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Abstract 
Direct digital synthesis is a technique for using digital data processing blocks as a means to 
generate a frequency and phase tunable output signal referenced to a fixed-frequency precision 
clock source. Many telecommunication applications require such a high-speed switching, fine-
tuning and superior quality signal source for their components. This thesis will introduce the 
direct digital synthesizer (DDS) and investigate the signal integrity issues associated with the 
DDS design. 

In order to minimize the size of the lookup table to save hardware and lower the power 
consumption, we normally truncate the phase word output from the phase accumulator in the 
standard approach of designing DDS. However, this process will generate spurious frequencies 
(spurs), which degrade the quality of the output signals. It is considered one of the main signal 
integrity issues in the DDS design.  

Previous research introduces a novel spurs-free truncation method for compressing the lookup 
table to avoid using phase truncation without significant hardware change. This thesis aims to 
implement this DDS with novel truncation spurs-free structure and test it in a practical 
environment. It does so by providing a tutorial on designing, implementing and simulating the 
DDS on an Altera DE2-115 FPGA using Altera Quartus II FPGA design software and ModelSim 
Simulator. The Verilog hardware description language is used as the development language.  
This thesis will describe entire designs of both DDS with traditional structure and DDS with 
novel truncation spurs-free structure. By comparing the outputs, it also examines the 
corresponding simulation results and verifies the improvement of the signal quality.  
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Chapter 1. INTRODUCTION 
	
  

1.1 Motivation 
A direct digital synthesizer (DDS) is a type of frequency synthesizer used for generating 
arbitrary waveforms referenced to a single, fixed-frequency clock. Nowadays, the cost-
competitive, high-performance, functionality-integrated and small package-sized DDS products 
are widely used in the field of telecommunications and are becoming an alternative to some 
traditional analog synthesizer solutions. The applications of DDS include signal generation, local 
oscillators, function generators, mixers, modulators, and sound synthesizers.  

 The advantages of DDS are the following [1]: 

1. Precise tuning resolution in micro-hertz and sub-degree phase tuning capability.  
 
Application example: Because the DDS is able to generate signals at very precise 
frequencies, it is useful for the applications that require phase continuous frequency 
sweeping such as filter characterization [2]. 
 

2. High speed tuning while keeping the phase continuous with no overshoots or 
undershoots.  
 
Application example: Function generators. 
 

3. Digital architecture ensures no need for manual tuning or tweaking associated with 
component aging and temperature drift in an analog synthesizer solution. 
 
Application examples: Local oscillator for digital phase-locked loop (PLL) 
 

4.  Digital control interface enables the system to be remotely controlled, minutely 
optimized and under processor control.  

With the above advantages over the traditional analog frequency synthesis technologies, it seems 
obvious that direct digital synthesis technology should be able to dominate the frequency 
synthesis area. However, the signal integrity problems mainly caused by the spurs have limited 
its usage in many high-demand applications. Among them, the truncation spurs generated from 
the phase truncation in the standard DDS design process are the primary problem and have 
become a major signal integrity issue in the DDS design.  

 



2	
  
	
  	
  

By investigating and understanding the sources of the spurs, previous research has come up with 
a truncation spurs-free method for compressing the look-up table to avoid phase truncation 
without significant increase of hardware usage [3]. The motivation of this thesis is to design such 
a DDS with truncation spurs-free structure and verify the improvement of the signal quality. 
Since it is a preliminary research work, the DDS will be designed and implemented in Verilog 
codes that are synthesizable on an FPGA.  FPGA is widely used in digital circuit design for its 
flexibility, accuracy and effectiveness. The most significant advantage of using an FPGA is that 
designs can be created and changed in a very short period. Instead, with application specific 
integrated circuits (ASIC), the designers will have to wait months for the circuits to be fabricated 
[4]. In this thesis, we aim to investigate the truncation spurs-free method; therefore, we will 
adjust the design and parameters along the way, so it is more feasible for us to use the FPGA 
design approach. However, on the other hand, the FPGA will limit the highest frequency we can 
reach. In this thesis work, the fixed reference clock frequency is 50MHz, which is the maximum 
FPGA on-board clock.  

 

1.2 Outline  
This thesis will serve as a complete tutorial on the background knowledge of DDS with 
traditional structure and DDS with truncation spurs-free structure as well as how to design and 
implement them in Verilog that are synthesizable on FPGA and simulate them with ModelSim.  
 

1. Chapter 2 provides an overview of the structure and operation of the DDS with both 
traditional and truncation spurs-free structures. Additionally, it introduces which types of 
spurs that may exist, the reason why they exist and the method for eliminating the 
truncation spurs.  
 

2. Chapter 3 serves as an introduction to Verilog HDL. It addresses the necessary 
knowledge that we should have about Verilog for completing this project by providing 
examples of some major blocks in digital circuit design.  

 
3. Chapter 4 introduces the background knowledge of FPGA and the FPGA design flow 

 
4. Chapter 5 presents a detailed and complete step-by-step tutorial on designing, 

implementing and simulating both DDS with traditional structure and DDS with 
truncation spurs-free structure on FPGA in Altera Quartus FPGA development software.  

 
5. Chapter 6 presents the simulation results from the different structures of DDS and some 

theoretical analysis of the results.  
 

6. Chapter 7 concludes this thesis with a summary and potential topics for further research.  
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Chapter 2. THEORETICAL ANALYSIS OF DDS 
	
  

2.1 Theoretical Analysis of DDS with Traditional Structure 
The traditional direct digital synthesizer (DDS) mainly consists of four primary components. The 
first one is the phase accumulator (PA), which determines the frequency range and accuracy of 
the output signal. The second component is the lookup table (LUT), which is used to store the 
amplitude information of the quantized and discrete sine wave. The third component is the 
digital to analog converter (DAC), which generates analog signal. The fourth component is the 
low pass filter (LPF), which is used to smoothen the output signal [5],[6]. The traditional 
structure of DDS is shown in Figure 2.1 [4].  

 

  
Figure 2.1: Traditional Structure of DDS 

The operation of the DDS starts with applying a frequency control/tuning word (FCW/FTW) to 
the PA. With referencing a fixed input clock, the PA will increment by the M-bit FCW (M = 32 
in our design) once in each clock cycle and the result value is stored in an inbuilt register. The 
output of the register will loop back to be accumulated with input FCW in the next clock cycle. 
The output of the PA is then truncated from M-bit to W-bit (W<M) and fed into the input of 
LUT. The process of truncation is simply elimination of the lower order bits. The LUT will take 
the W-bit word (W = 8 in our design) as the phase of the sine wave and generate the amplitude. 
Therefore, the LUT is also called a phase to amplitude converter. The quantized version of the 
sine wave is then fed into the DAC, which generates the analog output signal. Generally, the bit 
width of the DAC input is always limited. Therefore, the output of the LUT is truncated again 
before being fed into the DAC. After converting the digital signal to analog signal, the output of 
DAC is then fed into the LPF, which reduces the noise and eliminates the spikes of the signal 
[1],[4]. The main consideration is that PA and DAC should operate on the same reference clock. 
Even though the PA is clocked, it still operates very fast; however, the speed of DAC and LPF is 
relatively low due to their design architecture [7]. Now, we will look into the details in each 
component and understand the background theory on how exactly the DDS works.  
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Phase Accumulator (PA): 

The PA is constructed by an adder and a built-in register. In each clock cycle, we can realize the 
accumulation by adding the output of the register from last clock cycle back to the input of the 
adder. Then, the M-bit output of PA will increment by FCW. The structure of the PA is shown in 
Figure 2.2.	
  	
   	
  

	
  

	
  

	
  
Figure 2.2: Structure of Phase Accumulator  

 
The output of PA forms a quantized saw-tooth waveform as shown in Figure 2.3 [1],[4]. Each 
dot on the saw-tooth waveform is the actual value of PA output.  
 

 
 

Figure 2.3: Behavior of Truncation Words 
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In Figure 2.2, we name the reference clock frequency of DDS system as fclock. DDS conducts 
frequency accumulation from the “Phase” concept. As we mentioned above, the PA is 
constructed by an adder and a register. For each coming clock impulse, the adder will add FCW 
with the output of the PA from the last clock cycle, then send the sum back to the output of the 
PA to realize accumulation. In this way, PA will increment by FCW once at each coming clock 
impulse. The output data is the phase of the synthesized signal. The overflow frequency of the 
PA is the frequency of the DDS output signal.  

PA is the core of DDS system that generates phase information of the signal increment. For the 
sine wave, instant amplitude completely depends on instant phase according to Equation 2.1 

 
ω =

dϕ(t)
dt  

 

(2.1) 

 

Therefore, the faster the phase change, the higher the signal frequency.  

The PA applies the overflow feature of M-bit binary adder to simulate 2π phase cycle of the 
ideal sine wave. The output of the PA can be considered as the phase signal of the ideal sine 
wave while the output of LUT can be considered as the clock sampling of the time-domain 
waveform.  

Let M be the word length of the PA and fclock as the reference clock frequency; then the clock 
cycle is shown as Equation 2.2.  

 
𝑇! =

1
𝑓!"#!$

 

 

(2.2) 

 

Then, the PA has 2M possible values. FCW is the frequency control word. During the working 
process of the system, the increment of the PA in each clock cycle is  

 
𝛥𝜙 = 𝐹𝐶𝑊×

2𝜋
2!   

 

(2.3) 

 

The corresponding angular frequency would be 

 
ω =

𝛥𝛷
𝛥𝑡 =

𝛥𝛷
𝑇!

  = 𝐹𝐶𝑊×
2𝜋𝑓!"#!$
2!  

 

(2.4) 
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Therefore, the output frequency of the DDS is  

 
𝑓!!" =

𝜔
2𝜋 = 𝐹𝐶𝑊×

𝑓!"#!$
2!  

 

(2.5) 

 

From Equation 2.5, we know that the larger the FCW, the faster the PA jumps, which leads to a 
higher frequency at the output. The resolution of the DDS output signal or the step interval of the 
fDDS is  

 
𝛥𝑓!!" =

𝑓!"#!$
2!  

 

(2.6) 

 

Since the output signal of the DDS is the sampling synthesis of the sine wave, it is very 
important to fulfill the Nyquist theorem requirement. The Nyquist theorem states: “If a function 
x(t) contains no frequencies higher than B Hz, it is completely determined by giving its ordinates 
at a series of points spaced 1/(2B) seconds apart,” [4],[8],[9]. Equation 2.5 is conditional, given 
that Equation 2.7 is true [9]. 

 
𝑓!!" =

𝑓!"#!$
2  

 

(2.7) 

 

Thus, 

 𝐹𝐶𝑊 ≤ 2!!! 
 

(2.8) 

 

 According to the characteristic requirement of the spectrum, we normally choose [1] 

   𝑓!!" ≤ 0.4𝑓!"#!$    
 

(2.9) 
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For a more straightforward explanation, the function of PA performs as a “phase wheel.” Shown 
as Figure 2.4 , the sine wave oscillation is considered as a vector rotation around a phase circle. 
Each designated point on the phase wheel corresponds to an equivalent point on a full cycle of a 
sine wave. As the vector rotates, the corresponding output sine wave is being generated. When 
the vector finishes rotating the whole phase wheel at a constant speed, it means that a complete 
cycle of sine wave is outputted. The contents of the PA correspond to the points on the cycle of 
the sine wave. The number of discrete phase points on the phase wheel depends on the resolution 
of the PA, which is fclock/2M in this thesis design. The larger the M, the larger number of discrete 
phase points we have on the phase wheel (the number is 2M). However, the output of the PA is 
linear, so it cannot be used to generate a sine wave directly; it is the reason that the DDS system 
includes a LUT [1].  

 

 

 

Figure 2.4: Digital Phase Wheel 
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Lookup Table (LUT): 

The lookup table (LUT) serves as a phase-to-amplitude converter, which is used to convert a 
truncated version of the PA’s instantaneous output value into the discrete sine wave amplitude 
information that is presented to the D/A converter [1]. It consists of a read only memory (ROM). 
By using the output data of the PA as the phase sampling address, we can get waveform 
sampling data (binary code) stored in the LUT, then complete the phase-to-amplitude conversion. 
To keep the LUT reasonably sized, we truncate the bits from the PA and only feed the higher 
order bits to the input of LUT to save the hardware resources and power.  

The LUT contains unique values of a sine wave over one period; however, most DDS 
architectures will exploit the symmetrical nature of a sine wave and utilize mapping logic to 
synthesize a complete sine wave cycle from a quarter cycle of data from the PA. The LUT will 
generate the all the necessary data by reading forward and backward through the LUT [1],[10]. 

In the FPGA design, one will need a Memory Initialization File [.mif] containing the values of 
the LUT. We use MATLAB to generate this file with the file extension as “.mif”. This file will 
be added to the ROM [4]. For details, please refer to Section 5.2-6. 

 

Digital to Analog Converter (DAC) 

The digital to analog converter (DAC) is applied to create an analog waveform from the digital 
discretized sine wave. Since the bit width of the DAC is generally limited, we will need to apply 
a second truncation process to the output of the LUT to get a word with appropriate number of 
bits and then feed it to the DAC input. An important fact is that the DAC plays a big role for 
limiting the design’s maximum attainable frequency because the PA and DAC need to work with 
same reference clock. In this thesis, we design and implement the DDS completely in HDL, and 
perform the behavioral and post map & route simulations with ModelSim, so we don’t need an 
actual DAC. Also, DAC will bring other sources of spurs, which may influence the results. 
Further potential research directions in this topic may need to have an actual DAC or even 
involve designing DAC. Please refer to Section 7.2 for details.   

 

Low Pass Filter (LPF): 

In the DDS design, the LPF performs as a reconstruction filter, which reduces the noise and 
eliminates the spikes of the input signal that come from the DAC. Since we do not want any 
aliases of the fundamental frequency, the LPF also performs as an antialiasing filter; therefore, it 
limits us to the Nyquist frequency. Due to the sharp frequency response characteristics, a 
Chebyshev filter is typically used on this stage [1]. Same with the DAC, we don’t need an actual 
LPF in this thesis work.  
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2.2 Types of Spurs in DDS 
The direct digital synthesis (DDS) technology has several advantages over the traditional analog 
frequency synthesis technologies in terms of high-frequency resolution, high-speed frequency 
tuning, continuous phase and so on. However, the signal quality issues primarily caused by the 
spurs limit the usage of DDS technology in many high-demand applications. The three major 
sources of spurs are shown as Figure 2.5: 

 

 

Figure 2.5: Three Major Sources of Spurs 

 

Phase Truncation Spurs:  

In order to obtain high-frequency resolution at the DDS output, the bit width of the phase 
accumulator must be sufficiently wide, typically 24-48 bits [1],[3]. However, in order to design a 
smaller sized lookup table (LUT) that only needs a reasonable amount of hardware and 
consumes less power, we eliminate some of the least significant bits (LSBs) of the 32-bit word 
from the phase accumulator output because it is relatively easy to reduce the size of the LUT and 
truncate the phase word at its input [1]. Unfortunately, this truncation of bits will lead to the 
spectral impurity to the output signal known as the phase truncation spurs and it is the biggest 
source of noise and spikes in the DDS system. We will provide detailed further explanation in 
Section 2.3. Many algorithms can be implemented and added into this digital design to reduce 
the phase truncation spurs. In this thesis project, we will design and implement a DDS with novel 
truncation spurs-free structure on FPGA to eliminate the truncation spurs.  
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Quantization Noise Spurs:  

The bit width of a digital to analog converter (DAC) is always limited. Generally, the bit width 
of the DAC is even narrower than that of the LUT [1]. In this project, we truncate the output of 
the LUT even further and then give it to the DAC. The discrete amplitude values of the sine 
signal are quantized and stored in the LUT. The DAC will accept signed binary number with a 
certain precision. To achieve this, the input bits are further rounded. This quantization will 
generate spurs at the output frequency spectrum of the DDS.  

 

Quantization Nonlinearity Spurs:  

Due to the DAC’s inherent design and non-ideal transfer function behavior, it is impossible to 
design a perfect DAC. Every input will have few errors associated with it, so we cannot get an 
ideal output. These errors, caused by nonlinear behavior of the DAC, lead to the quantization 
nonlinearity spurs. This type of spur can further exacerbate the truncation and quantization spurs 
noise spurs and is very hard to evaluate [11]. The spurs caused by the nonlinear behavior of DAC 
can only be reduced by increasing the precision of the DAC; however, the elimination will 
improve the quality of output signal significantly [3].  

 

2.3 Theoretical Analysis of DDS with a Novel Truncation Spurs-Free Structure 
In the previous sections, we mentioned that the truncation spurs caused by truncating the lower 
order bits of PA output are the primary signal integrity issue of DDS system, which limits the 
usage of DDS in many high-demand applications. In this section, we will introduce a truncation 
spurs-free method to compress the LUT size without phase truncation and a significant change of 
hardware usage [3].  

First of all, we need to understand exactly what happens behind the phase truncation that leads to 
the truncation spurs. In Figure 2.6, the red line represents the output of the PA; the green line 
represents the output of the truncator; the y-axis represents the phase address in LUT and the x-
axis represents the time. The input of the LUT is actually the output of the truncator, which 
serves as the phase address. In the truncating process, the irregular sampling of the LUT sine 
wave may occur as the red arrow pointed out in Figure 2.6.  
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Figure 2.6: Effects on Phase Truncation 

 

In Figure 2.5, N is the bit-width of PA input and P is the bit-width of the LUT input. We know 
that if N = P, then there is no phase truncation. The truncation spurs existed because N-P bits are 
discarded.  We call these N-P bits fractional bits. As we mentioned in Section 2.1, there is a fact 
that the bit-width of DAC input is always limited, generally much smaller than that of PA. Thus, 
we will have to perform truncation on the LUT output before feeding it to DAC anyway.  

L is the bit-width of DAC input (L<<N); thus there are only 2L possible data values at the DAC 
input. Consequently, there are only 2L corresponding phase points referred to as the key phase 
points stored in LUT. These key phase points will divide one complete cycle of sine wave into 
2L-1 key spans. If we can find which key span corresponds to which PA outputs, an accurate 
amplitude value stored in LUT can be determined and sent to the DAC. In this way, we can 
eliminate the truncation spurs. Now, the question is how can we actually determine which key 
span corresponds to which PA outputs. To solve this problem, we come up with a truncation 
spurs-free structure of DDS by introducing a comparator and an adder to the traditional structure 
of DDS. The truncation spurs-free structure of DDS is shown in Figure 2.7.  
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Figure 2.7: Truncation Spurs-Free Structure of DDS 

 

As we mentioned above, there are 2L key phase points stored in the LUT. The comparator will 
compare the outputs of PA to each key phase point and generate an accurate amplitude value in 
one clock cycle. The main difference is that the lower (N-R) bits from output of PA are not 
simply discarded. Instead, they will be compared with the lower (N-R) bits of the key phase 
points stored in the LUT. If the lower (N-R) bits of PA output correspond to a larger value, then 
the amplitude value will be sent to DAC directly. Otherwise, the amplitude value is sent after 
subtracting 1. The output of LUT is adjusted by an adder. The irregular sampling of the sine 
wave will not happen again as we shown in Figure 2.6. 

The size of the new LUT would be (2R×(L+N-R)) instead of 2R×L. We can see that the size of 
ROM increases linearly instead of exponentially.  
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Chapter 3. INTRODUCTION TO VERILOG 
	
  

Verilog is a hardware description language (HDL) standardized as IEEE 1364-1995. It  can be 
used to model digital systems at algorithm level, gate level and transistor level. It is most 
commonly used in the design and verification of digital circuits at the register-transistor level 
(RTL) of abstraction. It is also used in the verification of analog circuits and mixed-signal 
circuits.  

Verilog is very simple, straightforward and efficient. Since Verilog is not only a machine-
readable language, but also a human readable language, it can support hardware design 
verification, synthesis, and testing. Nowadays, Verilog has become the top choice in digital 
systems design and the foundations for synthesis, verification, and layout technology.  

Verilog includes plenty of built-in primitives, including logic gates, user-defined primitives, 
transistors and line logic. It also has the function to check the timing related problems between 
device pins. Generally speaking, Verilog has two data types to support its mixed abstraction 
levels. These two types are net and variable. For continuous assignment, variable and net are able 
to assign the data to net continuously. Verilog provides a basic structural modeling method. For 
procedural assignment, the calculation results of net and variable can be stored in variable. 
Verilog provides a behavioral modeling method.  

A project developed in Verilog consists of several modules. Each module will include an I/O and 
a function description. The function description of a module can be structural level, behavioral 
level or mixed level. Then we connect these modules together with nets. A complete Verilog 
design module includes four main parts: port definition, I/O statement, signal type statement, and 
function description.  

Compared with another common hardware description language, VHDL (very high speed 
integrated circuit HDL), Verilog is a weakly typed HDL, is easier to learn and more concise with 
efficient notations. The syntax is more C-like. On the other hand, VHDL as a strong typed HDL 
is more verbose than Verilog. Consequently, designs in VHDL are considered self-documenting.  
Engineers working with VHDL need to do extra coding; however, they often catch errors missed 
by Verilog. Verilog is good at hardware modeling but lacks higher level constructs, while VHDL 
has many programming constructs but lacks the low level modeling capabilities. Although 
Verilog is more popular in industry today, VHDL is still being used in some top companies like 
National Instruments due to its features. In this thesis design, we will choose Verilog as the 
hardware design language.  
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3.1 Resources 
1. From my own learning experience, I would say that the “World of ASIC” website 

( www.asic-world.com ) is one of the best resources to learn digital design in Verilog 
[12]. It provides detailed tutorials, design examples, and suggestions on tools and 
reference books for Verilog beginner. It also provides instructions for other HDLs as 
well as a scripting language used in digital design and verification such as VHDL, 
SystemVerilog, SystemC, and Perl. 
 

2. Besides the references books recommended on the “World of ASIC” website, two 
junior-level undergraduate courses at UIUC are good resources on learning digital 
design, especially the skills that you will use in this tutorial [13],[14]. One is ECE 385 
Digital Systems Laboratory, which gives you hands-on experiences on designing 
complex digital systems from scratch. You will learn how to implement circuits on a 
breadboard, design digital systems in HDL and synthesize your circuits on an FPGA 
for testing and verification. Another is CS 233 Computer Architecture, which teaches 
fundamentals on computer architecture in a practical approach by providing excellent 
machine problems. You will need to use Verilog and C++ to finish these assignments.  

3.2 Verilog Design Examples 
Some design examples that will be necessary to use when designing the DDS are given below: 
Note: These are not actual codes for this project.  For major modules, please check Appendix B. 

First of all, we will need to define a module in Verilog, which includes defining a module name, 
ports as well as vector ports and ports directions. The design example is shown in Figure 3.1. 

 

Figure 3.1: Example for Defining a Module in Verilog 
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Hardware has two kinds of drivers (data type which can drive a load). The first one is called reg 
in Verilog while the other is called wire. The data type example is shown in Figure 3.2. 

 

Figure 3.2: Example for Data Type Assignment 

 

For the operators, they are almost the same thing in the other programming languages such as C 
programming language. Now, we will introduce some useful control statements and variable 
assignments by providing design examples for some required sub-modules in DDS design.  

 

Register: 

 

Figure 3.3: Design Example of a Register 
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In the Figure 3.3, the design example of the register includes an if-else statement, which is to 
check a condition to decide whether or not to execute a portion of code. If the condition is 
satisfied, the code is executed. If not, it runs the other portion of code. In the above example, it 
checks if reset is 1. If this condition is satisfied, then it will output 0; if not, it will output the 
input.  

 

Counter: 

 

Figure 3.4: Design Example of a Counter 

 

In the Figure 3.4, the design example of the counter includes a while statement, which executes 
the code within it repeatedly if the condition returns true. In the above example, the count keeps 
increment by 1 if the enable is checked to be true.  
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n-bit Full Adder: 

 

Figure 3.5: Design example of n-bit full adder 

 

In digital design, there are two types of elements, combinational and sequential. In Verilog, there 
are two approaches to model combinational elements, one is using an “assign” statement; the 
other one is using an “always” statement. However, there is only one way to model sequential 
elements, which is using “always” statement.  In the Figure 3.5, we use “assign” statement to 
output cout and sum because it is a combinational logic. Besides “assign” and “always”, there is 
a third statement called initial statement, which is only used in designing test benches in Verilog. 
It is executed at the beginning of simulation. An example is shown in Figure 3.6 

 

Figure 3.6: Design Example of Initial Statement 
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Comparator: 

 

Figure 3.7: Design Example of an 8-bit Comparator 

 

Figure 3.8: Design Example of a 2-bit Comparator 
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In Figure 3.7 and Figure 3.8, we use two different approaches to design the comparator. One uses 
an “assign” statement; the other one uses an “always” statement. In this thesis work, we will use 
an “assign” statement to design the comparator because it is relatively simpler.  

Finite State Machine (FSM):  

 

 
Figure 3.9: Design Example of the FSM 
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Figure 3.9: Continued 
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In the Figure 3.9, the design example of the FSM includes the case statements, which are used 
when we have one variable that needs to be checked for multiple values. In the above example, 
we use case statement to check the state status. It is important to note that that it is better to 
include a default case with a return to idle every time we use case statement to make the code 
safe because if the Verilog machine enters to a non-covered state, it will hang there. Also, when 
you use the case statement, if you don’t cover all the cases and you are trying to write a 
combinational logic, the synthesis tool will infer latch.  

From all the examples and descriptions above, you may see the “always” statement several times. 
In the following, I will introduce this important block in Verilog design.  

From the name we can imagine that the “always” statement executes always instead of executing 
once like the initial statement. It includes a sensitive list or a delay associated with it. There are 
two types of sensitive lists, one is level sensitive for combinational logic; one is edge sensitive 
for flip-flops. In the FSM example, “sig_1” and “sig_2” included in “always” in the 
combinational logic block are level sensitive lists. The “clock” included in “always” in the 
sequential logic block is an edge sensitive list. If a change happens in any of the sensitive lists, 
the always statement will be triggered.  

We can have an “always” statement without a sensitive list in the case where we have a delay, as 
shown in Figure 3.10.  

 

 

Figure 3.10: Example of “Always” Statement Without a Sensitive List 

 

Finally, if you look into the codes above, you will see two different types of assignment 
operators. One is “=”, which is used in the combinational logic; the other one is “<=”, which is 
used in the sequential logic. “=” is called blocking assignment and “<=” is called non-blocking 
assignment. The blocking assignment executes codes sequentially while the non-blocking one 
executes codes in parallel. This is very important because misuse of these two assignments will 
totally disrupt the codes. Also, begin and end constructs are only necessary when multiple 
operations. 

Hardware coding is different from software coding. Sometimes you should think like real 
hardware and solve issues associated with real hardware to make a good design.  
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Chapter 4. FPGA DESIGN FLOW 
	
  

4.1 Introduction to FPGA 
FPGA is an integrated circuit designed to be configured by a customer or a designer after 
manufacturing. The FPGA configuration is generally specified using HDL. From a research 
standpoint, we will use the FPGA instead of the ASIC approach to build the DDS in this thesis, 
because the designs on FPGA can be easily modified and tested on board.  

As shown in Figure 4.1, the FPGA we choose is Altera DE2-115 development and education 
board, which is an ideal teaching platform [15].  

 

 

 
Figure 4.1: DE2-115 Development and Education Board 

 
 
There are plenty of switches and ports, 128M on-board memory and enough hardware resources 
for us to use. The on board clock frequency is 50MHz.  
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4.2 Design Flow 
The FPGA design flow is shown as Figure 4.2 [16],[17]. 

 

 
Figure 4.2: FPGA Design Flow 

 

Note: Design Entry includes Functional/Device Specification and HDL Coding and 
Implementation includes Mapping and Placement and Route. 

 

Functional/Device Specification: 

On this stage, the designers need to set up the configuration (make/model/speed/class/device 
family) of the FPGA.  After that, the designing software will conduct some preliminary setup for 
the particular FPGA device’s intellectual properties (IPs), designs and components [4],[17],[18].  

 

HDL Coding: 

On this stage, the designers write HDL codes to model the entire digital designs. The designers 
can also use a schematic approach to model the entire circuits. We will show both approaches in 
Chapter 5.2; however, since we need to implement an algorithm in this thesis, the HDL coding 
approach is preferred [4],[17],[18].  
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Logic Synthesis: 

Synthesis is a process that converts the HDL codes to the gate-level netlist, which describes the 
different types of components, elements, and interconnections between the components and other 
details like area occupied and temperature of operation, etc. Also, synthesis will help check the 
syntax of the HDL codes and map the design to a particular FPGA family [4],[17],[18]. 

 

Mapping: 

In this stage, the software maps the generic logic design to the logic technology contained in the 
selected FPGA device [4],[17],[18]. 

 

Placement and Route (PAR): 

This stage is one of the most important steps in the entire implementation. Placement decides 
where the components should be placed on the FPGA while routing is responsible for the 
connections between different components. PAR is crucial because it is related with the timing 
and area constraints of the design. A bad placement will result in problematic routing, which 
leads to design violations [4],[19]. 

 

FPGA Configuration and Programming: 

The last step of the FPGA design flow is to program the designs on the FPGA and test the circuit. 
On this stage, the software converts the entire design to a “bitstream” file, which is loaded on the 
FPGA board. After that, the FPGA is ready to run the digital design [4],[19]. 

 

Design Verification: 

It is extremely important for every design to meet certain standards and satisfy certain conditions. 
After each design step, the designers need to check if their circuits meet various constraints such 
as timing, area and functional logic [19].  

In this thesis, we will use ModelSim as the simulation tool for design verification. The 
descriptions of each testing stage are given below: 
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1. Behavioral Simulation: This task is to verify the functionality of the HDL codes.  
 

2. Gate-Level Simulation: The gate-level netlist is generated after the completion of  
synthesis. This task is to test the timing and gate-level functionality of the design.  
 

3. Static Timing Analysis (STA): STA comes out after the completion of PAR. The 
designer will analyze some important issues related with the design of the circuit such as 
setup and hold times, critical path and clock skews. The STA will examine every possible 
path in the circuit and help debugging glitches and slow paths [4]. 
 

4. Post-PAR Timing Simulation: This task provides a comprehensive timing summary of 
the circuit.  
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Chapter 5. FPGA DESIGN TUTORIAL IN QUARTUS II 
	
  

In this thesis project, we will use Quartus II Web Edition FPGA design software. It is a software 
tool produced by Altera for analysis and synthesis of HDL designs, which enables the developers 
to compile their designs, perform timing analysis, examine RTL diagrams, simulate a design’s 
reaction to different stimuli, and configure the target device with the programmer.  

First of all, we should download the software from Altera’s official website, 
http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-index.html. We may just 
select to download the Quartus II Web Edition v14.0, which is free and should be good enough 
for our project. The Quartus II FPGA design software is only workable on Windows XP, 7 or 8 
or Linux so far. For Mac users, it is not very convenient, so they may need to install a Windows 
based operating system (Window7 for this project) by installing Parallels first on their Macs. 
There may be some other better ways to do this; however, from my own working experience, I 
highly recommend you just choose a workstation with Windows based OS to avoid any further 
problems in your design and simulation.  

After installing your Altera Quartus II, you can open your software by clicking the shortcut icon 
on the desktop or Start Manu ! All Programs !  Altera 14.0 directory !  Quartus II 14.0 
directory ! Quartus II 14.0. After opening Altera Quartus II software, Figure 5.1 will display.  

 

Figure 5.1: Opening Display 
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Then the design console will display as in Figure 5.2 automatically.  

 

Figure 5.2: Design Console 
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5.1 Project Setup 
1. To create a new project, from the File menu or opening display in Figure 5.1, select New 

Project Wizard. Click Next to go through the introduction screen if it appears. Then, the 
Figure 5.3 will appear. Fill in the fields in Figure 5.3 (make sure there are no spaces in 
any of your entries). The program will ask you if it should create the specified directory if 
it does not exist; choose yes.  
 

 

Figure 5.3: New Project Wizard 

 

2. Select Next on page 2 without adding any files. On page 3, select Cyclone IV for the 
device family, make sure the second option under target device is selected, and choose 
EP4CE115F29C7 in the available devices list according to Figure 5.4. Then click Next 
to page 4. 
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Figure 5.4: Device Specifications 

 

3. Select ModelSim-Altera as the simulation tool name, and Verilog HDL as the 
simulation format, then click Next. See Figure 5.5. 
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Figure 5.5: EDA Tool Settings 

 

4. Click Finish on page 5. Now you should be able to have an entry for the project in the 
Project Navigator window. It should display as in Figure 5.6. 

 

Figure 5.6: Project Navigator 
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5.2 HDL Coding 
1. To create the top-level module (DDS_Traditional.v), go to File !  New or click on the 

icon  in the top left corner. A panel will display as in Figure 5.7. Under the Design 
Files, select Verilog HDL File. Click OK. Now we have a blank Verilog file shown as in 
Figure 5.8.  
 

 

Figure 5.7: New Panel 

 

Figure 5.8: Blank Verilog File 
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2. After generating several blank Verilog files, we will need to name them, include them 
into the project and set up a top level file, which has to be the DDS_Traditional.v. As 
shown in Figure 5.9, we name one of the blank files DDS_Traditional.v, then click Save. 
Remember to check the Add file to current project.  
 

 

Figure 5.9: Naming the Blank Verilog File 

Click Files in the Project Navigator. Among several files, choose DDS_Traditional.v; 
right click it and select Set as Top-Level Entity as shown in Figure 5.10. 

 

Figure 5.10: Set Up the Top Level File 
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3. Start coding both structures of DDS. First, design a DDS with traditional structure in 
Verilog. The code for top-level module is shown in Figure 5.11.  
 

 
  

Figure 5.11: Top-Level Verilog Codes for DDS with Traditional Structure 
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4. Second, design a DDS with truncation spurs-free structure in Verilog. The Verilog codes 
for the additional substractor (adder) and the comparator as well as the top-level module 
are shown in Figure 5.12. 
 

 
 

 
 

Figure 5.12: Verilog Codes for DDS with Truncation Spurs-Free Structure 
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Figure 5.12: Continued 
 

5. In Figure 5.12, we can see that the DDS with Truncation Spurs-Free Structure actually 
adds a comparator block and an adder block on the top of the traditional DDS design. We 
use HDL to link all these modules together in this thesis. Now, we will also show a 
schematic design entry approach to link the modules together. This is to create the top-
level entity as a schematic diagram, rather than as a Verilog module. In some cases, this 
approach is easier, more straightforward and less time-consuming than wiring the circuits 
up directly in codes.  
 
Note: This part is to introduce another approach for designing the digital circuits; 
however, it is not the approach we used in this thesis project. We use 10 as the ROM 
width to avoid confusion. However, Step 6 on how to program the ROM is very 
important. It is applicable to both HDL and Schematic design approaches. 

 
To start, we need to create a blank schematic file. Go to File !New and select Block 
Diagram/Schematic File and click OK. It will generate a [.bdf] file. The Figure 5.13 
will pop up. Then we should give this blank schematic file an appropriate name, which 
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has to be same as what we typed in the top-level file name in Figure 5.3. In this case, it 
should be “DDS_Free”.  

 

Figure 5.13: Blank Schematic File 

 

Then we should generate the block diagrams from the Verilog codes. In the Project 
Navigator, select Files, then right click the Verilog file you want to generate a block 
diagram from and click Create Symbol Files for Current File as shown in Figure 5.14.  
 

 

Figure 5.14: Generating a Block Diagram from Verilog Codes 
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The software will create the symbol file after compiling this single Verilog file. If the 
creation is successful, then the Message console should show no errors as in Figure 5.15. 
 

 

Figure 5.15: Successful Creation 

 
After that, you can add the symbol into the schematic file by switching back to the blank 
schematic file. Right click on the schematic and select Insert !Symbol, then the symbol 
window will display as Figure 5.16. In Libraries, select Project. The available symbols 
will be listed. Select adder_free and click OK.  
 

 

Figure 5.16: Symbol Window 
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Then we can place all the symbols in the schematic as shown in Figure 5.17.  
 

 

Figure 5.17: Symbol Placement 

 
6. So far, we have most of the required modules to build the DDS except the LUT. To 

create the LUT, we need a [.mif] file containing the ROM data first. We can generate this 
file using MATLAB. The MATLAB code to generate this [.mif] file is shown in Figure 
5.18. This “sin.mif” file is for designing the traditional DDS. The size of this ROM is 28 
×8. Instead, the width of ROM for DDS with truncation spurs-free structure is 32. We 
can do this simply by adjusting the width parameter in the code while keeping depth = 28.  
 

 

Figure 5.18: MATLAB Codes for Generating [.mif] File 
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After creating the [.mif] files, we can start to create the ROM module with Quartus II 
following the below steps.   
 
First, select Tools !IP Catalog, then an IP Catalog will pop up on the right. Under 
Library !Basic Functions !On Chip Memory, select ROM: 1-PORT and click 
Add. The process is shown as in Figure 5.19. 
 

 

Figure 5.19: Create a 1-Port ROM 

 
After that, a window as shown in Figure 5.20 will pop up to ask a file name and file type. 
Fill in the name with ROM_Free and select Verilog as the file type. Then, click OK. 
 

 

Figure 5.20: Save IP Variation 
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As shown in Figure 5.21, the MegaWizard Plug-In Manager window will pop up. On 
page 1, fill in the width (32 bits) and depth (210 = 1024 words) of the ROM and leave the 
others as default. Click Next.  
 

 

Figure 5.21: Parameter Setting 

 
Leave the page 2 as default but make sure the ‘q’ output port is registered. Click Next. 
On page 3, we will need to do the memory initialization. As we mentioned above, we will 
need to use the [.mif] file generated by MATLAB to initialize the ROM. As shown in 
Figure 5.22, browse to the file location and select the “sin_free.mif” file, then click 
Open. Leave the others as default. Click Next.  
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Figure 5.22: Memory Initialization 

 
On page 4, it is optional to select generate netlist for timing and resource. On page 5, 
check the box before “ROM_Free.bsf”. Then, this symbol file of ROM will be generated. 
After all the above steps, click Finish. The process is as shown in Figure 5.23.  
 

 

Figure 5.23: Generating Various Files 
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Now, we will be able to select the symbol file for ROM follow the same step as shown in 
Figure 5.16. We have all the required modules for designing DDS with truncation spurs-
free structure so far. The schematics are shown in Figure 5.24.  
 

 

Figure 5.24: Updated Schematic 

 
7. Now, we will need to connect all these blocks together with single wire or bus according 

to the design in Figure 2.6.  
 

a) Add the input and output ports by selecting them from tools bar shown in Figure  
5.25.  Make sure input and output ports are not misused.  
 

 

Figure 5.25: Tools Bar for Ports and Wires 
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b) Add wires and buses to connect the separate modules. Make sure the bit-widths of 
two ports matched. Adjust the name and width of ports and wires by right clicking 
on them and selecting Properties. Name as shown in Figure 5.26 and click OK.  
 

 

Figure 5.26: Bus Properties 

 

c) After wiring the circuits up, the final top-level schematic is shown as in Figure 
5.27.  
 

 

Figure 5.27: Top Level Schematics of DDS with Spurs Free Structure 
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5.3 Compilation 
After finishing the HDL coding for both the traditional and truncation spurs-free structures of 
DDS design, we will perform compilation with the Quartus II software. The tasks of compilation 
include logic analysis and synthesis, placement and route (PAR), generation of programming 
files, timing analysis and EDA netlist.  

Before conducting compilation, we can run logic synthesis first. In this phase, Quartus II will 
check the codes to correct syntax, and generate errors or warnings. If there is an error, we will 
need to correct the error first, then run Analysis & Synthesis again. Quartus II will also build 
hierarchy in the Project Navigator if needed. To start analysis & synthesis, simply click on 

Start Analysis & Synthesis button   in the tool bar [13]. 

Now, we can start to do the compilation. Click the Start Compilation button in the tool bar or 
select Processing	
  !Start Compilation. We may get a few warnings about timing 
characteristics and load capacitances this time. Most of the time, we can just ignore them; 
however errors need to be corrected before continuing. The design console after a successful 
compilation should be similar to that shown in Figure 5.28.  

 

Figure 5.28: Successful Compilation 
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Figure 5.28: Continued  

 

The compilation process also provides us lots of summary reports on resources usage, timing, 
power consumption and so on. We will give details in Section 5.5. 
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5.4 FPGA Configuration and Programming 
 

Pin Assignments: 

To enter the pin assignment, click the Pin Planar button , or select Assignments !Pin 
Planar. Then the pin planar window will automatically pop up as shown in Figure 5.29. The pin 
layout of the Cyclone IV chip is on the right of the window and the pin assignment table is at the 
bottom. Enter the pin assignments for every pin displayed according to Altera FPGA DE2-115 
User Manual [20]. Then, save the pin assignments and recompile the entire design.  

 

 

Figure 5.29: Pin Planar 
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Programming the FPGA: 

Now, we are ready to program our design on the FPGA board.  

1. Plug in the power for the FPGA and connect the FPGA Blaster Port to the computer 
with the included USB cable. The Hex Displays on FPGA should be flashing and the 
screen should show “Welcome to the Altera DE2-115” on it. The setup should be the 
same as that shown in Figure 5.30. Note that in the left corner of the FPGA there is a 
small switch. It should be switched to RUN instead of PROG, which sometimes confuses 
the designers.  
 

 
 

Figure 5.30: FPGA Setup 
 

2. Click the Programmer button  or select Tools !Programmer. The programmer 
window should pop up as shown in Figure 5.31. Then, on the left of the programmer 
window, select Add File. The Select Programming File window will display. From a list 
of directories, select output_files directory ! DDS_Traditional.sof, click Open. This 
process is shown in Figure 5.32 and Figure 5.33.  
 



48	
  
	
  

 
 

Figure 5.31: Programmer Window 
 

 
Figure 5.32: Adding [.sof] File 
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Figure 5.33: After Adding [.sof] File 

 
Then, on the left corner of the programmer window, select Hardware Setup. In the 
hardware setup window, select Hardware Settings, then select USB-Blaster [USB-0] 
from the drop down list of Currently selected hardware. After that, click Close. The 
process is shown in Figure 5.34.  
 

 

Figure 5.34: Hardware Setup 
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Now, click Start on the left of the programmer window to program the design onto the 
FPGA. A successful loading should be similar as shown in Figure 5.35. So far, the entire 
design is on the FPGA. As shown in Figure 5.36, the Hex Displays on FPGA are not 
flashing as usual after loading.  
 

 
 

Figure 5.35: Successful Loading 
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Figure 5.36: FPGA after Successful Loading 

We can use the on board I/O, for example, switches to give FCW inputs and display the current 
phase word information or amplitude information on LEDs. This is a very straightforward and 
simple way to test the design.  
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5.5 Design Resources and Statistics 
	
  

Resources Usage: 

Altera FPGAs use the term Logic Element (LE) to describe a functional block that contains one 
LUT, one register, and some additional circuitry. To find out the usage of LUTs after 
compilation, go to Compilation Report tab. One the left, go to Fitter !Resource Section 
!Resource Usage Summary [13]. The summary report of both traditional and truncation spurs-
free structures of DDS design should be displayed as Figure 5.37 and Figure 5.38.  

 

 

Figure 5.37: Fitter Resource Usage Summary for DDS with Traditional Structure 
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Figure 5.38: Fitter Resource Usage Summary for DDS with Truncation Spurs-Free Structure 

 

In the Figure 5.37 and Figure 5.38, the total number of LEs is reported. The LEs are divided into 
3 categories: combinational with no register, register only, and combinational with register. The 
total number of LUTs used should be the sum of the numbers of LEs that are combinational with 
no register and combinational with register.  

Then, the numbers of LEs categorized by the number of LUT inputs are reported. The sum of the 
numbers of x input functions should be same as the number of LUTs.  

After that, the total number of registers used is reported. The total number of registers is equal to 
the sum of the numbers of LEs that are combinational with register and register only.  
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Timing Analysis: 

The TimeQuest Timing Analyzer is used for timing analysis in Quartus II.  

The maximum allowed frequency for the system clock can be found under TimeQuest Timing 
Analyzer !Fmax Summary 

 

Power Consumption Analysis 

The PowerPlay Power Analyzer shown in Figure 5.39 is used for power consumption analysis 
in Quartus II. To activate the PowerPlay Power Analyzer during compilation, go to Assignments 
!Settings. Under Category, you will find PowerPlay Power Analyzer Settings. Check the 
box of Run PowerPlay Power Analyzer during compilation and click Apply !OK. Then, 
after the compilation, the power analysis report can be found in PowerPlay Power Analyzer 
!Summary in the Compilation Report tab [13].  

 

Figure 5.39: Activate PowerPlay Power Analyzer 
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5.6 Instructions on Writing Testbench 
To simulate our design, we need to write a testbench.sv file (see Figure 5.40). For the DDS in 
this thesis, the testbench is fairly simple. It includes a clock generation block as well as an initial 
block to initialize all the input signals. A “#” sign means “delay” and also we need to specify the 
time unit and time precision for our simulation.  

Generally, we include all the inputs and outputs in the testbench. In this design, we want to 
monitor some selected internal signals, so we can just manually add the output signals to the 
simulation waveforms.  

Note: The time precision should be at least as precise as the time unit. For details of how to 
apply the testbench in ModelSim, please refer to Appendix A.  

 

	
  

Figure 5.40: The testbench.sv file for Simulating DDS 
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5.7 Behavioral/Gate Level Simulation in Altera-ModelSim 
In this thesis, we will use ModelSim to simulate the DDS design. Please refer to Appendix A for 
tutorial on how to select and set up ModelSim as simulator in Altera Quartus II FPGA design 
software.  

After adding testbench.sv into test bench and simulation files, we need to compile the entire 
design again.  To start RTL simulation, as shown in Figure 5.41, select Tools ! Run 

Simulation Tool ! RTL simulation or simply click on the RTL Simulation button  in the 
tool bar.  

 

Figure 5. 41: Launch ModelSim 
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The pop-up console should be shown in ModelSim-Altera as Figure 5.42 if there are no 
compiling errors. Under testbench, select U0. In the sub-window Objects, right click any I/O 
signals or any internal signals you want to monitor, then select Add Wave.  

 

Figure 5.42: Add Wave to the Simulation Waveform 

 

After adding all the signals you desire to select, go to the command line and type: 

restart –f 

This command will reset the waveform. 

log –r * 

This command will tell ModelSim to record all signals in the circuit recursively. 

run 10000 ns 

This command will run the testbench for 10000 ns. 
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Undock the simulation waveforms, then Zoom Full for more convenient reading. Right clicking 
on the waveform will zoom the display to a proper scale as shown in Figure 5.43 [13].  

 

Figure 5.43: Getting Waveforms for Convenient Reading 

 

Important Note [13]: 

The internal compiler of ModelSim is slightly different from that of Quartus II, so a successful 
compilation in Quartus II does not guarantee successful compilation in ModelSim. If part of the 
design is not showing up in the design hierarchy, that is probably the reason. The designers will 
need to look through the error messages in the Transcripts and correct them to continue.  

Also, simulations assume there are no delays in the circuits, which is obviously not the case in 
the real world. Designers need to take the timing issues into consideration when they design the 
circuits. If the result shown on the FPGA board is different from what is shown in simulation, 
that is probably the reason.  

For Gate Level Simulation, follow a procedure similar to that used by RTL Simulation to launch 
ModelSim. ModelSim has an important feature of viewing signals as an analog waveform; that is 
the reason we don’t have to implement an actual DAC and LPF to monitor the signal output.  
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 Chapter 6. DDS MEASUREMENTS 
6.1 Measurements of DDS with Traditional Structure 
	
  

 

Figure 6.1: 32-bit 1.6MHz Traditional DDS Behavioral Simulation 

The clock frequency is 50MHz due to the maximum on-board frequency on FPGA, so the clock 
cycle should be 20ns.  

In Figure 6.1, given decimal number 134217728 (00001000000000000000000000000000 in 
unsigned binary) as the FCW, we can calculate the output frequency to be 1.6MHz based on 
Equation 2.7. From the distance between two cursors, we can see that one full cycle of sine wave 
is 640ns, so the output frequency matches what we should have in theory.  
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Figure 6.2: 32-bit 5MHz Traditional DDS Behavioral Simulation 

In Figure 6.2, from the distance between the cursors, we can see one full clock cycle is 200ns, so 
the output frequency is 5MHz. As the frequency grows faster, we can see it takes fewer samples 
in each cycle, so the accuracy is not as good as 1.6MHz one.  

 

Figure 6.3: 32-bit 25MHz Traditional DDS Behavioral Simulation 
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In the Figure 6.3, we cannot see the sine wave anymore, because the sampling process has to 
obey the Nyquist theorem as we mentioned in Chapter 2.  

 

Figure 6.4: 32-bit 1.6MHz Traditional DDS Gate-Level Simulation 

In the Figure 6.4, post map & route simulation, we can see the impurities in the output, which are 
the truncation spurs. In the Figure 6.5, the distortion will get worse with a higher frequency.  

 

Figure 6.5: 32-bit 5MHz Traditional Spurs Gate-Level Simulation 
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6.2 Measurements of DDS with Truncation Spurs-Free Structure 
Figure 6.6 and Figure 6.7 verify that the DDS with Truncation Spurs-Free Structure has the same 
functionality as the traditional one.  

 

Figure 6.6: 32-bit 1.6MHz Truncation Spurs-Free DDS Behavioral Simulation 

	
  

Figure 6.7: 32-bit 5MHz Truncation Spurs-Free DDS Behavioral Simulation 
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From Figure 6.8 and Figure 6.9, we compare the post map & route simulation result for signals 
LUT_out and dds_out. LUT_out should be the same as the final output of traditional DDS and 
dds_out is the final output of the truncation spurs-free DDS. We can see clearly that the 
truncation spurs are eliminated by the new structure.  

 

Figure 6.8: 32-bit 1.6MHz Truncation Spurs-Free DDS Gate-Level Simulation 

 

Figure 6.9: 32-bit 5MHz Truncation Spurs-Free DDS Gate-Level Simulation 
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Chapter 7. CONCLUSION 
	
  

7.1 Summary 
This thesis serves as a comprehensive tutorial on designing two different structures of DDS on 
FPGA (traditional structure and truncation spurs-free structure). It starts by introducing the 
background of both DDS and providing several design examples in Verilog. Then, the thesis 
addresses the essential phases of FPGA design flow and gives a detailed step by step instruction 
on designing digital circuits on Altera DE2-115 FPGA with Altera Quartus II FPGA 
development software. In the end, the thesis compares the simulation results of both structures of 
DDS and verifies the improvement of the output signal quality.  

 

7.2 Future Work 
1. Since this thesis work is a preliminary research project to verify the functionality of a 

new structure of DDS, the digital design uses an FPGA design approach.  However, the 
resources limitation and maximum on-board frequency of FPGA will limit the maximum 
frequency of the DDS. Future work could use an ASIC approach to design the DDS and 
fabricate the real circuit for testing.  
 

2. Future research could focus on eliminating quantization noise spurs by creating a new 
structure of DDS and building it on FPGA for verification.  
 

3. As mentioned in this thesis, DDS has many advantages over the analog counterpart. 
Future research topics related to involving DDS into a more complex circuit design are 
also worth exploring, for example, serving as the local oscillator of a digital PLL. 
 

4. Pipelined structure for the PA and segmented DAC are also desired to accelerate the 
speed of the DDS. For our design, it is not necessary because the speed is mainly limited 
by the maximum on-board clock frequency of FPGA; however, if further research is 
conducted with an ASIC design approach, especially for DDS MMIC design, hardware 
architecture should be considered carefully. For details please refer to [21].  
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Appendix A: SETTING UP MODELSIM 
	
  

In Quartus II, select Assignments !Settings; the settings window should display as shown in 

Figure A.1. On the left of the window, click on EDA Tool Settings and set the simulation tool to 

ModelSim-Altera; the format is Verilog HDL.  

 

 

Figure A.1: EDA Tool Settings 
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Next, select Simulation under EDA Tool Settings. Choose ModelSim-Altera as the Tool 

name, Verilog HDL as the Format for output netlist and “simulation/modelsim” as Output 
directory. The window should display as Figure A.2. 

 

 

Figure A.2: Simulation 

 

At the bottom of Figure A.2, there is a NativeLink settings section. Under this section, select 

Compile test bench, then click on Test Benches. A Test Benches window should pop up. Click 

on New, then a window shown as Figure A.3 should pop up. Enter testbench for Test bench 

name and Top level module in test bench, 1000 ns as the simulation end time, and then click on 

the … button to add testbench.v into test bench and simulation files [13]. After that, click OK. 
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Figure A.3: New Test Bench Settings 

 

So far, we finish setting up ModelSim as our simulator and are ready to run the testbench for 

simulation.  
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Appendix B: VERILOG MODULES 
Besides the modules included in the body of this thesis, the Verilog codes for other primary 

modules are provided here.  

/*Truncator*/ 
module phase_truncator (clk, reset, pa_out, address, address_fractional); 
 
input clk, reset; 
input [31:0] pa_out; 
output [7:0] address; 
output [23:0] address_fractional; 
 
reg [7:0] address; 
reg [23:0] address_fractional; 
 
always @(posedge clk or posedge reset) 
 if (reset == 1'b1) 
  begin 
   address <= 8'b0; 
   address_fractional <= 24'b0; 
  end 
 else 
  begin 
   address <= pa_out[31:24]; 
   address_fractional <= pa_out[23:0]; 
  end 
endmodule 
 
/*Register*/ 
module register(clk, reset, d, q); 
 
input clk, reset; 
input [31:0] d; 
output [31:0] q; 
 
reg [31:0] q; 
 
always @ (posedge clk or posedge reset) 
begin 
 if (reset == 1'b1) 
  q <= 32'd0; 
 else 
  q <= d; 
end 
endmodule 
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/*LUT*/ 
module look_up_table(clk, reset, address, LUT_fractional, LUT_out); 
 
input clk, reset; 
input [7:0] address; 
output [23:0] LUT_fractional; 
output [7:0] LUT_out; 
 
reg [7:0] LUT_out; 
reg [23:0] LUT_fractional; 
reg [31:0] LUT [255:0]; 
 
always@(posedge clk or posedge reset) 
begin 
if(reset == 1'b1) 
begin 
LUT[0]<=32'b0; 
LUT[1]<=32'b00000011001001101110100100100110; 
LUT[2]<=32'b00000110010011010101010100000101; 
LUT[3]<=32'b00001001011100101100011001100111; 
LUT[4]<=32'b00001100100101101100000001000001; 
LUT[5]<=32'b00001111101110001100010110111101; 
LUT[6]<=32'b00010010110110000101101001011000; 
LUT[7]<=32'b00010101111101010000000111101101; 
LUT[8]<=32'b00011001000011100100000011001011; 
LUT[9]<=32'b00011100001000111001101111001010; 
LUT[10]<=32'b00011111001101001001100001011100; 
LUT[11]<=32'b00100010010000001011110010100010; 
LUT[12]<=32'b00100101010001111000111101111010; 
LUT[13]<=32'b00101000010010001001100010011000; 
LUT[14]<=32'b00101011010000110110000010010111; 
LUT[15]<=32'b00101110001101110111000100001001; 
LUT[16]<=32'b00110001001001000101010010001010; 
LUT[17]<=32'b00110100000010011001011011010101; 
LUT[18]<=32'b00110110111001101100010011010101; 
LUT[19]<=32'b00111001101110110110110010110011; 
LUT[20]<=32'b00111100100001110001110111101101; 
LUT[21]<=32'b00111111010010010110100101100101; 
LUT[22]<=32'b01000010000000011110000101110011; 
LUT[23]<=32'b01000100101100000001100111110101; 
LUT[24]<=32'b01000111010100111010100001011111; 
LUT[25]<=32'b01001001111011000010001111001111; 
LUT[26]<=32'b01001100011110010010010100011010; 
LUT[27]<=32'b01001110111110100100011011011101; 
LUT[28]<=32'b01010001011011110010010110001111; 
LUT[29]<=32'b01010011110101110101111110001011; 
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LUT[30]<=32'b01010110001100101001010100100101; 
LUT[31]<=32'b01011000100000000110100010110110; 
LUT[32]<=32'b01011010110000000111111010101010; 
LUT[33]<=32'b01011100111100100111110110010000; 
LUT[34]<=32'b01011111000101100000111000100110; 
LUT[35]<=32'b01100001001010101101101101101001; 
LUT[36]<=32'b01100011001100001001001010100001; 
LUT[37]<=32'b01100101001001101110001101101011; 
LUT[38]<=32'b01100111000011010111111111001010; 
LUT[39]<=32'b01101000111001000001110000110010; 
LUT[40]<=32'b01101010101010100110111110010010; 
LUT[41]<=32'b01101100011000000011001101011111; 
LUT[42]<=32'b01101110000001010010001110100011; 
LUT[43]<=32'b01101111100110001111111100000010; 
LUT[44]<=32'b01110001000110111000011011001000; 
LUT[45]<=32'b01110010100011000111111011110011; 
LUT[46]<=32'b01110011111010111010111000111001; 
LUT[47]<=32'b01110101001110001101111000010100; 
LUT[48]<=32'b01110110011100111101101011001001; 
LUT[49]<=32'b01110111100111000111001101110001; 
LUT[50]<=32'b01111000101100100111100111111110; 
LUT[51]<=32'b01111001101101011100001101000111; 
LUT[52]<=32'b01111010101001100010011100001001; 
LUT[53]<=32'b01111011100000110111111111110010; 
LUT[54]<=32'b01111100010011011010101110100101; 
LUT[55]<=32'b01111101000001001000101010111101; 
LUT[56]<=32'b01111101101010000000000011010111; 
LUT[57]<=32'b01111110001101111111010010010001; 
LUT[58]<=32'b01111110101101000100111110010001; 
LUT[59]<=32'b01111111000111001111111010001010; 
LUT[60]<=32'b01111111011100011111000100111010; 
LUT[61]<=32'b01111111101100110001101001110001; 
LUT[62]<=32'b01111111111000000111000000010001; 
LUT[63]<=32'b01111111111110011110101100010000; 
LUT[64]<=32'b01111111111111111000011101111001; 
LUT[65]<=32'b01111111111100010100010001101110; 
LUT[66]<=32'b01111111110011110010010000100101; 
LUT[67]<=32'b01111111100110010010101111101011; 
LUT[68]<=32'b01111111010011110110010000100000; 
LUT[69]<=32'b01111110111100011101100000111001; 
LUT[70]<=32'b01111110100000001001011010111101; 
LUT[71]<=32'b01111101111110111011000101000001; 
LUT[72]<=32'b01111101011000110011110001100110; 
LUT[73]<=32'b01111100101101110100111111011001; 
LUT[74]<=32'b01111011111110000000011001001011; 
LUT[75]<=32'b01111011001001010111110101101111; 
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LUT[76]<=32'b01111010001111111101010111110101; 
LUT[77]<=32'b01111001010001110011001110000100; 
LUT[78]<=32'b01111000001110111011110010111000; 
LUT[79]<=32'b01110111000111011001101100010110; 
LUT[80]<=32'b01110101111011001111101100001100; 
LUT[81]<=32'b01110100101010100000101111100101; 
LUT[82]<=32'b01110011010101001111111111000100; 
LUT[83]<=32'b01110001111011100000101110011110; 
LUT[84]<=32'b01110000011101010110011100101100; 
LUT[85]<=32'b01101110111010110100110011101010; 
LUT[86]<=32'b01101101010011111111101000000111; 
LUT[87]<=32'b01101011101000111010111001100000; 
LUT[88]<=32'b01101001111001101010110001110101; 
LUT[89]<=32'b01101000000110010011100101011011; 
LUT[90]<=32'b01100110001110111001110010111010; 
LUT[91]<=32'b01100100010011100010000010110111; 
LUT[92]<=32'b01100010010100010001000111110001; 
LUT[93]<=32'b01100000010001001011111101110001; 
LUT[94]<=32'b01011110001010010111101010011111; 
LUT[95]<=32'b01011011111111111001011100110101; 
LUT[96]<=32'b01011001110001110110101100110010; 
LUT[97]<=32'b01010111100000010100111011001100; 
LUT[98]<=32'b01010101001011011001110001100110; 
LUT[99]<=32'b01010010110011001011000001111010; 
LUT[100]<=32'b01010000010111101110100110010100; 
LUT[101]<=32'b01001101111001001010100000111101; 
LUT[102]<=32'b01001011010111100100111011101111; 
LUT[103]<=32'b01001000110011000100001000000010; 
LUT[104]<=32'b01000110001011101110011110100011; 
LUT[105]<=32'b01000011100001101010011110111110; 
LUT[106]<=32'b01000000110100111110101111110000; 
LUT[107]<=32'b00111110000101110001111101110111; 
LUT[108]<=32'b00111011010100001010111100100001; 
LUT[109]<=32'b00111000100000010000100100111100; 
LUT[110]<=32'b00110101101010001001110110000100; 
LUT[111]<=32'b00110010110001111101110100001111; 
LUT[112]<=32'b00101111110111110011101001000001; 
LUT[113]<=32'b00101100111011110010100010111000; 
LUT[114]<=32'b00101001111110000001110100110110; 
LUT[115]<=32'b00100110111110101000110110010101; 
LUT[116]<=32'b00100011111101101111000010110010; 
LUT[117]<=32'b00100000111011011011111001011000; 
LUT[118]<=32'b00011101110111110110111100110011; 
LUT[119]<=32'b00011010110011000111110010111001; 
LUT[120]<=32'b00010111101101010110000100011000; 
LUT[121]<=32'b00010100100110101001011100100011; 
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LUT[122]<=32'b00010001011111001001101001000001; 
LUT[123]<=32'b00001110010110111110011001010110; 
LUT[124]<=32'b00001011001110001111011110110100; 
LUT[125]<=32'b00001000000101000100101100000100; 
LUT[126]<=32'b00000100111011100101110100110101; 
LUT[127]<=32'b00000001110001111010101101100111; 
LUT[128]<=32'b11111110101000001011001011011011; 
LUT[129]<=32'b11111011011110011111000011011010; 
LUT[130]<=32'b11111000010100111110001010100101; 
LUT[131]<=32'b11110101001011110000010101100010; 
LUT[132]<=32'b11110010000010111101011000001000; 
LUT[133]<=32'b11101110111010101101000101001010; 
LUT[134]<=32'b11101011110011000111001110000110; 
LUT[135]<=32'b11101000101100010011100010110000; 
LUT[136]<=32'b11100101100110011001110001000000; 
LUT[137]<=32'b11100010100001100001100100011101; 
LUT[138]<=32'b11011111011101110010100110001011; 
LUT[139]<=32'b11011100011011010100011100011011; 
LUT[140]<=32'b11011001011010001110101010010001; 
LUT[141]<=32'b11010110011010101000101111011000; 
LUT[142]<=32'b11010011011100101010000111101100; 
LUT[143]<=32'b11010000100000011010001011001010; 
LUT[144]<=32'b11001101100110000000001101011011; 
LUT[145]<=32'b11001010101101100011011101100001; 
LUT[146]<=32'b11000111110111001011000101101010; 
LUT[147]<=32'b11000101000010111110001010111001; 
LUT[148]<=32'b11000010010001000011101100111001; 
LUT[149]<=32'b10111111100001100010100101100110; 
LUT[150]<=32'b10111100110100100001101001000001; 
LUT[151]<=32'b10111010001010000111100100111110; 
LUT[152]<=32'b10110111100010011011000000110000; 
LUT[153]<=32'b10110100111101100010011100111100; 
LUT[154]<=32'b10110010011011100100010011001001; 
LUT[155]<=32'b10101111111100100110110101101110; 
LUT[156]<=32'b10101101100000110000001111100011; 
LUT[157]<=32'b10101011001000000110100011110010; 
LUT[158]<=32'b10101000110010101111101101101001; 
LUT[159]<=32'b10100110100000110001100000001010; 
LUT[160]<=32'b10100100010010010001100101111011; 
LUT[161]<=32'b10100010000111010101100000111100; 
LUT[162]<=32'b10100000000000000010101010010101; 
LUT[163]<=32'b10011101111100011110010010001110; 
LUT[164]<=32'b10011011111100101101011111011011; 
LUT[165]<=32'b10011010000000110101001111010101; 
LUT[166]<=32'b10011000001000111010010101101011; 
LUT[167]<=32'b10010110010101000001011100010101; 
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LUT[168]<=32'b10010100100101001111000011001110; 
LUT[169]<=32'b10010010111001100111100000000000; 
LUT[170]<=32'b10010001010010001110111110000011; 
LUT[171]<=32'b10001111101111001001011110001011; 
LUT[172]<=32'b10001110010000011010110110100000; 
LUT[173]<=32'b10001100110110000110110010010111; 
LUT[174]<=32'b10001011100000010000110010000110; 
LUT[175]<=32'b10001010001110111100001010111110; 
LUT[176]<=32'b10001001000010001100000111000000; 
LUT[177]<=32'b10000111111010000011100100110110; 
LUT[178]<=32'b10000110110110100101010111101011; 
LUT[179]<=32'b10000101110111110100000111000111; 
LUT[180]<=32'b10000100111101110010001111000110; 
LUT[181]<=32'b10000100001000100001111111110001; 
LUT[182]<=32'b10000011011000000101011101011011; 
LUT[183]<=32'b10000010101100011110100000011010; 
LUT[184]<=32'b10000010000101101110110101000011; 
LUT[185]<=32'b10000001100011110111111011100110; 
LUT[186]<=32'b10000001000110111011001000001010; 
LUT[187]<=32'b10000000101110111001100010101001; 
LUT[188]<=32'b10000000011011110100000110101111; 
LUT[189]<=32'b10000000001101101011100011110111; 
LUT[190]<=32'b10000000000100100000011101000111; 
LUT[191]<=32'b10000000000000010011001001010010; 
LUT[192]<=32'b10000000000001000011110010110101; 
LUT[193]<=32'b10000000000110110010010111110110; 
LUT[194]<=32'b10000000010001011110101010001000; 
LUT[195]<=32'b10000000100001001000001111000111; 
LUT[196]<=32'b10000000110101101110011111111001; 
LUT[197]<=32'b10000001001111010000101001010110; 
LUT[198]<=32'b10000001101101101101101100000000; 
LUT[199]<=32'b10000010010001000100011100001111; 
LUT[200]<=32'b10000010111001010011100010001110; 
LUT[201]<=32'b10000011100110011001011001111111; 
LUT[202]<=32'b10000100011000010100010011100010; 
LUT[203]<=32'b10000101001111000010010010110101; 
LUT[204]<=32'b10000110001010100001001111111111; 
LUT[205]<=32'b10000111001010101110110111001101; 
LUT[206]<=32'b10001000001111101000101000111110; 
LUT[207]<=32'b10001001011001001011111010001001; 
LUT[208]<=32'b10001010100111010101110011111111; 
LUT[209]<=32'b10001011111010000011010100011000; 
LUT[210]<=32'b10001101010001010001001101110101; 
LUT[211]<=32'b10001110101100111100000111101100; 
LUT[212]<=32'b10010000001101000000011110001111; 
LUT[213]<=32'b10010001110001011010100010110100; 
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LUT[214]<=32'b10010011011010000110011100000001; 
LUT[215]<=32'b10010101000111000000000101110001; 
LUT[216]<=32'b10010110111000000011010001100011; 
LUT[217]<=32'b10011000101101001011100110100010; 
LUT[218]<=32'b10011010100110010100100001110000; 
LUT[219]<=32'b10011100100011011001010110010001; 
LUT[220]<=32'b10011110100100010101001101011000; 
LUT[221]<=32'b10100000101001000011000110110011; 
LUT[222]<=32'b10100010110001011101111000110110; 
LUT[223]<=32'b10100100111101100000010000100111; 
LUT[224]<=32'b10100111001101000100110010001111; 
LUT[225]<=32'b10101001100000000101111001000101; 
LUT[226]<=32'b10101011110110011101110111111011; 
LUT[227]<=32'b10101110010000000110111001001101; 
LUT[228]<=32'b10110000101100111010111111010001; 
LUT[229]<=32'b10110011001100110100000100100011; 
LUT[230]<=32'b10110101101111101011111011111000; 
LUT[231]<=32'b10111000010101011100010000101001; 
LUT[232]<=32'b10111010111101111110100111000101; 
LUT[233]<=32'b10111101101001001100011100100001; 
LUT[234]<=32'b11000000010110111111000111101001; 
LUT[235]<=32'b11000011000111001111111000101110; 
LUT[236]<=32'b11000101111001110111111001111001; 
LUT[237]<=32'b11001000101110110000001111011100; 
LUT[238]<=32'b11001011100101110001111000000001; 
LUT[239]<=32'b11001110011110110101101100111101; 
LUT[240]<=32'b11010001011001110100100010100011; 
LUT[241]<=32'b11010100010110100111001000010100; 
LUT[242]<=32'b11010111010101000110001001010001; 
LUT[243]<=32'b11011010010101001010001100001101; 
LUT[244]<=32'b11011101010110101011110100000001; 
LUT[245]<=32'b11100000011001100011011111111101; 
LUT[246]<=32'b11100011011101101001101011111101; 
LUT[247]<=32'b11100110100010110110110000110111; 
LUT[248]<=32'b11101001101001000011000100110011; 
LUT[249]<=32'b11101100110000000110111011011011; 
LUT[250]<=32'b11101111110111111010100110010000; 
LUT[251]<=32'b11110011000000010110010100111100; 
LUT[252]<=32'b11110110001001010010010101100011; 
LUT[253]<=32'b11111001010010100110110100111101; 
LUT[254]<=32'b11111100011100001011111111000010; 
LUT[255]<=32'b11111111100101111001111111000001; 
LUT_out <= 32'b0; 
end 
 
else 
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LUT_out <= LUT[address][31:24]; 
LUT_fractional <= LUT[address][23:0]; 
  
end 
endmodule 
 
To get the memory contents for LUT of traditional DDS, please check Section 5.2, Step 6.  
 
/*Adder*/ 
module adder (a, b, sum); 
 
input [31:0] a, b; 
output [31:0] sum; 
 
reg [31:0] sum; 
 
always @ (a or b)  
begin 
 sum = a + b; 
end 
endmodule 
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