TUTORIAL ON DESIGNING AND SIMULATING A
TRUNCATION SPURS-FREE DIRECT DIGITAL
SYNTHESIZER (DDS) ON A FIELD-PROGRAMMABLE
GATE ARRAY (FPGA)

BY

SHUO LI

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Adviser:

Professor José E. Schutt-Ainé

Abstract

Direct digital synthesis is a technique for using digital data processing blocks as a means to
generate a frequency and phase tunable output signal referenced to a fixed-frequency precision
clock source. Many telecommunication applications require such a high-speed switching, fine-
tuning and superior quality signal source for their components. This thesis will introduce the
direct digital synthesizer (DDS) and investigate the signal integrity issues associated with the
DDS design.

In order to minimize the size of the lookup table to save hardware and lower the power
consumption, we normally truncate the phase word output from the phase accumulator in the
standard approach of designing DDS. However, this process will generate spurious frequencies
(spurs), which degrade the quality of the output signals. It is considered one of the main signal
integrity issues in the DDS design.

Previous research introduces a novel spurs-free truncation method for compressing the lookup
table to avoid using phase truncation without significant hardware change. This thesis aims to
implement this DDS with novel truncation spurs-free structure and test it in a practical
environment. It does so by providing a tutorial on designing, implementing and simulating the
DDS on an Altera DE2-115 FPGA using Altera Quartus II FPGA design software and ModelSim
Simulator. The Verilog hardware description language is used as the development language.

This thesis will describe entire designs of both DDS with traditional structure and DDS with
novel truncation spurs-free structure. By comparing the outputs, it also examines the
corresponding simulation results and verifies the improvement of the signal quality.

To my family, professors and friends for their love and support.

Acknowledgments

First of all, I would like to give my sincere gratitude to my graduate thesis advisor, Professor
José E. Schutt-Ainé, for all his kind help, support, encouragement and guidance on my graduate
study. He is a very kind and knowledgeable professor who is always willing to help the students
when they are in need. I feel blessed that I have had the opportunity to learn from and work with
my brilliant advisor and his research group in the past year.

Second, I would like to thank all my colleagues in Professor José E. Schutt-Ainé’s research
group. They are not only excellent researchers, but also great friends who are always very
generous and helpful. The happy hours spent with them are really enjoyable. I would like to give
my special thanks to my good friends in graduate school: Mujing Wang, Tao Yang, Xinying
Wang, Jin Lei, Xu Chen, Xiao Ma, Albert Zaichen Chen, Mao Li, Linyang Zhang, Xinyang Song
and Liang Zhang for all the inspirational talks and sweet memories we have together.

Thanks to Mr. Karan Bhagat and Mr. Yuanwang Yang who started this project and provided a
detailed tutorial for me to carry on. Thanks to all the ECE staff, especially for Ms. Jen Carlson
and Ms. Laurie Fisher who offered me great help during my graduate study at the University of
Illinois at Urbana-Champaign.

Last but not least, I would like to give my sincere thanks to my parents, grandparents, girlfriend
and sister for their continuous support, trust, understanding and love.

Contents

Chapter 1. INTRODUCTIONcooiiiiiiiitiiteeeet ettt et ere e s e 1
|0 LY (014 A 1 1o s TP T USSP 1
1.2 OULIINE .ttt et et s e et e st e et e s et et e e see e e n e e s et e n e sne e e n e s e e e nane 2

Chapter 2. THEORETICAL ANALYSIS OF DDS ...t 3
2.1 Theoretical Analysis of DDS with Traditional Structureccocoervvieieeiiiinieniie e 3
2.2 Types of Spurs in DS ..o e s 9
2.3 Theoretical Analysis of DDS with a Novel Truncation Spurs-Free Structurecccocevcevreiennenns 10

Chapter 3. INTRODUCTION TO VERILOGccccciiiiiiiiiiiiiiereenee ettt 13
31 RESOUTICES ..ttt bbb bbb e s ab e aa e e 14
3.2 Verilog Design EXAMPIESc.c.ooviiiiiiiiiiiiicieeeeee ettt 14

Chapter 4. FPGA DESIGN FLOWcoiiiiiiiiee ettt ettt s s 22
4.1 Introduction t0 FPGAoooiiiii ettt s e 22
4.2 DESIZN FIOW ...eiiiiiiiiiie ettt ettt e 23

Chapter 5. FPGA DESIGN TUTORIAL IN QUARTUS IL....ccccioiiiiiiiieieieeereeeeeee e 26
5.1 PIOJECE SETUP -eeenviiiiieiiee ettt ettt ettt et e st e s e e r e s e e e e s ma e e r e s e e s ne e e ea 28
5.2 HDL COQING +eenteiiiriiiiiiiieiie ettt st st e b sene e ne e saneeneenneeeneennes 31
5.3 COMPIALION 1.ttt ettt et e st st e r e e s e s e neesmeeeneesseesneesnneeas 44
5.4 FPGA Configuration and Programmingcc.cccevveeriiiniiiiiieneeiieeieesee e 46
5.5 Design Resources and StatiSTICS cuiereirrierierieeiie st esiee sttt e e e 52
5.6 Instructions on Writing Testbenchi..........cociiiiiiiiiiiiiii e 55
5.7 Behavioral/Gate Level Simulation in Altera-ModelSim.........c.ccoocvveviiiiiiiiiniiiecee e 56

Chapter 6. DDS MEASUREMENTSoiiiiiiiet ettt ettt 59
6.1 Measurements of DDS with Traditional StrUCHUIE.........ccceercviiriiriiiiieeree e 59
6.2 Measurements of DDS with Truncation Spurs-Free Structure............ccocveveervieieeniieieneceeenees 62

Chapter 7. CONCLUSIONooiiiieiit ettt ettt sttt et et smae e reesmeesneesane e 64
71 SUINMATY .. b e s b e s b e e s aa e e s b b e e s saa e e s saa e e s enbe e ans 64
T2 FUtUIe WOTK ...oiiiiiiiiiii e 64

Appendix A: SETTING UP MODELSIM

Appendix B: VERILOG MODULES

Referencesooovvveeeviiiiiiiiiiiiiieeiiieee e

Vi

Chapter 1. INTRODUCTION

1.1 Motivation

A direct digital synthesizer (DDS) is a type of frequency synthesizer used for generating
arbitrary waveforms referenced to a single, fixed-frequency clock. Nowadays, the cost-
competitive, high-performance, functionality-integrated and small package-sized DDS products
are widely used in the field of telecommunications and are becoming an alternative to some
traditional analog synthesizer solutions. The applications of DDS include signal generation, local
oscillators, function generators, mixers, modulators, and sound synthesizers.

The advantages of DDS are the following [1]:

1. Precise tuning resolution in micro-hertz and sub-degree phase tuning capability.

Application example: Because the DDS is able to generate signals at very precise
frequencies, it is useful for the applications that require phase continuous frequency
sweeping such as filter characterization [2].

2. High speed tuning while keeping the phase continuous with no overshoots or
undershoots.

Application example: Function generators.

3. Digital architecture ensures no need for manual tuning or tweaking associated with
component aging and temperature drift in an analog synthesizer solution.

Application examples: Local oscillator for digital phase-locked loop (PLL)

4. Digital control interface enables the system to be remotely controlled, minutely
optimized and under processor control.

With the above advantages over the traditional analog frequency synthesis technologies, it seems
obvious that direct digital synthesis technology should be able to dominate the frequency
synthesis area. However, the signal integrity problems mainly caused by the spurs have limited
its usage in many high-demand applications. Among them, the truncation spurs generated from
the phase truncation in the standard DDS design process are the primary problem and have
become a major signal integrity issue in the DDS design.

By investigating and understanding the sources of the spurs, previous research has come up with
a truncation spurs-free method for compressing the look-up table to avoid phase truncation
without significant increase of hardware usage [3]. The motivation of this thesis is to design such
a DDS with truncation spurs-free structure and verify the improvement of the signal quality.
Since it is a preliminary research work, the DDS will be designed and implemented in Verilog
codes that are synthesizable on an FPGA. FPGA is widely used in digital circuit design for its
flexibility, accuracy and effectiveness. The most significant advantage of using an FPGA is that
designs can be created and changed in a very short period. Instead, with application specific
integrated circuits (ASIC), the designers will have to wait months for the circuits to be fabricated
[4]. In this thesis, we aim to investigate the truncation spurs-free method; therefore, we will
adjust the design and parameters along the way, so it is more feasible for us to use the FPGA
design approach. However, on the other hand, the FPGA will limit the highest frequency we can
reach. In this thesis work, the fixed reference clock frequency is 50MHz, which is the maximum
FPGA on-board clock.

1.2 Outline

This thesis will serve as a complete tutorial on the background knowledge of DDS with
traditional structure and DDS with truncation spurs-free structure as well as how to design and
implement them in Verilog that are synthesizable on FPGA and simulate them with ModelSim.

1. Chapter 2 provides an overview of the structure and operation of the DDS with both
traditional and truncation spurs-free structures. Additionally, it introduces which types of
spurs that may exist, the reason why they exist and the method for eliminating the
truncation spurs.

2. Chapter 3 serves as an introduction to Verilog HDL. It addresses the necessary
knowledge that we should have about Verilog for completing this project by providing
examples of some major blocks in digital circuit design.

3. Chapter 4 introduces the background knowledge of FPGA and the FPGA design flow

4. Chapter 5 presents a detailed and complete step-by-step tutorial on designing,
implementing and simulating both DDS with traditional structure and DDS with
truncation spurs-free structure on FPGA in Altera Quartus FPGA development software.

5. Chapter 6 presents the simulation results from the different structures of DDS and some
theoretical analysis of the results.

6. Chapter 7 concludes this thesis with a summary and potential topics for further research.

2

Chapter 2. THEORETICAL ANALYSIS OF DDS

2.1 Theoretical Analysis of DDS with Traditional Structure

The traditional direct digital synthesizer (DDS) mainly consists of four primary components. The
first one is the phase accumulator (PA), which determines the frequency range and accuracy of
the output signal. The second component is the lookup table (LUT), which is used to store the
amplitude information of the quantized and discrete sine wave. The third component is the
digital to analog converter (DAC), which generates analog signal. The fourth component is the
low pass filter (LPF), which is used to smoothen the output signal [5],[6]. The traditional
structure of DDS is shown in Figure 2.1 [4].

Truncation Truncation
of least of number
significant of DAC
PHASE bits LOOK-UP TABLE | Outputbits [55ra To-ANALOG
ACCUMULATOR 1 l CONVERTER
R LOW-PASS
FCW—/— E ‘: =.—v{1 > 4+ Q—F—— -»| RECONSTRUCTION [+ Output
M G P D to FILTER
cLOCKT—>! converts phase to
amplitude outputs analog signal

Figure 2.1: Traditional Structure of DDS

The operation of the DDS starts with applying a frequency control/tuning word (FCW/FTW) to
the PA. With referencing a fixed input clock, the PA will increment by the M-bit FCW (M = 32
in our design) once in each clock cycle and the result value is stored in an inbuilt register. The
output of the register will loop back to be accumulated with input FCW in the next clock cycle.
The output of the PA is then truncated from M-bit to W-bit (W<M) and fed into the input of
LUT. The process of truncation is simply elimination of the lower order bits. The LUT will take
the W-bit word (W = 8 in our design) as the phase of the sine wave and generate the amplitude.
Therefore, the LUT is also called a phase to amplitude converter. The quantized version of the
sine wave is then fed into the DAC, which generates the analog output signal. Generally, the bit
width of the DAC input is always limited. Therefore, the output of the LUT is truncated again
before being fed into the DAC. After converting the digital signal to analog signal, the output of
DAC is then fed into the LPF, which reduces the noise and eliminates the spikes of the signal
[1],[4]. The main consideration is that PA and DAC should operate on the same reference clock.
Even though the PA is clocked, it still operates very fast; however, the speed of DAC and LPF is
relatively low due to their design architecture [7]. Now, we will look into the details in each
component and understand the background theory on how exactly the DDS works.

Phase Accumulator (PA):

The PA is constructed by an adder and a built-in register. In each clock cycle, we can realize the
accumulation by adding the output of the register from last clock cycle back to the input of the

adder. Then, the M-bit output of PA will increment by FCW. The structure of the PA is shown in
Figure 2.2.

Adder

M-bit FCW < D Ql+——

Reference Clock » Register

» >

Figure 2.2: Structure of Phase Accumulator

The output of PA forms a quantized saw-tooth waveform as shown in Figure 2.3 [1],[4]. Each
dot on the saw-tooth waveform is the actual value of PA output.

Period of
Sawtooth
26 L .
re % A ﬁl
i o Pd A
1 . z | . Vo
- : 4 . i »
? P P P E
4 i
0 ¢——+—F——+——+— +—f—4————+——> Clock Cycles
2 3 4 5 6 7 8 9 046 2047 2048 2050 2051

Figure 2.3: Behavior of Truncation Words

In Figure 2.2, we name the reference clock frequency of DDS system as f . DDS conducts
frequency accumulation from the “Phase” concept. As we mentioned above, the PA is
constructed by an adder and a register. For each coming clock impulse, the adder will add FCW
with the output of the PA from the last clock cycle, then send the sum back to the output of the
PA to realize accumulation. In this way, PA will increment by FCW once at each coming clock
impulse. The output data is the phase of the synthesized signal. The overflow frequency of the

PA is the frequency of the DDS output signal.

PA is the core of DDS system that generates phase information of the signal increment. For the
sine wave, instant amplitude completely depends on instant phase according to Equation 2.1

49 2.1
T dt

Therefore, the faster the phase change, the higher the signal frequency.

The PA applies the overflow feature of M-bit binary adder to simulate 27t phase cycle of the
ideal sine wave. The output of the PA can be considered as the phase signal of the ideal sine
wave while the output of LUT can be considered as the clock sampling of the time-domain
waveform.

Let M be the word length of the PA and f,, as the reference clock frequency; then the clock
cycle is shown as Equation 2.2.

1 (2.2)

T. =
¢ fclock

Then, the PA has 2 possible values. FCW is the frequency control word. During the working
process of the system, the increment of the PA in each clock cycle is

2 (2.3)
Ap = FCW X i
The corresponding angular frequency would be
A AP 2 feiock 24)
=— =7 =F(WX—5—
CTa T, oM

Therefore, the output frequency of the DDS is

fclock (25)
2M

w
=—=FCWx
fDDS 27_[

From Equation 2.5, we know that the larger the FCW, the faster the PA jumps, which leads to a
higher frequency at the output. The resolution of the DDS output signal or the step interval of the
fops 18

2.6
AfDDS = f—czl(;wck (2.6)

Since the output signal of the DDS is the sampling synthesis of the sine wave, it is very
important to fulfill the Nyquist theorem requirement. The Nyquist theorem states: “If a function
x(t) contains no frequencies higher than B Hz, it is completely determined by giving its ordinates
at a series of points spaced 1/(2B) seconds apart,” [4],[8],[9]. Equation 2.5 is conditional, given
that Equation 2.7 is true [9].

_ fclock (27)
fDDS - 2
Thus,
FCw < 2M-1 (2.8)

According to the characteristic requirement of the spectrum, we normally choose [1]

fDDS < 0-4fclock (29)

For a more straightforward explanation, the function of PA performs as a “phase wheel.” Shown
as Figure 2.4 , the sine wave oscillation is considered as a vector rotation around a phase circle.
Each designated point on the phase wheel corresponds to an equivalent point on a full cycle of a
sine wave. As the vector rotates, the corresponding output sine wave is being generated. When
the vector finishes rotating the whole phase wheel at a constant speed, it means that a complete
cycle of sine wave is outputted. The contents of the PA correspond to the points on the cycle of
the sine wave. The number of discrete phase points on the phase wheel depends on the resolution
of the PA, which is f,,.,/2" in this thesis design. The larger the M, the larger number of discrete
phase points we have on the phase wheel (the number is 2¥). However, the output of the PA is
linear, so it cannot be used to generate a sine wave directly; it is the reason that the DDS system
includes a LUT [1].

Digital Phase Wheel
#

Jump Size

foC

2N 0000...0

1111...1

Figure 2 .4: Digital Phase Wheel

Lookup Table (LUT):

The lookup table (LUT) serves as a phase-to-amplitude converter, which is used to convert a
truncated version of the PA’s instantaneous output value into the discrete sine wave amplitude
information that is presented to the D/A converter [1]. It consists of a read only memory (ROM).
By using the output data of the PA as the phase sampling address, we can get waveform

sampling data (binary code) stored in the LUT, then complete the phase-to-amplitude conversion.
To keep the LUT reasonably sized, we truncate the bits from the PA and only feed the higher
order bits to the input of LUT to save the hardware resources and power.

The LUT contains unique values of a sine wave over one period; however, most DDS
architectures will exploit the symmetrical nature of a sine wave and utilize mapping logic to
synthesize a complete sine wave cycle from a quarter cycle of data from the PA. The LUT will
generate the all the necessary data by reading forward and backward through the LUT [1],[10].

In the FPGA design, one will need a Memory Initialization File [.mif] containing the values of
the LUT. We use MATLAB to generate this file with the file extension as “.mif”. This file will
be added to the ROM [4]. For details, please refer to Section 5.2-6.

Digital to Analog Converter (DAC)

The digital to analog converter (DAC) is applied to create an analog waveform from the digital
discretized sine wave. Since the bit width of the DAC is generally limited, we will need to apply
a second truncation process to the output of the LUT to get a word with appropriate number of
bits and then feed it to the DAC input. An important fact is that the DAC plays a big role for
limiting the design’s maximum attainable frequency because the PA and DAC need to work with
same reference clock. In this thesis, we design and implement the DDS completely in HDL, and
perform the behavioral and post map & route simulations with ModelSim, so we don’t need an
actual DAC. Also, DAC will bring other sources of spurs, which may influence the results.
Further potential research directions in this topic may need to have an actual DAC or even
involve designing DAC. Please refer to Section 7.2 for details.

Low Pass Filter (LPF):

In the DDS design, the LPF performs as a reconstruction filter, which reduces the noise and
eliminates the spikes of the input signal that come from the DAC. Since we do not want any
aliases of the fundamental frequency, the LPF also performs as an antialiasing filter; therefore, it
limits us to the Nyquist frequency. Due to the sharp frequency response characteristics, a
Chebyshev filter is typically used on this stage [1]. Same with the DAC, we don’t need an actual
LPF in this thesis work.

2.2 Types of Spurs in DDS

The direct digital synthesis (DDS) technology has several advantages over the traditional analog
frequency synthesis technologies in terms of high-frequency resolution, high-speed frequency
tuning, continuous phase and so on. However, the signal quality issues primarily caused by the
spurs limit the usage of DDS technology in many high-demand applications. The three major
sources of spurs are shown as Figure 2.5:

Quantization noise spur

Truncation spurs

Quantizer nonlinearity

'/ Lookup

» DAC —
— 1| ADDER Register [7 57| Table I e P

E N bits Phase Accumulator N

]

1

i N bits N bits
1 >

]

)

Figure 2.5: Three Major Sources of Spurs

Phase Truncation Spurs:

In order to obtain high-frequency resolution at the DDS output, the bit width of the phase
accumulator must be sufficiently wide, typically 24-48 bits [1],[3]. However, in order to design a
smaller sized lookup table (LUT) that only needs a reasonable amount of hardware and
consumes less power, we eliminate some of the least significant bits (LSBs) of the 32-bit word
from the phase accumulator output because it is relatively easy to reduce the size of the LUT and
truncate the phase word at its input [1]. Unfortunately, this truncation of bits will lead to the
spectral impurity to the output signal known as the phase truncation spurs and it is the biggest
source of noise and spikes in the DDS system. We will provide detailed further explanation in
Section 2.3. Many algorithms can be implemented and added into this digital design to reduce
the phase truncation spurs. In this thesis project, we will design and implement a DDS with novel
truncation spurs-free structure on FPGA to eliminate the truncation spurs.

Quantization Noise Spurs:

The bit width of a digital to analog converter (DAC) is always limited. Generally, the bit width
of the DAC is even narrower than that of the LUT [1]. In this project, we truncate the output of
the LUT even further and then give it to the DAC. The discrete amplitude values of the sine
signal are quantized and stored in the LUT. The DAC will accept signed binary number with a
certain precision. To achieve this, the input bits are further rounded. This quantization will
generate spurs at the output frequency spectrum of the DDS.

Quantization Nonlinearity Spurs:

Due to the DAC’s inherent design and non-ideal transfer function behavior, it is impossible to
design a perfect DAC. Every input will have few errors associated with it, so we cannot get an
ideal output. These errors, caused by nonlinear behavior of the DAC, lead to the quantization
nonlinearity spurs. This type of spur can further exacerbate the truncation and quantization spurs
noise spurs and is very hard to evaluate [11]. The spurs caused by the nonlinear behavior of DAC
can only be reduced by increasing the precision of the DAC; however, the elimination will
improve the quality of output signal significantly [3].

2.3 Theoretical Analysis of DDS with a Novel Truncation Spurs-Free Structure

In the previous sections, we mentioned that the truncation spurs caused by truncating the lower
order bits of PA output are the primary signal integrity issue of DDS system, which limits the
usage of DDS in many high-demand applications. In this section, we will introduce a truncation
spurs-free method to compress the LUT size without phase truncation and a significant change of
hardware usage [3].

First of all, we need to understand exactly what happens behind the phase truncation that leads to
the truncation spurs. In Figure 2.6, the red line represents the output of the PA; the green line
represents the output of the truncator; the y-axis represents the phase address in LUT and the x-
axis represents the time. The input of the LUT is actually the output of the truncator, which
serves as the phase address. In the truncating process, the irregular sampling of the LUT sine
wave may occur as the red arrow pointed out in Figure 2.6.

10

Qutput of accumulator
Phase

Output of truncator
address

Truncating the fractional
hits causes an irregular

-~ sampling of the LUT
sine wave

Figure 2.6: Effects on Phase Truncation

In Figure 2.5, N is the bit-width of PA input and P is the bit-width of the LUT input. We know
that if N = P, then there is no phase truncation. The truncation spurs existed because N-P bits are
discarded. We call these N-P bits fractional bits. As we mentioned in Section 2.1, there is a fact
that the bit-width of DAC input is always limited, generally much smaller than that of PA. Thus,
we will have to perform truncation on the LUT output before feeding it to DAC anyway.

L is the bit-width of DAC input (L<<N); thus there are only 2" possible data values at the DAC
input. Consequently, there are only 2" corresponding phase points referred to as the key phase
points stored in LUT. These key phase points will divide one complete cycle of sine wave into
2"-1 key spans. If we can find which key span corresponds to which PA outputs, an accurate
amplitude value stored in LUT can be determined and sent to the DAC. In this way, we can
eliminate the truncation spurs. Now, the question is how can we actually determine which key
span corresponds to which PA outputs. To solve this problem, we come up with a truncation
spurs-free structure of DDS by introducing a comparator and an adder to the traditional structure
of DDS. The truncation spurs-free structure of DDS is shown in Figure 2.7.

11

Comparator| {A<B: 1
AzB:0
b g A -
J B 1 bit
= ey : ' YE
N L[Nbits | Nbits == |N-R| ookup MR, =
FTW__,| ADDER | |Register|"i——R| Table L[ADDER [~ DAC || LPF [—>
¥ alfs Phase Accumuiator; L+N-R °
CLK t

Figure 2.7: Truncation Spurs-Free Structure of DDS

As we mentioned above, there are 2" key phase points stored in the LUT. The comparator will
compare the outputs of PA to each key phase point and generate an accurate amplitude value in
one clock cycle. The main difference is that the lower (N-R) bits from output of PA are not
simply discarded. Instead, they will be compared with the lower (N-R) bits of the key phase
points stored in the LUT. If the lower (N-R) bits of PA output correspond to a larger value, then
the amplitude value will be sent to DAC directly. Otherwise, the amplitude value is sent after
subtracting 1. The output of LUT is adjusted by an adder. The irregular sampling of the sine
wave will not happen again as we shown in Figure 2.6.

The size of the new LUT would be (28X(L+N-R)) instead of 2°XL. We can see that the size of
ROM increases linearly instead of exponentially.

12

Chapter 3. INTRODUCTION TO VERILOG

Verilog is a hardware description language (HDL) standardized as IEEE 1364-1995. It can be
used to model digital systems at algorithm level, gate level and transistor level. It is most
commonly used in the design and verification of digital circuits at the register-transistor level
(RTL) of abstraction. It is also used in the verification of analog circuits and mixed-signal
circuits.

Verilog is very simple, straightforward and efficient. Since Verilog is not only a machine-
readable language, but also a human readable language, it can support hardware design
verification, synthesis, and testing. Nowadays, Verilog has become the top choice in digital
systems design and the foundations for synthesis, verification, and layout technology.

Verilog includes plenty of built-in primitives, including logic gates, user-defined primitives,
transistors and line logic. It also has the function to check the timing related problems between
device pins. Generally speaking, Verilog has two data types to support its mixed abstraction
levels. These two types are net and variable. For continuous assignment, variable and net are able
to assign the data to net continuously. Verilog provides a basic structural modeling method. For
procedural assignment, the calculation results of net and variable can be stored in variable.
Verilog provides a behavioral modeling method.

A project developed in Verilog consists of several modules. Each module will include an I/O and
a function description. The function description of a module can be structural level, behavioral
level or mixed level. Then we connect these modules together with nets. A complete Verilog
design module includes four main parts: port definition, I/O statement, signal type statement, and
function description.

Compared with another common hardware description language, VHDL (very high speed
integrated circuit HDL), Verilog is a weakly typed HDL, is easier to learn and more concise with
efficient notations. The syntax is more C-like. On the other hand, VHDL as a strong typed HDL
is more verbose than Verilog. Consequently, designs in VHDL are considered self-documenting.
Engineers working with VHDL need to do extra coding; however, they often catch errors missed
by Verilog. Verilog is good at hardware modeling but lacks higher level constructs, while VHDL
has many programming constructs but lacks the low level modeling capabilities. Although
Verilog is more popular in industry today, VHDL is still being used in some top companies like
National Instruments due to its features. In this thesis design, we will choose Verilog as the
hardware design language.

13

3.1 Resources
1. From my own learning experience, [would say that the “World of ASIC” website
(www.asic-world.com) is one of the best resources to learn digital design in Verilog
[12]. It provides detailed tutorials, design examples, and suggestions on tools and
reference books for Verilog beginner. It also provides instructions for other HDLs as
well as a scripting language used in digital design and verification such as VHDL,
SystemVerilog, SystemC, and Perl.

2. Besides the references books recommended on the “World of ASIC” website, two
junior-level undergraduate courses at UIUC are good resources on learning digital
design, especially the skills that you will use in this tutorial [13],[14]. One is ECE 385
Digital Systems Laboratory, which gives you hands-on experiences on designing
complex digital systems from scratch. You will learn how to implement circuits on a
breadboard, design digital systems in HDL and synthesize your circuits on an FPGA
for testing and verification. Another is CS 233 Computer Architecture, which teaches
fundamentals on computer architecture in a practical approach by providing excellent
machine problems. You will need to use Verilog and C++ to finish these assignments.

3.2 Verilog Design Examples
Some design examples that will be necessary to use when designing the DDS are given below:
Note: These are not actual codes for this project. For major modules, please check Appendix B.

First of all, we will need to define a module in Verilog, which includes defining a module name,
ports as well as vector ports and ports directions. The design example is shown in Figure 3.1.

module dds(
clk,
reset,
FCW,
dataout);

input clk;

input reset;
input [31:0] FCw;
output data2dac;

//Add entire design and instantiations.

endmodule

Figure 3.1: Example for Defining a Module in Verilog

14

Hardware has two kinds of drivers (data type which can drive a load). The first one is called reg
in Verilog while the other is called wire. The data type example is shown in Figure 3.2.

1| | reg register_name; //a single bit register
2, | wire wire_name; //a single wire

3 | reg [31:0] register_name; //a 32-bit register
4| | wire [31:0] wire_name; //a 32-bit wide bus

Figure 3.2: Example for Data Type Assignment

For the operators, they are almost the same thing in the other programming languages such as C
programming language. Now, we will introduce some useful control statements and variable
assignments by providing design examples for some required sub-modules in DDS design.

Register:
1 module register (
2 in,
3 clk,
4 | reset,
5 out
6| |)s;
7
8 input in, clk, reset;
9 output out;
10
11| | reg out; //Internal variables
12
13 always @ (posedge clk)
14 if (~reset) begin
15 out <= 1'b0;
16 end
17 else begin
18 out <= in;
19 end
20
21 endmodule

Figure 3.3: Design Example of a Register

15

In the Figure 3.3, the design example of the register includes an if-else statement, which is to
check a condition to decide whether or not to execute a portion of code. If the condition is
satisfied, the code is executed. If not, it runs the other portion of code. In the above example, it
checks if reset is 1. If this condition is satisfied, then it will output O; if not, it will output the

input.
Counter:
1 module counter (
2 clk,
3 reset,
4 enable,
5/ | count
6| |);
7
8 input clk, reset, enable;
9 output [3:0] count;
10
11, reg [3:0] count;
12
13 always @ (posedge clk or posedge reset)
14 if (reset) begin
15 count <= 0;
16 end
17 else begin
18 while (enable) begin
19 count <= count + 1;
20 end
21 end
22
23 endmodule

Figure 3.4: Design Example of a Counter

In the Figure 3.4, the design example of the counter includes a while statement, which executes
the code within it repeatedly if the condition returns true. In the above example, the count keeps
increment by 1 if the enable is checked to be true.

16

n-bit Full Adder:

1 module n_adder (
2 in_a,

3 in_b,

4 cing

5 cout,

6 sum

7/

8

9

¥
parameter size = n;

11| | input [size-1:0] in_a;
12| | input [size-1:0] in_b;
13| | input cin;

14 output [size-1:0] sum;
15 output cout;

17 assign {cout,sum} = in_a + in_b + cin;

19 endmodule

Figure 3.5: Design example of n-bit full adder

In digital design, there are two types of elements, combinational and sequential. In Verilog, there
are two approaches to model combinational elements, one is using an “assign” statement; the
other one is using an “always” statement. However, there is only one way to model sequential
elements, which is using “always” statement. In the Figure 3.5, we use “assign” statement to
output cout and sum because it is a combinational logic. Besides “assign” and “always”, there is
a third statement called initial statement, which is only used in designing test benches in Verilog.
It is executed at the beginning of simulation. An example is shown in Figure 3.6

initial begin
clk = 0;

il
2
3 enable = 1;

4 FCW = 1048576; // 2720 = 1048576
5

6

end

Figure 3.6: Design Example of Initial Statement

17

Comparator:

module comparator (
a,

1
2
3
4
5
6
N);

8| | input [7:0] a, b;
9 output G, E, L;
10

11, | wire G, E, L;

12

13 assign G = (a>b);
14 assign E = (a==b);
15 assign L = (a<b);
16

17 endmodule

Figure 3.7: Design Example of an 8-bit Comparator

19/ | module comparator (

20 dy
21 by
22 G,
23 E;
24 L
25| |);

26

27 input a@,al,bo,bl;

28| | output G,E,L;

29

30 reg G,E,L;

31

32, | always@(a@ or al or b@ or bl)

33 begin

34 G <= {al,a0}>{b1,b0};
35 E <= {al,a0}=={b1l,bo};
36 L <= {al1,a0}<{b1,b0};
37 end

38
39 endmodule

Figure 3.8: Design Example of a 2-bit Comparator

18

In Figure 3.7 and Figure 3.8, we use two different approaches to design the comparator. One uses
an “assign” statement; the other one uses an “always” statement. In this thesis work, we will use
an “assign” statement to design the comparator because it is relatively simpler.

Finite State Machine (FSM):

1 module FSM (
2 clock,

3 reset,

4 sig_1,

5 sig_2,

6 a,

7 b

8 |);

9

10 input clock, reset;
11 output a, b;

13 wire clock, reset, sig_1, sig_2;
14 | reg a, b;

16 | parameter size
17 parameter IDLE

2;
2'b00, A = 2'b01, B = 2'b10;

19 | reg [size-1:0] state;
20 reg [size-1:0] next_state;

21, | //combinational logic
22 always @ (clock or sig_1 or sig_2)

23 begin : FSM_COMBO

24 next_state = 2'b00;

25 case(state)

26 IDLE : if (sig_1 == 1'bl) begin
27 next_state = A;

28 end else if (sig_2 == 1'bl) begin
29 next_state = Bj;

30 end else begin

31 next_state = IDLE;
32 end

33

34 A : if (sig_2 == 1'bl) begin
35 next_state = B;

36 end else begin

37 next_state = A;

38 end

39

40 B: next_state = IDLE;

41

42 default : next_state = IDLE;
43 endcase

44 end

Figure 3.9: Design Example of the FSM

19

45
46
47
48
49
50
51
52
53

54
55
56
St/
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
7/5)
74
7/5)

77
78
79
80
81
82
83
84

//sequential logic
always @ (posedge clock)
begin : FSM_SEQ
if (reset == 1'b1l) begin
state <= IDLE;
end else begin
state <= next_state;
end
end

//output logic
always @ (posedge clock)
begin : FSM_OUTPUT
if (reset == 1'b1l) begin
a <= 1'b0;
b <= 1'b0;
end else begin
case(state)
IDLE : begin
a <= 1'bo;
b <= 1'b0;
end

A : begin
a <= 1'b0;
b <= 1'b1;
end

B : begin
a <= 1'bl;
b <= 1'b1;
end

default : begin

a <= 1'b0;
b <= 1'b0
end
endcase
end
end
endmodule

Figure 3.9: Continued

20

In the Figure 3.9, the design example of the FSM includes the case statements, which are used
when we have one variable that needs to be checked for multiple values. In the above example,
we use case statement to check the state status. It is important to note that that it is better to
include a default case with a return to idle every time we use case statement to make the code
safe because if the Verilog machine enters to a non-covered state, it will hang there. Also, when
you use the case statement, if you don’t cover all the cases and you are trying to write a
combinational logic, the synthesis tool will infer latch.

From all the examples and descriptions above, you may see the “always” statement several times.
In the following, I will introduce this important block in Verilog design.

From the name we can imagine that the “always” statement executes always instead of executing
once like the initial statement. It includes a sensitive list or a delay associated with it. There are
two types of sensitive lists, one is level sensitive for combinational logic; one is edge sensitive
for flip-flops. In the FSM example, “sig_1" and “sig_2" included in “always” in the
combinational logic block are level sensitive lists. The “clock” included in “always” in the
sequential logic block is an edge sensitive list. If a change happens in any of the sensitive lists,
the always statement will be triggered.

We can have an “always” statement without a sensitive list in the case where we have a delay, as
shown in Figure 3.10.

21 | always begin
22 #1 clk = ~clk
23 end

Figure 3.10: Example of “Always” Statement Without a Sensitive List

Finally, if you look into the codes above, you will see two different types of assignment
operators. One is “=", which is used in the combinational logic; the other one is “<=", which is
used in the sequential logic. “=" is called blocking assignment and “<="is called non-blocking
assignment. The blocking assignment executes codes sequentially while the non-blocking one
executes codes in parallel. This is very important because misuse of these two assignments will
totally disrupt the codes. Also, begin and end constructs are only necessary when multiple

operations.

Hardware coding is different from software coding. Sometimes you should think like real
hardware and solve issues associated with real hardware to make a good design.

21

Chapter 4. FPGA DESIGN FLOW

4.1 Introduction to FPGA

FPGA is an integrated circuit designed to be configured by a customer or a designer after
manufacturing. The FPGA configuration is generally specified using HDL. From a research
standpoint, we will use the FPGA instead of the ASIC approach to build the DDS in this thesis,
because the designs on FPGA can be easily modified and tested on board.

As shown in Figure 4.1, the FPGA we choose is Altera DE2-115 development and education
board, which is an ideal teaching platform [15].

DE2-115 Development and Education Board

Figure 4.1: DE2-115 Development and Education Board

There are plenty of switches and ports, 128M on-board memory and enough hardware resources
for us to use. The on board clock frequency is SOMHz.

22

4.2 Design Flow
The FPGA design flow is shown as Figure 4.2 [16],[17].

«——— Design Verification
Design Entry -
Behavioral
Simulation
Yy v
Synthesis
Y * Functional
B RE Simulation
Implementation
¢
- Analysis
Device
Programming

Figure 4.2: FPGA Design Flow

Note: Design Entry includes Functional/Device Specification and HDL Coding and
Implementation includes Mapping and Placement and Route.

Functional/Device Specification:

On this stage, the designers need to set up the configuration (make/model/speed/class/device
family) of the FPGA. After that, the designing software will conduct some preliminary setup for
the particular FPGA device’s intellectual properties (IPs), designs and components [4],[17],[18].

HDL Coding:

On this stage, the designers write HDL codes to model the entire digital designs. The designers
can also use a schematic approach to model the entire circuits. We will show both approaches in
Chapter 5.2; however, since we need to implement an algorithm in this thesis, the HDL coding
approach is preferred [4],[17],[18].

23

Logic Synthesis:

Synthesis is a process that converts the HDL codes to the gate-level netlist, which describes the
different types of components, elements, and interconnections between the components and other
details like area occupied and temperature of operation, etc. Also, synthesis will help check the
syntax of the HDL codes and map the design to a particular FPGA family [4],[17],[18].

Mapping:

In this stage, the software maps the generic logic design to the logic technology contained in the
selected FPGA device [4],[17],[18].

Placement and Route (PAR):

This stage is one of the most important steps in the entire implementation. Placement decides
where the components should be placed on the FPGA while routing is responsible for the
connections between different components. PAR is crucial because it is related with the timing
and area constraints of the design. A bad placement will result in problematic routing, which
leads to design violations [4],[19].

FPGA Configuration and Programming:

The last step of the FPGA design flow is to program the designs on the FPGA and test the circuit.
On this stage, the software converts the entire design to a “bitstream” file, which is loaded on the
FPGA board. After that, the FPGA is ready to run the digital design [4],[19].

Design Verification:

It is extremely important for every design to meet certain standards and satisfy certain conditions.
After each design step, the designers need to check if their circuits meet various constraints such
as timing, area and functional logic [19].

In this thesis, we will use ModelSim as the simulation tool for design verification. The
descriptions of each testing stage are given below:

24

. Behavioral Simulation: This task is to verify the functionality of the HDL codes.

. Gate-Level Simulation: The gate-level netlist is generated after the completion of
synthesis. This task is to test the timing and gate-level functionality of the design.

. Static Timing Analysis (STA): STA comes out after the completion of PAR. The
designer will analyze some important issues related with the design of the circuit such as
setup and hold times, critical path and clock skews. The STA will examine every possible
path in the circuit and help debugging glitches and slow paths [4].

. Post-PAR Timing Simulation: This task provides a comprehensive timing summary of
the circuit.

25

Chapter 5. FPGA DESIGN TUTORIAL IN QUARTUS II

In this thesis project, we will use Quartus II Web Edition FPGA design software. It is a software
tool produced by Altera for analysis and synthesis of HDL designs, which enables the developers
to compile their designs, perform timing analysis, examine RTL diagrams, simulate a design’s
reaction to different stimuli, and configure the target device with the programmer.

First of all, we should download the software from Altera’s official website,
http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-index.html. We may just
select to download the Quartus I1 Web Edition v14.0, which is free and should be good enough
for our project. The Quartus II FPGA design software is only workable on Windows XP, 7 or 8
or Linux so far. For Mac users, it is not very convenient, so they may need to install a Windows
based operating system (Window?7 for this project) by installing Parallels first on their Macs.
There may be some other better ways to do this; however, from my own working experience, |
highly recommend you just choose a workstation with Windows based OS to avoid any further
problems in your design and simulation.

After installing your Altera Quartus II, you can open your software by clicking the shortcut icon
on the desktop or Start Manu = All Programs =» Altera 14.0 directory = Quartus II 14.0
directory = Quartus II 14.0. After opening Altera Quartus II software, Figure 5.1 will display.

Getting Started
With Quartus® Il Software

Start Designing Start Learning

Designing with Quartus Il software The audio/video interactive tutorial teaches
requires a project you the basic features of Quartus Il software

Cr&::,e‘::j:?m?::]de)d Open Interactive Tutorial

Open Existing Project

| Literature | Training) Online Demos
@

Figure 5.1: Opening Display

26

Then the design console will display as in Figure 5.2 automatically.

€4 Quartus 164-Bit

=]

File Edit View Project Assignments Processing Tools Window Help & Search altera.com ®

FrTITRET L= o[1 T AT I X WA

Project Navigator 18 x IP Catalog LY-B3|

B gttty | Doty
Q X

ly rierarchy [ElFles | ¥ Desanus 4 » |
[Tasks LE-EY

Flow: [leiahm '] [Customme]

Task
¥ Compile Design
b P Analysis & Synthesis
b @ Fitter (Place & Route)
b B Assembler (Generate programmi
b B TimeQuest Timing Analysis
D EDA Netlist Writer
@ Program Device (Open Programmer)

el ﬁ Installed IP

4 Project Directory

No Selection Available

4 Library
I Basic Functions
> DSP
b Interface Protocols
1> Memory Interfaces and Controllers
> Processors and Peripherals
Search for Partner IP

® View Quartus Il
Information

@ Documentation
@ Notification Center

< i »

g @] P <<search>> v

R Type ID Message

8

% 4 »
=/_system /\ Processing /

0% 00:00:00

Figure 5.2: Design Console

27

5.1 Project Setup
1. To create a new project, from the File menu or opening display in Figure 5.1, select New
Project Wizard. Click Next to go through the introduction screen if it appears. Then, the
Figure 5.3 will appear. Fill in the fields in Figure 5.3 (make sure there are no spaces in
any of your entries). The program will ask you if it should create the specified directory if
it does not exist; choose yes.

&3 New Project Wizard @

Directory, Name, Top-Level Entity [page 1 of 5]

What is the working directory for this project?

//ad.uillinois.edu/engr finstructional /shuoli2/Desktop/Shuo Li Research/DDS Codes [:]
What is the name of this project?
DDS_Project @
What is the name of the top-evel design entity for this project? This name is case sensitive and must exactly match the entity name in the design file.
DDS_Traditionall ()
Use Existing Project Settings...

[< Back] [Next >] [Finish] [Cancel] [Help

Figure 5.3: New Project Wizard

2. Select Next on page 2 without adding any files. On page 3, select Cyclone IV for the
device family, make sure the second option under target device is selected, and choose
EP4CE115F29C7 in the available devices list according to Figure 5.4. Then click Next
to page 4.

28

& New Project Wizard | 32
Family & Device Settings [page 3 of 5]
Select the family and device you want to target for compilation.
You can install additional device support with the Install Devices command on the Tools menu.
To determine the version of the Quartus II software in which your target device is supported, refer to the Device Support List webpage.
Device family Show in 'Available devices' list
Family: [Cydone IVE v] Package: [Any e]
Devices: |All v Pin count: [Any >]
Target device Core Speed grade: [Any V]
Auto device selected by the Fitter Name filter:
@ Specific device selected in 'Available devices' list Show advanced devices
Other: nja
Available devices:

Name Core Voltage LEs User I/Os Memory Bits Embedded multiplier 9-bit elements PLL Global Clocks
EP4CE115F29I8L 1.0V 114480 529 3981312 532 4 20 9
EP4CE115F29I7 1.2V 114480 529 3981312 532 4 20
EP4CE115F29CSL 1.0V 114480 529 3981312 532 4 20
EP4CE115F29C8L 1.0V 114480 529 3981312 532 4 20
EP4CE115F29C8 1.2V 114480 529 3981312 532 4 20
EP4CE115F29C7 1.2V 114480 529 3981312 532 4 20
EP4CE115F23I8L 1.0V 114480 281 3981312 532 4 20
EP4CE115F23I7 1.2V 114480 2381 3981312 532 4 20
EP4CE115F23CSL 1.0V 114480 281 3981312 532 4 20
EP4CE115F23C8L 1.0V 114480 281 3981312 532 4 20
EP4CE115F23C8 1.2V 114480 281 3981312 532 4 20
EP4CE115F23C7 1.2V 114480 281 3981312 532 4 20
EP4CE75U1917 1.2v 75408 293 2810880 400 4 20 -

[<Back |[mext> J[Fnsh |[cancel |[Hep |

Figure 5.4: Device Specifications

3. Select ModelSim-Altera as the simulation tool name, and Verilog HDL as the
simulation format, then click Next. See Figure 5.5.

29

&3 New Project Wizard

EDA Tool Settings [page 4 of 5]

Specify the other EDA tools used with the Quartus II software to develop your project.

EDA tools:
Tool Type Tool Name Format(s) Run Tool Automatically

Design Entry/Synthesis [ﬁ <None > v Run this tool automatically to synthesize the current design

Simulation [ModdSim-Albera =][Verilog HDL -]D Run gate-evel simulation automatically after compilation

Formal Verification [<None> -]

Board-Level Timing <None > -
Symbol
Signal Integrity
Boundary Scan

Figure 5.5: EDA Tool Settings

4. Click Finish on page 5. Now you should be able to have an entry for the project in the

Project Navigator window. It should display as in Figure 5.6.

Project Navigator 18 x|
Entity

/2 Cydone IV E: EP4CE115F29C7
» DDS_Traditional 52

/A Hierarchy l E| Files I & Design Ui ﬂll

Figure 5.6: Project Navigator

30

5.2 HDL Coding
1. To create the top-level module (DDS_Traditional.v), go to File = New or click on the
icon 2 in the top left corner. A panel will display as in Figure 5.7. Under the Design

Files, select Verilog HDL File. Click OK. Now we have a blank Verilog file shown as in
Figure 5.8.

&New

New Quartus II Project

4 Design Files
AHDL File
Block Diagram/Schematic File
EDIF File
Qsys System File
State Machine File
SystemVerilog HDL File
Td Script File
Verilog HDL File
VHDL File

4 Memory Files

Hexadedimal (Intel-Format) File ®
Memory Initialization File
4 Verification/Debugging Files

In-System Sources and Probes File .
Logic Analyzer Interface Fie Version 14.0
SignalTap II Logic Analyzer File
University Program VWF

4 Other Files
AHDL Include File
Block Symbol File
Chain Description File
Synopsys Design Constraints File
TextFile

o J[conel J[rep |

Figure 5.7: New Panel

&Quanusllﬁd-Bit-//—" illinois.edu/engr/instructis ‘shuoli2/Desktop/Shuo Li Research/DDS Codes/DDS_Project - DDS_Traditional
File Edit View Project Assignments Processing Tools Window Help &
‘DS @ % 2@ 9 | [(oosTredbona Y S D rn OO SO ® A e ¢
Project Navigator 2o x| 4 Verilog1.v B8 |
Entity, HanT s a0 TOM 0SS R By | 2 EEE
£/ Cydlone IV E: EP4CE115F29C7 ey =
> DDS_Traditional <81
/iy Hierarchy | ElFiles | * Designun 4 >|
[Tasks rE x|
Flow: |Compilation ~ | [customize.... |
Task
4 b Compile Design
> B Analysis & Synthesis
> B Fitter (Place & Route)
> W Assembler (Generate programmif
> B TimeQuest Timing Analysis
> B= EDA Netlist Writer
4 Program Device (Open Programmer)
< 0 N HIK [v

Figure 5.8: Blank Verilog File

31

After generating several blank Verilog files, we will need to name them, include them
into the project and set up a top level file, which has to be the DDS_Traditional.v. As
shown in Figure 5.9, we name one of the blank files DDS Traditional.v, then click Save.
Remember to check the Add file to current project.

& Quartus 1164-Bit - //ad.uillinois.edu/engr/instructional/shuoli2/Desktop/Shuo Li Research/DDS Codes/DDS_Project - DDS_Traditional (o ®@][=]
Fie —Edit View Projec gnments Processing Too d ep & Search altera.com @
DEH@ % 5@ 9 o (oosivadtond Y €% D e B2 Q% A0
Project Navigator 18 x ‘ @ veriog3.v® 1] | & registerv [I & adderv [‘ @ counterv B ‘ IP Catalog 18 x
Entity — Q =
Save As (=] N X=
ay Cydone IV E: EP4CE115F29C7 S N j% Installed IP
o nstale
- DDS_Traditional 5 Savein: |), DDS Codes -] cmeE
4 Project Directory
= L db No Selection Available
"} | adder 4 Library
Recent Places | | counter > Basic Functions
- | register , DSP
beﬂdnp Interface Protocols
v > Memory Interfaces and Controllers
u):T-JJ > Processors and Peripherals
Lixies @ search for Partner IP
LY
Computer
[y Hierarchy | E] Files | " DesignUn 4|) @
Tasks 18 x Network
Flow: Compiation ~ [customize...
Task Fie name: [pDS_Tradtional ~| Save
4 P Compie Design Saveastye: [Verlog HDL Fies ("v “vig "verlog) ~ Cancel
Analysis & Synthesis 7 Add i to curert project
W Fitter (Place &Route) 4
> B Assembler (Generate programmi
> P TimeQuest Timing Analysis
> #» EDA Netlist Writer
4 Program Device (Open Programmer)
< m] K m » i Add...
;)] @) @ <<Search v
L Type ID Message
g
g
g 2
=/_system /\ Processing /

Figure 5.9: Naming the Blank Verilog File

Click Files in the Project Navigator. Among several files, choose DDS_Traditional.v;
right click it and select Set as Top-Level Entity as shown in Figure 5.10.

&4 Quartus 164-Bit - //ad.uillinois.edu/engr/instructional/shucli2/Desktop/Shuo Li Research/DDS Codes/DDS_Project - DDS_Traditional
Fie Edit View Project Assignments Processing Tools Window Hep 5

DS H @ % 2@ 9 o (DosTraditional Y ¢ R OO
Project Navigator 88 x| | @regstery [) | @adderv () | @ counter.v (] | & DDS Traditonal.v (
& X I a%07 S 0 DM 0S8 2 % =
& Files [module DDS_Traditional ()

fbj register.v

[’—"3 adder.v
Fﬁ'a counter.v
4 DS _Traditional -

Open

Remove File from Project

o)

Set as Top-Level Entity Ctrl+Shift+]

Create AHDL Indude Files for Current File
Create Symbol Files for Current File

Properties...
[vierarchy | E|Fies [Desn 4]p

Figure 5.10: Set Up the Top Level File

32

3. Start coding both structures of DDS. First, design a DDS with traditional structure in
Verilog. The code for top-level module is shown in Figure 5.11.

O oo NO WL A WN R

kil
12
s
14
15
16
17
18
19
20
21!
22
23
24
25
26

module DDS_Traditional (clk, reset, out);

input clk, reset;
output [7:0] out;

reg [31:0] fcw;
reg [7:0] out;

wire clk, reset;
wire [31:0] ql1, g2, sum;
wire [7:0] LUT_out, address;

register regl(.clk(clk), .reset(reset), .d(fcw), .q(ql));

register reg2(.clk(clk), .reset(reset), .d(sum), .q(g2));

adder add(.a(ql), .b(g2), .sum(sum));

phase_truncator trun(.clk(clk), .reset(reset), .pa_out(g2), .address(address));
look_up_table lut(.clk(clk), .reset(reset), .address(address), .LUT_out(LUT_out));

always @(posedge clk or posedge reset)
begin
if (reset == 1'b1)
fcw <= 32'd429496730; //5 MHz output
else
out <= LUT_out;
end
endmodule

Figure 5.11: Top-Level Verilog Codes for DDS with Traditional Structure

33

4. Second, design a DDS with truncation spurs-free structure in Verilog. The Verilog codes
for the additional substractor (adder) and the comparator as well as the top-level module
are shown in Figure 5.12.

1 module comparator(a, b, G);
2

3 input [23:0] a, b;

4 output G;

5

6 reg G;

7

8 always @ *

9 if (a > b) begin

10 G <= 1'b0;

11 end else if (a == b) begin
12 G <= 1'b0;

13 end else begin

14 G <= 1'b1;

15 end

16 endmodule

1 module substractor (a, b, clk, result);
2

3 input [7:0] a;

4 input €lk, 'b;

5 output [7:0] result;

6

7 reg [7:0] result;

8

9 always @ (posedge clk)

10 begin

11 if (a == 8'b10000000)

12 result = 8'b10000001; //handle the overflow
13 else

14 result = a - b;

15 end

16 endmodule

Figure 5.12: Verilog Codes for DDS with Truncation Spurs-Free Structure

34

module DDS_Free (clk, reset, out);

input clk, reset;
output [7:0] out;

reg [31:0] fcw;
reg [7:0] out;

O 00O N O UL B W N =

wire clk, reset, G;

wire [31:0] ql, g2, sum;

wire [7:0] LUT_out, address, dds_output;

wire [23:0] address_fractional, LUT_fractional;

e ol
B WNRS

register regl(.clk(clk), .reset(reset), .d(fcw), .q(ql));

register reg2(.clk(clk), .reset(reset), .d(sum), .q(qg2));

adder add(.a(ql), .b(g2), .sum(sum));

phase_truncator trun(.clk(clk), .reset(reset), .pa_out(g2), .address(address),
.address_fractional(address_fractional));

look_up_table lut(.clk(clk), .reset(reset), .address(address), .LUT_out(LUT_out),
.LUT_fractional(LUT_fractional));

comparator comp(.a(address_fractional), .b(LUT_fractional), .G(G));

substractor sub(.clk(clk), .a(LUT_out), .b(G), .result(dds_output));

N NN NDNR R R R R
H W N EFE OO OVONOWL

always @(posedge clk or posedge reset)
begin
if (reset == 1'bl)
fcw <= 32'd429496730;

N NN
N oown

else

N N
o o

out <= dds_output;

w
S

end
endmodule

w
Py

Figure 5.12: Continued

In Figure 5.12, we can see that the DDS with Truncation Spurs-Free Structure actually
adds a comparator block and an adder block on the top of the traditional DDS design. We
use HDL to link all these modules together in this thesis. Now, we will also show a
schematic design entry approach to link the modules together. This is to create the top-
level entity as a schematic diagram, rather than as a Verilog module. In some cases, this
approach is easier, more straightforward and less time-consuming than wiring the circuits
up directly in codes.

Note: This part is to introduce another approach for designing the digital circuits;
however, it is not the approach we used in this thesis project. We use 10 as the ROM
width to avoid confusion. However, Step 6 on how to program the ROM is very
important. It is applicable to both HDL and Schematic design approaches.

To start, we need to create a blank schematic file. Go to File = New and select Block

Diagram/Schematic File and click OK. It will generate a [.bdf] file. The Figure 5.13
will pop up. Then we should give this blank schematic file an appropriate name, which

35

has to be same as what we typed in the top-level file name in Figure 5.3. In this case, it
should be “DDS_Free”.

€ Quartus T164-Bit - Cy/Shuo Li Research/Free_DDS/DDS_Project - DDS._Free

® Seart
DEH@ 4@ 9o JHAY /4900 ron 0022 @9 4 e 9
|project Navigator 98 x| | 4 0s_Tradtionaly (1) | & comparator_fiee.v [7] | 4 adder_freew [| 4 Blockbef 3 [1P Catalog 3 x|
X =

= X' BEAGADE-O01TAINNNDOONYEP AL H S »a
| Files 5 A

§84 DDS _raditional.v
589 comparator_free.v
59 adder_free.v

4 2 Installed P
4 Project Directory

No Selection Available

4 Library
Basic Functions.
DsP
Interface Protocols
> Memory Interfaces and Controllers
> Processors and Peripherals
@ search for Partner 1P

[Herarchy | ElFies [Designu 4| p|}

[Tasks aex||:

Task
4 b Compile Design
> P Analysis & Synthesis
b B Fitter (Place &Route)
> B Assembler (Generate programmil | -
> TimeQuest Timing Analysis
> B EDA Netiist Writer S
A program Device (Open Programmer) ||
Rl »

e E AW s v

Type ID Message [

»

Messages

System /_Processing
3,262 0% 00:00:00

Figure 5.13: Blank Schematic File

Then we should generate the block diagrams from the Verilog codes. In the Project
Navigator, select Files, then right click the Verilog file you want to generate a block
diagram from and click Create Symbol Files for Current File as shown in Figure 5.14.

T4 Quartus 164-Bit - C:/Shuo Li Research/Free_DDS/DDS_Project - DDS_Free
File Edit View Project Assignments Processing Tools Window Help &)

DS AP % 2@ 9 o [Dosrree Y e PPN O0 S QYA 0D
Project Navigator e x|| & Block1.bdf x]
Q X 'BAGASES-O0 11 INNNOONYER A& d S % g
(2 Fies I

4 DS _Traditional.v

B8 comparator_free.v

fbd adder_free v
Open

Remove File from Project
% setasTop-evel Entity Ctrl+Shift+

Create AHDL Indude Files for Current File
Create Symbol Files for Current File

Properties...

[tierarchy | (2] Fies | JMUM

Figure 5.14: Generating a Block Diagram from Verilog Codes

36

The software will create the symbol file after compiling this single Verilog file. If the
creation is successful, then the Message console should show no errors as in Figure 5.15.

4 Quartus 1164-8it - C/Shuo Li Research/Free_DDS/DDS_Project - DDS_Free
Fle Edt Vew Projct Assowents Processng Toos Window Hep
QO HR QP A e®

Complaton Report -D0S_Free L4 adder_free, <]

VSd@ &)| 9 (00s._Free.
Projct Navgator isx| [
-~ X = a% L NEXETYE=)

S Herarchy | 8] Fies | nmmjﬂ 22
Tads 18 x
tow: (Conplaion 2] (Cotomae.a) | 23

Figure 5.15: Successful Creation

After that, you can add the symbol into the schematic file by switching back to the blank
schematic file. Right click on the schematic and select Insert =»Symbol, then the symbol
window will display as Figure 5.16. In Libraries, select Project. The available symbols
will be listed. Select adder_free and click OK.

5] Symbol

Libraries:
4 & Project
£} DDS_Traditional
EF adder_free
Tt comparator
€3 c:/altera/14.0/quartus libraries/

Name:

adder_free @
[7] Repeat-insert mode

[7] Insert symbol as block

o] o)

Figure 5.16: Symbol Window

37

Then we can place all the symbols in the schematic as shown in Figure 5.17.

rom_ad[9..0]

acc_f[21..0]

5 .— FCW[31..0] R R R RSN R R RN IR RIS ._ cin A A

Figure 5.17: Symbol Placement

6. So far, we have most of the required modules to build the DDS except the LUT. To
create the LUT, we need a [.mif] file containing the ROM data first. We can generate this
file using MATLAB. The MATLAB code to generate this [.mif] file is shown in Figure
5.18. This “sin.mif” file is for designing the traditional DDS. The size of this ROM is 2*
X 8. Instead, the width of ROM for DDS with truncation spurs-free structure is 32. We
can do this simply by adjusting the width parameter in the code while keeping depth = 2°.

[JON) m rom.m — Edited
B3 B rom.m) No Selection

1 width=8; //bit width

2 depth=278; //data depth

3 t=linspace(0,6.28,depth);

4 sin_val=sin(t);

5 sin_val=fix(sin_valx(2~width-1)/2+0.5); //result after rounding
6

7

8

addr=[0:255];

9 file=fopen('f:/My Works/FPGA Examples/sin.mif', 'wt');
10 fprintf(file, '"WIDTH=%d;\n',width);

11 fprintf(file, 'DEPTH=%d;\n',depth);

12 fprintf(file, 'ADDRESS_RADIX=UNS;\n');

13 fprintf(file, 'DATA_RADIX=DEC;\n');

14 fprintf(file, 'CONTENT BEGIN\n');

15 for i=1:depth

16 fprintf(file, '%d:%d;\n"',addr(i),sin_val(i));
17 end

18 fprintf(file, 'END;\n"');

19 fclose(file);

Figure 5.18: MATLAB Codes for Generating [.mif] File

38

After creating the [.mif] files, we can start to create the ROM module with Quartus II
following the below steps.

First, select Tools =»IP Catalog, then an IP Catalog will pop up on the right. Under
Library =»Basic Functions = On Chip Memory, select ROM: 1-PORT and click
Add. The process is shown as in Figure 5.19.

5 Quartus I64-84 - C/Sho i ResaichFres DOS/DDS Project-DOS Fiee

BockLbdf* (] P Catag a5 x

N+ B Ef£€ EmiB

Figure 5.19: Create a 1-Port ROM

After that, a window as shown in Figure 5.20 will pop up to ask a file name and file type.
Fill in the name with ROM_Free and select Verilog as the file type. Then, click OK.

C; Save IP Variation L ‘

IP variation file name:

C:/Shuo Li Research/Free_DDS/ROM_Free @

IP variation file type

() VHDL

@ Verilog

Figure 5.20: Save IP Variation

39

As shown in Figure 5.21, the MegaWizard Plug-In Manager window will pop up. On

page 1, fill in the width (32 bits) and depth (2'° = 1024 words) of the ROM and leave the
others as default. Click Next.

X MegaWizard Plug-In Manager [page 1 of 5]
<} ROM: 1-PORT

[(?="

[oocmentaon]

Parameter

Settings

(oo >

> Mem Init

Regs/Clken/Adrs

Currently selected device family: | cydone IV E

ROM_Free

| address[9..0] [¥] Match project/default

its
bords

A

How wide should the 'g' output bus be? 32 v bits

32

102.

How many 32-bit words of memory? 1024 v words

lock Note: You could enter arbitrary values for width and depth

What should the memory block type be?

@ Auto MLA)

m

() MK
M144K LCs

S Options...

Set the maximum block depth to Auto v words

What docking method would you like to use?
@ Single dock
() Dual dock: use separate 'input’ and 'output’ docks

Resource Usage
4 MSK

I Cancel ” < Back H Next > H Finish I

Figure 5.21: Parameter Setting

Leave the page 2 as default but make sure the ‘q’ output port is registered. Click Next.
On page 3, we will need to do the memory initialization. As we mentioned above, we will
need to use the [.mif] file generated by MATLAB to initialize the ROM. As shown in
Figure 5.22, browse to the file location and select the “sin_free.mif” file, then click
Open. Leave the others as default. Click Next.

40

X MegaWizard Plug-In Manager [page 3 of 5]

'Zj ROM: 1-PORT

Parameter

Settings

General

ROM Free Do you want to specify the initial content of the memory?

ddress[9..0]

No, leave it blank

7 Initialize memory content data to XX..X on
— power-up in simulation

@ Yes, use this file for the memory content data

(You can use a Hexadecimal (Intel-format) File [.hex] or a Memory
Initialization File [.mif])

Browse...

File name: :./sin_free.mif
The initial content file should conform to which port's e R
dimensions? BRI
Wl Allow In-System Memory Content Editor to capture and
update content independently of the system clock

The 'Instance ID' of this ROM is: \ NONE

Resource Usage
4 MOK

[| (<] [mo> | [|

Figure 5.22: Memory Initialization

On page 4, it is optional to select generate netlist for timing and resource. On page 5,
check the box before “ROM_Free.bsf”. Then, this symbol file of ROM will be generated.
After all the above steps, click Finish. The process is as shown in Figure 5.23.

File Description

[VIROM_Free.v Variation file

[1ROM_Free.inc AHDL Indude file
[T]ROM_Free.cmp VHDL component declaration file
ROM_Free.bsf Quartus II symbol file

[TJROM_Free_inst.v Instantiation template file
ROM_Free_bb.v Verilog HDL black-box file

| cancel || <Back || next- || Enish |

Figure 5.23: Generating Various Files

41

Now, we will be able to select the symbol file for ROM follow the same step as shown in
Figure 5.16. We have all the required modules for designing DDS with truncation spurs-
free structure so far. The schematics are shown in Figure 5.24.

rom_ad[9..0]

...... _ reset acc_f[21..0] 9
----- w— FCW[31..0]

Figure 5.24: Updated Schematic

7. Now, we will need to connect all these blocks together with single wire or bus according
to the design in Figure 2.6.

a) Add the input and output ports by selecting them from tools bar shown in Figure
5.25. Make sure input and output ports are not misused.

Eog ROM_Free.qip f"l_l‘]
FRaoA>EPHOIIANNNDOON N B
SHNHEEEE T L iiiiiiiiiiiiiiiiiiiiio..

{24 Output
Dol Bidi

>

Figure 5.25: Tools Bar for Ports and Wires

42

b) Add wires and buses to connect the separate modules. Make sure the bit-widths of
two ports matched. Adjust the name and width of ports and wires by right clicking
on them and selecting Properties. Name as shown in Figure 5.26 and click OK.

f‘j] Bus Properties =]

General l Font | Format

Name: name[x..y]

[7] Hide name in block design file.

[OK][Cancel][Help

Figure 5.26: Bus Properties

c) After wiring the circuits up, the final top-level schematic is shown as in Figure
5.27.

L Do s i i ROM_Free
- ok — -
reset

FCW[31..0]

S

Figure 5.27: Top Level Schematics of DDS with Spurs Free Structure

43

5.3 Compilation

After finishing the HDL coding for both the traditional and truncation spurs-free structures of
DDS design, we will perform compilation with the Quartus II software. The tasks of compilation
include logic analysis and synthesis, placement and route (PAR), generation of programming
files, timing analysis and EDA netlist.

Before conducting compilation, we can run logic synthesis first. In this phase, Quartus II will
check the codes to correct syntax, and generate errors or warnings. If there is an error, we will
need to correct the error first, then run Analysis & Synthesis again. Quartus II will also build
hierarchy in the Project Navigator if needed. To start analysis & synthesis, simply click on

Start Analysis & Synthesis button %7 in the tool bar [13].

Now, we can start to do the compilation. Click the Start Compilation button * in the tool bar or
select Processing = Start Compilation. We may get a few warnings about timing
characteristics and load capacitances this time. Most of the time, we can just ignore them;
however errors need to be corrected before continuing. The design console after a successful
compilation should be similar to that shown in Figure 5.28.

C4 QuartusT164-Bit - C: i2/Dropl Li Research/Traditional_DDS/DDS _Project - DDS_Traditional =N a5
File Edt View Project Assignments Processing Tools Window Help 5 Search altera @
DEEP & @ “ | [o0S_Traditonal HY W@ PRL OO R QP A0 ®
Project Navigator x| @ Compilation Report - DDS_Traditional
Entity LogicCells Dedicate| [Table of Contents ag
A Cydone IV E: EP4CE115F29C7 B Flow Summary Flow Status Successful - Wed Dec 03 11:36:05 2014
#8 DDS_Traditional 41 7404 7404 = Flow settings Quartus II 64-6it Version 14.0.0 Buid 200 06/17/2014 53 Full Version
~ Revision Name DDS_Traditional
™™ Flow Non-Default Global Settings Top-evel Entity Name. DDS_Traitional
™9 Flow Elapsed Time Family Cydone IVE
™ Flow OS Summary Device EP4CE115F29C7
E) FlowLog Timing Models Final
3 Analysis & Synthesis Total logic elements 74/114,480 (< 1%)
Total combinational functions 74/114,480 (< 1%)
Dedicated logic registers 74/114,480 (< 1%)
Total registers 74
Total pins 46/529(9%)
Total virtual pins
Total memory bits 10,240 /3,981,312(< 1%)
Embedded Multipier 9-bit elements 0 /532 (0 %)
Total PLLs 0/4(0%)
m »
i tierarchy | (] Fies | oF Desgnunits | 4|
Tasks 18 x
<low: [Compiation ~ | [customize...]
Task
[4 4
v
v
v g fies
v
v
& Program Device (Open Programmer)
« il ||« it)
=) A9 -
Mo - v
|| Type ID Message
m P 293 Quartus II Full Compilation was successful. errors, warnings
4
&
&l y
8
=\ System (32) /\ Processing (125) /

Figure 5.28: Successful Compilation

44

& Quartus T164-Bit - C:/Shuo Li Research/Free_DDS/DDS_Project - DDS_Free [E=]=]

Fle Edit View Projec Processing Tools Window Help &) S altea ea ®
DS H@ % @9 o [oske Y ESS O ren 0D ER QP A
Project Navigator 28 x | @ Compilation Report - DDS_Free] DDS_Free.bdf [x]
Entity Table of Contents 28
/A Cydone IV E: EPACE115F29C7 5 Flow Summary Flow Status Successful - Thu Dec 04 10:31:07 2014
b Eﬁ DDS_Free ;@ ™ Fiow Settings Quarms 11 64-Bit Version 14.0.0 Build 200 06/17/2014 SJ Full Version
" Revision Name DDS_Free
B Flow Non-Default Global Settings Top-evel Entity Name DDS_Free
=3 Flow Elapsed Time Family Cydone IVE
=9 Flow OS Summary Device EP4CE115F29C7
E) FlowLog Timing Models Final
> [Analysis & Synthesis Total logic elements 79/114,480 (< 1%)
b [Fitter Total combinational functions 79/114,480 (< 1%)
X Dedicated logic registers 42/114,480 (< 1%)
v [Assembler Total registers 2
> (2] TimeQuest Timing Analyzer Total pins 44/529(8 %)
> (] EDA Netlist Writer Total virtual pins 0
(3D Flow Messages Total memory bits 32,768 /3,981,312(< 1%)
» 0% :
() Flow Suppressed Messages Embedded Multiplier 9-bit elements 0 /532(0 %)
Fles | o Designunits | 4[» Total PLLs 0/4(0%)
28 x|
'] [C\stnmze]
Task
& | 4 P CompieDesign
v > B Analysis & Synthesis
4 b B Fitter (Place & Route)
< > W Assembler (Generate programming files)
"4 b B TimeQuest Timing Analysis
v b W EDA Netlist Writer
w Program Device (Open Programmer)
<[" | A i | »
; D <<Search>> v
a Type iD Message -
\") 204019 Generated file DDS_Free_7_1200mv_Oc_v_slow.sdo in folder "C:/Shuo Li Research/Free DDS/simulation/modelsim/" for EDA simulati
\) 204019 Generated file DDS_Free min 1200mv_Oc_v_fast.sdo in folder "C:/Shuo Li Research/Free DDS/simulation/modelsim/" for EDA slmale[l
3| \\) 204019 Generated file DDS_Free_v.sdo in folder "C:/Shuo Li Research/Free ! DDS/s.\mqlatlon/modelslm/" for EDA simulation tool
% T - —) v

164, 2 100% 00:00:32

Figure 5.28: Continued

The compilation process also provides us lots of summary reports on resources usage, timing,
power consumption and so on. We will give details in Section 5.5.

45

5.4 FPGA Configuration and Programming

Pin Assignments:

To enter the pin assignment, click the Pin Planar button L4 , or select Assignments = Pin
Planar. Then the pin planar window will automatically pop up as shown in Figure 5.29. The pin
layout of the Cyclone IV chip is on the right of the window and the pin assignment table is at the
bottom. Enter the pin assignments for every pin displayed according to Altera FPGA DE2-115
User Manual [20]. Then, save the pin assignments and recompile the entire design.

P Pl CT el Db s T Researeh Traeral DOSTODS Preject - DS Trodionc] B
Fie Edt View Processing Tools Window Help 5 Search altera.com ®
— || X||Symbol Pin Type =
= g‘) user1fo 3
R <® User assigned 1/0
5 5@ Fitter assigned 1/0
”‘ 2@ Unbonded pad
|&|@ reservedpin -]
4 Report 218 x i .
9 [Report not avaiable Top View - Wire Bond
e Cyclone IV E - EP4CE115F29C7
5] A é@@@@@@ @I. OO @é@@@é @ .
& ° é (OI0}03 DDOVOOOVOROVOO e °
3 c OOOCB®OOOO @O @@@@@@@@@O@ c
°®O V®®©®©®©®® OOOOOOR °
B £ O AOOO @ ©00 OO O-@O@@E
= © 000V OAVOOODO -
Q. 00@@@ DO«
! QO ODODOVA
k)]
(>] : =l
74 "
Bio N
&= f
Report g
T
Tasks rE x| v
4 [y Early Pin Planning & v
] Early Pin Planning... w :
» Run 1/0 Assignment Analysis e
] Export Pin Assignments.... 0} A »
[Pin Finder... = o :
4 [& Highlight Pins et
= 1/0 Banks s
8 VREF Groups A
"™ Edges ac
4 &7 dockPins o
9 dock 4
9 PLL/DLL Input = s [
[] Named: = - (&) edt[X] |Fiter:{pins: al -
g [Node Name Direction Location 1/0 Bank VREF Group Fitter Location 1/0 Standard Reserved Current Strength Slew Rate Differential Pair -
n_a Input PIN_AB28 5 B5_N1 PIN_B11 2.5V (default) 8mA (default)
n_ b Input PIN_AC28 5 B5_N2 PIN_F12 2.5V (default) 8mA (default)
|in,_ dk Input PIN_Y2 2 B2_NO PIN_J1 2.5V (default) 8mA (default)
% reset Input PIN_M23 6 86_N2 PIN_Y2 2.5V (default) 8mA (default) i
£24 sin[9) Output PIN_G17 7 B7_N1 PIN_G11 2.5V (default) 8mA (default) 2 (default)
| =24 sinf8] Output PIN_J17 7 B7_N2 PIN_H12 2.5V (default) 8mA (default) 2 (default) -

0% 00:00:00|

Figure 5.29: Pin Planar

46

Programming the FPGA:

Now, we are ready to program our design on the FPGA board.

1. Plug in the power for the FPGA and connect the FPGA Blaster Port to the computer
with the included USB cable. The Hex Displays on FPGA should be flashing and the
screen should show “Welcome to the Altera DE2-115” on it. The setup should be the
same as that shown in Figure 5.30. Note that in the left corner of the FPGA there is a
small switch. It should be switched to RUN instead of PROG, which sometimes confuses
the designers.

Figure 5.30: FPGA Setup

2. Click the Programmer button v or select Tools =»Programmer. The programmer
window should pop up as shown in Figure 5.31. Then, on the left of the programmer
window, select Add File. The Select Programming File window will display. From a list
of directories, select output_files directory = DDS_Traditional.sof, click Open. This
process is shown in Figure 5.32 and Figure 5.33.

47

W Programmer - C:/Users/shuoli2/Dropbox/Shuo Li Research/Traditional_DDS/DDS_Project - DDS_Traditional - [Chain2.cdf] [e][®@] =]
Fie Edit View Processing Tools Window Help & Search altera.com 0‘

[

£, Hardware Setup... | No Hardware Mode: [ITAG v| Progress:]

Enable real-time ISP to allow background programming (for MAX II and MAX V devices)

W File Device Checksum Usercode Program/ Verify Blank- Examine
B,
<| m] »
[save File

Figure 5.31: Programmer Window

% Select Programming File

Lookin: | |. C:\Users\shuoli2\Dropbox\Shuo Li ..arch\Traditional_DDSloutput_fies v| @ © @ |0 B

WA My Computer || pDS_Traditional.sof

R shuoli2
File name: IDDS_TraditionaI.sof | [Open]
Files of type: |Programming Files (*.sof *.pof *.jam *.jbc *.ekp *.jic) v | [Cancel]

Figure 5.32: Adding [.sof] File

48

4 Programmer - C:/Users/shuoli2/Dropbox/Shuo Li Research/Traditional_DDS/DDS_Project - DDS_Traditional - [Chain2.cdf* [@] =]
File Edit e P Tools Help &) Search altera.com @

&, Hardware Setup....| No Hardware Mode: [JTAG v | Progress:

[Enable real-time ISP to allow background programming (for MAX II and MAX V devices)
NS File Device Checksum Usercode Program/ Verify Blank- Examine
o Start Configure Check
@ Stop output_files/DDS_Traditio... EP4CE115F29 00596348 00596348
34 Auto Detect
{ Delete

»

& Change File...
izl save File

fthup
ToI

% Down —

;

EP4CE115F29
TDO

Figure 5.33: After Adding [.sof] File

Then, on the left corner of the programmer window, select Hardware Setup. In the
hardware setup window, select Hardware Settings, then select USB-Blaster [USB-0]
from the drop down list of Currently selected hardware. After that, click Close. The

process is shown in Figure 5.34.

=

}.h Hardware Setup

Hardware Settings JTAG Settings

Select a programming hardware setup to use when programming devices. This programming
hardware setup applies only to the current programmer window.

z)

Currently selected hardware: [USB-Blaster [UsB-0]

Available hardware items
Server Port Add Hardware...

Hardware
USB-Blaster Local USsB-0

Remove Hardware

Figure 5.34: Hardware Setup

49

Now, click Start on the left of the programmer window to program the design onto the
FPGA. A successful loading should be similar as shown in Figure 5.35. So far, the entire
design is on the FPGA. As shown in Figure 5.36, the Hex Displays on FPGA are not
flashing as usual after loading.

% Programmer - C:/Users/shuoli2/Dropbox/Shuo Li Research/Traditional_DDS/DDS_Project - DDS_Traditional - [Chaind.cdf]*

File Edit Viev Processing

Help &

Search altera.com

=)[=@]=]

®

£, Hardware Setup...

USB-Blaster [USB-0]

Mode: [JTAG

[7] Enable real-time ISP to allow background programming (for MAX II and MAX V devices)

Progress: 100% (Succssi-

' Start

@t Stop
G Auto Detect
J{ Delete

[, Add File...

% Change File...
Hl Save File
(% Add Device...
fup

J pown

File

Device

output_files/DDS_Traditio... EP4CE115F29

Checksum

00596348

Usercode

005596348

Program/ Verify Blank-
Configure Check

n

Examine

-~

Figure 5.35: Successful Loading

50

-

Uel;ome to ﬁH \
thera DE2= 15‘

Figure 5.36: FPGA after Successful Loading

We can use the on board 1/O, for example, switches to give FCW inputs and display the current
phase word information or amplitude information on LEDs. This is a very straightforward and
simple way to test the design.

51

5.5 Design Resources and Statistics

Resources Usage:

Altera FPGAs use the term Logic Element (LE) to describe a functional block that contains one
LUT, one register, and some additional circuitry. To find out the usage of LUTs after
compilation, go to Compilation Report tab. One the left, go to Fitter = Resource Section

= Resource Usage Summary [13]. The summary report of both traditional and truncation spurs-
free structures of DDS design should be displayed as Figure 5.37 and Figure 5.38.

T4 Quartus 164-Bit - C:/Shuo Li Research/Traditional DDS/DDS_Project - DDS_Traditional
Fie Edt View Project Assgwments Processng Tools Window Hep %)
D@ %

Project Navigator

A5 Cydone IVE: EPACE115F29C7

, [Ere | 7 ommts | 4

05 x

AR RN

* Register count does not indude registers nside RAM bodks or DSP blods.

100% 00:00:32)

Figure 5.37: Fitter Resource Usage Summary for DDS with Traditional Structure

52

4 QUITUS IB4-Bt - G/3nuo LI ReseBrcFree DDS/DDS.Proect - DU Free oo
Fle Edt Vew Projct Assgwents Processng Toos Widow Hep (%) ®
DS H@ % 2B 9 ook JHY SS9 @

Project Navigator 5% @ 00S_Free.bdf

00S Free 22
Entty Table of Contents L] Fitter Resource Usage Summary.
= rce us

&> cydone IV E: EPACE115F25C7
9 00s_Free

> Herarchy [E]Fles | Desontns | 4[»|
Tosks TEx

“ow: Compiaton | [customze...

CHddaaaaaaaaaaa

»
»
»
»

& Program Device (Open Programmer)

* Register count does not ncude regsters nside RAM bodks or DSP blods.

64,2 100% 00:00:32

Figure 5.38: Fitter Resource Usage Summary for DDS with Truncation Spurs-Free Structure

In the Figure 5.37 and Figure 5.38, the total number of LEs is reported. The LEs are divided into
3 categories: combinational with no register, register only, and combinational with register. The
total number of LUTs used should be the sum of the numbers of LEs that are combinational with
no register and combinational with register.

Then, the numbers of LEs categorized by the number of LUT inputs are reported. The sum of the
numbers of x input functions should be same as the number of LUTs.

After that, the total number of registers used is reported. The total number of registers is equal to
the sum of the numbers of LEs that are combinational with register and register only.

53

Timing Analysis:
The TimeQuest Timing Analyzer is used for timing analysis in Quartus II.

The maximum allowed frequency for the system clock can be found under TimeQuest Timing
Analyzer 2F,,, Summary

max

Power Consumption Analysis

The PowerPlay Power Analyzer shown in Figure 5.39 is used for power consumption analysis
in Quartus II. To activate the PowerPlay Power Analyzer during compilation, go to Assignments
= Settings. Under Category, you will find PowerPlay Power Analyzer Settings. Check the
box of Run PowerPlay Power Analyzer during compilation and click Apply =2 OK. Then,
after the compilation, the power analysis report can be found in PowerPlay Power Analyzer

= Summary in the Compilation Report tab [13].

" Settings - DDS_Traditional (o= | =]
General PowerPlay Power Analyzer Settings
Files
Libraries Select the power analyzer options.
IP Settings =
Operating Settings and Conditions || Run PowerPlay Power Analyzer during compilation

Compilation Process Settings
EDA Tool Settings

Analysis & Synthesis Settings Input File(s)
Fitter Settings

TimeQuest Timing Analyzer
Assembler

Design Assistant

SignalTap II Logic Analyzer

Logic Analyzer Interface

PowerPlay Power Analyzer Settings
SSN Analyzer

[use input file(s) to initialize toggle rates and static probabilities during power analysis

File Name ype Entity

Perform glitch filtering on VCD files

["] write out signal activities used during power analysis
Qutput file name:
[write signal activities to report file
["] write power dissipation by block to report file
Default toggle rates for unspecified signals
Default toggle rate used for input I/O signals: 12,5 % v
Default toggle rate used for remaining signals
() Use default value: | 12.5

@ Use vectorless estimation

[OK H Cancel H Apply H Help

Figure 5.39: Activate PowerPlay Power Analyzer

54

5.6 Instructions on Writing Testbench

To simulate our design, we need to write a testbench.sv file (see Figure 5.40). For the DDS in
this thesis, the testbench is fairly simple. It includes a clock generation block as well as an initial
block to initialize all the input signals. A “#” sign means “delay” and also we need to specify the
time unit and time precision for our simulation.

Generally, we include all the inputs and outputs in the testbench. In this design, we want to
monitor some selected internal signals, so we can just manually add the output signals to the
simulation waveforms.

Note: The time precision should be at least as precise as the time unit. For details of how to
apply the testbench in ModelSim, please refer to Appendix A.

1 module testbench();

2

3 timeunit 1ns;

4 timeprecision 1ns;

5

6 reg clk, reset;

7

8 dds U@(.clk(clk), .reset(reset));
9

10 always begin : CLOCK_GENERATION
11 # 10 clk = ~clk;

12 end

13

14 initial begin

15 clk = 0;

16 reset = 0;

17 #2 reset = 1;

18 #5 reset = 0;

19 end

20 endmodule

Figure 5.40: The testbench.sv file for Simulating DDS

55

5.7 Behavioral/Gate Level Simulation in Altera-ModelSim
In this thesis, we will use ModelSim to simulate the DDS design. Please refer to Appendix A for
tutorial on how to select and set up ModelSim as simulator in Altera Quartus II FPGA design

software.

After adding testbench.sv into test bench and simulation files, we need to compile the entire
design again. To start RTL simulation, as shown in Figure 5.41, select Tools & Run

Simulation Tool & RTL simulation or simply click on the RTL Simulation button % in the

tool bar.

NS Hd %2R 9™

Run Simulation Tool

> =
Feone TE x 2+ Launch Simulation Library Compiler
Entity 8. Launch Design Space Explorer
Ay cydone IV E: EPACE115F29C7 {1y TimeQuest Timing Analyzer
b 5 ads
Advisors
&» Chip Planner
43 Design Partition Planner
Netlist Viewers
SignalTap II Logic Analyzer
“= In-System Memory Content Editor
« » 8] Logic Analyzer Interface Editor
> vierarchy | (E]Fies | o peson 4| [of] 1n-System Sources and Probes Editor
= Tax| " igr Pins...
ogr
Flow: | Compilation ~ | [customize...
[] [l @i JTAG Chain Debugger
Task | = 4 Fault Injection Debugger
v 4 P Compile Design System Debuaging Tools
< > B Analysis & Synthesis
4 b W Fitter (Place &Route) i =i=m
v b B Assembler (Generate progr PRI TR
4 > TimeQuest Timing Analysis A Qsys
v b P> EDA Netist Writer < 2 |Tdsapss...
Ll —— 3
Customize...
@ @ R e
Rl Type ID Message License Setup...
@ Install Devices...

&t RTL Simulation
#2 Gate Level Smulation... [P Catalog Tax
Q X =

4 2 Instaled P
4 Project Directory
No Selection Available
4 Library
b Basic Functions
b DsP
b Interface Protocols
b Memory Interfaces and Controllers
b Processors and Peripherals
@ search for Partner 1P

ARTUS II

Version 14.0

‘¥ Buy Software
View Quartus Il
® Information

@ Documentation

@ Notification Center | ™,

»

Runs the specified RTL simulation tool

0% 00:00:0¢

Figure 5. 41: Launch ModelSim

56

The pop-up console should be shown in ModelSim-Altera as Figure 5.42 if there are no
compiling errors. Under testbench, select U0. In the sub-window Objects, right click any I/O
signals or any internal signals you want to monitor, then select Add Wave.

[/ ModelSim ALTERA STARTER EDITION 10.1e - D 0 wriEmEeex

File Edit View Compile Simulate Add Objects Tools Layout Bookmarks Window Help
B-sE2& iR 07 0-ATN H SHEDMY || Bt @ws 1 Layout [Simulace = ‘

——n n s S %S
100 ps 3] EAL N gg{“ TR T IS L
ColumnLayout [pefault vl J G} 6L 3 B G FBM@&H‘H R ’
Deonf B | seach: [w| bl “ S E RS § ‘
& sim - Default + 1 x| |§aObjects ——7—— Hi5x] |
[#linstance [Design unit_[Design unit type _|Visibiity | Total coverage |]
= testbench testbench Module +acc=...
8 CLOCK_GENER... testbench Statement +acc=...
+ 2 U0 dds Module +acc=...
Es #ALWAYS#10(... testbench Process +acc=...
@ #INITIAL#14 testbench Process +acc=... View Dedaration
ol sd std VPPackage +acc=.. View Memory Contents
4} 8 semaphore std SVClass +ace=... —— p——
F 5 maibox std SVParamClass ~ +acc=... Al Wave Hew
[+ process std SVClass +acc=... [4 address By
Wave »
|5 #vsim_capadity# Capadity +acc=... :dd D:Gﬁof‘ o
w

Add to
4 Processes (Active)

Name Copy ctl+C
3 Find... Ctrl+F

*

Insert Breakpoint
Toggle Coverage

Modify
Radix...

Show

29914170 ns

M torary | & sm KE|B

fAA Transcript Hd x|
.main_pane.objects.interior.cs.body.tree =]
run -all

Now: 238,557,690 ns Delta: 1 [sim: testbench/uo [

Figure 5.42: Add Wave to the Simulation Waveform

After adding all the signals you desire to select, go to the command line and type:
restart —f

This command will reset the waveform.

log -r *

This command will tell ModelSim to record all signals in the circuit recursively.
run 10000 ns

This command will run the testbench for 10000 ns.

57

Undock the simulation waveforms, then Zoom Full for more convenient reading. Right clicking
on the waveform will zoom the display to a proper scale as shown in Figure 5.43 [13].

M ModelSim ALTERA STARTER EDITION 101« T

File Edit View Compile Simulate Add Wave Tools

o) e

Layout Bookmarks

Window Help

B-3E28 1 BRO|0-AFN||SHUBY|| tten @ oednoame | 2w |J tatisas H Loyout [Smataze ﬂ{
ColumnLayout [pezautc | H B-AB-ZB-B|| [T [0 [«l# H DR H TEE et jf’
Fosf- B sen[vane || eeean|| [T LmWi®i
&} sim - Default Hd
*{Instance [Design unit _[Design unit type _|Visibiity [Total coverage |
=l testbench testbench Module face=...

| B CLOCK_GENER...
+F 2’00

@ #ALWAYS10(...
L @ #INITIAL#14
ol sd

+} 8 semaphore

{ 8 maibox

[+}- o process

|& #vsim_capacity#

testbench
dds
testbench
testbench
std
std
std
std

Statement
Module
Process
Process
VPackage
SVClass
SvParamClass
SVClass
Capadty

+acc=...
+acc=...
+acc=..
+acc=...
+acc=...
+acc=..
+acc=...
+acc=...
+acc=...

0001100110011...
10000001

Jtestbench/UOALUT.... |01000111

Name

-

(T
S —

946625340 ns

[[[«

£

** Warning: (vsim-WLF-5001)

File in use by: Silu Hostname: SILU-THINK

4 Attempting to use alternate WLF file

ProcessID: 25136

"./wlft335a2f".

Could not open WLF file: vsim.wlf

! Library | &5} sim KE P ol
f Transaript — Hdl x|

|

[Now: 1,001,589,450 ns Delta: 2

[sim: testbench/uo

0 ps to 996026272500 ps

Figure 5.43: Getting Waveforms for Convenient Reading

Important Note [13]:

The internal compiler of ModelSim is slightly different from that of Quartus II, so a successful
compilation in Quartus II does not guarantee successful compilation in ModelSim. If part of the
design is not showing up in the design hierarchy, that is probably the reason. The designers will
need to look through the error messages in the Transcripts and correct them to continue.

Also, simulations assume there are no delays in the circuits, which is obviously not the case in
the real world. Designers need to take the timing issues into consideration when they design the
circuits. If the result shown on the FPGA board is different from what is shown in simulation,

that is probably the reason.

For Gate Level Simulation, follow a procedure similar to that used by RTL Simulation to launch
ModelSim. ModelSim has an important feature of viewing signals as an analog waveform; that is
the reason we don’t have to implement an actual DAC and LPF to monitor the signal output.

58

Chapter 6. DDS MEASUREMENTS

6.1 Measurements of DDS with Traditional Structure

1] Wave B | pE.. =k
File Edit View Add Format Tools Bookmarks Window Help
g Wave Defait —mr —r A x|
B esH -8 2BBL0-AE || SHAMN ﬁt@“ R e F[o HEEBBES R]J et mﬁmﬂ :avzs-:.:ﬂv%\
Nt b fEel et e eaim vonsace AW |

4 [testbench/ck 1
4 [testbench/reset 0
B4 [testbench/U0/fow 134217728

B [testbench/U0/address |10000000

+ ¢ [testbench/UD/LUT _out | 00010101

o
ale Cursor 1 6110 ns
rrrrr 6750 ns
[1]
[5250 ns to 14569934 ps [

L=

- [[

Figure 6.1: 32-bit 1.6MHz Traditional DDS Behavioral Simulation

The clock frequency is SOMHz due to the maximum on-board frequency on FPGA, so the clock
cycle should be 20ns.

In Figure 6.1, given decimal number 134217728 (00001000000000000000000000000000 in
unsigned binary) as the FCW, we can calculate the output frequency to be 1.6MHz based on
Equation 2.7. From the distance between two cursors, we can see that one full cycle of sine wave
is 640ns, so the output frequency matches what we should have in theory.

59

= T — T—— 5
File Edit View Add Format Tools Bookmarks Window Help

e

[B-382&8 s hBL2 [0 AE||SHRAY || ttew F w-duapme gue]tatitasa4-92-3

Mo dEered i isetpisenl Ypis||QQaQa|| [T 1/NIHI

. Msgs
L \q\ AL LA UL ULAT VLA AT AL AR

T T
AT
DAY

He >

Now 20000 ns

Cursor 1
Cursor 2 7630 ns

3 K [I (1 N

[T

Figure 6.2: 32-bit SMHz Traditional DDS Behavioral Simulation

In Figure 6.2, from the distance between the cursors, we can see one full clock cycle is 200ns, so
the output frequency is SMHz. As the frequency grows faster, we can see it takes fewer samples
in each cycle, so the accuracy is not as good as 1.6MHz one.

P —] ey
File Edit Vie Add Format Tools Bookmarks Window Help
H x|

i R@02 |0 AE]|SERBY|| Htes B moduBse yye|tatitasa4 92 3]
Noa s B[EE et s [[3e ot mimn] g QAT Umiml S |

Msgs

4 ftestbenchjdk 1
4 ftestbenchfreset o il|
B-“ Jtestbench/U0/fow 2147883698 |0 147253648 ||

3“4 [Jtestbench/U0/address ~ | 10000000

3“4 [testbench/UDALUT out |00000011

Lme Now | 10000ns
s Cursor 1 190 ns
&< I YT
I olss Wi

['0ps to 2345058 ps [

Figure 6.3: 32-bit 25MHz Traditional DDS Behavioral Simulation

60

In the Figure 6.3, we cannot see the sine wave anymore, because the sampling process has to
obey the Nyquist theorem as we mentioned in Chapter 2.

18] Wave — — — - =R
File Edit View Add Format Tools Bookmarks Window Help

B Wave Defait ——mr b — — s x|
B3B8 BB 0 M| SHABD wEe was]tatizasaa-92 3]
W@@ﬂjﬂb“é’:éﬂ:ﬂa 5 »:J3«~~$~%>n—~=r~ H@Qq@,fmmgg;g@; |

Msgs \ |

ftestbenchjck ALY A AR A A ALAARARAAAAY AR JUU ATV FJULL LALLM
4 [testbenchjreset

6t PN i \H\ A m Ei m\ i \ ﬁy M mﬁ

ale Cursor 1 | 920553.691ns
[Pl cusr2 | ouesednns
il ETRN]

‘018585851 ps to 922687779 ps | Now: 34,866,173,682ps Delta: 1

Figure 6.4: 32-bit 1.6MHz Traditional DDS Gate-Level Simulation

In the Figure 6.4, post map & route simulation, we can see the impurities in the output, which are
the truncation spurs. In the Figure 6.5, the distortion will get worse with a higher frequency.

I -

58] Wave T T EENE
File Edit View Add Format Tools Bookmarks Windo Help

e — = qe>

BB 8 :R@O2 0 AE||SHAAT|| ot e= |3 we Ee aps]tatisas]aqa9a-3
R:qlﬂ@l»Hé?éikﬂ* e T R T T T
- |

3

Now 4555274.055 ns
Cursor 1 382713.304ns
Cursor 2 382913.304ns

< _vl‘J Kl]

T[T

Figure 6.5: 32-bit SMHz Traditional Spurs Gate-Level Simulation

61

6.2 Measurements of DDS with Truncation Spurs-Free Structure
Figure 6.6 and Figure 6.7 verify that the DDS with Truncation Spurs-Free Structure has the same
functionality as the traditional one.

B Wave —— - T (=T

File Edit View Add Format Tools Bookmarks Window Help

He x|

5B

|2-%-g8-3]

IJQ@& HMoeduln@e pastatisas
| s [v H@zaa@% T am

| |
[testbench/dk 1 e e e f‘ L i

\
134217728 134217728 T 1 T]
01011000 ILIEDIOIDID I 3333):)33 MIRIIRARASSONIPTDIIDIIDIINSAOTDDRIIIDADRSDTDDIIRIDINADREORIDRDIDID DA DISDDIN
000000000000000000000000 0000000000000D0000000000 | [[T]
01110101 APPSR ORIIBIEREIDIDIDIEREIDI DDLU D IDIE L
111011001111101100001100 LIDEDIIOMIDDNIDIIDIIDEIDEIIDIDID DD 33 DRUDEOIIDRDIDINDIIDADEIDIDIIDIIDIIIDEIEDIIONDIDIDIIDIDEIDIDIDDIIDIBDIIDIDIN

J££Eji

TEJM&

01111100

s Cursor 2 37430650 ns s
[2 K] N O

‘ 37429074532 ps to 3743382394(‘ Now: 259,485,830 ns Delta: 1

9o on — 0 T
ale Cursor 1 37430010 ns 6

Figure 6.6: 32-bit 1.6MHz Truncation Spurs-Free DDS Behavioral Simulation

P —— e} | =l O X
File Edit View Add Format Tools Bookmarks Window Help
g Wave Defallt —mr — — W <]

B sH-&] L 0 : 213398 3]
BN T e [aaaan|Tymms |
3 |

“ Jtestbench/dk I nnn nf ,HH Al s L
4 [testbench/reset

B4 ftestbench/U0ffow S —

B4 [testbench0/address :D:DD:D:DD:D:DD:DDDDDZDD BSNEESIEENsIEReRINeRRINERSNINESIEeenISIERIEEReIRaRsaneel)

B-# /testbench/U/address_fractional |0000011100011111000110; CO0NCo0000000n0000NCC00 BSNSEESIEERsIERSRIESRRISERSNINESIERERIIERNIEERSIBERIERRE)

B4 Jtestbench/UOLUT_out NOC00NC0000E000m00o0n0000Mn SIS NsIENSsINSERINEEsIIeRaIsnanISseEnIEInsIneesinensent

3 jtesthench/Uo/LUTfractional S 040830030000 T Y OO0 O 000 O O OO0 OO 00 0000000000000 00000000 on0000no00000o0r

B4 [testbench/U0/dds_output 01111010

1126619700 | - ' ' 336000 s ' 64
GM 23335730 ns
e 23335530 ns
[‘ 1 (KT] o |
‘ 23334996677 ps to 2333696357! ‘ Now: 160,276,970 ns Delta: 1 Y

Figure 6.7: 32-bit SMHz Truncation Spurs-Free DDS Behavioral Simulation

62

From Figure 6.8 and Figure 6.9, we compare the post map & route simulation result for signals
LUT_out and dds_out. LUT_out should be the same as the final output of traditional DDS and
dds_out is the final output of the truncation spurs-free DDS. We can see clearly that the
truncation spurs are eliminated by the new structure.

il Wove
File Edit View Add Format Tools Bookmarks Window Help
8] Wave - Default

ELE L L
Wg@y;aoﬂxwf* L E S][3e s s aqean TJJ Wi
¥ M

‘ I‘S‘bﬂl‘hldi A A TR H\U(\ (LA LA H\f* e e o -
4 [testbench/rese

- AAYAY\VAVAVARAN
g

B4 dds_out 0111...

B i e

><||» < | »|

i Cursor 1 |.321ns s

‘ 1111019258 ps to 1116149722 p [Now: 10,232,593,629 ps Delta: 0

Figure 6.8: 32-bit 1.6MHz Truncation Spurs-Free DDS Gate-Level Simulation

Ve — L X
File Edit Vie Add Format Tools Bookmarks Window Help

| Wave Defallt —mr —r e x|
EECEEEL R T e ‘ : '

| Wﬂ@iﬁsﬂbﬂ LE®A %L b [g e | s

3 o

‘mﬁ‘k 1 JHHH\H\HHHH\H\HHHHH\HH\HHHHH\H\HHHH\H\HHHH\HHH\HHHH\V\HHHH\HHHHlH\H\HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH Ty -

ﬂ_f AT %ﬂf MM “w b
o]

cme Now |628ns
mle Cursor 1 |759ns.

CPA cusor2 | 7s9ns
[] i

[31620013 ps to 33961883 ps | Now: 568,034,314 ps Delta: 1

.

Figure 6.9: 32-bit SMHz Truncation Spurs-Free DDS Gate-Level Simulation

63

Chapter 7. CONCLUSION

7.1 Summary

This thesis serves as a comprehensive tutorial on designing two different structures of DDS on
FPGA (traditional structure and truncation spurs-free structure). It starts by introducing the
background of both DDS and providing several design examples in Verilog. Then, the thesis

addresses the essential phases of FPGA design flow and gives a detailed step by step instruction
on designing digital circuits on Altera DE2-115 FPGA with Altera Quartus II FPGA
development software. In the end, the thesis compares the simulation results of both structures of
DDS and verifies the improvement of the output signal quality.

7.2 Future Work

1.

Since this thesis work is a preliminary research project to verify the functionality of a
new structure of DDS, the digital design uses an FPGA design approach. However, the
resources limitation and maximum on-board frequency of FPGA will limit the maximum
frequency of the DDS. Future work could use an ASIC approach to design the DDS and
fabricate the real circuit for testing.

Future research could focus on eliminating quantization noise spurs by creating a new
structure of DDS and building it on FPGA for verification.

. As mentioned in this thesis, DDS has many advantages over the analog counterpart.

Future research topics related to involving DDS into a more complex circuit design are
also worth exploring, for example, serving as the local oscillator of a digital PLL.

Pipelined structure for the PA and segmented DAC are also desired to accelerate the
speed of the DDS. For our design, it is not necessary because the speed is mainly limited
by the maximum on-board clock frequency of FPGA; however, if further research is
conducted with an ASIC design approach, especially for DDS MMIC design, hardware
architecture should be considered carefully. For details please refer to [21].

64

Appendix A: SETTING UP MODELSIM

In Quartus II, select Assignments = Settings; the settings window should display as shown in
Figure A.1. On the left of the window, click on EDA Tool Settings and set the simulation tool to
ModelSim-Altera; the format is Verilog HDL.

" Settings - DDS_Traditional (===

General EDA Tool Settings

Files

Libraries Specify the other EDA tools used with the Quartus II software to develop your project.

IP Settings =
IP Catalog Search Locations EDA tools:

Ope:/a‘ljt’;g Settings and Conditions Tool Type Tool Name Format(s) Run Tool Automatically
oltage

Temperature Design Entry/Synthesis [<None> v

1Y

<None> v Run this tool automatically to synthesiz

1Y

Compilation Process Settings Simulation [ModelSim-AItera v][Verilog HDL v]D Run gate-evel simulation automatically
Incremental Compilation

Physical Synthesis Optimizations
EDA Tool Settings Board-Level Timing <None>
Design Entry/Synthesis
Simulation
Formal Verification Signal Integrity <None >
Board-Level
4 Analysis & Synthesis Settings
VHDL Input
Verilog HDL Input
Default Parameters
Fitter Settings
TimeQuest Timing Analyzer
Assembler
Design Assistant
SignalTap II Logic Analyzer
Logic Analyzer Interface
PowerPlay Power Analyzer Settings
SSN Analyzer

Formal Verification <None> -

Symbol <None >

Boundary Scan <None>

< e

Figure A.1: EDA Tool Settings

65

Next, select Simulation under EDA Tool Settings. Choose ModelSim-Altera as the Tool
name, Verilog HDL as the Format for output netlist and “simulation/modelsim” as Output

directory. The window should display as Figure A .2.

_" Settings - DDS_Traditional ===

Files
Libraries Specify options for generating output files for use with other EDA tools.
4 [P Settings
IP Catalog Search Locations Tool name: [ModeISim‘AItera 2]
4 0 ting Setti d Conditi
pe;zltnaggee TGS A onchions [7] Run gate-evel simulation automatically after compilation
Temperature Y . <
4 Compilation Process Settings EDA Netlist Writer settings
Incremental Compilation Format for output netlist: [Verilog HDL v] Time scale: |1ps v]
Physical Synthesis Optimizations
4 EDA Tool Settings Output directory: simulation/modelsim @
Design Entry/Synthesis s ’ == 3 ;
Simulation ["] Map illegal HDL characters [T] Enable glitch filtering
Formal Verification Options for Power Estimation
Board-Level
4 Analysis & Synthesis Settings [Generate Value Change Dump (VCD) file script |Script Settings...
VHDL Input N
Verilog HDL InDUt Uesign Instance name.
Default Parameters
Fitter Settings
TimeQuest Timing Analyzer More EDA Netlist Writer Settings...
Assembler o -
Design Assistant NativeLink settings
SignalTap II Logic Analyzer) None
Logic Analyzer Interface
PowerPlay Power Analyzer Settings @ Compile test bench: v | |Test Benches...
SSN Analyzer
[use script to set up simulation:
() Script to compile test bench:
More NativeLink Settings...
T | i | e

Figure A.2: Simulation

At the bottom of Figure A .2, there is a NativeLink settings section. Under this section, select
Compile test bench, then click on Test Benches. A Test Benches window should pop up. Click
on New, then a window shown as Figure A.3 should pop up. Enter testbench for Test bench
name and Top level module in test bench, 1000 ns as the simulation end time, and then click on

the ... button to add testbench.v into test bench and simulation files [13]. After that, click OK.

66

=" New Test Bench Settings 2|

Create new test bench settings.

Test bench name: tesﬁ:ench

Top level module in test bench: testbench
[] use test bench to perform VHDL timing simulation
Design instance name in test bench: P{A
Simulation period
(7) Run simulation until all vector stimuli are used

@ End simulation at: 1000 i @

Test bench and simulation files

File name: testbench.v E]

File Name Library HDL Version

Remove
Up
Down

: Properties...

Figure A.3: New Test Bench Settings

So far, we finish setting up ModelSim as our simulator and are ready to run the testbench for

simulation.

67

Appendix B: VERILOG MODULES

Besides the modules included in the body of this thesis, the Verilog codes for other primary

modules are provided here.

/*Truncator*/
module phase_truncator (clk, reset, pa_out, address, address_fractional);

input clk, reset;

input [31:0] pa_out;

output [7:0] address;

output [23:0] address_fractional;

reg [7:0] address;
reg [23:0] address_fractional;

always @(posedge clk or posedge reset)
if (reset == 1'bl)
begin
address <= 8'b0;
address_fractional <= 24'b0;

end
else
begin
address <= pa_out[31:24];
address_fractional <= pa_out[23:0];
end
endmodule
/*Register*/

module register(clk, reset, d, q);

input clk, reset;
input [31:0] d;
output [31:0] q;

reg [31:0] q;

always @ (posedge clk or posedge reset)
begin
if (reset == 1'bl)
q <= 32'd0;
else
q<=d;
end
endmodule

68

[FLUT®*/
module look_up_table(clk, reset, address, LUT_fractional, LUT_out);

input clk, reset;

input [7:0] address;

output [23:0] LUT_fractional;
output [7:0] LUT _out;

reg [7:0] LUT _out;
reg [23:0] LUT_fractional;
reg [31:0] LUT [255:0];

always@(posedge clk or posedge reset)

begin

if(reset == 1'b1)

begin

LUT[0]<=32'b0;
LUT[1]<=32'b00000011001001101110100100100110;
LUT[2]<=32'b00000110010011010101010100000101;
LUT[3]<=32'b00001001011100101100011001100111;
LUT[4]<=32'b00001100100101101100000001000001;
LUT[5]<=32'b00001111101110001100010110111101;
LUT[6]<=32'b00010010110110000101101001011000;
LUT[7]<=32'b00010101111101010000000111101101;
LUT[8]<=32'b00011001000011100100000011001011;
LUT[9]<=32'b00011100001000111001101111001010;
LUT[10]<=32'b00011111001101001001100001011100;
LUT[11]<=32'b00100010010000001011110010100010;
LUT[12]<=32'b00100101010001111000111101111010;
LUT[13]<=32'b00101000010010001001100010011000;
LUT[14]<=32'b00101011010000110110000010010111;
LUT[15]<=32'b00101110001101110111000100001001;
LUT[16]<=32'b00110001001001000101010010001010;
LUT[17]<=32'b00110100000010011001011011010101;
LUT[18]<=32'b00110110111001101100010011010101;
LUT[19]<=32'b00111001101110110110110010110011;
LUT[20]<=32'b00111100100001110001110111101101;
LUT[21]<=32'b00111111010010010110100101100101;
LUT[22]<=32'b01000010000000011110000101110011;
LUT[23]<=32'b01000100101100000001100111110101;
LUT[24]<=32'b01000111010100111010100001011111;
LUT[25]<=32'b01001001111011000010001111001111;
LUT[26]<=32'b01001100011110010010010100011010;
LUT[27]<=32'b01001110111110100100011011011101;
LUT[28]<=32'b01010001011011110010010110001111;
LUT[29]<=32'b01010011110101110101111110001011;

69

LUT

LUT[30]<=32'b01010110001100101001010100100101;
LUT[31]<=32'b01011000100000000110100010110110;
LUT[32]<=32'b01011010110000000111111010101010;
LUT[33]<=32'b01011100111100100111110110010000;
LUT[34]<=32'b01011111000101100000111000100110;
LUT[35]<=32'b01100001001010101101101101101001;
LUT[36]<=32'b01100011001100001001001010100001;
LUT[37]<=32'b01100101001001101110001101101011;
LUT[38]<=32'b01100111000011010111111111001010;
LUT[39]<=32'b01101000111001000001110000110010;
LUT[40]<=32'b01101010101010100110111110010010;
LUT[41]<=32'b01101100011000000011001101011111;
LUT[42]<=32'b01101110000001010010001110100011;
LUT[43]<=32'b01101111100110001111111100000010;
LUT[44]<=32'b01110001000110111000011011001000;
LUT[45]<=32'b01110010100011000111111011110011;
LUT[46]<=32'b01110011111010111010111000111001;
LUT[47]<=32'b01110101001110001101111000010100;
LUT[48]<=32'b01110110011100111101101011001001;
LUT[49]<=32'b01110111100111000111001101110001;
LUT[50]<=32'b01111000101100100111100111111110;
LUT[51]<=32'b01111001101101011100001101000111;
LUT[52]<=32'b01111010101001100010011100001001;
LUT[53]<=32'b01111011100000110111111111110010;
LUT[54]<=32'b01111100010011011010101110100101;
LUT[55]<=32'b01111101000001001000101010111101;
LUT[56]<=32'b01111101101010000000000011010111;
LUT[57]<=32'b01111110001101111111010010010001;
LUT[58]<=32'b01111110101101000100111110010001;
LUT[59]<=32'b01111111000111001111111010001010;
LUT[60]<=32'b01111111011100011111000100111010;
LUT[61]<=32'b01111111101100110001101001110001;
LUT[62]<=32'b01111111111000000111000000010001;
LUT[63]<=32'b01111111111110011110101100010000;
LUT[64]<=32'b01111111111111111000011101111001;
LUT[65]<=32'b01111111111100010100010001101110;
LUT[66]<=32'b01111111110011110010010000100101;
LUT[67]<=32'b01111111100110010010101111101011;
LUT[68]<=32'b01111111010011110110010000100000;
LUT[69]<=32'b01111110111100011101100000111001;
LUT[70]<=32'b01111110100000001001011010111101;
LUT[71]<=32'b01111101111110111011000101000001;
LUT[72]<=32'b01111101011000110011110001100110;
LUT[73]<=32'b01111100101101110100111111011001;
LUT[74]<=32'b01111011111110000000011001001011;
[75]

<=32'b01111011001001010111110101101111;

70

LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT

76]<=32'b01111010001111111101010111110101;
77]1<=32'b01111001010001110011001110000100;
78]<=32'b01111000001110111011110010111000;
79]<=32'b01110111000111011001101100010110;
80]<=32b01110101111011001111101100001100;
81]<=32b01110100101010100000101111100101;
82]<=32b01110011010101001111111111000100;
83]<=32'b01110001111011100000101110011110;
84]<=32'b01110000011101010110011100101100;
85]<=32b01101110111010110100110011101010;
86]<=32b01101101010011111111101000000111;
87]<=32b01101011101000111010111001100000;
88]<=32b01101001111001101010110001110101;
89]<=32'b01101000000110010011100101011011;
90]<=32'b01100110001110111001110010111010;
91]<=32'b01100100010011100010000010110111;
92]<=32'b01100010010100010001000111110001;
93]<=32'b01100000010001001011111101110001;
94]1<=32'b01011110001010010111101010011111;
95]<=32'b01011011111111111001011100110101;
96]<=32'b01011001110001110110101100110010;
97]<=32'b01010111100000010100111011001100;
98]<=32'b01010101001011011001110001100110;
99]<=32'b01010010110011001011000001111010;
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

<=32'b01010000010111101110100110010100;
<=32'b01001101111001001010100000111101;
<=32'b01001011010111100100111011101111;
<=32'b01001000110011000100001000000010;
<=32'b01000110001011101110011110100011;
<=32'b01000011100001101010011110111110;
<=32'b01000000110100111110101111110000;
<=32'b00111110000101110001111101110111;
<=32'b00111011010100001010111100100001;
<=32'b00111000100000010000100100111100;
<=32'b00110101101010001001110110000100;
<=32'b00110010110001111101110100001111;
<=32'b00101111110111110011101001000001;
<=32'b00101100111011110010100010111000;
<=32'b00101001111110000001110100110110;
<=32'b00100110111110101000110110010101;
<=32'b00100011111101101111000010110010;
<=32'b00100000111011011011111001011000;
<=32'b00011101110111110110111100110011;
<=32'b00011010110011000111110010111001;
<=32'b00010111101101010110000100011000;
<=32'b00010100100110101001011100100011;

o B e B s B e B e B e B e A e B s B e B e B s B s B s Bl e B s Bl s Bl s B e B e M e M e B sy M s Ml s B s B sm M amn M M s M asn Maps Bow s s lso s iso sl sl e e Sams)

e e

71

LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

<=32'b00010001011111001001101001000001;
<=32'b00001110010110111110011001010110;
<=32'b00001011001110001111011110110100;
<=32'b00001000000101000100101100000100;
<=32'b00000100111011100101110100110101;
<=32'b00000001110001111010101101100111;
<=32'b11111110101000001011001011011011;
<=32'b11111011011110011111000011011010;
<=32'b11111000010100111110001010100101;
<=32'b11110101001011110000010101100010;
<=32'b11110010000010111101011000001000;
<=32'b11101110111010101101000101001010;
<=32'b11101011110011000111001110000110;
<=32'b11101000101100010011100010110000;
<=32'b11100101100110011001110001000000;
<=32'b11100010100001100001100100011101;
<=32'b11011111011101110010100110001011;
<=32'b11011100011011010100011100011011;
<=32'b11011001011010001110101010010001;
<=32'b11010110011010101000101111011000;
<=32'b11010011011100101010000111101100;
<=32'b11010000100000011010001011001010;
<=32'b11001101100110000000001101011011;
<=32'b11001010101101100011011101100001;
<=32'b11000111110111001011000101101010;
<=32'b11000101000010111110001010111001;
<=32'b11000010010001000011101100111001;
<=32'b10111111100001100010100101100110;
<=32'b10111100110100100001101001000001;
<=32'b10111010001010000111100100111110;
<=32'b10110111100010011011000000110000;
<=32'b10110100111101100010011100111100;
<=32'b10110010011011100100010011001001;
<=32'b10101111111100100110110101101110;
<=32'b10101101100000110000001111100011;
<=32'b10101011001000000110100011110010;
<=32'b10101000110010101111101101101001;
<=32'b10100110100000110001100000001010;
<=32'b10100100010010010001100101111011;
<=32'b10100010000111010101100000111100;
<=32'b10100000000000000010101010010101;
<=32'b10011101111100011110010010001110;
<=32'b10011011111100101101011111011011;
<=32'b10011010000000110101001111010101;
<=32'b10011000001000111010010101101011;
<=32'b10010110010101000001011100010101;

o B e B s B e B e B e B e A B s B e B e B s B s B e B e B s B s B e B e B e A B o B s B s B T e B e B s B o T o B s B s B s B e B e B e Y e e B e B s B e B s B e B s B e M
e e

72

LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

<=32'b10010100100101001111000011001110;
<=32'b10010010111001100111100000000000;
<=32'b10010001010010001110111110000011;
<=32'b10001111101111001001011110001011;
<=32'b10001110010000011010110110100000;
<=32'b10001100110110000110110010010111;
<=32'b10001011100000010000110010000110;
<=32'b10001010001110111100001010111110;
<=32'b10001001000010001100000111000000;
<=32'b10000111111010000011100100110110;
<=32'b10000110110110100101010111101011;
<=32'b10000101110111110100000111000111;
<=32'b10000100111101110010001111000110;
<=32'b10000100001000100001111111110001;
<=32'b10000011011000000101011101011011;
<=32'b10000010101100011110100000011010;
<=32'b10000010000101101110110101000011;
<=32'b10000001100011110111111011100110;
<=32'b10000001000110111011001000001010;
<=32'b10000000101110111001100010101001;
<=32'b10000000011011110100000110101111;
<=32'b10000000001101101011100011110111;
<=32'b10000000000100100000011101000111;
<=32'b10000000000000010011001001010010;
<=32'b10000000000001000011110010110101;
<=32'b10000000000110110010010111110110;
<=32'b10000000010001011110101010001000;
<=32'b10000000100001001000001111000111;
<=32'b10000000110101101110011111111001;
<=32'b10000001001111010000101001010110;
<=32'b10000001101101101101101100000000;
<=32'b10000010010001000100011100001111;
<=32'b10000010111001010011100010001110;
<=32'b10000011100110011001011001111111;
<=32'b10000100011000010100010011100010;
<=32'b10000101001111000010010010110101;
<=32'b10000110001010100001001111111111;
<=32'b10000111001010101110110111001101;
<=32'b10001000001111101000101000111110;
<=32'b10001001011001001011111010001001;
<=32'b10001010100111010101110011111111;
<=32'b10001011111010000011010100011000;
<=32'b10001101010001010001001101110101;
<=32'b10001110101100111100000111101100;
<=32'b10010000001101000000011110001111;
<=32'b10010001110001011010100010110100;

R e
e e

73

LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT
LUT

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

<=32'b10010011011010000110011100000001;
<=32'b10010101000111000000000101110001;
<=32'b10010110111000000011010001100011;
<=32'b10011000101101001011100110100010;
<=32'b10011010100110010100100001110000;
<=32'b10011100100011011001010110010001;
<=32'b10011110100100010101001101011000;
<=32'b10100000101001000011000110110011;
<=32'b10100010110001011101111000110110;
<=32'b10100100111101100000010000100111;
<=32'b10100111001101000100110010001111;
<=32'b10101001100000000101111001000101;
<=32b10101011110110011101110111111011;
<=32'b10101110010000000110111001001101;
<=32'b10110000101100111010111111010001;
<=32'b10110011001100110100000100100011;
<=32b10110101101111101011111011111000;
<=32'b10111000010101011100010000101001;
<=32b10111010111101111110100111000101;
<=32'b10111101101001001100011100100001;
<=32'b11000000010110111111000111101001;
<=32'b11000011000111001111111000101110;
<=32'b11000101111001110111111001111001;
<=32'b11001000101110110000001111011100;
<=32'b11001011100101110001111000000001;
<=32b11001110011110110101101100111101;
<=32'b11010001011001110100100010100011;
<=32'b11010100010110100111001000010100;
<=32'b11010111010101000110001001010001;
<=32'b11011010010101001010001100001101;
<=32'b11011101010110101011110100000001;
<=32'b11100000011001100011011111111101;
<=32'b11100011011101101001101011111101;
<=32'b11100110100010110110110000110111;
<=32'b11101001101001000011000100110011;
<=32'b11101100110000000110111011011011;
<=32b11101111110111111010100110010000;
<=32'b11110011000000010110010100111100;
<=32'b11110110001001010010010101100011;
<=32'b11111001010010100110110100111101;
LUT[254]<=32'b11111100011100001011111111000010;
LUT[255]<=32'b11111111100101111001111111000001;
LUT_out <= 32'b0;

end

e e e e e e P e e e e e e e) e e) e e e e e e e e e e e e e e e e e e e
e e

else

74

LUT_out <= LUT[address][31:24];
LUT_fractional <= LUT[address][23:0];

end
endmodule

To get the memory contents for LUT of traditional DDS, please check Section 5.2, Step 6.

/*Adder*/
module adder (a, b, sum);

input [31:0] a, b;
output [31:0] sum;

reg [31:0] sum;

always @ (a or b)
begin

sum =a + b;
end
endmodule

75

(1]

(2]

(3]

(4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

References

Analog Devices, “A technical tutorial on digital signal synthesis,” Application Note,
1999. Available: http://www.analog.com/static/imported-
files/tutorials/450968421DDS_Tutorial rev12-2-99.pdf

National Instruments, “Understanding direct digital synthesis,” Application Note, 2006.
Available: http://www .ni.com/white-paper/5516/en/

Y. Yang, J. Cai, J. Schutt-Aine, (2013) “A novel truncation spurs free structure of direct
digital synthesizer,” COMPEL - The International Journal for Computation and
Mathematics in Electrical and Electronic Engineering, vol. 32 issue no. 2, pp. 454 — 466.

K. Bhagat, “Tutorial on designing and implementing a direct digital synthesizer (DDS)
on a field programmable gate array (FPGA),” M.S. thesis, University of Illinois at
Urbana-Champaign, Urbana, IL, 2012.

C. Shan, Z. Chen, H. Yuan and W. Hu, “Design and implementation of a FPGA-based
direct digital synthesizer,” in Electrical and Control Engineering (ICECE), 2011
International Conference, pp. 614-617.

b

T. M. Comberiate, “Phase noise spur reduction in an array of direct digital synthesizers,’
M.S. thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 2010.

H. Omran, K. Sharaf, and M. Ibrahim, “An all-digital direct digital synthesizer fully
implemented on FPGA,” in Design and Test Workshop (IDT), 2009 4" International, pp.
1-6.

C. E. Shannon, “Communication in the presence of noise,” Proceedings of the IRE,
January 1949, vol. 37, no. 1, pp. 10-21.

J. Vankka, Digital Synthesizers and Transmitters for Software Radio. Dordrecht, The
Netherlands: Springer, 2005.

A. A. Alsharef, M. A. Mohd, Ali and H. Sanusi, “Direct digital frequency synthesizer
simulation and design by means of Quartus-ModelSim,” Journal of Applied Science,
2012, vol. 12, no. 20, pp. 2172-2177.

Analog Devices, “Determining if a spur is related to the DDS/DAC or to some other
source,” Application Note, 2007. Available: http://www.analog.com/static/imported-
files/application_notes/131351807AN_927 .pdf

World of ASIC, 2012, website available: http://www.asic-world.com/

76

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

ECE 385 Digital Systems Laboratory, 2014, website available:
https://wiki.cites.illinois.edu/wiki/display/ECE385/Home

CS 233 Computer Architecture, 2014, website available:
https://wiki.cites.illinois.edu/wiki/display/cs233fal4/Home

Altera DE2-115 Development and Education Board, 2014, website available:
http://www .altera.com/education/univ/materials/boards/de2-115/unv-de2-115-board.html

ISE FPGA Design Flow Overview, Xilinx Inc., 2008, website available:
http://www xilinx .com/itp/xilinx10/isehelp/ise_c_fpea design flow overview.htm

M. Chaitanya, “FPGA Design Flow,” 2012, website available:
http://digitaltagebuch.wordpress.com/2012/11/26/fpga-design-flow/

FPGA Design Flow Overview, FPGA Central, 2011, website available:
http://www .fpgacentral.com/docs/fpga-tutorial/fpga-design-flow-overview

FPGA design implementation, CORE Technologies, 2009, website available:
http://www.1-core.com/library/digital/fpga-design-tutorial/implementation_xilinx-shtml

Altera, “DE2-115 User Manual,” 2010. Available:
ftp://ftp.altera.com/up/pub/Altera_Material/12.1/Boards/DE2-
115/DE2 115 User Manual.pdf

X. Geng, F.Da,J. Irwin and C. Jaeger, “An 11-Bit 8.6 GHz DDS MMIC with 10-bit
segmented sine-weighted DAC,” IEEE Journal of Solid-State Circuits, vol. 45, no. 2, pp.
300-313, February 2010.

77

