadWay<300)

 if (Heading<HeadWay+60) & (Heading>HeadWay-60)

 Lspeed = Velocity+R;

 Rspeed = Velocity-R;

 elseif (Heading<=HeadWay-60)&(Heading>HeadWay-180)

 Lspeed = 250;

 Rspeed = -250;

 else

 Lspeed = -250;

 Rspeed = 250;

 end

 elseif (HeadWay<=60)&(HeadWay>0)

 if (Heading<=HeadWay+60)

 Lspeed = Velocity +R;

 Rspeed = Velocity -R;

 elseif (Heading>HeadWay+60)&(Heading<HeadWay+180)

 Lspeed = -250;

 Rspeed = 250;

 elseif

(Heading>=HeadWay+180)&(Heading<HeadWay+300)

 Lspeed = 250;

 Rspeed = -250;

 else

 Lspeed = Velocity+Kh*(360+HeadWay - Heading);

 Rspeed = Velocity-Kh*(360+HeadWay - Heading);

 end

 else

 if (Heading>=HeadWay-60)

 Lspeed = Velocity +R;

 Rspeed = Velocity -R;

 elseif (Heading<HeadWay-60)&(Heading>HeadWay-180)

 Lspeed= 250;

64

 Rspeed= -250;

 elseif (Heading<=HeadWay-180)&(Heading>HeadWay-

300)

 Lspeed = -250;

 Rspeed = 250;

 else

 Lspeed = Velocity+Kh*(HeadWay - Heading-360);

 Rspeed = Velocity-Kh*(HeadWay - Heading-360);

 end

 end

 if Lspeed > 250

 Lspeed = 250;

 elseif Lspeed < -250

 Lspeed = -250;

 end

 if Rspeed > 250

 Rspeed = 250;

 elseif Rspeed < -250

 Rspeed = -250;

 end

 if abs(Lspeed)~=250 & abs(Rspeed)~=250

 if Lspeed>=Rspeed

 Lspeed = 250;

 Rspeed = Rspeed+(250-Lspeed);

 else

 Rspeed = 250;

 Lspeed = Lspeed+(250-Rspeed);

 end

 end

 Lspeed = ceil(Lspeed);

 Rspeed = ceil(Rspeed);

 pause(0.01);

 end

 fprintf(Navi,'%s', 'a');

 fprintf(Navi,'%d\n',0);

 fprintf(Navi,'%d\n',0);

 Waypoint_task(Lon,Lat,X_gps,Y_gps);

end

plot(X_collect,Y_collect,'o','MarkerSize',2);

axis([-2000,2000,0,5000]);

grid on;

fclose(Navi);

65

fclose(Serial_Port);

delete(Serial_Port);

delete(Navi);

plot_google map.m

function varargout = plot_google_map(varargin)

% function h = plot_google_map(varargin)

% Plots a google map on the current axes using the Google Static

Maps API

%

% USAGE:

% h = plot_google_map(Property, Value,...)

% Plots the map on the given axes. Used also if no output is

specified

%

% Or:

% [lonVec latVec imag] = plot_google_map(Property, Value,...)

% Returns the map without plotting it

%

% PROPERTIES:

% Height (640) - Height of the image in pixels (max 640)

% Width (640) - Width of the image in pixels (max 640)

% Scale (2) - (1/2) Resolution scale factor . using

Scale=2 will

% double the resulotion of the downloaded

image (up

% to 1280x1280) and will result in finer

rendering,

% but processing time will be longer.

% MapType - ('roadmap') Type of map to return. Any of

[roadmap,

% satellite, terrain, hybrid] See the Google

Maps API for

% more information.

% Alpha (1) - (0-1) Transparency level of the map (0 is

fully

% transparent). While the map is always

% moved to the bottom of the plot (i.e. will

% not hide previously drawn items), this

can

% be useful in order to increase readability

% if many colors are ploted (using SCATTER

% for example).

% ShowLabels (1) - (0/1) Controls wheter to display

city/street textual labels on the map

66

% Marker - The marker argument is a text string with

fields

% conforming to the Google Maps API. The

% following are valid examples:

% '43.0738740,-70.713993' (default midsize

orange marker)

% '43.0738740,-70.713993,blue' (midsize blue

marker)

% '43.0738740,-70.713993,yellowa' (midsize

yellow

% marker with label "A")

% '43.0738740,-70.713993,tinyredb' (tiny

red marker

% with label "B")

% Refresh (1) - (0/1) defines whether to automatically

refresh the

% map upon zoom/pan action on the figure.

% AutoAxis (1) - (0/1) defines whether to automatically

adjust the axis

% of the plot to avoid the map being

stretched.

% This will adjust the span to be correct

% according to the shape of the map axes.

% APIKey - (string) set your own API key which you

obtained from Google:

%

http://developers.google.com/maps/documentation/staticmaps/#api_

key

% This will enable up to 25,000 map requests

per day,

% compared to a few hundred requests without

a key.

% To set the key, use:

%

plot_google_map('APIKey','SomeLongStringObtaindFromGoogle')

% You need to do this only once to set the

key.

% To disable the use of a key, use:

% plot_google_map('APIKey','')

%

% OUTPUT:

% h - Handle to the plotted map

%

% lonVect - Vector of Longidute coordinates (WGS84)

of the image

% latVect - Vector of Latidute coordinates (WGS84) of

the image

67

% imag - Image matrix (height,width,3) of the map

%

% EXAMPLE - plot a map showing some capitals in Europe:

% lat = [48.8708 51.5188 41.9260 40.4312 52.523

37.982];

% lon = [2.4131 -0.1300 12.4951 -3.6788 13.415

23.715];

% plot(lon,lat,'.r','MarkerSize',20)

% plot_google_map

%

% References:

% http://www.mathworks.com/matlabcentral/fileexchange/24113

% http://www.maptiler.org/google-maps-coordinates-tile-bounds-

projection/

% http://developers.google.com/maps/documentation/staticmaps/

%

% Acknowledgement to Val Schmidt for his submission of

get_google_map.m

%

% Author:

% Zohar Bar-Yehuda

% Version 1.3 - 06/10/2013

% - Improved functionality of AutoAxis, which now handles

any shape of map axes.

% Now also updates the extent of the map if the figure

is resized.

% - Added the ShowLabels param which allows hiding the

textual labels on the map.

% Version 1.2 - 16/06/2012

% - Support use of the "scale=2" parameter by default for

finer rendering (set scale=1 if too slow).

% - Auto-adjust axis extent so the map isn't stretched.

% - Set and use an API key which enables a much higher

usage volume per day.

% Version 1.1 - 25/08/2011

% store parameters in global variable (used for auto-refresh)

global inputParams

persistent apiKey

if isnumeric(apiKey)

 % first run, check if API key file exists

 if exist('api_key.mat','file')

 load api_key

 else

 apiKey = '';

 end

end

68

axHandle = gca;

inputParams.(['ax' num2str(axHandle*1e6,'%.0f')]) = varargin;

% Handle input arguments

height = 640;

width = 640;

scale = 2;

maptype = 'roadmap';

alphaData = 1;

autoRferesh = 1;

autoAxis = 1;

ShowLabels = 1;

hold on

markeridx = 1;

markerlist = {};

if nargin >= 2

 for idx = 1:2:length(varargin)

 switch lower(varargin{idx})

 case 'height'

 height = varargin{idx+1};

 case 'width'

 width = varargin{idx+1};

 case 'maptype'

 maptype = varargin{idx+1};

 case 'alpha'

 alphaData = varargin{idx+1};

 case 'refresh'

 autoRferesh = varargin{idx+1};

 case 'showlabels'

 ShowLabels = varargin{idx+1};

 case 'marker'

 markerlist{markeridx} = varargin{idx+1};

 markeridx = markeridx + 1;

 case 'autoaxis'

 autoAxis = varargin{idx+1};

 case 'apikey'

 apiKey = varargin{idx+1}; % set new key

 % save key to file

 funcFile = which('plot_google_map.m');

 pth = fileparts(funcFile);

 keyFile = fullfile(pth,'api_key.mat');

 save(keyFile,'apiKey')

 otherwise

 error(['Unrecognized variable: '

varargin{idx}])

69

 end

 end

end

if height > 640

 height = 640;

end

if width > 640

 width = 640;

end

curAxis = axis;

% Enforce Latitude constraints of EPSG:900913

if curAxis(3) < -85

 curAxis(3) = -85;

end

if curAxis(4) > 85

 curAxis(4) = 85;

end

% Enforce longitude constrains

if curAxis(1) < -180

 curAxis(1) = -180;

end

if curAxis(1) > 180

 curAxis(1) = 0;

end

if curAxis(2) > 180

 curAxis(2) = 180;

end

if curAxis(2) < -180

 curAxis(2) = 0;

end

if isequal(curAxis,[0 1 0 1]) % probably an empty figure

 % display world map

 curAxis = [-200 200 -85 85];

 axis(curAxis)

end

if autoAxis

 % adjust current axis limit to avoid strectched maps

 [xExtent,yExtent] = latLonToMeters(curAxis(3:4),

curAxis(1:2));

 xExtent = diff(xExtent); % just the size of the span

 yExtent = diff(yExtent);

 % get axes aspect ratio

 drawnow

70

 org_units = get(axHandle,'Units');

 set(axHandle,'Units','Pixels')

 ax_position = get(axHandle,'position');

 set(axHandle,'Units',org_units)

 aspect_ratio = ax_position(4) / ax_position(3);

 if xExtent*aspect_ratio > yExtent

 centerX = mean(curAxis(1:2));

 centerY = mean(curAxis(3:4));

 spanX = (curAxis(2)-curAxis(1))/2;

 spanY = (curAxis(4)-curAxis(3))/2;

 % enlarge the Y extent

 spanY = spanY*xExtent*aspect_ratio/yExtent; % new span

 if spanY > 85

 spanX = spanX * 85 / spanY;

 spanY = spanY * 85 / spanY;

 end

 curAxis(1) = centerX-spanX;

 curAxis(2) = centerX+spanX;

 curAxis(3) = centerY-spanY;

 curAxis(4) = centerY+spanY;

 elseif yExtent > xExtent*aspect_ratio

 centerX = mean(curAxis(1:2));

 centerY = mean(curAxis(3:4));

 spanX = (curAxis(2)-curAxis(1))/2;

 spanY = (curAxis(4)-curAxis(3))/2;

 % enlarge the X extent

 spanX = spanX*yExtent/(xExtent*aspect_ratio); % new

span

 if spanX > 180

 spanY = spanY * 180 / spanX;

 spanX = spanX * 180 / spanX;

 end

 curAxis(1) = centerX-spanX;

 curAxis(2) = centerX+spanX;

 curAxis(3) = centerY-spanY;

 curAxis(4) = centerY+spanY;

 end

 % Enforce Latitude constraints of EPSG:900913

 if curAxis(3) < -85

 curAxis(3:4) = curAxis(3:4) + (-85 - curAxis(3));

 end

 if curAxis(4) > 85

 curAxis(3:4) = curAxis(3:4) + (85 - curAxis(4));

71

 end

 axis(curAxis) % update axis as quickly as possible, before

downloading new image

 drawnow

end

% Delete previous map from plot (if exists)

if nargout <= 1 % only if in plotting mode

 curChildren = get(axHandle,'children');

 map_objs = findobj(curChildren,'tag','gmap');

 bd_callback = [];

 for idx = 1:length(map_objs)

 if ~isempty(get(map_objs(idx),'ButtonDownFcn'))

 % copy callback properties from current map

 bd_callback = get(map_objs(idx),'ButtonDownFcn');

 end

 end

 delete(map_objs)

end

% Calculate zoom level for current axis limits

[xExtent,yExtent] = latLonToMeters(curAxis(3:4), curAxis(1:2)

);

minResX = diff(xExtent) / width;

minResY = diff(yExtent) / height;

minRes = max([minResX minResY]);

tileSize = 256;

initialResolution = 2 * pi * 6378137 / tileSize; %

156543.03392804062 for tileSize 256 pixels

zoomlevel = floor(log2(initialResolution/minRes));

% Enforce valid zoom levels

if zoomlevel < 0

 zoomlevel = 0;

end

if zoomlevel > 19

 zoomlevel = 19;

end

% Calculate center coordinate in WGS1984

lat = (curAxis(3)+curAxis(4))/2;

lon = (curAxis(1)+curAxis(2))/2;

% CONSTRUCT QUERY URL

preamble = 'http://maps.googleapis.com/maps/api/staticmap';

location = ['?center=' num2str(lat,10) ',' num2str(lon,10)];

72

zoomStr = ['&zoom=' num2str(zoomlevel)];

sizeStr = ['&scale=' num2str(scale) '&size=' num2str(width) 'x'

num2str(height)];

maptypeStr = ['&maptype=' maptype];

if ~isempty(apiKey)

 keyStr = ['&key=' apiKey];

else

 keyStr = '';

end

markers = '&markers=';

for idx = 1:length(markerlist)

 if idx < length(markerlist)

 markers = [markers markerlist{idx} '%7C'];

 else

 markers = [markers markerlist{idx}];

 end

end

if ShowLabels == 0

 labelsStr =

'&style=feature:all|element:labels|visibility:off';

else

 labelsStr = '';

end

if ismember(maptype,{'satellite','hybrid'})

 filename = 'tmp.jpg';

 format = '&format=jpg';

 convertNeeded = 0;

else

 filename = 'tmp.png';

 format = '&format=png';

 convertNeeded = 1;

end

sensor = '&sensor=false';

url = [preamble location zoomStr sizeStr maptypeStr format

markers labelsStr sensor keyStr];

% Get the image

try

 urlwrite(url,filename);

catch % error downloading map

 warning(sprintf(['Unable to download map form Google

Servers.\n' ...

 'Possible reasons: no network connection, or quota

exceeded.\n' ...

 'Consider using an API key if quota problems

persist.']));

 varargout{1} = [];

73

 varargout{2} = [];

 varargout{3} = [];

 return

end

[M Mcolor] = imread(filename);

M = cast(M,'double');

delete(filename); % delete temp file

width = size(M,2);

height = size(M,1);

% Calculate a meshgrid of pixel coordinates in EPSG:900913

centerPixelY = round(height/2);

centerPixelX = round(width/2);

[centerX,centerY] = latLonToMeters(lat, lon); % center

coordinates in EPSG:900913

curResolution = initialResolution / 2^zoomlevel/scale; %

meters/pixel (EPSG:900913)

xVec = centerX + ((1:width)-centerPixelX) * curResolution; % x

vector

yVec = centerY + ((height:-1:1)-centerPixelY) * curResolution;

% y vector

[xMesh,yMesh] = meshgrid(xVec,yVec); % construct meshgrid

% convert meshgrid to WGS1984

[lonMesh,latMesh] = metersToLatLon(xMesh,yMesh);

% We now want to convert the image from a colormap image with

an uneven

% mesh grid, into an RGB truecolor image with a uniform grid.

% This would enable displaying it with IMAGE, instead of PCOLOR.

% Advantages are:

% 1) faster rendering

% 2) makes it possible to display together with other colormap

annotations (PCOLOR, SCATTER etc.)

% Convert image from colormap type to RGB truecolor (if PNG is

used)

if convertNeeded

 imag = zeros(height,width,3);

 for idx = 1:3

 imag(:,:,idx) = reshape(Mcolor(M(:)+1+(idx-

1)*size(Mcolor,1)),height,width);

 end

else

 imag = M/255;

end

74

% Next, project the data into a uniform WGS1984 grid

sizeFactor = 1; % factoring of new image

uniHeight = round(height*sizeFactor);

uniWidth = round(width*sizeFactor);

latVect = linspace(latMesh(1,1),latMesh(end,1),uniHeight);

lonVect = linspace(lonMesh(1,1),lonMesh(1,end),uniWidth);

[uniLonMesh,uniLatMesh] = meshgrid(lonVect,latVect);

uniImag = zeros(uniHeight,uniWidth,3);

% old version (projection using INTERP2)

% for idx = 1:3

% % 'nearest' method is the fastest. difference from other

methods is neglible

% uniImag(:,:,idx) =

interp2(lonMesh,latMesh,imag(:,:,idx),uniLonMesh,uniLatMesh,'nea

rest');

% end

uniImag =

myTurboInterp2(lonMesh,latMesh,imag,uniLonMesh,uniLatMesh);

if nargout <= 1 % plot map

 % display image

 h = image(lonVect,latVect,uniImag);

 set(gca,'YDir','Normal')

 set(h,'tag','gmap')

 set(h,'AlphaData',alphaData)

 % add a dummy image to allow pan/zoom out to x2 of the image

extent

 h_tmp = image(lonVect([1 end]),latVect([1

end]),zeros(2),'Visible','off');

 set(h_tmp,'tag','gmap')

 % older version (display without conversion to uniform grid)

 % h =pcolor(lonMesh,latMesh,(M));

 % colormap(Mcolor)

 % caxis([0 255])

 % warning off % to avoid strange rendering warnings

 % shading flat

 uistack(h,'bottom') % move map to bottom (so it doesn't hide

previously drawn annotations)

 axis(curAxis) % restore original zoom

 if nargout == 1

 varargout{1} = h;

 end

75

 % if auto-refresh mode - override zoom callback to allow

autumatic

 % refresh of map upon zoom actions.

 zoomHandle = zoom;

 panHandle = pan;

 if autoRferesh

set(zoomHandle,'ActionPostCallback',@update_google_map);

 set(panHandle, 'ActionPostCallback',

@update_google_map);

 else % disable zoom override

 set(zoomHandle,'ActionPostCallback',[]);

 set(panHandle, 'ActionPostCallback',[]);

 end

 % set callback for figure resize function, to update extents

if figure

 % is streched.

 figHandle = get(axHandle,'Parent');

 set(figHandle, 'ResizeFcn', @update_google_map_fig);

 % set callback properties

 set(h,'ButtonDownFcn',bd_callback);

else % don't plot, only return map

 varargout{1} = lonVect;

 varargout{2} = latVect;

 varargout{3} = uniImag;

end

% Coordinate transformation functions

function [lon,lat] = metersToLatLon(x,y)

% Converts XY point from Spherical Mercator EPSG:900913 to

lat/lon in WGS84 Datum

originShift = 2 * pi * 6378137 / 2.0; % 20037508.342789244

lon = (x ./ originShift) * 180;

lat = (y ./ originShift) * 180;

lat = 180 / pi * (2 * atan(exp(lat * pi / 180)) - pi / 2);

function [x,y] = latLonToMeters(lat, lon)

% Converts given lat/lon in WGS84 Datum to XY in Spherical

Mercator EPSG:900913"

originShift = 2 * pi * 6378137 / 2.0; % 20037508.342789244

x = lon * originShift / 180;

y = log(tan((90 + lat) * pi / 360)) / (pi / 180);

y = y * originShift / 180;

76

function ZI = myTurboInterp2(X,Y,Z,XI,YI)

% An extremely fast nearest neighbour 2D interpolation, assuming

both input

% and output grids consist only of squares, meaning:

% - uniform X for each column

% - uniform Y for each row

XI = XI(1,:);

X = X(1,:);

YI = YI(:,1);

Y = Y(:,1);

xiPos = nan*ones(size(XI));

xLen = length(X);

yiPos = nan*ones(size(YI));

yLen = length(Y);

% find x conversion

xPos = 1;

for idx = 1:length(xiPos)

 if XI(idx) >= X(1) && XI(idx) <= X(end)

 while xPos < xLen && X(xPos+1)<XI(idx)

 xPos = xPos + 1;

 end

 diffs = abs(X(xPos:xPos+1)-XI(idx));

 if diffs(1) < diffs(2)

 xiPos(idx) = xPos;

 else

 xiPos(idx) = xPos + 1;

 end

 end

end

% find y conversion

yPos = 1;

for idx = 1:length(yiPos)

 if YI(idx) <= Y(1) && YI(idx) >= Y(end)

 while yPos < yLen && Y(yPos+1)>YI(idx)

 yPos = yPos + 1;

 end

 diffs = abs(Y(yPos:yPos+1)-YI(idx));

 if diffs(1) < diffs(2)

 yiPos(idx) = yPos;

 else

 yiPos(idx) = yPos + 1;

 end

 end

end

77

ZI = Z(yiPos,xiPos,:);

function update_google_map(obj,evd)

% callback function for auto-refresh

drawnow;

global inputParams

if isfield(inputParams,['ax' num2str(gca*1e6,'%.0f')])

 params = inputParams.(['ax' num2str(gca*1e6,'%.0f')]);

 plot_google_map(params{:});

end

function update_google_map_fig(obj,evd)

% callback function for auto-refresh

drawnow;

global inputParams

axes_objs = findobj(get(gcf,'children'),'type','axes');

for idx = 1:length(axes_objs)

 if

~isempty(findobj(get(axes_objs(idx),'children'),'tag','gmap'));

 if isfield(inputParams,['ax'

num2str(axes_objs(idx)*1e6,'%.0f')])

 params = inputParams.(['ax'

num2str(axes_objs(idx)*1e6,'%.0f')]);

 else

 params = {};

 end

 axes(axes_objs(idx));

 plot_google_map(params{:});

 break;

 end

end

GPS_initilize

 function [Lon0,Lat0] = GPS_Initialize
global Navi;

fopen(Navi);

N = 10;

Latitude0 = 0;

Longitude0 = 0;

for i = 1:N

 while (1)

 str = fscanf(Navi);

 if length(str)>=60

78

 if strcmp(str(1:6),'$GPRMC') & strcmp(str(15),'A')

 break;

 end

 end

 pause(0.001);

 end

 year = str(54:55);

 mo = str(52:53);

 day = str(50:51);

 hr = str(8:9);

 min = str(10:11);

 sec = str(12:13);

 hour = str2num(hr);

 minute = str2num(min);

 second = str2num(sec);

 TimeNew = 3600*hour + 60*minute + second;

 LatiMin = str(17:18);

 LatiSec = str(19:20);

 LatiDec = str(22:25);

 Latitude = str(27);

 Lat_dd = str2num(LatiMin);

 Lat_mm = str2num(LatiSec);

 Lat_dec = str2num(LatiDec);

 Lat = Lat_dd + (Lat_mm + Lat_dec/10000)/60;

 LongMin = str(29:31);

 LongSec = str(32:33);

 LongDec = str(35:38);

 Longitude = str(40);

 Lon_dd = str2num(LongMin);

 Lon_mm = str2num(LongSec);

 Lon_dec = str2num(LongDec);

 Lon = -(Lon_dd + (Lon_mm + Lon_dec/10000)/60);

 Longitude0 = Longitude0+Lon;

 Latitude0 = Latitude0+Lat

 pause(0.001);

end

Lon0 = Longitude0/N;

Lat0 = Latitude0/N;

fclose(Navi);

end

79

LIDAR_initialize

function [X1,Y1]=LIDAR_Initialize

global Serial_Port;

Serial_Port =

serial('COM4','BaudRate',9600,'InputBufferSize',1024);

Fid_Display = 1;

fopen(Serial_Port);

DataToSend_Continuous_Stop=uint8([2 0 2 0 32 37 53 8]);

fwrite(Serial_Port,DataToSend_Continuous_Stop);

DataSet_Stop = fread(Serial_Port);

Serial_Port.RequestToSend='on';

% set up baudrate

 DataToSend_Baudrate=[2 0 2 0 32 66 82 8];

 fwrite(Serial_Port,DataToSend_Baudrate);

 BaudRate_Response = fread(Serial_Port);

 if isempty(BaudRate_Response)==1

 Message=['BaudRate: Failed setted'];

 disp(Message);

 else

 Fid_BaudRate=mean((BaudRate_Response==[6 2 128 3 0 160 0

16 22 10]'));

 if Fid_BaudRate==1

 Message=['BaudRate: Succeed setted - 9600 bps'];

 disp(Message);

 else

 Message=['BaudRate: Failed setted'];

 disp(Message);

 end

 end

 Serial_Port.BaudRate=9600;

% set up distance model

DataToSend_Installation=uint8([2 0 10 0 32 0 83 73 67 75 95 76

77 83 190 197]);

 fwrite(Serial_Port,DataToSend_Installation);

 Installation_Response=fread(Serial_Port);

 if isempty(Installation_Response)==1

 Message={Message;'Distance Modle: Failed setted'};

 disp(Message);

 else

 Fid_Installation=mean((BaudRate_Response==[6 2 128 3

0 160 0 16 22 10]'));

 if Fid_Installation==1

 %%%%%%%%%%mm model Set Up

80

 DataToSend_Distance_Model= uint8([2 0 33 0 119 0

0 0 0 0 0 0 0 0 2 2 0 232

114]);

 fwrite(Serial_Port,DataToSend_Distance_Model);

 Distance_Model_Response=fread(Serial_Port);

 if isempty(Installation_Response)==1

 Message={Message;'Distance Modle: Failed

setted'};

 disp(Message);

 else

Fid_Distance_Modle=mean((Distance_Model_Response==[6 2 128 37 0

247 0 0 0 70 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 2 114 16 156 103]'));

 if Fid_Distance_Modle==1;

 Message={Message;'Distance Modle:

Succeed setted - cm Model'};

 disp(Message);

 else

 Message={Message;'Distance Modle:

Failed setted'};

 disp(Message);

 end

 end

 else

 Message={Message;'Distance Modle: Failed

setted'};

 disp(Message);

 end

 end

% set up angleresolution

 DataToSend_AngleRange_Resolution=uint8([2 0 5 0 59 180 0 50 0

59 31]);

 fwrite(Serial_Port,DataToSend_AngleRange_Resolution);

 AngleRange_Resolution_Response=fread(Serial_Port);

 if isempty(AngleRange_Resolution_Response)==1

 Message={Message{1};Message{2};'Range Resolution:

Failed setted'};

 disp(Message);

 else

Fid_AngleRange_Resolution=mean((AngleRange_Resolution_Response==

[6 2 128 7 0 187 1 180 0 50 0 16 3 157]'));

 if Fid_AngleRange_Resolution==1

 Message={Message{1};Message{2};'Range

Resolution: Succeed setted - 180/0.5'};

 disp(Message);

81

 else

 Message={Message{1};Message{2};'Range

Resolution: Failed setted'};

 disp(Message);

 end

 end

% read data and display it

DataSet=[];

DataToSend_Continuous=uint8([2 0 2 0 32 36 52 8]);

fwrite(Serial_Port,DataToSend_Continuous);

figure,axes;

X1 = [];

Y1 = [];

Data_Continuous_Head=fread(Serial_Port,10);

% initialize-- find stationary objects

 for i = 1:30

 Data_Continuous = fread(Serial_Port,732);

 pause(0.01);

 DataSet=[DataSet,Data_Continuous'];

Data_C=Data_Continuous(8:length(Data_Continuous)-3,:);

 Data_C_Bin=dec2bin(Data_C);

 Length_Vaild=length(Data_C_Bin);

 for i=1:2:Length_Vaild

 Temp=Data_C_Bin(i,:);

 Data_C_Bin(i,:)=Data_C_Bin(i+1,:);

 Data_C_Bin(i+1,:)=Temp;

 end

 for i=1:Length_Vaild/2

 Data_Continuous_Bin(i,:)=[Data_C_Bin(2*i-

1,:) Data_C_Bin(2*i,:)];

 end

Data_Continuous_Dec=bin2dec(Data_Continuous_Bin);

 Angle_Space=linspace(0*pi/180,180*pi/180,361);

 ROI_Range=8000;

ROI_Index=find(Data_Continuous_Dec<=ROI_Range);

[X,Y]=pol2cart(Angle_Space(ROI_Index),Data_Continuous_Dec(ROI_In

dex)');

 X1 = [X1 X];

 Y1 = [Y1 Y];

82

 end

end

Convert_GPS_to_LIDAR

function [X0,Y0] = ConvertGPS2LIDAR(X1,Y1)

global Serial_Port;

for kkk = 1:10

DataSet = [];

Data_Continuous = fread(Serial_Port,732);

pause(0.01);

DataSet=[DataSet,Data_Continuous'];

Data_C=Data_Continuous(8:length(Data_Continuous)-3,:);

Data_C_Bin=dec2bin(Data_C);

Length_Vaild=length(Data_C_Bin);

for i=1:2:Length_Vaild

 Temp=Data_C_Bin(i,:);

 Data_C_Bin(i,:)=Data_C_Bin(i+1,:);

 Data_C_Bin(i+1,:)=Temp;

end

for i=1:Length_Vaild/2

 Data_Continuous_Bin(i,:)=[Data_C_Bin(2*i-1,:)

Data_C_Bin(2*i,:)];

end

Data_Continuous_Dec=bin2dec(Data_Continuous_Bin);

Angle_Space=linspace(0*pi/180,180*pi/180,361);

ROI_Range=8000;

ROI_Index=find(Data_Continuous_Dec<=ROI_Range);

[X,Y]=pol2cart(Angle_Space(ROI_Index),Data_Continuous_Dec(ROI_

Index)');

N = length(X);

Show_Index=[];

for i = 1:N

 Distance=sqrt((X1-X(i)).^2+(Y1-Y(i)).^2);

 if isempty(find(Distance<=15))

 Show_Index = [Show_Index i];

 end

end

X_s = X(Show_Index);

Y_s = Y(Show_Index);

83

if ~isempty(X_s)

 X0 = mean(X_s);

 Y0 = mean(Y_s);

 %Dist = sqrt((XNew-XWay)^2+(YNew-YWay)^2);

else

 disp('Error:Robot not found');

end

end

end

GPS_to_LIDAR

function [X,Y] = GPS2LIDAR(Lon,Lat,Lon0,Lat0,X0,Y0)

a = 6378137.0;

b = 6356752.3142;

pi = 3.1416;

if (Lon==-1)&(Lat==-1)

 X = -1;

 Y = -1;

else

 % Distance corresponding to 1 deg change in Latitude

 F_lon = (pi/180) * a^2*cos(Lat/180*pi) /

(a^2*(cos(Lat/180*pi))^2 + b^2*(sin(Lat/180*pi))^2)^(1/2);

 % Distance corresponding to 1 deg change in Longitude

 F_lat = (pi/180) * a^2*b^2 / (a^2*(cos(Lat/180*pi))^2 +

b^2*(sin(Lat/180*pi))^2)^(3/2);

 Dlat = F_lon*(Lat-Lat0)*100; % (unit--cm)

 Dlon = F_lat*(Lon-Lon0)*100; % (unit--cm)

 X = X0+Dlon;

 Y = Y0+Dlat;

end

end

Read_GPSXbee_new4

function [Lon,Lat,Heading] = readGPS_xbee_new4(Lspeed,Rspeed)

global Navi;

while (1)

 str = fscanf(Navi);

 if length(str)>=60

 if strcmp(str(1:6),'$GPRMC') & strcmp(str(15),'A')

 break;

 end

 else if (length(str)<=13) & (length(str)>=8)

84

 if strcmp(str(1:4),'None')

 break;

 end

 end

 end

end

% send out Lspeed&Rspeed

if (Lspeed >=0) & (Rspeed>=0)

 fprintf(Navi,'%s', 'a');

 disp('a');

elseif Lspeed>0 & Rspeed<0

 fprintf(Navi,'%s','b');

 Rspeed = -Rspeed;

 disp('b');

elseif Lspeed<0 & Rspeed>0

 fprintf(Navi,'%s','c');

 Lspeed=-Lspeed;

 disp('c');

end

fprintf(Navi,'%d\n',Lspeed);

fprintf(Navi,'%d\n',Rspeed);

disp('Lspeed = ')

disp(Lspeed)

disp('Rspeed = ')

disp(Rspeed)

% Read NMEA string

if (length(str)>=60)

 year = str(54:55);

 mo = str(52:53);

 day = str(50:51);

 hr = str(8:9);

 min = str(10:11);

 sec = str(12:13);

 hour = str2num(hr);

 minute = str2num(min);

 second = str2num(sec);

 TimeNew = 3600*hour + 60*minute + second;

 LatiMin = str(17:18);

 LatiSec = str(19:20);

 LatiDec = str(22:25);

 Latitude = str(27);

 Lat_dd = str2num(LatiMin);

85

 Lat_mm = str2num(LatiSec);

 Lat_dec = str2num(LatiDec);

 Lat = Lat_dd + (Lat_mm + Lat_dec/10000)/60;

 LongMin = str(29:31);

 LongSec = str(32:33);

 LongDec = str(35:38);

 Longitude = str(40);

 Lon_dd = str2num(LongMin);

 Lon_mm = str2num(LongSec);

 Lon_dec = str2num(LongDec);

 Lon = -(Lon_dd + (Lon_mm + Lon_dec/10000)/60);

 Head = str(61:end);

 Heading = str2num(Head);

 disp([hr ':' min ':' sec ' UTC']);

 disp([day '/' mo '/' year ' DDMMYY']);

 disp([Latitude ' ' LatiMin ' DEG ' LatiSec '.' LatiDec '

MIN']);

 disp([Longitude ' ' LongMin ' DEG ' LongSec '.' LongDec '

MIN']);

 disp([str]);

 fprintf('\r');

else if length(str)<=13

 Lat = -1;

 Lon = -1;

 Head = str(5:end);

 Heading = str2num(Head);

 TimeNew = -1;

 end

end

end

LIDAR_communication

 function
[Dist,HeadWay,X_collect,Y_collect,XNew,YNew]=LIDAR_Communication

(X1,Y1,X_gps,Y_gps,XWay,YWay,X_collect0,Y_collect0,XOld,YOld,Hea

dWayOld,DistOld)

global Serial_Port;

DataSet = [];

Data_Continuous = fread(Serial_Port,732);

pause(0.01);

DataSet=[DataSet,Data_Continuous'];

86

Data_C=Data_Continuous(8:length(Data_Continuous)-3,:);

Data_C_Bin=dec2bin(Data_C);

Length_Vaild=length(Data_C_Bin);

for i=1:2:Length_Vaild

 Temp=Data_C_Bin(i,:);

 Data_C_Bin(i,:)=Data_C_Bin(i+1,:);

 Data_C_Bin(i+1,:)=Temp;

end

for i=1:Length_Vaild/2

 Data_Continuous_Bin(i,:)=[Data_C_Bin(2*i-1,:)

Data_C_Bin(2*i,:)];

end

Data_Continuous_Dec=bin2dec(Data_Continuous_Bin);

Angle_Space=linspace(0*pi/180,180*pi/180,361);

ROI_Range=8000;

ROI_Index=find(Data_Continuous_Dec<=ROI_Range);

[X,Y]=pol2cart(Angle_Space(ROI_Index),Data_Continuous_Dec(ROI_

Index)');

N = length(X);

Show_Index=[];

for i = 1:N

 Distance=sqrt((X1-X(i)).^2+(Y1-Y(i)).^2);

 if isempty(find(Distance<=15))

 Show_Index = [Show_Index i];

 end

end

X_s = X(Show_Index);

Y_s = Y(Show_Index);

if ~isempty(X_s)

 plot(X_s,Y_s,'*');

 axis([-2000,2000,0,5000]);

 grid on;

 if (X_gps~=-1)|(Y_gps~=-1)

 DistXY = sqrt((X_s - X_gps).^2+(Y_s - Y_gps).^2);

 IndexXY = find(DistXY<1500);

 X_s = X_s(IndexXY);

 Y_s = Y_s(IndexXY);

 end

 XNew = mean(X_s);

 YNew = mean(Y_s);

 Dist = sqrt((XNew-XWay)^2+(YNew-YWay)^2);

87

 % Calculate HeadWay-------------------------------------

 if XWay == XNew

 if YWay < YNew

 HeadWay = 180;

 elseif YWay > YNew

 HeadWay = 0;

 else

 HeadWay = 0;

 end

 end

 if YNew == YWay

 if XNew < XWay %Moving West

 HeadWay = 90;

 elseif XNew > XWay

 HeadWay = 270; % Moving East

 else

 HeadWay = 0; % Stationary

 end

 end

 % 1st quadrant

 if ((XWay> XNew) & (YWay > YNew))

 HeadWay = 180/pi*tanh(abs(XNew - XWay) / abs(YWay -

YNew));

 end

 % 2nd quadrant

 if ((XWay > XNew) & (YWay < YNew))

 HeadWay = 90 + 180/pi*tanh(abs(YNew - YWay) / abs(XNew

- XWay));

 end

 % 3rd quadrant

 if ((XWay < XNew) & (YWay < YNew))

 HeadWay = 180 + 180/pi*tanh(abs(XWay - XNew) / abs(YNew

- YWay));

 end

 % 4th quadrant

 if ((XWay < XNew) & (YWay > YNew))

 HeadWay = 270 + 180/pi*tanh(abs(YWay - YNew) / abs(XWay

- XNew));

 end

 %---

88

%Heading = 0;

 %---

 X_collect = [X_collect0 X_s];

 Y_collect = [Y_collect0 Y_s];

else

 disp('NO Moving Object');

 Dist = DistOld;

 HeadWay = HeadWayOld;

 X_collect = X_collect0;

 Y_collect = Y_collect0;

 XNew = XOld;

 YNew = YOld;

end

end

LIDAR_read

function [X_lidar,Y_lidar]=LIDAR_read(X1,Y1)

global Serial_Port;

 DataSet = [];

 Data_Continuous = fread(Serial_Port,732);

 pause(0.01);

 DataSet=[DataSet,Data_Continuous'];

 Data_C=Data_Continuous(8:length(Data_Continuous)-3,:);

 Data_C_Bin=dec2bin(Data_C);

 Length_Vaild=length(Data_C_Bin);

 for i=1:2:Length_Vaild

 Temp=Data_C_Bin(i,:);

 Data_C_Bin(i,:)=Data_C_Bin(i+1,:);

 Data_C_Bin(i+1,:)=Temp;

 end

 for i=1:Length_Vaild/2

 Data_Continuous_Bin(i,:)=[Data_C_Bin(2*i-1,:)

Data_C_Bin(2*i,:)];

 end

 Data_Continuous_Dec=bin2dec(Data_Continuous_Bin);

 Angle_Space=linspace(0*pi/180,180*pi/180,361);

 ROI_Range=8000;

 ROI_Index=find(Data_Continuous_Dec<=ROI_Range);

89

[X,Y]=pol2cart(Angle_Space(ROI_Index),Data_Continuous_Dec(ROI_In

dex)');

 N = length(X);

 Show_Index=[];

 for i = 1:N

 Distance=sqrt((X1-X(i)).^2+(Y1-Y(i)).^2);

 if isempty(find(Distance<=15))

 Show_Index = [Show_Index i];

 end

 end

 X_s = X(Show_Index);

 Y_s = Y(Show_Index);

 if ~isempty(X_s)

 plot(X_s,Y_s,'*');

 axis([-2000,2000,0,5000]);

 grid on;

 X_lidar = mean(X_s);

 Y_lidar = mean(Y_s);

 else

 disp('NO Moving Object');

 X_lidar = -1;

 Y_lidar = -1;

 end

end

