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ABSTRACT

With its unique capability to obtain spatially resolved biochemical profiles from the human

body noninvasively, magnetic resonance spectroscopic imaging (MRSI) has been recognized

as a powerful tool for in vivo metabolic studies. However, research and clinical applications

of in vivo MRSI have been progressing more slowly than expected. The main reasons for

this situation are the problems of long data acquisition time, poor spatial resolution and low

signal-to-noise ratio (SNR) for this imaging modality.

In the last four decades, significant efforts have been made to improve MRSI, resulting in a

large number of fast pulse sequences and advanced image reconstruction methods. However,

the existing techniques have yet to offer the levels of improvement in imaging time, spatial

resolution and SNR necessary to significantly impact in vivo applications of MRSI. This

thesis work develops a new subspace imaging approach to address these technical challenges

to enable fast, high-resolution MRSI with high SNR.

The proposed approach, coined SPICE (Spectroscopic Imaging by Exploiting Spatiospec-

tral Correlation), is characterized by using a subspace model for integrative data acquisition,

processing and image reconstruction. More specifically, SPICE represents the spectroscop-

ic signals in MRSI using the partial separability (PS) model. The PS model implies that

the high-dimensional spectroscopic signals reside in a low-dimensional subspace, which en-

ables the design of special sparse sampling strategies for accelerated spatiospectral encoding

and special image reconstruction strategies for determining the subspace and reconstructing

the underlying spatiospectral function of interest from the sparse data. Using the SPICE

framework, new data acquisition and image reconstruction methods are developed to enable

high-resolution 1H-MRSI of the brain.

We have evaluated SPICE using theoretical analysis, numerical simulations, phantom
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and in vivo experimental studies. Results obtained from these experiments demonstrate

the unprecedented capability of SPICE in achieving accelerated MRSI with simultaneously

very high resolution and SNR. We expect SPICE to provide a powerful tool for in vivo

metabolic studies with many exciting applications. Furthermore, the SPICE framework also

presents new opportunities for future developments in subspace-driven signal generation,

signal encoding, data processing and image reconstruction methods to advance the research

and clinical applications of high-resolution in vivo MRSI.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The potential of using MR signals to resolve spatially dependent metabolic profiles was

realized soon after the inception of MRI [1–3]. The resulting imaging modality, coined MR

spectroscopic imaging (MRSI), provides us a unique noninvasive window into the biochemical

profiles of the human body [4,5] and therefore has been recognized as a promising tool for in

vivo metabolic studies. Various research and clinical applications of in vivo MRSI have been

identified, including detection, characterization and treatment monitoring of cancers [5–7],

neurological and psychiatric disorders, and various other metabolic diseases [8–13]. However,

the development of in vivo MRSI has been slower than expected. This is mainly due to the

following fundamental technical hurdles:

• Low signal-to-noise-ratio (SNR): The molecules (also referred to as metabolites

in this thesis) being imaged in MRSI typically have more than a thousand times low-

er concentration than the water molecules that are imaged in conventional magnetic

resonance imaging (MRI) experiments [14]. Therefore, MRSI is an imaging modality

with extremely low sensitivity.

• Long data acquisition time: Due to the low SNR challenge, multiple signal av-

erages are often acquired to improve the SNR in MRSI experiments. Furthermore,

conventional MRSI methods mostly rely on very slow spatial encoding schemes [2,15].

These approaches significantly prolong the data acquisition time and limit the practical

utility of MRSI in research and clinical applications, especially for in vivo studies.

• Poor spatial resolution: To shorten the data acquisition time, the existing MRSI
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methods typically constrain themselves to a limited number of spatial encodings, and

obtain reconstructions with large voxel sizes (on the order of 1 cm3) to ensure suffi-

cient SNR. This results in poor spatial resolution with severe voxel interference, which

counteracts the unique advantage of MRSI in obtaining spatially-resolved spectroscopic

information.

• Overwhelming nuisance signals: In some MRSI experiments, strong nuisance com-

ponents can conceal the underlying signals of interest. One typical example is the

overwhelming nuisance water and lipid signals in 1H-MRSI. These nuisance signals,

if not effectively removed, can have detrimental effects on estimation of the desired

metabolite spatiospectral distributions.

Over the past four decades, significant efforts have been made to address these challenges

for improved MRSI. Besides the advancement in hardware such as scanners with higher field

strengths and better stability [5, 12, 16] and parallel transmission/receiver arrays [17–22],

which is expected to be an integral part of any advanced imaging method, a large number

of fast sequences and advanced reconstruction methods have been proposed. For fast data

acquisition, one key approach is to incorporate echo-planar type of data acquisition schemes

with spectroscopic imaging. Many methods (and pulse sequences) have been proposed to

implement this data acquisition strategy (see [15, 23–33] for a more detailed discussion of

some of the fast-scanning methods). While these methods can significantly reduce the data

acquisition time for high-resolution spatiospectral encoding, it is at the expense of SNR,

which is already a significant limitation for in vivo MRSI experiments. Advanced image

reconstruction methods have been focusing on using prior information to compensate for the

lack of sufficient measurements or SNR. To this end, a number of image models have been

proposed to incorporate anatomical prior [34–39], sparsity and rank constraints [40–45], and

explicit parametric model constraints [41,46] to improve MRSI reconstruction from noisy or

undersampled data. However, reconstruction methods alone have not been able to provide

the level of improvement in spatial resolution, data acquisition speed, and SNR necessary to

have a major impact on in vivo MRSI.
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This thesis research aims at developing a new subspace imaging approach to both data

acquisition and image reconstruction to enable accelerated high-resolution MRSI with high

SNR.

1.2 Main Results

In this thesis,

• We propose a new subspace imaging approach to accelerate spectroscopic imaging. The

proposed approach, called SPICE (Spectroscopic Imaging by Exploiting Spatiospectral

Correlation), exploits the unique property known as partial separability (PS) of spec-

troscopic signals [47–50]. This property indicates that high-dimensional spectroscopic

signals reside in a very low-dimensional subspace and enables the design of special data

acquisition and image reconstruction strategies to achieve high-resolution MRSI with

good SNR. More specifically, for data acquisition, SPICE proposes to sparsely sample

the (k, t)-space in two complementary data sets, one with dense temporal sampling

(capturing full spectral information) and high SNR but limited k-space coverage (de-

noted as D1), and the other with extended k-space coverage (for the desired spatial

resolution) but sparse temporal sampling (denoted as D2). With these data, SPICE

proposes a two-step reconstruction strategy that estimates the subspace from D1 and

the high-resolution spatiotemporal/spatiospectral function of interest from D2. Theo-

retical analysis and numerical simulations are performed to evaluate the performance

of the SPICE framework.

• We propose special pulse sequences to implement the hybrid sparse sampling strategy

in the SPICE framework for high-resolution 1H-MRSI of the brain. Specifically, a hy-

brid chemical shift imaging (CSI)/echo-planar spectroscopic imaging (EPSI) sequence

is developed for rapid two-dimensional (2D) spatial plus spectral encoding. The CSI

component has limited k-space coverage but high SNR, and uses the entire free induc-

tion decay (FID) period for spectral encoding, and thus an ideal option to generate D1

for accurate subspace estimation. The EPSI component has high speed and allows for
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an extended k-space coverage within a short period, thus providing the D2 needed for

high-resolution spatiospectral reconstruction. For high-resolution three-dimensional

(3D) MRSI using SPICE, however, this sequence is too slow to provide the number of

spatial encodings needed in a short time frame. To address this issue, we propose a

dual-density, dual-speed sequence that performs a hybrid of slow EPSI scans (to ac-

quire D1) and rapid EPSI-like scans (to acquire D2). These proposed hybrid sampling

schemes effectively combine the advantages of slow scans (i.e., high SNR and full spec-

tral encoding) and rapid scans (i.e., high resolution and speed) for accelerated MRSI

using sparse sampling.

• Given the data generated by the proposed sequences, the main issues for SPICE re-

construction are estimation of the subspace structure (or the set of basis spanning the

low-dimensional subspace) from D1 and reconstruction of the unknown spatiotempo-

ral/spatiospectral function from D2. The key problem to subspace estimation is the

removal of B0 field inhomogeneity effects from the limited k-space data. Assuming

the availability of a high-resolution field map, we utilize a regularized super-resolution

reconstruction scheme to solve this problem. With the subspace determined from

the field corrected data, the reconstruction problem can be translated into the esti-

mation of a set of spatial coefficients, which has a significantly reduced number of

degrees-of-freedom compared to the high-dimensional spatiospectral function of inter-

est (rendering high SNR reconstruction from the very noisy and sparse data possible).

This problem can then be solved using a regularized linear least-squares formulation

that incorporates an explicit low-rank model with the capability of field inhomogene-

ity correction and regularization. The use of regularization not only serves to stabilize

the coefficient fitting problem but also incorporates additional prior information for

improved reconstruction. Different choices of regularization functional are discussed,

and efficient algorithms for solving the resulting optimization problems are presented.

• We have systematically evaluated the performance of the proposed methods through

metabolite phantom and in vivo 1H-MRSI studies conducted on a 3T scanner. Re-

sults from these experiments demonstrate the unprecedented capability of SPICE in
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achieving fast, high-resolution 1H-MRSI with very high SNR. In particular, for 2D in

vivo experiments, SPICE is able to produce high-SNR 1H metabolite maps from the

human brain with an approximately 2 mm in-plane resolution in 15 minutes. For 3D

in vivo experiments, SPICE is able to produce metabolite maps with an approximately

3 mm in-plane and 4 mm through-plane resolution in about 26 minutes. To the best

of our knowledge, these are the highest resolution 1H metabolite maps ever obtained

from the human brain on a 3T system [12,51].

1.3 Organization of the Dissertation

This dissertation is organized as follows:

Chapter 2 reviews the concepts essential for understanding the materials in this thesis.

Specifically, the mechanisms underlying MR imaging and spectroscopic imaging are briefly

discussed. The mathematical preliminaries for the proposed subspace imaging approach

are also covered. Chapter 3 introduces the SPICE subspace imaging framework for high-

resolution MRSI. The subspace model, the overall data acquisition and image reconstruction

strategies dictated by the subspace model are described. Theoretical analysis and numeri-

cal simulation results are shown to demonstrate the properties and potential of the SPICE

framework. Chapter 4 describes the proposed data acquisition methods that implement the

SPICE sparse sampling strategy to achieve rapid spatiospectral encoding for high-resolution

1H-MRSI of the brain. Chapter 5 presents the proposed image reconstruction methods for

subspace estimation and spatiospectral reconstruction from the sparse data generated by

the proposed acquisition methods described in Chapter 4. Chapter 6 presents experimen-

tal results obtained from carefully designed brain metabolite phantoms and human brain

to evaluate the performance of the proposed methods in practical 1H-MRSI experiments.

Chapter 7 concludes the thesis and highlights some exciting future research directions.
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CHAPTER 2

BACKGROUND

2.1 Magnetic Resonance Imaging (MRI)

When placed in a strong static magnetic field B⃗0 = B0k⃗ (assuming homogeneous field), a

macroscopic sample can generate a bulk magnetization that precesses around the direction

of the B⃗0 field as

M⃗ =
Ne∑
i=1

µ⃗i, (2.1)

where µ⃗i = µk⃗ corresponds to the magnetic momentum for the ith nucleus with nonzero

spin quantum number in the sample and Ne denotes the total number of such nuclei.1 Based

on the theory of quantum mechanics, spins in the applied magnetic field (B⃗0) will split into

two states, one with lower energy

µ⃗i · B⃗0 = −
1

2
γ~B0

and the other with higher energy

µ⃗i · B⃗0 =
1

2
γ~B0.

2

γ is the gyromagnetic ratio and ~ the Planck constant. According to the Boltzmann distri-

bution [52], the numbers of spins in the lower energy state (Nu) and the higher energy state

1⃗i,⃗j, and k⃗ denote unit directional vectors along x, y and z directions.

2Only spin-
1

2
is considered in this thesis.
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(Nd) have the following relationship:

Nu −Nd ≈ Ne

γ~B0

2KTs
,

where K is the Boltzmann constant and Ts is the absolute temperature of the spin system.

Therefore, the magnitude of the bulk magnetization can be calculated as [52]

M0
z = |M⃗ | ≈

∣∣∣∣∣∣
1

2
(Nu −Nd)γ~k⃗

∣∣∣∣∣∣ =
γ2~2B0Ne

4KTs
, (2.2)

which fundamentally determines the amount of signal that can be generated in an NMR

experiment. For example, in a static magnetic field with a strength of 3 T, only about

10 spins contribute to the bulk magnetization in a group of 1 million spins. Therefore,

MRI is inherently a low-sensitive imaging modality. Fortunately, there are abundant spins

in the human body. In particular, within a 1 mm3 voxel in the human brain, there are

approximately 1020 protons in the water molecules (assuming a 50 mol/L concentration),

giving rise to a population difference of 1015 spins at B0 = 3 T which also increases w.r.t.

the strength of the B0 field.3

The state of the spin system in a polarized sample with the presence of B⃗0 alone (with the

bulk magnetization in Eq. (2.2)) is generally referred to as the equilibrium. At equilibrium,

the magnetic moments from the ensemble of spins have randomly distributed phase, which

amounts to a zero transverse component of M⃗ . To generate signal from such a sample, an

additional magnetic field needs to be applied to perturb the system from equilibrium and

establish a nonzero transverse component of M⃗ (i.e., to establish a phase coherence among

the ensemble of spins). This field, coined as B⃗1(t), is time-varying as opposed to the static B⃗0

field and needs to oscillate at the same frequency as the polarized spins in order to establish

phase coherence (also referred to as resonance). Mathematically, the behavior of M⃗ in the

3Modern human MRI scanners have field strengths ranging from 1.5 to 11.7 T.
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presence of a time-varying magnetic field B⃗ can be described by the Bloch equation below

dM⃗

dt
= γM⃗ × B⃗ −

Mx⃗i+My j⃗

T2
−

(Mz −M0
z ) k⃗

T1
, (2.3)

where B⃗ = B⃗0+B⃗1(t),Mx⃗i+My j⃗ represents the transverse component of M⃗ ,Mzk⃗ represents

the longitudinal component of M⃗ with initial value M0
z , and T1 and T2 are time constants

that characterize the relaxation process of the spin system back to equilibrium after being

disturbed by the B⃗1 field. At the end of B⃗1(t) (also referred to as the RF pulse), a transverse

magnetization is generated M⃗xy(r, t) = Mx(r, t)⃗i +My(r, t)⃗j, which can be detected by a

receiver coil placed closed to the object.4

Based on derivations using the Faraday law of induction and the reciprocity principle [53],

the voltage signal induced in the receiver coil can be mathematically expressed as

V (t) = −
∂

∂t

∫
object

B⃗r(r) · M⃗(r, t)dr, (2.4)

where B⃗r(r) is the receiver sensitivity profile, which is defined as the magnetic field generated

by passing an unit current through the coil [52, 53]. Modern MRI scanners normally use a

quadrature detection, in which case the signal that is actually being sampled has the following

mathematical expression:

s(t) ∝ ω0

∫
object

B̄r,xy(r)Mxy(r, 0)e
−t/T2(r)e−i

∫ t
0 ∆ω(r,τ)dτdr

= ω0

∫
object

B̄r,xy(r)Mxy(r, 0)e
−t/T2(r)e−iγ

∫ t
0 ∆B(r,τ)dτdr, (2.5)

where ω0 (ω0 = γB0) is the center resonance frequency of the spins (without field inho-

mogeneity) and ∆B(r, t) represents a time-dependent field inhomogeneity term (∆ω(r, t) =

4The characteristics and excitation effects of an RF pulse are normally simpler to describe in the rotating
reference frame, a comprehensive description of which is given in Ref. [52] and thus not repeated here.
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γ∆B(r, t)). The quantities Br,xy and Mxy are defined as

Br,xy(r) = Br,x(r) + iBr,y(r)

Mxy(r, 0) = Mx(r, 0) + iMy(r, 0),

and B̄r,xy denotes the complex conjugate of Br,xy. For a detailed derivation of Eq. (2.5) from

Eq. (2.4), please refer to Ref. [52].

The signal model in Eq. (2.5) is the governing equation for devising encoding and de-

coding schemes for most MRI experiments. The field inhomogeneity ∆B(r, t) can be main-

ly attributed to two sources: (i) the inherent heterogeneous field distribution due to s-

canner imperfection and (ii) applied gradient fields to induced local resonance frequency

changes for spatial encodings. Specifically, when a linear gradient field is applied, G⃗(t) =

Gx(t)⃗i+Gy(t)⃗j +Gz(t)k⃗, the induced change in the magnetic field B⃗0 is

∆B(r, t) = G⃗(t) · r. (2.6)

The signal equation in (2.5) can then be rewritten as (ignoring the scaling constants)

s(t) =

∫
object

B̄r,xy(r)Mxy(r, 0)e
−t/T2(r)e−iγ

∫ t
0 G⃗(τ)·rdτdr

=

∫
object

B̄r,xy(r)Mxy(r, 0)e
−t/T2(r)e−i2πk(t)·rdr, (2.7)

where

k = −γ
∫ t

0

G⃗(τ)dτ (2.8)

and −γ =
γ

2π
. With some further simplification, e.g., ignoring relaxation effects during the

data sampling period, we arrive at the most commonly used Fourier encoding signal model
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for MR image reconstruction

s(k) =

∫
object

ρ(r)e−i2πk·rdr, (2.9)

where ρ(r) = B̄r,xy(r)Mxy(r, t0), with t0 denoting an initial time point for the start of

the acquisition, is the image function of interest and s(k) represents the well-known k-

space measurement. Therefore, ρ(r) can be reconstructed from a set of discrete samples

{s(km)}Mm=1 by performing inverse Fourier transform on the data. For a majority of current

MRI applications, multiple receiver coils are used in the acquisition, and a receiver sensitivity

independent image function of interest (i.e., Mxy(r)) can be generated using special coil

combination methods.

2.2 Magnetic Resonance Spectroscopic Imaging (MRSI)

2.2.1 Chemical Shift and NMR Spectroscopy

While most MRI experiments are only concerned with one type of spin that is in the same

chemical environment (e.g., the protons on the water molecules), the nuclei in a biological

object are often attached to different chemical environments. For example, the nuclei in

different molecules are surrounded by orbiting electrons, which produce different magnetic

fields that “locally” perturb the field felt by the nuclei to various extents. This effect,

illustrated in Fig. 2.1, is referred to as the electron shielding effect. More specifically, the

nuclei in different chemical environments (thus subject to different electron shielding effects)

resonate at different frequencies specified by

ω = γB0(1− σ), (2.10)

where B0 is the strength of the main magnetic field and σ is the shielding constant (can

be both positive and negative). This frequency dispersion gives rise to the chemical shift

phenomenon that is fundamental to the subject of NMR spectroscopy. As an example,
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different proton groups in the N-acetylaspartate (NAA) molecules have distinct resonance

frequencies compared to the protons in the water molecules (as illustrated in Fig. 2.2),

allowing us to measure and quantify the concentration and other properties of NAA through

quantitative analysis of the NMR signals.

Figure 2.1: Illustration of the electron shielding effect that gives rise to chemical shift. As
can be seen, the electron orbiting around the nuclei (denoted by the big black arrow) can
be viewed as a small current, which generates a magnetic moment µe that opposes the main
magnetic field B0, thus perturbs the magnetic field felt “locally” by the nuclei.

Figure 2.2: The proton NMR spectrum of NAA generated by a quantum mechanical simula-
tion at 3 T field strength (128 MHz) and TE=20 ms. The frequency components between 1
and 5 ppm (parts per million) are shown. The chemical structural of NAA is also shown in
the left corner of the image. As can be seen, there are multiple peaks for some of the proton
groups due to spin-spin coupling (i.e., J-coupling), which is not discussed in this thesis.

Due to the existence of spins resonating at different frequencies, an intrinsic frequency

dimension [1] can be introduced to mathematically describe the signal acquired in the free
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induction decay (FID) period (the period after the RF pulse). Assume a spatially homoge-

neous sample, the FID signal acquired can be modeled as [52]

s(t) =

∫
ωM

ρ(ω)e−t/T2(ω)e−iωtdω, (2.11)

where ρ(ω) defines a spectral density function characterizing the frequency distribution and

T2(ω) captures the relaxation effect. Based on different assumptions for ρ(ω), different

models can then be derived from Eq. (2.11) to analyze and extract information from the

FID signal in spectroscopy experiments [14,52].

Using NMR spectroscopy to study different chemical shift frequencies and the spin den-

sities associated with these frequencies has far-reaching impacts in chemical and biological

studies. For example, it has been applied to determine the structures of various macro-

molecules [54], to quantify metabolic profiles in biological samples in order to detect and

characterize diseases [14], and to understand the basic metabolic and physiological processes

in the human body. However, for in vivo studies, spectroscopy data acquired from a single

large volume of interest is inherently limited by the lack of spatial specificity, which is critical

since the metabolic processes in the human body are spatially dependent. Therefore, the

concept of spatially-resolved spectroscopy or spectroscopic imaging is introduced to address

this problem.

2.2.2 MRSI

MRSI aims to generate spatially-resolved spectroscopic information from the imaging ob-

ject through combining the spectral encoding during the FID period and spatial encoding

using gradients [1, 2, 23]. Since additional frequency dimensions are introduced in MRSI

experiments, the measured data s(·) can then be modeled in a (k, t)-space as

s (km, tq) =

∫
V

∫
ωM

ρ̃ (r, f) e−i2πf ·tqe−iγ∆B(r)t1,qe−i2πkm·rdfdr+ ξ (km, tq) , (2.12)
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where ρ̃ (r, f) is the spatiospectral function of interest (containing both spatial and spectral

variations),5 V denotes the excited volume of interest, ωM the spectral bandwidth (deter-

mined by the range of chemical shift), γ the gyromagnetic ratio, ∆B (r) the B0 field inho-

mogeneity distribution,6 t1 the first temporal dimension in t [14] and ξ(·) the measurement

noise (modeled as white Gaussian). When integrated over the frequency domain, Eq. (2.12)

can be simplified into

s (km, tq) =

∫
V

ρ (r, tq) e
−iγ∆B(r)tqe−i2πkm·rdr+ ξ (km, tq) , (2.13)

where ρ (r, t) is the Fourier counterpart of ρ̃ (r, f), km = (mx∆kx,my∆ky,mz∆kz) and

tq = q∆t. mx, my, mz and q are the sample indices along different spatial and spectral

dimensions. ∆kx, ∆ky, ∆kz and ∆t are the corresponding sampling intervals. With the

signal models in Eqs. (2.12) and (2.13), the imaging problem in MRSI is to recover ρ̃(r, f)

or ρ(r, t) from the set of (k, t)-space measurement {s (km, tq)}M,Q
m=1,q=1.

CSI

The most common approach to produce the spatiospectral encodings for MRSI is the chem-

ical shift imaging (CSI) method [2] that uses pulsed gradients to phase encode all spatial

dimensions after each excitation and uses the entire FID period for spectral encoding. The

encoding gradients end at the same time after each excitation to ensure the same initial chem-

ical shift state. Figure 2.3 illustrates some representative sequences for two-dimensional (2D)

CSI (extension to 3D is straightforward by adding phase encodings using a third gradient).

Given the (k, t)-space data {s (km, tq)} generated by these sequences, and assuming ρ̃(r, f)

is support limited and bandlimited and s (·) is sampled at the Nyquist rate [52], a truncat-

ed Fourier series approximation of ρ̃(r, f), ˆ̃ρ(r, f), can be obtained by performing Fourier

5The variables f and t are expressed here as vectors to take into account multidimensional spectroscopy
experiments. The underlying physical principles, i.e., spin coupling, are not considered in this thesis. Ac-
cordingly, we will only consider one dimensional spectrum, and replace f and t with scalars f and t from
now on.

6Note that in this thesis, field inhomogeneity is equivalent to B0 field inhomogeneity unless specified
otherwise.

13



Figure 2.3: Some representative 2D CSI sequences: (a) An FID acquisition scheme with
slice-selective excitation; (b) A spin-echo excitation scheme with the same encoding fashion
as in (a); (c) A PRESS excitation scheme with the same encoding fashion as in (a) and (b).
Note that PRESS excitation provides the capability to selectively excite a region of interest
but also limits the choice of echo time and is susceptible to chemical shift displacement [14].
The FID acquisition offers the shortest echo time with SNR benefits but is susceptible to
phase errors. The preparation module is application dependent. In 1H-MRSI, for instance,
this module typically involves water and lipid suppression pulses with spoiler gradients to
reduce the nuisance water and fat signals.
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transform on the data

ˆ̃ρ(r, f) =

Q∑
q=1

M∑
m=1

s (km, tq) e
i2π(km·r+tqf). (2.14)

With a sufficiently largeM and Q, this Fourier reconstruction yields accurate results with an

optimal SNR efficiency [2, 15]. However, due to the slow encoding fashion of CSI (only one

spatial encoding is obtained in each excitation), only very limited M and Q can be acquired

in practical experiments, thus leading to significant truncation artifacts and poor spatial

resolution. In order to achieve high-resolution MRSI in a short imaging time, accelerated

data acquisition is needed.

2.2.3 Accelerated MRSI — A Brief Review

Fast Scanning Methods

One main approach to accelerate MRSI data acquisition is to incorporate echo-planar type of

encoding schemes with spectroscopic imaging. These methods, also referred to as echo-planar

spectroscopic imaging (EPSI) methods, [15, 23, 24, 27, 33], are characterized by applying

spatial encoding gradients during the FID period for simultaneous spatial encoding and

spectral encoding. Among them, the Cartesian EPSI is the most used (first proposed in [24]

and later further developed by other groups [26, 29, 32, 51]). It uses oscillating gradients

to encode one spatial dimension and the temporal spacing between the gradient echoes to

encode the spectral dimension after each excitation. This significantly shortens the imaging

time. As illustrated by the representative 2D EPSI sequences in Fig. 2.4, the number of

excitations needed for Mx×My spatial encodings using CSI (Fig. 2.3) is reduced to My (the

number of phase encodings), leading to a factor of Mx acceleration.

Another important fast acquisition method is the spiral CSI [27], which plays out a series

of repeated short spiral shots during the FID. Each spiral trajectory encodes two spatial

dimensions and the time intervals between the trajectories serves as spectral encoding. Sev-

eral spatial and temporal interleaves (or echo shifts) are often needed to achieve the desired
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Figure 2.4: Some representative 2D EPSI sequences: (a) A spin-echo excitation scheme with
y-direction being the phase encoding direction and (b) A PRESS excitation scheme with the
same encoding fashion as in (a). Data are acquired on the plateau of each gradient.

k-space coverage and spectral bandwidth. Since spiral trajectories have higher spatial en-

coding efficiency, they may be used to further accelerate the spatiospectral encoding for

high-resolution MRSI. However, they also pose greater computational challenges due to the

non-uniform k-space sampling [55–57].
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Although the EPSI-based fast acquisition methods offer higher imaging speed,7 they re-

quire much higher sampling bandwidth (and stronger gradients) which leads to stronger

noise. Therefore, the acceleration provided by conventional EPSI sequences is at the ex-

pense of SNR, which is a major limitation for in vivo MRSI. Additionally, intensive usage

of strong oscillating gradients can cause other practical issues such as field drift (due to gra-

dient heating) which can be detrimental to MRSI experiments [58,59]. Exiting EPSI-based

MRSI methods still limit themselves to a low spatial resolution (voxel size on the order of

1 cc) to maintain sufficient SNR.

Sparse Sampling Methods

Another major approach to accelerate MRSI is to sample limited or sparse data and in-

corporate constraints into the reconstruction process to compensate the insufficient mea-

surements. In this category, various model/constraints have been proposed in the existing

literature. The well-known SLIM-based (spectral localization by imaging) methods model

the underlying spatiospectral function as a superposition of several arbitrarily anatomical-

ly defined compartments, each of which is homogeneous and has a distinct spectrum, and

obtain a localized spectrum for each compartment from a set of limited data [34,39,60,61].

Other methods that make use of anatomical prior for improved MRSI reconstruction can be

found in [35–38].

Motivated by the recent success in sparse signal recovery (compressed sensing) [62–65]

and its application to accelerated MRI [66–69], a number of methods have been proposed to

use sparse and low-rank model based regularization for either super-resolution reconstruc-

tion from low-resolution MRSI data or reconstruction from undersampled data (examples

include [40–45]). Furthermore, based on knowledge about the spectral structures of different

metabolites, explicit parametric models [41,46] have also been used for MRSI reconstruction

from limited or undersampled data. It is important to note that compressed sensing based

sparse sampling methods require high SNR data for joint subspace pursuit and missing data

7Here we categorize both spiral and radial MRSI methods as EPSI because they are derived from a similar
methodology that is using gradients to simultaneously encode spatial and spectral information during the
FID period and ignoring the chemical shift evolution during each readout for reconstruction.
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recovery. Therefore, while such an approach is useful for hyperpolarized 13C-MRSI [40, 42],

it offers limited accelerations for regular MRSI experiments.

In the next section, a new mathematical model will be introduced, which allows us to

develop new approaches to both data acquisition and image reconstruction to enable fast,

high-resolution MRSI with high SNR.

2.3 Partial Separability and Low-Rank Tensor Model

In this section, we review the fundamental mathematical concepts which this thesis is built

upon. In particular, we discuss the theories and applications of partially separable func-

tions (PSF) [70] that lead to the subspace model underlying the proposed data acquisition,

processing and reconstruction strategies for high-resolution MRSI.

Consider a multivariate image function of interest f(x1, x2, · · · , xD); the degrees-of-freedom

for an imaging problem grow exponentially as D increases, inevitably prolonging the data ac-

quisition time and/or limit the achievable resolution. To address this fundamental challenge

for multi-dimensional imaging, efficient representation of f(x1, x2, · · · , xD) is necessary. In

this line of pursuit, the PSF-based model (also referred to as the partial separability model)

proposed by Liang in [47] is among the most influential. Specifically, the partial separability

(PS) model approximates the multi-dimensional f(·) as

f(x1,x2, · · · ,xd) ≈
L1∑
l1=1

L2∑
l2=1

· · ·
Ld∑
ld=1

cl1,l2,··· ,ldϕl1(x1)ϕl2(x2) · · ·ϕld(xd), (2.15)

where [x1,x2, · · · ,xd] are d separable groups of [x1, x2, · · · , xD] with xi = [xi1 , xi2 , · · · , xim ]

and L1 to Ld correspond to the model orders. In the context of imaging, each group can

contain variables with the same physical meaning. For example, for d = 2, x1 can include the

spatial variables and x2 can include the temporal variables or some parametric dimensions

result from different image acquisition parameters. The representation in Equation (2.15) is
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an extension of the Lth-order separable functions

f(x1, x2, · · · , xD) =
L1∑
l1=1

L2∑
l2=1

· · ·
LD∑
lD=1

cl1,l2,··· ,lDϕl1(x1)ϕl2(x2) · · ·ϕlD(xD), (2.16)

which is mathematically justified by the following theorem [47,71].

Theorem 2.1 Let X1 and X2 be two measure spaces and X1×X2 be the Cartesian product

of X and X2. Let H be the set of square integrable functions defined on X1 ×X2, i.e., H =

L2 (X1 ×X2), then the set of all the functions in the form of
∑

l=1 ϕl(x1)ψl(x2) ∀ ϕl(x1) ∈

L2(X1) and ψl(x2) ∈ L2(X2) is dense in H. Thus, for any f(x1, x2) ∈ H, and appropriately

defined ϕl(·) and ψl(·) ∥∥∥∥∥f(x1, x2)− lim
L→∞

L∑
l=1

ϕl(x1)ψl(x2)

∥∥∥∥∥
2

= 0.

The definitions and results in this theorem can be generalized to more than two measure

spaces. Since it is safe to assume that any function of interest (f(x1, x2, · · · , xD)) for an

imaging problem belongs to L2(X1 × X2 · · · × XD), the above theorem ensures that as L

goes to infinity, the PS model can approximate f to arbitrary accuracy. Furthermore, using

the more general PS model in the form of Eq. (2.15) instead of Eq. (2.16) often leads to

significantly smaller L necessary for accurate approximation in imaging problems. More

importantly, it offers better physical interpretation and allows for more flexible acquisition

designs than conventional imaging paradigms [47,48,50,72–74].

It has also been shown that PS model implies low-rank representation, which has been

used in different areas of signal and image processing [47,75–77]. Specifically, given a point

set {x1,i1 ,x2,i2 , · · · ,xd,id}
N1,N2,··· ,Nd

i1,i2,··· ,id=1 , the multi-linear array T formed as

Ti1,i2,··· ,id = f(x1,i1 ,x2,i2 , · · · ,xd,id)

is a low-rank tensor [78, 79]. Particularly, when d = 2 and given x1 = r, x2 = t, if the
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function f(r, t) has the PS representation as8

f(r, t) =
L∑
l=1

cl(r)ϕl(t), (2.17)

the Casorati matrix formed from f(r, t) over any point set {(rp, tq)}P,Qp,q=1

C
(
{f(rp, tq)}P,Qp,q=1

)
=


f(r1, t1) f(r1, t2) · · · f(r1, tQ)

f(r2, t1) f(r2, t2) · · · f(r2, tQ)
...

...
. . .

...

f(rP , t1) f(rP , t2) · · · f(rP , tQ)

 (2.18)

has a rank upper-bounded by L [47]. This implies that the original high-dimensional signal

(with dimensionality P×Q) can be specified by a much smaller number of degrees-of-freedom

(e.g., (P +Q)× L), which is extremely useful in the context of multi-dimensional imaging.

More specifically, it means that with the PS model the number of measurements required

for accurately estimating the unknown image function of interest dramatically decreases.

Moreover, the decoupled structure for different variables offered by the PS model enables

the design of a richer class of strategies for encoding and decoding f(·), of which the work

to be presented in this thesis is an excellent example.

The PS/low-rank model has been successfully applied to several MR imaging applications.

Examples include sparse sampling for real-time cardiac imaging [72, 80–82], flow imaging

[83], dynamic speech imaging [74], fast MR relaxometry [84], functional imaging [85, 86],

accelerated MR elastography [87], and denoising for high-resolution diffusion imaging [88,89]

and spectroscopic imaging [43,49].

8We choose r and t because they have specific physical meaning in imaging applications. For example,
in dynamic imaging, r typically represents the spatial dimensions and t the temporal dimension. For spec-
troscopic imaging, t denotes the axis for the FID signal evolution. Furthermore, it is easy to show that the
general PS model in Eq. (2.15) reduces to the form in Eq. (2.17) when d = 2.
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2.4 Cramér-Rao Bound

Consider the problem of estimating an unknown N × 1 parameter vector θ from a set of

measurements d generated by a signal model (dependent on θ) as

d = g(θ, ξ), (2.19)

where g(·) characterizes the data generation process and ξ represents the randomness in the

data, e.g., noise. A commonly used noise model is the additive noise such that Eq. (2.19)

can be written as

d = g(θ) + ξ, (2.20)

where elements in ξ follow i.i.d. distributions. The Cramér-Rao Bound (CRB) [90] provides

a fundamental limit on the performance of any unbiased estimator of θ (θ̂) obtained from

d. Specifically, it states that [91]

Σθ̂ ≥ J†
θ, (2.21)

where Σθ̂ is the covariance matrix of the estimate θ̂ and † denotes the pseudoinverse.9 Jθ is

the Fisher information matrix (FIM) that is dependent on g(θ) and ξ and can be calculated

as [91]

(Jθ)i,j = E

∂ log p(d;θ)
∂θi

∂ log p(d;θ)
∂θj

 | θ

 , (2.22)

where p(d;θ) is the likelihood function of d given a particular θ (assuming finite second

moment), E(·) denotes the expectation and (J)i,j the element of J at the ith row and the

jth column. Moreover, it can be shown that the variance for each element in θ̂ is lower

9Given two matrices A and B, A ≥ B means A−B is a positive semidefinite matrix.

21



bounded by

(Σθ̂)i,i ≥
(
J†
θ

)
i,i
, for i = 1, 2, · · · , N. (2.23)

If θ can be further assumed to reside in a constrained parameter space ΩC , the following

constrained CRB can be derived for any locally unbiased estimator of θ [92]:

Σθ̂ ≥ R
[
RHJθR

]†
RH , (2.24)

where R is a matrix with columns spanning the same subspace as the set of N × 1 vectors

{νs}Ss=1, which satisfy

{θs = θ +∆sνs} ∈ ΩC , (2.25)

for any sufficiently small ∆s. When ΩC = RN or CN , the constrained CRB becomes the

conventional CRB. Generalizations of Eqs. (2.21) and (2.24) for biased estimators can be

found in the literature, e.g., [92–94]. CRB and constrained CRB analysis have been widely

used in many signal processing problems [91]. In the field of imaging, they have been shown

very useful in analyzing and characterizing different image reconstruction models [95–97],

parameter quantification methods [98–100] and also in optimizing data acquisition designs

[101–104].

For the special case where the signal follows the linear Gaussian measurement model as

d = Aθ + ξ, (2.26)

where A is the measurement matrix and ξ contains white Gaussian noise with mean zero

and variance σ2, the likelihood function is a joint Gaussian distribution with the form of

p(d;θ) =
1

(2π)N/2σN
exp

−
∥d−Aθ∥22

2σ2

 . (2.27)
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Accordingly, the FIM for the model in Eq. (2.26) can be derived as

Jθ =
1

σ2
AHA. (2.28)

In this thesis, we will apply Eqs. (2.26) and (2.28) to obtain a theoretical analysis of the

proposed model and to optimize the proposed data acquisition methods.
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CHAPTER 3

SPECTROSCOPIC IMAGING BY EXPLOITING
SPATIOSPECTRAL CORRELATION (SPICE)

In this chapter, we describe the proposed subspace approach to high-resolution spectroscopic

imaging, coined SPICE (Spectroscopic Imaging by Exploiting Spatiospectral Correlation).

The signal model, subspace-driven data acquisition strategies and reconstruction framework

of SPICE will be presented.

3.1 Subspace Model

To recover the underlying spatiotemporal/spatiospectral function of interest with high res-

olution and high SNR, SPICE exploits the spatiotemporal partial separability (PS) [47] of

the spectroscopic signals ρ (r, t) (considering only one spectral dimension) and models it

as [49,50]

ρ(r, t) =
L∑
l=1

cl(r)ϕl(t), (3.1)

where {ϕl(t)}Ll=1 represents a set of temporal basis functions, {cl(r)}Ll=1 contains the cor-

responding spatial coefficients, and L is the model order. The model in Eq. (3.1) can be

further extended to include multiple components in experimentally acquired spectroscopic

data (i.e., a union-of-subspaces model [105]) as

ρm(r, t) + ρb(r, t) + ρns(r, t) =
Lm∑
lm=1

clm(r)ϕlm(t) +

Lb∑
lb=1

clb(r)ϕlb(t) +
Lns∑
lns=1

clns(r)ϕlns(t), (3.2)

where {ϕlm(t)}
Lm

lm=1, {ϕlb(t)}
Lb

lb=1 and {ϕlns(t)}
Lns

lns=1 denote the temporal subspaces for the

metabolite signal of interest (ρm), the baseline signal (ρb) and the nuisance signals (ρns)
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with dimensions Lm, Lb and Lns, respectively. {clm(r)}, {clb(r)}, and {clns(r)} denote their

corresponding spatial coefficients. In particular, for 1H-MRSI experiments focused on in

this thesis, the nuisance signals can be decomposed into the water and subcutaneous fat

components as1

Lns∑
lns=1

clns(r)ϕlns(t) =
Lw∑
lw=1

clw(r)ϕlw(t) +

Lf∑
lf=1

clf (r)ϕlf (t). (3.3)

In spectroscopic imaging, the above PS representations can be justified from different per-

spectives, e.g., the object being imaged has only a finite (L) number of tissue types, each of

which has a distinct spectral structure, or ρ̃ (r, f) has only a finite number (L) of spectral

components which are linearly combined to generate the spectrum at a particular voxel.

It can also be justified from the theory of quantum mechanics that the solution of the

Schrödinger equation describing the chemical-shift effects has a partially separable form.

Accordingly, assuming that ρ(r, t) can be specified by {ρ (rn, tq)}N,Q
n,q=1 in the conventional

pixel representation given a high-resolution point set {(rn, tq)}N,Q
n,q=1, SPICE, based on the

PS theory, models the Casorati matrix (ρ) for each component in Eq. (3.2) as a low-rank

matrix. For instance, ρm (formed from {ρm (rn, tq)}) is expressed as

ρm = CmΦm, (3.4)

where Φm = {ϕlm(tq)} and Cm = {clm(rn)} are rank-Lm matrices (with Lm < min{N,Q}).

This implies that, when viewed as a vector, ρm actually resides in a very low-dimensional

subspace (spanned by {ϕlm(t)}, for example), which also means that ρm has a much smaller

number of degrees-of-freedom compared to its originalNQ-dimensional representation. More

importantly, this low-dimensional subspace model enables special data acquisition and image

reconstruction strategies to be used to obtain high-resolution spatiospectral distributions

with good SNR.

1Although baseline signal, attributed to macromolecules such as nucleic acids, proteins, and lipids, is
usually considered to be nuisance signal, we separate it from the nuisance water and subcutaneous fat signals
because (i) they have highly distinct signal characteristics which require different processing treatments; (ii)
the magnitude of baseline signal is orders of magnitude weaker than that of water and fat.
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It is important to note that the nuisance water and fat signals (ρns) are much stronger

(even with water and lipid suppression in the pulse sequences) than the metabolite signal.

Therefore, preprocessing is typically required to remove them from the acquired signal first to

ensure accurate estimation of the spatiospectral distribution of the metabolites. Additional

prior information is also needed for accurately determining the temporal subspaces ({ϕlw(t)}

and
{
ϕlf (t)

}
) and the corresponding spatial coefficients ({clw(r)} and

{
clf (r)

}
) for water

and fat [105]. Note also that whether to include the ρb component in the reconstruction is

dependent on the imaging parameters. For example, the baseline signal is normally negligible

for echo times greater than 40 ms.

In the following sections, the data acquisition and image reconstruction strategies for

SPICE will be described.

3.2 Data Acquisition: Sparse Sampling of (k, t)-Space

To exploit the PS property for high-resolution spectroscopic imaging, SPICE uses a special

subspace-driven data acquisition (or spatiospectral encoding) strategy to achieve extended

(k, t)-space coverage with sparse sampling. The data acquisition scheme has two key fea-

tures: (a) acquisition of a data set, D1 (with limited k-space coverage but dense temporal

sampling), for determination of the temporal basis {ϕl(t)} (with fully specified spectral in-

formation), and (b) acquisition of a data set, D2 (with extended k-space coverage but sparse

temporal sampling), for determination of the spatial coefficients {cl(r)} (with the desired

spatial resolution).2 Figure 3.1 illustrates an example of such a sampling strategy, which can

be implemented using a hybrid CSI/EPSI pulse sequence shown in Fig. 3.2. As illustrated,

the CSI component is used to generate D1 (with high SNR) while the EPSI-like component

is used to generate D2 (with high data acquisition speed and extended k-space coverage).

More specifically, the EPSI-like scan encodes two spatial dimensions (with the kx axis per-

pendicular to the paper) during the FID period (in contrast to traditional EPSI sequences

that usually encode one spatial dimension [24]) and uses echo shifts (in different excitations)

2We drop the subscript in l for different signal components for a general data acquisition and reconstruc-
tion discussion.
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for additional spectral encoding. As a result, this SPICE acquisition strategy samples the

(k, t)-space only sparsely. This sparse sampling scheme is enabled by the PS model with

temporal basis capturing the full spectral information. Moreover, since the CSI only has

a small number of spatial encodings and the EPSI-like component has high encoding effi-

ciency, this type of acquisition strategy can significantly accelerate the overall spatiospectral

encoding for high-resolution MRSI.

Figure 3.1: An example of SPICE (k, t)-space sampling for 2D spectroscopic imaging (with
kx pointing into the page): (a) (k, t)-space sampling for data in D1 for subspace estimation.
D1 covers only a limited region of central k-space (based on SNR consideration), and sample
the FID period (TA,1) fully (to capture the spectral information); (b) (k, t)-space sampling for
data in D2 for determination of the spatial coefficients. Note that a set of FIDs with different
echo shifts (∆τ1,∆τ2, · · · ,∆τq) is collected, each of which traverses the entire k-space but
with limited spectral encoding (TA,2 < TA,1).

The proposed SPICE acquisition strategy also offers a range of flexibility for generating

both D1 and D2. For example, the acquisition of D1 can be done using the conventional

EPSI sequence if further acceleration is needed. The acquisition of D2 can also be done

using alternative (k, t)-space trajectories, e.g., the traditional EPSI trajectories or spiral-
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like trajectories as shown in Fig. 3.3. However, note that given the subspace model, each

readout in these trajectories (for D2) need not be treated as instantaneously sampled as in

conventional EPSI or spiral CSI methods (e.g., [15, 24, 27, 28]). Detailed discussion of the

design of specific pulse sequences to implement the SPICE acquisition strategy for practical

MRSI experiments will be given in Chapter 4.

Figure 3.2: A prototypical sequence for realizing the SPICE sampling pattern in Fig. 3.1:
(a) the CSI component used to collect the data in D1 with limited k-space coverage but full
spectral encoding, and (b) the EPSI-like component used to acquire the data in D2 with
extended k-space coverage but limited spectral encoding. Note that there is only one ky
reversal in each TR due to SNR consideration, although more ky reversals can be included
in principle. Note also that acquiring data on both polarities of the gradients improves
encoding efficiency (as illustrated in this figure) but requires additional correction if all the
acquired data are used.

3.3 Reconstruction from Sparse Data

Given the two data sets described above, special reconstruction strategy can be designed for

SPICE image reconstruction. For notation convenience, we assume thatD1 = {s1(kn, tq)}N1,Q1

n,q=1

and D2 = {s2(k̂n, t̂q)}N2,Q2

n,q=1 . According to the descriptions in the previous chapter, we have:

(a) {tq}Q1

q=1 sample the time interval of interest in high resolution while {t̂q}Q2

q=1 sample the

interval sparsely, and (b) {kn}N1
n=1 cover limited k-space locations while {k̂n}N2

n=1 cover an

extended region of k-space (to provide the desired spatial resolution). With these data,

SPICE reconstructs ρ(r, t) using a two-step procedure: (a) determination of the temporal

basis from D1, and (b) determination of the spatial coefficients from D2 .
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Figure 3.3: Two alternative (k, t)-space sampling trajectories that can be used to generate
D2: (a) conventional EPSI trajectories, and (b) spiral trajectories. Note that in (a), the
echo spacing is not necessarily constrained by the spectral Nyquist criterion as in traditional
EPSI schemes. In both cases, different colors represent trajectories for different excitations.

Determination of the temporal basis (or temporal subspace), {ϕl(tq)}Ll=1 for q = 1, 2, · · · , Q1,

from D1 is fairly easy if the effect of field inhomogeneity ∆B(r) on s1(kn, tq) is negligible.

In practice, ∆B(r) can be significant, and we need to first remove/reduce its effect on s1.

Assuming that ∆B(r) is available (which can be acquired during the MRSI experiment),

field inhomogeneity correction on limited k-space spectroscopic data can be done by using

different methods (e.g., [106–108]). The corrected data, denoted as ŝ1(kn, tq), can then be

used to form an N1×Q1 Casorati matrix C
(
{ŝ1(kn, tq)}N1,Q1

n,q=1

)
, to which the SVD is applied.

The resulting first L principal right singular vectors are then chosen as Φ (with Φlq = ϕl(tq)).

In this chapter, we will use the method in [108] for field correction to demonstrate the con-

cept of SPICE. A more comprehensive discussion of field correction on limited k-space data

through regularized reconstruction will be presented in Chapter 5.
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After Φ is determined, the spatial coefficients, {cl(rn)}Ll=1, can be determined from the

sparse data in D2 by solving a least-squares problem. Based on the low-rank representation

in Eq. (3.4), we rewrite the spatiotemporal function of interest as

{ρ(rn, tq)}N,Q
n,q=1 = {

L∑
l=1

cl(rn)ϕl(tq)}N,Q
n,q=1 = CΦ

with C ∈ CN×L and Φ ∈ CL×Q such that Cnl = cl(rn) and Φlq = ϕl(tq). For the proposed

data acquisition scheme, we have N = N2 and Q = Q1. Accordingly, we can construct a

discretized acquisition model for the data in D2 as

s2 = FΩ{B⊙CΦ}+ ξ, (3.5)

where s2 ∈ CN2Q2×1 denotes the vector containing all the data in D2, FΩ represents the

Fourier encoding operator with a (k, t)-space sampling pattern Ω for D2, B is a matrix

containing phase terms modeling the B0 field inhomogeneity effect described in Eq. (2.13), ⊙

denotes a point-wise multiplication operation, and ξ is a vector containing the measurement

noise (assumed to be white Gaussian). The spatial coefficients, C, can be determined by

solving

Ĉ = argmin
C

∥s2 −FΩ{B⊙CΦ}∥22 + λR (C) , (3.6)

where the ∥ · ∥22 term measures the data consistency of a reconstruction and R(·) is a reg-

ularization functional with regularization parameter λ. There are many choices for R(·) to

incorporate prior information about ρ (r, t) or ρ̃(r, f) (including both quadratic and sparsity-

promoting penalties [37, 38, 41, 43]) for improved estimation. In this chapter, we focus on

demonstrating the concept and potential of SPICE and use the following ℓ2 regularization:

R (C) = ∥WDCΦ∥2F , (3.7)

for simulation studies. In Eq. (3.7), D is a finite difference operator and W contains edge

weights derived from a high-resolution reference image (as in [37]). Integrating this regu-
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larization term into Eq. (3.6) yields a weighted-ℓ2 regularized least-squares problem that

can be solved efficiently (e.g., using the linear conjugate gradient method). The use of

more sophisticated regularization functional for improved reconstruction will be presented

in Chapter 5.

3.4 Analysis and Characterization

In the acquisition and reconstruction strategies described above, a number of parameters play

important roles in determining the performance of SPICE. In this section, we will analyze

the effects of these parameters for optimized SPICE data acquisition and reconstruction

through theoretical calculation and/or simulation studies. In particular, we will discuss the

sampling requirements for D1 and D2, and the optimization of spectral encoding for the

acquisition of D2.

3.4.1 Sampling Requirements for D1 and D2

Given the subspace model with model order L, the number of spatial encodings in D1

theoretically has at least to be greater than L, i.e., N1 ≥ L. This can be shown using

the low-rank model in Eq. (3.4). Consider the matrix representation of the underlying

spatiotemporal function, ρ with rank(ρ) = L, and the property of D1 (i.e., the same k-space

area is covered for all the time points); the sampled data S1 can be expressed as (in the

noiseless case)

S1 = Aρ, (3.8)

where A is an M × N encoding matrix (M < N) that is the same for all the columns in

ρ (ignoring field inhomogeneity). Since the row space of S1 is a subspace of the row space

of ρ (with dimensionality L), the number of rows in S1 has at least to be larger than L in

order to span the same row space as ρ. This is easy to satisfy since L is typically a small

number [49,50]. Moreover, given an arbitrary rank-L ρ, N1 needs to be larger than a certain

31



threshold to ensure that

rank(SH
1 S1) = L, (3.9)

i.e., S1 has the same row space as ρ. A theoretical threshold on N1 for this condition to

hold can be found in [109], which studied the singular value and singular vector relationships

between two matrices connected by the model in Eq. (3.8). With the condition in Eq. (3.9)

held, unique (or accurate) subspace recovery from S1 can be guaranteed. Considering the

theoretical bound (e.g., the one in [109]) is hard to calculate in practice, we aim to understand

this issue through carefully designed simulation studies. Meanwhile, it is important to note

that the choice of N1 in practical experiments will also be affected by other factors, such

as noise, field inhomogeneity correction and nuisance signal removal. We will discuss the

effects of noise and field inhomogeneity in Section 3.5 and field correction and nuisance signal

removal in Chapter 5.

As for D2, it is understood that the corresponding k-space coverage needs to provide the

desired spatial resolution. However, how many temporal samples are needed for each k-space

point remains an important question. With the temporal subspace estimated, we perform a

CRB analysis on the spatial coefficient estimation problem to answer this question. Given the

model in Eq. (3.5) with the existence of B0 field inhomogeneity, the CRB can be obtained by

computing the joint FIM for all the spatial coefficients. However, this will involve intensive

computations and memory usage.3 Therefore, to simplify the computation, we first ignore

the field inhomogeneity, which enables the analysis using a point-by-point fitting model

(in k-space). This analysis, although simplified, suffices in understanding the effects of the

number of temporal samples per k-space point given a particular sampling trajectory design.

Specifically, assume the temporal basis Φ ∈ CL×Q is given; a fitting matrix Φk ∈ CMe×L

can be constructed by selecting Me columns of Φ corresponding to the temporal sampling

grids for different k-space locations, where Me denotes the number of temporal samples.

3For a C with the size of N × L, the size of the FIM will be N2 × L2.
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Accordingly, for the data acquired at k0, denoted as dk0 ∈ CMe×1, we have

dk0 = Φk0ck0 + ξk0 , (3.10)

where ck0 ∈ CL×1 and ξk0 ∈ CMe×1 represent the unknown coefficients for k0 and the noise

vector, respectively. Based on the linear measurement model in Eq. (3.10), we can derive

the following FIM (by treating the real and imaginary parts of ck0 separately)

Ik0 =
1

σ2

Re{ΦH
k0
Φk0} −Im{ΦH

k0
Φk0}

Im{ΦH
k0
Φk0} Re{ΦH

k0
Φk0}

 , (3.11)

where σ2 is the noise variance,4 Re{·} and Im{·} are the operations of taking the real part

and the imaginary part, respectively. More details on CRB derivation can be found in the

Background chapter. Based on the property of CRB, the total variance of any unbiased

estimator of ck0 , denoted as ĉk0 , is bounded as

Varĉk0 ≥ Tr{I−1
k0
}. (3.12)

Therefore, calculating Tr{I−1
k0
} with different choices of Me will provide important insights

into the performance of spatial coefficient estimation w.r.t. Me.

Figure 3.4 shows the change of Tr{I−1
k0
} w.r.t. the ratio between Me and the model or-

der L for a simulated data set with σ = 1. The detail on simulations is described in the

next section. As can be seen, the theoretical minimum for Me (i.e., Me/L = 1 for making

the problems in Eqs. (3.5) and (3.10) well-posed) gives rise to significantly greater CRB

(about a factor of 100) compared to the cases where Me/L > 1 (see the sharp transition

between Me/L = 1 and Me/L = 2). Meanwhile, the CRB decreases as Me increases, as

expected, but it becomes stable when Me reaches a certain threshold (e.g., Me/L ≥ 6).

This result provides critical guidance in designing the sampling of D2, especially for making

the tradeoff between the imaging time and the reconstruction performance. Moreover, the

ill-conditioning problem (e.g., significantly amplified variances when Me is small) also well

4Here we assume that the real and imaginary parts of ξ are both white Gaussian noise with variance σ2.
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motivates the incorporation of prior information through regularization, which is to be dis-

cussed in detail in Chapter 5.

Figure 3.4: Plots of CRB against different values of Me/L for ĉk0 (Tr{I−1
k0
}). Note that the

plot on the right is a zoomed-in version of the plot on the left, obtained by throwing away
the point where Me = L.

3.4.2 Spatiospectral Encoding Design for D2

As mentioned in Section 3.2, SPICE offers a range of flexibility for spatiospectral encoding,

especially for acquiring D2, thus offering additional degrees-of-freedom in optimizing the

sampling design. For example, different choices of spatiospectral sampling pattern and/or

the temporal interval (denoted as τ , also referred to as the echo shift time) between different

echo shifts can lead to rather different spatial coefficient estimation performance. Here, we

compare three representative spatiospectral encoding patterns for D2 and analyze the effects

of τ on the estimation of C with fixed Me and L, again through a CRB calculation. But

in this case, we are considering the joint FIM for the entire C to take into account the B0

field inhomogeneity and k-space dependent estimation variances, which is important when

comparing different sampling trajectories. Specifically, we derive that the model in Eq. (3.5)

can be rewritten as

s2 = Ω̃F̃B̃Φ̃vec{C}+ ξ

= Avec{C}+ ξ. (3.13)
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vec{C} denotes a vectorization of C. Φ̃ is an NQ×NL matrix generated from Φ with the

form of

Φ̃ =


Φ̃1

Φ̃2

...

Φ̃Q

 ,

where the qth block Φ̃q (q = 1, 2, · · · , Q) has a size of N ×NL and can be expressed as

Φ̃q = [Φ1q,Φ2q, · · · ,ΦLq]⊗ IN×N ,

where ⊗ denotes the Kronecker product and IN×N an N ×N identity matrix. B̃ is a sparse

NQ × NQ diagonal matrix with the phase terms for field inhomogeneity modeling on its

diagonal as follows: 
B̃1

B̃2

. . .

B̃Q


where B̃q has the form of

B̃q =


e−iγ∆B(r1)tq 0 · · · 0

0 e−iγ∆B(r2)tq · · · 0
...

...
. . .

...

0 0 · · · e−iγ∆B(rN )tq

 .

F̃ is an NQ×NQ block diagonal matrix each nonzero block of which is an N ×N Fourier

transform matrix, and Ω̃ is the sampling matrix.

35



With the model in Eq. (3.13), the joint FIM for C can be derived as

IC =
1

σ2

Re{AHA} −Im{AHA}

Im{AHA} Re{AHA}

 . (3.14)

Since some of the matrices in constructing A (e.g., F) are too large to store explicitly in

memory, we construct AHA column by column through operating it on unit vectors with 1

as one of the elements and 0 otherwise. Once IC is constructed, we can compute the CRB

for any unbiased estimator of C, Ĉ, as

COVĈ ≥ I−1
C , (3.15)

where COVĈ denotes the covariance matrix for Ĉ and the diagonal elements in I−1
C are the

lower bounds for the variances of each element in Ĉ.

Figure 3.5 illustrates three alternative (k, t)-space trajectories that can be used to generate

D2. Note that the trajectory of each echo shift in Fig. 3.5c is similar to the one in Fig. 3.5b

but with randomly chosen τ for each excitation. Figure 3.6 compares the lower bounds on the

total variance (i.e., Tr
{
I−1
C

}
) for the above described three sampling designs with different

echo shift times (i.e., τ = 1, 2, 3, 4, 5). As can be seen, the center-out sampling pattern

in Fig. 3.5b results in similar variance performance to the one with random echo shifts

(Fig. 3.5c); both are significantly better than the sampling pattern in Fig. 3.5a for which

each echo shift starts from the corner of k-space (similar to the conventional EPI imaging

trajectories [52]). Moreover, for the center-out pattern, a τ = 3 yields the best CRB. Either

decreasing or increasing τ leads to increased estimation variance. This analysis result offers

important insights for designing acquisition methods in practical MRSI experiments.
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Figure 3.5: Three alternative (k, t)-space trajectories that can be used to generate D2. The
vertical axis denotes ky (with ky = 0 at the center) and the horizontal axis the time index.
The kx axis is perpendicular to the paper. For the trajectories in (a), each echo shift (in
each excitation) starts from the corner of k-space, while for the trajectories in (b), each echo
shift starts from the center of k-space leading to a center-out pattern that produces more
central k-space measurements in the early portion of the FID period. The trajectories in
(c) are similar to those in (b) but with randomly spaced echo shifts (with τ chosen from
{τ |τ = 1, 2, · · · , 5}).

3.5 Simulations

We have evaluated the SPICE framework using results obtained from computer simulations,

which are shown in this section.
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Figure 3.6: Lower bounds on the total variance (i.e., Tr
{
I−1
C

}
from the joint CRB calcu-

lation) against different amounts of echo shift (τ) for the three different sampling patterns
shown in Fig. 3.5. The image on the right is a zoomed-in version (for the area identified by
the red box) of the image on the left which is plotted in logarithmic scale due to the large
range of Tr

{
I−1
C

}
. An Me = 48, an L = 6 and the field inhomogeneity map described for

the numerical phantom generation were used to calculate the CRB.

3.5.1 Numerical Phantom Generation

A high-resolution spatiospectral distribution was numerically simulated as described in [49].

First, the spectra for six commonly observed 1H metabolites, including NAA, creatine (Cr),

choline (Cho), glutamate (Glu), glutamine (Gln), and myo-inositol (mI), were obtained from

quantum mechanical simulation of a spin-echo pulse sequence with TE=30 ms [110]. Second,

the composite spectra were then assigned to three segmented brain regions (gray matter,

white matter and CSF) with different metabolite concentration ratios (based on literature

values [49]). Third, realistic lineshape variations and baseline signals were incorporated into

the spectra at each voxel. The resulting FID signal can then be represented by the following

model:

ρ(r, t) =
M∑

m=1

Pm∑
pm=1

am,pm(r)e
−i2πfm,pm te−t/T2,m(r)e−t/T ′

2(r) + ρb(r, t), (3.16)

where M is the number of metabolites, Pm is the number of frequency components for the

mth metabolite, {am,pm} control the relative strengths of different components, {fm,pm} and

{T2,m} are the resonance frequencies and relaxation constants, and T ′
2(r) captures the spa-

tially dependent lineshape variations due to field inhomogeneity. ρb(r, t) contains simulated

baseline signals following a spline model in the frequency domain. The final simulated spa-

tiotemporal distribution has a matrix size of 128 × 128 and 512 time points sampled at a

bandwidth of 2000 Hz.
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We then generated (k, t)-space measurements from this phantom with and without field

inhomogeneity effects introduced through a coregistered experimentally acquired in vivo

∆B0 map according to Eq. (2.13) (but without the nuisance components). A simulated full

data set without the field inhomogeneity effects and noise contamination was used as the

gold standard for comparison. First of all, we studied the dependence of subspace recovery

on the number of spatial encodings in D1, in a noiseless case and a noisy case (with and

without field inhomogeneity). To evaluate the accuracy of subspace estimation, the following

normalized projection error is defined:

errp =

∥∥∥∥ρ0 − ρ0Φ̂
H
(
Φ̂Φ̂

H
)−1

Φ̂

∥∥∥∥
F

∥ρ0∥F
, (3.17)

where ρ0 is the Casorati matrix formed by a gold standard data that is generated by a rank-8

truncation of the original high-resolution data (with truncation error less than 0.1 percent)

and Φ̂ is the temporal basis (with L = 8) estimated from D1 with various numbers of spatial

encodings. Conceptually, this error metric evaluates how accurately the estimated temporal

basis can represent the gold standard data and thus is an informative indicator for subspace

estimation accuracy.

Secondly, we studied the dependence of spatial coefficient estimation accuracy on the

number of spectral encodings for each k-space point in D2 (i.e., Me). Accordingly, we

simulated the trajectories shown in Fig. 3.1b and Fig. 3.5b to generate D2 with different

numbers of echo shifts. Noise was added mimicking the SNR level of typical EPSI acquisitions

(taking into account the higher bandwidth used). Spatial coefficients were then estimated

from these noisy data using the true temporal basis estimated from the rank-8 gold standard.

We evaluate the accuracy of estimated spatial coefficients using the relative ℓ2 error defined

as

REC =

∥∥∥Ĉ−C0

∥∥∥
2

∥C0∥2
(3.18)

where C0 contains the gold standard coefficients and Ĉ its estimate.
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Thirdly, we compare the performance of SPICE to two alternative acceleration methods

commonly used in current MRSI studies: (i) low-resolution CSI and (ii) EPSI [24]. The

effect of field inhomogeneity was included for all three schemes, which were set up to have

the same acquisition time. Additional noise was added into the simulated EPSI data to

account for the SNR difference due to different readout bandwidths. The field inhomogeneity

corrected conjugate phase (CP) algorithm [107, 108] was used to obtain the CSI and EPSI

reconstructions, which are compared with the corresponding SPICE reconstruction.

3.5.2 Results

Figure 3.7 shows the subspace estimation accuracy (errp) when different numbers of spatial

encodings (N1) are included in D1, both with and without noise corruption but without B0

field inhomogeneity. The subspace is estimated by directly applying SVD to the Casorati

matrices formed from the data in D1 and choosing the L (L = 8) dominant right singular

vectors. As shown by the results, in the noiseless case, as long as N1 is greater than L, the

projection error (errp) becomes negligible, which implies that the data acquired have spanned

the entire subspace (i.e., the condition in Eq. (3.9) is met). This is expected considering

that for MRSI acquisitions D1 will typically include spatial encodings along all dimensions

in k-space, avoiding the null space problem in dynamic imaging using PS model (if the

navigator is not carefully designed [73]). In the case where data are contaminated by noise,

errp decreases as N1 increases, but the difference also diminishes. Furthermore, it can be seen

that an N1 ≥ 50 provides a reasonable cutoff for accurate subspace estimation in the presence

of noise (in the absence of field inhomogeneity). However, as demonstrated by Fig. 3.8, as

soon as field inhomogeneity effect is introduced into the data, the resulting spatiotemporal

coupling prevents us from accurately recovering the subspace structure, even in the absence

of noise, which implies the critical importance of field inhomogeneity correction. As shown by

the image on the right of Fig. 3.8, which plots errp against N1 for the cases where only noise

was added and both field inhomogeneity and noise were included, while increasing N1 can

significantly reduce the noise effects, it will not necessarily lead to more accurate subspace

estimation unless the field inhomogeneity effect is removed. Nevertheless, the SVD-based
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subspace estimation scheme using the central k-space data is reasonably robust to small

field inhomogeneity, as illustrated in Fig. 3.9. Particularly, the difference in projection errors

between the case where both small field inhomogeneity and noise are present and the case

with noise only becomes negligible as N1 increases, implying that the correction scheme used

does not have to completely remove the field inhomogeneity effects for an accurate subspace

estimation. In Chapter 5, details about the proposed field inhomogeneity correction methods

will be provided with results demonstrating that the proposed methods are able to remove

the field inhomogeneity effectively with only limited k-space data in D1.

Figure 3.7: The normalized projection errors (errp) for the estimated subspaces from D1 with
different N1: (a) results from using noiseless D1 and (b) results from using D1 contaminated
by noise of different levels.

Figure 3.8: The normalized projection errors (errp) for the estimated subspaces from D1

with different N1: (a) results from using noiseless but B0 field inhomogeneity corrupted D1

and (b) results from using D1 corrupted by both noise (with an NAA peak SNR of 5) and
field inhomogeneity.
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Figure 3.9: The normalized projection errors (errp) for the estimated subspaces w.r.t. differ-
ent N1 in the presence of small field inhomogeneity (generated by scaling the B0 map used
for simulation by a factor of three): (a) noiseless D1 and (b) noisy D1 (with an NAA peak
SNR of 5).

Figure 3.10 plots the changes in the relative ℓ2 error for the spatial coefficient estimate Ĉ

against Me/L. Two cases are compared here, one without any regularization (λ = 0) and

the other with the regularization functional in Eq. (3.7). As shown by the plots, the trend

in REC correlates very well with that from the theoretical analysis (in Fig. 3.4). Moreover,

the differences between the two cases clearly demonstrate the importance of regularization

in improving spatial coefficient estimation accuracy. Table 3.1 compares relative ℓ2 errors

(REC) for spatial coefficients obtained from D2 generated by different sampling patterns. As

can be seen, the estimation error comparison matches the theoretical analysis. The center-

out pattern leads to significantly better reconstruction accuracy than the corner-up pattern

(Fig. 3.5a). In addition, the pattern with random echo shifts results in slight improvement

in the spatial coefficient estimation but the difference is not significant.

Figure 3.11 shows one set of representative simulation result from a SPICE acquisition

with comparison to a CSI and an EPSI acquisitions. The SPICE reconstruction was obtained

with D1 containing 8× 8 CSI encodings each with 512 FID samples, D2 containing 48 echo

shifts each with 128 × 128 spatial encodings (averaged four times) and L = 8. The total

number of excitations is 256. Thus, the equivalent-time CSI acquisition had 16× 16 spatial

encodings while the EPSI acquisition had 128× 128 spatial encodings (averaged twice) both

with 512 FID samples. As can be seen, the CSI reconstruction shows significant blurring

and ringing artifacts, which were reduced in the EPSI reconstruction but at the expense of a
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significant loss of SNR, as expected. The SPICE reconstruction shows very good resolution

with minimal loss in SNR compared to CSI and significantly better SNR compared to EPSI.

Figure 3.10: Changes of the relative error, REC, for estimating C w.r.t. different values of
Me/L. The image on the left plots the errors for the case without regularization, while the
image on the right plots the errors for the case with an ℓ2 regularization.

Table 3.1: The relative ℓ2 errors (REC) for spatial coefficients obtained from D2 generated
by different sampling patterns. Note that we fixed Me = 48 and τ = 2 for all three patterns
and the same regularization parameter was used for reconstruction.

Pattern in Fig. 3.5a Pattern in Fig. 3.5b Pattern in Fig. 3.5c

REC 0.369 0.161 0.159

3.6 Summary

We have presented a new subspace imaging framework called SPICE for accelerated high-

resolution MR spectroscopic imaging. SPICE exploits a unique property known as the par-

tial separability (PS) of spectroscopic signals. This property indicates that high-dimensional

spectroscopic signals reside in a very low-dimensional subspace, and enables the design of

novel data acquisition strategies to sparsely sample (k, t)-space in two complementary da-

ta sets (one with limited k-space coverage but full spectral encoding and the other with
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extended k-space coverage but limited spectral encoding) and a low-rank model based re-

construction framework to obtain high-resolution spatiospectral distributions with good SNR

from the sparse data. Theoretical analysis and simulation studies have been performed to

analyze the properties of SPICE and evaluate its potential for achieving fast, high-resolution

spectroscopic imaging with high SNR.
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Figure 3.11: Simulation results: (a) the gold standard, (b) CSI reconstruction from 16× 16
spatial encodings, (c) EPSI reconstruction from 128× 128 spatial encodings averaged twice,
and (d) SPICE reconstruction from 8×8 CSI encodings in D1, 48 echo-shifts in D2 averaged
four times and L = 8. The left column shows the spatial distributions of a frequency
component at 345 Hz and the right column shows the spectra corresponding to the voxel
identified by the red dot for each case.
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CHAPTER 4

DATA ACQUISITION FOR HIGH-RESOLUTION
1H-MRSI USING SPICE

In this chapter, we present novel data acquisition methods that implement the SPICE hybrid

sparse sampling strategy for accelerated spatiospectral encoding for two-dimensional (2D)

and three-dimensional (3D) high-resolution 1H-MRSI of the brain using SPICE.

4.1 A Hybrid CSI/EPSI Sequence for 2D MRSI

According to the SPICE hybrid sparse sampling strategy, two complementary data sets need

to be acquired. The first one, denoted as D1, needs to have dense temporal sampling for

subspace estimation, while the second one, D2, is required to cover an extended k-space

for high-resolution spatiotemporal/spatiospectral reconstruction. The main challenge for

implementing this strategy for in vivo 1H-MRSI lies in covering an extended (k, t)-space in

a short acquisition time while still maintaining sufficient SNR. To address this challenge,

we developed a hybrid CSI/EPSI sequence for rapid 2D spatial plus spectral encoding.

The proposed sequence (Fig. 4.1) comprises a CSI component to acquire D1 and an EPSI

component to acquire D2. The CSI encoding has high SNR efficiency [15] and uses the

entire FID period for spectral encoding, and thus is an ideal option to obtain D1. The EPSI

component simultaneously encodes one spatial dimension (e.g., x) and the spectral dimension

during an FID and thus can achieve an extended k-space coverage (for D2) in a short time.

Note that the proposed EPSI encoding can have highly flexible temporal sampling design, i.e.,

it does not have to satisfy the spectral Nyquist criterion, completely bypassing the tradeoff

between the achievable spectral bandwidth (BW) and the extend of k-space coverage in the

conventional EPSI sequences due to gradient limitations [24, 51]. Additionally, this allows

46



for using lower BWs to reduce sample noise and the gradient strength.1 This unique feature

is enabled by the subspace model and the temporal basis estimated from D1.

Figure 4.1: The proposed SPICE sequence for 2D 1H-MRSI: (a) The CSI component (left)
to acquire D1 and the EPSI-like component (right) to acquire D2, with PRESS excitation;
(b) the same sequence but with spin-echo excitation. Note that for the EPSI encoding,
the echoes acquired on the positive gradients are referred to as the odd echoes while those
acquired on the negative gradients are referred to as the even echoes.

The corresponding (k, t)-space trajectories for the proposed hybrid CSI/EPSI sequence are

shown in Fig. 4.2. As can be seen, only a limited portion of the central k-space is covered

for D1 (due to SNR consideration) while D2 covers the entire k-space (for the desired spatial

resolution) but with high speed and sparse temporal sampling. Therefore, the resulting

trajectories represent a sparse sampling of the entire (k, t)-space and effectively combine the

advantages of the slow CSI (i.e., high SNR and full spectral encoding) and the fast EPSI

(i.e., speed and resolution).

1The ability to use lower gradient strengths also helps mitigate the eddy current effects and field drift
(due to less gradient duties) [58].
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Figure 4.2: The sampling trajectories in (k, t)-space for D1 and D2 corresponding to the
sequence in Fig. 4.1. As can be seen, only a limited portion of central k-space is covered in
D1 while D2 covers the entire k-space for the desired spatial resolution. Note again that a
key difference between the proposed encoding scheme and the conventional EPSI sequence
in traversing (kx, t) is that the proposed method is not constrained by the spectral Nyquist
criterion.

Since 1H-MRSI is considered in this thesis, the capability of WET water suppression

[111] and outer volume suppression (OVS) are integrated into the proposed sequence for an

initial water/fat suppression, while acquisitions without these suppression pulses can also be

performed. Furthermore, the excitation module in the proposed sequence can use either the

PRESS (Point Resolved Spectroscopy) [14] (Fig. 4.1a) or spin-echo (Fig. 4.1b) for excitation

depending on whether a certain brain-only region needs to be localized.

4.2 A Dual-Density, Dual-Speed Sequence for 3D MRSI

While the proposed hybrid CSI/EPSI sequence can be readily extended to 3D by adding

additional phase encodings along the third spatial dimension, it is too slow to provide the

desired number of spatiospectral encodings for high-resolution 3D 1H-MRSI. For example,

acquiring a D1 with 10×10×10 spatial encodings at TR=1000 ms would take more than 15

minutes of CSI. Furthermore, the EPSI component of the sequence in Fig. 4.1 requires a two-

dimensional phase encoding scheme if extended to 3D, which would increase the acquisition

time dramatically if high resolution is desired along all three spatial dimensions.

To address this problem, we propose a dual-density, dual-speed sequence to further ac-

celerate the spatiospectral encoding for 3D MRSI using SPICE. The increased sensitivity in
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3D encoding (due to larger excitation volumes) provides us with extra flexibility in making

tradeoff between SNR and acquisition time. Accordingly, the proposed sequence (shown in

Fig. 4.3) performs a hybrid of slow EPSI scans (to acquire D1) and rapid EPSI-like scans

(to acquire D2). For the slow EPSI scans (Fig. 4.3, left column), we adopt the conventional

EPSI acquisitions [24,51] (with two spatial dimensions phase encoded and the echo spacing

satisfying the spectral Nyquist), making the acquisition time for D1 equivalent to the CSI

encoding in the 2D sequence. During the rapid EPSI scans (Fig. 4.3, right column), we

simultaneously encode two spatial dimensions (e.g., x and y) to achieve the desired k-space

coverage as well as the spectral dimension during each FID. The third spatial dimension

(e.g., z) is phase encoded, and multiple echo shifts are used to obtain additional spectral

encodings.

Figure 4.3: The proposed SPICE sequence for 3D 1H-MRSI: (a) The slow EPSI scan (left)
to acquire D1 and the rapid EPSI-like scan (right) to acquire D2, with PRESS excitation;
(b) the same sequence but with spin-echo excitation. Note that the sampling bandwidth for
the rapid EPSI scans is higher than that for the slow EPSI scans due to different resolution
requirements for D2 and D1 and hence the stronger gradients used.

The resulting (k, t)-space trajectories for the proposed 3D sequence are shown in Fig. 4.4.

As can be seen, we only cover a central portion of the k-space for D1 (thus it can be done
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very quickly), and the entire (ky, kx) plane is traversed by each echo shift in D2. This special

spatiospectral encoding scheme is again enabled by the subspace model and allows us to

use the entire FID period to encode as much spatial information as possible, significantly

shortening the time for obtaining the number of spatial encodings needed for high-resolution

3D MRSI. More specifically, compared to an EPSI scan with two-dimensional phase encoding

(e.g., along ky and kz), the number of excitations needed for the proposed acquisition method

changes from Nky × Nkz to Nkz × Nes, where Nky and Nkz denote the numbers of spatial

encodings needed along ky and kz and Nes denotes the number of echo shifts. Given the low-

dimensional subspace structure estimated from D1 (fully specifying the spectral dimension),

only a limited Nes is needed for D2, i.e., Nes < Nky , which makes the reduction in data

acquisition time possible.

Figure 4.4: The sampling trajectories in (k, t)-space for D1 and D2 corresponding to the
sequence in Fig. 4.3. The kz axis is neglected here since the sampling trajectories are similar
for each kz. As illustrated in the figure, each echo train in D2 needs to be treated as “tilted”
in the ky − t plane due to the chemical shift effect, and hence the overall sampling pattern
is sparse in the entire (k, t)-space.
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4.3 Implementation for Experimental Studies

4.3.1 Sampling Consideration

As discussed in Chapter 3, given a subspace with dimensionality L, the number of spatial

encodings in D1 (i.e., N1) theoretically has at least to be greater than L (Fig. 3.7). This

is easy to satisfy since L is typically a small number with the field inhomogeneity effects

removed [49, 50]. In practice, however, a sufficiently large N1 is needed for effective field

inhomogeneity correction and nuisance signal removal. Based on our experience in simulation

and experimental studies, an N1 greater than 12× 12 for 2D and 12× 12× 12 for 3D usually

provides a good tradeoff between acquisition time and the performance of field inhomogeneity

correction and nuisance signal removal [105, 108]. For the acquisition of D2, based on the

theoretical analysis in Chapter 3 and empirical results from experimental studies, the number

of echoes (or echo shifts) for D2 typically ranges from 4L to 6L in order to provide reasonable

conditioning for the spatial coefficient fitting problem.

4.3.2 Auxiliary Data

Besides the spectroscopic data (i.e., D1 and D2), the overall imaging protocol for 2D 1H-

MRSI (on the brain) using SPICE will also include the following auxiliary data: (i) a 3D

MPRAGE image for localizing the MRSI slice and extracting anatomical information for

data processing (e.g., segmented water and fat images for nuisance signal removal [105] and

edge structures for reconstruction [37]); (ii) a ∆B0 map for field inhomogeneity modeling and

correction, which is acquired using a double gradient-echo (GRE) sequence available on the

scanner; (iii) a couple of additional anatomical images (with different T1 and T2 contrasts) for

extracting better edge information [37]. For physical phantom experiments, a conventional

GRE image is acquired as the reference image instead of the MPRAGE. Both the structural

images and ∆B0 map are coregistered to the spectroscopic data and have matched field of

view (FOV) and volume of excitation (VOX).

For 3D acquisitions, the MRSI volume is localized using the 3D MPRAGE scan (similar to

2D). A multi-slice ∆B0 map is acquired for 3D field inhomogeneity modeling and correction.
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Both the MPRAGE and the field maps are again in co-registration with the spectroscopic

data.

4.3.3 Echo Inconsistency Correction

For improved encoding efficiency, we have incorporated the capability of acquiring data

on both polarities of the gradients into the EPSI encoding components of the proposed

sequences. To make use of all the data, the inconsistency between echoes acquired on positive

and negative gradients (referred to as odd and even echoes) needs to be corrected [32]. To this

end, two navigator echo trains with reversed x-gradients (without phase encoding and water

suppression) are acquired preceding the actual EPSI encoding. The sequence component that

generates these navigators is shown in Fig. 4.5. Utilizing these data, we propose a scheme to

correct the echo inconsistency. Specifically, the k-space center misalignments (∆k) are first

estimated from each pair of positive and negative gradients (with the positive one from the

first navigator echo train and the negative one from the reversed echo train), and the averaged

∆k is then used to correct the misalignment between odd and even echoes in the actual

EPSI encodings. Afterwards, a zeroth-order phase is estimated from the aligned echoes of

the navigators and applied to the even echoes in the EPSI encodings. The advantages of

using such navigators for echo correction are: First, since no water suppression is applied,

the estimated correction parameters will have high fidelity due to the high SNR of the water

signals; second, the phase difference estimated from the time-matched gradients from the

navigators does not include chemical-shift-induced phase differences thus only reflects the

effects of the gradients. This simple but efficient correction scheme significantly reduces the

echo inconsistency in the data, as demonstrated by Fig. 4.6, which compares the magnitude

of the FID signals from the k-space center before and after correction.

4.4 Summary

Special data acquisition methods are proposed to implement the SPICE hybrid sparse sam-

pling strategy for 2D and 3D high-resolution 1H-MRSI. For 2D MRSI using SPICE, a novel
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Figure 4.5: The proposed two navigator echo trains for echo inconsistency correction. The
echo train in the left sequence diagram has reversed readout gradients compared to that on
the right, and note that no phase encoding is applied (as opposed to the EPSI encodings in
Fig. 4.1).

Figure 4.6: Comparison of the first and second echoes (corresponding to different gradient
polarities) (a,c) and the magnitude of the signal evolutions from the k-space center (b,d).
The figures on the first row (a-b) correspond to data before echo correction and those on
the second row (c-d) correspond to data after echo correction. These results are generated
from a phantom experiment.

hybrid CSI/EPSI sequence that enables rapid 2D spatial plus spectral encoding with an

extended (k, t)-space coverage is presented. For 3D MRSI using SPICE, a dual-density dual-

speed sequence that performs a hybrid of slow EPSI and rapid EPSI scans is proposed to

further accelerate the data acquisition. These proposed hybrid sampling schemes, enabled
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by the subspace model of SPICE, effectively combine the advantages of slow scans (i.e.,

high SNR and full spectral encoding) and rapid scans (i.e., high resolution) for accelerated

high-resolution MRSI through sparse sampling.
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CHAPTER 5

IMAGE RECONSTRUCTION FOR
HIGH-RESOLUTION 1H-MRSI USING SPICE

In this chapter, we present special image reconstruction methods for obtaining high-resolution

spatiospectral/spatiotemporal functions of interest from the sparsely sampled data generat-

ed by the pulse sequences described in Chapter 4, in the context of high-resolution 1H-MRSI

using SPICE. The signal model, reconstruction formulations, and efficient numerical algo-

rithms for solving the associated optimization problems will be discussed. A complete data

processing pipeline for 1H-MRSI data acquired from the brain using the SPICE sequences

will be described.

5.1 Signal Model

To reconstruct the underlying spatiotemporal function (i.e., ρ (r, t)) from D1 (expressed

as D1 = {s1,c(kn, tq)}N1,Q1,C
n,q,c=1 ) and D2 (expressed as D2 = {s2,c(k̂n, t̂q)}N2,Q2,C

n,q,c=1 , N2 > N1

and tQ1 > tQ2),
1 with c the coil index and C the number of coils used for acquisition, we

model the measured (k, t)-space data for a 1H-MRSI experiment as (by further generalizing

Eq. (2.13))

sc (k, t) =

∫
V

(ρ (r, t) + ρns (r, t))Mc (r) e
−iγ∆B(r)te−i2πkrdr+ ξ (k, t) , (5.1)

where V is the excited volume, γ the gyromagnetic ratio, Mc(r) the sensitivity profile of

the cth coil, ∆B (r) the B0 field inhomogeneity map and ξ (k, t) contains the measurement

noise. ρns (r, t) represents the undesired nuisance signal components, i.e., the water and

subcutaneous fat signals for 1H-MRSI. Assuming the contribution of the nuisance signals can

1For detailed explanation on D1 and D1, refer to Chapters 3 and 4.
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be effectively removed from the data (for detailed explanations on estimating and removing

the nuisance water and fat signals from both D1 and D2 please refer to [105]), a discretized

signal model can be obtained from Eq. (5.1) as (using the delta basis function for ρ(r, t) and

the box-car basis function for ∆B(r))

sc = Ω{FB⊙ ρc}+ ξ, (5.2)

where sc is a vector containing the data for the cth coil, Ω a (k, t)-space sampling operator,

F a Fourier transform matrix, B a phase term modeling the field inhomogeneity effects as

described in Eq. (5.1) (with Bnq = e−iγ∆B(rn)tq), ⊙ denotes entry-wise multiplication, ρc an

N2 × Q1 matrix representation of ρ (r, t)Mc (r), and ξ the noise vector. Based on the PS

model in Eq. (3.1), ρc has a low-rank representation as

ρ = CcΦ, (5.3)

where Cc ∈ CN2×L and Φ ∈ CL×Q1 are two rank-L matrices (L < min {N2, Q1}). With this

explicit low-rank model, we define the image reconstruction problem in SPICE as determin-

ing Φ from the high SNR D1 and {Cc}Cc=1 from the high-resolution D2.

5.2 Subspace Estimation

According to Eqs. (5.2) and (5.3), in the absence of field inhomogeneity, estimating Φ from

D1 is straightforward, e.g., it can be done through an SVD on the Casorati matrix formed

from the data [47,50]. In the presence of non-negligible field inhomogeneity, mostly the case

for in vivo experiments, its effects need to be removed. The challenge to this problem lies

in the limited data available in D1 [108], because the model in Eq. (5.2) is only accurate

on high-resolution grids making the problem of reconstructing a field-inhomogeneity-free ρc

ill-posed. To solve this problem, we perform the following regularized reconstruction from

a coil-combined D1, denoted by a vector s1 ∈ CN1Q1×1, to obtain a field inhomogeneity
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corrected ρ̂1
2

ρ̂1 = argmin
ρ

∥s1 − ΩT {FB⊙ ρ}∥22 + λfR(ρ), (5.4)

where ρ̂1 has a size of N̂1 × Q1 (with N̂1 > N1 to ensure accurate field inhomogeneity

modeling [108]), ΩT is a sampling operator (only sampling the central k-space as described

for D1), and F and B the same as described in Eq. (5.2). R(ρ) is a regularization term and λf

is the regularization parameter. Different choices for R(ρ) can be used, e.g., the weighted-ℓ2

regularization shown in Chapter 3 or the nuclear-norm penalty ∥ρ∥∗ which is defined as the

sum of the absolute value of the singular values of ρ [112]. The weighted-ℓ2 penalty allows

us to incorporate anatomical information into the reconstruction, while the low-rankness

encouraging nuclear-norm penalty is well motivated by the low-dimensional subspace model

for the underlying ρ. After ρ̂1 is obtained by solving the optimization problem in Eq. (5.4),

it is rearranged into a Casorati matrix to which an SVD can be applied. The first L right

singular vectors are then chosen to form the matrix Φ. The model order L is selected based

on examining the singular value decay of the Casorati matrix. Afterwards, a spline-based

interpolation is applied to the temporal basis functions (rows of Φ) to match the temporal

sampling grids of the data in D2. The interpolated basis set is denoted as Φ̂ and used for

the spatial coefficient estimation, which is to be described next.

5.3 Spatial Coefficient Estimation

Integrating the estimated Φ̂ and the low-rank model in Eq. (5.3) into the signal model in

Eq. (5.2) leads to [47,48,113]

s2,c = ΩS{FB⊙CcΦ̂}+ ξ2, (5.5)

where s2,c ∈ CN2Q2×1 denotes the vector containing data from D2 (for the cth coil), ΩS the

sparse sampling operator, and ξ2 the noise vector. Accordingly, Cc can be determined by

2See Section 5.5 for more details on coil combination and multi-coil processing.
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solving the following regularized least-squares formulation

Ĉc = argmin
Cc

∥∥∥s2,c − ΩS{FB⊙CcΦ̂}
∥∥∥2
2
+ λcΨ

(
Cc, Φ̂

)
, (5.6)

where ∥ · ∥22 measures the data consistency and Ψ(·) represents the regularization functional

with regularization parameter λc. Many choices can be made for Ψ(·) to incorporate prior

information about ρ(r, t) or ρ̃(r, f). Here we consider two alternative choices. The first one

is the weighted-ℓ2 regularization term as

Ψ
(
Cc, Φ̂

)
=
∥∥∥WDCcΦ̂

∥∥∥2
2
, (5.7)

and the other is the following total-variation based regularization term

Ψ
(
Cc, Φ̂

)
=
∥∥∥WDCcΦ̂Ψ

∥∥∥
1
, (5.8)

whereD is a finite difference operator, W contains edge weights derived from high-resolution

anatomical images [37] and Ψ denotes a temporal sparsifying transform (e.g., the Fourier

transform for MRSI [45]).3 The two regularization functionals have their own advantages.

While the ℓ2 penalty is advantageous in terms of computational efficiency and easier perfor-

mance characterization, the ℓ1 penalty (motivated by recent developments in sparse signal

recovery) has demonstrated superior performance over quadratic penalties in various ap-

plications, including both sparse sampling and denoising. It is worth noting that similar

forms of Eq. (5.8) can also be found in the context of dynamic imaging [72, 74, 81, 114] and

super-resolution MRSI [41,43].

3We define ∥A∥1 for a N1 ×N2 matrix A as ∥A∥1 =
∑N1,N2

n1,n2=1 |An1,n2 |.
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5.4 Numerical Algorithms

5.4.1 Field-Inhomogeneity Corrected Reconstruction

Solving the problem in Eq. (5.4) with ℓ2 regularization is equivalent to solving a system of

linear equations which can be done easily using the linear CG method. For the nuclear-norm

regularized reconstruction, we propose to use a variable splitting and alternating direction

method of multipliers (ADMM) based algorithm. Specifically, we rewrite the original prob-

lem into the following equivalent problem

ρ̂1, Û = argmin
ρ,U

∥s1 − ΩT {FB⊙ ρ}∥22 + λf∥U∥∗

s.t. U = ρ, (5.9)

where U is an auxiliary variable that separates the computations associated with ρ in the

least-squares and nuclear-norm terms. Accordingly, we apply the ADMM algorithm that

iteratively minimizes the following augmented Lagrangian function:

L (ρ,U,Y) = ∥s1 − ΩT {FB⊙ ρ}∥22 + λf∥U∥∗ +
µ

2
∥U− ρ∥2F + ⟨Y,U− ρ⟩ (5.10)

w.r.t. ρ and U and updates the Lagrangian multiplier Y to solve Eq. (5.9), where µ is a

preselected penalty parameter and ⟨X1,X2⟩ denotes the inner product between X1 and X2.

To minimize the function in Eq. (5.10), two subproblems are solved in each iteration, i.e.:

1. For fixed U(i), solve

ρ(i+1) = argmin
ρ

∥s1 − ΩT {FB⊙ ρ}∥22 +
µ

2
∥U(i) − ρ∥2F +

⟨
Y,U(i) − ρ

⟩
= argmin

ρ
∥s1 − ΩT {FB⊙ ρ}∥22 +

µ

2

∥∥∥∥ρ−U(i) − Y

µ

∥∥∥∥2
F

. (5.11)
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2. For fixed ρ(i+1), solve

U(i+1) = argmin
U

λf∥U∥∗ +
µ

2

∥∥U− ρ(i+1)
∥∥2
F
+
⟨
Y,U− ρ(i+1)

⟩
= argmin

U
λf∥U∥∗ +

µ

2

∥∥∥∥U− ρ(i+1) +
Y

µ

∥∥∥∥2
F

. (5.12)

Note that the original ADMM algorithm alternates between problems in Eqs. (5.11) and

(5.12) until a certain convergence criterion is met and then updates Y. The penalty param-

eter can also be updated for faster convergence. In order to further accelerate the algorithm,

we use an iterative procedure that solves Eqs. (5.11) and (5.12) once followed by updating Y

and µ in each iteration. A detailed description of the proposed algorithm is in Algorithm 1.

5.4.2 Spatial Coefficient Estimation

Integrating the regularization functional in Eq. (5.7) with Eq. (5.6) results in a regularized

linear least-squares problem that can be easily solved by a linear CG method. However, the

non-smooth convex optimization problem resulting from integrating the regularization term

in Eq. (5.8) with Eq. (5.6) is more challenging. A number of efficient algorithms have been

proposed to solve this type of problems (e.g., those in [116–119]). Based on the existing

work, we propose here a variable splitting and ADMM based algorithm [118, 120] to solve

the optimization problem associated with our spatial coefficient estimation formulation.

First of all, we reformulate the ℓ1 regularization problem as4

Ĉ, Ŝ = argmin
C,S

∥∥∥s2 − ΩS{FB⊙CΦ̂}
∥∥∥2
2
+ λc ∥S∥1

s.t. S = DwCΦ̂Ψ, (5.13)

with auxiliary variable S and Dw = WD. The corresponding augmented Lagrangian func-

4The coil index c is dropped for notational convenience when describing the detailed algorithm.
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Algorithm 1 The algorithm for solving Eq. (5.9).

1. For fixed Y(i) and U(i), update ρ by solving Eq. (5.11), which is equivalent to solving
the following system of linear equations

A{ρ}+ µ(i)

2
ρ = BH ⊙ FHΩH

T {s1}+
µ(i)

2

(
U(i) +

Y(i)

µ

)
where A{ρ} = BH ⊙ FHΩH

T {ΩT {FB⊙ ρ}}. This can be done using the linear CG
algorithm.

2. With updated ρ(i+1) and Y(i), update U by solving Eq. (5.12), which has a closed-form
solution [115] as

U(i+1) = P diag (sr) Q

where sr = sign(σr)max
{
|σr| − λf

µ(i) , 0
}

and ρ(i+1) − Y(i)

µ(i) = P diag (σr) Q with {σr}
being the singular values.

3. With fixed ρ(i+1) and U(i+1), update the Lagrange multiplier according to

Y(i+1) = Y(i) + µ(i)
(
U(i+1) − ρ(i+1)

)
and update the penalty parameter according to

µ(i+1) = αµ(i)

where α > 1 is a predetermined coefficient.

4. Repeat steps 1-3 until the convergence criterion∥∥ρ(i+1) − ρ(i)
∥∥
2

∥ρ(i)∥2
< ϵ, for ϵ > 0

is met, or until a maximum number of iterations is reached.
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tion for Eq. (5.13) can then be written as

L(C,S,Y, µ) =
∥∥∥s2 − ΩS{FB⊙CΦ̂}

∥∥∥2
2
+ λc ∥S∥1 +

µ

2

∥∥∥S−DwCΦ̂Ψ
∥∥∥2
F
+
⟨
Y,S−DwCΦ̂Ψ

⟩
, (5.14)

whereY is the Lagrangian multiplier and µ is the penalty parameter. The ADMM algorithm

then alternatively performs the following steps:

1. For fixed C(i) and Y(i), solve the subproblem

S(i+1) = argmin
S

L
(
C(i),S,Y(i), µ

)
. (5.15)

2. For fixed S(i+1) and Y(i), solve the subproblem

C(i+1) = argmin
C

L
(
C,S(i+1),Y(i), µ

)
. (5.16)

3. Update the Lagrangian multiplier as

Y(i+1) = Y(i) + µ
(
S(i+1) −DwC

(i+1)Φ̂Ψ
)
. (5.17)

The overall algorithm is summarized in Algorithm 2. This type of ADMM algorithms has

recently been shown very effective for various MR image reconstruction problems [84,119,121,

122] by achieving state-of-the-art tradeoff between computational efficiency and accuracy.

For 3D-SPICE, the increased problem size due to the additional third spatial dimension

imposes additional computational challenges. To address this problem, we further develop

a new variable splitting based algorithm to solve the resulting optimization problem with

ℓ1 regularization. Specifically, we introduce an additional auxiliary variable P and use the
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Algorithm 2 The algorithm for solving Eq. (5.13).

1. For fixed C(i),Y(i), update S by solving

S(i+1) = argmin
S
λc ∥S∥1 +

µ

2

∥∥∥S−DwC
(i)Φ̂Ψ

∥∥∥2
F
+
⟨
Y(i),S−DwC

(i)Φ̂Ψ
⟩

= argmin
S
λc ∥S∥1 +

µ

2

∥∥∥∥∥S−DwC
(i)Φ̂Ψ+

Y(i)

µ

∥∥∥∥∥
2

F

,

which can be done by an element-wise soft-thresholding operation [123].

2. For fixed S(i+1),Y(i), update C by solving

C(i+1) = argmin
C

∥∥∥s2 − ΩS{FB⊙CΦ̂}
∥∥∥2
2
+
µ

2

∥∥∥S(i+1) −DwCΦ̂Ψ
∥∥∥2
F

+
⟨
Y(i),S(i+1) −DwCΦ̂Ψ

⟩
= argmin

C

∥∥∥s2 − ΩS{FB⊙CΦ̂}
∥∥∥2
2
+
µ

2

∥∥∥∥∥DwCΦ̂Ψ−

(
S(i+1) +

Y(i)

µ

)∥∥∥∥∥
2

F

,

which is equivalent to solving the following system of linear equations

A{C}+
µ

2
B{C} =

(
BH ⊙

(
FHΩS

H{s2}
))

Φ̂
H
+
µ

2
DH

w

(
S(i+1) +

Y(i)

µ

)
ΨHΦ̂

H
,

where the linear operators A and B are defined as

A{C} =
(
BH ⊙ FHΩH

S {ΩS{FB⊙CΦ̂}}
)
Φ̂

H
and B{C} = DH

wDwCΦ̂ΨΨHΦ̂
H
.

The linear CG algorithm is used to solve this subproblem.

3. Update Y(i) as

Y(i+1) = Y(i) + µ
(
S(i+1) −DwC

(i+1)Φ̂Ψ
)
.

4. Repeat 1-4 until the relative change in C satisfies
∥∥C(i+1) −C(i)

∥∥
2
/
∥∥C(i)

∥∥
2
< 10−4 or

a maximum number of iterations is reached.
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following variable splitting reformulation:

Ĉ, P̂, Ŝ = arg min
C,P,S

∥s2 − ΩS{FP}∥22 + λc ∥S∥1

s.t. P = B⊙CΦ̂

S = DwCΦ̂Ψ. (5.18)

Note that by introducing P, we separated the Fourier encoding operator and the field in-

homogeneity operator, which significantly simplified the computations associated with both

of them. An ADMM-based algorithm is then applied to solve the problem in Eq. (5.18).

As will be shown in the detailed iterative procedure, the reformulation in Eq. (5.18) offers

additional benefits in further accelerating the reconstruction process.

Similar to the case in Eq. (5.14), the corresponding augmented Lagrangian function for

Eq. (5.18) can be written as

f(C,P,S,Y,Z) = ∥s2 − ΩS{FP}∥22 + λc ∥S∥1 +
µ1

2

∥∥∥P−B⊙CΦ̂
∥∥∥2
F
+
⟨
Y,P−B⊙CΦ̂

⟩
+
µ2

2

∥∥∥S−DwCΦ̂Ψ
∥∥∥2
F
+
⟨
Z,S−DwCΦ̂Ψ

⟩
,

where Y and Z are the Lagrangian multipliers and µ1 and µ2 are penalty parameters. The

proposed algorithm that alternatively minimizes f(·) and updates Y and Z is then described

in Algorithm 3. As shown in [117], the linear system of equations in the first step can be

solved in closed-form with only two Fourier transforms, which significantly accelerates the

reconstruction (avoiding the repeated Fourier transforms in each iteration for CG).

5.5 Data Processing Pipeline for 1H-MRSI of the Brain

For 1H-MRSI of the brain, the strong nuisance water and subcutaneous fat signals need to

be removed for the SPICE reconstruction (even with suppression pulses, the residual water

and fat signals can still be overwhelming). Accordingly, a recently proposed subspace-based

nuisance signal removal method is included in the data processing [105]. To this end, the
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Algorithm 3 The algorithm for solving Eq. (5.18).

1. For fixed C(i),S(i),Y(i),Z(i), update P by solving

P(i+1) = argmin
P

∥s2 − ΩS{FP}∥22 +
µ1

2

∥∥∥P−B⊙C(i)Φ̂
∥∥∥2
F
+
⟨
Y(i),P−B⊙C(i)Φ̂

⟩
= argmin

P
∥s2 − ΩS{FP}∥22 +

µ1

2

∥∥∥∥∥P−B⊙C(i)Φ̂+
Y(i)

µ1

∥∥∥∥∥
2

F

,

which is equivalent to solving a system of linear equations but without the field inho-
mogeneity modeling term in Algorithm 2.

2. For fixed P(i+1),S(i),Y(i),Z(i), update C by solving

C(i+1) = argmin
C

µ1

2

∥∥∥P(i+1) −B⊙CΦ̂
∥∥∥2
F
+
⟨
Y(i),P(i+1) −B⊙CΦ̂

⟩
+
µ2

2

∥∥∥S(i) −DwCΦ̂Ψ
∥∥∥2
F
+
⟨
Z(i),S(i) −DwCΦ̂Ψ

⟩
= argmin

C

∥∥∥∥∥B⊙CΦ̂−

(
P(i+1) +

Y(i)

µ1

)∥∥∥∥∥
2

F

+
µ2

µ1

∥∥∥∥∥DwCΦ̂Ψ−

(
S(i) +

Z(i)

µ2

)∥∥∥∥∥
2

F

,

which is equivalent to solving

CΦ̂Φ̂
H
+
µ2

µ1

DH
wDwCΦ̂ΨΨHΦ̂

H
= BH⊙

(
P(i+1) +

Y(i)

µ1

)
Φ̂

H
+
µ2

µ1

DH
w

(
S(i) +

Z(i)

µ2

)
ΨHΦ̂

H
,

where B and BH cancel each other and ΨΨH = I if Ψ is an orthogonal transform.

3. For fixed P(i+1),C(i+1),Y(i),Z(i), update S by solving

S(i+1) = argmin
S
λc ∥S∥1 +

µ2

2

∥∥∥S−DwC
(i+1)Φ̂Ψ

∥∥∥2
F
+
⟨
Z(i),S−DwC

(i+1)Φ̂Ψ
⟩

= argmin
S
λc ∥S∥1 +

µ2

2

∥∥∥∥∥S−DwC
(i+1)Φ̂Ψ+

Z(i)

µ2

∥∥∥∥∥
2

F

.

4. Update Y and Z as

Y(i+1) = Y(i) + µ1

(
P(i+1) −B⊙C(i+1)Φ̂

)
Z(i+1) = Z(i) + µ2

(
S(i+1) −DwC

(i+1)Φ̂Ψ
)

5. Repeat 1-4 until the same convergence criterion as in Algorithm 2 is met.
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MPRAGE image will be interpolated and registered to the grids of the spectroscopic data.

Spatial supports for water and subcutaneous fat layers are obtained from the interpolated

image through segmentation and used for water/fat removal. Since multiple coils are used

for acquisition in practical imaging experiments, the removal is applied coil by coil to both

D1 and D2. Afterwards, the nuisance signal removed D1 data are combined using an SVD-

based scheme [124] for subsequent field inhomogeneity correction and subspace estimation.

The estimated subspace (Φ̂) is then used for spatial coefficient estimation, which is also

performed in a coil-by-coil fashion followed by an SVD-based combination to form the final

spatiotemporal reconstruction. Figure 5.1 explains the entire data processing pipeline for

1H-MRSI of the brain using SPICE.

5.6 Numerical Results

In this section, some representative simulation results will be shown to illustrate the prop-

erties of the proposed reconstruction methods. To this end, we use the numerical phantom

described in Chapter 3. The plots in Fig. 5.2b show the projection errors for subspaces

estimated from field inhomogeneity corrupted and field corrected D1 with various k-space

coverages. As can be seen, the proposed regularized reconstruction methods can effectively

reduce the effects of field inhomogeneity with only a limited number of spatial encodings

(e.g., 12 × 12). Compared to the projection errors in Fig. 5.2a which were generated from

D1 corrupted only by noise (matching the SNR of the data used to generate Fig. 5.2b), the

residual projection error is dominated by noise effects. This again indicates the effectiveness

of field inhomogeneity correction. Furthermore, the difference between before and after field

inhomogeneity correction becomes more distinct if we have stronger field inhomogeneity,

as shown by Fig. 5.2c, the results in which were generated from data corrupted by twice

stronger field inhomogeneity.

Figure 5.3 compares SPICE reconstructions using different regularization terms. The

subspace was estimated from a field corrected D1 with 12 × 12 spatial encodings. For a
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Figure 5.1: The data processing and reconstruction pipeline of SPICE for 1H-MRSI data
acquired from the brain. Please refer to the text in Section 5.5 for explanation of each step.

quantitative comparison of the reconstructions, we computed the following error:

REρ =
∥ρ0 − ρ̂∥F
∥ρ0∥F

, (5.19)

where ρ0 is the gold standard and ρ̂ is the reconstruction. A CSI reconstruction correspond-

ing to an equivalent-time acquisition is also shown for comparison. As can be seen, SPICE

reconstructions achieve significant improvement over the CSI reconstruction, with the ℓ1

regularization (Eq. (5.8)) providing a further reduced error.
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Figure 5.2: Projection errors for subspaces estimated from D1 with various sizes. (a) shows
the projection errors due to random measurement noise corruption alone; (b) compares the
projection errors before and after field inhomogeneity correction with the SNR matching
the data for (a); (c) compares the projection errors before and after field inhomogeneity
correction for D1 corrupted by twice stronger field inhomogeneity. The x-axis denotes the
number of spatial encodings in D1 and the y-axis denotes the projection error.
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Figure 5.3: Comparison of the NAA maps from the gold standard, the CSI reconstruction,
the SPICE reconstructions with weighted-ℓ2 regularization (SPICE-ℓ2) and ℓ1 regularization
(SPICE-ℓ1). The CSI and SPICE reconstructions were obtained from data with the same
number of excitations. The red letters in the bottom right corners show the reconstruction
error defined in Eq. (5.19).

5.7 Summary

Special reconstruction methods for accurate subspace estimation from D1 with limited k-

space coverage and high-resolution spatial coefficient estimation from noisy D2 with limited

spectral encoding have been developed for SPICE reconstruction. With the subspace de-

termined from D1, the spatiotemporal reconstruction problem can be translated into the

estimation of a set of spatial coefficients, which have a significantly reduced number of

degrees-of-freedom compared to the high-dimensional spatiotemporal function of interest

(rendering high SNR reconstruction from the very noisy and sparse data possible). This

problem is then formulated into a regularized linear least-squares estimation (optimal in
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the sense of penalized maximum likelihood) that incorporates an explicit low-rank model

with the capability to incorporate field inhomogeneity correction and edge-preserving regu-

larization. Efficient numerical algorithms have been developed to address the computational

challenges associated with the proposed reconstruction methods. Finally, a complete SPICE

processing pipeline for brain 1H-MRSI data is constructed.
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CHAPTER 6

EXPERIMENTAL RESULTS

Phantom and in vivo experiments have been conducted to evaluate the performance of the

proposed methods for 2D and 3D high-resolution 1H-MRSI using SPICE. All the phantom

and in vivo experiments are performed on a 3T Siemens Trio scanner (Siemens Healthcare

USA) equipped with a 12-channel receiver headcoil.

6.1 Phantom Experiments

Two physical phantoms were constructed for experimental studies. Both phantoms are

cylindrical jars (made with polymethylpentene) containing NaCl-doped water and vials of

different sizes. The first one has five vials (Fig. 6.1a), which are filled with metabolite solu-

tions with various concentrations. Specifically, vial 1 contains 20 mmol/L NAA, 15 mmol/L

Cr and 10 mmol/L Cho (choline-chloride); vial 2 contains 20 mmol/L NAA, 10 mmol/L Cr

and 5 mmol/L Cho; vial 3 contains NAA, Cr, Cho and mI all at 10 mmol/L; vial 4 contains

15 mmol/L NAA, 8 mmol/L Cr and 5 mmol/L Cho; and vial 5 contains the same solution as

vial 3. The second phantom has three rows of vials with different diameters (for the purpose

of demonstrating the resolution capability of SPICE, Fig. 6.2a). Again, the vials contain

solutions of NAA, Cr, Cho, and mI with physiologically relevant concentrations [14]. As

illustrated in Fig. 6.2a, the top row (vials with the smallest diameter) contains 15 mmol/L

NAA, 10 mmol/L Cr, 5 mmol/L Cho and 10 mmol/L mI. The middle row contains 10 m-

mol/L NAA, 10 mmol/L Cr, 5 mmol/L Cho and 10 mmol/L mI. The bottom row (vials

with the largest diameter) contains 20 mmol/L NAA, 15 mmol/L Cr, 5 mmol/L Cho and

10 mmol/L mI.
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Figure 6.1: Experimental results from the first metabolite phantom shown in (a) with spec-
troscopic imaging data acquired in the presence of B0 inhomogeneity shown in (b): (c) CSI
reconstruction from 60 × 60 spatial encodings, (d) CSI reconstruction from 19 × 19 spatial
encodings, (e) EPSI reconstruction from 100× 100 spatial encodings with two averages, and
(f) SPICE reconstruction with 12 × 12 CSI encodings in D1, 45 echo shifts in D2 with five
averages, and L = 10. The left column shows the spatial distributions of NAA and the right
column shows the spectra from the voxel identified by the red dot in (a). The results in
(d)-(f) correspond to a factor of 10 reduction in data acquisition time (6 min) compared to
the high-resolution CSI acquisition in (c).
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6.1.1 2D SPICE

One data set was acquired from the first phantom to evaluate the performance of SPICE in

a retrospective undersampling setting with comparison to two alternative accelerated MR-

SI methods (i.e., a low-resolution CSI scan and a conventional EPSI scan). Accordingly,

a water-suppressed high-resolution CSI data set was acquired with the following imaging

parameters: TR/TE = 1000/30 ms, FOV = 250× 250 mm2, slice thickness = 10 mm, VOX

= 160×160×10 mm3, matrix size = 60×60, number of samples for FID = 512, and spectral

BW = 2000 Hz. The duration of this acquisition was one hour. In addition, a spatiospec-

trally fully sampled water-suppressed EPSI data set was acquired using a customized EPSI

sequence with the same parameters except: matrix size = 100 × 100, number of echoes =

256, readout BW = 167 kHz and echo spacing = 830 us (the time interval between k-space

centers of two echoes acquired at different gradient polarities). Two temporal interleaves and

five signal averages were used resulting in an acquisition time of 16.7 minutes. For both the

CSI and EPSI data, the water suppression BW was 80 Hz [111]. The HSVD algorithm [125]

was then used to further remove any residual water signal from both data sets.1 A GRE

reference image (Fig. 6.1a) for extracting edge information (i.e., defining W) and a ∆B0

map were acquired with matched slice location, FOV and slice thickness. In addition, to

ensure a reasonable initial ∆B0 distribution, manual shimming was performed before data

acquisition, using up to second-order shimming gradients available on the scanner (which

was done for all our MRSI experiments).

A field inhomogeneity corrected reconstruction was first obtained from the 60 × 60 CSI

data using the conjugate phase (CP) method [107] to create a reference for comparing three

acceleration methods: (i) SPICE, (ii) low-resolution CSI, and (iii) EPSI, with the same data

acquisition time (6 minutes). The corresponding SPICE data set contained D1 with 12× 12

spatial encodings and D2 with 45 echo shifts each having 100×100 spatial encodings averaged

five times. The D2 here was retrospectively sampled from the full EPSI data following the

trajectories shown in Fig. 3.1 and only the data acquired on the positive gradients were

used (bypassing the echo inconsistency correction step). With the same acquisition time (6

1HSVD can be used directly in this case because both data sets are spatiospectrally fully sampled.
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minutes), the low-resolution CSI scan generated 19 × 19 spatial encodings while the high-

resolution EPSI scan generated 100 × 100 spatial encodings averaged twice. The SPICE

reconstruction was performed using the water-removed data following the procedures shown

in Fig. 5.1, with L = 10 and λf and λc chosen using the discrepancy principle [126]. Field

corrected CP reconstructions were obtained from the equivalent-time CSI and EPSI scans

for comparison.

Figure 6.1 shows a set of results from the above described data. The spatial distributions

of NAA were obtained by the following spectral integration method:

I(NAA)
n =

√∑
q∈ωNAA

|ρ̂(rn, fq)|2

|ωNAA|
, (6.1)

where I
(NAA)
n denotes the NAA intensity at the nth voxel, ρ̂(r, f) the reconstructed spa-

tiospectral function and ωNAA the index set for the NAA frequency range with |ωNAA| being

its cardinality. As can be seen, the low-resolution CSI reconstruction has high SNR but

suffers from serious blurring and ringing artifacts (due to the truncation in k-space) in the

NAA map. The EPSI reconstruction has high spatial resolution but very low SNR due to

the small voxel size and the high readout BW, as expected. Meanwhile, SPICE achieves

both high spatial resolution (significantly better than the CSI reconstruction) and high SNR

(significantly better than the EPSI reconstruction) with the same acquisition time. Note

also that the SPICE reconstruction has SNR comparable to that of the high-resolution CSI

reconstruction (see the spectra in the right column of Fig. 6.1), but with a factor of 10

acceleration in data acquisition.

Another data set was acquired from the second metabolite phantom using the proposed

2D SPICE sequence (Fig. 4.1) to evaluate the performance of SPICE in an actual prospective

sparse sampling setting. The SPICE data includes 12×12 CSI encodings in D1, each having

512 temporal samples, and 80 × 80 spatial encodings in D2, each having 128 echoes. Six

averages were acquired for D2 (with a factor of 9/10 partial Fourier sampling), making the

total acquisition time about 10 minutes. An equivalent-time CSI acquisition with 24 × 24

spatial encodings was performed. The other relevant imaging parameters were (for both CSI
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and SPICE): FOV = 220 × 220 mm2, VOX = 160 × 160 × 10 mm3, TR/TE=1000/30 ms,

water suppression BW=80 Hz, and delta frequency (for PRESS excitation)=-2.4 ppm (water

at 0 ppm). The sampling BWs for the CSI and EPSI acquisitions were 2 kHz and 100 kHz,

respectively. The echo spacing for D2 was 1030 µs.

Some representative results from this phantom experiment are shown in Fig. 6.2 to Fig. 6.5.

For SPICE reconstruction, the field corrected reconstruction (Eq. (5.4)) forD1 was performed

on 64× 64 grids. A subspace with a model order of L = 6 was then estimated from the field

corrected D1 and used for the spatial coefficient estimation. λf and λc were selected such

that the residual from the data consistency term was slightly lower than a pre-estimated

total noise variance [126]. The reconstruction from the 24× 24 CSI data was obtained by a

field inhomogeneity corrected CP reconstruction on 80× 80 grids. All reconstructions were

zero-filled to 100× 100 for comparison.

Figure 6.2: Experimental results from the second metabolite phantom. The GRE image in
(a) shows the structural arrangement of this phantom. The images in (b) compare the spatial
maps (obtained by peak integral) of NAA, Cr, Cho and mI for CSI (top row) reconstruction
and SPICE (bottom row) reconstruction (L = 6). The CSI and SPICE have the same data
acquisition time. The NAA maps were normalized such that the maximum intensity is 1
(for both CSI and SPICE), while the other metabolite maps were normalized to the NAA
maps.

Figure 6.2 compares the spatial distributions of NAA, Cr, Cho and mI from the 10 min

CSI and SPICE. The spatial distributions were obtained by integrating around the strongest

75



peaks for each metabolite using Eq. (6.1). As expected, the CSI reconstruction has high

SNR but very low resolution. With the same data acquisition time, SPICE achieves high

spatial resolution while maintaining very high SNR. In particular, the vials at the first

and second rows (with the smallest and medium diameters) are severely blurred in the

CSI reconstruction while even the smallest vials can be clearly distinguished in the SPICE

reconstruction (e.g., the center two which are merged together in the CSI reconstruction),

which demonstrates the better detection of smaller features offered by SPICE. This resolution

capability of SPICE is further demonstrated by the line plots shown in Fig. 6.3. Figure 6.4

compares the spectra from the CSI and SPICE reconstructions. As can be seen, the SPICE

reconstruction maintains very high spectral quality (e.g., nice lineshapes and peak ratios).

Furthermore, the comparison of NAA peak SNR for CSI and SPICE shown in Fig. 6.5

quantitatively demonstrates the capability of SPICE in achieving high spectral SNR, which

is also important for subsequent metabolite quantification.

Figure 6.3: Illustration of the resolution capability of SPICE: (a) The NAA maps for CSI
and SPICE as shown in Fig. 6.2; (b) 1D plots corresponding to the blue lines in (a). As can
be seen, the two small vials in the center completely merge together in the lower resolution
CSI while being clearly resolved by SPICE with the same data acquisition time.
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Figure 6.4: Comparison of spectra from CSI and SPICE with equivalent data acquisition
time: (a) The NAA maps for CSI and SPICE as shown in Fig. 6.2; (b) representative spectra
from the voxels identified by the blue dots in (a).

Figure 6.5: The NAA peak SNR maps for CSI (left) and SPICE (right) reconstructions.
The SNR was only computed for the voxels within the supports of the vials obtained from
the GRE image (since only the vials contain metabolite solution). As can be seen, SPICE
achieves a similar level of SNR to the low-resolution CSI but with a more homogeneous
SNR distribution within the vials, which is a result from the combination of higher spatial
resolution (less partial volume effect) and spatial regularization.
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6.1.2 3D SPICE

Several sets of 3D data were collected from the second phantom using the 3D SPICE sequence

(Fig. 4.3). D1 (acquired by the slow EPSI scans) contained 12×12×12 (kx−ky−kz) spatial

encodings each with 512 echoes. The spectral BW was about 1700 Hz. D2 (acquired by the

rapid EPSI scans) contained 48 echo shifts (uniformly spaced by 1.57 ms) each with 72×72×

20 spatial encodings. Other related imaging parameters were: FOV=220 × 220 × 72 mm3,

VOX=160 × 160 × 56 mm3, TR/TE=1000/30ms, and water suppression BW=80 Hz. The

sampling BWs for the slow and rapid EPSI scans were 60 and 100 kHz, respectively. The

total acquisition time was about 19 minutes. As described in Chapter 4, a multi-slice high-

resolution GRE scan (36 slices) was performed. The field map scan had a matrix size of

110×110×36 (isotropic 2 mm resolution) and TR/TE1/TE2=700/9.8/12.3 ms. Both scans

were coregistered to the spectroscopic data.

Figure 6.6: Phantom results obtained by 3D SPICE: (a) the center 12 slices from the GRE
image of the phantom; (b) the NAA maps for the corresponding slices.

A set of representative results from the above described data is shown in Fig. 6.6. The

field corrected reconstruction for D1 was done on 64 × 64 × 24 grids. The high-resolution

field maps were resampled to the reconstruction grid size for the field correction. A temporal

subspace with L = 8 was estimated from the field corrected D1 and used for spatial coefficient

estimation. The reconstructions were zero-filled to a matrix size of 100 × 100 × 24 for

visualization. As shown by the NAA spatial distributions in Fig. 6.6b, SPICE achieved very

high spatial resolution with very high SNR, clearly resolving the smallest vials and cross-slice
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variations in the 3D NAA distribution.

Figure 6.7: Reproducibility results (phantom) for SPICE: (a)-(c) show the mean intensities
of NAA from three regions of interest (ROIs) for the four repeated scans; (d) plots the
NAA intensities for scan 1 versus those for scan 4; and (e) plots the noise samples from the
background for scan 1 versus those for scan 4. The solid lines in (a)-(c) stand for the mean
of the four scans and the dash lines represent the standard deviation (std).

Figure 6.7 shows a set of results demonstrating the reproducibility of SPICE. In this

experiment, four 3D SPICE data sets were acquired with the same imaging parameters.

The GRE image was acquired only once while the field mapping scan was repeated for

each 3D acquisition (to account for the B0 field changes during this long scan). SPICE

reconstructions were generated from each data with the same reconstruction parameters.

As shown by the mean intensities of NAA in three regions of interest (selected from one

vial in each row) and the plot of NAA intensities obtained from scan 1 versus those from

scan 4 (in Fig. 6.7), SPICE achieves very high repeatability (less than 10% variance) even

at this high spatial resolution. In particular, the NAA maps from different scans are highly

correlated (e.g., the correlation coefficient is 0.92 for scans 1 and 4, Fig. 6.7d) while the noise

samples from the background region show negligible correlation (Fig. 6.7e), which means the

strong correlation in the estimated metabolite distributions does not come from a strong bias
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introduced by the model or the regularized reconstruction.

6.2 In Vivo Experiments

In vivo brain 1H-MRSI data were acquired from healthy volunteers with the approval from

the Institutional Review Board at the University of Illinois and written consent from the

participants. Several different data sets were obtained for a more comprehensive assessment

of the performance of the proposed methods for 2D and 3D in vivo MRSI.

6.2.1 2D SPICE

An in vivo 2D SPICE data set that contains D1 with 12 × 12 CSI encodings each having

512 temporal samples and D2 with 80 × 80 spatial encodings each having 120 echoes was

acquired. Eight signal averages were used for D2. The total data acquisition time was

about 20 minutes. The rest of the imaging parameters were: FOV = 220× 220 mm2, VOX

= 145 × 150 × 10 mm3, TR/TE=1600/30 ms and water suppression BW=80 Hz. Eight

OVS slabs with 30 mm thickness were included for lipid suppression. The sampling BWs

for the CSI and EPSI components were 2 kHz and 100 kHz, respectively. The auxiliary

data, including an MPRAGE scan and a ∆B0 mapping scan were obtained as described in

Section 4.3. In addition, an equivalent-time (20 min) CSI acquisition with 27 × 27 spatial

encodings was also performed for comparison.

Figure 6.8 compares the spatial distributions of NAA, Cr, Cho and Glx (glutamine+glutamate)

from the 20 min CSI and SPICE described above along with representative spectra from one

voxel. The CSI reconstruction and the field inhomogeneity correction for D1 in SPICE were

performed on 64× 64 grids. A temporal subspace with dimensionality L = 8 was then esti-

mated from the corrected D1 and used for spatial coefficient estimation. All reconstructions

were zero-filled to a 128× 128 matrix size for visualization purpose. As can be seen, SPICE

yields SNR similar to CSI, but resolution significantly higher (e.g., better defined ventricle

structure) than CSI, which suffers from severe k-space truncation artifacts. In addition, the

spectrum from the SPICE reconstruction seems to provide better lineshapes than that from
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Figure 6.8: Brain 1H-MRSI results from the 27×27 CSI (a) and the 80×80 SPICE (b) with
equivalent data acquisition times. In particular, the spatial distributions of NAA (first col-
umn), Cr (second column), Cho (third column), Glx (fourth column, glutamine+glutamate)
and mI (fifth column) are shown, as well as representative spectra from CSI (d) and SPICE
(e) corresponding to the voxel identified by the red dot in the T1-weighted image in (c). The
spatial maps were normalized for each metabolite individually.

CSI, which we suspect is due to less partial volume and voxel interference that result from

higher spatial resolution. Figure 6.9 shows an array of spectra from different voxels in the

CSI and SPICE reconstructions. It can be clearly observed that SPICE produced spectra

with very high quality while revealing more spatial heterogeneity.

Figure 6.10 compares metabolite maps from a data set acquired at a different slice location
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Figure 6.9: Comparison of spectra from different voxels for the CSI and SPICE results
shown in Fig. 6.8. The spectra from CSI are shown in blue while the spectra from SPICE
are shown in red. The corresponding locations of the voxels are indicated by the red dots in
the T1-weighted image in (a).
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from the same subject. The corresponding acquisition parameters were the same as the first

data set. As can be seen, SPICE again achieves high spatial resolution as well as very

good SNR. Particularly, note that the longitudinal fissure (supposed to have negligible brain

metabolite contents) is clearly visible in the SPICE reconstruction while not so in the CSI

reconstruction due to lower resolution. Figure 6.11 compares the spectra from a given spatial

location in the CSI and SPICE reconstructions shown in Fig. 6.10. Similar spectrum quality

is observed.

Figure 6.10: Brain 1H-MRSI results from a different axial slice. The spatial distributions of
NAA, Cr, Cho, Glx and mI are shown for the 27× 27 CSI (row b) and 80× 80 SPICE (row
c, with equivalent data acquisition time). The T1-weighted image for the corresponding slice
is shown in (a). The spatial maps were normalized for each metabolite.

To further evaluate the capability of SPICE for 2D high-resolution 1H-MRSI of the brain,

eight different data sets were acquired. These data contained different numbers of spa-

tiospectral encodings in both D1 and D2 acquired in different imaging times, i.e., 5 minutes,

10 minutes and 15 minutes, with the same FOV and VOX. A detailed description of the

imaging parameters for these data is shown in Table 6.1.

Figure 6.12 shows the NAA maps from the SPICE acquisitions described in Table 6.1, with

different rows referring to different imaging times and different columns referring to different

resolutions. As can be seen, SPICE can produce high quality metabolite distributions with

a 64 × 64 matrix size (∼3.4 mm in-plane resolution) in 5 minutes, an 80 × 80 matrix size

(∼2.75 mm in-plane resolution) in 10 minutes, and a 100 × 100 matrix size (∼2.2 mm in-

plane resolution) in 15 minutes. The gradual degradation in the image quality for the NAA
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Figure 6.11: Comparison of representative voxel spectra from the CSI (b) and SPICE (c)
results shown in Fig. 6.10. The corresponding location for the voxel is indicated by the red
dot in the T1-weighted image in (a).

maps resulting from pushing to higher resolution in a shorter acquisition time (as shown in

the upper right triangle of the 3-by-3 matrix in Fig. 6.12) indicates that there is still con-

siderable room for improvement (e.g., using shorter echo acquisitions, better reconstruction

algorithms, and/or more accurate quantification methods etc.).

Figure 6.13 compares the results from equivalent time 10 min CSI, 10 min EPSI and

10 min 80 × 80 SPICE (with the same imaging parameters as the 10 min 80 × 80 SPICE

acquisition described in Table 6.1 but acquired in a different session). The 10 min CSI

acquisition generated 22 × 22 spatial encodings (resulting in an approximately 1 cc voxel

size) and the 10 min EPSI acquisition generated 80×80 spatial encodings with three averages

and one additional temporal interleave (to satisfy spectral Nyquist). Both the CSI and EPSI

reconstructions were obtained by the CP field correction method. As can be seen from the

NAA maps and representative voxel spectra, SPICE achieves significantly higher resolution

than CSI and significantly better SNR than EPSI (buried under noise) with the same data

acquisition time, demonstrating again the unique combination of speed, resolution and SNR

it offers. The high SNR of SPICE is further quantitatively supported by the NAA peak SNR
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Figure 6.12: NAA maps from the 5 min (first row), 10 min (second row) and 15 min (third
row) SPICE acquisitions with different matrix sizes for D2: 64 × 64 (first column); 80 ×
80 (second column); and (c) 100 × 100 (third column). The SPICE reconstructions were
obtained using L = 8 and regularization parameters selected for each acquisition such that
the residuals from the data consistency term were closed to but slightly lower than the
estimated total noise variances.
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Table 6.1: Detailed acquisition parameters for eight 2D in vivo data sets for demonstrating
the resolution and SNR capability of SPICE for high-resolution 1H-MRSI of the brain.

64× 64 80× 80 100× 100

5 min
12× 12 D1

64× 64 D2 2 averages
TR/TE = 1300/30 ms

12× 12 D1

80× 80 D2 1 average
TR/TE = 1400/30 ms

12× 12 D1

100× 100 D2 1 average
TR/TE = 1300/30 ms

10 min
14× 14 D1

64× 64 D2 4 averages
TR/TE = 1300/30 ms

14× 14 D1

80× 80 D2 3 averages
TR/TE = 1400/30 ms

14× 14 D1

100× 100 D2 3 averages
TR/TE = 1200/30 ms

15 min
14× 14 D1

80× 80 D2 6 averages
TR/TE = 1300/30 ms

14× 14 D1

100× 100 D2 5 averages
TR/TE = 1300/30 ms

maps shown in Fig. 6.14.

6.2.2 3D SPICE

For 3D 1H-MRSI experiments on the brain, a data set containing 12×12×12 spatial encodings

in D1, each having 256 echoes, and 50 echo shifts (uniformly spaced at 1.49 ms) in D2, each

having 80× 80× 20 spatial encodings, was acquired. The other relevant imaging parameters

were: FOV=240×240×72 mm3, VOX=130×170×56 mm3, TR/TE=1400/30ms, and water

suppression BW=80 Hz. The sampling BWs for the slow and rapid EPSI scans were 60 and

125 kHz, respectively. The total acquisition time was about 26.7 minutes. The setup for this

experiment is illustrated in Fig. 6.15a. As described in Chapter 4, a coregistered multi-slice

∆B0 map was acquired (matched FOV, matrix size = 120 × 120 × 36, i.e., 2 mm isotropic

resolution). An MPRAGE image was acquired (FOV = 240× 240× 192mm3, matrix size =

256×256×192) and interpolated to the field map grids for obtaining structural information

needed for processing and reconstruction. The field corrected reconstruction for D1 was

done on 64 × 64 × 36 grids using field maps resampled to the reconstruction grid size. A

temporal subspace with L = 12 was estimated from the field corrected D1 and used for

spatial coefficient estimation.
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Figure 6.13: Brain 1H-MRSI results from three alternative equivalent-time scans: (a) a
low-resolution CSI acquisition with 22× 22 spatial encodings; (b) an EPSI acquisition with
80× 80 spatial encodings; and (c) a SPICE acquisition with 14× 14 spatial encodings in D1

and 80 × 80 spatial encodings in D2. The images on the left column are NAA maps from
the three acquisitions and the images on the right column are representative spectra from
the voxels indicated by the blue dots in the corresponding NAA maps.
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Figure 6.14: The NAA peak SNR maps for CSI (left) and SPICE (right) reconstructions from
the 10 min acquisitions. The SNR was only computed for the voxels within the brain region
obtained from the structural image. As can be seen, SPICE achieves a very high spectral
SNR (even slightly better than the lower resolution CSI), enabled by the low-dimensional
subspace structure determined from a high SNR D1.

Figure 6.15 displays a set of representative results from the 3D SPICE acquisition. The

spatial distributions of NAA across different slices and a representative spectrum are shown.

As can be seen, the SPICE reconstructions show excellent resolution and SNR, demonstrating

clearly resolved cross-slice differences in metabolite distributions. To our knowledge, these

are the highest resolution 1H metabolite maps ever obtained from the brain on a 3T scanner.

6.3 Summary

Phantom and in vivo studies have been performed to evaluate the performance of the pro-

posed methods for 2D and 3D high-resolution 1H-MRSI using SPICE. Results from these

experiments demonstrate the capability of the proposed methods in achieving unprecedented

combinations of spatial resolution, SNR and imaging speed for 1H-MRSI of the brain.
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Figure 6.15: Results from a 3D SPICE acquisition with the experimental setup illustrat-
ed in (a). Spatial maps of NAA for six different slices are shown in (b). The spectrum
corresponding to the voxel at the red dot is shown in (c).

89



CHAPTER 7

CONCLUSION AND FUTURE WORK

A novel subspace imaging approach, named SPICE, has been proposed to enable accelerated

high-resolution MRSI with high SNR. SPICE is characterized by using a low-dimensional

subspace model of the high-dimensional spatiospectral function of interest (derived from the

partially separable function theory) to devise both special hybrid sparse sampling strategies

to cover an extended (k, t)-space (through the acquisition of two data sets D1 and D2) and

special low-rank model based reconstruction strategies for image reconstruction from sparse

data. Special data acquisition and image reconstruction methods have been developed to

implement the SPICE framework to achieve high-resolution 1H-MRSI of the brain. For

data acquisition, a hybrid CSI/EPSI sequence is proposed for fast 2D high-resolution 1H-

MRSI using SPICE and a dual-density, dual-speed EPSI-like sequence is proposed to further

accelerate the spatiospectral encoding for high-resolution 3D 1H-MRSI using SPICE. For

image reconstruction, an explicit low-rank representation derived from the subspace model is

introduced. This representation allows us to define the reconstruction problem as separately

determining the subspace structure and the corresponding spatial coefficients (to construct

the spatiotemporal/spatiospectral distribution), which can then be formulated as regularized

least-squares estimation problems that can be solved by efficient numerical algorithms.

Theoretical analysis and numerical simulations have been performed to evaluate the prop-

erties of the SPICE framework and to optimize the data acquisition design. Phantom and

in vivo brain 1H-MRSI data were acquired to evaluate and validate the performance of

the proposed methods in practical experiments. In particular, for 2D in vivo experiments,

SPICE is able to produce high-SNR 1H metabolite maps from the human brain with an

approximately 2 mm nominal in-plane resolution in 15 minutes. For 3D in vivo experiments,

SPICE is able to produce metabolite maps with an approximately 3 mm in-plane and 4 mm
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through-plane resolution in about 26 minutes. To the best of our knowledge, these are the

highest resolution 1H metabolite maps ever obtained from human brain on a 3T system. We

expect SPICE to provide a powerful tool for in vivo metabolic studies with many exciting

applications.

The SPICE framework also offers new opportunities for future technical developments

including optimizations in signal generation, signal encoding, data processing and image

reconstruction to advance the research and clinical applications of high-resolution in vi-

vo MRSI. For example, incorporating recent developments in advanced pulse design, e.g.,

LASER/semi-LASER type of techniques, into the subspace-based data acquisition schemes

can improve spatial localization and detection of J-coupled metabolites [14, 31, 127]. Using

FID excitation (instead of spin-echo excitation) can help achieve shorter echo times and

repetition times, providing better SNR and additional flexibility for making the trade-off

between SNR and acquisition time [15,128] for high-resolution acquisitions. Moreover, with

progress in advanced nuisance signal removal methods, it is possible to perform 1H-MRSI

experiments without water and lipid suppression pulses, which not only allows us to further

reduce repetition time but also provides water reference data that are useful for inhomo-

geneity correction and metabolite quantification.

There is also tremendous opportunity in future research for the optimization of (k, t)-

space trajectories, especially for 3D high-resolution MRSI using SPICE. For instance, we

can further accelerate the acquisition of D2 by integrating compressed sensing-based sparse

sampling and parallel imaging, making it more adaptive to time constraints in various prac-

tical applications. It is also possible to integrate non-Cartesian sampling trajectories (as

those in [27, 31, 129]) into the SPICE acquisition framework to offer better spatiospectral

encoding efficiency. Furthermore, we can optimize the key acquisition parameters for both

D1 and D2 (e.g., sampled k-space locations and the intervals between echo shifts), through

both theoretical analysis [130] and simulation studies. Building on these optimizations, one

can also improve the reconstruction by exploiting stronger spatiospectral prior information.

In addition, more effective ways to combine data from both D1 and D2 for improved spatial

coefficient estimation are worth investigating.

While this thesis focuses on 1H-MRSI, the developed techniques can also be used for high-
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resolution spectroscopic imaging of other nuclei, such as phosphorus-31 (31P), carbon-13

(13C) or fluorine-19 (19F). Tailoring the current methods for these modalities would require

special hardware (e.g., double-tuned coils) and optimization of data acquisition schemes (e.g.,

taking into account the very short T2 of 31-P metabolites). Success in these developments

will potentially be useful for a wide range of applications, such as studying brain and cardiac

energetics [131, 132], understanding in vivo carbohydrate metabolism [133], and identifying

biomarkers for various metabolic diseases [14,134].

Another exciting direction for future research is extending the current SPICE framework to

spatially-resolved multi-dimensional spectroscopy (e.g., J-resolved MRSI) or dynamic high-

resolution MRSI. To this end, more sophisticated hybrid sparse sampling strategies need

to be developed for acquiring data with complementary properties for subspace estimation

and image reconstruction. More advanced mathematical tools, such as low-rank tensor

models and related algorithms, are needed to solve the resulting reconstruction problems

[78, 135]. Addressing these problems may open up many more opportunities for developing

new technologies and applications of in vivo MRSI.
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