
c© 2015 by Vivek Kale. All rights reserved.

LOW-OVERHEAD SCHEDULING FOR IMPROVING
PERFORMANCE OF SCIENTIFIC APPLICATIONS

BY

VIVEK KALE

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Doctoral Committee:

Professor William D. Gropp, Chair
Dr. Bronis R. DeSupinski, Lawrence Livermore National Laboratory
Professor Maria Garzaran
Professor David Padua

Abstract

Application performance can degrade significantly due to node-local load

imbalances during application execution on a large number of SMP nodes.

These imbalances can arise from the machine, operating system, or the ap-

plication itself. Although dynamic load balancing within a node can mit-

igate imbalances, such load balancing is challenging because of its impact

to data movement and synchronization overhead. We developed a series of

scheduling strategies that mitigate imbalances without incurring high over-

head. Our strategies provide performance gains for various HPC codes, and

perform better than widely known scheduling strategies such as OpenMP

guided scheduling. Our scheme and methodology allows for scaling appli-

cations to next-generation clusters of SMPs with minimal application pro-

grammer intervention. We expect these techniques to be increasingly useful

for future machines approaching exascale.

ii

Acknowledgments

This work would not be possible without the help of many people. First,

thanks to my advisor, Professor Bill Gropp, who provided me with several

revisions to my thesis, several technical suggestions (including code develop-

ment) throughout, and an initial and continual drive to learn new concepts

and to solve challenging problems through a PhD. Additionally, I would like

thank Professor Micheal Heath for helping to make the theoretical analysis

part of this work more formal and systematic. Thanks to Simplice Donfack

for his collaboration and support of the work on applying hybrid static/dy-

namic scheduling to dense matrix factorizations, and to Laura Grigori for

overseeing a large portion of this work. Thanks also to Jim Demmel for

discussing my work in the context of dense matrix factorizations, and for

providing impetus for detailed investigation locality-based optimizations for

dense matrix factorizations. I would like to especially thank Todd Gamblin

for providing support for the software system that increased the applica-

bility of this work and grew this work further, and to Bronis de Supinski

for providing strategic research direction for runtime optimizations of our

low-overhead scheduling techniques. Additionally, I’d like to thank Steve

Langer who posed important questions to think about from an application

programmer’s point of view. I would also like to thank Martin Schulz for

providing input on performance profiling, along with the LC division at

Lawrence Livermore National Laboratory for providing technical support

on the clusters at LLNL. I would also like to thank Torsten Hoefler for

his input on performance modeling and theoretical analysis of low-overhead

scheduling strategies. Thanks to my committee members David Padua and

Maria Garzaran for their generous feedback and input throughout the dis-

sertation process. Thanks to my labmates from the Scientific Computing

Group at the University of Illinois at Urbana-Champaign for their feedback

in practice presentations. Finally, this work would not be possible without

the unconditional support and caring of family and friends throughout the

PhD and the dissertation process.

iii

Table of Contents

List of Tables . vii

List of Figures . viii

List of Abbreviations . xii

List of Symbols . xiii

Chapter 1 Introduction and Motivation 1
1.1 Cache Miss Calculations . 10
1.2 Contributions . 12
1.3 Thesis Outline . 13

Chapter 2 Hybrid Static/Dynamic Scheduling 14
2.1 Basic Mixed Static/Dynamic Scheduling Technique 14
2.2 Results for Barnes-Hut and NAS LU with Mixed Static/Dy-

namic Scheduling . 17
2.2.1 An Empirical Method for Finding the Best Static Frac-

tion . 18
2.3 Study with MPI Code And Outer Iteration Locality 22

2.3.1 A Scheduler for Outer Iteration Locality 22
2.3.2 MPI Regular Mesh Computation 23
2.3.3 Tuning Tasklet Granularity for Reduced Thread Idle

Time . 29
2.3.4 Using Our Technique to Improve Scalability 31

2.4 Results for Numerical Linear Algebra 35
2.5 Conclusions . 38

Chapter 3 Weighted Hybrid Scheduling 39
3.1 Platforms Considered . 40
3.2 Scheduling Techniques . 42

3.2.1 Allocating Iterations Based on Weights 44
3.3 Results for Weighted Hybrid Scheduling 45

3.3.1 Weighted Scheduling 47
3.3.2 Micro-scheduling . 48
3.3.3 Weighted micro-scheduling 49
3.3.4 Experimentation with Varying Problem Sizes 50
3.3.5 Impact of Memory Accessed per Time Step 50

iv

3.4 Discussion . 50

Chapter 4 Slack-Conscious Hybrid Static/Dynamic Schedul-
ing . 53
4.1 Performance Perturbances . 54
4.2 Model-Based Determination of Minimal Dynamic Fraction . . 55

4.2.1 Using a Model for Hybrid Scheduling 55
4.3 Communication Deadlines and Slack 57

4.3.1 Characterizing Slack 58
4.3.2 Existing Thread Scheduling Policies In the Context of

Slack . 59
4.4 Extending the Model to Incorporate Slack 61
4.5 Slack-Conscious Hybrid Static/Dynamic Scheduling 63

4.5.1 Automatic Compiler Transformation 65
4.5.2 Runtime Parameter Estimation 66

4.6 Experimental Evaluation . 68
4.6.1 System-Specific Noise Signatures 69
4.6.2 Slack Prediction Accuracy and Overhead 69
4.6.3 Comparing Slack-conscious Scheduling with Best Static

Fraction . 70
4.6.4 Implementation Strategy Assessment 71
4.6.5 Overall Application Performance 74

4.7 Conclusion . 76

Chapter 5 Spatial Locality in Dynamically Assigned Itera-
tions . 77
5.1 Problem Statement . 78
5.2 Scheduling Strategy . 79

5.2.1 Modifications to Allocation of Iterations 79
5.2.2 Choosing the Thread From Which to Steal 80

5.3 Implementation . 81
5.3.1 Framework and Usage 82
5.3.2 Implementation of Locality Optimized Static/Dynamic

Scheduling . 82
5.4 Experimental Evaluation . 83

5.4.1 Implementation Overhead 84
5.4.2 Application Performance 85

5.5 Conclusion . 87

Chapter 6 Composing Multiple Scheduling Strategies . . . 90
6.1 Scheduling Strategies Overview 90
6.2 Techniques for Composing Schedulers 92

6.2.1 hybSched . 93
6.2.2 tunedSched . 93
6.2.3 NoiseModelSched . 94
6.2.4 AppModelSched . 94
6.2.5 modelSched . 95
6.2.6 uSched . 95

v

6.2.7 slackSched . 95
6.2.8 vSched . 96
6.2.9 ComboSched . 96
6.2.10 Code Transformation 97

6.3 Results . 98
6.3.1 Application Programmer Effort 102

6.4 Relevance to Future Architectures 102

Chapter 7 Related Work . 105

Chapter 8 Conclusions . 110

References . 113

vi

List of Tables

1.1 Standard load imbalance metric across all cores of multiple
nodes of Cab. 4

1.2 Standard load imbalance metric taken across nodes (within
each node, load is summed across cores) for the above N-body
computation run on Cab, added to the rightmost column. . . 4

2.1 Table showing performance gains over OpenMP static for
NAS benchmarks with besf on cab. 22

2.2 Table showing performance gains over OpenMP static for
NAS benchmarks with besf on rzuseq. 22

4.1 Overview of all model parameters. 56
4.2 Slack statistics (in µs) across MPI processes. 58
4.3 Overview of all model parameters. 62

5.1 Overheads of our scheduling runtime shown as the percentage
difference between our library’s static scheduling and OpenMP
static scheduling. 84

5.2 Barnes-Hut standard deviations of execution times across 15
trials, where a trial is a job submission of the code. 88

vii

List of Figures

1.1 Schematics of application timelines showing how impact of
noise can be mitigated by idealized within-node work re-
distribution. 3

1.2 A modeled application timeline having load imbalance on
some particular node through a re-distribution of work across
cores within a node provides improved performance. 3

1.3 Calculation of the total overhead of thread idle time for an
MPI+OpenMP code. 7

1.4 Breakdown of execution time for a load imbalanced code (left)
and a load balanced code (right) on cab, shown for the three
available OpenMP scheduling strategies. 7

1.5 Breakdown of time. Synchronization overheads are shown in
green. 8

1.6 Cache misses with L2 misses on top and L3 on bottom, for
different OpenMP scheduling strategies. 9

2.1 Impact of performance irregularities for static scheduling. . . 15
2.2 Dynamic scheduling of one invocation of a threaded compu-

tation region on an arbitrary MPI process. 16
2.3 Using mixed static/dynamic scheduling to handle load imbal-

ances across cores. 17
2.4 OpenMP loop with static scheduling. 17
2.5 OpenMP loop modified for mixed static/dynamic scheduling. 17
2.6 Set fs = 0.5: In half, threads do the first half of their iterations

statically. See rightmost bar in the bar graph. 18
2.7 OpenMP statically scheduled loop transformed for hybrid

static/dynamic scheduling. 19
2.8 Performance for different static fractions when using hybrid

static/dynamic scheduling for Barnes-Hut. 20
2.9 Performance for different static fractions when using hybrid

static/dynamic scheduling for NAS LU. 20
2.10 Execution time breakdown with the besf strategy added on

the rightmost bar. 21
2.11 L2 cache misses shown in the top graphs; L3 in the bottom.

The best static fraction strategy is added on the rightmost bar. 21
2.12 3D stencil domain decomposition across MPI processes. . . . 24

viii

2.13 3D stencil domain decomposition across MPI processes, along
with thread partitioning of work within each MPI process. . . 25

2.14 Histograms for static scheduling on 1 node, showing bi-modal
distribution. 25

2.15 3D stencil decomposition with a dynamic scheduling strategy
applied. 26

2.16 3D stencil decomposition with a locality-aware scheduling
strategy applied. 26

2.17 3D stencil decomposition with our mixed static/dynamic schedul-
ing strategy applied. 27

2.18 Performance for different scheduling strategies on a single
node of IBM Power5+ cluster of SMPs. 29

2.19 Performance for scheduling with different numbers of planes
per tasklet. 30

2.20 Iteration timing histograms of 3D regular mesh run on single
node of IBM Power 5+ cluster, where each histogram corre-
sponds to a different scheduling strategy applied to the 3D
regular mesh. 31

2.21 Scaling behavior of different scheduling strategies. 33
2.22 Performance consistency is maintained for mixed static/dy-

namic scheduling for 1 nodes. 33
2.23 Performance consistency is maintained for mixed static/dy-

namic scheduling for 2 nodes. 34
2.24 Performance consistency is maintained for hybrid static/dy-

namic scheduling for 16 nodes. 34
2.25 Performance consistency is maintained for hybrid static/dy-

namic scheduling for 64 nodes. 35
2.26 Performance of Hybrid Static/Dynamic Scheduled CALU, MKL

and PLASMA on the 16-core Intel machine. 37
2.27 Performance of Hybrid Static/Dynamic Scheduled CALU, MKL

and PLASMA on the 48-core AMD Opteron machine. 37
2.28 Performance variation of CALU on an AMD Opteron 24-core

node of a cluster. 38

3.1 System noise plotted against all ranks for a 100 node run for
Jaguar and Ranger. 40

3.2 Histograms for the execution time of a sequential computation
performed to record noise events on Jaguar (left) and Ranger
(right). The labels on the x-axis are bin-numbers. 41

3.3 MPI domain decomposition used for the 3D Stencil code. . . 45
3.4 Hybrid MPI+pthreads domain decomposition with micro-scheduling

used for the 3D Stencil code. The dynamic fraction is denoted
by fd. 46

ix

3.5 Hybrid MPI+pthreads domain decomposition used with weighted
static and dynamic micro-scheduling for the three-dimensional
7-point stencil computation. The dynamic fraction is denoted
by fd, and the weight of thread 1, as shown in this diagram,
is denoted by w1. 46

3.6 Performance of the stencil computation on Jaguar for various
scheduling techniques. 47

3.7 Performance of the stencil computation on Ranger for various
scheduling techniques. 48

3.8 Impact of problem size on Jaguar for 3D Stencil with different
load balancing strategies. 51

3.9 Impact of problem size on Ranger for 3D Stencil with different
load balancing strategies. 52

4.1 Slack in a binomial broadcast tree with four processes. . . . 59
4.2 Impact of performance irregularities for static scheduling, with

slack factor added. 60
4.3 Resilience to performance irregularities with dynamic schedul-

ing, with slack factor added. 60
4.4 Hybrid Scheduling for a threaded computation region, with

the slack factor added. 61
4.5 Runtime framework with our contributions in grey. 64
4.6 Transformation of an OpenMP loop to use our approach. . . 65
4.7 Scaling PF3D on a Intel Westmere 12-core cluster. 68
4.8 Noise signatures for our test systems. 69
4.9 Average error of runtime’s slack prediction across all MPI

processes, for different applications. 70
4.10 Average overhead of implementation of slack prediction li-

brary function across all MPI processes for different applica-
tions. 70

4.11 Comparison of our scheduling technique with using the best
static fraction on Cab. 72

4.12 Performance for different scheduling strategies shown as per-
centage speedup over OpenMP static scheduling. 73

4.13 Overheads for different scheduling strategies as a percent of
total runtime. Dequeue overhead is hashed, and thread idle
time is solid. 73

4.14 Scaling runs of all five applications. 74
4.15 Scalability of PF3D with different schedulers on cab. 75

5.1 Allocation of iterations to threads for Hybrid Static/Dynamic
Scheduling. 80

5.2 Allocation of loop iterations to threads for Staggered Hybrid
Static/Dynamic Scheduling. 80

5.3 Framework for our modified portion of the thread library. . . 81
5.4 Transformation of a loop to use our approach. 83
5.5 Barnes-Hut code main modification using Slack-Conscious

Hybrid Static/Dynamic scheduling. 86

x

5.6 Improvement obtained over OpenMP static scheduling for dif-
ferent scheduling strategies applied to Barnes-Hut, shown for
4 of 16 cores of Cab. 87

5.7 Improvement obtained over OpenMP static scheduling for dif-
ferent scheduling strategies applied to Barnes-Hut, shown for
8 of 16 cores of Cab. 88

5.8 Improvement obtained over OpenMP static scheduling for
different scheduling strategies applied to Barnes-Hut, for 16
cores of Cab. 88

5.9 Improvement obtained over OpenMP static scheduling for dif-
ferent scheduling strategies applied to a stencil code, running
on 16 cores of Cab. 89

6.1 Composition of 8 schedulers that make comboSched. 93
6.2 Original code with OpenMP loop. 97
6.3 Code transformed to use composed scheduler. 99
6.4 Rebound(N-body): Performance improvement obtained over

OpenMP static scheduling. 100
6.5 miniFE (finite element): Performance improvement obtained

over OpenMP static scheduling. 101
6.6 SNAP (regular mesh): Performance improvement obtained

over OpenMP static scheduling. 102
6.7 Total lines of code changed and average lines of code changed per

threaded computation region for the Rebound N-body, CORAL

SNAP and CORAL miniFE. 102

xi

List of Abbreviations

MPI Message Passing Interface

HPC High Performance Computing

LDB Load Balancer

static OpenMP Static scheduling

dynamic OpenMP Dynamic scheduling

guided OpenMP Guided scheduling

half Basic Hybrid Static/Dynamic Scheduling with 50% static
fraction

besf Basic Hybrid Static/Dynamic Scheduling

wSched Weighted Factoring for Persistent Load Imbalances

uWldb Weighted Hybrid Static/Dynamic Scheduling

sSch Slack-Conscious Mixed Static/Dynamic Scheduling

sds Staggered Static/Dynamic Scheduling.

combo Example scheduler composition.

xii

List of Symbols

τ Time taken to complete the computational work of a dynamically
scheduled task.

δ Duration of excess work or idle time.

d Number of tasks to be dynamically scheduled in a threaded com-
putation region.

N Number of loop iterations in a threaded computation region.

t1 Length of time for a single loop iteration.

Tp Time needed for computational work on p cores of a cluster’s
multi-core node.

Si Slack duration on process i.

xiii

Chapter 1

Introduction and Motivation

As applications become more sophisticated and architectures become more

complex, a supercomputer may not be utilized to its peak performance [9,15,

29, 78]. Specifically, during application execution on a large number of pro-

cessors, load imbalance can cause parallel efficiency of scientific applications

to deteriorate with an increasing number of processors.

We focus on iterative MPI computations. Iterations may correspond to

timesteps, numerical iterations, or both. In each iteration, steps involve

synchronization across nodes, such as global reductions or near-neighbor

communications. Broadly, applications with these characteristics can be

called bulk-synchronous or loosely-synchronous.

Consider the kinds of load imbalances that arise in this context. Some

imbalances arise somewhat randomly across individual cores. We can think

of these as transient and uncoordinated imbalances. Examples of these

types of imbalances are small, transient performance perturbances caused

by time-shared operating system daemons, correctable hardware errors, vari-

able memory access latencies, software floating-point exception handling,

and dynamic CPU frequency management for power conservation [12, 61,

65, 70]. For brevity, we will call these variations noise, while noting that it

is a generalization of the conventional definition of noise, which is typically

associated with operating system daemons [12,52,72].

The other category of imbalances arises from load variability. Here, code

executing on different threads takes different amounts of time, and so ar-

rives at synchronization points at different times during each step. Many

situations in which this happens involve persistent load imbalances. Persis-

tent load imbalances have a (relatively) fixed pattern of load distributions

across cores, over iterations of an application. The balance may shift some-

what across iterations, slowly, but the broad pattern remains similar. A

major source of persistent load imbalances are the applications themselves.

For example, application load imbalances exist in sparse matrix-vector mul-

tiplication used in quantum chromodynamics simulations [74] and N-body

1

force calculations used in molecular dynamic simulations [73]. Addition-

ally, static variations in speeds of different cores may lead to persistent

imbalances as well. Load variability also includes situations that are non-

persistent imbalances. Here, the load variation significantly changes after

every few iterations, such as in the case of adaptive mesh refinement [37].

A potential method for mitigating both of these categories of load im-

balances is suggested by the fact that the number of cores per node is large

and is steadily increasing over time [78]. Many machines with conventional

processors have 32-64 cores per node, e.g., Cray’s Titan, or IBM’s Mira

(BG/Q) [1,2]. Future versions of many-core processors, such as Intel’s Xeon

Phi, are likely to have several hundred cores per node [87]. It has been

predicted that for an exascale machine, the number of nodes will not be

much larger than today’s petascale machines, but the number of cores per

node will be substantially larger [9]. The existence of large numbers of cores

within each node can be potentially utilized to reduce global load imbal-

ance by dynamically equalizing the load within each node. This is the key

approach that provides the context for this thesis.

The schematics in Figures 1.1 and 1.2 illustrate why our key approach

mentioned above is potentially attractive. In these figures, the x-axis is time,

and the y-axis is core number. A horizontal line represents the timeline

of a core. A white space in the core’s timeline represents the core’s idle

time. Consider the effects of system noise on overall performance, as shown

in Figure 1.1a. On each timestep, a core on a different node experiences

noise, given a system with a sufficiently large number of nodes. While

on some iterations, no node may experience noise, and on other iterations

multiple nodes might experience noise, the essential argument we are making

is still valid. Even though the noise on any given core is rare and would

not impact sequential computations significantly, the MPI synchronization

between computations slows down the parallel program significantly. Our

approach is illustrated by Figure 1.2b. If the load on the affected core can

be re-distributed to the remaining cores within that node without much

overhead, the overall impact of noise can be significantly reduced.

The schematic shown in Figure 1.2 applies for application-induced load

imbalance, which is typically persistent. The performance is affected by the

most heavily loaded core, as before. Again, if we could re-distribute the load

within each node equally, the performance would be substantially improved.

We make note that the indent on the node second to the bottom is due to

differences in load across nodes, and handling this problem is complementary

to this work. This re-distribution helps even for load variability that is not

2

persistent.

Node	

(a) Noise occuring on different nodes in different iterations
delays every iteration.

Node%

(b) Execution times are signifi-
cantly reduced, if we assume load
can be perfectly re-distributed
within each node.

Figure 1.1: Schematics of application timelines showing how impact of noise
can be mitigated by idealized within-node work re-distribution.

(a) A modeled application timeline having
persistent load imbalance across cores during
execution.

(b) A modeled applica-
tion timeline with work
re-distributed across cores, to
reduce load imbalance.

Figure 1.2: A modeled application timeline having load imbalance on some
particular node through a re-distribution of work across cores within a node
provides improved performance.

As a concrete example, consider the performance data shown in Table 1.2

for an N-body computation (a galaxy simulation) on a cluster named cab.

Cab is an Intel Xeon Cluster with 16 cores per node. The table shows load

imbalance during the application execution across all cores, in the form of

the ratio of the load on the heaviest loaded core to the average load per

core. This ratio captures the impact of load imbalance on execution time.

As expected, the load imbalance increases as the number of cores increases

in this strong scaling experiment.

To see how the above idealized approach will work for this example, we

3

assume that the load within each node is perfectly re-balanced without any

overhead. For every node, we sum the load of each core on it. We then

divide by the number of cores, to simulate the effect of an ideal within-node

load balancer. In this scenario, the execution time will be decided by the

most heavily loaded node. This leads to a substantial reduction in execution

time, as shown in the table. This suggests that fixing within-node imbalance

can be a powerful technique for improving program performance.

Num Nodes Num Cores Across-core

1 16 1.01

4 64 1.08

64 1024 1.41

1024 16384 1.45

Table 1.1: Standard load imbalance metric across all cores of multiple nodes
of Cab.

Num Nodes Num Cores Imbalance Mitigated Imbalance

1 16 1.01 1.00

4 64 1.08 1.04

64 1024 1.41 1.18

1024 16384 1.45 1.26

Table 1.2: Standard load imbalance metric taken across nodes (within each
node, load is summed across cores) for the above N-body computation run
on Cab, added to the rightmost column.

To be sure, for the persistent load imbalances of the kind seen in the

N-body code, it is possible to use global across-node load balancing tech-

niques. These could be overdecomposition-based measurement-driven load

balancing techniques, such as those used in Charm++ [51]. Alternatively,

they may be application-specific techniques, such as space-filling curve based

techniques for Barnes-Hut N-body codes [92]. However, for the following

reasons, the within-node dynamic load balancing is still attractive and nec-

essary for persistent imbalances.

• Often, across-node load balancing requires significant effort. To use

over decomposition based techniques, one has to change the program-

ming model. Application-specific techniques may require significant

effort. A within-node balancer can mitigate much of the imbalance

with low programmer cost.

4

• Even if global load balancing is used, a significant residual imbalance

remains because of imperfections in accurate predictions of load and

imperfections in load balancing algorithms themselves.

• Global load balancers can be faster if they focus on partitioning work

to the nodes (which are much smaller in number, compared with the

number of cores), leaving the within-node imbalance for a within-node

balancer.

• Often, applications with persistence still are not exactly repeating their

behavior every time step. As particles move in N-body codes, for

example, the load shifts slowly. This creates quasi-transient imbalance.

• Applications codes such as Adaptive Mesh Refinement, e.g., SAM-

RAI [37] or Shewchuck’s triangulation programs [83], change behavior

quickly as refinements and coarsenings are applied. A node may be a

sufficiently large unit that these effects are neutralized, but work allo-

cation to cores within a node must be changed after every refinement

or coarsening.

Utilizing multiple cores to dynamically balance load within each node

can be an effective technique for mitigating global load imbalance, without

undue burden on the programmer. Although the potential of this idea of

mitigating global load imbalance by dynamic load balancing within each

node is attractive, its utility critically depends on whether the dynamic

load balancing can be done effectively, and with low-overhead. Note that

we assumed an idealized, perfect load re-distribution in the example and

schematic above. The dominant methods for doing such load balancing, with

minimal programming effort for the application programmer, are provided

by OpenMP. However, as we show below, these methods are far from effective

for our purpose.

We experiment with a single-node OpenMP implementation of two dif-

ferent codes, one a load balanced computation and the other a load imbal-

anced computation. With these codes, we try different ways to distribute

work across cores, by running the code with OpenMP’s three available sched-

ulers.

As a representative of load imbalanced code, we consider the Barnes-Hut

Lonestar benchmark [79], a code used in the context of galaxy simulation.

We use the 100, 000 particle data set; this problem size is large enough

to run out of cache and into main memory during application execution.

For the load balanced code, we consider the NAS LU benchmark [50], a

5

code used within applications for solving a system of linear equations. We

used problem class D for NAS LU code for the same reason as the problem

size used for Lonestar Barnes-Hut code. Note that the purpose of applying

dynamic load balancing to a load balanced code is to handle transient load

imbalances, if they arise.

The below experiment is done on 1 node of Cab, which consists of two

8-core Intel Xeon chips with a CHAOS operating system. We use the Intel

icc compiler, and use the -O3 compiler optimization level. Also, we ensured

that thread-to-core binding was on by setting the GOMP CPU AFFINITY

OpenMP environment variable. The average of the timings across 25 trials

is reported. For each trial, a separate job was submitted. The below is

based on application execution time reported by the original code. We used

omp get wtime() to gather the timings for each run.

Figure 1.4 shows the performance of different OpenMP scheduling strate-

gies for Barnes-Hut and NAS LU. The OpenMP dynamic strategies make

the performance substantially worse for NAS LU, and do not improve it to

the extent expected for Barnes-Hut, as explained below. The first challenge

for any load balancing strategy is in handling thread idle times due to load

imbalances from the application or architecture. The method used to obtain

the idle time is shown in Figure 1.3. The average thread idle time shown

in blue in Figure 1.4 is the sum of idle times across all cores divided by the

number of cores. The other time, shown in black, is average computation

time per core, calculated as the difference between (a) the sum of execu-

tion times divided by the number of cores, and (b) the average thread idle

time. Note that the sum of idle times across threads is the load imbalance

that could be avoided. Thus, the average idle time across all threads is the

overhead of idle time incurred during application execution. One might ex-

pect that dynamic scheduling would eliminate thread idle time. However,

idle time can exist in dynamic scheduling due to task quantization [54], i.e.,

even with dynamic scheduling, each core except one may have idle time as

large as the size of each dynamically scheduled task (a task is a chunk of

iterations assigned at once).

The dynamic scheduling almost completely eliminated idle time for

Barnes-Hut, but the total execution did not go down by the same amount,

i.e., the black portion of the bar increased. For NAS LU, the execution time

in both dynamic strategies is substantially worse than the static strategy.

What are the remaining overheads that cause the increased execution

time in Figure 1.4? We first isolate the compute time of the application

execution time, or the time spent doing the application’s work. The compute

6

double idleTimeCost;

double t, idleTime;
int myTid, numThreads;
#pragma omp parallel private(myTid)
{

myTid = omp_get_thread_num();
numThreads = omp_get_num_threads();

#pragma omp for
for (i=0; i<n; i++)

{
c[i]+= a[i]*b[i];

}
idleTimes[myTid] = - omp_get_wtime();

} // threads synchronize here
t = omp_get_wtime();
for (tid=0; tid<numThreads ; tid++)

{
idleTimes[i] += t;
idleTime += idleTimes[i];

}
idleTimeCost += idleTime/numThreads;

Figure 1.3: Calculation of the total overhead of thread idle time for an
MPI+OpenMP code.

 static dynamic guided
Strategy

0

5

10

15

20

25

30

35

T
im

e
 (

s)

Barnes-Hut : cab
other idle

 static dynamic guided
Strategy

0

50

100

150

200

T
im

e
 (

s)

NASLU : cab
other idle

Figure 1.4: Breakdown of execution time for a load imbalanced code (left)
and a load balanced code (right) on cab, shown for the three available
OpenMP scheduling strategies.

time for each strategy is calculated by obtaining the time for execution using

OpenMP static scheduling when run on 1 core of a node, and dividing this

time by the number of cores the experiment was run with. Figure 1.5 shows

compute time in blue at the bottom of each bar.

One source of overhead is synchronization overhead, which is the time

taken during application execution for coordination of threads to share

the queue of work. We measure the synchronization overhead using HPC-

Toolkit [3], which provides call-path profiles of functions invoked during ap-

plication execution; we focus on those functions invoked from the OpenMP

7

static dynamic guided
Strategy

0

5

10

15

20

25

30

35

T
im

e
 (

s)

Barnes-Hut : cab
comp other dq idle

static dynamic guided
Strategy

0

50

100

150

200

T
im

e
 (

s)

NASLU : cab
comp other dq idle

Figure 1.5: Breakdown of time. Synchronization overheads are shown in
green.

runtime. The call-path profiles tell us the percentage of execution time

and the total execution time taken for all invocations of the omp lock()

function within the OpenMP runtime, which is invoked each time a thread

retrieves a chunk of work from the queue. This percentage provides the syn-

chronization overheads of each scheduling scheme. From Figure 1.5, we see

the synchronization time, shown in green in the graph just below the idle

time. Synchronization overhead only exists when using dynamic or guided

scheduling; for the static scheduling scheme, threads do not use a shared

lock to retrieve their iterations, in the beginning of execution, and therefore

this cost of assigning work to threads does not exist.

While seemingly insignificant, these synchronization overheads account

for approximately 5% percent of execution time for the NAS LU and the

Barnes-Hut code. The overhead of synchronization is larger for the load

balanced code NAS LU. This may be partly because the iterations are more

finely quantized, and partly because all threads access the lock at the same

time, since the threads are done with their local work at roughly the same

time.

The above problem of synchronization overhead is inevitable for super-

computer nodes with larger numbers of cores. The reason can be seen by

breaking down the synchronization overhead into its two components: 1.

the function call overhead that each thread must incur when it enters and

exits the lock function, i.e., the locking function call overhead, and 2. the

time that threads spend waiting for another thread in the critical section to

make the lock available, i.e., the serialization overheads. While the locking

function call overheads stay constant, the serialization overheads will only

become larger with an increasing number of cores, since more threads will

have to wait for the lock. Thus, we can project a larger contribution of this

synchronization overhead as we run the code on supercomputer nodes with

more cores.

8

However, as can be seen in Figure 1.5, the synchronization overhead

alone does not account completely for the performance degradation with

OpenMP dynamic scheduling and OpenMP guided scheduling. Since dy-

namic scheduling may lead to accessing a cache line that may be in another

core’s cache, the remaining overheads are likely from data movement.

To confirm the impact to data movement, we measured the L2 and

L3 cache misses for the threaded computation regions of each applica-

tion using PAPI [17]. We measured the cache misses by starting the

PAPI counters just before the threaded computation region, and stopping

the PAPI counters just after the threaded computation region. We used

PAPI counter start() and PAPI counter stop() for counter func-

tions, defined in the high-level interface. Before we started the PAPI counter,

we invoked the function PAPI thread self(). We used the PAPI coun-

ters PAPI L2 TCM and PAPI L3 TCM for the L2 and L3 cache misses, re-

spectively. At the end of each threaded computation region, we took the

sum of cache misses across all threads, and reported the sum across all

threaded computation regions, for each threaded computation region. The

cache misses are the total cache misses across all cores. Figure 1.6 shows the

L2 and L3 cache misses for the Barnes-Hut code (left) and NAS LU (right).

static dynamic guided
Strategy

0

10

20

30

40

50

60

L2
 C

a
ch

e
 M

is
se

s
(m

ill
io

n
s)

Barnes-Hut : cab

static dynamic guided
Strategy

500

1000

1500

2000

2500

3000

3500

4000

L2
 C

a
ch

e
 M

is
se

s
(m

ill
io

n
s)

NASLU : cab

static dynamic guided
Strategy

0

5

10

15

20

25

30

L3
 C

a
ch

e
 M

is
se

s
(m

ill
io

n
s)

Barnes-Hut : cab

static dynamic guided
Strategy

500

1000

1500

2000

L3
 C

a
ch

e
 M

is
se

s
(m

ill
io

n
s)

NASLU : cab

Figure 1.6: Cache misses with L2 misses on top and L3 on bottom, for
different OpenMP scheduling strategies.

The results from Figure 1.6 suggest that the performance degradation

of OpenMP dynamic scheduling and guided scheduling, with respect to

OpenMP static scheduling, is due to the significantly higher L2 and L3

cache misses observed when using OpenMP dynamic and guided schedul-

ing. Specifically, dynamic scheduling has roughly 4.0 times higher L2 cache

9

misses over static scheduling, and 3.5 times higher L3 cache misses over

static scheduling. The cost of data movement does not decrease signifi-

cantly with OpenMP guided scheduling. OpenMP guided scheduling has

3.5 times higher L2 cache misses compared to OpenMP static scheduling,

and 2.8 times higher L3 cache misses compared to OpenMP static schedul-

ing. The cost of coherence cache misses increases with increasing numbers

of cores. The reason is that the probability that a core selects a tasklet that

it did not execute in the last invocation of the threaded computation region

(this incurs coherence cache misses) increases with increasing numbers of

cores.

1.1 Cache Miss Calculations

To check that the cache misses in Figure 1.6 are in fact impacting perfor-

mance and can explain most of the performance loss quantitatively, we show

calculations for NAS LU. We obtain the time for an L2 cache miss and for an

L3 cache miss on Cab using the specification sheet for Cab’s node architec-

ture [60], along with Intel’s forum post reply referring to this specification

sheet that gives the information needed [24]. In the architecture specifica-

tion sheet, the processor frequency is 2.66GHz. The forum post indicates

that the L2 remote cache miss latency is 100-300 cycles, so we use the mean

cycle time of 200 cycles. The time to remote DRAM, i.e., the L3 cache miss

latency, is 100 nanoseconds.

We need to account for 485.52 - 83.53 - 24.65 = 376 seconds of time

spent in dynamic scheduling. Note that we do not need the execution time

breakdown here, since this code exhibits low idle time. Cache miss time for

the L2 cache is 200
2.66×109 · (3845×106−2257×106) = 65 seconds. This leaves

376 - 65 = 311 seconds to account for. Cache miss time for the L3 cache is

(100 ·10−9) ·(1676−631)×106 = 97 seconds. This now leaves 311 - 97 = 214

seconds to account for. The time of L3 cache misses may be much higher

than 100 nanoseconds, because access to main memory by multiple threads

requires threads to wait in the memory queue. In the worst case, i.e., when

all threads access main memory simultaneously, the latency to memory is a

factor of (16 + (16−mem queue depth)× 100) nanoseconds of the original

latency, where mem queue depth = 12 on this machine.

To check that memory bandwidth was the factor for the increase in time

for L3 cache misses, we ran STREAM [66] on one core of Cab and on all cores

10

of Cab. We recorded the bandwidth for both runs. The memory bandwidth

of STREAM triad run on one core is 14,837.24 MB/s, but the memory

bandwidth of STREAM triad run on 16 cores is only 103,669.71 MB/s, a 7x

improvement in memory bandwidth rather than a 16x improvement. The

effective memory latency increases by a factor of 2.4x, giving 238 seconds

instead of 97 seconds for the cache miss time for L3. The remaining time is

now 311 - 238 = 73 seconds. This may be due to the L2 cache miss latency

being higher (also, note that the L2 cache miss latency was reported at 1

core). Another cause could be TLB misses, although we to tried reduce their

impact by using huge pages for the runs.

While the above is a rough estimate, it helps explain the performance

degradation. Additionally, in terms of order of magnitude, the calculations

show that the timings shown in yellow for NAS LU in Figure 1.5 are mostly

attributed to data movement.

Thus, current OpenMP schedulers do not solve the performance problem

for next-generation clusters of SMPs. We have identified three challenges to

obtaining good performance using dynamic load balancing within a node:

(1) idle time due to load imbalances from the application or system noise, (2)

data movement overhead, and (3) synchronization overheads from runtimes.

These challenges provide motivations for developing a new set of schedulers,

which balance the tradeoff between load balance and locality that works for

any application-architecture pair.

To summarize, we first argued for the importance of handling within-

node load imbalances, and how they could mitigate the performance

loss due to global load imbalances. We describe these schematically for

both transient and persistent imbalances, using NAS LU and N-body

code, respectively. We further showed that using OpenMP scheduling

strategies to do this dynamic load balancing is problematic because they

add significant data movement overheads. Given the above challenges, the

objective of this thesis is to:

Design a set of new scheduling strategies that handles all three causes

of performance loss, i.e., thread idle time, data movement, and synchro-

nization overhead, simultaneously, for any application and architecture, in

the context of an MPI+OpenMP application.

11

Thus, we ask: can we combine a static and dynamic scheduling scheme

that simultaneously reduces load imbalances and scheduler overhead, in an

intelligent manner?

The key idea of our solution is to allocate to threads a fixed fraction of

OpenMP loop iterations statically, and schedule the remainder dynamically.

We define the ratio of static loop iterations to all loop iterations as the static

fraction (and the ratio of dynamic iterations to all iterations as the dynamic

fraction). The scheduling schemes developed throughout this thesis are an

elaboration of this basic idea.

1.2 Contributions

The main contributions of this thesis are:

• An experimental method to determine parameter values of our strategy

which achieves the tradeoff between load balance and locality;

• A runtime determination of scheduler parameters for maximizing both

load balance and locality, given partially transient and partially per-

sistent load imbalance;

• A performance model and theoretical analysis of scheduler parameter

values for our strategy for any number of nodes;

• analysis and experimentation of the tradeoff between locality and load

balance for coarse-grained application-generated imbalances;

• A methodology to provide for continual innovation of new scheduling

strategies through a combination of basic strategies developed, and to

provide a way to integrate into existing OpenMP or MPI runtimes, or

any exascale runtime.

Low-overhead dynamic scheduling has far-reaching implications because it

allows us to utilize the existence of multiple cores on a node to mitigate the

effects of load imbalances. Since the number of cores is expected to grow far

more rapidly than the number of nodes in future generations of hardware [9,

29, 78], future machines will be able to prevent effects of load imbalances

from propagating to other nodes by off-loading delayed work to other cores

within the node. If integrated with MPI and OpenMP implementations,

our techniques will avoid the scaling wall due to load imbalances for several

generations of machines to come.

12

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 describes

the problem of transient load imbalance, introducing a basic low-overhead

hybrid static/dynamic scheduling strategy along with some variants, for

empirically tuning the tradeoff between load balance and locality. It then

also describes the enhancements to the basic scheduling strategy.

Chapter 3 discusses runtime adjustments to our low-overhead scheduling

strategies that can handle a mixture of imbalances due to transient noise

and persistent (core) noise. Chapter 4 discusses a scheduling technique that

uses a model-guided tuning of our scheduler’s parameters and optimizes the

scheduler for each MPI process. Chapter 5 describes techniques and opti-

mizations for reducing the loss of spatial locality in hybrid static/dynamic

scheduling. Chapter 6 describes how our techniques would be used by an

application programmer, along with a description of how different schedul-

ing strategies can be composed. Chapter 7 provides a literature survey of

relevant related work. Finally, Chapter 8 concludes this thesis, including

broader impact and possible future directions and extensions of this work.

13

Chapter 2

Hybrid Static/Dynamic
Scheduling

In the previous chapter, we highlighted three challenges for current OpenMP

loop schedulers. In this chapter, we show an intuitive diagram and model

for OpenMP static scheduling and OpenMP dynamic scheduling. With this,

we present our solution of mixed static/dynamic scheduling using OpenMP

static and dynamic scheduling to obtain the benefits of static and dynamic

scheduling, which can address the challenges of static and dynamic schedul-

ing. Given this mixed static/dynamic scheduling scheme, we ask how to

select the static fraction, and suggest a basic strategy of exhaustive search.

We apply the resulting scheduling strategy to the NAS LU and Barnes-Hut

code in Chapter 1. We proceed to describe a 3D regular mesh code, and

apply our static/dynamic scheduling technique to this code. In this part

of the chapter, we describe our own implemented scheduling library, which

allows for providing locality across timesteps for the dynamic section of the

scheduler, and allows for simultaneously tuning different parameters of the

scheduler. Finally, we discuss our approach applied to dense matrix fac-

torizations, highlighting a Communication-Avoiding LU code which has our

hybrid static/dynamic scheduling approach applied to it. We particularly

show its competitive performance over two widely-known implementations of

LU factorization, one from Intel’s MKL library for numerical linear algebra

codes, and the other from University of Tennessee’s PLASMA runtime.

2.1 Basic Mixed Static/Dynamic Scheduling

Technique

Given the thesis objective to design a set of new scheduling strategies that

handle all three causes of the problem, i.e., thread idle time, data movement,

and synchronization overhead, simultaneously, for many applications and

platforms, in the context of an MPI+OpenMP application, we propose a

new scheduling scheme.

Figure 2.1 shows a schematic of an OpenMP statically scheduled

14

threaded computation region’s invocation, when using 4 threads, followed

by an MPI communication function invocation. The figure depicts an in-

vocation of the threaded computation region on an arbitrary Ith invocation

on one of the MPI processes. The x-axis is time, and the y-axis is different

threads within the process, each with its own hardware resource. When no

noise occurs during a threaded computation region, and each loop iteration

takes an equal amount of time, this computation proceeds efficiently without

any idle time on any thread, as shown on the top part of Figure 2.1.

The lower part of the figure shows what happens when a noise event af-

fects one of the cores. As can be seen, the noise event causes all other threads

to wait at the thread barrier. This in turn causes other MPI processes to

wait within MPI communication. This waiting of other MPI processes delays

the application’s critical path, just as we saw in Figure 1.1.

MPI

1
2
3
4

1
2
3
4

Time

Am
plification

Noise MPI

Tp

Th
re

ad
s

Th
re

ad
s

Pr
oc

es
s

q
Pr

oc
es

s
q

Figure 2.1: Impact of performance irregularities for static scheduling.

Figure 2.2 shows a schematic of a dynamically scheduled (OpenMP)

threaded computation region’s invocation, when using 4 threads. The lower

part of the figure shows what happens when a noise event affects one of the

cores. In this specific case, the extra delay caused by the noise event on

thread 2 is reduced by the other 3 threads doing the work that thread 2

would have done if this threaded computation region were statically sched-

uled. Essentially, dynamic scheduling has moved the excess work, induced

by noise, off the application’s critical path, and consequently has reduced

the impact of amplification. However, this dynamically scheduled strategy

incurs scheduling overhead, which increases the time taken to execute the

code. The scheduler overhead, as noted in Chapter 1, is caused by data

movement and synchronization. The data movement overhead is induced

by a thread switching to spatially unrelated loop iterations, and is reflected

in the increased width of each computation block. The synchronization over-

head is incurred at the beginning of execution of each loop iteration. This

15

scheduling overhead causes each iteration to be dilated, causing a significant

performance degradation.

1
2
3
4

Time

1
2
3
4

Noise

MPI

MPI
Am

plification

t1
q

Th
re
ad
s

Th
re
ad
s

Figure 2.2: Dynamic scheduling of one invocation of a threaded computation
region on an arbitrary MPI process.

In Chapter 1, we asked how we can combine static and dynamic schedul-

ing in a way that reduces overhead for HPC applications. Because many

synchronous MPI applications involve an outer iteration followed by a syn-

chronization across all threads, we combine static and dynamic scheduling

in a way that allows for maximum performance gains in this context. We

intelligently combine static and dynamic scheduling by making each thread

first do a pre-assigned fraction of the loop’s iterations statically, and then

do the remaining part dynamically. Figure 2.3 illustrates our approach on a

simple threaded computation region on a single node. By dividing the iter-

ations into a statically allocated subset and a dynamically allocated subset,

we reduce the overhead in the static component, while utilizing the dynamic

component for acheiving load balance. We thus hope to combine the best

of both scheduling strategies. We refer to this strategy as mixed static/-

dynamic scheduling, and we explore this idea further in the context of the

N-body and NAS LU code described in Chapter 1.

The question is, how do we select the appropriate static fraction? In the

next section, we discuss an empirical method to tune the above scheduler’s

static fraction, effectively developing a scheduler that aims to overcome the

3 challenges described in Chapter 1.

16

1
2
3
4

1
2
3
4

Time

Noise

MPI

MPI

Am
plification

t1q
fs · Tp

Th
re
ad
s

Th
re
ad
s

Figure 2.3: Using mixed static/dynamic scheduling to handle load imbal-
ances across cores.

2.2 Results for Barnes-Hut and NAS LU with

Mixed Static/Dynamic Scheduling

As a first approximation for the static fraction for the scheduler, we choose

50%. This can be implemented by splitting the data parallel loop shown in

Figure 2.4 into two OpenMP loops: the first statically scheduled, and the

second dynamically scheduled, as shown in Figure 2.5.

#pragma omp parallel for schedule(static)
for(int i=0; i<n; i++)

c[i] += a[i]*b[i];

Figure 2.4: OpenMP loop with static scheduling.

#pragma omp parallel for nowait
for (int i = 0; i < n/2; i++)

c[i] += a[i]*b[i];

#pragma omp parallel for schedule(dynamic)
for (int i = n/2; i < n; i++)

c[i] += a[i]*b[i];

Figure 2.5: OpenMP loop modified for mixed static/dynamic scheduling.

We refer to this strategy as Mixed Static/Dynamic Scheduling, and label

it half in the graphs for brevity. We expect half to cut the dynamic schedul-

ing overhead in half. Figure 2.6 shows the performance of this strategy along

with multiple OpenMP strategies on Cab for Barnes-Hut and NASLU codes.

For the Barnes-Hut code, the half scheduling improves performance 10.1%

17

 static dynamic guided half
Strategy

0

5

10

15

20

25

30

35

T
im

e
 (

s)

Barnes-Hut : cab
comp dm dq idle

 static dynamic guided half
Strategy

0

50

100

150

200

T
im

e
 (

s)

NASLU : cab
comp dm dq idle

Figure 2.6: Set fs = 0.5: In half, threads do the first half of their iterations
statically. See rightmost bar in the bar graph.

over OpenMP guided, due to preservation of locality across invocations of

threaded computation regions, and thus less data movement across invo-

cations of the threaded computation region. We see that using the half

scheduling strategy, we get a relatively large 41% gain over OpenMP static.

For the NAS LU code, the half scheduling still has relatively high overhead

compared to OpenMP static scheduling.

2.2.1 An Empirical Method for Finding the Best Static

Fraction

Is a 50% static fraction best? The best static fraction depends on the charac-

teristics of the application and the platform. One way to solve this problem

would allow the user to set the static fraction. This strategy, taken by itself,

is referred to as Hybrid Static/Dynamic Scheduling. The user then uses this

strategy to tune the static fraction experimentally, trying static fractions

between 0.0 and 1.0, e.g., in increments of 0.01 (the increment is config-

urable), and use the best performing one (for each node) during application

execution. We vary the static fraction environment variable in increments of

0.01. We use an increment of 0.01 to get enough data points to understand

performance characteristics, but we note that more refinement gives more

improvement. This strategy is called the best static fraction, or besf. Its

application to the data parallel loop in Figure 2.4 is shown in Figure 2.7.

Figure 2.8 shows wall clock time for the Barnes-Hut code for different

static fractions. Each data point is an average over 10 trials. Also, fully dy-

namic scheduling (static fraction is 0%) is better than fully static scheduling

(rightmost data point), but the static fraction of 49% gives even better per-

formance.

Figure 2.9 shows wall clock time for the NAS LU code for different

static fractions. The fully static scheduling is significantly better than fully

dynamic. The static fraction of 96% is the best performing. When com-

18

double fs = get_env_var(STATIC_FRACTION);
#pragma omp parallel nowait
{
#pragma omp for

for (int i = 0; i < fs*n; i++)
c[i] += a[i]*b[i];

}

#pragma omp parallel
{
#pragma omp for schedule(dynamic)

for (int i = fs*n; i < n; i++)
c[i] += a[i]*b[i];

}

Figure 2.7: OpenMP statically scheduled loop transformed for hybrid stat-
ic/dynamic scheduling.

pared with its performance improvement over 100% dynamic, the difference

between the performance of the best performing static fraction and per-

formance of 100% static may appear small, but we still get a significant

improvement.

Comparing the two performance curves of N-body and NAS LU suggests

that load balanced computations have a line graph for varying static frac-

tions that is shaped like a reverse checkmark, and load imbalanced codes

have a performance curve for varying static fractions that is shaped like

a fat (forward) checkmark (the checkmark is fat because it has a rounded

bottom). The two performance curves also show that the best performing

static fraction varies for different applications.

The static fraction used in the besf scheduling strategy for Barnes-Hut

and NAS LU is the minima of the curves in Figure 2.8 and Figure 2.9,

respectively.

Figure 2.10 shows the performance of Barnes-Hut and NASLU with the

best static fraction strategy added. Using besf for Barnes-Hut improves

performance 52% over OpenMP static, and also improves performance 29%

over OpenMP guided scheduling. More importantly, our besf strategy now

also provides non-trivial performance benefits for NAS LU: we get (a some-

what unexpected) 8.4% gain over OpenMP static. The idle time (blue) in

the figure for NAS LU with static scheduling is likely due to the incidental

imbalance not coming from the application.

Figure 2.11 shows the L2 and L3 cache misses for N-body and NAS LU,

with the best static fraction strategy added to the rightmost bar. The best

19

0% 20% 40% 60% 80% 100%

Static Fraction

15

20

25

30

35

W
a
ll

C
lo

ck
 T

im
e
 (

se
co

n
d
s)

Barnes-Hut : cab

Figure 2.8: Performance for different static fractions when using hybrid
static/dynamic scheduling for Barnes-Hut.

0% 20% 40% 60% 80% 100%

Static Fraction

60

70

80

90

100

110

120

130

140

150

W
a
ll

C
lo

ck
 T

im
e
 (

se
co

n
d
s)

NAS LU : cab

Figure 2.9: Performance for different static fractions when using hybrid
static/dynamic scheduling for NAS LU.

static fraction, or besf, strategy has significantly less, i.e., 62% less, L2 cache

misses than guided scheduling, but only a somewhat small amount more,

i.e., 17% more, L2 cache misses than OpenMP static scheduling, helping to

explain why the besf strategy improves performance over OpenMP static

scheduling.

Although our strategies (half and besf) reduce cache misses through the

statically scheduled part, the dynamically scheduled part still incurs cache

20

 static dynamic guided half besf
Strategy

0

5

10

15

20

25

30

35

T
im

e
 (

s)

Barnes-Hut : cab
comp dm dq idle

 static dynamic guided half besf
Strategy

0

50

100

150

200

T
im

e
 (

s)

NASLU : cab
comp dm dq idle

Figure 2.10: Execution time breakdown with the besf strategy added on
the rightmost bar.

static dynamic guided half besf
Strategy

0

10

20

30

40

50

60

L2
 C

a
ch

e
 M

is
se

s
(m

ill
io

n
s)

static dynamic guided half besf
Strategy

500

1000

1500

2000

2500

3000

3500

4000

L2
 C

a
ch

e
 M

is
se

s
(m

ill
io

n
s)

static dynamic guided half besf
Strategy

0

5

10

15

20

25

30

L3
 C

a
ch

e
 M

is
se

s
(m

ill
io

n
s)

Barnes-Hut : cab

static dynamic guided half besf
Strategy

500

1000

1500

2000

L3
 C

a
ch

e
 M

is
se

s
(m

ill
io

n
s)

NASLU : cab

Figure 2.11: L2 cache misses shown in the top graphs; L3 in the bottom.
The best static fraction strategy is added on the rightmost bar.

misses because of the loss of spatial locality. We describe a scheme to reduce

these further in Chapter 5.

We next apply our strategy, with empirical determination of best static

fraction, to several NAS benchmarks. Table 2.1 and Table 2.2 respec-

tively show the performance improvement of our scheduling technique over

OpenMP static scheduling on the NAS benchmarks for an Intel Westmere

16-core node (cab) and an IBM BG/Q 16-core node (rzuseq). As can be seen

in Table 2.1, the gains for the CG benchmark are large on the Intel West-

mere machine due to the scheduler’s handling of application load imbalance

of NAS CG along with load imbalance due to performance irregularities

arising from OS noise. As seen in Table 2.2, while the BG/Q machine has

low noise [12], the scheduler still achieves significant performance gains for

CG because of its ability to handle the application load imbalance of CG.

21

SP BT LU FT CG MG

4.14% 5.42% 5.57% 5.31% 14.67% 9.48%

Table 2.1: Table showing performance gains over OpenMP static for NAS
benchmarks with besf on cab.

SP BT LU FT CG MG

-1.09% -1.05% -1.62% -1.59% 7.93% 5.04%

Table 2.2: Table showing performance gains over OpenMP static for NAS
benchmarks with besf on rzuseq.

2.3 Study with MPI Code And Outer Iteration

Locality

We next introduce a variant of the hybrid scheduling strategy. We use an

MPI regular mesh computation to study the performance of this strategy.

We then study the performance impact of our strategy on one node, followed

by a scalability study that shows how the amplification problem is controlled.

2.3.1 A Scheduler for Outer Iteration Locality

When we use hybrid static/dynamic scheduling with OpenMP, the loop iter-

ations in the dynamic section are selected by threads somewhat randomly. In

particular, when execution returns to the next outer iteration, the scheduler

has no memory of the allocation of the previous outer iteration. Iteration I

may be executed by thread a in one outer iteration of an MPI region, but

it may be executed by a completely different thread b in the next. This loss

of locality is detrimental for NUMA-like machines and platforms with first-

touch page allocation policies, as well as for TLB misses and other factors.

Our next scheduling strategy addresses this loss of locality by keeping track

of the thread on which each loop iteration was executed before.

We implemented the technique for supporting dynamic scheduling of

computation with a queue that was shared among threads. Each element

of the shared queue (we refer to the element as a tasklet) contains the

specification of the work for which the thread executing this tasklet is re-

sponsible, and a flag indicating whether the tasklet has been completed by

a thread. In order to preserve locality so that in repeated computations the

same threads can get the same work, we also maintain an additional tag

specifying the last thread that ran this tasklet. In the execution of each

22

iteration of an MPI+pthreads program, there are 3 repeated phases: MPI

communication, statically scheduled computation, and dynamically sched-

uled computation. In the first phase, thread 0 does the MPI communication

for border exchange. During this time, all other threads typically wait at

a thread barrier. In the second phase, each thread does all work that is

statically allocated to it. Once a thread completes its statically allocated

work, it immediately moves to the third phase, where it starts retrieving the

next available tasklet from the queue shared among other threads, which it

repeats until the queue is empty. As in the completely static scheduled case,

after threads have finished computation, they must wait at a barrier before

continuing to the next iteration. The percentage of dynamic work, granu-

larity/number of tasklets, and number of queues per node, are specified as

parameters.

An additional scheme extends this strategy to improve outer iteration

locality. In this scheme, each tasklet in the queue has an extra field, or tag,

that records the thread ID that executed the tasklet in the previous outer

iteration. In the third phase, when a thread retrieves a tasklet from the

queue, the scheduler attempts to first give it a tasklet having a tag equal

to its thread ID. Only if such a tasklet is not available are other tasklets

assigned. We refer to this strategy as scheduling with locality tags, or simply

scheduling with locality.

2.3.2 MPI Regular Mesh Computation

Our model application is an exemplar of regular mesh code. For simplicity,

we will call it a Jacobi algorithm, as the work that we perform in our model

problem is the Jacobi relaxation iteration in solving a Poisson problem.

However, the data and computational pattern are similar for both regular

mesh codes (both implicit and explicit) and for algorithms that attempt

to divide work evenly among processor cores (such as most sparse matrix-

vector multiply implementations). Many MPI implmentations of regular

mesh codes traditionally have a pre-defined domain decomposition, as is seen

in many libraries and microbenchmark suites [86]. This optimal decomposi-

tion is necessary to reduce communication overhead, minimize cache misses,

and ensure data locality. In this work, we consider a slab decomposition of

a 3-dimensional block implemented in an MPI/pthreads hybrid model, an

increasingly popular model for taking advantage of clusters of SMPs. We

use a problem size and dimension that can highlight many of the issues that

we see in real-world applications with mesh computations implemented in

23

MPI: specifically, we use a 3D block with dimensions 64× 512× 64 on each

node for a fixed 1000 iterations. With this problem size, we can ensure that

computations are done out-of-cache so that it is just enough to excercise the

full memory hierarchy. The block is partitioned into vertical slabs across

processes along the X dimension. Each vertical slab is further partitioned

into horizontal slabs across threads along the Y dimension. The slab domain

decomposition across processes is shown in Figure 2.12, while the full hybrid

process-thread domain decomposition is shown in Figure 2.13.

MPI_Isend

3D Poisson Problem(slab)

P0 P1 Pn

yDim

zDim

xDim

MPI_IrecvMPI_Irecv

MPI_Isend

Figure 2.12: 3D stencil domain decomposition across MPI processes.

We use the slab decomposition strategy for the regular mesh because

of its simplicity to implement and to tune parameters in our search space,

and because it is a common way to partition meshes in Lattice-Boltzmann

codes [93]. A MPI border exchange communication occurs between left and

right borders of blocks of each process across the YZ planes. The border

exchange operation uses an MPI Isend and MPI Irecv pair, along with an

MPI Waitall. We mitigate the issue of first-touch as noted in [78] by doing

parallel memory allocation during the initialization of our mesh. For such

regular mesh computations, the communication between processes, even in

an explicit mesh sweep, provides a synchronization between the processes.

Any load imbalance between the processes can be amplified, even when using

a good (but static) domain decomposition strategy. If even 1% of nodes are

24

Static Decomposition (r =0.0)

P0 P1

Task0 Æ thread 0

Task 1 Æthread 1

StaticTaskSize

Task tÆ thread t

Figure 2.13: 3D stencil domain decomposition across MPI processes, along
with thread partitioning of work within each MPI process.

affected by system interference during one iteration of a computationally

intensive MPI application on a cluster with 1000s of nodes, several nodes

will be affected by noise during each iteration. Our solution to this problem

is presented in the section that follows.

Figure 2.14: Histograms for static scheduling on 1 node, showing bi-modal
distribution.

Figure 2.15 and 2.16 shows the domain decomposition for a 3D stencil,

with the dynamic scheduling and locality-aware scheduling srategy applied,

respectively.

Figure 2.17 shows the domain decomposition for a 3D stencil, with our

mixed static/dynamic scheduling strategy applied to the 3D stencil.

Through our experimental studies of tuning our dynamic scheduling

strategy, we pose the following questions:

25

100% dynamic (r =1.0)

P0 P1

Task0 Æ nextAvailableThread

Task 1 Æ nextAvailableThread

DynTaskSize

Task m -1 Æ nextAvailableThread

Note that t is not necessarily equal to m

Figure 2.15: 3D stencil decomposition with a dynamic scheduling strategy
applied. 100% dynamic + Locality

P0 P1

Task0 Æ nextAvailableAffineThread

Task 1 Æ nextAvailableAffineThread

DynTaskSize

Task m -1 Æ nextAvailableAffineThread

Note that t is not necessarily equal to m

Figure 2.16: 3D stencil decomposition with a locality-aware scheduling
strategy applied.

1. Does partially dynamic scheduling improve performance for mesh com-

putations that have traditionally been completely statically scheduled?

26

Static + Dynamic

P0 P1

DynTaskSize_i

Task0 Æ Thread 0

Task 1 Æ Thread 1

Task t Æ Thread t-1

StaticTaskSize

Task t Æ nextAvailableAffineThread

Task t + m -1 Æ nextAvailableAffineThread

Task t+1 Æ nextAvailableAffineThread

(1.0 - r)*ydim

r*ydim

Figure 2.17: 3D stencil decomposition with our mixed static/dynamic
scheduling strategy applied.

2. What is the tasklet granularity that we need to use for maintaining

load balance of tasklets across threads?

3. In using such a technique, how can we decrease the overhead of syn-

chronization of the work queues used for dynamic scheduling?

4. What is the impact of the technique for scaling to many nodes?

In the subsections that follow, we demonstrate the benefits of partially dy-

namic scheduling on one node, describe the effect of task granularity, and

examine the impact on MPI runs with multiple nodes. Our experiments

were conducted on a system with Power575 SMP nodes with 16 cores per

node, and the operating system was IBM AIX. We assign a compute thread

to each core, ensuring that the node is fully subscribed (ignoring the 2-way

SMT available on these nodes, as there are only 16 sets of functional units).

If any OS or runtime threads need to run, they must take time away from

one of our computational threads.

1. 0% dynamic: Slabs are evenly partitioned, with each thread being

assigned one slab. All slabs are assigned to threads at compile-time.

2. 100% dynamic + no locality: All slabs are dynamically assigned to

threads via a queue.

27

3. 100% dynamic + locality: Same as 2, except that when a thread tries

to dequeue a tasklet, it first searches for tasklets that it last executed

in a previous jacobi iteration.

4. 50% static, 50% dynamic + locality: Each thread first does its static

section, and then immediately starts pulling tasklets from the shared

work queue. This approach is motivated by a desire to reduce overhead

in managing the assignment of tasks to cores.

For the cases involving dynamic scheduling, we initially assume the num-

ber of tasklets in the queue to be 32, and that all threads within an MPI

process share one work queue. Rather than using convergence criteria, we

preset the number of iterations to allow us to verify our results more easily,

and we use 1000 iterations to capture the periodicity of the noise induced

by the system services during a trial [12]. For case 4, i.e., 50% static, 50%

dynamic+locality, locality across timesteps is preserved not just due to the

locality tags, but also (inherently) through the static section assigning the

same set of iterations to threads on all timesteps. Figure 2.18 below shows

the average performance we obtained over 40 trials for each of these cases.

Using static scheduling, the average execution time was about 7 seconds of

wall-clock time. From the figure, we can see that the 50% static, 50% dy-

namic scheduling gives significant performance benefits over the traditional

static scheduling scheduling case. In our 40 trials, we obtained 6 lucky, or

low-noise, runs in the range 6 - 6.5 seconds. The remaining 34 runs were

between 7 - 8 seconds. Using fully dynamic scheduling with no locality,

performance was slightly worse than the statically scheduled case, and for

this case, there were also some small performance variations (within 0.2 sec-

onds) across the 40 trials. Using the 50% dynamic scheduling strategy, the

execution time was 6.53 seconds, giving us over 7% performance gain over

our baseline static scheduling. Thus, using a reasonable partially dynamic

scheduling strategy can reduce performance variation and improve average

performance.

In all cases using dynamic scheduling with locality, thread idle times

(not shown here) contribute to the largest percentage overhead. The high

overhead in case 2 is likely attributed to the fact that threads suffer from

doing work not local to a core. Because some threads suffer coherence cache

misses while others do not, the overall thread idle time, due to threads

waiting at barriers, could be particularly high.

28

6	

6.5	

7	

7.5	

8	

8.5	

fully	 sta.c	 100%	 with	 no	
locality	

100%	 dynamic	 	 75%	 dynamic	 	 50%	 dynamic	 	 25%	 dynamic	 	

W
al
l	 T
im

e	
(s
ec
on

ds
)	

Performance	 of	 Different	 Scheduling	 Strategies	

Figure 2.18: Performance for different scheduling strategies on a single node
of IBM Power5+ cluster of SMPs.

2.3.3 Tuning Tasklet Granularity for Reduced Thread Idle

Time

As we noted in the previous section, the thread idle times account for a large

percentage of the execution time for the case of dynamic scheduling with

locality.

As a first strategy, we varied the number of tasklets in the queue, using

size 16, 32, 64, 96, and 128 tasklets as our test cases; the number of planes

per tasklet was 32, 16, 8, 4, and 2. A second strategy, which we call skewed

workloads, addresses the tradeoff between fine-grain tasklets and coarse-

grain tasklets. In this strategy, we use a work queue containing variable-sized

tasklets, with larger-sized tasklets at the front of the queue and smaller-sized

tasklets towards the end. Specifically, we use 4 sets of size 16 tasklets in the

beginning of the queue, 8 sets of size 8 tasklets in the next section of the

queue, and 16 sets of size 4 tasklets in the final section of the queue. Skewed

workloads reduce the contention overhead for dequeuing tasklets, seen when

using fine-grained tasklets, and also reduces the idle time of threads, seen

when using coarse-grained tasklets.

In Figure 2.19, we see that as we decrease the planes per tasklet from 32

to 16, we obtain significant performance gains, and the gains come primarily

from the reduction in idle times. Overall, we notice that the performance

increases rapidly in this region. As we further decrease the planes per tasklet

from 16 to 4, performance starts to decrease, primarily due to the contention

for retrieving the tasklets. We also see that performance of the skewed

strategy, especially with 50% dynamic scheduling, is comparable to that of

64 tasklets.

29

0"

10"

20"

30"

40"

50"

60"

70"

80"

16" 32" 64" 128" skewed"

To
ta
l&T
hr
ea
d&
Id
le
&T
im

e&
(s
ec
on

ds
)&

Tasklet&Granularity&Strategy&

Performance&Impact&of&Tasklet&Granularity&

100%"+"no"locality"

100%"dynamic"

50%"dynamic"

25%"dynamic"

Figure 2.19: Performance for scheduling with different numbers of planes
per tasklet.

Figure 2.20 shows iteration time histograms, which show how using 50%

dynamic scheduling provides better absolute performance and less perfor-

mance variation than both 100% dynamic scheduling without locality (top-

most histogram), and 100% dynamic scheduling with locality (middle his-

togram). To understand how tuning with a skewed workload benefits perfor-

mance, Figure 2.20 shows the distributions of timings for the 1000 iterations

of the Jacobi algorithm, comparing static scheduling (top), 50% dynamic

scheduling with fixed size tasklets (middle), and 50% dynamic scheduling

with skewed workloads (bottom). Using static scheduling, the maximum

iteration time was 9.5 milliseconds (ms), about 40% larger than the average

time of all iterations. Also, the timing distribution is bi-modal, showing that

half of the iterations ran optimally as tuned to the architecture (running in

about 6 ms), while the other half were slowed down by system noise (running

in about 7.75 ms). Using 50% dynamic scheduling, the maximum iteration

time is reduced to 8.25 ms, but it still suffers due to dequeue overheads, as

can be seen by the mean of 7.25 ms. By using a skewed workload strategy,

we see that the max is also 8.25 ms. However, the mean is lower (6.75 ms)

than that seen when using fixed-size tasklets, because of the lower dequeue

overhead that this scheme achieves. The skewed workloads provided 7%

performance gains over the simple 50% dynamic scheduling strategy, which

uses fixed-size coarse-grain tasklets of size 32. Furthermore, the reduced

maximum time when using dynamic scheduling indicates that our dynamic

30

scheduling strategy better withstands perturbations caused by system noise

than does static scheduling.

Figure 2.20: Iteration timing histograms of 3D regular mesh run on single
node of IBM Power 5+ cluster, where each histogram corresponds to a
different scheduling strategy applied to the 3D regular mesh.

2.3.4 Using Our Technique to Improve Scalability

We next explain the problem of how noise affects scalability, and follow

that with a performance study that demonstrates how mixed static/dynamic

scheduling improves scalability.

31

The Problem of Noise Amplification And Scalability

The transient imbalances are not a problem in sequential programs, and

only a problem at large-scale. This is because of the way randomness of

noise interacts with global synchronizations in parallel programs. As illus-

trated in Figure 1.2b, the chance that a synchronized iteration experiences

a noise-related delay increases with the number of nodes. This is especially

true if the noise is caused by OS daemons that are uncoordinated across

nodes. As an example, consider a system in which an OS daemon executes

approximately once every second on a node. Assume that the duration of

the noise event is 5 ms. Let us assume that the application takes 10 ms

for each iteration before it synchronizes via an MPI collective call. In this

scenario, most iterations of a single-node execution will be unaffected by

noise. So, if we run this program for 1000 iterations, it would take 10 sec-

onds without any noise. Since there will be 10 noise events in 10 seconds,

the execution time will be 10.05 seconds, which is a small acceptable loss of

performance.

Consider now the application running on thousands of nodes in a weak

scaled fashion. Since noise is uncoordinated, in every iteration there is a high

likelihood that there is at least one processor affected by noise. Therefore,

each iteration is delayed by 5 milliseconds, taking 15 ms instead of the 10

ms; this is a high, unacceptable performance loss. This is referred to as the

noise amplification problem in literature. It was discovered by Petrini et

al [72]. We will next illustrate how our dynamic schedulers help mitigate

the amplification problem.

Scaling Performance of Different Schedulers

To understand whether our technique improves scalability, we measured

execution time of stencil code with different scheduling strategies on varying

number of nodes of a cluster. We used a weak scaling version of the code. So,

ideally the execution should remain the same as we increase the number of

nodes. We report the performance over 1000 iterations. One core of a node

was assigned as a message thread to invoke MPI communication (for border

exchanges) across nodes. We used the hybrid MPI/pthread programming

model for implementation.

Figure 2.21 shows how as we increase the number of nodes, using 50% dy-

namic scheduling almost always outperforms the other strategies and scales

well. At 64 nodes, the 50% dynamic scheduling gives us a 30% performance

improvement over the static scheduled case. As we see for the case with

32

static scheduling, a small overhead due to system services is amplified at 2

nodes and further degrades as we move up to 64 nodes. In contrast, for the

50% dynamic scheduling strategy, the performance does not suffer as much

when increasing the number of nodes, and our noise mitigation techniques

benefits are visible at 64 nodes.

Figure 2.21: Scaling behavior of different scheduling strategies.

Figure 2.22: Performance consistency is maintained for mixed static/dy-
namic scheduling for 1 nodes.

To understand why the performance of mixed static/dynamic scheduling

is better compared with static scheduling, we examine the histogram of

the thousand individual iteration times. The bin size we used was 250

milliseconds, or 0.25 seconds. As seen in the top figure of Figure 2.22,

on one node, with static scheduling, some iterations take as little as 5.75

33

Figure 2.23: Performance consistency is maintained for mixed static/dy-
namic scheduling for 2 nodes.

Figure 2.24: Performance consistency is maintained for hybrid static/dy-
namic scheduling for 16 nodes.

milliseconds, while a small number take as large a time as 9.25 milliseconds.

Note the bi-modal nature of the distribution, with the primary mode around

6 ms, and the secondary one around 7.75 ms. The latter corresponds to

iterations that are affected by noise.

As we scale up to 64 nodes in Figure 2.25, the average execution time

increases significantly with static scheduling, as shown by the red arrow.

With mixed static/dynamic scheduling on one node, as shown on the top

right histogram, the distribution is clearly uni-modal. Iterations affected

by noise do not take significantly longer time than the normal iterations

because extra work is spread across all cores. In the rare case when noise

happens near the end of the iteration, dynamic scheduling cannot mitigate

34

Figure 2.25: Performance consistency is maintained for hybrid static/dy-
namic scheduling for 64 nodes.

its impact, which is why a few iterations take a long time.

The mode is 6.5 ms which is larger than the 6 milliseconds primary

mode for static scheduling because of the overhead of dynamic scheduling,

but much smaller than the secondary mode of static scheduling of 7.75 ms.

Compared to the top histogram of Figure 2.25, the bottom histogram

of Figure 2.25 shows that the distribution has shifted significantly to the

right for static scheduling. This makes sense since each nodes noise event

occurs at different times. The chain of dependencies through MPI messag-

ing for border exchanges compounds the delay across nodes in consecutive

iterations. With dynamic scheduling, the distribution has not shifted as

much. For example, the mode, i.e., the tallest bar of the histogram, only

shifted from 6.75 ms to 7.00 ms. This is because in each iteration, the node

that experiences noise mitigates its effect by scheduling delayed tasklets

to its other threads. Generally, performance variation increases for static

scheduling with increasing numbers of nodes, but is maintained for mixed

static/dynamic scheduling with increasing numbers of nodes.

2.4 Results for Numerical Linear Algebra

Considering the application of our scheduling strategies to the 3D regular

mesh computation in Section 2.2 and Section 2.3, we apply our scheduling

strategies to dense matrix factorization computations, e.g., LU factorization,

QR factorization, Cholesky factorization, a class of numerical linear algebra

computations [89]. Dense matrix factorization computations form an impor-

tant class of numerical linear algebra computations because of their use in

35

scientific applications [30], and because of their criticality to execution time

within such scientific application [26]. An example of a scientific application

using a dense matrix factorization computation (specifically, LU factoriza-

tion) is the simulation of air flow across an airplane’s wing for aiding the

design and engineering of an aircraft [26,41,42].

We focus on dense LU factorization computation, and specifically con-

sider a highly optimized, i.e., Communication-Avoiding, LU factorization

computation [36]. We apply our hybrid static/dynamic scheduling strat-

egy to CALU by modifying the multi-threaded (dynamically scheduled)

Communication-Avoiding LU factorization numerical algorithm described

by Donfack et al. [28] so as to have the beginning portion of the work of

the algorithm statically allocated to threads, and the remainder dynami-

cally allocated.With this modification, we try different static fractions in

increments of 0.05, and use the best performing static fraction for our runs.

Figure 2.26 and Figure 2.27 show comparisons of performance of the

hybrid static/dynamic scheduled implementation of CALU to widely used

LU factorization library implementations, one the implementation in the

Intel Math Kernel Library (MKL) [48], and the other the implementation

in the Parallel Linear Algebra Software for Multi-core Architectures library

(PLASMA) developed by Dongarra et al. [7,39]. The hybrid static/dynamic

scheduled version of CALU is 30% faster than PLASMA and 34% faster than

MKL for the largest matrix size of 15,000 on the 48-core AMD Opteron ma-

chine, as seen in Figure 2.27. The hybrid static/dynamic scheduled version

of CALU is 20% faster than PLASMA and 21% faster than MKL for the

largest matrix size of 15,000 on the Intel machine, as seen in Figure 2.26.

The results show that the performance benefits of our low-overhead schedul-

ing approach over the statically scheduled approach increase with increasing

matrix sizes. The results also show that our approach provides more sig-

nificant benefits over the dynamically scheduled versions of CALU for an

architecture with a larger number of cores.

The histograms in Figure 2.28 show the distribution of execution times

for 5000 independent executions of the CALU code on a single node of an

24-core AMD Opteron cluster, for static, dynamic, and hybrid static/dy-

namic scheduled versions of CALU. For hybrid static/dynamic scheduling

approach, we only considered a 90% dynamic scheduling due to machine us-

age constraints. The performance of the executions using static scheduling

is multi-modal, showing the impact of various sources of load imbalances on

the machine. The load imbalances come from both the application and the

architecture. The performance variations are small for dynamic scheduling,

36

Figure 2.26: Performance of Hybrid Static/Dynamic Scheduled CALU,
MKL and PLASMA on the 16-core Intel machine.

Figure 2.27: Performance of Hybrid Static/Dynamic Scheduled CALU,
MKL and PLASMA on the 48-core AMD Opteron machine.

but because of the overheads that dynamic scheduling incurs, performance

degradation increases. Both the performance variations and absolute per-

formance are least when mixed static/dynamic scheduling is used.

As Section 2.3 suggests, the distribution of execution times can show po-

tential impact to scalability; having high within-node average performance

and low within-node performance variations across executions is desirable for

maintaining high performance when running an application at large scale.

The hybrid static/dynamic scheduled CALU has high within-node perfor-

mance and lowest standard deviation across execution times in Figure 2.28,

suggesting its benefits to performance when used at large scale.

37

Figure 2.28: Performance variation of CALU on an AMD Opteron 24-core
node of a cluster.

2.5 Conclusions

In this chapter, we introduced a dynamic scheduling strategy that can be

used to improve scalability of MPI implementations of regular meshes. To

do this, we started with a pthread mesh code that was tuned to the architec-

ture of a 16-core SMP node. We then incorporated our partially dynamic

scheduling strategy into the mesh code to handle inherent system noise.

With this, we tuned our scheduling strategy further, particularly consider-

ing the grain size of the dynamic tasklets in our work queue. Finally, we

added MPI for communication across nodes and demonstrated the scalability

of our approach. Through proper tuning, we showed that our methodology

can provide good load balance and can scale to a large number of nodes of

our cluster of SMPs, even in the presence of system noise.

The problems remaining are handling persistent load imbalances more

effectively in the presence of transient load imbalances, and the reducing

the large search space for tuning the scheduler. The subsequent chapters

address these problems.

38

Chapter 3

Weighted Hybrid Scheduling

In the previous chapters, we saw how infrequent uncoordinated noise can

be amplified on synchronous MPI programs running on a large number of

processors. We also developed a hybrid scheduling strategy that combines

both static and dynamic allocation of loop iterations to cores within a node

that handles dynamic load balancing without adding significant overhead.

The nature of noise considered in the last chapter was such that only a small

number of processors/nodes are affected by it in every outer iteration, i.e.,

between MPI synchronizations. This is low-frequency, high-amplitude noise;

by high-amplitude, we mean that the duration of the noise is long enough

to significantly delay the iteration. However, another kind of noise exists:

namely high-frequency, low-amplitude noise. This can arise from short-

duration daemons that execute frequently enough that they affect every

node in each iteration. As we will see, on many platforms, such daemons

run on a fixed subset of cores of each node. From the application’s point of

view, this has the effect of slowing down those cores. Slow cores may also

arise from other architectural factors such as low-priority hardware threads,

e.g., Power7. [91]. We next focus on how to handle such persistent difference

in effective speeds of cores. This chapter is based on material published in

an early paper [52], and so it uses the tasklet-based scheduling technique of

Chapter 2. The tasklet-based scheduling technique described in Chapter 2

is referred to as micro-scheduling in this chapter.

Our key contribution in this chapter is an augmentation of our reac-

tive, queue-based micro-scheduling approach with a form of pro-active load-

balancing. Pro-active load balancing adjusts load before the application

time step begins, while reactive load balancing adjusts load during the time

step. Pro-active load balancers can assign work to each core in proportion

to its availability with respect to OS daemons running on it. We refer to

this augmented load balancing strategy as weighted micro-scheduling.

We show the benefits, over our original solution, for aiding noise mitiga-

tion by:

39

1. Discussing an implementation of this technique that is portable and

efficient for regular computations.

2. Validating our implementation’s efficiency by comparing it against in-

dustry standard scheduling such as OpenMP guided scheduling.

3. Showing how we can tune our scheduler using a weighted factoring

approach [47] that assigns less work to slower cores and more work to

faster ones.

3.1 Platforms Considered

The two platforms that we consider are ORNL’s Cray XT5 machine (Jaguar)

and TACC’s SUN constellation cluster (Ranger). Each node of Jaguar con-

sists of twelve cores, 16 GB of memory, and a peak FLOP rate of 124.8

Gflop/s per core. The nodes run a specific version of the SuSE Linux operat-

ing system. An in-depth performance comparison of the two supercomputers

is presented in [11].

 0

 100

 200

 300

 400

 500

 0 200 400 600 800 1000 1200

Ex
ec

ut
io

n
tim

e
(u

s)

Core Number

Jaguar - Noise in sequential computation across 100 nodes

Max
Min

(a) Jaguar.

 0

 100

 200

 300

 400

 500

 0 200 400 600 800 1000 1200 1400 1600

Ex
ec

ut
io

n
tim

e
(u

s)

Core Number

Ranger - Noise in sequential computation across 100 nodes

Max
Min

(b) Ranger.

Figure 3.1: System noise plotted against all ranks for a 100 node run for
Jaguar and Ranger.

Each node of Ranger consists of 16 cores, with a peak flop rate of 147.2

Gflop/s per node. The frequency of each core on Ranger is 2.3 GHz and

allows for four floating point operations per clock period. All cores within a

node share 32 GB of memory. On Ranger, the operating system used is the

Linux kernel (release 2.2) from kernel.org and is open-source.

A characterization of system noise for Jaguar and Ranger was done

through the use of a square root computation run for several thousand

iterations on each core. This represents the fixed work quantum (FWQ)

method of recording noise. The timings for the sequential computation for

each iteration on each core of the machine were recorded.

40

100
101
102
103
104
105
106
107
108
109

 0 50 100 150 200
C

ou
nt

Execution time for sequential computation (5 µs bins)

Noise Histogram for Jaguar (100 nodes)

100
101
102
103
104
105
106
107
108
109

 0 50 100 150 200

C
ou

nt

Execution time for sequential computation (5 µs bins)

Noise Histogram for Ranger (100 nodes)

Figure 3.2: Histograms for the execution time of a sequential computation
performed to record noise events on Jaguar (left) and Ranger (right). The
labels on the x-axis are bin-numbers.

Figure 3.1a shows the minimum and maximum execution times for the

work quantum on 1,200 cores (100 nodes) of Jaguar For most cores, the

maximum time spent in execution is several times the best execution period

(14–15 µs). We can also see the impact of two specific daemons of 100

µs and 200 µs durations, respectively. Figure 3.1b shows a similar plot of

the minimum and maximum execution times for 100 nodes or 1,600 cores of

Ranger. For Ranger, the maximum execution times are random for different

cores, but the spread is denser in the 17–100 µs region. These top bands in

the graph show that the noise events are confined to a small subset of cores

on each node. This same is also seen in the results by Bhatele et al. [11] for

these two machines.

In order to get a better idea of the distribution of timings, we place

the execution times for the sequential computation for all cores across all

iterations into 5 µs bins and histograms were plotted for the two machines.

The histograms were shown in Figure 3.2. The labels on the x-axis are bin-

numbers, so the label “60” corresponds to a bin representing execution time

between 300–305 µs. Also, note that the scale on the y-axis is logarithmic.

If there were no noise, the histogram would have only a couple of occupied

bands corresponding to times around 15 microseconds. And indeed, a ma-

jority of iterations are in the leftmost bins for both machines. But as the

spread of the bins shows, noise does affect many cores and iterations. The

Jaguar plot (left) shows four distinct peaks, the last three of which possibly

correspond to specific daemons that have a high frequency. The Ranger

plot (right) shows a spread from 15–200 µs and then a smaller distribution

around 300 µs.

Given a noise-free machine and a scientific application without load im-

balance, intra-node static partitioning and inter-node domain decomposition

will be most effective. Owing to the load imbalance induced by the operat-

41

ing system, dynamic scheduling can be beneficial to improve performance of

scientific applications [14]. As we saw in Chapter 1, this dynamic schedul-

ing scheme needs to incur low overheads to offer performance benefits for

synchronous MPI applications.

Understanding the characteristics of variations helps us to further fine-

tune the scheduling schemes, which is important to reduce costs of the sched-

uler. Each characteristic of the noise pattern of a platform suggests the im-

portance of a particular feature of our scheduler. In previous chapters, we

designed schedulers to handle the noise pattern where the noise on any given

core is an infrequent event. Within this pattern, there could be several varia-

tions: when a platform has several different noise events of different lengths,

a dynamic scheduling strategy with an assortment of task granularities can

be used; if there are only a few different noise events, each with relatively

similar durations, then we can tune the task granularity.

Yet, none of the scheduling schemes we have developed have used the

noise characteristic of persistence due to core speed variation that is observed

in Figure 3.1a and Figure 3.1b. The next section extends the lightweight

scheduling scheme described in Chapter 2 so that it can mitigate imbalances

due to a mixture of peristent core noise and transient noise, and, as we note

at the end of the chapter, can also be used to handle a mixture including

persistent application imbalance.

3.2 Scheduling Techniques

Locality-sensitive scheduling aims to schedule work on cores that executed

this work in a previous time step. This optimization aims to improve tem-

poral locality, and has been shown to provide benefits in [54].

Our basic scheduler [54] uses a queue to assign chunks of work to cores.

Each queue is implemented as an array of pointers to data structures we call

tasklets. A tasklet is a fine-grained piece of computation that keeps track of

its movement across cores of a node. A queue can consist of an assortment

of tasklets of different lengths. These tasklets are dynamically scheduled

across cores of a node, but are aware of their movement across cores of a

node.

In this work, we improve our technique by augmenting the statically

scheduled stage of the computation with weighted scheduling. Our previous

work assumed that a noise event was equally likely to delay computation of

any core of a node, and that a dynamic scheduler could, in theory, handle

noise events of any duration and any frequency. Yet, short-duration, high

42

frequency events are fine-grained enough that the application quantization

of tasklets limits the ability to distribute the noise across cores evenly. Our

previous work did not handle short-duration, high-frequency noise events

specially.

We address the case when a core is continuously impacted by short-

duration, high-frequency noise events. We observe that a core effectively

becomes “slow” when there are many such OS daemons that are bound

to that particular core and must be frequently time-sliced with the actual

computation. Due to the many different system services that are running on

that core, we observe that the core may have a higher chance of performance

degradation during a time step. Finally, only a subset of cores tend to

have several OS daemons running on them, while the remaining cores are

relatively unoccupied by such system services [72]. If we know that some

cores are always slower than others, we can employ a strategy to offload

some work from the slow cores, and move that work onto faster cores.

Putting both techniques together, we use a prescriptive load balancing

technique in the first stage of the computation to mitigate system noise,

followed by a reactive load balancing technique in the second stage of the

computation. This strategy tries to reduce the amount of work done on

those cores that are heavily occupied by the OS services.

Using weighted scheduling, we obtain performance gains when we are

able to predict which processors likely remain slow throughout the duration

of the application time step. This allows all processors on the node to start

their work at the same time in the subsequent dynamic scheduling stage.

If we know this information before an application time step begins, we can

reduce the chance that the slow core(s) impacts the collective iteration time

across all cores. This can be done by using a form of measurement-based

load balancing as in Charm++ [51].

Weighted scheduling works well because it offloads work proportionally

to the speed of a processor. Its advantage over dynamic scheduling arises

from the fact that it involves no dequeue overheads for locking and unlocking

the work queue. Weighted scheduling tries to ensure that the slow core’s

static section will not be the cause of timestep slowdown. If we do not handle

the slow cores differently, we essentially create a predictable load imbalance.

This will lead to a much higher dynamic fraction, with associated overheads.

This increases the chance that the dynamic load balancing may not be able

to restore balance. In this case, there is no way for the other cores to “steal”

the work from the static section. However, weighted scheduling does also

have its shortcomings. Noise events may not necessarily be restricted to

43

one, or a subset, of the cores on a node. Thus, the predetermined weighted

factoring will serve little purpose. In addition, weighted scheduling does

not handle low-frequency, long-duration noise events. These low-frequency,

long-duration noise events that can happen on any core are seen on both

Jaguar and Ranger, and thus should not be ignored.

The set of cores that are slow varies for different platforms. Even for a

particular platform, the set of cores that are slow can change over the course

of days or weeks. To handle both of these issues, we run an initial loop

with a square-root computation to gather the speeds of each core before the

application begins. We also allow for adjustment of weights during runtime,

to handle the case when the speeds of the cores change during execution of

the program.

Also, for the dynamic scheduling stage, we make use of a more system-

atic auto-tuning methodology to find the best scheduler parameters. The

tuned parameters include the average tasklet granularity and tasklet gran-

ularity distributions. We use a shell script that runs before execution of

the program, to tune the parameters. In the future, we plan to make our

auto-tuning more sophisticated.

3.2.1 Allocating Iterations Based on Weights

We should assign fewer iterations to slower cores, and more iterations to

faster cores. In this section, we describe how to calculate the number of

iterations assigned to each core, based on the history of the computation, i.e.,

of previous outer iterations. For the micro-scheduler described Chapter 2,

recall that the total number of loop iterations was denoted as N , and the

number of cores was p. Given a static fraction fs, the number of iterations

assigned to each core is N ·fs
p . Thus, the ith core begins with iteration i ·

N ·fs
p . How do we calculate the starting iterations for each core, in terms of

weighted scheduling?

For weighted scheduling, we measure the time taken by static iterations

for each thread, si, with equal allocation as in Chapter 2. The weight for

the ith thread, wi, is calculated as: wi = avg{si}
si

. The slower cores which

had a larger value of si have a smaller weight, as we desired. The number

of iterations ki allocated to the ith thread is then given by: ki = wi · fs·Np .

A prefix sum of ki gives the starting iteration for each thread. This needs

to be stored in an array that is calculated at the end of the experimental

uniform allocation phase of the computation. This process of adjustment

can be repeated across outer iterations. In this case, the new ki is calculated

44

by multiplying the old ki by wi.

3.3 Results for Weighted Hybrid Scheduling

To assess the effectiveness of the proposed technique, we apply it to a three-

dimensional 7-point stencil computation. The computation and its domain

decomposition for the MPI-only (no pthreads) implementation is shown in

Figure 3.3. A one-dimensional slab decomposition of the data array is done

and a slab is assigned to each MPI task. In the hybrid MPI+pthreads

implementation, each thread is assigned a portion of the slab as shown in

Figure 3.4. Each compute thread corresponds to a core of a node of the

cluster. Each MPI process corresponds to a node of a cluster. We make

note that there are ways to optimize the process/thread aspect ratio, but

we use the simplest one here, as we see that tuning in this search space does

not give a large performance difference for our particular stencil code.

xDim

zDim

P0 P1 Pn

MPI_Isend

MPI_Irecv

yDim

Figure 3.3: MPI domain decomposition used for the 3D Stencil code.

Figure 3.5 shows the MPI+pthreads implementation that uses weighted

scheduling in the first stage of the computation. Here, w denotes the weight

of the work assigned to a particular thread. We run the 3D stencil computa-

tion for 1000 iterations, and use a problem size of 64×32×64 for each core,

regardless of the machine on which we test. By ensuring that we consider

a dense matrix with regular computation, we can more easily isolate the

problem of noise for different machines. Below, we show how each of the

two schedulers perform with respect to the baseline static scheduling. We

also show a comparison to commercial schedulers, such as OpenMP guided

scheduling [23] and the TBB affinity scheduler [80]. Through careful tuning

45

xDim

zDim

P0 P1 Pn

MPI_Isend

MPI_Irecv

(1 � fd) · yDim

fd · yDim

Figure 3.4: Hybrid MPI+pthreads domain decomposition with micro-
scheduling used for the 3D Stencil code. The dynamic fraction is denoted
by fd.

of the parameters shown in Figure 3.5 in our experimentation, we can obtain

significant performance benefits for the stencil application.

xDim

zDim

P0 P1 Pn

MPI_Isend

MPI_Irecv

w1 · (1 � fd) · yDim

p

(1 � fd) · yDim

fd · yDim

w4 · (1 � fd) · yDim

p

Figure 3.5: Hybrid MPI+pthreads domain decomposition used with
weighted static and dynamic micro-scheduling for the three-dimensional 7-
point stencil computation. The dynamic fraction is denoted by fd, and the
weight of thread 1, as shown in this diagram, is denoted by w1.

We now discuss the performance of weighted scheduling, micro-

scheduling, and our combination of the two schedulers, called weighted

micro-scheduling. Figures 3.6 and 3.7 show the performance of the sten-

cil computation described above, using the various schedulers on Jaguar

46

 8

 8.5

 9

 9.5

 10

 1 4 16 64 256 1024

W
al

l c
lo

ck
 t

im
e

(s
)

Number of nodes

Tuning Scheduler for 3D stencil on Jaguar

static
wSched

OMPguided
µSched

wµSched

Figure 3.6: Performance of the stencil computation on Jaguar for various
scheduling techniques.

and Ranger. On Jaguar, we ran the stencil code on up to 1024 nodes and

Ranger, we ran on up to 512 nodes.

3.3.1 Weighted Scheduling

Running on 512 nodes of Jaguar, weighted scheduling gives a benefit of 6%

over the baseline static scheduling (Figure 3.6). This is somewhat better

than the performance gain with micro-scheduling. Since OS noise typically

affects a subset of the cores on a node [11], weighted scheduling is primarily

beneficial at the beginning of the computation. By offloading work from the

noisy cores of Jaguar, we have provided a solution that is better than micro-

scheduling in the sense that it avoids dequeue overheads that the non-noisy

cores would otherwise have to suffer.

Running on 512 nodes of Ranger, weighted scheduling gives almost no

performance benefit over the baseline static scheduling (Figure 3.7). There

is a smaller benefit from weighted scheduling on Ranger since noise can oc-

cur on any core of a node, rather than being restricted to a subset of cores.

Unlike micro-scheduling, weighted scheduling incurs no dequeue overheads.

Weighted scheduling incurs idle time due to measurements that may mis-

predict weights, or because of low-frequency noise events that affect only a

few time steps. Because our scheduler is conservative, the performance loss

of trying to use weighted scheduling on Ranger is very low.

47

 20

 22

 24

 26

 28

 30

 32

 34

 1 2 4 8 16 32 64 128 256 512

W
al

l c
lo

ck
 t

im
e

(s
)

Number of nodes

Tuning Scheduler for 3D stencil on Ranger

static
wSched

OMPguided
µSched

wµSched

Figure 3.7: Performance of the stencil computation on Ranger for various
scheduling techniques.

3.3.2 Micro-scheduling

To assess the effectiveness of tuned micro-scheduling, we use an automated

tuning to search for the best parameters for the dynamic scheduler on each

architecture. Micro-scheduling provides for the most performance benefit

on Ranger, with 12% performance improvement on 512 nodes. This is likely

due to the fact that any core on a Ranger node can get perturbed by a noise

event, not a specific subset of the cores. Because the noise interruptions

occur over a range of short and long durations, rather than over a fixed

duration, the task granularity cannot be determined ahead of time. By

using variable-sized tasks, we are able to handle these variable-length noise

events. It should be noted that the use of variable-sized tasks resembles

guided scheduling, as implemented in OpenMP.

On Jaguar, the tuned micro-scheduling strategy is less effective. The

reason is that the noise events happen on only some subsets of cores. These

noise events are also probably of higher frequency. While using variable sized

tasks can help address the issue of variable duration noise events, we believe

that our strategy of using variable-sized tasklets does not help as much due to

the fact that our implementation is likely not tuned carefully. With further

tuning of the tasklet length distribution in the queue (effectively, finding

the right “assortment” of tasklet lengths), micro-scheduling can provide for

better performance on Jaguar. However, this will require more investigation,

and we leave this as future work for now.

48

3.3.3 Weighted micro-scheduling

As the preceding sections show, noise that occurs sporadically on any core

of a node can be mitigated by micro-scheduling, and noise that is restricted

to run on a subset of nodes is well-mitigated by weighted scheduling. How-

ever, in practice, production HPC clusters may not have a clear distinction

between the case of noise being focused on a subset of the cores versus the

case where noise occurs sporadically on any core of a node [72].

For example, noise events on a production HPC cluster may be more

likely (rather than restricted) to occur on one core than the other. Thus,

using either of the schedulers in isolation does not necessarily provide for

significant performance gains. To what extent can we combine these two dif-

ferent schedulers to get the best of both worlds? We now discuss the results

obtained when we combine the weighted scheduler and micro-scheduler.

On Jaguar, we observe that noise happens on some cores more than

others. Specifically, cores 0, 6, and 9 are slowest. This is 3 out of the 12 cores

that could potentially finish late and cause a slowdown. By using weighted

micro-scheduling on 512 nodes of Jaguar, we get a performance improvement

of 12% over the baseline static scheduling. This is significantly better than

the performance that we get with using the weighted scheduler (7%) or

the micro-scheduler (9%). In this case, the knowledge that these cores are

noisy allows us to reduce the time for each time step. In addition, dynamic

scheduling handles low-frequency, small duration noise events occurring on

any core.

On 512 nodes of Ranger, weighted micro-scheduling yields a perfor-

mance improvement of 16.6%, which is a slight improvement over the

14.1% improvement we get with just micro-scheduling. All cores are al-

most equally noisy, although core 0 has slightly more noise than other cores.

Weighted scheduling (offloading work from core 0) does help to mitigate

high-frequency, short duration noise on core 0. However, the benefit from

weighted scheduling is still not significant; the benefits obtained through

micro-scheduling still dominate in the results for Ranger.

A key observation we make here is that while weighted scheduling is

not very successful on Ranger, our combined weighted micro-scheduler also

does not hinder performance, compared to the corresponding results for

the weighted scheduler or micro-scheduler. Thus, our solution of combining

weighted and micro-scheduling is portable; when we do not have “slow” cores

on a node, the weighted scheduling portion of the combined weighted micro-

scheduler does not induce unnecessary overhead. Further, our scheduler

49

can handle static and dynamic variations that are likely to arise in future

architectures due to semiconductor process variation, cache error correction,

etc.

3.3.4 Experimentation with Varying Problem Sizes

In this section, we present the impact of application parameters on the

performance of our scheduling techniques. We vary the problem size and

the computation per timestep. In order to isolate performance efficiency of

our scheduler from the efficiency of the MPI runtime, our experiments are

performed on one node.

3.3.5 Impact of Memory Accessed per Time Step

Figures 3.8 and 3.9 illustrate the impact of varying the problem size in this

stencil computation on each of the machines. In the figures, the third cluster

of bars from the left indicates the baseline problem size. As is seen in these

figures, our strategies are competitive with and seem to perform better than

OpenMP static scheduling and OpenMP guided scheduling. By varying the

problem size, we test how time for memory access impacts our strategy.

Results from both Jaguar and Ranger, with a small problem size, suggest

that system noise is a factor in performance. The reduced benefit for larger

problem sizes is likely due to the fact that performance is already impacted

by limited effective memory bandwidth. Leaving aside these nuances, the

broad conclusion from this data is good or better compared with OpenMP

strategies, over a range of problem sizes.

3.4 Discussion

This work builds on work from previous chapters, which used our scheduling

techniques for hybrid MPI+pthread programs. We aim to build a more

acceptable strategy for use at the application level. There are two methods

behind each of these techniques: the first is auto-tuning and the second is

measurements of performance taken from previous application time steps.

Offline auto-tuning happens for the dynamic phase, while online auto-

tuning is used for the static region. Auto-tuning is important because sys-

tem noise typically does not change during the execution of the program.

For a long running application, the subset of processing elements that are

slower may change. Furthermore, if there is a large noise event that spans

several iterations, the scheduling techniques will offer no benefit. In this

50

 1

 10

 100

16x384x16 32x384x32 64x384x64 128x384x128

A
ve

ra
ge

 it
er

at
io

n
tim

e
(s

)

Size of stencil

Impact of problem size (Jaguar)

static
µSched

wµSched
OMPguided

Figure 3.8: Impact of problem size on Jaguar for 3D Stencil with different
load balancing strategies.

case, we need a measurement-based load balancing technique such as in

Charm++ [51] that adaptively adjusts to situations where cores are con-

stantly slowed down by operating system events, even across time steps.

We must move work away from those “slow” processing elements.

There is no proactive load measurement involved in our solution of

weighted scheduling. An intelligent load balancer like that in Charm++

uses sophisticated techniques to implement load balancing strategies by col-

lecting load balancing information from previous iterations [10,57,94]. The

nature of load imbalances our strategies are designed to deal with is not

predictable. However, if we can find a pattern in the noise events, an intel-

ligent measurement-based technique that uses periodic load balancing may

be advantageous. Further, our technique can be used in conjunction with

Charm++’s measurement-based load balancers.

Finally, performance tuning a scheduler for a given operating system

is a difficult task. If applications are sensitive to the operating system on

which they are running, the argument for portable application code is further

justified. The rapid pace of innovation of computer architectures is clearly

evident, and can change over just a year’s notice. This requires one to re-tune

application codes continually for these new architectures. Unlike the pace

of innovation for architectures, an operating system can change underneath

within weeks. Furthermore, operating systems are programmed by humans.

This further adds complications because humans make mistakes, thereby

51

 1

 10

 100

16x512x16 32x512x32 64x512x64 128x512x128

A
ve

ra
ge

 it
er

at
io

n
tim

e
(s

)

Size of stencil

Impact of problem size (Ranger)

static
µSched

wµSched
OMPguided

Figure 3.9: Impact of problem size on Ranger for 3D Stencil with different
load balancing strategies.

causing performance (or correctness) bugs in kernel software. Therefore,

strategies such as that described in this chapter that automatically adapt

to variabilities, are desirable.

52

Chapter 4

Slack-Conscious Hybrid
Static/Dynamic Scheduling

Consider again the basic hybrid scheduling approach that we developed in

Chapter 2. By combining static and dynamic scheduling, we were able to

control overhead while providing dynamic load balancing. We saw that it

is necessary to reduce the dynamic fraction, and therefore the number of

dynamically scheduled iterations to the minimum value that is adequate to

contain the load imbalance. The method that we used for finding this value

of the dynamic fraction was an exhaustive enumerative search. Further,

once the dynamic fraction was decided, the same dynamic fraction was used

on all nodes.

In this chapter, we first develop a model-based method to determine the

dynamic fraction; an empirical search can still be performed near the optimal

dynamic fraction determined by the model. Next, we explore the following

question: If we allow the dynamic fraction to be different on different nodes,

can the dynamic fraction be further reduced, along with reducing the over-

head associated with dynamic scheduling? What we need is a technique

that uses minimally dynamic scheduling on a node, minimizing delay added

to the critical path due to either noise or overhead. As we demonstrate, in

hybrid parallel applications, the mixture of static and dynamic work that

minimizes the average-case runtime varies by each threaded region as well

as by node. Specifically, we show that the percentage of dynamic work that

minimizes the average-case runtime for a threaded computation region in a

noisy system depends on each node’s communication deadline.

The main contributions of this work are:

• A model-based determination of scheduler parameters based on noise,

scheduler overhead and the communication deadline;

• A minimally dynamic scheduling policy that minimizes the average-

case runtime of noisy hybrid applications;

• A tuning technique that enables the above scheduling policy by cou-

pling shared memory and distributed runtimes;

53

• A compiler transformation that automatically generates self-tuning

OpenMP loops to implement our scheduling policy.

The remainder of this chapter is organized as follows. The next section

discusses the model of computation we consider throughout this chapter.

Section 4.2 develops a model for a minimal value of the dynamic fraction

that can ensure that the impact of noise is minimized, given the expected

duration of the noise event. Sections 4.3 and 4.4 describe an opportunity

to minimize the dynamic fraction further by allowing it to be different on

different processes based on a communication deadline. Section 4.5 presents

our implementation. Section 4.6 discusses our experimental results. Finally,

Section 4.7 concludes this chapter.

4.1 Performance Perturbances

Recall the following simple bulk-synchronous code that performs a local com-

putation at each MPI process, followed by a global communication, where

each MPI process is assigned to a core of a node in a cluster:

for (int i = 0; i < n; i++)

c[i] += a[i]*b[i];

MPI_Operation;

On a cluster of multicore nodes, this example code could be written us-

ing hybrid MPI+OpenMP by adding a #pragma omp parallel for be-

fore the loop. Assume that doing this will execute the loop with a static

schedule, which distributes the iterations evenly among threads. With the

#pragma omp parallel for added before the loop, the loop becomes a

threaded computation region. Threads participating in the threaded compu-

tation region are called a team. Assume that an MPI process contains one

team, and each node of a cluster runs one MPI process. After a thread has

completed its assigned loop iterations, it waits, i.e., idles, at a team-wide

barrier. Then, each such team running within an MPI process participates

in MPI communication, dictated by MPI_Operation. As shown by Hoefler

et al. [46] and in Chapter 2, the above code is prone to noise propagation

that causes slow down at scale.

54

4.2 Model-Based Determination of Minimal

Dynamic Fraction

We now establish the theoretical foundations for our technique which

builds on hybrid scheduling. We assume that applications execute bulk-

synchronously, as computation phases followed by communication phases.

We refer to each bulk-synchronous step as a timestep, and we refer to an

iteration as one unit of work in an OpenMP loop.

We use a simple model for noise, computation, and the fraction of dy-

namic work used. We denote t1 as the duration of a single iteration of a loop,

on one core. We denote the total execution time of a single bulk-synchronous

step, consisting of N loop iterations on p cores, as Tp. We denote the ex-

pected noise delay as δ. We define the portion of dynamically scheduled

work done in a threaded computation region as the dynamic fraction, and

denote it as fd. The portion of statically scheduled work in a threaded com-

putation region is the static fraction, and we define it as 1.0− fd. Table 4.3

provides an overview of all parameters used in the following analysis.

At sufficient scale, noise of length δ occurs with virtual certainty within

each timestep. In principle, at least one process in the job will be affected

by noise with duration δ during each threaded computation region. When

this noise impacts some particular node during a timestep, the noise can

occur on any of the cores of that node. We assume in our model that for

the node that is impacted by noise during an outer iteration, only one core

within that node suffers the noise event.

4.2.1 Using a Model for Hybrid Scheduling

In the absence of dynamic scheduling, when noise occurs on a core, the

critical path will be delayed by δ time units (see Figure 4.2). Therefore,

making at least δ time units worth of work dynamic will allow other cores

to absorb the delayed work to minimize the critical path delay on this node.

Since each thread has Nt1
p amount of computation, the relationship between

the delay and dynamic work can be expressed as:

fd
Nt1
p
≥ δ (4.1)

fd ≥
pδ̇

Nt1
(4.2)

Although the above is an inequality, increasing the dynamic fraction

further does not improve performance. Thus, to achieve our goal of using the

55

Model outputs

fd Fraction of work scheduled dynamically

f ′d Fraction of work scheduled dynamically,
reduced for slack

Model inputs

q Overhead of dequeueing single iteration

δ Expected noise duration

δi Expected noise duration on node i

Tp Execution time on p cores with fully static scheduling and
no noise

N Total number of iterations across all threads

Change quantities

∆f Change in dynamic fraction

∆η Change in execution time of computation region

τ Sequential time for dynamic work moved

Other variables

t1 Duration of one loop iteration on one thread (running on
one core)

d Duration of one dynamic iteration on onethread

η Compute delay due to noise and scheduling overhead

αi Delay added to the critical path by node i

Table 4.1: Overview of all model parameters.

minimal amount of dynamic scheduling, we consider the above relationship

as an equality throughout the remainder of the section.

A minor variant of this model is described in [54] for understanding the

experimental data, but is not used as a part of a runtime strategy for pro-

ducing the results, and was not connected to the experiments. Furthermore,

even if we did attempt to use this model by itself for applications, this model

is overly simplistic. To begin with, it assumes that dynamic scheduling is

free, i.e., that no queueing overhead exists.

With dequeue overhead, each dynamically scheduled iteration takes

slightly longer than a statically scheduled iteration. So, we should use

slightly fewer dynamic tasks to absorb the same amount of noise. Let d

represent the execution time of one dynamically scheduled iteration, p be

the number of cores, and let q represent the scheduler queueing overhead of

a single iteration. Given t1 and q, d can be approximated as:

d = t1 + q (4.3)

We want to use just enough dynamic scheduling so that the scheduler can

parallelize any work displaced by a noise event of length δ. On any one

56

thread, there are fd
N
p dynamically scheduled iterations. So:

δ = dfd
N

p

δ = fd

(
Nt1
p

+ q
N

p

)
fd =

pδ

N (t1 + q)
(4.4)

This is more aggressive and uses significantly less dynamic scheduling than

that in Equation (4.2), by taking into account the dequeue overhead. Still,

a limitation of the above is that the dynamic fraction is constant for all

invocations of a threaded computation region. This limitation can be ad-

dressed by using run-time predictions of values of noise, dequeue overhead,

and compute time per thread, for a given threaded computation region. We

refer to the adaptation of the dynamic fraction based on the parameter es-

timation of noise, dequeue overhead and the per-thread compute time as

static-hybrid scheduling.

As described in the beginning of the section, using the dynamic fraction

fd on all nodes insulates us from the expected noise δ. What is the com-

putational delay η when one node experiences noise? This delay consists of

two components: one is the extra work done by the remaining p−1 cores on

a node that experience noise, and the other is the dequeue overhead experi-

enced by every core on every node. Adding those up, we get a computational

slowdown of:

η =
δ

p− 1
+
fdNq

p
(4.5)

where δ
p−1 is the overhead of work displaced by noise, and fdNq is the added

dequeue overhead. In the average case, many nodes will suffer performance

degradation due to the dequeue overhead, which can be significant. The

question then becomes whether we can reduce scheduling overhead further.

4.3 Communication Deadlines and Slack

In the simple example code that we showed at the beginning of the chapter,

we used MPI operation as a standin for any across-node synchronization.

However, when the MPI operation is a time-consuming collective operation,

it creates an opportunity to reduce the dynamic fraction further. Because a

node typically must wait for information from other nodes to make progress

on a collective operation, it may sometimes be able to tolerate a delay in

57

arriving at the collective operation without impacting the completion time

of the collective operation.

4.3.1 Characterizing Slack

We first show that the slack in collective operations is of significant duration.

Figure 4.1 illustrates the slack distribution across different MPI processes

for a simple broadcast implementation. The threaded computation within

each MPI process is shown in light blue rectangles. The arrows indicate

MPI messages. The idle time spent waiting for messages inside MPI calls is

shown in orange, and this time is the slack. The root of the broadcast can

start immediately and thus has no slack. The other processes exhibit slack

depending on the process arrival pattern and the communication pattern.

Note that communication patterns are specific to the broadcast implemen-

tation of the collective within the MPI implementation.

The key to acheiving minimalistic dynamic scheduling is knowing the

amount of time available before the communication deadline. Figure 4.4

shows a near-optimal case, where the computation ends just before the dead-

line. To do this for every dynamic execution, we must predict the duration

of the slack. However, slack is not the same on all processes, and it can also

vary over time. The question is how predictable slack is, and whether it

is different enough across different processes to make separate, per-process

adjustments of the dynamic fraction.

Collective max avg (σ) σi
Allreduce 307 199 (.792) .102

Alltoall 280 149 (.821) .176

Barrier 250 139 (.178) .061

Allgather 268 189 (.527) .115

Reduce scatter 459 296 (.649) .129

Table 4.2: Slack statistics (in µs) across MPI processes.

To characterize the variability of slack on a single process and across

processes, we performed a simple experiment in which we ran 1000 iterations

of a simple computation, followed by an MPI collective call, and measured

the slack on each process. Table 4.2 shows the results for running on 512

nodes of a Blue Gene/Q system.

The second and third columns show the maximum and average slack

observed across MPI processes. We also show the standard deviation across

MPI processes in parentheses in the third column. We see that there is a

58

P0

P1

P2

P3

MPI

MPI

Slack MPI

MPI
Send Send

Send

Recv

Recv

Recv

Slack

Slack

Figure 4.1: Slack in a binomial broadcast tree with four processes.

wide range of slack values across MPI processes. The last column shows

the process-internal standard deviation σi across iterations, averaged across

MPI processes. The intra-process deviation across time is small. Given this,

our goal is to predict the slack as accurately as possible during runtime, and

also to ensure that this prediction incurs minimal overhead.

4.3.2 Existing Thread Scheduling Policies In the Context of

Slack

We now show how different existing scheduling strategies handle noise, in the

context of slack. Figure 4.2 shows a team of statically scheduled threads in a

timestep of an MPI+OpenMP application, without noise occuring (top) and

with noise occuring (bottom), with the slack factor added. If uninterrupted

by noise, the threads finish simultaneously and start the MPI communica-

tion. If a noise event occurs in one of the threads during the computation,

the statically scheduled work is delayed. In the case that the noise consumes

less time than the slack, the critical path is unaffected and the noise is ab-

sorbed. If the noise duration exceeds the slack, then the MPI work on the

application’s critical path is delayed, which amplifies the noise, i.e., delays

another process. Absorption and amplification has been studied extensively

in the literature [46,72].

Figure 4.3 shows the same work dynamically scheduled, where the work

is broken into fine-grained chunks of iterations. Threads obtain these work

units from a work queue. The time required to pull work from the queue

is called dequeue overhead. If noise occurs on a thread, the “lost” work

will be picked up by other threads, and the noise is consequently mitigated.

Thus, dynamic scheduling allows some noise to be absorbed even if it would

exceed the slack if static scheduling were used. However, dynamic scheduling

adds a queueing cost and data movement overhead to the overall execution.

59

Slack MPI

1
2
3
4

1
2
3
4

Time

Am
plification

Noise

Threads
Threads

MPI

Tp S

Figure 4.2: Impact of performance irregularities for static scheduling, with
slack factor added.

1
2
3
4

Time

1
2
3
4

Noise

D
elay

Slack

Threads
Threads

MPI

MPI

Am
plification

t1
q

S

Figure 4.3: Resilience to performance irregularities with dynamic scheduling,
with slack factor added.

The overhead caused by this cost depends crucially on the granularity of

the work, but can be significant for loops typically found in computational

science applications [27,54].

To reduce queueing cost, we can schedule a large fraction of the itera-

tions statically and schedule only a minimal number of iterations dynami-

cally. We call this mechanism Hybrid Static/Dynamic Scheduling, or Hybrid

Scheduling. Figure 4.4 illustrates this technique. Here, only the second part

of the workload is scheduled dynamically. The first part, shown in blue,

is scheduled statically, without any overhead. The noise event causes load

imbalance, but the dynamic scheduling moves excess work off the critical

path. Additionally, the schedule still incurs some dequeue overhead, but

much smaller than that of a fully dynamic scheme. The goal of our ap-

proach is to use just enough dynamic iterations to reschedule work delayed

by noise, while using enough static iterations to prevent the communication

phase from being delayed by queueing overhead.

60

1
2
3
4

1
2
3
4

Time

Slack

Noise

Threads
Threads

MPI

MPI

Am
plification

t1q
(1 � fd) · Tp S

Figure 4.4: Hybrid Scheduling for a threaded computation region, with the
slack factor added.

4.4 Extending the Model to Incorporate Slack

The question now becomes whether we can reduce scheduling overhead fur-

ther by exploiting our understanding of slack.

We made the observation that processes have slack, or idle time spent

waiting on another process inside an MPI operation. Slack acts as a free

noise insulator, and we exploit it to reduce the dynamic scheduling necessary

to mitigate the impact of noise. Note that the slack is different on different

nodes. Thus, we need to extend the model by specializing the dynamic

fraction on each node depending on its slack.

We describe how to further reduce the average dequeue overhead while

still bounding the impact of noise by δ
p−1 . We refer to the resulting schedul-

ing scheme as Slack-conscious Hybrid Static/Dynamic scheduling. What is

the relationship between the delay to the critical path αi and the compu-

tational delay η? If the collective operation at the end of each iteration

started immediately, any computational delay will lead to extension of the

critical path, i.e., αi = η. However, we know from Section 4.3 that different

processes have different amounts of slack. Their slack relaxes the deadline

on each node. Slack gives us some extra time to absorb part of the compu-

tational delay.

Let Si be the amount of slack on a node i. Per Equation (4.5), on the

critical path, the slowdown in the computation region and the amplification

are both αi. For the remainder of this section, we distinguish between impact

to the critical path (αi) and computational delay (η). αi is η minus the slack:

αi = η − Si (4.6)

Slack provides free insulation from noise. On a node with slack Si and

61

Model outputs

fd Fraction of work scheduled dynamically

f ′d Fraction of work scheduled dynamically,
reduced for slack

Model inputs

q Overhead of dequeueing single iteration

Si Slack duration on process i

δ Expected noise duration

Tp Execution time on p cores with fully static scheduling and
no noise

N Total number of iterations across all threads

Change quantities

∆f Change in dynamic fraction

∆η Change in execution time of computation region

τ Sequential time for dynamic work moved

Other variables

t1 Duration of single iteration on a single thread, on one
core

d Duration of single dynamic iteration on a single thread

η Compute delay due to noise and queue overhead

αi Delay added to the critical path by node i

Table 4.3: Overview of all model parameters.

without any dynamic scheduling, we could withstand noise events of up to

length Si without delaying the critical path. Here, we exploit this to reduce

on-node dequeue overhead by decreasing the amount of dynamic scheduling

fd based on slack. We do this while still bounding each node i to at most αi

amplification in the expected case. We begin by replacing fd with a new per-

process fraction fd
′
i, or simply f ′d, where f ′d < fd. Let ∆f = fd− f ′d. When

we reduce the dynamic fraction, we trade off dynamically scheduled work

for statically scheduled work. We model the expected impact to the critical

path by node i to ensure that it does not exceed αi. Assume that there is

noise of length δ. In this scenario, reducing the dynamic fraction reduces

the work in the dynamic section of the threaded computation region. The

time that one processor would take to do this work with no queue overhead

is denoted τ :

τ = Nt1∆f (4.7)

When we remove this work from the dynamic section, we can no longer

insulate ourselves from pTp∆f noise. The change in the length of the com-

62

putation region (η) due to this scheduling change when noise occurs is:

∆η = −τ
p

+ τ −∆fNq (4.8)

The first two terms model the change in computational load, and the last

term models the change in queuing overhead. Now, we have enough infor-

mation to choose f ′d so that the node’s impact to the critical path is still αi

in the expected case. Let α′i, or simply α′, be the amplification encountered

using f ′d. α
′ is equal to amplification using fd plus ∆η, minus the slack:

α′ = α+ ∆η − S (4.9)

Set the above equal to α and solve for fd
′:

α = α+ ∆η − S

S = −τ
p

+ τ −∆fNq

S = −pNt1∆f + Tp∆f + ∆fNq

S = −∆f ((p2 − 1)Nt1 +
Nt1
p

+Nq)

− S

(p2 − 1)Nt1p +Nq
= fd − f ′d

f ′d = fd −
S

(p2 − 1)Nt1p −Nq
(4.10)

This dynamic fraction will ensure that amplification in the expected

case does not exceed α, i.e., it is no worse than for nodes that are on the

critical path. Indeed, it can be observed trivially that when we are on the

critical path, S = 0 and f ′d = fd. As slack grows, we reduce the dynamic

scheduling used when a node is unaffected by noise. We prefer to use slack

for insulation when it is available because dequeue overhead of dynamic

scheduling can amplify even when there is no noise.

This formulation allows f ′d to be negative when slack is large, but in

reality we cannot use less than 0% dynamic scheduling. We revise Equa-

tion (4.10) to:

f ′d = min

(
fd −

S

(p− 1)Nt1p −Nq
, 0

)
(4.11)

4.5 Slack-Conscious Hybrid Static/Dynamic

Scheduling

The percentage of dynamic work that minimizes the average-case runtime

of a threaded region in a noisy system depends on each node’s communi-

cation deadline. This fact implies that optimizing the performance of a

63

MPI

Adaptive Runtime Library + Model

OpenMP Runtime

OpenMP
Calls

Predict
Static

Fraction
MPI Calls

PMPI Calls

Instrumented MPI+OpenMP Application

Compiler-aided
Instrumentation

Figure 4.5: Runtime framework with our contributions in grey.

hybrid MPI+OpenMP application is not a simple matter of optimizing the

distributed memory, e.g., MPI, and shared memory, e.g., OpenMP, run-

time systems independently. Rather, we must dynamically tune the shared

memory runtime based on the behavior of the distributed memory run-

time. Inspired by this observation, we have devised a software system that

performs this tuning automatically. Our prototype implementation uses a

compiler-based approach to instrument MPI+OpenMP programs. Specifi-

cally, we have developed a runtime library to compute an optimized dynamic

fraction for an OpenMP phase.

An overview of our architecture is shown in Figure 4.5. The white rect-

angles taken by themselves show the interaction between MPI+OpenMP

application code and the MPI runtime and the OpenMP runtime. The

gray components are our contributions. We can automatically employ our

techniques within an application to take advantage of our library using a

source-to-source transformation, of our own design. The source-to-source

transformation adds calls to our adaptive runtime library, and these calls

are used to guide the OpenMP runtime.

Our runtime library uses its slack prediction, its noise estimation, and

its dequeue overhead estimation to compute the minimal dynamic frac-

tion for each node. The computation of the slack-conscious dynamic

fraction, i.e., implementation of the equation (4.11), is done within the

decide dynamic fraction() call, on the arrow going from Compiler-

aided Instrumentation to the Adaptive Runtime Library + Model.

We note that we choose MPI+OpenMP for the baseline codes, the most

64

popular hybrid programming combination, to demonstrate our techniques.

However, our techniques generalize to other bulk-synchronous distributed

memory applications, e.g., UPC or CAF, that are combined with on-node

runtimes that support static scheduling, e.g., TBB. We detail these compo-

nents of the framework below.

4.5.1 Automatic Compiler Transformation

for(int timestep=0; timestep<1000; timestep++)
{
#pragma omp parallel for

for (int i = 0; i < n; i++)
c[i] += a[i]*b[i];

MPI_Allreduce(...);
}

(a) OpenMP loop with static scheduling.

static LoopTimingRecord *lr = NULL;
double fs; ...
for (int timestep=0;timestep<1000;timestep++)

{
fs = decide_static_fraction(&lr);

#pragma omp parallel
{

#pragma omp for nowait
for (int i=0;i<fs*n;i++)

c[i] += a[i]*b[i];
#pragma omp for schedule(dynamic)

for (int i=fs*n;i<n;i++)
c[i] += a[i]*b[i];

end_timing(&lr);
}
endLoop(&lr, n);
MPI_Allreduce(...);

}

(b) OpenMP loop tranformed for Slack-Conscious Hybrid Static/-
Dynamic scheduling.

Figure 4.6: Transformation of an OpenMP loop to use our approach.

To allow developers to use Slack-Conscious Hybrid Static/Dy-

namic scheduling quickly, we have implemented a ROSE compiler trans-

formation that instruments standard OpenMP code to use Slack-Conscious

Hybrid Static/Dynamic scheduling and to call into our runtime library.

Our transform splits loops like the one pictured in Figure 6.2 into two loops.

The transformed code is shown in Figure 6.3. In the transformed code,

65

the first OpenMP loop’s iterations are statically scheduled, and the sec-

ond OpenMP loop’s iterations are dynamically scheduled. The compiler

inserts the nowait clause on the statically scheduled OpenMP loop to al-

low its threads to start the dynamic region immediately, without synchro-

nization. Before the OpenMP region, the ROSE transformation adds the

predict dynamic fraction() call and other instrumentations, the re-

sults of which are used to determine the bounds of our static and dynamic

loops. Our approach relies heavily on cooperation between the MPI and

OpenMP runtimes, and the predict dynamic fraction() call is where

the two communicate. Without this call, OpenMP would be unable to get

the information it needs from MPI to enable Slack-Conscious Hybrid Stat-

ic/Dynamic scheduling.

4.5.2 Runtime Parameter Estimation

Within the predict dynamic fraction() call, observed slack values

and measured parameters of computation time per thread N ·t1
p , dequeue

overhead q, and noise length δ are needed to calculate this per-process dy-

namic fraction, as determined in Equation 4.11 in Section 5.2. Below, we

explain how these values are obtained during runtime.

Basic Scheduler Measurements

The record parameter stores the values of N ·t1
p , q and δ. The scheduling

overhead q is measured with a dynamically scheduled OpenMP loop at the

initialization of the library. This loop runs multiple dynamically scheduled

short iterations to estimate the dequeue overhead q. The expected noise

event length δ is observed by running multiple measurement iterations in

a tight loop containing within its body a square root calculation. The dif-

ference between the minimum and maximum runtimes is used to estimate

δ. We estimate N ·t1
p by obtaining the minimally observed time taken for

the statically scheduled section from previous invocations of the loop. We

obtain t1 by dividing this time by the number of iterations executed by a

thread statically, and use it to calculate N ·t1
p .

We denote the time taken in some arbitrary invocation as Tp, and the

time taken for invocation i as Tp,i. The time for executing a single invoca-

tion of a loop depends on the application workload. Thus, we measure it for

each OpenMP parallel loop. The mechanism is shown in Figure 6.3. The

endLoop() function records time taken for the loop of the precedent invo-

cation of the OpenMP region, and we collect the timing for each invocation

66

in the LoopTimingRecord struct.

This struct contains a configurable number of past loop invocations. For

each of those past invocations, the framework computes the time for the par-

allel execution Tp,i of the workload in invocation i; this is computed using

the known dynamic fraction for this invocation. The new dynamic fraction

for the next invocation now uses the minimally observed Tp across all pre-

vious invocations. Because we keep only the minimum of Tp,i, the memory

to store the history is O(1). The first invocation will run with a fixed 10%

dynamic fraction and the new dynamic fraction for the next invocations is

then computed using these available runtime measurements from the previ-

ous invocations, along with the process-local slack, as described in the next

section.

Process-local Slack Measurements

Process-local slack is measured during runtime. We use the PMPI profiling

interface to intercept all calls to MPI collective routines. When the library

intercepts a collective call, it measures the time spent inside the call, which

it records in a historical slack trace. We have based our slack tracing on

the Adagio tool [81], which uses similar instrumentation to predict slack for

power optimizations. Since there is a tradeoff between runtime overhead

for the slack measurement and the performance advantage due to Slack-

Conscious Hybrid Static/Dynamic scheduling, we investigate three different

granularities for slack measurement:

Callpath. The Adagio tool uses this mode. When we run this way, our

library will unwind the call stack when it encounters an MPI operation, and

it will associate slack with a particular call stack. This is our finest granular-

ity. A call path represents specific context within a program, including the

MPI call and all its ancestors. Callpath granularity can capture behaviors

that differ depending on which part of the application is using MPI.

Collective. Rather than storing a full callpath, which requires the overhead

of unwinding the stack, we can also associate slack trace values with only

the type of the collective operation that had the slack. This allows us to

capture different communication patterns per collective, but it does not

capture application load imbalances or other behaviors extrinsic to MPI.

Naive. With the Naive prediction strategy, we forego runtime tracing al-

together and predict slack based on a precomputed experiment. In this

mode, we run 1,000 invocations of a simple MPI Allreduce() with a mes-

sage size of 4 bytes on all MPI processes before the application begins,

i.e., right after MPI Init(). The average slack across all invocations of

67

MPI Allreduce() is then used to predict slack later. This is not an in-

telligent scheme, but the overhead of prediction is low, and it serves as an

effective control to compare it with the adaptive case. When using the Col-

lective or Callpath prediction schemes, this Naive prediction scheme is used

for the slack prediction of the first invocation of a particular collective in an

application.

4.6 Experimental Evaluation

Figure 4.7 compares the default OpenMP static and dynamic loop schedules

with our approach. By using a minimally dynamic scheduling strategy, we

improve the scalability of the application and achieve a 26.8% improvement

over a stock OpenMP runtime for large-scale runs.

2 4 8 16 32 64
128

256
512

1024

Nodes

1300

1400

1500

1600

1700

1800

1900

2000

T
im

e
 (

se
co

n
d

s)

OMP-Stat OMP-Dyn Adpt-Callpath

Figure 4.7: Scaling PF3D on a Intel Westmere 12-core cluster.

We now compare the effectiveness of our Slack-Conscious Hybrid Stat-

ic/Dynamic scheduling scheme to the OpenMP static, dynamic, and guided

scheduling policies, as well as static-hybrid scheduling. For our experimen-

tation, we considered three different machines. Sierra is an Intel Westmere

cluster with 12 Xeon EP X5660 cores on each node and the CHAOS 5

Linux-based operating system. Cab is a 16-core Intel Westmere cluster with

the CHAOS 4.4 Linux-based operating system. Rzuseq is a Blue Gene/Q

(BG/Q) system with 16 cores at each node running IBM’s Compute Node

Kernel OS. A 17th core on this machine is dedicated to servicing the MPI

progress engine and to handling some OS events.

We test our strategies by applying them to bulk-synchronous

MPI+OpenMP codes. First, we use all three NAS multi-zone benchmarks,

68

which are hybrid MPI+OpenMP versions of the traditional NAS bench-

marks [50]. We use problem class D for these codes. We also consider the

AMG2006 Algebraic multigrid application that solves a Laplace problem

with Jacobi relaxation [5]. We run AMG for 13 load-balanced time steps

using 100 × 100 elements per core. Finally, we consider the PF3D appli-

cation [43], which is a laser-plasma interaction simulation. It alternates

between successive 2-D FFT MPI Alltoall communication on subcom-

municators and computation regions consisting of multiple OpenMP loops.

For all applications, we use one MPI process per node and fully occupy each

compute core with an OpenMP thread.

4.6.1 System-Specific Noise Signatures

We utilized the tools offered by Hoefler et al. [46] to produce scatter plots of

the noise signatures of each our test systems. The Blue Gene/Q system is

noise-free. Cab and Sierra exhibit 0.18% and 0.16% serial noise, respectively.

Our runtime system reports 0.6% and 0.7% performance improvement, re-

spectively, showing consistency of our runtime system measurements with a

commonly used benchmark. Figure 4.8 shows the noise signatures for the

three systems.

 0.01

 0.1

 1

 10

 100

 1000

 10000

0 5 10 15 20 25 30 35 40 45 50

D
e

to
u

r
[u

s
]

Sample Time [s]

(a) Sierra.

 0.01

 0.1

 1

 10

 100

 1000

 10000

0 5 10 15 20 25 30 35 40 45 50

D
e

to
u

r
[u

s
]

Sample Time [s]

(b) Cab.

 0.01

 0.1

 1

 10

 100

 1000

 10000

0 200u 400u 600u 800u 1m 1m 1m 2m 2m

D
e

to
u

r
[u

s
]

Sample Time [s]

(c) Blue Gene/Q.

Figure 4.8: Noise signatures for our test systems.

4.6.2 Slack Prediction Accuracy and Overhead

Our Slack-Conscious Hybrid Static/Dynamic scheduling techniques rely

heavily on slack prediction to be effective. To test the efficacy of our predic-

tors, we ran our slack predictors (described in Section 4.5) with each of our

test applications and measured the average error and overhead, across all

MPI processes. Figures 4.9a, 4.9b, and 4.9c show the results for slack error.

As expected, the Naive approach has the worst slack prediction error of

the three approaches. This is because different collective operations exhibit

different slack profiles at runtime. Slack prediction based on collective type

69

nasbt nassp naslu amg pf3d
Application

0

2

4

6

8

10

12

14

P
e
rc

e
n
t

E
rr

o
r

Adpt-Naive Adpt-Collective Adpt-Callpath

(a) Sierra.

nasbt nassp naslu amg pf3d
Application

0

2

4

6

8

10

12

14

P
e
rc

e
n
t

E
rr

o
r

Adpt-Naive Adpt-Collective Adpt-Callpath

(b) Cab.

nasbt nassp naslu amg pf3d
Application

0

2

4

6

8

10

12

14

P
e
rc

e
n
t

E
rr

o
r

Adpt-Naive Adpt-Collective Adpt-Callpath

(c) Blue Gene/Q.

Figure 4.9: Average error of runtime’s slack prediction across all MPI pro-
cesses, for different applications.

is only slightly better: from 8-15% on the Cab machine, and from 2-4% on

Blue Gene/Q. On all three machines, callpath-based slack prediction, where

a separate prediction is made for each occurrence of a collective, is by far the

most accurate. This prediction scheme is able to predict slack for each MPI

call to within 1.5% on Cab and within 1% on Blue Gene/Q. Figure 4.9b

and Figure 4.9c show that Blue Gene/Q is much more consistent than Cab.

Even the Naive approach seems to work reasonably well (2-4% error) on the

Blue Gene/Q machine.

nasbt nassp naslu amg pf3d
Application

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n
t

O
v
h
d

Adpt-Naive Adpt-Collective Adpt-Callpath

(a) Sierra.

nasbt nassp naslu amg pf3d
Application

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n
t

O
v
h
d

Adpt-Naive Adpt-Collective Adpt-Callpath

(b) Cab.

nasbt nassp naslu amg pf3d
Application

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n
t

O
v
h
d

Adpt-Naive Adpt-Collective Adpt-Callpath

(c) Blue Gene/Q.

Figure 4.10: Average overhead of implementation of slack prediction library
function across all MPI processes for different applications.

Slack prediction is not useful if its use adds too much overhead to the run.

For each application, we measured the overhead of our various slack predic-

tion techniques. Figures 4.10a, 4.10b and 4.10c show the results. Overheads

are an average over five independent runs of each application. On all three

machines, the slack overheads are low; no machine exceeds 1% overhead for

even the most expensive technique. We therefore use the most accurate, i.e.,

callpath-based, prediction technique.

4.6.3 Comparing Slack-conscious Scheduling with Best

Static Fraction

In this section, to highlight the need for adaptivity, we compare our Slack-

Conscious Hybrid Static/Dynamic scheduling strategy with an optimally

70

configured non-adaptive strategy. Here, the non-adaptive strategy makes

the fraction of statically scheduled work constant for all loops on all nodes,

and we compute the best such configuration by running each application

many times with different static fractions. Figure 4.11a shows the perfor-

mance of each run in our parameter sweep on Cab, using 1024 nodes. In

all cases, the best non-adaptive static fraction is between 0.8 and 0.9. We

performed the same set of runs at different scales, and Figure 4.11b shows

the best (minimum) result from each ensemble. The best static fraction

decreases as the scale increases. Using the data from Figs. 4.11a and 4.11b

as an oracle, we compared the performance of Slack-Conscious Hybrid Stat-

ic/Dynamic scheduling with each best performing non-adaptive run. From

the outset, this comparison makes the non-adaptive approach look better

than it realistically could, because knowing the optimal fixed static fraction

would require too many experiments to be practical.

Figure 4.11c shows the results for the five applications on the cab ma-

chine. In all cases, Slack-Conscious Hybrid Static/Dynamic scheduling per-

forms better than the optimal non-adaptive strategy. We achieve up to 10%

improvement with NAS LU on 1024 nodes. Moreover, the advantage of our

technique increases as we scale up. Clusters with on the order of 100,000

nodes already exist, and they are expected to be commonplace in the next

few years. We expect the advantage of our approach to be even greater at

such scales. Our approach enables large performance gains without burden-

ing the programmer with the task of tuning each application for each scale,

unlike prior work.

4.6.4 Implementation Strategy Assessment

We now compare the speedup over baseline static scheduling obtained with

a) dynamic scheduling, b) static-hybrid scheduling, and c) the slack-aware

scheduling strategies using different slack prediction techniques. Figure 4.12

shows the results of using these different implementation strategies for our

applications run at full scale on each of our machines (1024 nodes on Sierra

and Cab, and 512 nodes on Blue Gene/Q). The performance is reported as

a speedup with respect to the default runtime of OpenMP static schedul-

ing. The OpenMP dynamic scheduling policy has a slowdown rather than

speedup on all of the plots. Thus, the dequeue overhead in dynamically

scheduled applications far outweighs any noise resilience it may afford. We

are better off simply accepting the noise than switching to this strategy. On

Cab and Sierra, we see that our static-hybrid scheduling improves perfor-

71

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Static Fraction

0.8

1.0

1.2

1.4

1.6

1.8

N
o
rm

a
liz

e
d
 R

u
n
 T

im
e naslu

nasbt
nassp

amg
pf3d

(a) Performance for different static frac-
tions, normalized to static fraction of 1.0,
on 1024 nodes.

1 2 4 8 16 32 64
128

256
512

1024

Nodes

0.75

0.80

0.85

0.90

0.95

1.00

B
e
st

 S
ta

ti
c

Fr
a
ct

io
n

naslu

nasbt

nassp

amg

pf3d

(b) Best static fraction for different scales.

1 2 4 8 16 32 64
128

256
512

1024

Nodes

0

2

4

6

8

10

12

14

P
e
rc

e
n
t

G
a
in

naslu
nasbt

nassp

amg
pf3d

(c) Comparison of performance for best per-
forming global static fraction with Slack-
Conscious Hybrid Static/Dynamic schedul-
ing.

Figure 4.11: Comparison of our scheduling technique with using the best
static fraction on Cab.

mance by 10-20% over static scheduling, while our Slack-Conscious Hybrid

Static/Dynamic scheduling techniques improve the performance further by

15-26%. On Blue Gene/Q, the techniques perform better in roughly the

same rank order, but they decrease the performance degradation rather

72

nasbt nassp naslu amg pf3d

Application

60

40

20

0

20

P
e
rc

e
n
t

S
p
e
e
d
u
p

OMP-Dynamic

Static-Hybrid

Adpt-Naive

Adpt-Collective

Adpt-Callpath

(a) Sierra.

nasbt nassp naslu amg pf3d

Application

60

40

20

0

20

P
e
rc

e
n
t

S
p
e
e
d
u
p

OMP-Dynamic

Static-Hybrid

Adpt-Naive

Adpt-Collective

Adpt-Callpath

(b) Cab.

nasbt nassp naslu amg pf3d

Application

50

40

30

20

10

0

10

20

P
e
rc

e
n
t

S
p
e
e
d
u
p

OMP-Dynamic

Static-Hybrid

Adpt-Naive

Adpt-Collective

Adpt-Callpath

(c) Blue Gene/Q.

Figure 4.12: Performance for different scheduling strategies shown as per-
centage speedup over OpenMP static scheduling.

than getting more speedup.

Overhead Analysis

nasbt nassp naslu amg pf3d
Application

0

5

10

15

20

25

P
e
rc

e
n
t

o
f

R
u
n
ti

m
e

OMP-Dyn

Static-Hybrid

Adpt-Naive

Adpt-Collective

Adpt-Callpath

(a) Sierra.

nasbt nassp naslu amg pf3d
Application

0

5

10

15

20

25

P
e
rc

e
n
t

o
f

R
u
n
ti

m
e

OMP-Dyn

Static-Hybrid

Adpt-Naive

Adpt-Collective

Adpt-Callpath

(b) Cab.

nasbt nassp naslu amg pf3d
Application

0

5

10

15

20

25

P
e
rc

e
n
t

o
f

R
u
n
ti

m
e

OMP-Dyn

Static-Hybrid

Adpt-Naive

Adpt-Collective

Adpt-Callpath

(c) Blue Gene/Q.

Figure 4.13: Overheads for different scheduling strategies as a percent of
total runtime. Dequeue overhead is hashed, and thread idle time is solid.

To understand better how different adaptation strategies balance tran-

sient load imbalances and scheduler overhead, we measure the total time

spent across all threads in scheduler overhead and thread idle time during

execution. Figures 4.13a, 4.13b and 4.13c show the percent costs (cost is

in units of CPU-seconds) spent in thread idle time and scheduling over-

head time for Sierra, Cab and BlueGene/Q, respectively. The general trend

we see is that with the fully dynamic scheduling strategy, we incur high

percentage costs mainly due to scheduling overhead. As we use more ag-

gressively lightweight scheduling strategies (with Adpt-Callpath being most

aggressive), we increase costs of thread idle time slightly, but the cost of

scheduling overhead is greatly decreased. We also note that with Sierra,

which has lower dequeue overhead than Cab, the Adpt-Callpath strategy is

still beneficial in reducing scheduling overhead costs.

73

4.6.5 Overall Application Performance

Figures 4.14a, 4.14b, and 4.14c show the relative speedup we attain over

OpenMP static scheduling for all five applications using our Slack-Conscious

Hybrid Static/Dynamic scheduling with callpath-based slack prediction. On

1 2 4 8 16 32 64 128 256 512 1024
Nodes

0

5

10

15

20

25

30

35
P
e
rc

e
n
t

S
p
e
e
d
u
p

nasbt nassp naslu amg pf3d

(a) Sierra.

1 2 4 8 16 32 64 128 256 512 1024
Nodes

0

5

10

15

20

25

30

35

P
e
rc

e
n
t

S
p
e
e
d
u
p

nasbt nassp naslu amg pf3d

(b) Cab.

1 2 4 8 16 32 64 128 256 511 512
Nodes

2

1

0

1

2

3

4

5

P
e
rc

e
n
t

S
p
e
e
d
u
p

nasbt nassp naslu amg pf3d

(c) Blue Gene/Q.

Figure 4.14: Scaling runs of all five applications.

Cab, Slack-Conscious Hybrid Static/Dynamic scheduling improves perfor-

mance in all cases. We are able to improve performance by up to 26.8% for

the NAS BT benchmark running on 1024 nodes. For real-world applications

like AMG and PF3D, we are able to achieve a 20% performance gain on

1,024 nodes. Notably, the amount of improvement increases as we scale up,

which is consistent with the idea of noise resiliency: there is more likelihood

that some node will encounter noise at scale, so the benefit of our tech-

74

niques increases. On the Blue Gene/Q machine, we see that our techniques

have much less effect. At most scales, our benchmarks and applications are

slowed down by a fraction of a percent. This is likely because we add a small

overhead to scheduling in the complete absence of noise. However, at large

scale, we are able to improve AMG performance by a few percent. AMG

has load imbalances in the sparse phases of the solve at larger scales, and

we attribute these gains to being able to compensate for these imbalances.

Because our Slack-Conscious Hybrid Static/Dynamic scheduler manages the

transient delays while also reducing dequeue overhead, we are actually able

to improve performance on a nearly “noiseless” machine, showing that our

technique can be beneficial for transient load imbalances that come from the

application and not just the platform. The key observation here is that even

on a machine with little or no noise, we do not hurt performance, and for load

imbalanced applications we can often improve it. For machines where noise

is prevalent, we achieve significant speedups with Slack-Conscious Hybrid

Static/Dynamic scheduling.

2 4 8 16 32 64 12
8

25
6

51
2

10
24

Nodes

103

T
im

e
(s

ec
on

d
s)

OMP-Static
OMP-Dynamic
Static-Hybrid

OMP-Guided
Adpt-Callpath

vSched
comboSched

Figure 4.15: Scalability of PF3D with different schedulers on cab.

Figure 4.15 shows the raw runtimes for the PF3D application on cab. On

this system, OpenMP dynamic scheduling performs noticeably worse than

the other strategies. On Cab, both static and guided scheduling perform

roughly 10% faster than dynamic scheduling, with guided scheduling some-

times tying and sometimes coming in slightly faster. Using our static-hybrid

scheduling policy, we are able to perform faster than any built-in OpenMP

scheduling policy by approximately 9%, and using Slack-conscious schedul-

ing to exploit knowledge of the MPI runtime, we are able to run up to 18%

75

faster than stock OpenMP.

4.7 Conclusion

In this work, we have developed fundamental techniques that enable pro-

grammers to overcome the scaling wall, induced by within-node transient

delays, for hybrid parallel applications. We demonstrated a general method

that adaptively tunes itself, and which shows increasing performance im-

provement on increasingly large systems. We also implemented an auto-

mated source-to-source transformation framework for MPI+OpenMP hybrid

applications that transforms such applications in a way that is transparent

to the application programmer.

Our results showed performance gains of 26.8% over basic static schedul-

ing for NAS BT MZ running on 1,024 nodes (16,384 cores) of a NUMA clus-

ter. We showed that our Slack-Conscious Hybrid Static/Dynamic scheduler

will not hurt performance significantly on a low-noise machine, and may im-

prove the performance of load imbalanced applications even when there is

no noise. Most importantly, we showed that our performance gains increase

for increasingly large scales, indicating that our approach will yield even

more improvement on future systems.

76

Chapter 5

Spatial Locality in
Dynamically Assigned
Iterations
The hybrid static/dynamic scheduling scheme provides many performance

benefits. In particular, the statically allocated iterations exhibit higher spa-

tial and temporal locality. In consecutive outer iterations, each thread exe-

cutes the same inner loop iterations and therefore touches the same data on

each outer iteration. In addition, statically allocated iterations for a given

thread constitute a contiguous region, and thus exhibit spatial locality (this

assumes consecutive iterations access nearby data, which is the common case

in most applications). However, for dynamically allocated iterations, spatial

as well as outer-loop temporal locality is lost. In this chapter, we develop a

technique to restore locality for these iterations.

To handle a larger class of load imbalances so as to make our approach

useful to a broad range of applications, we consider modifications to our

existing hybrid static/dynamic scheduling scheme to improve data locality.

Specifically, we implement a scheduling scheme in which we change the lay-

out of the iterations that are static and the iterations that are dynamic, in

order to improve spatial locality. We also add an additional tunable con-

straint in the dequeue function of the scheduler, in order to reduce coherence

cache misses on a multi-core node. The constraint is quantified as a fraction

of dynamically scheduled work, and thus can be determined through perfor-

mance modeling and theoretical analysis in the same way as done in [27].

The contributions of this chapter are:

1. Analysis of the tradeoff between locality and load balance for coarse-

grained application-generated imbalances;

2. Improvement of spatial locality for scheduling in current static/dy-

namic scheduling schemes;

3. Techniques (constraints) for the portion of work that is dynamically

scheduled, so as to reduce both coherence cache misses and contention

on the shared memory interconnect.

77

Through experimentation of an N-body code on modern multi-core ar-

chitectures, our technique gives 19.42% performance gains over dynamic

scheduling, and an overall 48.63% gain over standard static scheduling.

5.1 Problem Statement

The scheduling strategy in this chapter builds upon the basic hybrid stat-

ic/dynamic scheduling strategy of Chapter 2. So, we begin with a recap

of that strategy. We assume a bulk-synchronous hybrid MPI+OpenMP or

MPI+pthread application, where each thread runs on one core of an SMP

node (and each MPI process runs on one node). A bulk-synchronous code

consists of several application timesteps, with each application timestep sur-

rounded by two successive global MPI collective invocations. Within each

timestep are one or more threaded computation regions, e.g., a loop per-

forming a dot product with a #pragma omp parallel for surrounded

by it. Unless otherwise noted, a threaded computation region ends with a

thread barrier. There may be load imbalance across threads, not just of the

magnitude of one loop iteration, i.e., fine-grained, but also of the magnitude

of multiple loop iterations, i.e., coarse-grained. This load imbalance may

come from either system noise or from the application. The characteristic

of load imbalance may be transient, i.e., without a fixed pattern across ap-

plication timesteps, or persistent, i.e., with a fixed pattern across application

timesteps.

A simple technique to handle the load imbalance within a node during

the execution of an application timestep is to use dynamic scheduling rather

than standard static scheduling. We assume a dynamic scheduling strategy

where, during each invocation of a threaded computation region, threads

pull sets of loop iterations, or tasklets, from a shared work queue. These

tasklets have locality tags associated with them that indicate the thread

on which that tasklet ran in the last application timestep. The scheduler

attempts to give a thread a tasklet that the thread executed in the previous

outer iteration, to the extent possible. Let us assume that when a thread

retrieves a tasklet from the shared work queue, it incurs some scheduler

overhead, consisting of dequeue overhead due to locking (including waiting

for the lock) and unlocking the queue to retrieve a tasklet, along with the

possible cost of data movement overhead due to coherence cache misses

required to retrieve data corresponding to iterations specified by the tasklet

from another core.

To reduce these costs of dynamic load balancing, a hybrid static/dy-

78

namic scheduling scheme can be used. In this scheme, depicted in Figure 5.1,

threads first execute pre-assigned iterations from a fraction of iterations of

the compute loop.The threads then, without waiting at a thread barrier, ex-

ecute the remaining fraction of iterations dynamically by retrieving tasklets

from a shared work queue. The x-axis in the figure is iterations, and not

time. The point in the computation at which the threads switch from static

scheduling to dynamic scheduling is either empirically tuned or determined

through performance modeling and theoretical analysis.

5.2 Scheduling Strategy

We explain the locality optimizations of the hybrid static/dynamic schedul-

ing strategies that we use to improve performance. In the following, let p be

the number of cores on an SMP node. Let n be the number of iterations in

a loop. Let fs be the fraction of statically scheduled iterations of the loop.

Let t be the thread ID of a particular thread participating in a threaded

computation region.

5.2.1 Modifications to Allocation of Iterations

A key problem of spatial locality exists with hybrid static/dynamic schedul-

ing. Figure 5.1 shows the allocation of iterations to threads. In the diagram,

the x-axis is loop iteration number. Consider the dynamically scheduled set

of loop iterations, starting with the iteration numbered n·fs
p , in Figure 5.1.

As the labeling indicates, iterations are executed by arbitrary threads de-

pending on the order in which the threads requested work.

Across outer iterations, the same inner iteration will typically be exe-

cuted by different threads, and therefore will access data that was used by

a different thread earlier. Heuristically, we can assume that consecutive it-

erations access adjacent data. This is because programmers typically write

code to preserve spatial locality. Note that in the dynamic section, this

spatial locality is also lost, where the consecutive sets of loop iterations get

allocated to different threads arbitrarily.

Can we control the arbitrariness of the allocation of dynamic iterations

to reduce the above problem? Consider the case of transient noise. We note

that on a given node, on most outer iterations, there will be no noise. Yet,

the dynamic scheduler will necessarily be arbitrary given the order in which

the threads will enter the critical section to fetch their dynamic allocations.

We prefer that the dynamic iterations executed by a thread be contiguous

to its static allocation, to the extent possible.

79

dynamicstatic

Increasing loop iteration number

T0 T1 T2 T3 T3T2T2T0T1T1T2T0..

Figure 5.1: Allocation of iterations to threads for Hybrid Static/Dynamic
Scheduling.

Therefore, we rearrange the static and dynamic iterations so that for

each thread, the dynamic iterations are placed after the static iterations.

That is, when a thread completes its last statically scheduled iteration i,

the first dynamically allocated iteration it receives is likely to be i+ 1. This

new layout is shown in Figure 5.2. Now, thread t begins its static section at
n·t
p , and ends it before n·(t+fs)

p . Most importantly, each thread t maintains

a separate queue of tasklets that corresponds to iterations contiguous to its

static iterations, namely from n·(t+fs)
p to n·(t+1)

p .

Each thread first executes its static iterations, and then dynamically

allocates iterations from its own dynamic queue. Only after that does it

attempt to steal work from other queues. When there is no imbalance, each

thread will execute a contiguous set of iterations (static + dynamic) just

as an OpenMP static scheduler will. Even when a core is overloaded by

noise, the rest of the cores execute their own dynamic iterations first before

helping the overloaded cores. Therefore, most dynamic iterations retain

outer iteration locality as well as spatial locality.

static dyn

Increasing loop iteration number

dyn dyn dynstatic static static

T0 T1 T2 T3T0 T1 T2 T3

Figure 5.2: Allocation of loop iterations to threads for Staggered Hybrid
Static/Dynamic Scheduling.

5.2.2 Choosing the Thread From Which to Steal

A basic problem with the dynamic scheduling section of hybrid static/dy-

namic scheduling is that it incurs overhead due to scheduling from a shared

queue, as is done in many dynamic scheduling implementations. This causes

additional locking and synchronization overhead, especially as the number

80

of cores increases. To address this, we will use a queue per thread rather

than a shared queue, as described later.

A basic way to implement work-stealing is to steal tasklets from a ran-

domly chosen thread. This randomization in stealing increases the chance

of off-chip coherence cache misses. To avoid such coherence cache misses, we

use a non-random strategy which better handles the tradeoff between load

balance and scheduler overhead. For a thread t, we steal the tasklet from

the queue belonging to a thread with either thread ID t − 1 or t + 1. To

choose between thread t− 1 and t+ 1, thread t steals from the queue which

has the most tasklets to be completed. If no tasklets are available to steal

from on these two threads, then thread t tries to steal from either thread

t − 2 and t + 2. We continue this process until the thread t has found a

queue with a tasklet that can be stolen, or has searched through all threads

and found no tasklet to steal.

5.3 Implementation

FORALL_BEGIN(<strat>, int tid, int nThds, int &start, int &end, int sz);!
FORALL_END(<strat>, int tid, int &start, int &end);!

int loop_start_<strat>(int tid, int nThds, int *pstart, int *pend, int sz);!
int loop_next_<strat>(int tid, int *pstart, int *pend);!

binding, process/thread ratio, mem alloc!

vSchedLib	

uSchedLib	

Pthreads/OpenMP/MPI-‐shm	 library	

void enqueueTasklets(WorkQueue *wq, int numThds, int dynIters, int sz); !
void resetWorkQueue(WorkQueue* wq);!
Tasklet* Dequeue_tasklet(WorkQueue* wq, int tid);!

Figure 5.3: Framework for our modified portion of the thread library.

81

5.3.1 Framework and Usage

Our scheduling library software architecture is shown in Figure 5.3. This ar-

chitecture shown is an extension to the library discussed in Chapter 4. The

user’s within-node code can be written in pthreads or OpenMP. The vSched

module contains the macro functions FORALL BEGIN and FORALL END that

the user would invoke (these functions are for ease of expressivity in appli-

cations). The only other change to the user’s code is the inclusion of the

header file vSched.h.

The macro functions invoke the scheduling functions

loop start <strat>() and loop next <strat>(), called within

the vSched library. The uSched module contains the back-end dequeuing

functions, enqueuing functions, work queue data type definition, tasklet

data type definition, and utility functions that can be used to print profiling

and statistics about the scheduler library execution.

To illustrate usage, consider the following threaded computation region,

as shown in Figure 6.2, which computes a dot product. The original compu-

tation region in this application program changes to that shown in Figure 6.3

when using our library. The application programmer can choose a particular

scheduling strategy in our library through specification of the strategy name

<strat> in the first parameter of the FORALL BEGIN and FORALL END

functions.

5.3.2 Implementation of Locality Optimized

Static/Dynamic Scheduling

The per-thread queues for the dynamic scheduling portion are implemented

using a C struct. The per-thread struct contains a pthread mutex. Each

thread locks this mutex when retrieving a tasklet from its private queue.

When some other thread attempts to steal from this thread, it uses this lock

to retrieve the tasklet from the queue.

For the sd and sds strategies, the dynamic fraction is calculated in the

loop start sd() and loop start sds() functions, respectively. We

calculate the value of the dynamic fraction at compile time, and store it

in that thread’s queue data structure. For the execution of the dynamic

tasklets, the per-thread struct contains a variable storing the starting index

of the next chunk of iterations, along with the chunk size to identify the end

index of that chunk; these two values identify the work in the queue that

a thread can do next when it tries to retrieve work from the queue. When

the chunk of work is completed by a thread, the index of the next chunk is

82

#pragma omp parallel
{

int myTid = omp_get_thread_num();
int numThreads = omp_get_num_threads();
for (int i=myTid/numThreads; i<((myTid+1)/numThreads)*n;

i++)
c[i] += a[i]*b[i];

}

(a) OpenMP loop with static scheduling.

int start, end = 0;

#pragma omp parallel
{

int myTid = omp_get_thread_num();
int numThreads = omp_get_num_threads();
FORALL_BEGIN(sds, myTid, numThreads, 0, n, start, end)

for(int i=start; i<end; i++)
c[i] += a[i]*b[i];

FORALL_END(sds, myTid, start, end)
}

(b) OpenMP loop transformed for Locality-Optimized Hybrid Static/Dynamic
Scheduling.

Figure 5.4: Transformation of a loop to use our approach.

updated by the thread. The updating of the variable identifying the next

chunk to be completed is protected by the per-thread mutex.

In the stealing function, when we obtain the thread ID one greater than

and one less than the given thread ID (or k greater and k less than the

given thread ID), we avoid the use of a modulo operation, which can be

costly on most architectures [54], and instead do a comparison test to first

check whether the thread ID is below the minimum thread ID number 0, and

then a comparison test to check whether a thread id is above the maximum

thread ID number p− 1.

5.4 Experimental Evaluation

We now show experimentation of our locality-optimized static/dynamic

scheduling strategy. We first show runtime implementation overheads using

a dot product computation, dot product square root computation, and a

Barnes-Hut code. We then focus on the evaluation of our locality-optimized

strategy, comparing it with both OpenMP dynamic scheduling and OpenMP

guided scheduling. Results are shown for the 16-core Intel Westmere cluster

83

Code Pct. ovhd

dotProd 3.14%

dotProdSqrt 2.31%

Barnes-Hut 1.71%

Regular Mesh 2.12%

Table 5.1: Overheads of our scheduling runtime shown as the percentage dif-
ference between our library’s static scheduling and OpenMP static schedul-
ing.

with a CHAOS 4.4 Linux-based operating system.

For the Barnes-Hut code, we show in Figure 5.5 the main modification

done. Specifically, the modified code is shown within the #ifdef CDY

... #else portion of the code. The original pthreads code is shown in the

#else... #endif portion of the code. The start and end variables, which

are private to each thread, are calculated from within our scheduler library.

5.4.1 Implementation Overhead

Table 5.1 shows the comparison between our library’s static scheduling and

OpenMP static scheduling for three different codes. The first code is a dot

product calculation, denoted dotProd. To increase the computation per

step of this dot product code, we applied a square root function to each

product, denoted dotProdSqrt. We also show the result for the Barnes-

Hut code, denoted by its name below. The comparison between our library

implementation and the OpenMP library implementation is done by taking

the percentage loss in execution time of our static scheduling method (100%

static) with respect to OpenMP static scheduling.

The overheads in our implementation are small even for the code with

very little work in each timestep (1000 timesteps were done), i.e., for the

dot product computation, and decreases slightly when we increase the com-

putation done, specifically for the square rooted dot product computation.

We also see that the overheads are notably low for Barnes-Hut code, where

the computation per step is significantly larger than both the dotProd and

dotProdSqrt. From this, we can justify that our library is adequately op-

timized. Further optimizations can be done to reduce other overheads of

library operation, but these small overheads do not add significant perfor-

mance degradation to application execution when using our runtime.

84

5.4.2 Application Performance

We next compare the performance of the new strategy with the previ-

ously described strategies, namely OpenMP dynamic, OpenMP guided, hy-

brid static/dynamic (Chapter 2), and the staggered hybrid static/dynamic

scheduling strategy described in this chapter.

Figure 5.8 show speedup over OpenMP static scheduling for different

dynamic scheduling strategies mentioned above for the Barnes-Hut code on

one node of Cab. Dynamic scheduling by itself is beneficial, compared with

static, because of importance of load balancing for this computation. The

benefit of the dynamic strategy decreases with increasing problem size. This

is not because dynamic scheduling is doing worse, but because static schedul-

ing is doing better. For larger problem sizes, static scheduling is able to bal-

ance load somewhat better than for smaller problem sizes. This improved

load balance for smaller problem sizes is likely because when each thread

is assigned a larger number of iterations, the law of large numbers tends to

bring the load per thread closer to the average load per thread. However,

even with the benefits for load balancing that the dynamic scheduling strat-

egy provides, the strategy still incurs the non-negligible and significant cost

of scheduler overhead.

Consider the 16-core data in Figure 5.8. When we use hybrid static/-

dynamic scheduling to reduce these overheads (denoted sd in the graphs),

performance improves 8.5% over dynamic scheduling for the smallest prob-

lem size, and 10.5% over dynamic scheduling for the largest problem size.

When we use our locality-optimized hybrid static/dynamic scheduling (de-

noted sds in the graphs) scheme, performance improves 14.5% over dynamic

scheduling for the small problem size, and 19.8% over dynamic scheduling

for the largest problem size.

The performance improvement of staggered static/dynamic scheduling

over OpenMP static scheduling for the largest problem size is approximately

60% on 16 cores, but only 30% on 4 cores.

This shows the importance of dynamic scheduling with increasing num-

ber of cores, and suggests that our benefits will be even higher on future

larger multicore nodes. Note though that the dynamic scheduling strat-

egy gives approximately 10% improvement on 4 cores, and only about 20%

improvement on 16 cores.

This is due to the additional synchronization overhead with a larger

number of threads, which our scheme is better able to handle than the

purely dynamic scheduling, due to the scheme using a hybrid strategy as

85

well as its use of localized work queues.

Comparing with Guided Scheduling: Our strategy improves per-

formance 10.1% over OpenMP guided scheduling for the smallest problem

size, and 14.3% for the largest problem size. Guided scheduling incurs addi-

tional data movement because it does not respect outer iteration locality as

well as spatial locality, whereas our scheduling scheme limits this dequeue

overhead through the use of partially static scheduling.

Table 5.2 shows the standard deviations of execution times across 15

trials of the Barnes-Hut code, where a trial is a single job submission of

the code. The dynamic and guided scheduling schemes exhibit over 6.2%

standard deviation, and the sd strategy improves the standard deviation to

4.1%. Our sds scheduling further reduces the standard deviation to 1.9%.

This is likely due to its superior outer iteration locality in both static and

dynamic sections of iterations. This low standard deviation shows perfor-

mance consistency, which is beneficial for bulk-synchronous codes, as shown

in [27,54].

static void* Process(void* arg)
{

register const int slice = (long) arg;
int start, end;

#ifdef CDY_ // constrained dynamic scheduling
int tid = (long) arg;
int i;
setCDY(fd, myConstraint, chunkSz);
FORALL_BEGIN(sds, 0, nbodies, start, end, tid, thds)

for (i=start; i<end; i++)
body[i]->ComputeForce(groot, gdiameter);

FORALL_END(sds, start, end, myTid)
#else // normal pthreads code

start = slice * nbodies / threads;
end = (slice + 1) * nbodies / threads;
// the iterations can be executed in any order
for (int i = start; i < end; i++) {

// compute the acceleration of each body
//(consumes most of the runtime)
body[i]->ComputeForce(groot, gdiameter);

}
#endif

return NULL;
}

Figure 5.5: Barnes-Hut code main modification using Slack-Conscious Hy-
brid Static/Dynamic scheduling.

86

We briefly explain the impact of the sds strategy on load balanced com-

putations. Recall that we consider dynamic strategies for such computations

is because of transient imbalances, a.k.a. noise. We have explained and

experimented with the relationship between single-node performance and

multi-node performance going to a large number of nodes, in the presence

of noise. We therefore focus on single-node performance in this chapter.

Specifically, for load balanced computations, our objective is to show that

our schemes do not add significant overhead to static scheduling. This can

help to ensure that on large number of nodes, the dynamic component of

our schemes will control the amplification as described in Chapter 2. In

this context, we show the performance of multiple scheduling strategies on

the stencil computation of Chapter 2 in Figure 5.9. The sds strategy does

slightly, but consistently better than the sd strategy because of the im-

proved locality in the dynamic section. The guided scheduling strategy does

slightly better on the two smallest problem sizes, but much worse on the

largest problem size, compared with sds. This again shows the consistency

benefit of sds. We believe that the benefit of guided can be overcome by

increasing the chunk size in sds.

1000 10000 100000
Number of Bodies

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Im
p
ro

v
e
m

e
n
t

OMP-Dynamic OMP-Guided uSched vSched

Figure 5.6: Improvement obtained over OpenMP static scheduling for dif-
ferent scheduling strategies applied to Barnes-Hut, shown for 4 of 16 cores
of Cab.

5.5 Conclusion

In this work, we showed different techniques to increase locality further

and to reduce costs of scheduling in the hybrid static/dynamic scheduling

technique, which allows for reducing performance degradation at scale for

87

1000 10000 100000
Number of Bodies

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Im
p
ro

v
e
m

e
n
t

OMP-Dynamic OMP-Guided uSched vSched

Figure 5.7: Improvement obtained over OpenMP static scheduling for dif-
ferent scheduling strategies applied to Barnes-Hut, shown for 8 of 16 cores
of Cab.

1000 10000 100000
Number of Bodies

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Im
p
ro

v
e
m

e
n
t

OMP-Dynamic OMP-Guided uSched vSched

Figure 5.8: Improvement obtained over OpenMP static scheduling for dif-
ferent scheduling strategies applied to Barnes-Hut, for 16 cores of Cab.

Strategy Runtime dev.

dynamic 10.68%

besf 3.49%

stag 1.42%

guided 6.92%

Table 5.2: Barnes-Hut standard deviations of execution times across 15
trials, where a trial is a job submission of the code.

bulk-synchronous MPI applications. We improved spatial locality by re-

arranging the data layout of hybrid static/dynamic scheduling. We used a

sophisticated stealing function that avoided off-chip coherence cache misses.

88

1024 8192 65536
Number of Mesh Points

0.3

0.2

0.1

0.0

0.1

0.2

Im
p
ro

v
e
m

e
n
t

OMP-Dynamic OMP-Guided uSched vSched

Figure 5.9: Improvement obtained over OpenMP static scheduling for dif-
ferent scheduling strategies applied to a stencil code, running on 16 cores of
Cab.

We demonstrated our techniques on a Barnes-Hut code on a noisy ma-

chine, which provided the challenge of coarse-grained, persistent load imbal-

ance from the application along with fine-grained, transient load imbalance

due to noise induced by the OS and architecture. Our methods achieved

19.62% gain over dynamic scheduling, and a 48.63% gain over dynamic

scheduling on a 16-core NUMA machine.

For future work, we plan to have alternate strategies for staggering the

static and dynamic iterations, along with providing alternative stealing func-

tions. We also plan to develop a more sophisticated performance model and

theoretical analysis for determining the constraint for our dequeue function.

Finally, we aim to make our library freely available to provide it for integra-

tion within a popular shared memory programming model such as OpenMP

or the MPI shared memory extensions [44].

89

Chapter 6

Composing Multiple
Scheduling Strategies

In the previous chapters, we discussed the reasons for using basic hybrid

static/dynamic scheduling techniques, and discussed additional optimiza-

tions over hybrid static/dynamic scheduling. However, for real applications

running on real-world architectures, several different factors of the machine

and application are involved. Thus, we need to find a way to handle all

of the problems discussed, simultaneously. In this chapter, we discuss a

methodology to combine the scheduling schemes to make it available for the

user.

To do this, we first identify the general types of scheduler techniques we

have discussed up to this point, and combine them to make them usable for

the application programmer within software. We discuss implementation a

scheduler composition containing all the different schedulers implemented

up to this point. With this, we show results for 3 new application codes on

different architectures, shown for different types of scheduling strategies dis-

cussed up to this point. We include notes and data on architecture-specific

tuning for the scheduler and application programmer usability. Finally, we

conclude the chapter through discussion of scheduling techniques and the

composed scheduler described in this chapter as it could be used for in the

context of running applications on next-generation architectures.

6.1 Scheduling Strategies Overview

We have examined several schedulers in the previous chapters. In different

circumstances, features of different schedulers will be more useful. It is desir-

able to combine features of different schedulers to make more sophisticated

schedulers with better performance.

To do this, we first describe categories of circumstances, features of

schedulers, methods of tuning their parameters, and performance factors.

1. circumstances: these are the architecture and application characteris-

tics that affect the choice of the scheduling strategies.

90

2. scheduler features: these are the individual techniques that were used

in putting together the schedulers of previous chapters. Our attempt

will be to judiciously choose and combine features from individual

schedulers.

3. methods for selecting parameters.

4. performance facets: the different features impact the performance via

affecting specific performance facets.

Circumstances: The application-platform combinations that we encounter

can be classified based on the following circumstances:

• noise

• application imbalance

• different iterations take different amounts of time

• effective core speed variation

• number of nodes

• number of cores per node

Features: Each of the schedulers from the previous chapters was built using

a combination of scheduling techniques. Each scheduling technique can be

thought of as a separate feature that can often be independently combined.

• hybrid static/dynamic scheduling

• chunking of iterations,(task quantization)

• variable-sized tasklets, as in guided and tasklet library.

• separate calculation of fd for each node.(forgetting about slack)

• exploiting slack

• weighted scheduling

• staggered

Methods for selecting parameters: Many of the features described

above can be refined further by selection of parameters. Also, when we

combine features from different schedulers, needs for balancing the tradeoffs

involved can be satisfied by creating additional parameters that can be ad-

justed. For example, the tradeoff between idle time and grain size, or the

tradeoff between idle time and locality.

91

• model-driven determination

• experimental tuning

• runtime adjustment

Performance facets: Different scheduling strategies impact overall appli-

cation performance in multiple ways. Although execution time is the most

important metric, several intermediate metrics provide useful insights. Spe-

cific scheduling strategies may worsen one metric while improving another.

Understanding these tradeoffs is critical to design combined schedulers that

serve any specific purpose such as the needs of an application class of in-

terest. We describe below the most important performance facets, i.e., the

intermediate metrics.

• idle time

• synchronization

• spatial locality (in dynamic section)

• spatial locality (static section)

• temporal locality (across outer iterations)

6.2 Techniques for Composing Schedulers

To illustrate how to combine schedulers, we show a particular sequence of

composition of a subset of the schedulers from previous chapters. In the

process, we will generate a new scheduler, which we call comboSched, that

combines several features from each of the baseline schedulers. The sequence

of development of these schedulers is shown in Figure 6.1.

We first review the definition of the basic lightweight scheduling tech-

nique, as it is described in previous chapters. With this defined, we explain

each of three schedulers, each based on a scheduler we have described in

the previous chapter. In some cases, these are improved versions of the

corresponding schedulers. We give a description of each scheduler, and its

specific features, especially from the point of view of how to combine them

with each other.

92

uSched	

slackSched	 stagSched	

comboSched	

Model-‐sched	 Tuned-‐sched	

hybSched	

noiseModelSched	 appModelSched	

Figure 6.1: Composition of 8 schedulers that make comboSched.

6.2.1 hybSched

We begin with the simplest scheduler that embodies the idea of static/dy-

namic hybrid scheduling. As the name suggests, this scheduler itself com-

bines features from two schedulers: OpenMP static scheduling and OpenMP

dynamic scheduling. It divides the iterations in two parts, static and dy-

namic. It is designed to address both low-frequency noise and application

imbalance. This is a loop scheduling strategy operating across threads within

an MPI process, where each thread first does a pre-defined portion of the

iterations in the static partition, and then dequeues iterations from the

dynamic partition. The number of iterations executed statically can be ad-

justed per threaded computation region and per MPI process. The static

fraction, denoted fs, is the fraction of all iterations that are allocated stati-

cally. This scheduling parameter is exposed to the application programmer.

6.2.2 tunedSched

This scheduler builds upon hybSched by adding a parameter selection

method of auto-tuning the static fraction. Specifically, the static fraction is

determined after measuring the performance with different values of static

93

fractions.

6.2.3 NoiseModelSched

Builds upon the hybSched by using a model for execution time given param-

eters of the duration of noise δnoise. See Chapter 4 for how the static fraction

is calculated using this model. For each node used for the application run,

we obtain the noise event length, tnoise, and time for dequeue operation,

tq. Note that tq and tnoise is obtained before the application begins. We

obtain the overhead due to noise and overhead due to dequeue operations

as described in Section 5.3 of Chapter 4. In Chapter 2 and Chapter 4, we

referred to the value of the noise event length as δ, but here, we will call

it δnoise so that we can distinguish load imbalance due to noise and load

imbalance due to any other source.

6.2.4 AppModelSched

Builds upon the hybSched by developing a model for execution time in

presence of application imbalance. This involves replacing the δnoise by a

measure of within-node application imbalance, δapp.

To obtain δapp, we first run 1 step of the application twice: one using

static scheduling and the other using dynamic scheduling. Specifically, we

run the application code with OpenMP static scheduling on process 0, and

then run the application code with OpenMP dynamic scheduling on process

0. For each process, we calculate the average idle time across threads within

the process from the previous application timestep. The scheduling over-

head, tovhd, is computed by multiplying the iterations per thread d by the

time for a dequeue operation tq, where tq is obtained from the measurements

of dynamic scheduling as above.

Let the time for the statically scheduled run be tstatic, the time for the

dynamically scheduled run be tdynamic, and the time for scheduler overhead

be tovhd. The magnitude of the additional duration induced by load im-

balance coming from the application, δapp, is tstatic - tdynamic - tovhd
1. We

estimate the parallel outer iteration time as Tp by running the application

in a mode where only one core of each node is used, i.e., we remove the

OpenMP parallelism. We obtain the execution time on node 0, as a sample,

and divide it by the total number of cores used for the run. Instead of using

node 0 as a sample, we could use an average across all the nodes, by doing

1Alternatively, δapp can be calculated via the method used in Figure 1.2.

94

a global reduction. Now that we have all the parameters needed by the new

model, we can calculate the static fraction to be used.

6.2.5 modelSched

The previous two schedulers handled two different circumstances: (a) low-

frequency noise in an otherwise balanced application (noiseModelSched),

(b) application imbalance on a non-noisy machine. We would like to handle

circumstances where application imbalance exists on a noisy machine.

A simple way of doing this is to replace the δ in the basic model by a

sum of δnoise and δapp. This is a conservative (or pessimistic) approach. It

aims to handle the situation when noise happens on the heaviest loaded core.

The least conservative (or optimistic) approach is to assume noise always

happens on a core that is not the most overloaded. In that case, we can

modify the model to use max(tnoise, tapp) as δ.

6.2.6 uSched

This scheduler first measures the parameters, such as iteration time and

noise duration. It then uses modelSched(handling both application imbal-

ance and noise) to determine a reasonable baseline value of the static fraction

fs. After this, we compose a feature from expTunedSched: we conduct an

exhaustive search in a small neighborhood around fs. Specifically, we try dif-

ferent static fractions 0.05 below and 0.05 above a given static fraction, with

the given static fraction being fstot , as calculated from above. This incre-

ment can be adjusted by the application programmer and requires knowledge

of iteration granularity. The resulting static fraction is fstotTuned, which is

the static fraction used for uSched. This is the static fraction used for all

nodes.

6.2.7 slackSched

This scheduler is an optimization over uSched. This is a slack-conscious

scheduling strategy described in Chapter 4. In particular, this is the variant

that uses the call path method for predicting the slack for each collective

call. Recall that MPI slack is the deadline that each process has to finish

its work, before this process extends the applications critical path, thereby

increasing the cost of application execution. The scheduler is put together

and works as follows:

1. On each process, start with the static fraction fs obtained in uSched.

95

(a) On each process, retrieve that process’s invocation of the last

MPI collective, where the invocation of the last MPI collective is

retrieved through the callsite slack-prediction method (see paper

for details on implementation details of slack prediction).

(b) Given the identifier of the last the MPI collective call invoked,

estimate that collective call’s slack value from the history of slack

values stored by the slack-conscious runtime. The slack estimate

is based on the slack value recorded in the previous MPI collective

invocation, as is done in the cited work of Adagio.

2. On each process, adjust its dynamic fraction based on the slack value.

This adjustment is done using the formula 5 in section 3 of Chapter 4

(final formula defining the slack-conscious dynamic) and implementa-

tion of section 4 of Chapter 4. The static fraction used in the loop

bound is 1- fd.

Note that the dynamic fraction, rather than the static fraction (used in

Chapters 2, 3, and 5) was used in Chapter 4 to make the slack-conscious

scheduling technique more intuitive. Additionally, doing the theoretical

analysis in that chapter using the dynamic fraction rather than the static

fraction helped more to minimize the calculations needed for slack-conscious

runtime adjustment of the hybrid static/dynamic scheduling during execu-

tion of an MPI application.

6.2.8 vSched

This scheduler is based on Chapter 5. The motivation of this scheduler is

to improve the spatial locality in the dynamically scheduled iterations. In

uSched, the dynamically scheduled iterations are assigned to threads arbi-

trarily based on the order in which threads happen to request dynamic work

(see Figure 5.2). The focus of this scheduler is to use different dimensions of

the tradeoff between load balance and locality to improve upon basic hybrid

static/dynamic scheduling.

We start with the hybrid static/dynamic scheduling strategy with the

static fraction obtained from uSched above, and then apply the strategy of

staggering of iterations to this.

6.2.9 ComboSched

The comboSched scheduling strategy is stagSched, i.e., locality-optimized

scheduling, with slackSched, i.e., slack-conscious scheduling, added into it.

96

In other words, one optimization over uSched, slackSched, is composed

with another optimization over uSched, stagSched, to form the comboSched

scheduling strategy. We add further optimizations to just the dynamic

scheduling section, e.g., using variable task sizes, only after the slack-

conscious scheduling adjustment is done.

In summary, we described a series of schedulers. We also illustrated

how new schedulers can be designed by composing features from multiple

schedulers, or by extending an existing scheduler by adding new features to

it. We next compare the performance of several of these schedulers.

6.2.10 Code Transformation

#include <omp.h>

int main(int argc, char* argv[])
{

int timestep = 0;
void *status;
int numprocs;
int rank;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);

// ...

while(timestep < 1000)
{

#pragma omp parallel
{

#pragma omp for
for(int i = 0; i<n; i++)

c[i] += a[i]*b[i];
}
MPI_Allreduce(&sum, &global_sum, 1, MPI_DOUBLE, MPI_SUM

, MPI_COMM_WORLD);
timestep++;

}

MPI_Finalize();
}

Figure 6.2: Original code with OpenMP loop.

97

Figure 6.2 shows an application program containing a basic OpenMP

loop. Note that the original full application code file is shown here, rather

than in the code snippet from previous chapters. We do this to show the

application programmer’s lines of code changed. When we put the imple-

mentation together, we get the following code shown in Figure 6.3 below.

The code shows an application program containing the OpenMP loop

transformed to use our Composed Scheduler. Specifically, the code shows

how to implement a composition of schedulers, using our existing scheduling

techniques from previous chapters. The implementation changes needed for

the composition are done within our macro-based scheduler. In the above

code, the slack-conscious scheduling scheme is shown in lines 40 and 48.

Considering the implementation of slack-conscious scheduling in Section 4

of Chapter 4, no changes were needed for the slack prediction runtime or

source-to-source transformation for this scheduler composition.

6.3 Results

With the above composition of schedulers, the main question we ask is:

does our composition of the schedulers and adjustment of the scheduler pa-

rameters help provide further performance improvement than each of the

schedulers in isolation? Specifically, how close is the sum of the perfor-

mance gains obtained by using the individual schedulers in the scheduler

composition to the performance gain obtained by the composed schedulers?

To answer the above, we experimented with three different

MPI+OpenMP application codes. The first application code is Rebound

[79], an MPI+OpenMP N-body simulation that simulates bio-molecular in-

teractions. The second application code is the CORAL SNAP code [86],

a regular mesh code which has computation used in the context of heat

diffusion. The third application code is the CORAL miniFE code [40], an

MPI+OpenMP finite element code involving computation on an unstruc-

tured mesh used in the context of earthquake simulations. We performed

the experiments on Cab, an Intel Xeon cluster with 16 cores per node, 2.66

GHz clock speed, a 32 KB L1 data cache, a 256 KB L2 cache, 24 MB shared

L3 cache, the TOSS operating system, an InfiniBand interconnect with a

fat-tree network topology.

Figure 6.4 shows the results for the MPI+OpenMP N-body code Re-

bound [79] run on Cab, with different schedulers applied to Rebound. In

this code, every particle loops through its neighborhood of particles to cal-

culate forces applied to it, identifying the position in the next application

98

#include "mpi.h"
#include <omp.h>
#include "vSched.h"
// ...

// In the below macros, strat is how we specify the library
.

#define FORALL_BEGIN(strat, s,e, start, end, tid, numThds)
loop_start_ ## strat (s,e ,&start, &end, tid, numThds)

; do {

#define FORALL_END(strat, start, end, tid) } while(
loop_next_ ## strat (&start, &end, tid));

int main(int argc, char* argv[])
{

int timestep = 0;
int rank, numprocs;
int numThrds;
int start, end = 0;
double fd, fs;
static LoopTimeRecord *record = NULL;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
vSched_init(numThrds);
// ...

while(timestep < 1000)
{

fd = predict_dynamic_fraction(&record); fs = 1.0 - fd;
#pragma omp parallel

{
int tid = omp_get_thread_num();
int numThrds = omp_get_num_threads();
FORALL_BEGIN(sds,tid,numThrds, 0, n, start, end, fs)

for(int i=start;i<end;i++)
c[i] += a[i]*b[i];

FORALL_END(sds,tid,start,end)
}

end_timing(&record, n);
MPI_Allreduce(&sum, &global_sum, 1, MPI_DOUBLE,

MPI_SUM, MPI_COMM_WORLD);
timestep++;

}
endLoop(&lr, (int) (n*fd));
vSched_finalize(numThrds);
MPI_Finalize();

}

Figure 6.3: Code transformed to use composed scheduler.

99

timestep; there is geometric locality in this application. This geometric lo-

cality is reflected by the order in which the particles are organized in the tree.

For example, nearby particles tend to interact with the same sets of parti-

cles with a few exceptions. Therefore, the vSched strategy of keeping nearby

iterations on the same thread in the dynamic section provides performance

benefits. The slackSched benefits are the generic benefits of reducing the dy-

namic fraction and its associated overheads. The benefits are not as large for

other applications because of its relatively large grain-size of each iteration.

For Rebound at 1024 nodes, the comboSched improves 45% over OpenMP

static scheduling. The percent gains of each of the scheduling strategies are

significant even at low node counts. Specifically, at 2 nodes, performance

improves 35% over OpenMP static scheduling when we apply only uSched

to the Rebound code. Using slackSched on Rebound gets limited gains of

5.6% over the uSched scheduling strategy. Using vSched, performance im-

proves 8.5% over uSched. This is likely because vSched can take advantage

of the geometric locality in this application. Using the comboSched strategy,

which combines slackSched and vSched, the Rebound code gets an overall

44% over the OpenMP static scheduled version of Rebound.

1 2 4 8 16 32 64 128 256 512 1024
Nodes

0

10

20

30

40

50

60

P
e
rc

e
n
t

Im
p
ro

v
e
m

e
n
t

OMP-Dynamic OMP-Guided uSched slackSched vSched comboSched

Figure 6.4: Rebound(N-body): Performance improvement obtained over
OpenMP static scheduling.

Figure 6.5 shows the results for miniFE [40] run on Cab, with different

schedulers applied to miniFE. Here, iteration to iteration spatial locality is

relatively low because of indirect access caused by the unstructured mesh;

for unstructured meshes, the spatial locality across iterations is not as strong

as looping over a 1-D array. However, with reasonable variable ordering of

mesh elements, there is still a significant amount of spatial locality that

vSched exploits. Because of imperfect data partitioning of the problem

across nodes, moderate load imbalances across nodes exist. Due to law of

100

large numbers, the imbalances across cores are larger at larger number of

nodes. Thus, dynamic and guided scheduling by itself should be able to pro-

vide significant performance gains. Consider the results for miniFE running

at 1024 nodes of Cab. The vSched scheduling strategy gets 15% perfor-

mance improvement over OpenMP static scheduling, while the slackSched

gets 19% performance gain over OpenMP static scheduling. The comboStrat

gets 23% performance improvement over OpenMP static scheduling, and

also gets 9.0% performance improvement over OpenMP guided scheduling.

By putting together vSched and slackSched, we are able to improve perfor-

mance further, to make our scheduling methodology perform better than

guided. The benefits of vSched and slackSched are not completely additive.

Composing the scheduling strategies along with tuning of parameters could

increase performance benefits, and could yield better performance for the

comboSched.

1 2 4 8 16 32 64 128 256 512 1024
Nodes

0

10

20

30

40

50

60

P
e
rc

e
n
t

Im
p
ro

v
e
m

e
n
t

OMP-Dynamic OMP-Guided uSched slackSched vSched comboSched

Figure 6.5: miniFE (finite element): Performance improvement obtained
over OpenMP static scheduling.

Figure 6.6 shows the results for the regular mesh code SNAP [86] run

on Cab, with different schedulers applied to the SNAP code. The regular

mesh computation has no application load imbalance; the only load imbal-

ance during application execution is that due to noise. Note that the regular

mesh computation has inherent spatial locality (because the computation’s

sweep operation works on contiguous array elements). At 1024 nodes of

Cab, performance improves 10% over OpenMP static with slackSched, and

we get a reasonable performance gain of 16% over static scheduling with

vSched. The comboSched scheduler gets 19% performance improvement over

OpenMP static scheduling. This result of comboSched specifically helps to

show that the optimizations of vSched and slackSched composed in com-

boSched do not cancel out each other’s performance benefits, and that the

101

performance are additive. (Recall that this is because each optimization is

aimed at solving complementary problems, as discussed in Section 2 of this

chapter.)

1 2 4 8 16 32 64 128 256 512 1024
Nodes

30

20

10

0

10

20

30
P
e
rc

e
n
t

Im
p
ro

v
e
m

e
n
t

OMP-Dynamic OMP-Guided uSched slackSched vSched comboSched

Figure 6.6: SNAP (regular mesh): Performance improvement obtained over
OpenMP static scheduling.

6.3.1 Application Programmer Effort

We assess how easy it is to use our methodology for the application pro-

grammer. Figure 6.7 shows the lines of code changed for each of the different

applications. We specifically show the lines of code changed per OpenMP

region, and the total lines of code changed for the application. As seen in

Application Rebound SNAP FE

∆LOC per region +10 +7 +12

Pct. LOC changed 12.31% 6.3% 14.22%

Figure 6.7: Total lines of code changed and average lines of code changed per

threaded computation region for the Rebound N-body, CORAL SNAP and CORAL

miniFE.

Figure 6.7, the application programmer effort is minimal for all three codes.

Additionally, source-to-source transformation support from software such as

ROSE [77] can reduce or eliminate application programmer effort needed to

use our technique.

6.4 Relevance to Future Architectures

Now that we have examined how various circumstances motivate specific

scheduling techniques and how different techniques impact specific perfor-

102

mance metrics, we examine the relevance of this work in the context of future

exascale machines.

As we go to exascale, the number of nodes in a parallel machine will

increase. This increases the likelihood of amplification. More importantly,

static and dynamic variability of future processor chips is likely to be much

higher. To complicate matters further, applications at exascale are likely to

be strong scaled [9]. Because of memory costs, the total amount of memory

will not increase as much as the number of FLOP/s. For example, the 10

petaflop MIRA, has about 0.8 petabytes of memory [88]. Summit, which

will be operational in 2017-2018, will have 15 times more floating-point per-

formance (150 PF), but only about 2.5 times more memory (2 PetaBytes).

This means the size of the problem in terms of memory will not increase

significantly, but it will have to be solved much faster to utilize this floating-

point capacity available. This is strong scaling. Separately, application

scientists are also increasingly seeking strong scaling. For many application

domains, scientists would want to solve the same problem faster rather than

a larger problem at the same speed.

Strong scaling implies that outer iteration durations for most applica-

tions will get smaller, e.g., of the order of a few milliseconds. We know

that for longer outer iterations, the impact of irregularities and noise-like

events can be absorbed without significant impact, but for shorter iterations,

the impact will be more significant. This raises the importance of dynamic

scheduling further. The locality cost differentials will also be higher in fu-

ture because of the large number of cores in a node, and necessarily deeper

memory hierarchy. Therefore, dynamic scheduling must be balanced care-

fully with locality considerations. Our scheduling strategies are designed to

handle exactly this balance.

Future machines will also have a large number of cores per node. These

may include heavier Xeon-like cores, or NVIDIA accelerator-like cores. Our

scheduling strategies are designed to utilize the abundance of cores to mit-

igate the scaling bottlenecks arising from variability, load imbalances, or

noise. So, our scheduling strategies distribute excess work on any core to

other cores, without significantly affecting locality.

Of course, exascale is still many years away. There will be many un-

known circumstances, in the combination of applications and architectures.

Yet, we have identified a large number of scheduling features in this work.

We expect many of the features to be relevant at exascale. Further, we have

demonstrated an extensible software infrastructure. We can combine the

features in different ways, as illustrated in this chapter. This extensibility,

103

combined with invention of new scheduling features inspired by specific ex-

ascale circumstances, will ensure that our approach will remain viable for

exascale.

104

Chapter 7

Related Work

The topics related to this dissertation research have received significant at-

tention by researchers in recent years. Some of the categories we discuss

in this chapter include noise and its amplification, MPI+X hybrid program-

ming, loop scheduling strategies, task scheduling strategies, dependent tasks,

cache-obliviousness, etc.

Several studies provide an in-depth analysis of noise and its impact on

large-scale systems [45, 68, 72, 82, 90]. Beckman et al. [8] discuss a bench-

mark for quantification of noise referred to as the selfish benchmark. This

benchmark has enabled a more accurate and proper study of noise in several

follow-up studies, and has allowed one to quantify noise on a system in a

standardized fashion.

The study by Petrini et al. of OS system services on ASCI Q inves-

tigates how to mitigate noise [72]. Noise mitigation is achieved through

system service suppression, i.e., the sources of system noise (in the form of

OS daemons) are identified, and then each non-critical service is stripped

away from the machine. Stripping away OS services was key to enabling

better performance of ASCI Q. They also suggest using co-scheduling to

make existing noise more coordinated. Furthermore, the study discusses

several lessons learned from their studies, particularly the impact that noise

mitigation solutions have on different classes of applications. The solutions

discussed in Petrini et al. are lower-level and specific to the platform used to

run the application. They are not portable to enable applicability to a larger

class of machines and a larger set of applications. As discussed in [54], a

higher-level solution is necessary to take advantage of the compute power of

emerging clusters of multi-cores. In particular, the application programmer

should have control over how the application should be implemented and

tuned, ensuring that characteristic noise has minimal impact on a particu-

lar problem. A paper discussing experimentation of a molecular dynamics

simulation code NAMD on a noisy system argues that effects of noise in the

communication sub-system can be mitigated by data-driven execution [73].

105

However, not all applications can use this technique. For some applications,

overlap of communication and computation is not possible due to inherent

strict dependencies across application time steps.

A study of the impact of noise for MPI applications was done by Hoefler

et al. [46]. This showed how noise can have a large impact for a particularly

large number of MPI processes. This assessment of performance loss is done

for several key scientific applications, and many different experiments are

carried out to understand changes in performance as the amount of system

noise is increased. Such studies have provided insight on how to mitigate

noise, and several studies show its usage.

An early study by Lusk with MPI+OpenMP focuses on the compar-

ison between MPI-everywhere and MPI+OpenMP codes [63]. Cappello

et al [19] show how MPI-everywhere performs better than MPI+OpenMP

codes. OpenMP has improved significantly since then, but some of the

issues still remain valid. The lack of locality-awareness in OpenMP pro-

gramming is the main reason for the performance problems. Rabenseifner

et al [78] provides an important introduction to the issues involved in hybrid

programming. They note that dynamic or guided loop scheduling is sub-

optimal because of its memory access performance, especially in a NUMA

context. We believe that the work in this thesis has addressed the challenge

referenced by this paper.

Application load balancing has been studied in [20, 47, 51]; these strate-

gies take advantage of the principle of persistence in load imbalance in

many applications. The problem with a system using measurement-based

load balancing on multi-core systems with transient load imbalance in-

duced by system noise is that it is difficult to predict the load imbalance in

each timestep. Thus, it is important to use a dynamic scheduling scheme

which reacts to changes in load during the application timestep, rather than

proactively assigning work to threads based on patterns in past application

timesteps. Load imbalances aren’t persistent across cores. The same goes

for Charm++ [51, 57] persistence across nodes, as these are uncoordinated

load imbalances.

Dynamic scheduling has been supported in OpenMP since the early days

of OpenMP [69]. Guided self-scheduling can reduce scheduler overhead com-

pared with it, while trying to maintain good load balance through exponen-

tially decreasing the chunk sizes [62,75] as threads execute chunks of work.

However, guided scheduling (along with other work-stealing schemes) may

not necessarily take into account outer iteration locality, or the temporal lo-

cality of data across application timesteps. This means that in one timestep,

106

the ith iteration is assigned to thread k, while in a subsequent timestep, the

ith iteration may be assigned to some other thread k′. Such patterns are

prevalent in a large number of HPC codes. In this work, the idea of the

tasklet aims to handle this outer iteration locality by storing within the

tasklet data structure a field denoting the last thread that the tasklet exe-

cuted on.

The work in Olivier et al. [71] discusses incorporation of affinity in

OpenMP scheduling for load imbalanced codes. This work considers op-

timizations specific to the OpenMP runtime. A key distinction between

our scheduling strategies and this work is that our method tunes the bal-

ance between locality and load imbalance for each application and architec-

ture rather than having a general runtime solution for handling locality for

scheduling. The importance of tuning the scheduler, given a particular ap-

plication and architecture, with the guidance of a simple model to validate

results, was shown in [27].

Chapman et al. [69] provide a system for OpenMP affinity-based lo-

cality parameters for each architecture, and finding the right placement of

data. This is done through detection of architecture parameters provided

in hardware. The system does not however tune to find the balancing of

scheduler overhead and load imbalance in an application, and also doesn’t

consider slack. Each combination of application and architecture can make

this tradeoff different, and tuning the application/architecture pairs provides

a solution that can handle the different tradeoffs.

Zhang et al. [47] describe an adaptive OpenMP loop scheduler that ad-

dresses synchronization and load imbalance issues that arise out of hyper-

threading (symmetric multi-threading), and it uses a NUMA-aware hierar-

chical scheduling strategy.

Loop iterations are a form of independent tasks. Several programming

models support creation of independent tasks directly. One of the key short-

comings of work-stealing [13,14,35] is that work-stealing incurs an overhead

due to the cost of a lock and the cost of coherence cache misses, both of

which depend on the number of cores and the shared memory interconnect

of the node architecture [18, 85]. Scalable work-stealing [25] is beneficial

in a distributed memory context, but it mainly focuses on steals across a

large number of nodes. We try to avoid the cost of overhead by doing

only within-node scheduling. Further work might include scheduling across

neighboring nodes. UPC scheduler [49] load imbalances across nodes are

not large enough to justify across node data movement.

SLAW (2010) [59] is a locality-aware scheduling scheme for Cilk. Its main

107

contribution is orthogonal to locality, a synthesis of work-first and help-first

scheduling. It addresses locality in a hierarchical sense, by dividing cores

into groups and prioritizing within-group steals first.

Threaded Building Blocks [80] use templates for common parallel itera-

tion patterns, written in terms of tasks, and supports dynamic load balanc-

ing.

Recently, many systems have started supporting creation of tasks that

depend on remote data as well as completion of other tasks. Examples

of such systems include DaGue and DPLASMA [15]. Galois for irregular

parallelism also represents a similar task creation mechanism [58]. These

scheduling strategies provide dynamic load balancing, but it is unclear if

they can address locality affectively. Concurrent Collections is another task

scheduling language that supports data-dependent and control-dependent

tasks [22] via graphs.

Much work has been done to improve scalability of bulk-synchronous

MPI applications on large-scale clusters of SMPs in the presence of the

changes in architectures and interconnect topologies [4, 87]. In the general

context of performance tuning of applications on multicore architectures,

several application papers investigate performance tuning of the applica-

tion timesteps for maximum efficiency in the compute phase of the bulk-

synchronous application. Some studies have aimed to find the best code

that maps to an architecture by enumerating the search space of all codes,

and then use machine learning to find the optimal code within the search

space [4, 55, 93]. Other application studies [19, 63, 78] on Hybrid Parallel

Programming have tried to document the techniques that programmers can

use to to harness the power of large-scale clusters through using a mixture of

different programming libraries. There are two main differences between the

approaches taken in the above work and the approach taken in this work.

First, each of these studies take a static approach and improve performance

locally within a node. In this work, we consider transient variations within

an SMP node, and maintain resiliency to unexpected noise on a core of a

node throughout the execution of the application. Second, these studies fo-

cus on the compute phase within one particular node, without consciousness

of MPI collective communication across nodes. In this work, we do consider

the collective communication for tuning the computation within each node.

The importance of spatial locality, specifically for static schedules, is dis-

cussed in [34,44], and also discussed in work demonstrating the importance

of block-cyclic data distributions [7, 76] in the context of static scheduling.

This work is complementary but orthogonal to our work, and we note that

108

it does not handle rearrangement or staggering of static and dynamic itera-

tions. In this work, we optimize for spatial locality through data placement

in the context of hybrid static/dynamic scheduling, as illustrated through

the use of a staggered approach.

109

Chapter 8

Conclusions

The broad problem that this thesis is concerned with is how to assign work

to compute elements in a synchronous data parallel program. Such a pro-

gram contains outer iterations, such as timesteps, and inner loop iterations,

typically over the data elements of the program. Application imbalances

arise when the time for different loop iterations are different. These im-

balances may be persistent or irregular. The machine imbalance could be

caused by noise, i.e., transient irregularities on specific cores, or it could be

persistent when some cores are slower than the others. Imbalances affect

performance of such programs significantly because all the processors wait

for the most loaded processor in every outer iteration.

One approach to solving this problem is to move data and work across

nodes. Typical MPI applications require an invasive reprogramming to do

this. This work focused on within-node load balancing. As we showed in

Chapter 1, given the large number of cores on each node, within-node load

balancing has a significant impact on global load imbalance, i.e., if you can

perfectly balance work within each node, much of the global imbalance will

be taken care of.

Although this seems like a straightforward solution, we demonstrated

that we are faced with three major challenges. While idle time can be

significantly reduced using OpenMP dynamic or guided scheduling, the syn-

chronization overhead, and data movement costs stop us from realizing the

full potential of this idea This work was aimed at developing scheduling

strategies the three challenges simultaneously, and demonstrates scalability

of applications to a large number of nodes.

Our basic approach is to fix a percentage of iterations that are exe-

cuted statically, and the remainder dynamically. The presence of a stati-

cally scheduled iterations helped to restore locality and reduce the above

synchronization and data movement costs to a much smaller level, while the

dynamically scheduled iteration allowed mitigation of load imbalance. This

design principle is carried out throughout this thesis.

110

Dynamically scheduled iterations add synchronization costs due to coor-

dination among thread to allocate iterations. More importantly, it disturbs

the locality in two different ways: (a) outer iteration locality: whether an

inner iteration continues to be scheduled on the same thread across outer

iterations, and (b) spatial locality within data parallel loops: whether con-

secutive inner iterations are executed consecutively on the same thread.

Both of these metrics are close to perfect with static scheduling, except that

it suffers from load imbalances. The series of strategies in the chapters can

be seen as increasingly sophisticated methods for improving both of these

locality factors.

In Chapter 2, we show how a careful selection of dynamic fraction, i.e.,

the percentage of iterations allocated dynamically improves performance

significantly. This was done in the context of both load imbalanced and load

balanced codes. This selection helps us balance the costs of idle time due

to imbalances and data movement overhead due to dynamic load balancing.

We showed the amplification problem arising from OS noise in the context

of a 3D regular mesh computation, analyzing it through histogramming of

outer iteration times, and how our strategy mitigates it. We also showed

how the scheduling of work benefits core computations in numerical linear

algebra, particularly dense matrix factorizations.

Chapter 3 showed how to schedule work given the persistent imbalance

observed among cores, typically because of high-frequency low-amplitude

noise events. This is done by changing the number of statically allocated

iterations to each thread, based on the recent history of outer iterations.

We also showed how to combine this weighted scheduling strategy with the

hybrid scheduling strategy of Chapter 2.

In Chapter 4, we showed how to reduce the search space for the dynamic

fraction through theoretical analysis coupled with a small runtime adjust-

ment. Further, by allowing the dynamic fraction to be different on different

MPI processes, we were able to take advantage of slack in MPI collective

operations, thus reducing the dynamic fraction further. This reduces the

dynamic scheduling overhead further, as demonstrated on multiple bench-

marks and application codes.

Although the previous techniques improve spatial locality and outer it-

eration locality in the static section, the dynamically scheduled iterations

lose the benefits of locality. By staggering the allocations of iteration space,

i.e., into alternate bands of statically and dynamically allocated iterations,

the dynamically scheduled iterations executed by a thread are made likely

to be contiguous to its statically scheduled iterations. This strategy was

111

described and demonstrated In Chapter 5.

Chapter 6 identified the problem that each of the performance issues ad-

dressed individually in previous chapters may exist together when running

applications on a cluster SMPs, notably for next-generation (most immi-

nently exascale) supercomputers. Given this, we showed an example com-

positions of our schedulers (developed in prior chapters), and showed, for

three representative MPI+OpenMP application codes, how this synthesis of

scheduling techniques can provide more performance benefits than that of

each of the individual schedulers that it was composed of.

Our runtime does not introduce significant overheads. Thus, even if

runtime slowdowns due to performance irregularity are negligible, it can

still be used, i.e., even when the user is unsure whether noise or imbalances

affect the application, they may use our scheduler without any concerns of

adding overhead.

Some specific ideas that immediately follow from this dissertation in-

clude the following: (a) the usage of our technique in MPI+X applica-

tions(including applications written with MPI-3 shared memory extensions),

as opposed to only MPI+OpenMP applications, and (b) developing addi-

tional examples of composite strategies and describing the circumstances

under which such strategies can be useful.

We showed how scheduling strategies within a node will be important in

the coming years as we get increasingly larger and more complex nodes. We

believe that our scheduling strategies, along with their potential for exten-

sion and composition, will contribute significantly to efficient utilization of

large-scale machines consisting of such nodes.

112

References

[1] Specifications of the MIRA Supercomputer. http://www.alcf.
anl.gov/user-guides/mira-cetus-vesta, Jun 2011.

[2] Specifications of the Titan Supercomputer. https://www.olcf.
ornl.gov/titan/, Oct 2012.

[3] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent. HPCToolkit: Tools for Performance Anal-
ysis of Optimized Parallel Programs. Concurrency and Computation:
Practice and Experience, 22(6):685–701, 2010.

[4] D. H. Bailey, J. Chame, C. Chen, J. Dongarra, M. Hall, J. K.
Hollingsworth, P. Hovland, S. Moore, K. Seymour, J. Shin, A. Tiwari,
S. Williams, and H. You. PERI Auto-tuning. Journal of Physics: Con-
ference Series, 125(1):012089, 2008.

[5] A. H. Baker, T. Gamblin, M. Schulz, and U. M. Yang. Challenges of
Scaling Algebraic Multigrid Across Modern Multicore Architectures.
IEEE International Parallel and Distributed Processing Symposium,
pages 275–286, 2011.

[6] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion: Expressing
Locality and Independence with Logical Regions. In Proceedings of the
International Conference on High Performance Computing, Network-
ing, Storage and Analysis, SC ’12, pages 66:1–66:11, Salt Lake City,
UT, USA, 2012. IEEE Computer Society Press.

[7] D. Becker, M. Faverge, and J. Dongarra. Towards a Parallel Tile LDL
Factorization for Multicore Architectures. Technical report, University
of Tennessee at Knoxville, April 2011. ICL-UT-11-03.

[8] P. Beckman, K. Iskra, K. Yoshii, S. Coghlan, and A. Nataraj. Bench-
marking the Effects of Operating System Interference on Extreme-scale
Parallel Machines. Cluster Computing, 11:3–16, March 2008.

113

http://www.alcf.anl.gov/user-guides/mira-cetus-vesta
http://www.alcf.anl.gov/user-guides/mira-cetus-vesta
https://www.olcf.ornl.gov/titan/
https://www.olcf.ornl.gov/titan/

[9] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Den-
neau, P. Franzon, W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein,
R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Ster-
ling, R. S. Williams, K. Yelick, K. Bergman, S. Borkar, D. Campbell,
W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, J. Hiller,
S. Keckler, D. Klein, P. Kogge, R. S. Williams, and K. Yelick. ExaScale
Computing Study: Technology Challenges in Achieving Exascale Sys-
tems. Technical Report 0, University of Notre Dame, Computational
Science and Engineering Department, September 2008.

[10] A. Bhatelé, L. V. Kalé, and S. Kumar. Dynamic Topology-Aware Load
Balancing Algorithms for Molecular Dynamics Applications. In 23rd
ACM International Conference on Supercomputing, ICS ’09, Yorktown
Heights, NY, USA, 2009. ACM.

[11] A. Bhatele, L. Wesolowski, E. Bohm, E. Solomonik, and L. V. Kale. Un-
derstanding Application Performance via Micro-benchmarks on Three
Large Supercomputers: Intrepid, Ranger and Jaguar. International
Journal of High Performance Computing Applications (IJHPCA), 2010.
http://hpc.sagepub.com/cgi/content/abstract/1094342010370603v1.

[12] A. Blanchard. Practical Experiences with OS Jitter. http:
//www.ibm.com/developerworks/wikis/display/LinuxP/
OS+Jitter+Mitigation+Techniques, 2010.

[13] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: An Efficient Multithreaded Runtime Sys-
tem. In Journal of Parallel and Distributed Computing, 1995.

[14] R. D. Blumofe and C. E. Leiserson. Scheduling Multithreaded Compu-
tations by Work Stealing. In In Proceedings of the 35th Annual Sym-
posium on Foundations of Computer Science (FOCS), pages 356–368,
Santa Fe, NM, USA, 1994.

[15] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar,
T. Hérault, J. Kurzak, J. Langou, P. Lemarinier, H. Ltaief, P. Luszczek,
A. Yarkhan, and J. J. Dongarra. Distibuted Dense Numerical Linear
Algebra Algorithms on Massively Parallel Architectures: DPLASMA.
In Proceedings of the 25th IEEE International Symposium on Parallel
and Distributed Processing Workshops and PhD Forum (IPDPSW’11),
PDSEC 2011, pages 1432–1441, Anchorage, Alaska, USA, May 2011.

[16] F. Broquedis, J. Clet Ortega, S. Moreaud, N. Furmento, B. Goglin,
G. Mercier, S. Thibault, and R. Namyst. hwloc: a Generic Framework
for Managing Hardware Affinities in HPC Applications. In PDP 2010 -
The 18th Euromicro International Conference on Parallel, Distributed
and Network-Based Computing, Pisa, Italy, 02 2010.

114

 http://www.ibm.com/developerworks/wikis/display/LinuxP/OS+Jitter+Mitigation+Techniques
 http://www.ibm.com/developerworks/wikis/display/LinuxP/OS+Jitter+Mitigation+Techniques
 http://www.ibm.com/developerworks/wikis/display/LinuxP/OS+Jitter+Mitigation+Techniques

[17] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A Portable
Programming Interface for Performance Evaluation on Modern Proces-
sors. International Journal of High Performance Computing Applica-
tions, 14(3):189–204, Aug. 2000.

[18] J. M. Bull. Measuring Synchronisation and Scheduling Overheads in
OpenMP. In In Proceedings of First European Workshop on OpenMP,
pages 99–105, Lund, Sweden, 1999.

[19] F. Cappello and D. Etiemble. MPI versus MPI+OpenMP on IBM
SP for the NAS Benchmarks. In Proceedings of the 2000 ACM/IEEE
conference on Supercomputing (CDROM), Supercomputing ’00, Dallas,
TX, USA, 2000. IEEE Computer Society.

[20] U. Catalyurek, E. Boman, K. Devine, D. Bozdag, R. Heaphy, and
L. Riesen. Hypergraph-based Dynamic Load Balancing for Adap-
tive Scientific Computations. In IEEE International Parallel and Dis-
tributed Processing Symposium, Long Beach, CA, USA, 2007. IEEE.

[21] E. Chan. Runtime Data Flow Scheduling of Matrix Computations.
Technical Report FLAME Working Note 39, University of Texas at
Austin, 2009.

[22] A. Chandramowlishwaran, K. Knobe, and R. Vuduc. Performance Eval-
uation of Concurrent Collections on High-performance Multicore Com-
puting Systems. In 2010 IEEE International Symposium on Parallel
and Distributed Processing, pages 1–12, Atlanta, GA, USA, April 2010.

[23] L. Dagum and R. Menon. OpenMP: An Industry-Standard API for
Shared-Memory Programming. IEEE Computational Science & Engi-
neering, 5(1), January-March 1998.

[24] J. Dempsey. i7-980x Details on Latencies of Caches and TLB
and Buffers. https://software.intel.com/en-us/forums/
topic/287236, June 2013.

[25] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and
J. Nieplocha. Scalable Work Stealing. In Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis, SC
’09, pages 53:1–53:11, Portland, OR, USA, 2009. ACM.

[26] S. Donfack, J. Dongarra, M. Faverge, M. Gates, and J. Kurzak. On
Algorithmic Variants of Parallel Gaussian Elimination: Comparison of
Implementations in Terms of Performance and Numerical Properties,
2013.

[27] S. Donfack, L. Grigori, W. D. Gropp, and V. Kale. Hybrid Static/Dy-
namic Scheduling for Already Optimized Dense Matrix Factorizations.
In IEEE International Parallel and Distributed Processing Symposium,
IPDPS 2012, Shanghai, China, 2012.

115

https://software.intel.com/en-us/forums/topic/287236
https://software.intel.com/en-us/forums/topic/287236

[28] S. Donfack, L. Grigori, and A. Gupta. Adapting Communication-
Avoiding LU and QR Factorizations to Multicore Architectures. In
2010 IEEE International Parallel and Distributed Processing Sympo-
sium, pages 1–10, Atlanta, GA, USA, April 2010.

[29] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.-C. An-
dre, D. Barkai, J.-Y. Berthou, T. Boku, B. Braunschweig, F. Cap-
pello, B. Chapman, X. Chi, A. Choudhary, S. Dosanjh, T. Dunning,
S. Fiore, A. Geist, B. Gropp, R. Harrison, M. Hereld, M. Heroux,
A. Hoisie, K. Hotta, Z. Jin, Y. Ishikawa, F. Johnson, S. Kale, R. Ken-
way, D. Keyes, B. Kramer, J. Labarta, A. Lichnewsky, T. Lippert,
B. Lucas, B. Maccabe, S. Matsuoka, P. Messina, P. Michielse, B. Mohr,
M. S. Mueller, W. E. Nagel, H. Nakashima, M. E. Papka, D. Reed,
M. Sato, E. Seidel, J. Shalf, D. Skinner, M. Snir, T. Sterling, R. Stevens,
F. Streitz, B. Sugar, S. Sumimoto, W. Tang, J. Taylor, R. Thakur,
A. Trefethen, M. Valero, A. Van Der Steen, J. Vetter, P. Williams,
R. Wisniewski, and K. Yelick. The International Exascale Software
Project Roadmap. International Journal of High Performance Com-
puting Applications, 25(1):3–60, Feb. 2011.

[30] P. Du, A. Bouteiller, G. Bosilca, T. Herault, and J. Dongarra.
Algorithm-based Fault Tolerance for Dense Matrix Factorizations. SIG-
PLAN Not., 47(8):225–234, Feb. 2012.

[31] A. E. Eichenberger, C. Terboven, M. Wong, and D. an Mey. The Design
of OpenMP Thread Affinity. In International Workshop on OpenMP,
pages 15–28, Rome, Italy, Jun 2012.

[32] A. Faraj, P. Patarasuk, and X. Yuan. A Study of Process Arrival
Patterns for MPI Collective Operations. In Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, SC ’06, Tampa, FL, USA,
2006. ACM.

[33] E. Frachtenberg, D. G. Feitelson, F. Petrini, and J. Fernandez. Adaptive
Parallel Job Scheduling with Flexible Coscheduling. IEEE Transactions
of Parallel and Distributed Systems, 16(11):1066–1077, Nov. 2005.

[34] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-
Oblivious Algorithms. In Proceedings of the 40th Annual Symposium on
Foundations of Computer Science, FOCS ’99, pages 285–, New York,
NY, USA, 1999. IEEE Computer Society.

[35] M. Frigo, C. E. Leiserson, and K. H. Randall. The Implementation
of the Cilk-5 Multithreaded Language. SIGPLAN Not., 33(5):212–223,
May 1998.

[36] L. Grigori, J. Demmel, and H. Xiang. Communication-Avoiding Gaus-
sian Elimination. In International Conference on High Performance
Computing, Networking, Storage and Analysis, 2008. (SC 2008), pages
1–12, Atlanta, GA, USA, Nov 2008.

116

[37] B. T. Gunney, A. M. Wissink, and D. A. Hysom. Parallel Clustering
Algorithms for Structured AMR. Journal of Parallel and Distributed
Computing, 66(11):1419 – 1430, 2006.

[38] J. Habich, C. Feichtinger, H. Köstler, G. Hager, and G. Wellein. Per-
formance Engineering for the Lattice Boltzmann Method on GPGPUs:
Architectural Requirements and Performance Results. Computers and
Fluids, abs/1112.0850, 2011.

[39] B. Hadri, H. Ltaief, E. Agullo, and J. Dongarra. Tall and Skinny QR
Matrix Factorization Using Tile Algorithms on Multicore Architectures.
Technical report, University of Tennessee at Knoxville, September 2009.
ICL-UT-09-03.

[40] M. Heroux. MiniFE Documentation. http://www.
nersc.gov/users/computational-systems/cori/
nersc-8-procurement/trinity-nersc-8-rfp/
nersc-8-trinity-benchmarks/minife/.

[41] J. Hess and A. Smith. Calculation of Potential Flow About Arbitrary
Bodies. Progress in Aerospace Sciences, 8(0):1 – 138, 1967.

[42] J. L. Hess. Panel Methods in Computational Fluid Dynamics. Annual
Review of Fluid Mechanics, 22:255–274, 1990.

[43] D. Hinkel, D. Callahan, N. Meezan, L. Suter, C. Still, D. Strozzi,
E. Williams, and A. Langdon. Analyses of Laser-plasma Interactions
in NIF Ignition Emulator Designs. In Journal of Physics: Conference
Series, volume 244, page 022019. IOP Publishing, 2010.

[44] T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell,
W. Gropp, V. Kale, and R. Thakur. MPI + MPI: A New Hybrid
Approach to Parallel Programming with MPI plus Shared Memory.
Computing, 95(12):1121–1136, 2013.

[45] T. Hoefler, T. Schneider, and A. Lumsdaine. The Impact of Network
Noise at Large-Scale Communication Performance. In Proceedings of
the 23rd IEEE International Parallel & Distributed Processing Sympo-
sium, LSPP’09 Workshop, Rome, Italy, May 2009.

[46] T. Hoefler, T. Schneider, and A. Lumsdaine. Characterizing the Influ-
ence of System Noise on Large-Scale Applications by Simulation. In
International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC’10), New Orleans, LA, USA, Nov 2010.

[47] S. F. Hummel, J. Schmidt, R. N. Uma, and J. Wein. Load-sharing in
Heterogeneous Systems via Weighted Factoring. In Proceedings of the
Eighth Annual ACM symposium on Parallel Algorithms and Architec-
tures, SPAA ’96, pages 318–328, Padua, Italy, 1996. ACM.

[48] Intel. Intel Math Kernel Library. https://software.intel.com/
en-us/intel-mkl/, 2011.

117

http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/minife/
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/minife/
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/minife/
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/minife/
https://software.intel.com/en-us/intel-mkl/
https://software.intel.com/en-us/intel-mkl/

[49] S. jai Min, C. Iancu, and K. Yelick. Hierarchical Work Stealing on
Manycore Clusters. In In Fifth Conference on Partitioned Global Ad-
dress Space Programming Models, New York, NY, USA, 2010.

[50] H. Jin and R. F. Van der Wijngaart. Performance Characteristics of
the Multi-zone NAS Parallel Benchmarks. Journal of Parallel and Dis-
tributed Computing, 66(5):674–685, May 2006.

[51] L. Kalé and S. Krishnan. CHARM++: A Portable Concurrent Object
Oriented System Based on C++. In A. Paepcke, editor, Proceedings of
OOPSLA’93, pages 91–108. ACM Press, September 1993.

[52] V. Kale, A. Bhatele, and W. D. Gropp. Weighted Locality-Sensitive
Scheduling for Mitigating Noise on Multicore Clusters. In 18th An-
nual IEEE International Conference on High Performance Computing
(HiPC 2011), Bangalore, India, December 2011.

[53] V. Kale, S. Donfack, L. Grigori, and W. D. Gropp. Lightweight Schedul-
ing for Balancing the Tradeoff Between Load Balance and Locality.
2014.

[54] V. Kale and W. Gropp. Load Balancing for Regular Meshes on SMPs
with MPI. In Proceedings of the 17th European MPI Users’ Group
Meeting Conference on Recent Advances in the Message Passing Inter-
face, EuroMPI ’10, pages 229–238, Stuttgart, Germany, 2010. Springer-
Verlag.

[55] S. Kamil, C. Chan, S. Williams, L. Oliker, J. Shalf, M. Howison, and
E. W. Bethel. A Generalized Framework for Auto-tuning Stencil Com-
putations. In In Proceedings of the Cray User Group Conference, 2009.

[56] T. Klug, M. Ott, J. Weidendorfer, C. Trinitis, and T. U. Mnchen. au-
topin, Automated Optimization of Thread-to-Core Pinning on Multi-
core Systems, 2008.

[57] S. Krishnan and L. V. Kale. Automating Runtime Optimizations for
Load Balancing in Irregular Problems. In Proc. Conf. on Parallel
and Distributed Processing Technology and Applications, San Jose, CA,
USA, August 1996.

[58] M. V. Kulkarni. The Galois System: Optimistic Parallelization of Ir-
regular Programs. PhD thesis, Cornell University, 2008.

[59] V. Kumar, Y. Zheng, V. Cave, Z. Budimlic, and V. Sarkar. Habaner-
oUPC: a Compiler-free PGAS Library, 2014.

[60] D. Levinthal. Intel Xeon Processor Architecture. https://
software.intel.com/en-us/, Jun 2013.

[61] Y. D. Liu. Green Thieves in Work Stealing. In Seventeenth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2012, London, United Kingdom, 2012.

118

https://software.intel.com/en-us/
https://software.intel.com/en-us/

[62] S. E. Lucco. Adaptive Parallel Programs. PhD thesis, EECS Depart-
ment, University of California, Berkeley, Aug 1994.

[63] E. Lusk and A. Chan. Early Experiments with the OpenMP/MPI
Hybrid Programming Model, 2004.

[64] E. Lusk, N. Doss, and A. Skjellum. A High-performance, Portable
Implementation of the Message Passing Interface Standard. Parallel
Computing, 22:789–828, 1996.

[65] P. D. V. Mann and U. Mittaly. Handling OS Jitter on Multicore Mul-
tithreaded Systems. In Proceedings of the 2009 IEEE International
Symposium on Parallel and Distributed Processing Symposium, Rome,
Italy, 2009. IEEE Computer Society.

[66] J. D. McCalpin. STREAM: Sustainable Memory Bandwidth in High
Performance Computers. Technical report, University of Virginia,
Charlottesville, VA, USA, 1991-2007. A continually updated techni-
cal report.

[67] R. G. Minnich, M. J. Sottile, S.-E. Choi, E. Hendriks, and J. McKie.
Right-weight Kernels: An off-the-shelf Alternative to Custom Light-
weight Kernels. SIGOPS Oper. Syst. Rev., 40(2):22–28, Apr. 2006.

[68] A. Morari, R. Gioiosa, R. Wisniewski, F. J. Cazorla, and M. Valero. A
Quantitative Analysis of OS Noise. In Proceedings of the IEEE Interna-
tional Parallel and Distributed Processing Symposium, Anchorage, AK,
USA, May 2011.

[69] A. Muddukrishna, P. A. Jonsson, V. Vlassov, and M. Brorsson.
Locality-Aware Task Scheduling and Data Distribution on NUMA Sys-
tems. In A. P. Rendell, B. M. Chapman, and M. Miller, editors,
OpenMP in the Era of Low Power Devices and Accelerators, volume
8122 of Lecture Notes in Computer Science, pages 156–170. Springer
Berlin Heidelberg, 2013.

[70] A. Nataraj, A. Morris, A. D. Malony, M. Sottile, and P. Beckman.
The Ghost in the Machine: Observing the Effects of Kernel Opera-
tion on Parallel Application Performance. In Proceedings of the 2007
ACM/IEEE Conference on Supercomputing, pages 1–12, Reno, NV,
USA, 2007. ACM.

[71] S. L. Olivier, B. R. de Supinski, M. Schulz, and J. F. Prins. Character-
izing and Mitigating Work Time Inflation in Task Parallel Programs. In
Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis, SC ’12, pages 65:1–65:12,
Salt Lake City, UT, USA, 2012. IEEE Computer Society Press.

119

[72] F. Petrini, D. J. Kerbyson, and S. Pakin. The Case of the Missing
Supercomputer Performance: Achieving Optimal Performance on the
8,192 Processors of ASCI Q. In Proceedings of the 2003 ACM/IEEE
Conference on Supercomputing, Phoenix, AZ, USA, 2003. IEEE Com-
puter Society.

[73] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé. NAMD: Biomolec-
ular simulation on thousands of processors. In Proceedings of the 2002
ACM/IEEE Conference on Supercomputing, pages 1–18, Baltimore,
MD, USA, September 2002.

[74] T. Pohl, F. Deserno, N. Thurey, U. Rude, P. Lammers, G. Wellein,
and T. Zeiser. Performance Evaluation of Parallel Large-Scale Lattice
Boltzmann Applications on Three Supercomputing Architectures. In
Proceedings of the 2004 ACM/IEEE Conference on Supercomputing,
SC ’04, Pittsburgh, PA, USA, Nov 2004. IEEE Computer Society.

[75] C. D. Polychronopoulos and D. J. Kuck. Guided Self-scheduling: A
Practical Scheduling Scheme for Parallel Supercomputers. IEEE Trans-
actions of Computing, 36:1425–1439, December 1987.

[76] L. Prylli and B. Tourancheau. Fast Runtime Block Cyclic Data Re-
distribution on Multiprocessors. Journal of Parallel and Distributed
Computing, 45(1):63 – 72, 1997.

[77] D. Quinlan. ROSE: Compiler Support for Object-Oriented Frameworks.
Parallel Processing Letters, 10, January 2000.

[78] R. Rabenseifner. Hybrid Parallel Programming: Performance Problems
and Chances. In In Proceedings of the Forty-Fifth Cray User’s Group
Conference, Columbus, OH, USA, May 2003.

[79] H. Rein and S. F. Liu. REBOUND: An Open-source Multi-purpose
N-body Code for Collisional Dynamics. Astronomy and Astrophysics,
537:A128, 2012.

[80] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-
Core Processor Parallelism. O’Reilly Media, 2007.

[81] B. Rountree, D. K. Lowenthal, B. R. de Supinski, M. Schulz, V. W.
Freeh, and T. Bletsch. Adagio: Making DVS Practical for Complex
HPC Applications. In Proceedings of the 23rd International Conference
on Supercomputing, ICS ’09, pages 460–469, Yorktown Heights, NY,
USA, 2009. ACM.

[82] S. Seelam, L. Fong, A. Tantawi, J. Lewars, J. Divirgilio, and K. Gildea.
Extreme-scale Computing: Modeling the Impact of System Noise in
Multicore Clustered Systems. In Proceedings of the IEEE International
Parallel and Distributed Processing Symposium, pages 1–12, Atlanta,
GA, USA, April 2010.

120

[83] J. R. Shewchuk. Triangle: Engineering a 2D Quality Mesh Genera-
tor and Delaunay Triangulator. In M. C. Lin and D. Manocha, edi-
tors, Applied Computational Geometry: Towards Geometric Engineer-
ing, volume 1148 of Lecture Notes in Computer Science, pages 203–222.
Springer-Verlag, May 1996. From the First ACM Workshop on Applied
Computational Geometry.

[84] F. Song, A. YarKhan, and J. Dongarra. Dynamic Task Scheduling for
Linear Algebra Algorithms on Distributed-Memory Multicore Systems.
In Proceedings of the Conference on High Performance Computing Net-
working, Storage and Analysis, Portland, OR, USA, 2009. ACM.

[85] P. Stenström. A Survey of Cache Coherence Schemes for Multiproces-
sors. Computer, 23(6):12–24, June 1990.

[86] A. Talamo. Numerical Solution of the Time Dependent Neutron Trans-
port Equation by the Method of the Characteristics. Journal of Com-
putational Physics, 240(0):248 – 267, 2013.

[87] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E. Leis-
erson. The Pochoir Stencil Compiler. In Proceedings of the Twenty-third
Annual ACM Symposium on Parallelism in Algorithms and Architec-
tures, SPAA ’11, pages 117–128, San Jose, CA, USA, 2011. ACM.

[88] T. Trader. Obamas 2016 Budget Boosts R & D Exas-
cale Funding. http://www.hpcwire.com/2015/02/04/
obamas-2016-budget-request-holds-clues-exascale/.

[89] L. N. Trefethen and I. David Bau. Numerical Linear Algebra.

[90] D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpatrick. System Noise,
OS Clock Ticks, and Fine-grained Parallel Applications. In Proceedings
of the 19th annual international conference on Supercomputing, ICS
’05, pages 303–312, Cambridge, MA, USA, 2005. ACM.

[91] S. Vetter. Architecture of the IBM POWER7+ Technology-Based IBM
Power 750 and IBM Power 760. http://www.redbooks.ibm.com/
Redbooks.nsf/RedbookAbstracts/tips0972.html, Feb. 2013.

[92] M. S. Warren and J. K. Salmon. A Parallel Hashed Oct-Tree N-body
Algorithm. In Proceedings of the 1993 ACM/IEEE Conference on Su-
percomputing, SC ’93, pages 12–21, Portland, OR, USA, 1993. ACM.

[93] S. Williams, J. Carter, L. Oliker, J. Shalf, and K. A. Yelick. Optimiza-
tion of a Lattice Boltzmann Computation on State-of-The-art Multicore
Platforms. Journal of Parallel and Distributed Computing, 2009.

[94] G. Zheng. Achieving High Performance on Extremely Large Parallel
Machines: Performance Prediction and Load Balancing. PhD the-
sis, Department of Computer Science, University of Illinois at Urbana-
Champaign, 2005.

121

http://www.hpcwire.com/2015/02/04/obamas-2016-budget-request-holds-clues-exascale/
http://www.hpcwire.com/2015/02/04/obamas-2016-budget-request-holds-clues-exascale/
http://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/tips0972.html
http://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/tips0972.html

	List of Tables
	List of Figures
	List of Abbreviations
	List of Symbols
	Chapter 1 Introduction and Motivation
	Cache Miss Calculations
	Contributions
	Thesis Outline

	Chapter 2 Hybrid Static/Dynamic Scheduling
	Basic Mixed Static/Dynamic Scheduling Technique
	Results for Barnes-Hut and NAS LU with Mixed Static/Dynamic Scheduling
	An Empirical Method for Finding the Best Static Fraction

	Study with MPI Code And Outer Iteration Locality
	A Scheduler for Outer Iteration Locality
	MPI Regular Mesh Computation
	Tuning Tasklet Granularity for Reduced Thread Idle Time
	Using Our Technique to Improve Scalability

	Results for Numerical Linear Algebra
	Conclusions

	Chapter 3 Weighted Hybrid Scheduling
	Platforms Considered
	Scheduling Techniques
	Allocating Iterations Based on Weights

	Results for Weighted Hybrid Scheduling
	Weighted Scheduling
	Micro-scheduling
	Weighted micro-scheduling
	Experimentation with Varying Problem Sizes
	Impact of Memory Accessed per Time Step

	Discussion

	Chapter 4 Slack-Conscious Hybrid Static/Dynamic Scheduling
	Performance Perturbances
	Model-Based Determination of Minimal Dynamic Fraction
	Using a Model for Hybrid Scheduling

	Communication Deadlines and Slack
	Characterizing Slack
	Existing Thread Scheduling Policies In the Context of Slack

	Extending the Model to Incorporate Slack
	Slack-Conscious Hybrid Static/Dynamic Scheduling
	Automatic Compiler Transformation
	Runtime Parameter Estimation

	Experimental Evaluation
	System-Specific Noise Signatures
	Slack Prediction Accuracy and Overhead
	Comparing Slack-conscious Scheduling with Best Static Fraction
	Implementation Strategy Assessment
	Overall Application Performance

	Conclusion

	Chapter 5 Spatial Locality in Dynamically Assigned Iterations
	Problem Statement
	Scheduling Strategy
	Modifications to Allocation of Iterations
	Choosing the Thread From Which to Steal

	Implementation
	Framework and Usage
	Implementation of Locality Optimized Static/Dynamic Scheduling

	Experimental Evaluation
	Implementation Overhead
	Application Performance

	Conclusion

	Chapter 6 Composing Multiple Scheduling Strategies
	Scheduling Strategies Overview
	Techniques for Composing Schedulers
	hybSched
	tunedSched
	NoiseModelSched
	AppModelSched
	modelSched
	uSched
	slackSched
	vSched
	ComboSched
	Code Transformation

	Results
	Application Programmer Effort

	Relevance to Future Architectures

	Chapter 7 Related Work
	Chapter 8 Conclusions
	References

