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ABSTRACT 

 

 

The increasing demand for high-density soil data, and the high labor cost associated with 

manual methods, have encouraged the development of autonomous alternatives. In this study, a 

mobile robot named ‘AgTracker’ was developed as a platform for an autonomous soil sampling 

machine. The robot, equipped with a low-accuracy GPS, a LIDAR scanner, an electronic compass 

visited human-defined locations through its auto-navigation system. This system also had a user-

friendly interface, which enabled operators to set waypoints by clicking on Google Maps®. 

Locations could also be remotely monitored in real time through this interface. An Xbee wireless 

network was built to make the remote waypoints set up and monitoring possible.  

The robot was tested on campus of University of Illinois at Urbana-Champaign. It could 

visit waypoints one by one successfully in most cases. The robot’s localization errors, which were 

the distances between its true visited locations and set waypoints, were evaluated. An average error 

within 0.2 m was achieved. 
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CHAPTER 1 INTRODUCTION 

 

 The impetus to develop methods and techniques to collect agricultural data is increasing, 

because agricultural surveys have been used worldwide for estimating agricultural resources 

(Piersimoni & Bee, 2010). Among existing surveys in agriculture, soil sampling has been used 

frequently. As the basis of agricultural systems, soil provides critical resources such as nutrition 

and water for crops. The objective of soil sampling is to measure the average nutrition level of a 

field and the variability of nutrients of regions in a field (Richard & Gary, 1994). Based on field 

types and conditions, soil sampling methods can vary. Major sampling methods include 

judgmental sampling and random sampling. Both methods require expensive labor if the size of a 

field is large (Carter, 1993). Thus, automated sampling methods are necessary in order to make 

accurate and detailed soil maps. Autonomous robots which have been researched by many 

institutes are potentially ideal candidates for conducting auto-sampling tasks. An effective auto-

sampling robot should consist of (1) an autonomous field navigation system (2) equipment for 

taking samples and (3) units for sample storage. Among those three requirements, developing an 

autonomous field navigation system is the most difficult because it requires the system to be able 

to deal with varying weather and field conditions. In this thesis, the development of an autonomous 

navigation robot which can be used in varying weather conditions and on flat fields is described.  

1.1 Research Motivation 

Soils are regarded as main contributors for food production, and the demand for real-time 

soil data is increasing dramatically. The resolutions of existing soil maps are very low, which is 

not helpful for most land management (Sanchez, et al., 2009, p. 325). Figure 1.1 and Figure 1.2 

show the soil maps of Illinois, USA (USDA-NRCS, 2014). These maps provide users with general 
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information of local soil types and contents. However, to plan and manage individual farmlands, 

more precise and up-to-date information of each field is required.  

To obtain accurate soil data in each field, sampling soil is an essential step. Based on field 

conditions and usages, soil sampling can be divided into judgmental and random samplings. 

Judgmental sampling is a method in which sampling densities vary, based on observable 

conditions of different regions of farmlands. The accuracy of this method is hard to estimate 

because it depends on investigators’ experience when planning sampling points. Random 

sampling, on the other hand, does not rely on investigators’ judgments, but its accuracy is affected 

by sampling sizes. Intuitively, the larger the sampling size, the more accurate results can be 

expected. However, when the sampling size is large enough to a certain level, increasing sampling 

numbers in unit areas helps little in increasing accuracy. Based on Carter (1993), in most cases, 25 

sampling points in 0.5 ha is the maximum, while 10 sampling points is the minimum. Figure 1.3 

Figure 1.1 Brief Description of Classes Figure 1.2 Prime Farmland 
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shows the comparison of soil maps with varying numbers of sampling sizes (Richard, 1994). In 

general, when the field size is large, the sampling size is always required to be large in order to 

build accurate soil maps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An autonomous sampling robot is desirable to relieve humans from expensive labor for 

collecting large numbers of soil samples. As mentioned previously, three stages are necessary for 

the robot to accomplish sampling tasks; The robot should firstly have an autonomous navigation 

system which can guide itself in fields to visit all sampling points. The navigation system has to 

be reliable under most weather and field conditions. Secondly, at each sampling point, the robot 

should be able to collect soil samples with proper tools. Finally, on the robot, there should be 

Figure 1.3 Comparison of built soil map with different sampling sizes 
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enough space for separating and storing soil samples. Since there are already well designed soil 

sampling tools in markets, and designing of storage space is not difficult, developing a robot with 

a robust autonomous navigation system becomes the core for a sampling robot. Noticing that most 

farmlands in the mid-west of the United States are relatively flat, and to make the task easy in the 

first step, the developed robot was aimed at flat farmlands.   

1.2 Objectives 

This objective of this study is to develop a robot with the ability to navigate itself in flat 

fields. To be specific, the robot can be controlled remotely by an operator. The operator should be 

able to set locations of sampling points and monitor the positions of the robot. Besides, image data 

of soil at each sampling point are also desired in order to better estimate status of soils around 

sampling points. With the above requirements, the specific objectives of this study are listed as 

follows: 

 

(1) Develop a robust positioning system with an accuracy better than 1 m; 

(2) Build wireless communication network  

(3) Add a Google map for setting up sampling points 

(4) Create a real-time display of robot positions and trajectories 

 

 

 

 

  



5 

 

CHAPTER 2 LITERATURE REVIEW 

 

 

This chapter illustrates research and techniques related to ground mobile robot navigation 

problems. Section 2.1 discusses various methods related to GPS on localization problems. Section 

2.2 discusses the usage of LIDAR on navigating mobile robots. 

2.1 GPS Localization for Mobile Robots 

The Global Positioning System (GPS) is a widely used navigation system in North 

America. It is one of the three major Global Navigation Satellite Systems (GNSSs) in the world, 

the other two being GLONASS and Galileo, developed in Russia and Europe respectively (Farrell, 

2008). The principle of GPS localization is to measure the distances between a GPS receiver and 

several satellites. This is achieved by multiplying the speed of signals which is the speed of light 

in principle, and measuring the signal’s travel time from a satellite to the receiver. Errors occur in 

both the measurements of the speed of the signals and travelling time, which are caused by 

atmospheric interface, multipath interface and so on. Because of those errors, corrections methods 

have been developed depending types of received signals. There are two types of signal 

measurements used for GPS being pseudorange or code phase measurement and carrier phase 

measurement (Feuerbacher & Stoewer, 2006). The pseudorange measurement is the most common 

method which is for civil use while the carrier phase measurement is typically for military use 

because of its high price. Based on these two types of measurements, GPS navigation applications 

can be divided into GPS-alone navigation and GPS-Augmented navigation. 
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2.2 GPS-alone Navigation 

Localization for mobile robots usually requires higher accuracy than automobile navigation 

in cities so that a high accuracy GPS is necessary if GPS is the only position localization tool. 

Among existing accurate GPSs, differential GPS (DGPS) and real-time kinematic GPS (RTK 

GPS) are mostly used for projects. Raible, Blaich & Bittel, (2010) developed a DGPS system 

equipped with two GPS receivers. The system worked with single frequency carrier phase 

observation and a Kalman Filter was used to estimate the system status. This system provided high 

accuracy in both static and dynamic states while keeping its price low. However, the limitation 

was that its accuracy was easily affected by weather. RTK GPS provides a higher accuracy than 

DGPS, it reaches centimeter level or sub-centimeter level. Sukkarieh, Nebot & Durrant-Whyte 

(1999) conducted a project on path tracking of vehicles for agricultural usage where vehicle sliding 

happened frequently. An RTK GPS was used to provide accurate positioning while a model was 

built to estimate the vehicle’s sliding magnitude. The major errors in the path tracking task were 

due to the sliding estimation model while the RTK GPS had a satisfactory performance, but at a 

relatively high price.  

There has been ample research on improving GPSs’ accuracy. However, GPS-alone 

navigation for mobile robots was not very popular because neither DGPS nor RTK GPS could 

meet the basic requirements for most robots, being robust and low-cost. Thus, GPS for robot 

guidance is typically augmented with additional sensors in a sensor fusion arrangement.  

2.3 GPS-Augmented Navigation 

 GPS-Augmented navigation is a method in which multiple sensors are added to provide 

guidance information together with GPS. The most common GPS-Augmented navigation is dead 

reckoning which uses an odometer or inertial sensors. 
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2.3.1 Odometer Assisted GPS Navigation 

A GPS unit has to receive signals from at least four satellites which have to be in the line 

of sight of the receiver. A GPS may have poor performance or lose its position when the sky is 

blocked or partially blocked by tall objects. That problem could happen when a robot is running 

in places such as city’s urban canyons and streets with high buildings surrounding it (Geier, 1996). 

An odometer can assist the GPS and provide a mobile robot with location information for a short 

time when the GPS loses full connection with satellites. Ohno, Tsubouchi, Shigematsu, & Yuta 

(2004) combined a DGPS with an odometer to test the accuracy of robot navigation when GPS 

signal was poor. This method not only helped with robot localization when satellites could not be 

viewed directly from GPS, but also to deal with GPS multi-path errors, where the signal from a 

satellite does not follow a straight path to the receivers, but reflects off objects such as tall 

buildings. However, the method suffered from incremental errors caused by wheel slip, a common 

limitation in most odometer assisted GPS navigation. Thus, to obtain more reliable and accurate 

navigation information, more advanced methods are necessary. 

2.3.2 GPS Assisted Inertial Navigation System 

Inertial Navigation System (INS) which depend on mechanics laws usually contain three 

accelerometers and three gyroscopes. By combining these two sets of measurements, theoretically, 

the system is able to calculate its position (Titterton & Weston, 2004). However, due to the bias 

of INS alignment and errors in accelerometers and gyroscopes, additional information of position 

or attitudes of the system are essential, which can be provided by a low-cost low accuracy GPS 

unit.  

Most GPS assisted INS applications contain an IMU and a low cost GPS unit. The major 

difference among existing GPS/INS applications lies in their method of data fusion. Particularly, 
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various types of Kalman Filter were applied to fuse IMU and GPS data. Sukkarieh, et al. (1999) 

developed a high integrity navigation system in which a strap-down IMU was aided by either a 

standard or carrier phase GPS. A standard Kalman Filter was used to detect errors in both GPS 

and IMU, whereas status such as positions, velocities, and attitude were estimated in real-time. 

The accuracy of the system depended upon the accuracy of GPS and the alignment process that 

estimates the vehicle’s initial status. Because a standard Kalman Filter was not capable of 

estimating the status with high accuracy, more research was done with advanced Kalman Filter 

techniques. Qi & Moore (2002) created a direct Kalman Filter approach to fuse GPS and INS 

where nonlinearities from both sensors were processed prior to use by the Kalman Filter. Sasiadek 

& Wang (1999) used a fuzzy Kalman Filter to fuse simulated IMU and GPS signals. Based on 

simulated data, the positioning accuracy was improved, though no field experiment was done. 

Besides using an advanced Kalman Filter, some researchers added more sensors to help with status 

estimation. For instance, Zhang, Gu, Milios, & Huynh (2005) added a digital compass to the 

traditional IMU/GPS system to provide it with high frequency heading measurements. Those 

measurements together with GPS measurements were used for status corrections. The correction 

process was implemented by an extended Kalman Filter in which vehicle’s status could be 

accurately estimated. There were many other applications of IMU/GPS systems that used Kalman 

Filters, they mainly varied in the type of Kalman Filter used.  

2.4 LIDAR Based Localization for Mobile Robots 

Light Detection and Ranging (LIDAR) technology has been used widely in navigating 

mobile robots. Existing LIDAR related navigation methods for robots can be divided into three 

major categories, although these robots could have very different applications. Those three 

categories are methods related to 1) landmarks, 2) scan matching, and 3) map building.  
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2.4.1 Landmarks 

Landmarks, either natural or artificial, are observable features that a robot can recognize 

from a wide range of locations using its sensors (Borenstein, Everett, Feng, & Wehe, 1997). The 

idea of navigating using landmarks is simple: In a known environment, a robot measures its relative 

position to a landmark and updates its position information based on a known map (Núñez, Vá

zquez-Martín, Del Toro, Bandera, & Sandoval, 2008). Many researchers have used this idea to 

guide robots: Roumeliotis & Bekey, (2000) used features such as walls and corners as landmarks 

to navigate a robot in an indoor environment. Trees have also been used as landmarks for outdoor 

navigation (Zhang, Xie, & Adams). There were also some novel ideas on using landmarks. 

Kurazume & Hirose (1998) developed a cooperative method, in which several robots moved based 

on each other’s positions. In that process, one robot stopped as a landmark and other robots moved 

based on that stationary robot’s position. Next, a second robot stopped as a new landmark and all 

other robots moved based on the position of that second one. Robots continued this process until 

they all reached their desired positions.  

Using landmarks is simple method of navigation, because it does not need many 

calculations and post processing. However, to use this method, a map needs to be known in 

advance. Because of this limitation, the landmark method is not suitable in many situations. 

2.4.2 Scan matching 

Scan matching is a process where two range scans are compared in order to find the 

translation and rotation of the second scan relative to the first one. Gutmann, Weigel, & Nebel 

(2001) developed a method for self-location of soccer robots using scan matching. They used a 

line matching algorithm to extract line segments from a scan and matched them with an a priori 

known map. This method can be extended into any polygon shaped field, but only in a small scale 
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environment. Diosi & Kleeman (2004) fused sonar and laser range finder data to generate a method 

for simultaneous localization and mapping. Sonar and laser readings were combined in this 

method. Point features from sonar reading were used together with line segments from a laser 

range finder. In this way, errors due to measurements from a single sensor can be removed 

effectively. Scan matching is fast and does not require expensive post-processing calculations. 

However, to use this method the surrounding environment must contain detectable features.  

2.4.3 Map building 

Rencken (1993) defined the map building problem as “Given the robot's position and a set 

of measurements, what are the sensors seeing?” As the “sensor”, a LIDAR was usually mounted 

on a robot to explore and scan in an unknown environment. A computer built a map of the 

environment based on the scans. Fu, Liu, Gao, & Gai (2007) used a laser range finder and a camera 

to build a 2D map and vertical edges of an indoor environment. Surmann, Lingemann, Nüchter, & 

Hertzberg (2001) constructed a 3D range finder based on a 2D range finder and obtained a 3D map 

of an indoor environment. Cole & Newman (2006) used a similar method to build a 3D map of an 

outdoor environment. The method of map building gives more information of the environment and 

offers more options for the robot to perform different tasks based on built 2D or 3D maps. 

However, this method usually requires more sensors and more expensive post processing. 

2.5 Literature summary 

Typical navigation methods associated with GPS and LIDAR in literature were presented. 

Low-cost GPS, although widely used as a navigation tool, is limited by weather and environmental 

conditions. Therefore, to provide accurate positioning, it needs to be aided by reliable high rate 

sensors such as accelerometers and gyroscopes. LIDAR can measure distances of objects relative 

to itself with a high accuracy in a relatively short range, while the accuracy is inversely 
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proportional to the range of an object. In addition, objects must be distinct in shape from their 

surroundings. Thus, its usage was limited to short range detections, scan matching, and map 

building. By studying features of both GPS and LIDAR, and considering the conditions of fields 

where a robot would be traversing, a combination of GPS and LIDAR was tested in this project.  
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CHAPTER 3 MATERIALS AND METHODS 

 

 

This chapter has three sections, which will cover most materials and methods used in the 

project. In section 3.1, the AgTracker platform, which was the base of the robot, will be briefly 

introduced. Section 3.2 will be focused on a remote control unit that required real time human 

operation. The auto-control unit was the most important part of this robot and will be described in 

section 3.3. Equipment and methods involved in more than one sections or units will be discussed 

only once when they are firstly mentioned. 

In this project, the aim was to navigate a robot in a farm field which has following features: 

long range – about 50 by 90 square meters; flat – no obstacles in this field; uniform environment 

– absence of landmarks – no distinct object can be seen in the whole field. By analyzing all the 

features above and all existing methods, the decision was made to choose a method similar to using 

a landmark to approach the task. However, it has significant differences because the landmark in 

our method is moving and the laser range finder is stationary. In this research, an agricultural robot 

named “AgTracker” was used as the basis for navigation experiments. 

3.1 AgTracker platform 

The AgTracker platform is a simple, stable robot (Grift & Kasten, 2005; Grift, Kondo, & 

Ting, 2008; Xue, Zhang, & Grift, 2012; Bac, Grift, & Menezes, 2011; Xue & Grift, 2011). It 

features skid steering which allows the robot to move forward/backward, turn and spin easily. It 

mainly consisted of a drive train, batteries, and two DC motor controller boards. The original 

control hardware consisted of an obsolete BasicAtom microcontroller, which was replaced with a 

modern Arduino controller. 
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3.1.1 Drive train  

The drive train of AgTracker features two motors (Astroflight 940P Geared Motor), from 

which power was geared down to four wheels as shown in figure 3.1. The transmission ratio 

between the motors and the wheels was 18:1. One advantage of this system is that it features two 

drive motors, which control the left and right wheels independently. This enabled AgTracker to 

spin turn even on a soil surface.   

 

Figure 3.1 AgTracker drive train 

               

3.1.2 Electrical Motor Control Unit  

The electrical motor control unit comprised a custom made controller board and two motor 

controller boards (see figures 3.2 and 3.3). The custom made controller board functioned as an 

interface between a BasicAtom microcontroller and two motor controller boards. Its main usage 

for this project was to generate PWM signals from microcontroller to motor controller boards, 

which then controlled the speed and direction of the drive motors. 
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3.2 Remote Control Unit 

Because the remote control unit was stable, it was built to control the robot manually in 

cases where auto-control was not necessary or did not work. This unit was insensitive to 

surrounding environment and would work well as long as its two components – transmitter and 

receiver, were in range.  

3.2.1 Hardware 

The robot was remote controlled using a 4 channel 72 MHz unit (Tower Hobbies 3000), 

with a range of approximately 500 meter. Since the robot was steered using skid steering, it only 

required two channels. Figure 3.4 shows the transmitter for this unit. 

Figure 3.2 custom made controller 

board 
Figure 3.3 motor controller board 
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Figure 3.4 transmitter of tower hobbies system 3000 

3.2.2 Software 

The code that converts the analog signals from the remote control receiver into digital 

signals, was written in C/C++ within a software development kit (Arduino 1.0.5 R2 for Windows, 

Arduino SA). The digital signals were sent to the motor controller board to control wheels’ speeds. 

Implementation codes can be found in Appendix A. 

3.3 Auto-Navigation System 

The Auto-Navigation System comprised a feedback network, containing a GPS unit, 

LIDAR, wireless communication network, Google map waypoint control unit, real-time 

monitoring, and camera control unit. Figure 3.5 shows how these units worked as a system. 
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Figure 3.5 Auto-navigation system 

 

To navigate the robot to a desired waypoint, first, a map of a user selected area was plotted, 

using Google Maps ® functionality (see Section 3.3.6). Waypoints can be selected by either 

clicking on the map or using pre-defined locations. Secondly, based on present location of the 

robot and waypoint locations, the system would drive the robot to visit waypoints one by one based 

on the input order, using GPS signals and LIDAR signals. At last, at each waypoint, the camera 

control unit would trigger a facedown camera in the front of the robot to take pictures. This process 

would not stop until the robot had visited all waypoints.  

3.3.1 System Architecture 

The auto-navigation system was similar to a human system which is made of brain, sensory 

organs, and the nervous system. The computer had all the intelligence, and it is given a task which 



17 

 

was to visit waypoints in this project. Next it analyzes signals from all sensors including GPS, 

LIDAR, compass and web-based google map and, finally, send commands back to sensors. All the 

sensors would receive signals in real time and transmit them to the computer. The bridge between 

the computer and sensors were the internet and an XBee wireless network (See Section 3.3.3).    

3.3.2 GPS Control Unit 

The GPS unit was one of the two independent navigation systems of the robot while the 

other one was LIDAR control unit. It had the ability to guide the robot from one point to another 

by itself when GPS signals were unavailable.  

3.3.2.1 Hardware 

The GPS Control Unit’s guidance relied on a GPS receiver, an electronic compass, two 

controllers, a microcontroller and a laptop computer. A GARMIN GPS V (Figure 3.6) was used 

to receive satellite signals. A two dimensional position (latitude and longitude) was calculated 

when at least three satellites were locked onto and a three dimensional position (latitude, longitude 

and altitude) was calculated if at least four satellites signals were received. The position accuracy 

of the GPS was about nineteen feet on clear days when WAAS, a system of satellites and ground 

reference stations that improves position accuracy, was enabled. A standard NMEA sentence 

would then be sent every two seconds from the receiver to a computer. 
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Figure 3.6 Garmin GPS V 

A three-axis electronic compass was used to determine the robot’s heading (PARALLAX 

HMC5883L). It measured the Earth’s magnetic field and output three values representing magnetic 

strength of three orientations X, Y, Z, as shown in Figure 3.7. One of the product’s three standard 

mounting orientations was chosen, where the X-axis was the forward reference direction, Y-axis 

was the other horizontal reference direction and Z-axis was the vertical reference direction. The 

true heading of the compass can be calculated using only values of X-axis and Y-axis with the 

knowledge of local declination angle which can be checked online. The calculation process is 

shown below. The maximum output rate is 160 Hz with an accuracy of 1 to 2 degrees.  

 

Direction (y>0) = 90 - [arcTAN(x/y)]*180/π 

Direction (y<0) = 270 - [arcTAN(x/y)]*180/π 

Direction (y=0, x<0) = 180.0 

Direction (y=0, x>0) = 0.0 

Heading = Direction ± Declination angle 

(Honeywell AN-203) 
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Figure 3.7 PARALLAX three axis HMC5883L electronic compass 

The microcontroller used in this research was the Arduino Mega 2560 (Figure 3.8), which 

features 16 analog input pins, 54 digital input/output pins, a pair of I2C pins and 4 pairs of hardware 

serial pins. Two I2C pins (20 and 21) were used to receive compass values. A pair of serial pins 

(pin 3 and pin 4) were used to receive GPS sentences. Another pair of serial pins (pin 5 and pin 6) 

was used for XBee wireless communication.  

 

Figure 3.8 Arduino Mega 2560 controller 

A DELL VOSTRO laptop was selected to execute auto-control operations using MATLAB 

R2013b. It was equipped with an Intel(R) Core(TM) i5 CPU and 3.0 GB RAM. It had a 64-bit 



20 

 

operating system running under Windows 7 Enterprise. It also had three USB ports, where two of 

them were used to receive sensors’ data.  

3.3.2.2 Software 

Arduino 1.0.5 R2 and MATLAB R2013b were the two major software packages used for 

this unit. Note that code was written in Arduino 1.0.5 R2, downloaded into Arduino mega 2560 

microcontroller and executed continuously when the microcontroller was powered up. Detailed 

implementation code is in Appendix i. 

3.3.2.3 Control Loop  

Location and heading signals from the GPS control unit and compass were firstly received 

by the Arduino microcontroller. Next, the Arduino controller translates the signals, organizes them 

into one sentence, and transmits this sentence to the computer through the XBee wireless module. 

Simultaneously, the MATLAB program compares the true heading of the robot with the desired 

heading calculated by connecting the robot’s current location and its target location. From this 

comparison, MATLAB’s program calculates the required speeds of the left and right wheels. The 

speed values were sent back to the microcontroller at the end for controlling wheels’ speeds. This 

was a continuous process before the robot arrived at its destination.  

3.3.3 XBee Wireless Communication 

A pair of Digi XBee Pro RF modules and Arduino compatible XBee shields were used to 

implement wireless communication in this project. The communication was built by pairing two 

XBee modules manually through software (X-CTU). To pair the modules, they must be in the 

same network and channel, which were set by ID and CH in modem configuration. The setting of 

destination addresses (DH and DL parameter in modem configuration) determined whether this 

two modules could communicate. Their settings are described as follows:  
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If DH of XBee1 is set as A and DL of XBee1 is set as B, then for XBee2, its DH should be 

B and DL should be A. A and B represent numbers between 0 and 0×FFFF. Figure 3.9 shows the 

main modifications to the XBees’ modem configuration. The Arduino Xbee shield allowed data 

to be sent and received wirelessly between the serial ports on the Arduino Mega2560 and a 

computer. As Figure 3.10 shows, XBee1 was connected to the Mega2560 through the XBee shield 

and XBee2 was connected to computer through a USB port. The communication was fast and 

stable and its range could be as far as 1 mile outdoors and 300 feet indoors.  

 

Figure 3.9 Major modifications in Xbee’s modem configuration 
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Figure 3.10 Xbee connected to Arduino Mega 2560 through an Xbee shield 

3.3.4 LIDAR Control Unit 

The LIDAR Control unit as mentioned before, is capable of guiding the robot to 

destinations by itself. It was more accurate and stable than the GPS control unit, but it has major 

limitations such as having a short range and requiring flat fields.  

3.3.4.1 Hardware 

The system consisted of a computer, a SICK LIDAR LMS 291, a PARALLAX three axis 

HMC5883L electronic compass and two 12 volt batteries. There was no specific requirement for 

the computer and batteries as long as the computer could run MATLAB R2013b and the batteries 

could provide 24 volt. In this unit, the same DELL VOSTRO laptop computer was used to execute 

tasks. The compass was the same as introduced in the GPS control unit. The LIDAR LMS 291 

was the key part of this unit. It measured the travel time of a laser pulse between the LIDAR and 

any object around it. There are five range and accuracy modes as listed below (© SICK AG · Auto 
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Ident · Germany). The selection of ranges and modes was based on the needs of our study and will 

be discussed in section 4.3.3. The location of the LMS needed to be adjustable. A custom frame 

allowed for mounting the LIDAR unit on any other structures (Figure 3.11). Since the location of 

the LIDAR was fixed, communication between it and the computer was implemented using a 5 

meter long cable with an RS232 connector. A RS232 – USB converter was used to interface the 

serial output from the LIDAR with the laptop computer. 

 

Table 3.1 LIDAR mode and angular range options 

Angular 

Range 

Angular 

Resolution 

Number of Data 

Values 

0˚ - 100˚ 1˚ 101 

0˚ - 100˚ 0.5˚ 201 

0˚ - 100˚ 0.25˚ 401 

0˚ - 180˚ 1˚ 181 

0˚ - 180˚ 0.5˚ 361 

 

Mode 

Measurement/Detection 

Range 

mm Mode 0 - 8191mm =  8.191m 

cm Mode 0 - 8191cm   =  81.91m 
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Figure 3.11 Modifications to the LIDAR unit 

3.3.4.2 Software 

The control software of the LIDAR unit was written in MATLAB R2013b (MathWorks, 

Natick, Massachusetts). The procedure of communication setup and control commands were based 

on Quick Manual for LMS Communication Setup version 1.1. All implementation code is listed 

in Appendix i. To test the status of the LIDAR unit, an existing program was used, which provided 

real time display of objects’ locations (Figure 3.12).  
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Figure 3.12 MATLAB GUI interface for LIDAR data acquisition (courtesy of Dr. Lei Zhang, UIUC) 

3.3.4.3 Control Loop 

The structure of the LIDAR control unit is similar to that of the GPS control unit. The 

LIDAR would detect the relative position of the robot with respect to itself and compare it with 

the destination. Note that because the LIDAR would scan any objects in its range, the program 

needed to filter all stationary objects by collecting many sets of data and remove those positions 

that remained constant, leaving the only moving object as the robot. Next, a targeted moving 

direction would be determined by calculation. That direction would be compared again with the 

robot’s true heading provided by the electronic compass through the XBee wireless module. Based 
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on the above information, the program would calculate the required left and right wheel speeds 

and finally send them back to Arduino microcontroller. This control loop continued until the robot 

reached all of its target waypoints.  

3.3.5 Combination of GPS and LIDAR Control Unit 

While both the GPS and LIDAR control units were able to guide the robot individually, 

integration of these units offered a faster, more accurate and reliable method. The integration 

comprised only software adaptations, which allows for reverting back to single sensor if the other 

would fail, or considered redundant. After integration, the program executed the following steps. 

Firstly, an initial robot position based on GPS was acquired by averaging 10 GPS data 

points. The initial position was recorded as a [Lat0, Lon0] pair. Secondly, an initial position was 

acquired from the LIDAR. The same initial position recorded by LIDAR was marked as a [X0, 

Y0] pair. Both initial positions were obtained while keeping the robot stationary. Thirdly, an 

algorithm was generated to calculate a one on one match between [Lat0, Lon0] and [X0, Y0]. This 

algorithm would be used throughout the process to match the GPS position with the LIDAR 

position received at the same time. Note that since LIDAR was more accurate than GPS, if the 

GPS and LIDAR positions did not match, the program would rely on the LIDAR generated 

positions. Finally, by analyzing the robot’s current location and its destination, the program would 

generate a solution to guiding its next-step movement. If the location information from only one 

unit, GPS or LIDAR, was received, the program would use it to guide the robot. 

3.3.6 Google Map Waypoint Control Unit 

The Google map waypoint control unit was a user interface created using the Google map 

image API, a web service developed by Google. It enables users to create map images on a web 

page by sending URL parameters through a standard HTTP request (Static Maps API V2 
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Developer Guide, 2014). To display map images in MATLAB rather than on a web page, a 

MATLAB function created by Zohar Bar (2013) was applied. This function would take geographic 

locations, latitude, and longitude as input variables and display a google map image covering those 

locations. The waypoint control interface then enabled users to set waypoints by clicking on the 

displayed map or by manually entering precise latitude and longitude pairs.  

3.3.7 Camera Triggering Unit 

To obtain images of the area in front of the robot, an iPhone 4 with a camera trigger 

mechanism was used. The mounting height of the iPhone 4 was 45 cm above ground in which case 

its camera would take a picture of a 60 cm by 40 cm rectangular area when triggered. The iPhone 

4 was inserted into a 3D printed case, mounted on a frame protruding from the front of the robot. 

The triggering of the iPhone was achieved by pushing one of its buttons with a solenoid. Since for 

proper action, the solenoid requires a rather large current which cannot be supplied by the Arduino 

Mega 2560’s digital pins, a solid state relay (SSR) was used that only required an input in the range 

from 3 to 32V. A second advantage of the SSR was that it provides galvanic isolation through 

opto-coupling. When the robot arrived at each waypoint, the MATLAB program sent a signal to 

set the digital pin to high and the iPhone would take pictures.  
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CHAPTER 4 EXPERIMENTS AND RESULTS 

 

 

In this chapter, experiment design and evaluation of AgTracker’s performance are 

presented. Performance of remote control unit is shown in section 4.1. Section 4.2 and section 4.3 

discuss GPS and LIDAR guidance respectively. In section 4.4, the combination of GPS and 

LIDAR guidance and its evaluation are presented. Section 4.5 elaborates on the Google Map API 

interface.  

4.1 Remote Control 

As mentioned in chapter 3, the remote control unit allowed for manual robot manipulation 

in cases where the auto-control system was not in use, for instance, to move the robot from and 

indoor location to an outdoor test field. Because the task was simple, the requirements of the 

remote control unit’s range and sensitivity was not high. However, it had to be robust to ensure 

safety. The unit’s robustness was tested before the auto-control system was completed and during 

eleven months of testing, it never failed, indicating that the system was robust and reliable.  

4.2 GPS Navigation 

 GPS navigation was tested and the results were evaluated for comparison with LIDAR 

and GPS/LIDAR navigation later in section 4.5. 

4.2.1 Data processing 

To guide the robot, the GPS navigation unit received information from the Garmin GPS V 

and the PARALLAX electronic compass. The GPS provided location data in latitude/longitude 

pairs and the compass transmitted heading data in degrees. The data transmitting frequency of the 

GPS and compass were 0.5 Hz and 20 Hz respectively, whereas the maximum transmitting 
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frequency of the compass was 160 Hz. However, due to the low speed of the robot, 20 Hz was 

sufficient which saved memory space and improved processing speed. Since the update frequency 

of headings was much higher than that of locations, the system would regard the location of the 

robot to be constant before the next GPS data was received while controlling the speed of its wheels 

solely based on the updated heading information. This was a reasonable assumption, because the 

calculated direction of the line which connected the target location and the robot’s location would 

not change much in a short time, especially when the robot is far from its target waypoint. When 

the robot moved closer to its target, the system slowed down the travel speed of the robot which 

alleviated the problem of low frequency data updates from the GPS. The change in target direction 

when the robot is far from its destination is shown in Figure 4.1, and when the robot is near its 

destination in Figure 4.2. 

 

Figure 4.1 target direction change of α in a short time period when the robot is far from its destination 
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Figure 4.2 target direction change of β in a short time period when the robot is near its destination 

4.2.2 Experiment Design 

The experiment design for GPS navigation involved two factors, 1) selection of the 

experiment location and 2) selection of waypoints. The tests took place at the south quad of 

University of Illinois at Urbana-Champaign (Figure 4.3). The south quad is a flat lawn with a 

dimension of about 75 m × 120 m. Trees were present, but they were all located close to the edge 

of the field, and did not obstruct the experiments. The robot was driven to an arbitrary location on 

the quad under remote control. Ten GPS data points were taken and averaged when the robot was 

stationary to obtain an accurate initial position. Next, a waypoint was selected by clicking on the 

Google map interface. The waypoints were chosen approximately 40 meters away from the initial 

position so that the robot’s performance of approaching a destination from far to close waypoints 

could be observed. This process was repeated 10 times.  
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Figure 4.3 South quad in University of Illinois at Urbana-Champaign 

4.2.3 Results and Discussion 

The result for the experiments with solely GPS navigation showed that the robot never 

reached any waypoints and continued indefinitely. This was expected because the accuracy of the 

GPS was about 6 meters which was sufficient for guiding to robot toward a waypoint, but 

insufficient to reach it; When the distance between the robot and the waypoint was less than the 

GPS’s accuracy (6m), the position of the robot relative to the waypoint became uncertain. 

Therefore, it would turn randomly due to the random error of GPS signals.  

4.3 LIDAR Navigation 

LIDAR Navigation was tested and results of the test were evaluated for comparison with 

GPS navigation and GPS/LIDAR navigation in section 4.5. 
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4.3.1 LIDAR Navigation Frame 

The LIDAR navigation frame was a 2D coordinate system. The system was defined as 

follows: the location of the LIDAR was the origin, x axis was the direction parallel to the LIDAR’s 

baseline and y axis was the direction vertical to the baseline (Figure 4.4). The range for x value 

was negative infinity to positive infinity and the range for y value was zero to positive infinity.  

4.3.2 Data Processing 

To guide the robot, the LIDAR navigation unit received data from the SICK LMS 291 unit 

and the PARALLAX electronic compass. The LIDAR provided location data in [x, y] pairs in 

centimeters in the LIDAR navigation frame and the compass transmitted heading information in 

degrees. The data transmitting frequency of the LIDAR was 1 Hz while the update frequency of 

the compass remained at 20 Hz. The information update strategy when calculating the robot’s 

wheel speeds was the same as that for GPS navigation, being that the system would regard the 

location of the robot constant before the next LIDAR data was received and controlling the speed 

of the wheels solely based on the updated heading information. 

LIDAR 

y 

x 
baseline 

Figure 4.4 LIDAR’s coordinate system 
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4.3.3 Experiment Design 

The Experiment Design for LIDAR navigation contained three factors: 1) selection of 

experiment location, 2) selection of LIDAR setting and 3) selection of waypoints. The test was 

also conducted on the south quad of University of Illinois at Urbana-Champaign. The LIDAR 

scanner was mounted at the south end center of the quad facing north. Note that there is no specific 

requirement of where the LIDAR scanner should be placed; the sole reason for the chosen location 

was that the ground surface was flat.  

To detect the robot at all times, the LIDAR scanner needed to be at the same height as the 

robot. The robot was taken to the location of the LIDAR scanner under remote control. After all 

systems were checked and ready, the first step was to select a proper setting including range and 

mode of LIDAR from Table 3.2. Because the LIDAR aperture had to be 180 degrees, and the range 

was further than 8.2 meters, the range and mode selected were [0˚ - 180˚], 0.5˚ and cm Mode. This 

mode allows a detection range of 82 meters and, with an angular resolution of 0.5 ˚, had a potential 

localization accuracy better 0.65 meters with its range. After the range and mode were set up, the 

LIDAR was given 30 seconds to localize stationary objects such as trees, which were filtered. The 

last step was to select a waypoint. As in the GPS navigation test, the process was repeated 10 times 

and waypoints were selected in a range from approximately 30 to 70 meters from the initial 

position so that the robot’s performance of approaching a destination from being far to being close 

could be observed.  

4.3.4 Results and Discussion 

The results are shown in two aspects: one is the display of the robot’s trajectories which 

represent the robustness of LIDAR detection, and the other is the accuracy of LIDAR localization. 

Figure 4.5 and Figure 4.6 show two trajectories during the experiment. It can be seen that during 
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the navigation process, there were only two to three outliers, which were due to detection errors. 

Since the outliers were few, they did not affect the decision making process for controlling wheel 

speeds.  

 

 

The evaluation of accuracy of LIDAR navigation was to measure the distance between 

waypoints and robot’s stop points. Statistical results for the ten runs are shown in Table 4.1 and 

Table 4.2. From the Table 4.2, it can be shown that the mean error was 0.194 m with a maximum 

error of 0.8 m. Note that, the maximum error occurred in test number 6, when the LIDAR detected 

outliers, so that the system estimated the position of the robot incorrectly. Figure 4.7 shows the 

LIDAR detected trajectory of test number 6 in which the waypoint was set at [0 mm, 2800 mm]. 

The small blue circle at position around [200 mm, 3500 mm] was detected at last moment of that 

run, and it was averaged with some other blue circles at position around [0 mm, 26 mm], which 

was the true location of the robot. The averaged location happened to be near to location [0 mm, 

Figure 4.5 Robot’s trajectory 1 Figure 4.6 Robot’s trajectory 2 



35 

 

2800 mm], which made the system stop the robot. Considering that situation would rarely happen, 

and if the test number 6 is removed from table 4.1, the average error decreases to 0.127 m.  

Table 4.1 LIDAR localization errors in experiment 

Localization Error in 10 tests (m) 

1 2 3 4 5 6 7 8 9 10 

0.07 0.13 0.25 0.05 0.2 0.8 0.06 0.12 0.09 0.17 

 

Table 4.2 Statistics of errors of LIDAR localization 

Average 

Error 

(m) 

Average Error 

with outlier 

removed (m) 

Max 

Error 

(m) 

Min 

Error 

(m) 

Error 

Standard 

Deviation 

0.194 0.127 0.8 0.05 0.064 

 

 

Figure 4.8 the robot’s trajectory of test number 6 
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4.4 GPS and LIDAR Combined Navigation 

The combined GPS/LIDAR navigation was tested at the same place with GPS navigation 

and LIDAR navigation and its results were evaluated for comparison with those two navigation 

systems in section 4.5. 

4.4.1 Transformation between GPS navigation frame and LIDAR navigation frame 

In the combined navigation system, the first step was to find the frame transformation 

matrix which would convert [Latitude, Longitude] pairs to [x, y] pairs. GPS data [Latitude, 

Longitude] pairs were taken in the earth frame in which the y axis points to the north and x axis 

points to the east. LIDAR data [x, y] pairs were taken in the self-defined navigation frame in which 

the y axis was set to point the north and x axis was set to point the east. Thus, the frame 

transformation matrix was simplified into a scale transformation matrix. The transformation matrix 

was defined as Ce
n.  The state space equation is shown as the follows. 
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4.4.2 Experiment Design 

The experiment design for the combined navigation was virtually identical to that of the 

LIDAR navigation experiment, because the LIDAR was the main information source for 

navigation. One difference was in the step of waypoints selection that multi-waypoints were 

selected in a single run to test the robustness of the control loop.  
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4.4.3 Results and Discussion 

The results for the combined navigation included two parts: one is the display of robot 

trajectories and the other is the evaluation of navigation errors. Figure 4.7 and Figure 4.8 show the 

robot’s trajectories with multiple-waypoints. 

 

 

Evaluation of the accuracy of the combined navigation is shown in Table 4.2. The mean 

error was 0.20 m with a maximum error of 0.33 m.  

Table 4.3 Combined navigation error in experiment 

Localization Error in 10 tests (m) 

1 2 3 4 5 6 7 8 9 10 

0.25 0.20 0.13 0.07 0.33 0.15 0.25 0.28 0.17 0.19 

 

Table 4.4 Statistics of Errors of combined navigation 

Average 

Error 

(m) 

Max 

Error 

(m) 

Min 

Error 

(m) 

Error 

Standard 

Deviation 

0.20 0.33 0.07 0.077 

 

Figure 4.9 Robot’s trajectory 3 Figure 4.10 Robot’s trajectory 4 
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4.5 Comparison among navigation systems 

The results of three navigation systems were compared. The GPS navigation system 

offered localization information which could be used directly with Google maps. However, this 

method was not suitable for precise navigation, due to the low accuracy of GPS localization.  

The LIDAR navigation system provided accurate positioning which allowed the robot to 

visit waypoints accurately with information of the positions of waypoints relative to the LIDAR 

scanner. The combined navigation had an accurate localization similar to LIDAR navigation. The 

accuracy was a little lower because the combined system had slower information update speed and 

the transformation between LIDAR frame and GPS navigation frame involved more errors. 

However, the combined navigation provided a convenient interface, where knowledge of relative 

position of waypoints to LIDAR was not required, while keeping the accuracy high. Additionally, 

the combined navigation compared the position information from GPS and LIDAR, and would 

exclude locations that did not match between these GPS and LIDAR. Thus, the chances of having 

outliers would decrease.  
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CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 

 

 

The first part summarizes the work and achievement of this project, and addresses the 

objectives listed in section 1.2. The second part will present the insights and insufficiencies of this 

work. 

5.1 Summary 

A remote control network was built to manually control the robot. A Tower Hobbies 

System 3000 4 FM radio was selected as a remote control. A 2D control strategy was written that 

with its help the robot could move forward, move backward, turn forward left, turn forward right, 

turn backward left, turn backward right, perform left and right spin turns. The radio based remote 

control was very robust.  

A GPS auto-navigation system was built for outdoor positioning. The GPS navigation 

system which consisted of a Garmin V GPS, a Parallax electronic compass as input hardware, 

could provide location and heading information for the robot. Its accuracy was about 6 meters 

relying on the accuracy of the GPS. The system could provide reliable information in outdoor 

situation when good weather was available.  

A LIDAR auto-navigation system was developed for outdoor and indoor guidance. The 

LIDAR navigation system included a SICK LIDAR scanner and a Parallax electronic compass. It 

was capable to guide the robot in both indoor and outdoor conditions. Its accuracy of its positioning 

on the axis parallel to LIDAR’S baseline decreased linearly with an increasing range. However, 

the system could still achieve an accuracy of about 50 cm in the range of up to 80 meters. 
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The combination of GPS and LIDAR guidance provided more reliable navigation for the 

robot. The fused system made use of information from the GPS, the LIDAR and the compass for 

outdoor navigation. The accuracy of the system was evaluated based on experiments and it was 

about the same with the accuracy of LIDAR navigation system. Its advantage was that it was more 

robust than LIDAR navigation system because when working field was not perfectly even, LIDAR 

could temporarily lose the robot, in which case, the GPS could still offer position data. Both the 

LIDAR navigation and the combined navigation systems accomplished the goal of 1 m positioning 

accuracy set in section 1.2.   

Google maps were used to offer easy user interface for setting waypoints. A local google 

map were plotted at the beginning of each navigation task and users could set waypoints by 

clicking on the map or typing in latitude and longitude pairs in known in advance. Thus, objective 

(3) listed in section 1.2 was accomplished.  

The Xbee wireless communication network provided data transmission between the robot 

and the computer with up to 9600 baud rate. Transmitted position data was shown on the computer 

for users to monitor the positions and trajectories of the robot in real-time. Thus, both objective 

(2) and (4) were achieved. 

5.2 Recommendations for Future Work 

Regarding the limitations of the robot such as requiring flat work field, having short range, 

having low accuracy, and requiring good weather if using GPS, the usage of the robot will also be 

limited. More work can be done to make the robot more applicable. 

5.2.1 Improving control algorithms 

Algorithms can be developed to improve the positioning accuracy if accuracy of sensors is 

better studied. A Kalman Filter can be implemented to fuse GPS and LIDAR data if the covariance 
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matrixes of both sensors’ errors can be estimated in real-time. This can be achieved by doing pre-

experiment of GPS and LIDAR units. For example, the accuracy of LIDAR positioning can be 

measured with respect to different distances and the accuracy of GPS in good weather can easily 

be studied. With the predefined covariance matrixes of errors, Kalman Filter can probably give a 

much better estimation of the robot’s position.  

5.2.2 Adding Inertial sensors 

Inertial sensors including accelerometers and gyroscopes can measure the robot’s motion 

with a high frequency, which make them suitable for real time positioning if the initial position 

and heading is known. As mentioned in chapter 2, by adding inertial sensors, Kalman Filters will 

be used to fuse the inertial data and position data from either the GPS or the LIDAR. The limitation 

of requiring flat working field and having short range will be removed in good weather and the 

positioning accuracy could be improved dramatically.  

5.2.3 Using vision-aided inertial navigation system 

A robot with a vision-aided inertial navigation system has the potential to solve problems 

of all the limitations mentioned at the beginning of section 5.2. The basic control algorithm is still 

a Kalman Filter, where positioning errors from vision information are normally distributed. If the 

positioning errors are not normally distributed, a Bayesian filter can be used instead of Kalman 

filter to estimate the robot’s status including positions, speeds, and attitudes. The advantages of 

this method are that the robot can work in any weather condition as long as working fields are 

visible. The shapes and levels of flatness will not be significant factors because in principle both 

sensors can work without well independent of the field conditions.  

At last, there is no limitation of ranges when batteries’ life and wireless communication 

are not concerns. This method, however, requires much more post data processing and may have 
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a limitation of processing speed of image data if algorithms are not developed properly or the 

computer’s ability of processing data is not fast enough.  

 

5.2.4 Using wifi network 

As Xbee wireless communication usually has short ranges, it will be a major concern for 

limiting work ranges of the robot. A wifi communication does not have this limitation if both the 

control center which is the laptop in this project, and the robot are covered with wifi. This, of 

course, requires more investment to build a huge wifi network in the robot’s working area, which 

may not realistic.  

5.2.5 Software implementation 

The major software used in this project was MATLAB, which is expensive for individual 

users and its processing speed is far from satisfactory if vision data are used. Possible solutions 

should have features such as requiring low-cost or being free to use and faster processing speeds. 

Potential candidates include Python and OpenCV. However, experiment need to be done to test if 

they are suitable for specific tasks.  
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APPENDIX A: ARDUINO IMPLEMENTATION CODE 

 

 

#include <Wire.h> 

#include <math.h> 

//#include <SoftwareSerial.h> 

//----------------------------------------------------- 

// read GPS data setting 

//#define rxPin 2 

//#define txPin 3   // GPS serial communication ports 

//SoftwareSerial gps = SoftwareSerial(rxPin,txPin); 

int  index1=0; 

char GPSString[56]; 

char NonString[4]; 

//---------------------------------------------------------- 

#define Addr 0x1E               // 7-bit address of HMC5883 

compass 

int          compass_start = 1; 

int          remotePin    = A0; //set the input pin for remote 

control switch 

int          RC        = 0; 

int          remote    = 0; 

 
const int    LwheelPin = 10; 

const int    RwheelPin = 11; 

const int    DIS_r     = 8; 

const int    S_r       = 9; 

const int    S_l       = 12; 

const int    DIS_l     = 13; 

 

word   speed_ll; 

word   speed_rr; 

int    speed_l =0; 

int    speed_r =0; 

word   THRO_puls; 

word   RUDD_puls; 

word   THRO_speed; 

word   RUDD_speed; 

byte   back_factor; 

 

byte   rob_drive_mod; 

//  0  =  stop,  spinturn  left  or  spinturn  right  

//  1  =  forwards  

//  2  =  backwards  
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byte drive_modus; 

//     1 = forwards 

//     2  =  backwards 

//  3  =  spinturn  left  

//  4  =  spinturn  right  

 

//-----Preferences RC----- 

const int    MIN_RUDD     = 1000; 

const int    MIN_THRO     = 1180; 

const int    MIDDLE_RUDD  = 1470; 

const int    MIDDLE_THRO  = 1540; 

const int    MAX_RUDD     = 1850; 

const int    MAX_THRO     = 1910; 

const int    deadband     = 50; 

//-------------------------- 

// Pins 22 and 24 are available for receiving signal 

const int    RUDD         = 22; 

const int    THRO         = 24; 

//-------------------------- 

void setup(){ 

 

  pinMode(DIS_r,OUTPUT); 

  pinMode(S_r,OUTPUT); 

  pinMode(S_l,OUTPUT); 

  pinMode(DIS_l,OUTPUT); 

 

  pinMode(RUDD,INPUT); 

  pinMode(THRO,INPUT); 

 

  Serial.begin(9600); 

 

  // compass set up  

  Wire.begin();   

  // Set operating mode to continuous 

  Wire.beginTransmission(Addr);  

  Wire.write(byte(0x02)); 

  Wire.write(byte(0x00)); 

  Wire.endTransmission(); 

 

  // Read GPS set up 

  //pinMode(rxPin, INPUT); 

  //pinMode(txPin, OUTPUT); 

  //gps.begin(4800);  

  Serial3.begin(4800); 

} 
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void loop(){ 

  remote_control(); 

  if (remote ==1) 

  { 

    check_channels(); 

    drive(); 

  } 

  else 

  { 

    //d_modus_1(); 

     

    gps_control(); 

 

  } 

} 

 

void remote_control(){ 

  RC   =   analogRead(remotePin); 

  if(RC > 50) 

  { 

    remote = 1; 

  } 

  else 

  { 

    remote  =0;   

  } 

} 

 

void stop_robot(){ 

  analogWrite(LwheelPin,0); 

  analogWrite(RwheelPin,0); 

  loop(); 

} 

 

void check_channels(){ 

  THRO_puls  = pulseIn(THRO,HIGH); 

  RUDD_puls  = pulseIn(RUDD,HIGH); 

 

  if ((THRO_puls > MAX_THRO || THRO_puls < MIN_THRO) 

||(RUDD_puls > MAX_RUDD || RUDD_puls < MIN_RUDD)){ 

    rob_drive_mod = 0; 

    stop_robot(); 

  } 

 

  if ((THRO_puls > (MIDDLE_THRO - deadband)) && (THRO_puls < 

(MIDDLE_THRO + deadband))) 

  { 
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    rob_drive_mod = 0; 

    speed_r       = 0; 

    speed_l       = 0; 

  } 

  else if(THRO_puls < (MIDDLE_THRO - deadband)) 

  { 

    rob_drive_mod = 1; 

    THRO_speed = (MIDDLE_THRO - THRO_puls) * 11/2; 

    if (THRO_speed > 2048) { 

      THRO_speed = 2000; 

    } 

  } 

  else if(THRO_puls > (MIDDLE_THRO + deadband)) 

  { 

    rob_drive_mod = 2; 

    THRO_speed = (THRO_puls - MIDDLE_THRO) * 11/2; 

    if (THRO_speed > 2048){ 

      THRO_speed = 2000; 

    } 

  } 

 

} 

 

void drive(){ 

  if (rob_drive_mod == 0){ 

    if ((RUDD_puls >= (MIDDLE_RUDD - deadband)) && (RUDD_puls 

<= (MIDDLE_RUDD + deadband))) 

    { 

      stop_robot(); 

    } 

    else if(RUDD_puls < (MIDDLE_RUDD - deadband)) 

    { 

      RUDD_speed = (MIDDLE_RUDD - RUDD_puls) * 3; 

      spinturn_left(); 

    } 

    else if(RUDD_puls > (MIDDLE_RUDD + deadband)) 

    { 

      RUDD_speed = (RUDD_puls - MIDDLE_RUDD) * 3; 

      spinturn_right(); 

    } 

  } 

 

  if(rob_drive_mod == 1){ 

    if(drive_modus != 1){ 

      d_modus_1(); 

    } 
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    if((RUDD_puls >= (MIDDLE_RUDD - deadband)) && (RUDD_puls <= 

(MIDDLE_RUDD + deadband))) 

    { 

      speed_l = THRO_speed; 

      speed_r = THRO_speed; 

    } 

    else if(RUDD_puls > (MIDDLE_RUDD + deadband)) 

    { 

      speed_l = THRO_speed; 

      RUDD_speed = THRO_speed/2; 

      speed_r =  RUDD_speed; 

    } 

    else if(RUDD_puls < (MIDDLE_RUDD - deadband)) 

    { 

      speed_r = THRO_speed; 

      RUDD_speed = THRO_speed/2; 

      speed_l = RUDD_speed; 

    } 

  } 

 

  if(rob_drive_mod == 2){ 

    if (drive_modus != 2) 

    { 

      d_modus_2(); 

    } 

    if((RUDD_puls >= (MIDDLE_RUDD - deadband)) && (RUDD_puls <= 

(MIDDLE_RUDD + deadband))) 

    { 

      speed_l = THRO_speed; 

      speed_r = THRO_speed; 

    } 

    else if(RUDD_puls > (MIDDLE_RUDD + deadband)) 

    { 

      speed_l = THRO_speed; 

      RUDD_speed = THRO_speed/2; 

      speed_r =  RUDD_speed; 

    } 

    else if(RUDD_puls < (MIDDLE_RUDD - deadband)) 

    { 

      speed_r = THRO_speed; 

      RUDD_speed = THRO_speed/2; 

      speed_l = RUDD_speed; 

    } 

  } 

  speed_ll = map(speed_l,0,2047,0,255); 

  speed_rr = map(speed_r,0,2047,0,255); 

  analogWrite(LwheelPin, speed_ll); 
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  analogWrite(RwheelPin, speed_rr); 

 

} 

 

void spinturn_left(){ 

  if (drive_modus != 3){ 

    d_modus_3(); 

  } 

  if (RUDD_speed >= 1500) 

  { 

    speed_l = 1500; 

    speed_r = 1500; 

  } 

  else 

  { 

    speed_l = RUDD_speed; 

    speed_r = RUDD_speed; 

  } 

  speed_ll = map(speed_l,0,2047,0,255); 

  speed_rr = map(speed_r,0,2047,0,255); 

  analogWrite(LwheelPin, speed_ll); 

  analogWrite(RwheelPin, speed_rr); 

 

} 

 

void spinturn_right(){ 

  if (drive_modus != 4){ 

    d_modus_4(); 

  } 

  if (RUDD_speed >= 1500) 

  { 

    speed_l = 1500; 

    speed_r = 1500; 

  } 

  else 

  { 

    speed_l = RUDD_speed; 

    speed_r = RUDD_speed; 

  } 

  speed_ll = map(speed_l,0,2047,0,255); 

  speed_rr = map(speed_r,0,2047,0,255); 

  analogWrite(LwheelPin, speed_ll); 

  analogWrite(RwheelPin, speed_rr); 

 

} 

 

void d_modus_1(){ 
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  digitalWrite(DIS_l,HIGH); 

  digitalWrite(DIS_r,HIGH); 

  delay(1); 

  digitalWrite(S_r,LOW); 

  digitalWrite(S_l,HIGH); 

  delay(1); 

  digitalWrite(DIS_l,LOW); 

  digitalWrite(DIS_r,LOW); 

  drive_modus = 1; 

 

} 

 

void d_modus_2(){ 

  digitalWrite(DIS_l,HIGH); 

  digitalWrite(DIS_r,HIGH); 

  delay(1); 

  digitalWrite(S_r,HIGH); 

  digitalWrite(S_l,LOW); 

  delay(1); 

  digitalWrite(DIS_l,LOW); 

  digitalWrite(DIS_r,LOW); 

  drive_modus = 2; 

 

}  

 

void d_modus_3(){ 

  digitalWrite(DIS_l,HIGH); 

  digitalWrite(DIS_r,HIGH); 

  delay(1); 

  digitalWrite(S_r,HIGH); 

  digitalWrite(S_l,HIGH); 

  delay(1); 

  digitalWrite(DIS_l,LOW); 

  digitalWrite(DIS_r,LOW); 

  drive_modus = 3; 

 

} 

 

void d_modus_4(){ 

  digitalWrite(DIS_l,HIGH); 

  digitalWrite(DIS_r,HIGH); 

  delay(1); 

  digitalWrite(S_r,LOW); 

  digitalWrite(S_l,LOW); 

  delay(1); 

  digitalWrite(DIS_l,LOW); 

  digitalWrite(DIS_r,LOW); 
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  drive_modus = 4; 

 

} 

 

void gps_control(){ 

  //read_gps_data(); 

  char* StrGPS=read_gps_data(); 

  if 

(StrGPS[0]=='$'&&StrGPS[1]=='G'&&StrGPS[2]=='P'&&StrGPS[3]=='R'&

&StrGPS[4]=='M'&&StrGPS[5]=='C'){ 

  char* StrHeading=compass_matlab(); 

   

  char Sendoutstring[100]; 

  Sendoutstring[0]= 0; 

  strcat(Sendoutstring,StrGPS); 

  strcat(Sendoutstring,StrHeading); 

  Serial.println(Sendoutstring); 

  } 

  else if 

(StrGPS[0]=='N'&&StrGPS[1]=='o'&&StrGPS[2]=='n'&&StrGPS[3]=='e')

{ 

   char* StrHeading=compass_matlab(); 

   char Sendoutstring[100]; 

   Sendoutstring[0]=0; 

   strcat(Sendoutstring,StrGPS); 

   strcat(Sendoutstring,StrHeading); 

   Serial.println(Sendoutstring);  

   delay(250); 

  } 

   

  if(Serial.available() > 0) 

  { 

    delay(5); 

    char incomdirec = Serial.read(); 

     

       

      int intergerValue = 0; 

           while(1){ 

           char incomint = Serial.read(); 

           if (incomint == '\n') break; 

           intergerValue *= 10; 

           intergerValue = ((incomint - 48) + intergerValue); 

           delay(5); 

           } 

      speed_l = intergerValue;  
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       intergerValue = 0; 

           while(1){ 

           char incomint = Serial.read(); 

           if (incomint == '\n') break; 

           intergerValue *= 10; 

           intergerValue = ((incomint - 48) + intergerValue); 

           delay(5); 

           } 

      speed_r = intergerValue; 

       

      Serial.println(speed_l,DEC); 

      Serial.println(speed_r,DEC); 

       

    if(incomdirec=='a') 

    { 

      digitalWrite(DIS_l,HIGH); 

      digitalWrite(DIS_r,HIGH); 

      delay(1); 

      digitalWrite(S_r,LOW); 

      digitalWrite(S_l,HIGH); 

      delay(1); 

      digitalWrite(DIS_l,LOW); 

      digitalWrite(DIS_r,LOW); 

      analogWrite(LwheelPin, speed_l); 

      analogWrite(RwheelPin, speed_r); 

    } 

      else if(incomdirec=='b')  

      { 

        digitalWrite(DIS_l,HIGH); 

        digitalWrite(DIS_r,HIGH); 

        delay(1); 

        digitalWrite(S_r,LOW); 

        digitalWrite(S_l,LOW); 

        delay(1); 

        digitalWrite(DIS_l,LOW); 

        digitalWrite(DIS_r,LOW); 

        speed_l = speed_l-180; 

        speed_r = speed_r-180; 

        analogWrite(LwheelPin, speed_l); 

        analogWrite(RwheelPin, speed_r); 

      } 

      else if (incomdirec=='c') 

      { 

        digitalWrite(DIS_l,HIGH); 

        digitalWrite(DIS_r,HIGH); 
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        delay(1); 

        digitalWrite(S_r,HIGH); 

        digitalWrite(S_l,HIGH); 

        delay(1); 

        digitalWrite(DIS_l,LOW); 

        digitalWrite(DIS_r,LOW); 

        speed_l = speed_l-180; 

        speed_r = speed_r-180; 

        analogWrite(LwheelPin, speed_l); 

        analogWrite(RwheelPin, speed_r); 

      } 

      Serial.println(incomdirec); 

  } 

  }  

 

char* compass_matlab() { 

  int x, y, z; 

  float theta; 

  float heading; 

  // Initiate communications with compass 

  Wire.beginTransmission(Addr); 

  Wire.write(byte(0x03));       // Send request to X MSB register 

  Wire.endTransmission(); 

 

  Wire.requestFrom(Addr, 6);    // Request 6 bytes; 2 bytes per 

axis 

  if(Wire.available() <=6) {    // If 6 bytes available 

   

    x = Wire.read() << 8 | Wire.read(); 

    z = Wire.read() << 8 | Wire.read(); 

    y = Wire.read() << 8 | Wire.read(); 

    // Calculate heading when the magnetometer is level, then 

correct for signs of axis. 

    heading = atan2(y,x); 

    

    // Your mrad result / 1000.00 (to turn it into radians). 

    float declinationAngle = 3.02/180*PI; 

    // If you have an EAST declination, use += declinationAngle, 

if you have a WEST declination, use -= declinationAngle 

    heading += declinationAngle; 

     

    // Correct for when signs are reversed. 

    if(heading < 0) 

      heading += 2*PI; 

      

    // Check for wrap due to addition of declination. 

    if(heading > 2*PI) 
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      heading -= 2*PI; 

 

    // Convert radians to degrees for readability. 

    float headingDegrees = heading * 180/M_PI; 

    char headingstring[10]; 

    dtostrf(headingDegrees,2,2,headingstring); 

   

     

    return headingstring; 

    delay(10); 

  } 

} 

 

char* read_gps_data(){ 

   

  char incomingByte; 

 

  if (Serial3.available()>0){    //capture NMEA sentence and 

print to serial window 

    delay(5); 

     

    if(Serial3.read()=='$'){ 

       

      GPSString[0]='$'; 

      delay(5); 

      for (index1 = 1; index1 < 55; index1 = index1 + 1) { 

        if (Serial3.available()){ 

          delay(7); 

      incomingByte = Serial3.read(); 

      GPSString[index1] = incomingByte; 

        } 

     

      } 

      GPSString[55] = '|'; 

 

 

      if 

(GPSString[0]=='$'&&GPSString[1]=='G'&&GPSString[2]=='P'&&GPSStr

ing[3]=='R'&&GPSString[4]=='M'&&GPSString[5]=='C'){ 

        return GPSString; 

      } 

      else{ 

        NonString[0]='N'; 

        NonString[1]='o'; 

        NonString[2]='n'; 

        NonString[3]='e';  

        return NonString;  
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       } 

      delay(100); 

    } 

    else{ 

      NonString[0]='N'; 

      NonString[1]='o'; 

      NonString[2]='n'; 

      NonString[3]='e'; 

      return NonString;  

    } 

  } 

   else{ 

     NonString[0]='N'; 

     NonString[1]='o'; 

     NonString[2]='n'; 

     NonString[3]='e'; 

     return NonString;  

   } 

} 
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APPENDIX B: MATLAB IMPLEMENTATION CODE 

 

 

LIDAR_GPS Control.m 

clear all; 

global Serial_Port; 

global Navi; 

Kv             = 0.3; 

Kh             = 0.5; 

% XWay           = 0; 

% YWay           = 3000; 

X_collect      = []; 

Y_collect      = []; 

Waypoint       = 3; 

% Plot google map and generate waypoints 

Latset = [40.102493998448665    40.101406639707236    

40.101414846253384    40.10250630807077]; 

Lonset = [-88.22759091854095    -88.22758555412292    -

88.22667360305786    -88.22667360305786]; 

plot(Lonset,Latset,'.r','MarkerSize',10); 

plot_google_map; 

[Lon_Way, Lat_Way]=ginput(Waypoint); 

  

% Initialize GPS to get accurate position 

Navi = serial('COM13', 'BaudRate', 

9600,'InputBufferSize',2048); 

Navi.ReadAsyncMode = 'manual'; 

[Lon0,Lat0]= GPS_Initialize; 

  

% Initialize LIDAR to remove all stationary objects 

[X1,Y1]=LIDAR_Initialize; 

% Start robot--move it to the area where LIDAR can see 

  

fopen(Navi); 

fprintf(Navi,'%s', 'a'); 

fprintf(Navi,'%d\n',250); 

fprintf(Navi,'%d\n',250); 

pause(2); 

fprintf(Navi,'%s','a'); 

fprintf(Navi,'%d\n',0); 

fprintf(Navi,'%d\n',0); 

pause(0.01); 

fclose(Navi); 
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disp('GOOOOOOOO'); 

pause(2); 

% Convert [Lat0,Lon0] to LIDAR coordinate [X0,Y0] 

[X0,Y0] = ConvertGPS2LIDAR(X1,Y1); 

 fopen(Navi); 

for i= 1:Waypoint 

    X_Old          = 0; 

    Y_Old          = 0; 

    DistOld        = 10000; 

    Lspeed         = 0; 

    Rspeed         = 0; 

    Dist           = 10000; 

    HeadWayOld     = 0; 

    HeadingOld     = 0; 

    LonWay         = Lon_Way(i); 

    LatWay         = Lat_Way(i); 

    % Convert [LonWay,LatWay] to LIDAR coordinate[Xway,Yway] 

    [XWay,YWay] = GPS2LIDAR(LonWay,LatWay,Lon0,Lat0,X0,Y0); 

    %----------------------------------------------- 

    

    % start control 

    while(Dist>100) 

        % Read GPS data 

        [Lon,Lat,Heading]=readGPS_xbee_new4(Lspeed,Rspeed); 

        if isempty(Heading) 

            Heading = HeadingOld; 

        end 

        HeadingOld = Heading; 

        % Convert [Lon,Lat] to LIDAR coordinate [Xway,Yway] 

        [X_gps,Y_gps] = GPS2LIDAR(Lon,Lat,Lon0,Lat0,X0,Y0); 

        % Get LIDAR [X,Y] 

        [X_lidar,Y_lidar]= LIDAR_read(X1,Y1); 

        Dist = 1000; 

        [X_true,Y_true]= 

Data_analysis(X_gps,Y_gps,X_lidar,Y_lidar,X_Old,Y_Old); 

        X_collect = [X_collect X_true]; 

        Y_collect = [Y_collect Y_true]; 

        XNew  = X_true; 

        YNew  = Y_true; 

        X_Old = X_true; 

        Y_Old = Y_true; 

        Dist = sqrt((XNew-XWay)^2+(YNew-YWay)^2); 

        % Calculate HeadWay-----------------------------------

-- 

        if XWay == XNew 

            if YWay < YNew 

                HeadWay = 180; 
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            elseif YWay > YNew 

                HeadWay = 0; 

            else 

                HeadWay = 0; 

            end 

        end 

         

        if YNew == YWay 

            if XNew < XWay          %Moving West 

                HeadWay = 90; 

            elseif XNew > XWay 

                HeadWay = 270;            % Moving East 

            else 

                HeadWay = 0;            % Stationary 

            end 

        end 

        % 1st quadrant 

        if ((XWay> XNew) & (YWay > YNew)) 

            HeadWay = 180/pi*tanh(abs(XNew - XWay) / abs(YWay - 

YNew)); 

        end 

         

        % 2nd quadrant 

        if ((XWay > XNew) & (YWay < YNew)) 

            HeadWay = 90 + 180/pi*tanh(abs(YNew - YWay) / 

abs(XNew - XWay)); 

        end 

         

        % 3rd quadrant 

        if ((XWay < XNew) & (YWay < YNew)) 

            HeadWay = 180 +  180/pi*tanh(abs(XWay - XNew) / 

abs(YNew - YWay)); 

        end 

         

        % 4th quadrant 

        if ((XWay < XNew) & (YWay > YNew)) 

            HeadWay = 270 + 180/pi*tanh(abs(YWay - YNew) / 

abs(XWay - XNew)); 

        end 

        %-----------------------------------------------------

--------------------------------------------------- 

         

        Velocity = Kv*Dist; 

        if Velocity > 150 

            Velocity = 150; 

        end 

        R        = Kh*(HeadWay - Heading); 



63 

 

         

        if HeadWay>60 & HeadWay<180 

            if (Heading<HeadWay+60) & (Heading>HeadWay-60) 

                Lspeed = Velocity+R; 

                Rspeed = Velocity-R; 

            elseif (Heading>=HeadWay+60)&(Heading<HeadWay+180) 

                Lspeed = -250; 

                Rspeed = 250; 

            else 

                Lspeed = 250; 

                Rspeed = -250; 

            end 

             

        elseif (HeadWay>=180)&(HeadWay<300) 

             

            if (Heading<HeadWay+60) & (Heading>HeadWay-60) 

                Lspeed = Velocity+R; 

                Rspeed = Velocity-R; 

            elseif (Heading<=HeadWay-60)&(Heading>HeadWay-180) 

                Lspeed = 250; 

                Rspeed = -250; 

            else 

                Lspeed = -250; 

                Rspeed = 250; 

            end 

        elseif (HeadWay<=60)&(HeadWay>0) 

            if (Heading<=HeadWay+60) 

                Lspeed = Velocity +R; 

                Rspeed = Velocity -R; 

            elseif (Heading>HeadWay+60)&(Heading<HeadWay+180) 

                Lspeed = -250; 

                Rspeed = 250; 

            elseif 

(Heading>=HeadWay+180)&(Heading<HeadWay+300) 

                Lspeed = 250; 

                Rspeed = -250; 

            else 

                Lspeed = Velocity+Kh*(360+HeadWay - Heading); 

                Rspeed = Velocity-Kh*(360+HeadWay - Heading); 

            end 

             

        else 

            if (Heading>=HeadWay-60) 

                Lspeed = Velocity +R; 

                Rspeed = Velocity -R; 

            elseif (Heading<HeadWay-60)&(Heading>HeadWay-180) 

                Lspeed= 250; 
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                Rspeed= -250; 

            elseif (Heading<=HeadWay-180)&(Heading>HeadWay-

300) 

                Lspeed = -250; 

                Rspeed = 250; 

            else 

                Lspeed = Velocity+Kh*(HeadWay - Heading-360); 

                Rspeed = Velocity-Kh*(HeadWay - Heading-360); 

            end 

        end 

         

         

         

         

        if Lspeed > 250 

            Lspeed = 250; 

        elseif Lspeed < -250 

            Lspeed = -250; 

        end 

        if Rspeed > 250 

            Rspeed = 250; 

        elseif Rspeed < -250 

            Rspeed = -250; 

        end 

        if abs(Lspeed)~=250 & abs(Rspeed)~=250 

            if Lspeed>=Rspeed 

                Lspeed = 250; 

                Rspeed = Rspeed+(250-Lspeed); 

            else 

                Rspeed = 250; 

                Lspeed = Lspeed+(250-Rspeed); 

            end 

        end 

         

        Lspeed = ceil(Lspeed); 

        Rspeed = ceil(Rspeed); 

        pause(0.01); 

    end 

    fprintf(Navi,'%s', 'a'); 

    fprintf(Navi,'%d\n',0); 

    fprintf(Navi,'%d\n',0); 

    Waypoint_task(Lon,Lat,X_gps,Y_gps); 

end 

plot(X_collect,Y_collect,'o','MarkerSize',2); 

axis([-2000,2000,0,5000]); 

grid on; 

fclose(Navi); 
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fclose(Serial_Port); 

delete(Serial_Port); 

delete(Navi); 

 

plot_google map.m 

function varargout = plot_google_map(varargin) 

% function h = plot_google_map(varargin) 

% Plots a google map on the current axes using the Google Static 

Maps API 

% 

% USAGE: 

% h = plot_google_map(Property, Value,...) 

% Plots the map on the given axes. Used also if no output is 

specified 

% 

% Or: 

% [lonVec latVec imag] = plot_google_map(Property, Value,...) 

% Returns the map without plotting it 

% 

% PROPERTIES: 

%    Height (640)   - Height of the image in pixels (max 640) 

%    Width  (640)   - Width of the image in pixels (max 640) 

%    Scale (2)      - (1/2) Resolution scale factor . using 

Scale=2 will 

%                     double the resulotion of the downloaded 

image (up 

%                     to 1280x1280) and will result in finer 

rendering, 

%                     but processing time will be longer. 

%    MapType        - ('roadmap') Type of map to return. Any of 

[roadmap,  

%                     satellite, terrain, hybrid] See the Google 

Maps API for 

%                     more information.  

%    Alpha (1)      - (0-1) Transparency level of the map (0 is 

fully 

%                     transparent). While the map is always 

%                     moved to the bottom of the plot (i.e. will 

%                     not hide previously drawn items), this 

can 

%                     be useful in order to increase readability 

%                     if many colors are ploted (using SCATTER 

%                     for example). 

%    ShowLabels (1) - (0/1) Controls wheter to display 

city/street textual labels on the map 
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%    Marker         - The marker argument is a text string with 

fields 

%                     conforming to the Google Maps API. The 

%                     following are valid examples: 

%                     '43.0738740,-70.713993' (default midsize 

orange marker) 

%                     '43.0738740,-70.713993,blue' (midsize blue 

marker) 

%                     '43.0738740,-70.713993,yellowa' (midsize 

yellow 

%                     marker with label "A") 

%                     '43.0738740,-70.713993,tinyredb' (tiny 

red marker 

%                     with label "B") 

%    Refresh (1)    - (0/1) defines whether to automatically 

refresh the 

%                     map upon zoom/pan action on the figure. 

%    AutoAxis (1)   - (0/1) defines whether to automatically 

adjust the axis 

%                     of the plot to avoid the map being 

stretched. 

%                     This will adjust the span to be correct 

%                     according to the shape of the map axes. 

%    APIKey         - (string) set your own API key which you 

obtained from Google:  

%                     

http://developers.google.com/maps/documentation/staticmaps/#api_

key 

%                     This will enable up to 25,000 map requests 

per day,  

%                     compared to a few hundred requests without 

a key.  

%                     To set the key, use: 

%                     

plot_google_map('APIKey','SomeLongStringObtaindFromGoogle') 

%                     You need to do this only once to set the 

key. 

%                     To disable the use of a key, use: 

%                     plot_google_map('APIKey','') 

% 

% OUTPUT: 

%    h              - Handle to the plotted map 

% 

%    lonVect        - Vector of Longidute coordinates (WGS84) 

of the image  

%    latVect        - Vector of Latidute coordinates (WGS84) of 

the image  
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%    imag           - Image matrix (height,width,3) of the map 

% 

% EXAMPLE - plot a map showing some capitals in Europe: 

%    lat = [48.8708   51.5188   41.9260   40.4312   52.523   

37.982]; 

%    lon = [2.4131    -0.1300    12.4951   -3.6788    13.415   

23.715]; 

%    plot(lon,lat,'.r','MarkerSize',20) 

%    plot_google_map 

% 

% References: 

% http://www.mathworks.com/matlabcentral/fileexchange/24113 

% http://www.maptiler.org/google-maps-coordinates-tile-bounds-

projection/ 

% http://developers.google.com/maps/documentation/staticmaps/ 

% 

%  Acknowledgement to Val Schmidt for his submission of 

get_google_map.m 

% 

%  Author: 

%  Zohar Bar-Yehuda 

% Version 1.3 - 06/10/2013 

%       - Improved functionality of AutoAxis, which now handles 

any shape of map axes.  

%         Now also updates the extent of the map if the figure 

is resized. 

%       - Added the ShowLabels param which allows hiding the 

textual labels on the map. 

% Version 1.2 - 16/06/2012 

%       - Support use of the "scale=2" parameter by default for 

finer rendering (set scale=1 if too slow). 

%       - Auto-adjust axis extent so the map isn't stretched. 

%       - Set and use an API key which enables a much higher 

usage volume per day. 

%  Version 1.1 - 25/08/2011 

  

% store parameters in global variable (used for auto-refresh) 

global inputParams 

persistent apiKey 

if isnumeric(apiKey) 

    % first run, check if API key file exists 

    if exist('api_key.mat','file') 

        load api_key 

    else 

        apiKey = ''; 

    end 

end 
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axHandle = gca; 

inputParams.(['ax' num2str(axHandle*1e6,'%.0f')]) = varargin; 

  

% Handle input arguments 

  

height = 640; 

width = 640; 

scale = 2; 

maptype = 'roadmap'; 

alphaData = 1; 

autoRferesh = 1; 

autoAxis = 1; 

ShowLabels = 1; 

hold on 

  

markeridx = 1; 

markerlist = {}; 

if nargin >= 2 

    for idx = 1:2:length(varargin) 

        switch lower(varargin{idx}) 

            case 'height' 

                height = varargin{idx+1}; 

            case 'width' 

                width = varargin{idx+1}; 

            case 'maptype' 

                maptype = varargin{idx+1}; 

            case 'alpha' 

                alphaData = varargin{idx+1}; 

            case 'refresh' 

                autoRferesh = varargin{idx+1}; 

            case 'showlabels' 

                ShowLabels = varargin{idx+1}; 

            case 'marker' 

                markerlist{markeridx} = varargin{idx+1}; 

                markeridx = markeridx + 1; 

            case 'autoaxis' 

                autoAxis = varargin{idx+1}; 

            case 'apikey' 

                apiKey = varargin{idx+1}; % set new key 

                % save key to file 

                funcFile = which('plot_google_map.m'); 

                pth = fileparts(funcFile); 

                keyFile = fullfile(pth,'api_key.mat'); 

                save(keyFile,'apiKey') 

            otherwise 

                error(['Unrecognized variable: ' 

varargin{idx}]) 
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        end 

    end 

end 

if height > 640 

    height = 640; 

end 

if width > 640 

    width = 640; 

end 

  

curAxis = axis; 

% Enforce Latitude constraints of EPSG:900913  

if curAxis(3) < -85 

    curAxis(3) = -85; 

end 

if curAxis(4) > 85 

    curAxis(4) = 85; 

end 

% Enforce longitude constrains 

if curAxis(1) < -180 

    curAxis(1) = -180; 

end 

if curAxis(1) > 180 

    curAxis(1) = 0; 

end 

if curAxis(2) > 180 

    curAxis(2) = 180; 

end 

if curAxis(2) < -180 

    curAxis(2) = 0; 

end 

  

if isequal(curAxis,[0 1 0 1]) % probably an empty figure 

    % display world map 

    curAxis = [-200 200 -85 85]; 

    axis(curAxis) 

end 

  

  

if autoAxis 

    % adjust current axis limit to avoid strectched maps 

    [xExtent,yExtent] = latLonToMeters(curAxis(3:4), 

curAxis(1:2) ); 

    xExtent = diff(xExtent); % just the size of the span 

    yExtent = diff(yExtent);  

    % get axes aspect ratio 

    drawnow 



70 

 

    org_units = get(axHandle,'Units'); 

    set(axHandle,'Units','Pixels') 

    ax_position = get(axHandle,'position');         

    set(axHandle,'Units',org_units) 

    aspect_ratio = ax_position(4) / ax_position(3); 

     

    if xExtent*aspect_ratio > yExtent         

        centerX = mean(curAxis(1:2)); 

        centerY = mean(curAxis(3:4)); 

        spanX = (curAxis(2)-curAxis(1))/2; 

        spanY = (curAxis(4)-curAxis(3))/2; 

        

        % enlarge the Y extent 

        spanY = spanY*xExtent*aspect_ratio/yExtent; % new span 

        if spanY > 85 

            spanX = spanX * 85 / spanY; 

            spanY = spanY * 85 / spanY; 

        end 

        curAxis(1) = centerX-spanX; 

        curAxis(2) = centerX+spanX; 

        curAxis(3) = centerY-spanY; 

        curAxis(4) = centerY+spanY; 

    elseif yExtent > xExtent*aspect_ratio 

         

        centerX = mean(curAxis(1:2)); 

        centerY = mean(curAxis(3:4)); 

        spanX = (curAxis(2)-curAxis(1))/2; 

        spanY = (curAxis(4)-curAxis(3))/2; 

        % enlarge the X extent 

        spanX = spanX*yExtent/(xExtent*aspect_ratio); % new 

span 

        if spanX > 180 

            spanY = spanY * 180 / spanX; 

            spanX = spanX * 180 / spanX; 

        end 

         

        curAxis(1) = centerX-spanX; 

        curAxis(2) = centerX+spanX; 

        curAxis(3) = centerY-spanY; 

        curAxis(4) = centerY+spanY; 

    end             

    % Enforce Latitude constraints of EPSG:900913 

    if curAxis(3) < -85 

        curAxis(3:4) = curAxis(3:4) + (-85 - curAxis(3)); 

    end 

    if curAxis(4) > 85 

        curAxis(3:4) = curAxis(3:4) + (85 - curAxis(4)); 
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    end 

    axis(curAxis) % update axis as quickly as possible, before 

downloading new image 

    drawnow 

end 

  

% Delete previous map from plot (if exists) 

if nargout <= 1 % only if in plotting mode 

    curChildren = get(axHandle,'children'); 

    map_objs = findobj(curChildren,'tag','gmap'); 

    bd_callback = []; 

    for idx = 1:length(map_objs) 

        if ~isempty(get(map_objs(idx),'ButtonDownFcn')) 

            % copy callback properties from current map 

            bd_callback = get(map_objs(idx),'ButtonDownFcn'); 

        end 

    end 

    delete(map_objs) 

     

end 

  

% Calculate zoom level for current axis limits 

[xExtent,yExtent] = latLonToMeters(curAxis(3:4), curAxis(1:2) 

); 

minResX = diff(xExtent) / width; 

minResY = diff(yExtent) / height; 

minRes = max([minResX minResY]); 

tileSize = 256; 

initialResolution = 2 * pi * 6378137 / tileSize; % 

156543.03392804062 for tileSize 256 pixels 

zoomlevel = floor(log2(initialResolution/minRes)); 

  

% Enforce valid zoom levels 

if zoomlevel < 0  

    zoomlevel = 0; 

end 

if zoomlevel > 19  

    zoomlevel = 19; 

end 

  

% Calculate center coordinate in WGS1984 

lat = (curAxis(3)+curAxis(4))/2; 

lon = (curAxis(1)+curAxis(2))/2; 

  

% CONSTRUCT QUERY URL 

preamble = 'http://maps.googleapis.com/maps/api/staticmap'; 

location = ['?center=' num2str(lat,10) ',' num2str(lon,10)]; 
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zoomStr = ['&zoom=' num2str(zoomlevel)]; 

sizeStr = ['&scale=' num2str(scale) '&size=' num2str(width) 'x' 

num2str(height)]; 

maptypeStr = ['&maptype=' maptype ]; 

if ~isempty(apiKey) 

    keyStr = ['&key=' apiKey]; 

else 

    keyStr = ''; 

end 

markers = '&markers='; 

for idx = 1:length(markerlist) 

    if idx < length(markerlist) 

        markers = [markers markerlist{idx} '%7C']; 

    else 

        markers = [markers markerlist{idx}]; 

    end 

end 

if ShowLabels == 0 

    labelsStr = 

'&style=feature:all|element:labels|visibility:off'; 

else 

    labelsStr = ''; 

end 

if ismember(maptype,{'satellite','hybrid'}) 

    filename = 'tmp.jpg'; 

    format = '&format=jpg'; 

    convertNeeded = 0; 

else 

    filename = 'tmp.png'; 

    format = '&format=png'; 

    convertNeeded = 1; 

end 

sensor = '&sensor=false'; 

url = [preamble location zoomStr sizeStr maptypeStr format 

markers labelsStr sensor keyStr]; 

  

% Get the image 

try 

    urlwrite(url,filename); 

catch % error downloading map 

    warning(sprintf(['Unable to download map form Google 

Servers.\n' ... 

        'Possible reasons: no network connection, or quota 

exceeded.\n' ... 

        'Consider using an API key if quota problems 

persist.'])); 

    varargout{1} = []; 
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    varargout{2} = []; 

    varargout{3} = []; 

    return 

end 

[M Mcolor] = imread(filename); 

M = cast(M,'double'); 

delete(filename); % delete temp file 

width = size(M,2); 

height = size(M,1); 

  

% Calculate a meshgrid of pixel coordinates in EPSG:900913 

centerPixelY = round(height/2); 

centerPixelX = round(width/2); 

[centerX,centerY] = latLonToMeters(lat, lon ); % center 

coordinates in EPSG:900913 

curResolution = initialResolution / 2^zoomlevel/scale; % 

meters/pixel (EPSG:900913) 

xVec = centerX + ((1:width)-centerPixelX) * curResolution; % x 

vector 

yVec = centerY + ((height:-1:1)-centerPixelY) * curResolution; 

% y vector 

[xMesh,yMesh] = meshgrid(xVec,yVec); % construct meshgrid  

  

% convert meshgrid to WGS1984 

[lonMesh,latMesh] = metersToLatLon(xMesh,yMesh); 

  

% We now want to convert the image from a colormap image with 

an uneven 

% mesh grid, into an RGB truecolor image with a uniform grid. 

% This would enable displaying it with IMAGE, instead of PCOLOR. 

% Advantages are: 

% 1) faster rendering 

% 2) makes it possible to display together with other colormap 

annotations (PCOLOR, SCATTER etc.) 

  

% Convert image from colormap type to RGB truecolor (if PNG is 

used) 

if convertNeeded 

    imag = zeros(height,width,3); 

    for idx = 1:3 

        imag(:,:,idx) = reshape(Mcolor(M(:)+1+(idx-

1)*size(Mcolor,1)),height,width); 

    end 

else 

    imag = M/255; 

end 
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% Next, project the data into a uniform WGS1984 grid 

sizeFactor = 1; % factoring of new image 

uniHeight = round(height*sizeFactor); 

uniWidth = round(width*sizeFactor); 

latVect = linspace(latMesh(1,1),latMesh(end,1),uniHeight); 

lonVect = linspace(lonMesh(1,1),lonMesh(1,end),uniWidth); 

[uniLonMesh,uniLatMesh] = meshgrid(lonVect,latVect); 

uniImag = zeros(uniHeight,uniWidth,3); 

  

% old version (projection using INTERP2) 

% for idx = 1:3 

%      % 'nearest' method is the fastest. difference from other 

methods is neglible 

%          uniImag(:,:,idx) =  

interp2(lonMesh,latMesh,imag(:,:,idx),uniLonMesh,uniLatMesh,'nea

rest'); 

% end 

uniImag =  

myTurboInterp2(lonMesh,latMesh,imag,uniLonMesh,uniLatMesh); 

  

if nargout <= 1 % plot map 

    % display image 

    h = image(lonVect,latVect,uniImag);     

    set(gca,'YDir','Normal') 

    set(h,'tag','gmap') 

    set(h,'AlphaData',alphaData) 

     

    % add a dummy image to allow pan/zoom out to x2 of the image 

extent 

    h_tmp = image(lonVect([1 end]),latVect([1 

end]),zeros(2),'Visible','off'); 

    set(h_tmp,'tag','gmap') 

     

    % older version (display without conversion to uniform grid) 

    % h =pcolor(lonMesh,latMesh,(M)); 

    % colormap(Mcolor) 

    % caxis([0 255]) 

    % warning off % to avoid strange rendering warnings 

    % shading flat 

    

    uistack(h,'bottom') % move map to bottom (so it doesn't hide 

previously drawn annotations) 

    axis(curAxis) % restore original zoom 

    if nargout == 1 

        varargout{1} = h; 

    end 
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    % if auto-refresh mode - override zoom callback to allow 

autumatic  

    % refresh of map upon zoom actions. 

    zoomHandle = zoom;    

    panHandle = pan;     

    if autoRferesh         

        

set(zoomHandle,'ActionPostCallback',@update_google_map);           

        set(panHandle, 'ActionPostCallback', 

@update_google_map);         

    else % disable zoom override 

        set(zoomHandle,'ActionPostCallback',[]); 

        set(panHandle, 'ActionPostCallback',[]); 

    end 

     

    % set callback for figure resize function, to update extents 

if figure 

    % is streched. 

    figHandle = get(axHandle,'Parent'); 

    set(figHandle, 'ResizeFcn', @update_google_map_fig);         

     

    % set callback properties  

    set(h,'ButtonDownFcn',bd_callback); 

else % don't plot, only return map 

    varargout{1} = lonVect; 

    varargout{2} = latVect; 

    varargout{3} = uniImag; 

end 

  

  

% Coordinate transformation functions 

  

function [lon,lat] = metersToLatLon(x,y) 

% Converts XY point from Spherical Mercator EPSG:900913 to 

lat/lon in WGS84 Datum 

originShift = 2 * pi * 6378137 / 2.0; % 20037508.342789244 

lon = (x ./ originShift) * 180; 

lat = (y ./ originShift) * 180; 

lat = 180 / pi * (2 * atan( exp( lat * pi / 180)) - pi / 2); 

  

function [x,y] = latLonToMeters(lat, lon ) 

% Converts given lat/lon in WGS84 Datum to XY in Spherical 

Mercator EPSG:900913" 

originShift = 2 * pi * 6378137 / 2.0; % 20037508.342789244 

x = lon * originShift / 180; 

y = log(tan((90 + lat) * pi / 360 )) / (pi / 180); 

y = y * originShift / 180; 
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function ZI = myTurboInterp2(X,Y,Z,XI,YI) 

% An extremely fast nearest neighbour 2D interpolation, assuming 

both input 

% and output grids consist only of squares, meaning: 

% - uniform X for each column 

% - uniform Y for each row 

XI = XI(1,:); 

X = X(1,:); 

YI = YI(:,1); 

Y = Y(:,1); 

  

xiPos = nan*ones(size(XI)); 

xLen = length(X); 

yiPos = nan*ones(size(YI)); 

yLen = length(Y); 

% find x conversion 

xPos = 1; 

for idx = 1:length(xiPos) 

    if XI(idx) >= X(1) && XI(idx) <= X(end) 

        while xPos < xLen && X(xPos+1)<XI(idx) 

            xPos = xPos + 1; 

        end 

        diffs = abs(X(xPos:xPos+1)-XI(idx)); 

        if diffs(1) < diffs(2) 

            xiPos(idx) = xPos; 

        else 

            xiPos(idx) = xPos + 1; 

        end 

    end 

end 

% find y conversion 

yPos = 1; 

for idx = 1:length(yiPos) 

    if YI(idx) <= Y(1) && YI(idx) >= Y(end) 

        while yPos < yLen && Y(yPos+1)>YI(idx) 

            yPos = yPos + 1; 

        end 

        diffs = abs(Y(yPos:yPos+1)-YI(idx)); 

        if diffs(1) < diffs(2) 

            yiPos(idx) = yPos; 

        else 

            yiPos(idx) = yPos + 1; 

        end 

    end 

end 
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ZI = Z(yiPos,xiPos,:); 

  

  

function update_google_map(obj,evd) 

% callback function for auto-refresh 

drawnow; 

global inputParams 

if isfield(inputParams,['ax' num2str(gca*1e6,'%.0f')]) 

    params = inputParams.(['ax' num2str(gca*1e6,'%.0f')]); 

    plot_google_map(params{:}); 

end 

  

  

function update_google_map_fig(obj,evd) 

% callback function for auto-refresh 

drawnow; 

global inputParams 

axes_objs = findobj(get(gcf,'children'),'type','axes'); 

for idx = 1:length(axes_objs) 

    if 

~isempty(findobj(get(axes_objs(idx),'children'),'tag','gmap')); 

        if isfield(inputParams,['ax' 

num2str(axes_objs(idx)*1e6,'%.0f')]) 

            params = inputParams.(['ax' 

num2str(axes_objs(idx)*1e6,'%.0f')]); 

        else 

            params = {}; 

        end 

        axes(axes_objs(idx)); 

        plot_google_map(params{:}); 

        break; 

    end 

end 
 

 

GPS_initilize 

 function [Lon0,Lat0] = GPS_Initialize 
global Navi; 

fopen(Navi); 

N = 10; 

Latitude0  = 0; 

Longitude0 = 0; 

for i = 1:N 

    while (1) 

        str         = fscanf(Navi); 

        if length(str)>=60 
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            if strcmp(str(1:6),'$GPRMC') & strcmp(str(15),'A') 

                break; 

            end 

        end 

        pause(0.001); 

    end 

     

    year        = str(54:55); 

    mo          = str(52:53); 

    day         = str(50:51); 

    hr          = str(8:9); 

    min         = str(10:11); 

    sec         = str(12:13); 

    hour        = str2num(hr); 

    minute      = str2num(min); 

    second      = str2num(sec); 

    TimeNew    = 3600*hour + 60*minute + second; 

     

    LatiMin    = str(17:18); 

    LatiSec    = str(19:20); 

    LatiDec    = str(22:25); 

    Latitude   = str(27); 

    Lat_dd     = str2num(LatiMin); 

    Lat_mm     = str2num(LatiSec); 

    Lat_dec    = str2num(LatiDec); 

    Lat        = Lat_dd + (Lat_mm + Lat_dec/10000)/60; 

     

    LongMin    = str(29:31); 

    LongSec    = str(32:33); 

    LongDec    = str(35:38); 

    Longitude  = str(40); 

    Lon_dd     = str2num(LongMin); 

    Lon_mm     = str2num(LongSec); 

    Lon_dec    = str2num(LongDec); 

    Lon        = -(Lon_dd + (Lon_mm + Lon_dec/10000)/60); 

     

    Longitude0  = Longitude0+Lon; 

    Latitude0   = Latitude0+Lat 

    pause(0.001); 

end 

Lon0 = Longitude0/N; 

Lat0 = Latitude0/N; 

fclose(Navi); 

end 
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LIDAR_initialize  

function [X1,Y1]=LIDAR_Initialize 

global Serial_Port; 

Serial_Port = 

serial('COM4','BaudRate',9600,'InputBufferSize',1024); 

Fid_Display = 1; 

fopen(Serial_Port); 

DataToSend_Continuous_Stop=uint8([2 0 2 0 32 37 53 8]); 

fwrite(Serial_Port,DataToSend_Continuous_Stop); 

DataSet_Stop = fread(Serial_Port); 

Serial_Port.RequestToSend='on'; 

% set up baudrate 

 DataToSend_Baudrate=[2 0 2 0 32 66 82 8]; 

 fwrite(Serial_Port,DataToSend_Baudrate); 

 BaudRate_Response = fread(Serial_Port); 

    if isempty(BaudRate_Response)==1 

       Message=['BaudRate: Failed setted']; 

       disp(Message);  

    else 

       Fid_BaudRate=mean((BaudRate_Response==[6 2 128 3 0 160 0 

16 22 10]'));        

       if Fid_BaudRate==1 

          Message=['BaudRate: Succeed setted - 9600 bps']; 

          disp(Message); 

       else 

          Message=['BaudRate: Failed setted']; 

          disp(Message);  

       end 

    end 

    Serial_Port.BaudRate=9600; 

% set up distance model 

DataToSend_Installation=uint8([2 0 10 0 32 0 83 73 67 75 95 76 

77 83 190 197]); 

        fwrite(Serial_Port,DataToSend_Installation); 

        Installation_Response=fread(Serial_Port); 

  

        if isempty(Installation_Response)==1 

           Message={Message;'Distance Modle: Failed setted'}; 

           disp(Message);  

        else 

             

           Fid_Installation=mean((BaudRate_Response==[6 2 128 3 

0 160 0 16 22 10]')); 

           if Fid_Installation==1 

               %%%%%%%%%%mm model Set Up 
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               DataToSend_Distance_Model= uint8([2 0 33 0 119 0 

0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 232 

114]); 

               fwrite(Serial_Port,DataToSend_Distance_Model);  

               Distance_Model_Response=fread(Serial_Port); 

               if isempty(Installation_Response)==1 

                   Message={Message;'Distance Modle: Failed 

setted'}; 

                   disp(Message);  

               else 

                   

Fid_Distance_Modle=mean((Distance_Model_Response==[6 2 128 37 0 

247 0 0 0 70 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 2 114 16 156 103]')); 

                   if Fid_Distance_Modle==1; 

                       Message={Message;'Distance Modle: 

Succeed setted - cm Model'}; 

                       disp(Message); 

                   else 

                       Message={Message;'Distance Modle: 

Failed setted'}; 

                       disp(Message); 

                   end 

               end 

           else 

               Message={Message;'Distance Modle: Failed 

setted'}; 

               disp(Message); 

           end 

        end 

% set up angleresolution 

 DataToSend_AngleRange_Resolution=uint8([2 0 5 0 59 180 0 50 0 

59 31]); 

        fwrite(Serial_Port,DataToSend_AngleRange_Resolution);  

        AngleRange_Resolution_Response=fread(Serial_Port); 

        if isempty(AngleRange_Resolution_Response)==1 

            Message={Message{1};Message{2};'Range Resolution: 

Failed setted'}; 

            disp(Message);  

        else 

            

Fid_AngleRange_Resolution=mean((AngleRange_Resolution_Response==

[6 2 128 7 0 187 1 180 0 50 0 16 3 157]')); 

            if Fid_AngleRange_Resolution==1 

                Message={Message{1};Message{2};'Range 

Resolution: Succeed setted - 180/0.5'}; 

                disp(Message); 
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            else 

                Message={Message{1};Message{2};'Range 

Resolution: Failed setted'}; 

                disp(Message); 

            end 

        end 

% read data and display it 

DataSet=[]; 

DataToSend_Continuous=uint8([2 0 2 0 32 36 52 8]); 

  

fwrite(Serial_Port,DataToSend_Continuous); 

figure,axes; 

X1       = []; 

Y1       = []; 

Data_Continuous_Head=fread(Serial_Port,10); 

% initialize-- find stationary objects 

   for i = 1:30 

        Data_Continuous = fread(Serial_Port,732); 

                pause(0.01); 

                DataSet=[DataSet,Data_Continuous']; 

                

Data_C=Data_Continuous(8:length(Data_Continuous)-3,:); 

                 

                Data_C_Bin=dec2bin(Data_C); 

                Length_Vaild=length(Data_C_Bin); 

                for i=1:2:Length_Vaild 

                    Temp=Data_C_Bin(i,:); 

                    Data_C_Bin(i,:)=Data_C_Bin(i+1,:); 

                    Data_C_Bin(i+1,:)=Temp; 

                end 

               

                for i=1:Length_Vaild/2 

                    Data_Continuous_Bin(i,:)=[Data_C_Bin(2*i-

1,:) Data_C_Bin(2*i,:)]; 

                end 

                

Data_Continuous_Dec=bin2dec(Data_Continuous_Bin);   

                 

                Angle_Space=linspace(0*pi/180,180*pi/180,361); 

                ROI_Range=8000; 

                

ROI_Index=find(Data_Continuous_Dec<=ROI_Range); 

                

[X,Y]=pol2cart(Angle_Space(ROI_Index),Data_Continuous_Dec(ROI_In

dex)'); 

                X1 = [X1 X]; 

                Y1 = [Y1 Y];  
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   end 

end 
 

 

Convert_GPS_to_LIDAR  

function [X0,Y0] = ConvertGPS2LIDAR(X1,Y1) 

global Serial_Port; 

for kkk = 1:10 

DataSet = []; 

Data_Continuous = fread(Serial_Port,732); 

pause(0.01); 

DataSet=[DataSet,Data_Continuous']; 

Data_C=Data_Continuous(8:length(Data_Continuous)-3,:); 

  

Data_C_Bin=dec2bin(Data_C); 

Length_Vaild=length(Data_C_Bin); 

for i=1:2:Length_Vaild 

    Temp=Data_C_Bin(i,:); 

    Data_C_Bin(i,:)=Data_C_Bin(i+1,:); 

    Data_C_Bin(i+1,:)=Temp; 

end 

  

for i=1:Length_Vaild/2 

    Data_Continuous_Bin(i,:)=[Data_C_Bin(2*i-1,:) 

Data_C_Bin(2*i,:)]; 

end 

Data_Continuous_Dec=bin2dec(Data_Continuous_Bin); 

  

Angle_Space=linspace(0*pi/180,180*pi/180,361); 

ROI_Range=8000; 

ROI_Index=find(Data_Continuous_Dec<=ROI_Range); 

[X,Y]=pol2cart(Angle_Space(ROI_Index),Data_Continuous_Dec(ROI_

Index)'); 

  

N   = length(X); 

Show_Index=[]; 

  

for i = 1:N 

    Distance=sqrt((X1-X(i)).^2+(Y1-Y(i)).^2); 

    if isempty(find(Distance<=15)) 

        Show_Index = [Show_Index i]; 

    end 

end 

X_s = X(Show_Index); 

Y_s = Y(Show_Index); 
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if ~isempty(X_s) 

    X0 = mean(X_s); 

    Y0 = mean(Y_s); 

    %Dist = sqrt((XNew-XWay)^2+(YNew-YWay)^2); 

else 

    disp('Error:Robot not found'); 

end 

end 

end 
 

 

GPS_to_LIDAR  

function [X,Y] = GPS2LIDAR(Lon,Lat,Lon0,Lat0,X0,Y0) 

a  = 6378137.0; 

b  = 6356752.3142; 

pi = 3.1416; 

if (Lon==-1)&(Lat==-1) 

    X = -1; 

    Y = -1; 

else 

    % Distance corresponding to 1 deg change in Latitude 

    F_lon = (pi/180) * a^2*cos(Lat/180*pi)  /  

(a^2*(cos(Lat/180*pi))^2 + b^2*(sin(Lat/180*pi))^2)^(1/2); 

    % Distance corresponding to 1 deg change in Longitude 

    F_lat = (pi/180) * a^2*b^2  /  (a^2*(cos(Lat/180*pi))^2 + 

b^2*(sin(Lat/180*pi))^2)^(3/2); 

    Dlat  = F_lon*(Lat-Lat0)*100; % (unit--cm) 

    Dlon  = F_lat*(Lon-Lon0)*100; % (unit--cm) 

    X     = X0+Dlon; 

    Y     = Y0+Dlat; 

end 

end 
 

 

Read_GPSXbee_new4  

function [Lon,Lat,Heading] = readGPS_xbee_new4(Lspeed,Rspeed) 

global Navi; 

  

while (1) 

    str         = fscanf(Navi); 

    if length(str)>=60 

        if strcmp(str(1:6),'$GPRMC') & strcmp(str(15),'A') 

            break; 

        end 

    else if (length(str)<=13) & (length(str)>=8) 
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            if strcmp(str(1:4),'None') 

                break; 

            end 

        end 

    end 

end 

% send out Lspeed&Rspeed 

if (Lspeed >=0) & (Rspeed>=0) 

    fprintf(Navi,'%s', 'a'); 

    disp('a'); 

elseif Lspeed>0 & Rspeed<0 

    fprintf(Navi,'%s','b'); 

    Rspeed = -Rspeed; 

    disp('b'); 

elseif Lspeed<0 & Rspeed>0 

    fprintf(Navi,'%s','c'); 

    Lspeed=-Lspeed; 

    disp('c'); 

end 

  

fprintf(Navi,'%d\n',Lspeed); 

fprintf(Navi,'%d\n',Rspeed); 

  

disp('Lspeed = ') 

disp(Lspeed) 

  

disp('Rspeed = ') 

disp(Rspeed) 

  

% Read NMEA string 

if (length(str)>=60) 

    year        = str(54:55); 

    mo          = str(52:53); 

    day         = str(50:51); 

    hr          = str(8:9); 

    min         = str(10:11); 

    sec         = str(12:13); 

    hour        = str2num(hr); 

    minute      = str2num(min); 

    second      = str2num(sec); 

    TimeNew    = 3600*hour + 60*minute + second; 

     

    LatiMin    = str(17:18); 

    LatiSec    = str(19:20); 

    LatiDec    = str(22:25); 

    Latitude   = str(27); 

    Lat_dd     = str2num(LatiMin); 
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    Lat_mm     = str2num(LatiSec); 

    Lat_dec    = str2num(LatiDec); 

    Lat        = Lat_dd + (Lat_mm + Lat_dec/10000)/60; 

     

    LongMin    = str(29:31); 

    LongSec    = str(32:33); 

    LongDec    = str(35:38); 

    Longitude  = str(40); 

    Lon_dd     = str2num(LongMin); 

    Lon_mm     = str2num(LongSec); 

    Lon_dec    = str2num(LongDec); 

    Lon        = -(Lon_dd + (Lon_mm + Lon_dec/10000)/60); 

     

    Head       = str(61:end); 

    Heading    = str2num(Head); 

     

    disp([hr ':' min ':' sec '     UTC']); 

    disp([day '/' mo '/' year '     DDMMYY']); 

    disp([Latitude '    ' LatiMin ' DEG ' LatiSec '.' LatiDec ' 

MIN']); 

    disp([Longitude '   ' LongMin ' DEG ' LongSec '.' LongDec ' 

MIN']); 

    disp([str]); 

    fprintf('\r'); 

else if length(str)<=13 

        Lat     = -1; 

        Lon     = -1; 

        Head    = str(5:end); 

        Heading = str2num(Head); 

        TimeNew = -1; 

    end 

end 

  

end 
 

 

LIDAR_communication 

 function 
[Dist,HeadWay,X_collect,Y_collect,XNew,YNew]=LIDAR_Communication

(X1,Y1,X_gps,Y_gps,XWay,YWay,X_collect0,Y_collect0,XOld,YOld,Hea

dWayOld,DistOld) 

global Serial_Port; 

DataSet = []; 

Data_Continuous = fread(Serial_Port,732); 

pause(0.01); 

DataSet=[DataSet,Data_Continuous']; 
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Data_C=Data_Continuous(8:length(Data_Continuous)-3,:); 

  

Data_C_Bin=dec2bin(Data_C); 

Length_Vaild=length(Data_C_Bin); 

for i=1:2:Length_Vaild 

    Temp=Data_C_Bin(i,:); 

    Data_C_Bin(i,:)=Data_C_Bin(i+1,:); 

    Data_C_Bin(i+1,:)=Temp; 

end 

  

for i=1:Length_Vaild/2 

    Data_Continuous_Bin(i,:)=[Data_C_Bin(2*i-1,:) 

Data_C_Bin(2*i,:)]; 

end 

Data_Continuous_Dec=bin2dec(Data_Continuous_Bin); 

  

Angle_Space=linspace(0*pi/180,180*pi/180,361); 

ROI_Range=8000; 

ROI_Index=find(Data_Continuous_Dec<=ROI_Range); 

[X,Y]=pol2cart(Angle_Space(ROI_Index),Data_Continuous_Dec(ROI_

Index)'); 

  

N   = length(X); 

Show_Index=[]; 

  

for i = 1:N 

    Distance=sqrt((X1-X(i)).^2+(Y1-Y(i)).^2); 

    if isempty(find(Distance<=15)) 

        Show_Index = [Show_Index i]; 

    end 

end 

X_s = X(Show_Index); 

Y_s = Y(Show_Index); 

  

if ~isempty(X_s) 

    plot(X_s,Y_s,'*'); 

    axis([-2000,2000,0,5000]); 

    grid on; 

    if (X_gps~=-1)|(Y_gps~=-1) 

        DistXY  = sqrt((X_s - X_gps).^2+(Y_s - Y_gps).^2); 

        IndexXY = find(DistXY<1500); 

        X_s     = X_s(IndexXY); 

        Y_s     = Y_s(IndexXY); 

    end 

    XNew = mean(X_s); 

    YNew = mean(Y_s); 

    Dist = sqrt((XNew-XWay)^2+(YNew-YWay)^2); 
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    % Calculate HeadWay------------------------------------- 

    if XWay == XNew 

        if YWay < YNew 

            HeadWay = 180; 

        elseif YWay > YNew 

            HeadWay = 0; 

        else 

            HeadWay = 0; 

        end 

    end 

     

    if YNew == YWay 

        if XNew < XWay          %Moving West 

            HeadWay = 90; 

        elseif XNew > XWay 

            HeadWay = 270;            % Moving East 

        else 

            HeadWay = 0;            % Stationary 

        end 

    end 

    % 1st quadrant 

    if ((XWay> XNew) & (YWay > YNew)) 

        HeadWay = 180/pi*tanh(abs(XNew - XWay) / abs(YWay - 

YNew)); 

    end 

     

    % 2nd quadrant 

    if ((XWay > XNew) & (YWay < YNew)) 

        HeadWay = 90 + 180/pi*tanh(abs(YNew - YWay) / abs(XNew 

- XWay)); 

    end 

     

    % 3rd quadrant 

    if ((XWay < XNew) & (YWay < YNew)) 

        HeadWay = 180 +  180/pi*tanh(abs(XWay - XNew) / abs(YNew 

- YWay)); 

    end 

     

    % 4th quadrant 

    if ((XWay < XNew) & (YWay > YNew)) 

        HeadWay = 270 + 180/pi*tanh(abs(YWay - YNew) / abs(XWay 

- XNew)); 

    end 

    %---------------------------------------------------------

----------------------------------------------- 
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%Heading = 0; 

    %---------------------------------------------------------

--------------------------------- 

    X_collect = [X_collect0 X_s]; 

    Y_collect = [Y_collect0 Y_s]; 

else 

    disp('NO Moving Object'); 

    Dist       = DistOld; 

    HeadWay    = HeadWayOld; 

    X_collect  = X_collect0; 

    Y_collect  = Y_collect0; 

    XNew       = XOld; 

    YNew       = YOld;  

end 

  

end 
 

 

LIDAR_read  

function [X_lidar,Y_lidar]=LIDAR_read(X1,Y1) 

global Serial_Port; 

  

    DataSet = []; 

    Data_Continuous = fread(Serial_Port,732); 

    pause(0.01); 

    DataSet=[DataSet,Data_Continuous']; 

    Data_C=Data_Continuous(8:length(Data_Continuous)-3,:); 

     

    Data_C_Bin=dec2bin(Data_C); 

    Length_Vaild=length(Data_C_Bin); 

    for i=1:2:Length_Vaild 

        Temp=Data_C_Bin(i,:); 

        Data_C_Bin(i,:)=Data_C_Bin(i+1,:); 

        Data_C_Bin(i+1,:)=Temp; 

    end 

     

    for i=1:Length_Vaild/2 

        Data_Continuous_Bin(i,:)=[Data_C_Bin(2*i-1,:) 

Data_C_Bin(2*i,:)]; 

    end 

    Data_Continuous_Dec=bin2dec(Data_Continuous_Bin); 

     

    Angle_Space=linspace(0*pi/180,180*pi/180,361); 

    ROI_Range=8000; 

    ROI_Index=find(Data_Continuous_Dec<=ROI_Range); 
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[X,Y]=pol2cart(Angle_Space(ROI_Index),Data_Continuous_Dec(ROI_In

dex)'); 

     

    N   = length(X); 

    Show_Index=[]; 

     

    for i = 1:N 

        Distance=sqrt((X1-X(i)).^2+(Y1-Y(i)).^2); 

        if isempty(find(Distance<=15)) 

            Show_Index = [Show_Index i]; 

        end 

    end 

    X_s = X(Show_Index); 

    Y_s = Y(Show_Index); 

     

    if ~isempty(X_s) 

        plot(X_s,Y_s,'*'); 

        axis([-2000,2000,0,5000]); 

        grid on; 

        X_lidar = mean(X_s); 

        Y_lidar = mean(Y_s); 

    else 

        disp('NO Moving Object'); 

        X_lidar = -1; 

        Y_lidar = -1; 

    end 

  

end 

 

 

 


