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ABSTRACT

In this thesis, we propose a hierarchical control architecture for voltage in

power distribution networks where there is a separation between the slow

time-scale, in which the settings of conventional voltage regulation devices

are adjusted, and the fast time-scale, in which voltage regulation through

active/reactive power injection shaping is accomplished. Slow time-scale

devices will generally be existing hardware, e.g., voltage regulation trans-

formers, which will be dispatched at appropriate time intervals to reduce

the wear on their mechanical parts. In contrast, fast time-scale devices are

considered to be devices that connect to the grid through power electronics,

e.g., photovoltaic (PV) installations.

In the slow time-scale control, we propose a method to optimally set the tap

position of voltage regulation transformers. We formulate a rank-constrained

semidefinite program (SDP), which is then relaxed to obtain a convex opti-

mization that is solved distributively with the Alternating-Direction Method

of Multipliers (ADMM). In the fast time-scale control, we propose the fol-

lowing schemes: (i) a feedback-based approach to regulate system voltages,

and (ii) an optimization-based approach that maintains the desired operat-

ing state through a quadratic program developed from a linear distribution

system model.

Finally, we showcase the operation of the two time-scale control architec-

ture in an unbalanced three-phase distribution system. The test system in

the case studies is derived from the IEEE 123-bus test system and has a high

penetration of residential PV installations and electric vehicles (EVs). We

provide several examples that demonstrate the interaction between the two

time-scales and the impact of the proposed control on component behaviors.
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CHAPTER 1

INTRODUCTION

In this chapter, we motivate the need to introduce the two time-scale control

architecture for voltage control in power distribution systems proposed in

this thesis. To help contextualize the work in the thesis, we provide some

relevant background material and discuss previous work. Finally, we discuss

the contributions of this work and outline the thesis.

1.1 Problem Statement

The electric power infrastructure has been recognized as the most impor-

tant engineering achievement of the 20th century [1]. Modern power grids

are faced with significant challenges in reliability, security, environment, sus-

tainability, and market diversity. Driven by initiatives such as the US DOE

Smart Grid, and its European counterpart Electricity Networks of the Fu-

ture, power distribution systems are undergoing radical transformations in

structure and functionality [2, 3]. Firstly, environmental concerns advocate

high-penetration levels of variable renewable generation, such as photovoltaic

(PV) installations and wind turbines. Secondly, for economic interests, the

loads are being increasingly diversified, encompassing deferrable or storage-

based loads, e.g., plug-in hybrid electric vehicles (PHEVs) or electric vehicles

(EVs). These generation and storage resources are commonly referred to as

distributed energy resources (DERs). Lastly, an unprecedented level of in-

formation flow and scheduling across the whole network is envisioned by

capitalizing on state-of-the-art technologies in sensing, control, and commu-

nication.

To date, the relatively small penetration of DERs in distribution systems

has allowed regulations pertaining to their control to be limited to (i) main-

taining a constant power factor, (ii) following scheduled dispatches from an
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operator, and (iii) disconnecting from the grid when a fault occurs [4]. How-

ever, it has been reported (see, e.g., [5,6]) that increased penetration of DERs

in distribution systems is likely to cause voltage problems, thus requiring ad-

ditional control mechanisms on top of conventional ones, e.g., tap-changing

under load (TCUL) transformers. This is due to the fact that, unlike trans-

mission systems, typical line reactance to resistance ratios in distribution

systems are such that bus voltages are much more sensitive to changes in ac-

tive power injections [7,8]. In this regard, PV-based electricity generation can

be highly variable and ramp up on the order of 15% of its capacity per minute

across a network with intermittent cloud cover [5]. Additionally, on a clear

day, a high penetration of PV installations has the potential to cause voltage

rise and over-voltages from a reversal of active power flow originating from

net-positive power injections. With respect to this, the University of Illinois

solar decathlon house—the Gable Home [9]—and the Equinox house [10] are

examples of residential PV installations capable of producing an amount of

power significantly larger than its average load during peak hours of the day.

Similarly, the additional power demand introduced by large-scale charging of

PHEVs can potentially cause unacceptable voltage drops [11].

Voltage regulation is traditionally handled by automatically-controlled

TCUL transformers, set voltage regulators (SVR), and manually-controlled

fixed/switched capacitors [5, 12, 13]. However, existing equipment is not in-

herently designed to handle the variability introduced by the DERs, and the

lifetime of these components (e.g., the switches and tap changers) could be

dramatically reduced due to the increased number of operations that they

may undergo [5]. A potential solution to this problem is to supplement the ex-

isting control devices and utilize the DERs to provide reactive power support

for voltage regulation through the proper control of the power electronics that

interface them with the grid [14–16]. In this regard, the commercial prod-

ucts described in [16,17] are examples of existing rooftop and pole-mount PV

solutions capable of providing reactive power support; these products have

wireless communication capabilities that allow them to be controlled through

cellular, Ethernet, or WiMax backhaul networks.

In order to address the voltage control problem in distribution systems, we

envision a two time-scale architecture that classifies voltage control devices

as either slow or fast time-scale actuators, with the idea of controlling them

separately. Conventional voltage regulation devices, e.g., TCUL transform-
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ers and switched capacitors, would be considered slow time-scale actuators,

whereas power-electronic-interfaced DERs with reactive power provision ca-

pability would be the latter. Periodically, the slow time-scale control would

dispatch the associated actuators, resulting in some voltage profile [18]. This

can be performed based on heuristics associated with the time of day, or the

system can be monitored for contingency cases, e.g., system voltages are out-

side of tolerances. Then, given that fast (and uncontrolled) changes in DER

active generation (consumption) might cause the voltage to deviate from the

voltage profile set by the slow time-scale optimization, a second optimiza-

tion or a feedback control scheme executed at regular intervals (e.g., every

minute) could be utilized to determine the active/reactive power settings of

the DERs.

1.2 Background

In this section, we provide a brief overview of the power flow model of a

three-phase system and fundamental concepts in optimization. The ensuing

chapters will further develop these topics for their specific applications.

1.2.1 Power Flow Model

Distributions systems present a particular challenge, as compared to trans-

mission systems, when we formulate the power flow problem. Unlike trans-

mission systems, we cannot analyze the equivalent per-phase equivalent net-

work of the balanced network, since the distribution line segments are not

transposed and contain significant coupling between the phases. The imbal-

ances are worsened further, since the network loads are generally not balanced

and can be single-, two-, or three-phase loads.

Figure 1.1 shows the unbalanced three-phase distribution line segment

circuit diagram between buses i and k. We measure the phase voltages

with respect to ground so that the bus voltages will be Vai = |Vi|∠θi,
Vbi = |Vi|∠(θi−2π/3), and Vci = |Vi|∠(θi+2π/3) in the balanced case. The

line impedance and admittance will be zik,yik ∈ C3×3, which are dense ma-

trices and are not diagonally dominant. We also have the line charging (shunt

capacitance) at each end of the line given by 1
2
bik ∈ C3×3. The development

of zik, yik, and bik based on the system parameters is given in [7].

3
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Figure 1.1: Three-phase transmission line segment.

Figure 1.2 shows the possible load configurations, which are connected be-

tween the phases in either a wye-connection or delta-connection in Figs. 1.2(a)

and 1.2(b), respectively. For reasons that will be clearer later, we simplify

the network to be entirely comprised of wye-connected loads. We can ap-

proximate the delta-connected loads with the following relationship:



Sa

Sb

Sc


 =

√
3

3




e−jπ/6 0 e−j5π/6

−e−j5π/6 e−jπ/6 0

0 −e−j5π/6 e−jπ/6






Sab

Sbc

Sca


 , (1.1)

where we assume that the loads are constant power, and for numerical simula-

tion purpose, we can initialize the loads based on an approximately balanced

network. We can compute the power flowing out of bus i towards bus k as

Si→k =

(
yik (V i − V k) +

1

2
bikV i

)∗
� V i, (1.2)

where � is the Hadamard product, e.g., the element-wise product of two

matrices. Let Hi := {i} ∪ {k | (i, k) ∈ E} be the set of buses electrically

connected to bus i. Then, we can compute the power flow at bus i as

Sgi − Sdi =
∑

k∈Hi
Si→k, (1.3)

where Sgi and Sdi are the complex power generation and load at bus i, re-

spectively. The generation Sgi includes the active power generated by the

DERs, the reactive power contributions of shunt capacitors/inductions, and

the reactive power support provided by controllable DERs.
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(a) Wye-connected load.

Ia

Ica

Ic
Sbc

Ibc

Ib

Iab

a

c

b

Sca Sab

(b) Delta-connected load.

Figure 1.2: Three-phase distribution system load configurations.

1.2.2 A Primer on Optimization

Throughout this thesis, we rely on a fundamental understanding of how to

formulate an optimization problem and the relationship it has with its dual.

Consider the equality-constrained convex optimization problem

min
x
f(x) (1.4a)

such that

Ax = b, (1.4b)

where x ∈ Rn, A ∈ Rm×n, b ∈ Rm, and f : Rn → R. The objective function

f(x) represents some cost that we are attempting to minimize in terms of

the optimization variables x, such that some algebraic constraints Ax = b

are met; e.g., we often minimize the system losses so that the power flow

constraints of the network are satisfied.

Often, it is to our advantage to reformulate the constrained minimization

problem as an unconstrained maximization problem and solve the so-called

dual rather than the primal in (1.4). The Lagrangian is given by

L (x, y) = f(x) + yT (Ax− b) , (1.5)

where y ∈ Rm is the dual variable that represents the penalty associated with

violating a particular algebraic constraint. Then, we define the Lagrangian

Dual Function as

g(y) = inf
x
L(x, y) = −f ∗

(
−ATy

)
− bTy, (1.6)
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Primal f(x)

Dual g(y)

Duality Gap

Figure 1.3: The relationship between the primal and dual functions.

where f ∗(w) = wTx − f(x), w ∈ Rn is the conjugate of the primal function

f(x). The dual function g(y) will be a concave function whether or not the

primal is convex and has the following property:

max
y
g(y) ≤ min

x∈D
f(x). (1.7)

As shown in Fig. 1.3, the dual function will be a lower bound to the optimal

value of the primal. However, if the primal is convex and strong duality

holds, i.e., f(x∗) = g(y∗) (the duality gap is zero), then we can solve for the

dual and recover the primal solution with

x∗ = arg min
x
L(x, y∗). (1.8)

In an effort to improve robustness and the convergence of solving primal-

dual problem without assumptions like strict convexity or the finiteness of

f(·), the Augmented Lagrangian methods were developed. This approach

incorporates an additional penalty term to the Lagrangian to become

Lc(x, y) = f(x) + yT (Ax− b) +
c

2
‖Ax− b‖2

2 , (1.9)

for some penalty parameter c > 0. Intuitively, if solving numerically, if we

initialize far from the optimal solution, the penalty will drive the solver.

As we reach the optimal solution, the penalty will become negligible and

we solve for the original dual problem g(y). We refer the reader to [19,

20] for further discussion on the benefits and convergence properties of the

augmented Lagrangian.
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1.3 Related Work

The control and optimization of DERs is generally broken down into three

different categories: (i) centralized, (ii) distributed, and (iii) local (decen-

tralized) schemes. In this thesis, we advocate the use of distributed control

architectures. These control architectures offer many potential benefits over

centralized ones: (i) they are more economical because they do not require a

significant communication infrastructure overlay, (ii) computational require-

ments for the local controller are relatively low, and (iii) local information

is sufficient to control the DERs. Furthermore, the proposed distributed ar-

chitectures can be implemented on a single processor or parallelized across

several processors to reduce the problem size and reduce the computational

time in a centralized scheme.

Many (centralized) solutions to the voltage control problem in distribution

networks have been proposed in [21–23]. For example, the authors in [21]

propose an optimal multi-agent scheme that provides reactive power support

in distribution feeders, and assumes that DERs have two-way communica-

tion with a single controller, either directly or through other DERs. In order

to correct limit violations, agents are assigned to be managers or contractors

that bid on reactive power contributions based on bus sensitivities. In [22],

the authors partition the system buses into groups (agents) and solve lo-

cal optimal power flow problems though a hierarchical chain of command

structure. The authors in [23] maintain a database of limited historical ob-

servations and the corresponding solutions to a nonlinear optimal power flow

problem, so as to avoid computing its solution each time.

Recently, centralized-based methods include branch flow formulations [24–

26], second-order cone program (SOCP) [24, 27], and rank-relaxed semidef-

inite program (SDP) formulations (see e.g., [18, 28–30] and the references

therein). Lately, rank-relaxed SDP-based formulations have gathered signif-

icant attention. While this approach is not guaranteed to provide a global

minimum, e.g., it can fail for tightly constrained mesh networks, it has been

shown that the solution to the SDP-based optimal power flow (OPF) will

return a rank-1 solution for tree-structure networks under some mild condi-

tions [29,31,32]; these structures are typical of radial distribution systems. In

this case, the SDP-approach guarantees a global minimum. Then, the convex

OPF can be solved with either a subgradient- or ADMM-based (Alternating
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Direction Method of Multipliers) distributed algorithm [18,29,30,33].

There are also several decentralized and distributed strategies that ad-

dress the voltage regulation problem in distribution networks [34, 35]. The

authors of these works propose a switching control scheme where the DERs

are operated with a constant power factor while bus voltages are within spec-

ifications. Then, whenever there is a voltage violation, their reactive power

is adjusted so that the system returns to the desired operating conditions.

Otherwise, DERs can be controlled through a local scheme that consists of

a local feedback controller [36, 37], or policies that are designed to maintain

grid reliability [4].

1.4 Contributions and Organization of the Thesis

In this section, we provide an overview of the remaining chapters, and we

discuss the main contributions of the thesis.

Chapter 2. We describe our proposed hierarchical control architecture in

which we perform separate optimizations for the slow and fast time-scale

control of the system devices. Slow time-scale devices will generally be exist-

ing hardware that will be dispatched at appropriate time intervals to reduce

the wear on their mechanical parts. In contrast, fast time-scale devices are

considered to be devices that connect to the grid through power electronics

and will be used to mitigate the variability introduced by the DERs and flat-

ten the voltage profile of the distribution network. We provide a high-level

overview of the optimization and feedback control methods proposed in this

thesis.

The work presented in this chapter was published in [38], and [39].

Chapter 3. In the context of the slow time-scale devices, we propose a

method to optimally set the tap positions of the voltage regulation trans-

formers in distribution systems. We cast the problem as a rank-constrained

semidefinite program, in which the transformer tap ratios are captured by

(i) introducing a secondary-side ‘virtual’ bus per transformer, and (ii) con-

straining the values that these virtual bus voltages can take according to

the limits on the tap positions. Then, by relaxing the non-convex rank-1

constraint in the rank-constrained SDP formulation, one obtains a convex

8



SDP problem. The tap positions are determined as the ratio between the

primary-side bus voltage and the secondary-side virtual bus voltage that re-

sult from the optimal solution of the relaxed SDP, which are then rounded

to the nearest discrete tap values. To efficiently solve the relaxed SDP, we

propose an ADMM-based distributed algorithm.

The work presented in this chapter was published in [18] and [40].

Chapter 4. In the context of the fast time-scale devices, we propose a decen-

tralized feedback architecture for voltage regulation in distribution networks

that relies on controlling reactive power injections provided by the DERs.

A local controller on each bus of the network monitors the bus voltage and,

whenever there is a voltage violation, it uses locally available information

to estimate the amount of reactive power that needs to be injected into the

bus in order to correct the violation. If the DERs connected to the bus can

collectively provide the reactive power estimated by the local controller, they

are instructed to do so. Otherwise, the local controller initiates a request for

additional reactive power support from other controllers at neighboring buses

through a distributed algorithm that relies on a local exchange of informa-

tion among neighboring controllers. We show that the proposed architecture

helps prevent voltage violations and shapes the voltage profile in radial distri-

bution networks, even in the presence of considerable penetration of variable

generation and loads.

The work presented in this chapter was published in [36].

Chapter 5. In the context of the fast time-scale devices, we propose a

method to optimally set the reactive power contributions of the DERs present

in distribution systems with the goal of regulating bus voltages. For the

case when the network is balanced, we use the branch power flow modeling

approach for radial power systems to formulate an OPF. Then, we lever-

age properties of the system operating conditions to relax certain nonlinear

terms of this OPF, which results in a convex quadratic program (QP). To

efficiently solve this QP, we propose a distributed algorithm that follows the

ADMM-based approach introduced in Chapter 3. Furthermore, we include

the unbalanced three-phase formulation to extend the ideas introduced for

the balanced network case.

The work presented in this chapter was published in [41].
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Chapter 6. In order to accurately simulate a distribution network, we

develop aggregate load models for the system buses, define the active power

injections of PV installations, and provide the uncontrolled/optimized EV

charging schedules. Then, we incorporate the results from Chapters 2–5 to

implement the two time-scale control architecture described in Chapter 2.

We provide several scenarios to demonstrate the interaction between the

slow and fast time-scale controls, as well as possible strategies to control the

network to satisfy utility and customer control objectives.

The work presented in this chapter was published in [38] and [39].

Chapter 7. In the final chapter, we review the contributions made by this

thesis. We also include insights and suggestions for future research directions.
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CHAPTER 2

CONTROL ARCHITECTURE

In this chapter, we propose a hierarchical control architecture where there is

a time-scale separation between the actions taken to determine the settings

of conventional voltage regulation devices and the actions by which voltage

regulation through reactive power injection shaping is accomplished. We pro-

vide a high-level overview of the proposed control architectures and include

a bus-level reactive power management scheme.

2.1 Introduction

The introduction of distributed energy resources (DERs), e.g., plug-in hybrid

electric vehicles (PHEVs) and photovoltaic (PV) installations, in distribution

systems results in operational scenarios that these systems were not designed

to handle. It has been reported (see, e.g., [5, 6]) that increased penetration

of DERs in distribution systems is likely to cause voltage problems, thus re-

quiring additional control mechanisms. This is due to the fact that, unlike

transmission systems, typical line reactance to resistance ratios in distribu-

tion systems are such that bus voltages are much more sensitive to changes

in active power injections [7, 8]. In this regard, existing equipment is not

inherently designed to handle the variability introduced by DERs, and the

lifetime of these components (e.g., the switches and tap changers) could be

dramatically reduced due to the increased number of operations that they

may undergo [5].

The current control of DERs is limited in the sense that these devices

generally do not provide reactive power for voltage regulation, and they op-

erate with local policies designed to protect the grid during severe operating

conditions [4]. Interestingly, by properly controlling the power electronic

grid interfaces of these DERs, they can provide reactive power support for
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voltage regulation; thus, they help to mitigate the variability introduced

by uncontrolled active power injections of certain types of DERs, e.g., PV

installations [42]. While the proper control of the DERs is important, the co-

ordinated efforts of conventional regulation hardware with the reactive power

support supplied by the DERs provide a more complete and realistic control

architecture [29,43,44].

2.2 Two Time-Scale Architecture

The objective of the thesis is to address the problem of voltage regulation

in power distribution networks with substantial penetration of DERs; specif-

ically, the focus is on the problem of mitigating voltage variability across

the network due to fast (and uncontrolled) changes in the active power gen-

erated/consumed by DERs. To this end, we rely on the use of the power

electronics interfaces of the DERs to locally provide some limited amount

of reactive power. In other words, we have a limited ability to shape the

active/reactive power injection profile. With respect to this, it is important

to note that this ability to shape the active/reactive power injection profile,

which in turn will allow us to regulate voltage across the network, is intended

to supplement the action of conventional voltage regulation devices (e.g., tap-

changing under-load transformers, set voltage regulators, and fixed/switched

capacitors).

In practice, in order to realize the ideas above, we categorize devices as op-

erating on either a slow or fast time-scale and control them separately. Con-

ventional voltage regulation devices, e.g., tap-changing under load (TCUL)

transformers, would be considered slow time-scale actuators, and devices

with power-electronic interfaces would be considered fast time-scale actua-

tors. We routinely perform a slow time-scale optimization to dispatch trans-

formers and set the reference voltage that we regulate to based on the current

operating conditions. This optimization is performed at regular time inter-

vals or triggered by when some conditions are met. Then, given that fast

(and uncontrolled) changes in the active generation (consumption) of the

DERs might cause the voltage to deviate from this reference voltage, a sec-

ond optimization or feedback control is performed at regular intervals, e.g.,

every minute. The time-scale separation between instances at which the set-
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Instances at which conventional voltage
regulation devices are set
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Instances at which DER
references are set

Figure 2.1: Time-scale separation between instances at which the settings
of conventional voltage regulation devices are decided and the references of
DERs are set.

tings of conventional devices are decided and the reference setting of DERs is

graphically depicted in Fig. 2.1. The solution of this minute-by-minute opti-

mization will provide the amount of reactive power that needs to be locally

produced or consumed to track the voltage reference. In other words, the

minute-by-minute optimization provides the reference values for the amount

of reactive power to be collectively provided (or consumed) on each bus of

the network within the next minute by reactive-power-capable DERs. These

reference values are then passed to the local controllers of the DERs, which

will adjust their output accordingly—note that the time-scale in which DER

local controllers act (on the order of milliseconds) is much faster than the

minute-to-minute optimization.

With respect to the framework described above, the slow time-scale opti-

mization corresponds to selecting the settings of conventional devices, e.g.,

the tap ratios in the TCUL transformers, while the fast time-scale control

adjusts the reactive power output of the DERs. As an illustrative exam-

ple, Figure 2.2(a) shows the uncontrolled voltage profile for the buses plot-

ted per phase relative to the distance from the feeder with the taps on the

TCUL transformer in the neutral position and no reactive power support. In

Fig. 2.2(b) we track a nominal 1 p.u. voltage magnitude with the transformer

taps acting as the optimization variables. Finally, in Fig. 2.2(c) we include

reactive power support along with the transformer taps in the optimization.

Next, we provide a high-level description of the control and optimization

methods developed in the thesis.
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(a) Uncontrolled voltage profile.
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(b) Transformer taps optimized to track 1 p.u.
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(c) Transformer taps and reactive power support optimized
to track 1 p.u.

Figure 2.2: Unbalanced three-phase distribution system voltage profiles.
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2.2.1 Slow Time-Scale Control

The intended purpose of the slow time-scale optimization is to (i) set the taps

on the TCUL transformers, and (ii) determine a voltage profile V r that meets

some performance criteria for the fast time-scale control to regulate to. Peri-

odically, we will redispatch the system with the slow time-scale optimization

based on heuristics or monitoring for contingency cases, i.e., system voltages

are outside of specification or resources are operating near their limits.

Let V denote the vector of bus voltages, a the vector of the turn ratios

of the TCUL transformers, and q̃ the vector of the reactive power support

provided by the DERs and shunt elements, which we will describe in more

detail in Section 2.3. Then, for some operational objective function C(V, a, q̃),

the slow time-scale optimization will have the form:

min
V, a, q̃

C(V, a, q̃) (2.1a)

such that

power flow as a function of V , a, and q̃, (2.1b)

and

voltage limits V , V on V , (2.1c)

tap limits a, a on a, (2.1d)

reactive power limits qr, qr on q̃, (2.1e)

where we use different reactive power limits than those in the fast time-scale

voltage regulation problem. We limit the amount of reactive power available

in the slow time-scale optimization to provide what is equivalent to a spinning

reserve in transmission systems, i.e., we do not want the DERs operating at

full capacity with the initial dispatch so there is headroom to regulate up if

necessary.

2.2.2 Fast Time-Scale Control

Fast time-scale devices are considered to be devices that connect to the grid

through power electronics and have reactive power provision capabilities.

We will leverage these devices to combat the variability introduced by the
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DERs and meet system specifications throughout the distribution network.

In this thesis, we perform the fast time-scale control either through a feedback

control scheme or an optimization-based regulation procedure.

Feedback-Based Control

Figure 2.3 shows the closed-loop feedback control strategy we develop in

Chapter 4 for tackling the voltage regulation problem. In this method, the

discrete controllers independently attempt to regulate the bus voltage where

they are located to V r. In the situation that the controller fails to correct

the bus voltage to within some tolerance around V r, e.g., its local devices are

at their reactive power limits, then we offer a secondary distributed control

algorithm to supplement the decentralized feedback control. Note that we

can keep the feedback control strictly decentralized by fixing the output of

the secondary control to η = 0.

∑
Controller

Secondary
Control

∑ Distribution
SystemV r

V [r]

V e q̂[r+1]

q̂[r+1]

q[r+1]

η

+

−

+

+

q

q

Decentralized Feedback

Distributed Algorithm

Figure 2.3: Proposed feedback control architecture.

Optimization-Based Control

Next, we consider an optimization-based approach to tackle the voltage reg-

ulation problem. The feedback-based control is simple to implement and re-

quires very little knowledge of the system; however, correcting bus voltages

with reactive power support is inherently a local problem, and the secondary

control that supplements the feedback controller allocates reactive power re-

quests based on limits and not location. Thus, an optimization-based control

is well motivated.

16



The cost function C(V, q) regulates the system voltages to the slow time-

scale reference voltage, V r, by penalizing the deviation of V from V r. In

this case, we formulate a quadratic program (quadratic objective with linear

constraints) and the optimization will have the form:

min
V, q

C(V, q) (2.2a)

such that

power flow as a function of V and q, (2.2b)

and

reactive power limits q, q on q, (2.2c)

where q and q are the reactive power limits without considering reserve ca-

pacity for up and down regulation as in the slow time-scale optimization.

2.3 Bus-Level Reactive Power Management

In subsequent chapters, we assume that the local controller on each bus has

aggregate information on the total reactive power capacity available from

DERs connected to its bus, and it is responsible for reporting their reactive

power limits to the high-level control and dispatching the reactive power re-

quest to the devices attached to them. This collective upper (lower) capacity

limit is determined by the sum of the individual DER upper (lower) limits,

which the local controller needs to obtain. In practice, this can be accom-

plished in a variety of ways. One possibility is to have the local controller

directly communicate with each individual DER. In such a case, each DER

can directly report its individual capacity limits, which can vary over time

depending on the specific operating conditions of the DER. An alternative to

the above approach can be implemented using a distributed algorithm that

coordinates the DERs on each bus in a distributed fashion [45,46].

Figure 2.4 shows the intended communication structure at the bus level

between the local controller and the devices with reactive power provision

capabilities located on bus i. We categorized the devices as either: (i) discrete

shunt elements, i.e., shunt capacitors or inductors, and (ii) customer-owned

power-electronic-based DERs with reactive power provision capabilities. The
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Figure 2.4: Information flow for the reactive power management at bus i.

discrete shunt elements will have some incremental reactive power value ∆qsi

p.u. that can be regulated up or down by αi := {αi ∈ Z |αi ∈ [αi, αi]} so

that the total reactive power supplied by the shunt elements is

qsi = αi (∆q
s
i ) . (2.3)

If the shunt elements are exclusively switched capacitors, then we have

αi, αi ≥ 0. In the case that we have shunt inductors, then αi < 0 since

inductors are perceived as added load.

Each customer j attached to bus i will supply qcij p.u. of reactive power

and their limits will be qci
j
≤ 0 and qcij ≥ 0 for their net load and injections,

respectively. In this thesis, we assume that the collective reactive power

capability of the customers is greater than or equal to the incremental reactive

power ∆qsi of the shunt components, e.g., ∆qsi ≤
∑

j |qcij | and ∆qsi ≤
∑

j q
ci
j .

Consequently, this implies that the aggregate reactive power support q̃i, qi

provided by bus i is considered a continuous variable. There are a number of

other conditions that can be considered for the control of the discrete shunt

elements, i.e., limits on the number of switching actions; however, this is

handled by updating the interval [αi, αi] that defines αi and effectively shifts

the limits q
i
, qi used in the optimizations.

Algorithm 1 outlines the dispatch procedure for the reactive power man-

agement by the local controller. First, we determine the contributions of

the shunt elements based on the demand from the slow and fast time-scale

controls. Then, we compute the customers’ contributions that satisfy the

remaining demand with the fair-splitting algorithm in Chapter 4, which de-

18



Algorithm 1: Bus i Reactive Power Management Control Scheme

Input : qi
Output: αi, ρi
Data: αi, αi, q

ci
1

, . . . , qci
j

, qci1 , . . . , qcij
begin

initialize limits:

q
i

= αiq
s
i +

∑

j

qci
j

and qi = αiq
s
i +

∑

j

qcij

if qi ≤ q
i
then

compute:
αi = αi and ρi = −1

if qi ≥ qi then

compute:
αi = αi and ρi = 1

if qi < 0 then

compute:

αi = max

(
αi,

⌊
qi
qsi

⌋)
and ρi = −qi − αiq

s
i∑

j q
ci
j

if qi ≥ 0 then

compute:

αi = min

(
αi,

⌊
qi
qsi

⌋)
and ρi =

qi − αiqsi∑
j q

ci
j

return : αi, ρi

termines the ratio ρi between demand and the available resources [42]. The

reactive power commitment for each customer will be

qcij =

{
ρi q

ci
j
, ρi ≤ 0,

ρi q
ci
j , ρi > 0,

∀j, (2.4)

and reactive power supplied by bus i will be

qi = αi (∆q
s
i ) +

∑

j

qcij , (2.5)

for the fast time-scale control, and similarly for q̃i for the slow time-scale

optimization.
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2.4 Summary

In this chapter, we provided a high-level overview of our proposed hierarchical

control architecture. In Chapter 3, we formulate the optimization problem

corresponding to the control of slow time-scale actuators and introduce the

distributed solver that will be used throughout the thesis. Next, we describe

the decentralized feedback control for the fast time-scale actuators to track

the specified voltage profile from the solution to the OPF in Chapter 4. The

distributed resource allocation algorithm presented in this chapter provides

both a secondary control to assist the voltage regulation and dispatch reac-

tive power at the bus level in Section 2.3. In Chapter 5, we introduce an

optimal approach to handle the voltage regulation in the fast time-scale con-

trol. Finally, we demonstrate the operation of the two time-scale architecture

in Chapter 6.
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CHAPTER 3

SLOW TIME-SCALE:
AN OPTIMIZATION-BASED APPROACH

In this chapter, we formulate an optimization problem for dispatching voltage

regulation transformers (slow time-scale devices). This problem is then recast

as a rank-constrained semidefinite program (SDP), which we make convex by

dropping the rank constraint. This allows us to solve the problem centralized

or in parallel with a distributed architecture or a central computer with a

large number of cores. We can also leverage the distributed solver presented

in this chapter to reduce the problem algebraically in the centralized solution.

3.1 Introduction

In power distribution systems, tap-changing under-load (TCUL) transform-

ers are commonly used for regulating voltage. Traditionally, automatic volt-

age regulators (AVRs) are utilized to control the transformer tap position

based on local voltage measurements (see e.g., [47, 48]). While this AVR-

based control is effective in achieving local voltage regulation, it is likely not

optimal in terms of achieving certain overall system operational objectives,

e.g., minimizing power losses and voltage regulation from some reference

value. Motivated by this, we propose a framework to determine the trans-

former tap ratios in distribution systems that is optimal in some sense.

To address the problem described above, we formulate an optimal power

flow (OPF), where the transformer tap ratios are included as decision vari-

ables and the objective is to minimize the total power losses (although, other

objectives can be accomplished as well). In the context of transmission sys-

tems, optimal transformer tap setting under the OPF framework has been

investigated for decades. For example, in [49], the transformer tap posi-

tions are included as discrete variables in the OPF problem, which results

in a mixed-integer program (MIP) formulation. Unfortunately, the compu-
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tational complexity of this formulation grows exponentially with the number

of transformers, and thus becomes intractable for large systems. To tackle

this complexity issue, several papers have proposed to relax transformer tap

positions to continuous optimization variables, and then round the solution

to the closest discrete variables (see e.g., [49–51]). This alternative approach

can yield acceptable performance without incurring the added complexity.

However, all of these approaches are restricted to standard OPF formula-

tions, and are known to potentially suffer from the same convergence issues

present in traditional iterative solvers.

We formulate the OPF problem that arises in the context of voltage reg-

ulation in distribution systems as a rank-constrained semidefinite program

(SDP), and subsequently obtain a convex SDP problem from the original

SDP formulation by dropping the only non-convex rank-1 constraint (see,

e.g., [29, 31, 32, 52]). In general, this rank relaxation is not guaranteed to

attain the global minimum, in particular for mesh networks. Interestingly, it

has been shown that under some mild conditions, the optimal solution for the

relaxed SDP-based OPF problem turns out to be of rank 1 for tree-structured

networks, which are typical of radial distribution systems [29,31,32]. In this

sense, the rank relaxation scheme is actually guaranteed to attain the global

optimum of the original OPF problem. In addition to handling the OPF

problem, the SDP-based approach also constitutes a very promising tool

to tackle the non-convexity in other monitoring and control applications in

power distribution systems.

It is possible to extend the SDP-based OPF approach to include the tap

ratios of TCUL transformers by introducing a virtual secondary-side bus per

transformer, which in turn will result in additional constraints and decision

variables [40,53,54]. However, the TCUL transformer model proposed in [54]

is limited due to two issues: (i) the resulting relaxed SDP problem could fail

to yield a rank-1 solution, and thus its global optimality is no longer guaran-

teed; and (ii) it is only applicable to balanced systems. The first issue arises

since the network is equivalently broken into two disconnected parts by intro-

ducing virtual buses associated to each transformer, and the network discon-

nection would lead to multiple solutions of rank 2 [40]. Although an optimal

rank-1 solution could be recovered in this case, the conditions for recover-

ing rank-1 solutions are only possible for balanced systems [40, 54]. As for

the second issue, it is well known that distribution systems are unbalanced;
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this motivates the formulation of the three-phase OPF problem [52]. As will

become more clear later on, it is impossible to enforce the phase separation

between the primary- and secondary-side buses for the transformer model

in [54]. To address this issue, we propose an alternative transformer model

by including a highly resistive line between the primary- and secondary-side

buses. The proposed method does not introduce additional complexity as

compared to [54], but can successfully resolve the two aforementioned issues.

Related to our approach, [55] and [28] discuss adding a very small resistance

term to the model to handle a similar network disconnection issue due to the

presence of ideal transformers. It is worth pointing out that such a method

will maintain phase angles between primary- and secondary-side buses, but

will return incorrect power transfers; hence it is not deemed effective for

modeling transformers.

In order to solve the relaxed SDP problem described earlier, rather than

using iterative solvers traditionally used to solve the OPF problem, we are

interested in fast distributed solvers to handle the higher computational com-

plexity introduced by the SDP formulation. Distributed methods for solving

the OPF problem have been proposed in power systems in a variety of con-

texts (see, e.g., [29, 52, 56] and the references therein). In particular, the

Alternating-Direction Method of Multipliers (ADMM) has been widely used

as a simple, yet powerful technique for solving distributed convex optimiza-

tion problems [20]. This method has been successfully applied in power sys-

tems for the dispatch of distributed generation and deferrable loads [52, 56],

as well as state estimation [57]. We leverage the ADMM to solve the relaxed

SDP-based optimal tap problem in a distributed fashion. The ability to per-

form the optimization tasks in parallel can dramatically reduce computation

time and complexity, especially for large-scale systems [56].

The remainder of this chapter is organized as follows. Section 3.2 intro-

duces the system model and formulates the transformer tap-setting opti-

mization problem. In Section 3.3, we rewrite the OPF as a convex SDP,

and introduce a modified transformer model that will allow us to extend this

framework to an unbalanced three-phase system. The distributed solver is

given in Section 3.4. Section 3.5 presents the case studies, and concluding

remarks are presented in Section 3.6.
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3.2 Problem Formulation

In this section, we first introduce the standard TCUL transformer model

in the literature. Then, we describe the power flow formulation adopted in

this chapter and formulate the per-phase optimal power flow (OPF) problem

that includes the transformer tap positions as decision variables for balanced

systems.

3.2.1 Standard Transformer Model

Figure 3.1(a) shows the standard model of the tth TCUL transformer located

on the distribution line segment (pt, st) of some power distribution system.

Without loss of generality, we assume that the primary side of the trans-

former is closest to the feeder head, and the admittance for the attached

distribution line segment(s) and core losses (which are typically ignored in

distribution systems [47,58]) are referred to the secondary side as yptst . Given

the tap ratio at, this model contains an ideal transformer directly connected

to bus pt and the virtual secondary-side bus s′t such that Vpt = atVs′t . The

Ipt

Ist

+

Vpt

−

+

Vs′t

−

+

Vst

−

at : 1 yptst

(a) Classical transformer model.

Spts′tSpts′t

+

Vpt

−

+

Vs′t

−

+

Vst

−

yptstat : 1

(b) Equivalent transformer model.

Figure 3.1: Tap-changing under load transformer models.
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tap ratio at is a discrete variable that typically takes on 33 possible values

{ã−16, . . . , ã0, . . . , ã16}, uniformly distributed around ã0 to create a specified

range around the rated voltage of the transformer (which corresponds to ã0).

For instance, the taps can move up and down 16 positions from the nominal

tap ratio ã0 = 1 with each step corresponding to 5/8% p.u. change. With the

typical nominal voltage at 1 p.u., the tap ratio is bounded by a = ã−16 = 0.9

and a = ã16 = 1.1 [48]. Then, the line current and bus voltage relationships

for the circuit in Fig. 3.1(a), which depend nonlinearly on the tap ratio, are

as follows: [
Ipt

Ist

]
=

[
yptst/a

2
t −yptst/at

−yptst/at yptst

][
Vpt

Vst

]
. (3.1)

Figure 3.1(b) shows an equivalent model to the one in Fig. 3.1(a) that

removes the ideal transformer entirely and augments the network with the

virtual bus s′t. We treat the buses pt and s′t as though they are electrically

disconnected and introduce an additional variable Spts′t to account for the

power transferred across the removed ideal transformer, e.g., buses pt and s′t
will have a net injection of −Spts′t and Spts′t , respectively. Unlike the model

in (3.1), the primary/secondary power is independent of the tap ratio. The

key advantages of this alternative model are that: (i) the tap ratio is only

necessary in order to define the secondary-side bus voltage: Vs′t = Vpt/at,

and (ii) the admittance matrix for the equivalent circuit will remain constant.

Hence, in subsequent developments, we will use the primary/secondary power

relationship of the alternative transformer model in Fig. 3.1(b). Note that

transformers with fixed turn ratios are easily incorporated by modifying the

admittance matrix Y as described by (3.1).

3.2.2 Power System Model

Consider an n + 1 bus power system that has r TCUL transformers. Let

T := {1, . . . , r} denote the set of transformers. The set of buses incident

to the primary-side of a transformer is defined as Np := {pt | t ∈ T }; simi-

larly, for buses incident to the secondary side of a transformer, we have that

Ns := {st | t ∈ T }. Additionally, the set of virtual buses (introduced in the

equivalent transformer model in Fig. 3.1(b)) is defined as Ns′ := {s′t | t ∈ T }.
We index the feeder by 0 and let the remaining m system buses belong to
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the set Nb := {1, . . . ,m}. Thus, the set of physical buses will be

N = Nb ∪Np ∪Ns, (3.2)

and the set of buses in the augmented network created by adding the virtual

buses is

Na = N ∪Ns′ , (3.3)

where |Na| = n+ r.

The edge-set describing all of the distribution line segments in the system

(which could contain conductors for single-, two-, or three-phase circuits) is

Ea ⊆ {Na ∪ {0}} × {Na ∪ {0}} such that (i, k) ∈ Ea is the distribution line

between buses i and k. The admittance matrix for the balanced network

Y ∈ C(n+r+1)×(n+r+1) will reflect the topology of the augmented network.

Furthermore, we define the set Sps′ := {Spts′t | t ∈ T } as the power transferred

through the transformers. This balanced model will be extended to the

general unbalanced three-phase case in Section 3.3.4.

Finally, in order to include the equivalent transformer model in Fig. 3.1(b),

the power flow equations will be formulated depending on the type of bus as

follows:

No Transformer Incident to a Bus

Consider the case when there are no transformers incident to bus i. Let

Hi := {i}∪{k | (i, k) ∈ Ea} be the set of buses electrically connected to bus i,

which has no transformers incident to it. Then, the power injected in bus i

is

Si = Sgi − Sdi =
∑

k∈Hi
[Y ∗]ik ViV

∗
k , ∀i ∈ N\Np, (3.4)

where the generation Sgi and load Sdi are referenced as positive quantities.

Transformer Incident to a Bus

As shown in Fig. 3.1(b), we track the power across the transformer via Spts′t ,

and capture the tap ratio with the voltage relationship Vs′t = Vpt/at. If bus

i is incident to the primary-side of a transformer, then the corresponding

power flow equation becomes

Spt − Spts′t =
∑

k∈Hpt

[Y ∗]ptk VptV
∗
k , ∀t ∈ T , (3.5)
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or, for the virtual secondary-side bus, we have that

Spts′t =
∑

k∈Hs′t

[Y ∗]s′tk Vs
′
t
V ∗k , ∀t ∈ T . (3.6)

Note that the secondary-side buses in Ns are no longer directly incident to

transformers as in the circuit model in Fig. 3.1(a).

3.2.3 Transformer Tap Ratio Optimization

Next, we formulate an OPF problem that will determine the tap settings of

the TCUL transformer in the system. As mentioned earlier, the discrete tap

positions lead to an MIP formulation, the complexity of which grows expo-

nentially with the number of TCUL transformers [49]. To address this issue,

we relax the values that the discrete transformer tap ratio at ∈ {a, . . . a}
can take, and allow at to take values on the continuous interval [a, a]. Once

the optimal at is obtained, it will be rounded to the closest discrete value in

{a, . . . , a}.
Given some operational objective function f(V, q), which we describe in

detail later in Section 3.3.3, that is defined over the system voltages, V ∈
Cn+r+1, the available reactive power support, q ∈ Rn, and the transformer

tap ratios, a ∈ Rr, the OPF problem of interest can be formulated as follows:

min
V, a, Sps′ , q

f (V, q) (3.7a)

such that

V0 = V s, (3.7b)
∑

k∈Hi
[Y ∗]ik ViV

∗
k − Si − jqi = 0, ∀i ∈ N\Np, (3.7c)

∑

k∈Hpt

[Y ∗]ptk VptV
∗
k − Spt + Spts′t − jqpt = 0, ∀t ∈ T , (3.7d)

∑

k∈Hs′t

[Y ∗]s′tk Vs
′
t
V ∗k − Spts′t = 0, ∀t ∈ T , (3.7e)

Vpt − atVs′t = 0, ∀t ∈ T , (3.7f)
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and

V ≤
∣∣Vi
∣∣ ≤ V , ∀i ∈ N , (3.7g)

q
i
≤ qi ≤ qi, ∀i ∈ N , (3.7h)

a ≤ at ≤ a, ∀t ∈ T , (3.7i)

where the feeder’s voltage is fixed, i.e., V0 = V s = |V s|∠0 for some constant

|V s|. The high granularity of the available tap positions enables the contin-

uous tap-ratio representation approach to yield acceptable results without

incurring the added complexity of a MIP formulation [49–51]. However, the

optimization problem in (3.7) is still challenging due to the nonlinearity in

the power flow equations, as captured by constraints (3.7c)-(3.7e). Hence,

the ensuing section will introduce additional relaxations to handle these non-

linearities in the power flow model.

Note that we include the reactive power support provided by the dis-

tributed energy resources (DERs) (fast time-scale devices) in the OPF for

completeness; however, we do not consider the settings of these devices as

optimization variables for the case studies in Section 3.5 since this is covered

extensively in [29, 31, 52]. In Chapter 6, we will incorporate these device

settings into our simulations as decision variables following the framework

proposed in Chapter 2.

3.3 Convex Relaxation

In this section, we first reformulate the non-convex OPF problem in (3.7)

into matrix form. Then, we review a modified transformer model that we

proposed in [40]; this model will allow us to handle unbalanced three-phase

OPF. Finally, we use the aforementioned modified transformer model to de-

velop the convex relaxation of the matrix-based OPF formulation in (3.7).
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3.3.1 Matrix-Based OPF Formulation

The complex power injection at bus i ∈ N is given by

Si = Vi
∑

k∈Hi
[Y ∗]ik V

∗
k , (3.8)

where S, V ∈ Cn+r+1. We define W ∈ C(n+r+1)×(n+r+1) as

W = V V H =




V 2
1 · · · V1V

∗
n+r

...
. . .

...

V ∗1 Vn+r · · · V 2
n+r


 , (3.9)

where W is a positive semidefinite (PSD) matrix (W � 0) with rank 1. Let

Ei = eie
T
i , where ei is a vector with all entries equal to zero except the ith

one, which is equal to one. Then, the complex power balance equation in

(3.8) is linearly related to the entries of W as follows:

Si = Tr (HiW ) , (3.10)

where Hi := Y HEi. Furthermore, the complex power flowing from bus i to

k over line (i, k) ∈ Ea is given by

Sik = Tr (AikW ) , (3.11)

where Aik := −(eT
k Y

Hei)Eik and Eik := (ei − ek) eT
i .

We remove the tap ratio from the voltage relationship in (3.7f) and (3.7i)

by constraining the voltage on the secondary-side of the transformer relative

to the primary side, i.e.,

a2 |Vpt |2 ≤
∣∣Vs′t
∣∣2 ≤ a2 |Vpt|2 . (3.12)

Therefore, the equivalent matrix formulation of the problem in (3.7) is as

follows:
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min
W�0, Sps′ , q

f (W, q) (3.13a)

such that

[W ]00 = (V s)2 , (3.13b)

Tr (HiW )− Si − jqi = 0, ∀i ∈ N\Np, (3.13c)

Tr (HptW )− Spt + Spts′t − jqpt = 0, ∀t ∈ T , (3.13d)

Tr
(
Hs′tW

)
− Spts′t = 0, ∀t ∈ T , (3.13e)

and

V 2 ≤ [W ]ii ≤ V
2
, ∀i ∈ N , (3.13f)

q
i
≤ qi ≤ qi, ∀i ∈ N , (3.13g)

a2 [W ]ptpt ≤ [W ]s′ts′t ≤ a2 [W ]ptpt , ∀t ∈ T , (3.13h)

and

[W ]pts′t = [W ]s′tpt ≥ 0, ∀t ∈ T , (3.13i)

rank(W ) = 1. (3.13j)

The constraint (3.13i) ensures that Vpt and Vs′t have the same phase angle.

Once the solution to (3.13) is obtained, the tap ratio at of transformer t can

be determined using the bus voltage ratio as follows:

at =

√
|Vpt |2 /

∣∣Vs′t
∣∣2 =

√
[W ]ptpt/[W ]s′ts′t . (3.14)

3.3.2 Non-ideal Transformer Model

As will be discussed in detail in Section 3.3.3, the optimization problem in

(3.13) can be relaxed to a convex one by dropping the rank-1 constraint

[29,31,52]. For distribution networks, it has been shown that this relaxation

approach would yield a rank-1 solution [29], thereby achieving the global op-

timum of the original problem. As pointed out in [40], the transformer model

in Fig. 3.1(b) results in two electrically disconnected networks. Accordingly,

it has been shown that the solution to the relaxed problem could be of higher

rank, albeit with no loss of optimality as compared to the original problem.

However, the higher-rank solution leads to an arbitrary phase angle differ-
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Figure 3.2: Non-ideal transformer model.

ence between the primary-side bus and downstream buses. Such phase angle

ambiguity would significantly complicate the analysis of the three-phase sys-

tem, since the angle separation among the three phases can no longer be

enforced at the virtual secondary bus. We refer the reader to Appendix A.2

to further motivate the non-ideal transformer model.

The issue discussed here can be resolved by introducing the modified trans-

former model shown in Fig. 3.2, where we place an impedance zt between pt

and s′t of the ideal transformer introduced earlier to ‘reconnect’ the network.

Choosing an appropriate value of zt will ensure that the power flow in the

modified model almost mimics that of an electrically disconnected network.

As detailed later, this modification would help maintain the phase angle

consistency on both sides of the transformer; i.e., θpt ≈ θs′t . This is highly

attractive since it allows one to solve an equivalent convex formulation of the

original OPF problem in (3.7), while enforcing the correct phase shift for the

transformers. This is especially important to extend the OPF framework to

three-phase systems where the phase separation is lost with the disconnected

network.

As discussed in detail in Section 3.5.3, we found via numerical simulations

that there can be a large range of values for zt that yield solutions that are

sufficiently accurate. However, if |zt| is too small, the augmented network

admittance matrix Y could be problematic as the entries corresponding to

(pt, s
′
t) would become much larger than the rest of Y . Although a small |zt|

maintains θpt ≈ θs′t , the power flow through zt will become comparable to

Spts′t , and thus the system power flow would be different from the original

ideal transformer model. On the other hand, if |zt| becomes too large, then

the system behavior begins to mirror the original disconnected case with

ideal transformers. The latter scenario will result in a solution W that has a

rank greater than one. The value of |zt| needs to be chosen within a specific
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range, which can vary based on the system and the gains in the cost function.

Interestingly, all of our numerical simulations corroborated that a zt with a

resistance value of several orders of magnitude larger than the neighboring

distribution line segments (around 2-4 orders for our test systems) yielded

the best results.

Example 1 (Two-Bus Example) Consider a simple 2-bus system with

|Vpt |∠θpt,
∣∣Vs′t
∣∣∠θs′t, and zt = rt + jxt, where bus pt is the primary side

of the transformer. The power loss on the line is given by

Slt =
1

z∗t

(
Vpt − Vs′t

)2

=
rt + jxt
r2
t + x2

t

(
|Vpt |2 +

∣∣Vs′t
∣∣2 − 2 |Vpt|

∣∣Vs′t
∣∣ cos

(
θpt − θs′t

))
.

(3.15)

Since we are not working with a phase-shifting transformer, we can simplify

the expression above by assuming that θpt ≈ θs′t. Then, by defining the turns

ratio as at = Npt/Ns′t, we obtain that

P l
t =

rt
r2
t + x2

t

∣∣Vs′t
∣∣2 (a2

t − 2at + 1
)
, (3.16)

Ql
t =

xt
r2
t + x2

t

∣∣Vs′t
∣∣2 (a2

t − 2at + 1
)
, (3.17)

where at ∈ [0.9, 1.1] for the per unit voltages. In the case studies in Sec-

tion 3.5, we minimize generation of active power losses and choose rt � 0

and xt = 0 so that Ql
t can be neglected.

�

3.3.3 Rank-Relaxed Convex OPF

We apply the modifications to the transformer model as described in Sec-

tion III.B and relax the rank-1 constraint in (3.13) to get a rank-relaxed

convex OPF of the form:

min
W�0, Sps′ , q

f (W, q) (3.18a)
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such that

[W ]00 = (V s)2 , (3.18b)

Tr
(
H̃iW

)
− Si − jqi = 0, ∀i ∈ N\Np, (3.18c)

Tr
(
H̃ptW

)
− Spt + Spts′t − jqpt = 0, ∀t ∈ T , (3.18d)

Tr
(
H̃s′tW

)
− Spts′t = 0, ∀t ∈ T , (3.18e)

and

V 2 ≤ [W ]ii ≤ V
2
, ∀i ∈ N , (3.18f)

q
i
≤ qi ≤ qi, ∀i ∈ N , (3.18g)

a2 [W ]ptpt ≤ [W ]s′ts′t ≤ a2 [W ]ptpt , ∀t ∈ T , (3.18h)

where H̃ incorporates the non-ideal transformer model and (3.13i) is dropped

since the network is connected. As detailed in Appendix A.1, the rank-

relaxed SDP formulation in (3.18) is guaranteed to achieve the global opti-

mality of the non-convex tap setting problem with the rank constraint.

Next, we provide a qualitative explanation of the convex relaxation. Figure

3.3(a) shows the ellipse that results when the distribution line segment power

Pik from bus i to bus k is plotted against the distribution line segment power

Pki for fixed bus voltages and the powers parameterized relative to the phase

difference across the line. The blue line along the boundary represents the

rank(W ) > 1

rank(W ) = 1

Pik

Pki

(a) Unconstrained line losses.

Line Loss Limit

Pik

Pki

(b) Constrained line losses.

Figure 3.3: Distribution line segment power transfers.
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rank-1 constraint. The rank-relaxation allows solutions within the ellipse.

We will minimize for distribution line segment losses so that the solutions to

both the rank-1 and relaxed problem lie along the boundary in the second and

fourth quadrants. Note that the origin represents a lossless line. Figure 3.3(b)

shows how thermal limits, e.g., maximum power loss, change the solution set

to the red shaded area.

The objective function f(W, q) includes a term that captures system losses,

which is necessary to ensure that a rank-1 solution can be obtained from

the relaxed problem [29, 31, 52, 54]. It may also include additional terms to

capture voltage tracking objectives and power factor targets. The discussion

above can be formalized by considering an objective function of the form

f(W, q) = f0(W ) +
∑

i

fi(W, q), (3.19)

where

f0 (W ) =
∑

i∈Na

∑

k∈Hi
Re
{

Tr
(
ÃikW

)}
, (3.20)

which captures the total losses of all distribution line segments. The addi-

tional penalty terms in (3.19),
∑

i fi(W, q), could be chosen so as to achieve

other objectives of interest; next, we discuss a few possible choices.

If a given network has considerable distributed generation, minimizing line

losses may not reduce the total demand at the (sub)transmission substation.

This can be easily addressed by including a penalty term in (3.19) of the

form

f1(W, q) = ν Re
{

Tr
(
H̃0W

)}
, (3.21)

where ν is a positive weighting factor.

Additionally, to minimize voltage magnitude deviations from a specified

nominal voltage, V n
i , e.g., V n

i = 1 p.u. for all i, we can include a penalty

term in (3.19) of the form

f2(W, q) =
∑

i∈N
wi
(
(V n

i )2 − [W ]ii
)2
, (3.22)

where {wi} are the positive weighting factors per bus i [30]. The weights

themselves should be chosen based on: (i) the distance between the bus and

the feeder, and (ii) buses that are prone to voltage violations. Intuitively,
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buses near the end of the (sub)laterals should be weighted more than those

near the feeder in traditional radial distribution networks with unidirectional

power flow.

Next, utilities aim at operating distribution systems with a unity power

factor at the feeder head. Motivated by this, the reactive power injection to

the feeder head bus can be penalized by

f3(W, q) = γ
∥∥∥Im

{
Tr
(
H̃0W

)}∥∥∥
2

2
, (3.23)

where γ is a positive weighting factor.

Finally, we consider the costs of including reactive power support, which

can be either policy driven or economic-based. In the slow time-scale control,

we can penalize the reactive power contributions of the DERs to bias the

optimization towards using the transformer tap positions rather than reactive

power to minimize costs. The penalty will have the form

f4(W, q) =
∑

i∈N
αi (qi − βi)2 , (3.24)

where αi is a positive weighting factor and βi is the reactive power bias,

e.g., the current settings of the switched capacitors attached to bus i can be

represented with βi.

Note that the candidate cost functions introduced are separable among

all the buses; this will facilitate the development of the distributed solver as

detailed soon in Section 3.4.

3.3.4 Extension to Unbalanced Three-Phase Systems

So far, we have assumed balanced operation, which reduced the system model

to a per-phase equivalent; however, distribution systems are inherently un-

balanced with untransposed distribution lines and have single-, two-, and

three-phase radial feeds; therefore, a three-phase system extension of the

ideas discussed so far is well motivated. The authors in [52] discuss extend-

ing the SDP relaxation OPF approach to unbalanced three-phase systems;

our work focuses on incorporating three-phase TCUL transformers into such

formulation.

For a balanced system, a rank-1 exact solution can be recovered even
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Figure 3.4: Equivalent three-phase transformer model.

though the relaxed OPF in (3.13), the formulation of which is based on

the ideal transformer model in Fig. 3.1(b), has higher-rank solutions. The

additional constraints on the transformer (3.13i) will ensure a zero phase

angle difference between the primary- and secondary-side bus voltages of

that particular phase; however, the phase angles of buses downstream of the

secondary-side bus are not dependent on the primary side of the transformer.

In a multi-phase network, this implies that there is no constraint that enforces

the angle difference between phases, i.e., θa− θb ≈ 120◦. We can maintain

this phase separation by:

(i) reconnecting the network by using the non-ideal transformer model

that we proposed in Section 3.3.2, or

(ii) constraining the off-diagonal entries of the submatricesW ptpt andW s′ts
′
t

associated with the primary and secondary sides of the transformer.

The issue with (ii) is that the constraints turn out to be highly nonlinear in

W , which impedes us from incorporating them into the SDP OPF formula-

tion in (3.18); for this reason, we choose solution (i).

Consider the three-phase TCUL model in Fig. 3.4; we will follow a con-

figuration similar to the one used for the non-ideal transformer model in

Section 3.3.2. The core losses of the transformer will be neglected [47], and

we will assume that each phase can independently regulate its secondary-side

virtual bus voltage. This will be equivalent to a collection of three single-

phase transformers (see Fig. 3.2), which are coupled by the secondary-side

distribution line admittance yptst ∈ C3×3. Note that there is no mutual

impedance between the primary-side bus and the virtual secondary-side vir-

tual bus. Thus, we can optimize every tap individually and maintain the

proper phase separation. We will use Via , Vib , Vic to distinguish the voltages
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phasors for each phase at bus i. We also define a vector V3φ that will in-

clude the voltage phasors for all the buses in the network that has at most

3×(n+r+1) elements if every bus has three-phase circuits. The bus voltage

subindex allows one to maintain the notational consistency with the earlier

balanced case. The only difference lies in the dimension of the counterpart

vectors to accommodate the three phases. For example, the three-phase line

admittance is a block yik ∈ C3×3, as compared to yik ∈ C for the balanced

cases. This way, all the analysis and problem formulation so far carries over

by defining W 3φ = V 3φV
H
3φ. The power flow equations will remain un-

changed where we have an (in)equality constraint per phase; however, the

mutual impedances of the untransposed lines makes it more complicated to

compute the line losses as compared to (3.20).

Let ẽi ∈ N|V 3φ| be the vector with all entries equal to zero except the

entries corresponding to each phase present at bus i, which are set to one.

Define the matrices G and K as

G = diag(ẽ1)Y Hdiag(ẽ2) + diag(ẽ2)Y Hdiag(ẽ1) (3.25)

and

[K]ij =





−1, [ẽ1p ]i = [ẽ2p ]j = 1, p = {a, b, c}
1, i = j,

0, otherwise,

(3.26)

where ẽip is the vector ẽi conditioned on phase p, i.e., the vector contains a

single nonzero entry corresponding to the entry for phase p of bus i. Thus,

we update the line loss coefficient matrix Aik with

Aik = GK (3.27)

to capture the total losses across each distribution line segment.

3.4 Distributed Solver

It is well known that centralized algorithms for solving the SDP problem

in (3.13) are not suitable for large systems (see, e.g., [20]). To address this

issue, we propose the use of the Alternating Direction Method-of-Multipliers
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(ADMM), which allows for an efficient distributed solution to the convex SDP

problem in (3.18). The ADMM is proven to be a powerful distributed opti-

mization method and offers many benefits [20]. In particular, with ADMM,

the complexity of the SDP problem scales with the sub-area size rather than

with the full network size, and the communication architecture is simpler

than that of a centralized scheme. Suppose we partition the system into

two areas; Fig. 3.5 shows a topographical view of the corresponding subma-

trices W (1), W (2) and the boundary conditions W (1,2) = W (2,1) that result

from these partitions. The computational complexity per iteration using the

popular interior point method for our SDP problem (3.18) scales with the

fourth-order in the size of matrix W , or equivalently the number of system

buses (see, e.g., [59]). For large systems, small partitions will provide signifi-

cant savings in the number of optimization variables as depicted by the empty

off-diagonal blocks in Fig. 3.5; however, the increased number of boundary

conditions will require more super-iterations for convergence to a solution.

W (1)

W (1,2)

W (2)

W =

Figure 3.5: Partitioned system variables.

ADMM iteratively minimizes the augmented Lagrangian over three types

of variables: (i) the primary variables, i.e., the bus voltages and transformer

power transfers; (ii) the auxiliary variables that are used to enforce boundary

conditions among neighboring areas; and (iii) the multipliers for dualizing

the relaxed problem. The Lagrangian is designed to be separable relative to

each type of variable so that we can cyclically minimize with respect to one

variable type while fixing the others. This allows us to solve the problem

distributedly and achieve convergence to the same solution obtained with a

centralized solver [20].

We begin by partitioning the system into P := {1, 2 . . . , L} areas such

that ∪Li=1A(i) = Na, ∩Li=1A(i) = ∅, and |A(i)| ≥ 1 for all i. To include

the coupled buses, each area A(i) needs to be augmented, and the extended
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area is Ā(i) := A(i) ∪ {y | (x, y) ∈ Ea, x ∈ A(i), y ∈ A(j), i 6= j}. Then, the

neighbors of area Ā(i) are defined as M(i) := {j | Ā(i) ∩ Ā(j) 6= ∅}. For area

Ā(i), let W (i) ∈ C|Ā(i)|×|Ā(i)| denote the corresponding local matrix for the

outer product of the bus voltages, e.g., the |Ā(i)| × |Ā(i)| submatrix of W

corresponding to area i.

To enforce consistency between partitions, boundary conditions are re-

quired to constrain the submatrices W (i,j) = W (j,i) ∈ C2×2 for single phase

(C6×6 for three phase) associated with the overlap between neighboring ar-

eas. We define the auxiliary variables for the boundary conditions of the

local optimization as E(i,j), F (i,j) ∈ R2×2 (similarly R6×6 for the three-phase

case). These variables E(i,j) (F (i,j)) are used to enforce the real (imaginary)

part of the submatrix equality boundary condition on bus voltages. Note

that without the auxiliary variables, our problem would not be separable

with respect to each W (i).

Example 2 (Two Area Example) Consider the four bus, two area, single-

phase example shown in Fig. 3.6. Area 1 will have A(1) = {1, 2} and Ā(1) =

{1, 2, 3} so that W (1) ∈ C3×3. Similarly, area 2 will have A(2) = {3, 4}
and Ā(2) = {2, 3, 4} so that W (2) ∈ C3×3. The overlap between areas is

Ā(1) ∩ Ā(2) = {2, 3} and W (1,2) = W (2,1) ∈ C2×2.

�

1 2 3 4

Ā(1) Ā(2)

Figure 3.6: Two area partition example.

For each area we also define B(i), which captures the set of sub-matrices

that satisfy the local power flow and voltage constraints described in (3.18c)-

(3.18h) for area Ā(i). Given that all of the cost functions in Section 3.3.3 are

separable per area, we can rewrite the global minimization problem in (3.18)

as

min
W (i)�0, q(i)

∑

i∈P
f (i)

(
W (i), q(i)

)
(3.24a)

such that

W (i) ∈ B(i), ∀i ∈ P , (3.24b)
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and

Re
{
W (i,j)

}
− E(i,j) = 0, ∀j ∈M(i), (3.24c)

Im
{
W (i,j)

}
− F (i,j) = 0, ∀j ∈M(i), (3.24d)

where

E(i,j) − E(j,i) = 0, ∀j ∈M(i), (3.24e)

F (i,j) − F (j,i) = 0, ∀j ∈M(i). (3.24f)

We leverage the relations in (3.24e) and (3.24f) when formulating the update

rules of the distributed algorithm, but they are not enforced directly in the

optimization problem. Note that the primary- and virtual secondary-side

buses of a transformer cannot reside in two different areas. In our system

model, we assume that the transformer t is attached at pt, and that {pt, s′t}
are effectively the same physical bus; thus, its behavior is completely captured

by B(i) where pt ∈ A(i), and the boundary conditions will be enforced between

buses s′t and st.

3.4.1 Augmented Lagrangian

Let Γ(i,j),Λ(i,j) ∈ R2×2 denote the Lagrange multipliers associated with the

equality constraints in (3.24c) and (3.24d), respectively, where c > 0 is

the penalty coefficient. The augmented Lagrangian function for (3.24) is

as follows:

Lc(W, q,E, F,Γ,Λ)=

∑

i∈P

{
f (i)
(
W (i), q(i)

)
+
∑

k∈M(i)

[
Tr

(
Γ(i, j)T

(
Re
{
W (i, j)

}
−E(i, j)

))

+
c

2

∥∥Re
{
W (i, j)

}
−E(i, j)

∥∥2

F
+Tr

(
Λ(i, j)

T(
Im
{
W (i, j)

}
−F (i, j)

))

+
c

2

∥∥Re
{
W (i, j)

}
−F (i, j)

∥∥2

F

]}
,

(3.25)
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which is clearly separable amongst the three groups of variables such that

Lc(·) =
∑

i∈P
L(i)
c (·). (3.26)

Then, we can cyclically optimize the augmented Lagrangian Lc(·) with re-

spect to one of the groups of variables while holding the others constant with

the following three-step update rule for the kth iteration:

[S1.] Primal Variables Update: We take the infimum of Lc(·) with respect

to the primal variables, and update them as

W (i)[k] = arg min
W (i)∈B(i),W (i)�0, q(i)

L(i)
c

(
W (i), q(i)

)
, (3.27)

which is dependent of the dual variables Γ(i, j)[k − 1] and Λ(i, j)[k − 1],

and the boundary conditions E(i, j)[k − 1] and F (i, j)[k − 1].

[S2.] Auxiliary Variables Update: Recall that E(i, j) = E(j,i) and F (i, j) =

F (j,i), also note that Λ(i, j) = −Λ(j,i); then

∇E(i, j)Lc
(
W (i, j), E(i, j)

)
= Re

{
W (i, j) +W (j,i)

}
− 2E(i, j) = 0, (3.28)

∇F (i, j)Lc
(
W (i, j), F (i, j)

)
= Im

{
W (i, j) +W (j,i)

}
− 2F (i, j) = 0. (3.29)

We update the auxiliary variables with

E(i, j)[k] =
1

2
Re
{
W (i, j)[k] +W (j,i)[k]

}
, (3.30)

F (i, j)[k] =
1

2
Im
{
W (i, j)[k] +W (j,i)[k]

}
, (3.31)

for j ∈M(i).

[S3.] Multipliers Update: The gradient for the L(·) with respect to the dual

variables is

∇Γ(i, j)L(i)
c

(
W (i, j), E(i, j)

)
= Re

{
W (i, j)

}
− E(i, j), (3.32)

∇Λ(i, j)L(i)
c

(
W (i, j), F (i, j)

)
= Im

{
W (i, j)

}
− F (i, j). (3.33)

We initialize all the multipliers to zero; then, we solve the dual variables

using an ascent method and apply (3.30)–(3.31). Thus, for j ∈ M(i),
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the update rules for the dual variables are

Γ(i, j)[k]=Γ(i, j)[k−1]+
c

2
Re
{
W (i, j)[k]−W (j,i)[k]

}
, (3.34)

Λ(i, j)[k]=Λ(i, j)[k−1]+
c

2
Im
{
W (i, j)[k]−W (j,i)[k]

}
. (3.35)

Note that it follows naturally that Γ(i,j) = −Γ(j,i) and Λ(i,j) = −Λ(j,i).

Although Steps S1-S3 are formulated for the per-phase equivalent of a bal-

anced network, they can easily be extended to solve unbalanced three-phase

systems as well by accounting for all phase voltages per bus.

3.5 Case Studies

In this section, we illustrate the ability of the distributed, ADMM-based

algorithm proposed in Section 3.4 to optimally set TCUL tap positions for

both single- and three-phase cases of a 15-bus network. We also demonstrate

the effectiveness of the algorithm on the IEEE 123-bus test system [58]. In

all our studies, the voltage magnitude inequality constraints for all cases are

limited to 1 p.u. ± 4.8%, rather than the common ± 5% to account for

discrepancies associated with rounding to nearest discrete tap position.

We performed the simulations in MATLAB using the CVX package [60]

with the symmetric cone solver SeDuMi [61]. This software package was

used to solve the centralized problem and to update the primal variables

W (1), . . . ,W (L) in Step S1 of the distributed algorithm.

While in Section 3.3.3 we provided several penalty terms for different

performance objectives, the cost function used in the case studies in Sec-

tions 3.5.1 and 3.5.2 only considers the distribution line losses as defined in

(3.20), i.e., f(W ) = f0(W ).

3.5.1 15-Bus Distribution System

We begin with the 15-bus network shown in Fig. 3.7, which we derived

from the IEEE 13-bus—a three-phase, unbalanced distribution system, (see,

e.g., [47, 58]). The system has a three-phase voltage regulation transformer

between buses 650 and 632. The rest of the system contains single-, two-, and
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Figure 3.7: 15-bus unbalanced distribution system.

three-phase sublaterals. Buses 650 and 651 were added between the feeder

and the transformer so that the transformer was not directly connected to

the slack bus. Bus 693 was added to account for the distributed load along

line (632, 671), and bus 692 was removed since it corresponds to a closed

switch connected between buses 671 and 675.

In Fig. 3.7, busses are color coded for areas A(1) and A(2); the extended

areas Ā(1) and Ā(2) are distinguished by the dashed lines circling the areas.

The overlap occurs at buses 632 and 693 where W (1,2) ∈ C2×2 for the 14-bus

balanced case and W (1,2) ∈ C6×6 for the following three-phase case.

Per-Phase Equivalent Results

For the balanced system, we isolate phase C from Fig. 3.7 since it is the

dominant phase of the 15-bus network, and create a 14-bus balanced case

that excludes bus 652 from the network topology since phase C is not present

on that bus. The results obtained using: (i) a centralized algorithm, (ii) our

distributed algorithm, and (iii) an exhaustive search, where we enumerate

all of the possible tap ratio combinations are shown in Table 3.1. All three

methods return the same optimal tap position. The exhaustive search uses
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Figure 3.8: 14-bus, per-phase equivalent distributed optimization results.
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Table 3.1: 14-Bus Balanced Network Results

Centralized Distributed Exhaustive
OPF OPF Search

f(W ) 0.559 0.466, 0.094 0.554

|Vpt | 1.007 1.007 1.007

|Vs′t | 1.060 1.060 −
|Vst | 1.048 1.048 1.048

Spts′t 11.05 + j4.01 11.04 + j4.01 −
St 0.005 0.005 −

Tap −8 −8 −8

CPU Time 0.8 s − 0.1 s

an ideal transformer model, and the difference in the cost function f(W )

compared to the other two methods is due to the loss St through the non-

ideal transformer model. Figures 3.8(a) and 3.8(b) show the evolution of the

area cost functions and the corresponding tap ratio for c = 60. Notice that

the optimal position occurs near iteration 250 where the global f(W ) remains

relatively unchanged after iteration 125, so there are several tap ratios that

will result in acceptable solutions. Figure 3.8(c) shows the effect of changing

the penalty parameter c. For the 14-bus network, the fastest convergence

occurs when c ≈ 30.

Unbalanced Three-Phase System Results

In the centralized case, the 15-bus, unbalanced three-phase system problem

will have 1763 optimization variables since W ∈ C41×41. In contrast, the

distributed case has a 21.8% reduction for a combined total of 1379 vari-

ables (910 for area 1 and 469 for area 2). The results for the unbalanced

three-phase case are listed in Table 3.2 with the progress of the distributed

algorithm displayed in Fig. 3.9. The solutions to the relaxed problem (incor-

porating the non-ideal transformer model) obtained with the centralized and

distributed solvers yielded the same tap positions of {−7,−8,−6}. The ex-

haustive search solution yielded a different result for phase A, with the final
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Figure 3.9: 15-bus, three-phase distribution optimization results.

tap positions being {−6,−8,−6}. However, if we check the centralized and

distributed result by solving the power flow equations, we find the solution

to be acceptable. Similar to the balanced case, there are several solutions

around the selected tap positions with nearly the same costs for the objective

function.

From the results in Table 3.1, we can see that the exhaustive search method

for a single tap resulted in a faster computation than the relaxed centralized

problem, with CPU times of 0.1 s versus 0.8 s, respectively. In the three-phase

case, the added computational complexity introduced by the dimensional

increase associated with the additional phases resulted in an increase of the

CPU time for the exhaustive search solution to 107.2 s, while the relaxed

centralized case increased slightly to 2.0 s. The ADMM-based solution that

we proposed was tested using a serial implementation on a single-core; thus,

we intentionally did not include the CPU time for this case. We refer the

reader to [20,52,56] for computational benefits of ADMM.
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Table 3.2: Unbalanced Three-Phase 15-Bus Network Results

Centralized Distributed Exhaustive Power
OPF OPF Search Flow

f(W ) 1.170 1.047, 0.123 1.170 1.167

1.028 1.028 1.028 1.028
|V pt| 1.017 1.017 1.017 1.017

1.023 1.023 1.023 1.023

1.073 1.073 − −
|V s′t | 1.073 1.073 − −

1.064 1.064 − −
1.048 1.048 1.043 1.050

|V st | 1.044 1.044 1.042 1.042
1.043 1.043 1.041 1.041

8.5 + j4.1 8.5 + j4.1 − −
Spts′t 9.6 + j4.7 9.6 + j4.7 − −

9.8 + j3.3 9.8 + j3.3 − −
St 0.004 0.004 − −

Tap -7, -8, -6 -7, -8, -6 -6, -8 , -6 -7, -8, -6

CPU Time 2.0 s − 107.2 s −

3.5.2 Unbalanced Three-Phase 123-Bus Distribution System

Figure 3.10 shows the one-line diagram for the IEEE 123-bus, three-phase

distribution system, which includes four three-phase voltage regulation trans-

formers [58]; we also divide the system into six areas. This is a comprehensive

system that is mostly unbalanced and contains overhead/underground dis-

tribution line segments with single-, two-, and three-phase branches. We set

the voltage at the feeder to 1.01 p.u. so that there are 18 buses experiencing

an under-voltage with the worst being 0.937 p.u. on bus 118. Note that for

this particular case, we did not include results for an exhaustive search of

the transformer tap settings since the number of combinations with the hard-

ware available is 339. Therefore we cannot obtain a solution in a reasonable

amount of time. In contrast, the centralized convex relaxation took 71.5 s of

CPU time to reach the solution.
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Figure 3.10: Partitioned IEEE 123-bus distribution system.

In this case, we have that W ∈ C259×259 and the centralized relaxed OPF

has 268,854 optimization variables. The centralized algorithm yielded a so-

lution in which the tap positions are set to the neutral position, i.e., position

0, for regulators T1 and T2; are set to {−5,−1,−3} for regulator T3; and

are set to {−2,−1,−1} for regulator T4. The minimum voltage is raised to

0.985 p.u. and the network losses are 0.8286 p.u. The bus voltage error be-

tween the continuous and the rounded discrete tap positions has an average

of 6.63× 10−4 p.u. and a standard deviation of 0.0017 p.u. with a maximum

error of 0.0029 p.u.

In contrast, the distributed algorithm results in 59,436 optimization vari-

ables, which is a 77.89% reduction from the centralized scheme. The dis-

tributed method returned slightly different results for the tap positions: reg-

ulators T1 and T2 taps are set to the neutral position, regulator T3 taps are

set to {−4,−1,−2}, and regulator T4 taps are set to {0, 1, 0}. The minimum

voltage in this configuration is 0.965 p.u. on bus 118. However, the mini-

mum computed network losses for this configuration are 0.8303 p.u., which
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represents a 0.3% difference from the centralized result. For this particular

network and loading, the tap positions of regulator T3 impact the network

conditions the most since this transformer is connected to the feeder. As the

number of transformers on the network increases, there could be multiple

solutions that minimize the cost function.

3.5.3 Impact of the Choice of zt

Next, we explore the impact of the zt on the solution of the 15-bus, un-

balanced three-phase optimization; the results are captured in Figs. 3.11–

3.14. In each figure, the thick red vertical line represents the resistance of

the neighboring distribution line segments. The vertical lines to the left and

right represent values of zt that are an order of magnitude less and two orders

of magnitude larger than that of the neighboring distribution line segments,

respectively.

The objective function for this particular case is of the form

f(W ) = f0(W ) +
∑

i∈N
(1− [W ]ii)

2 , (3.36)

where the summation term penalizes the voltage deviations from 1 p.u. Fig-

ure 3.11 shows the optimization variables Spts′t for the power transferred

through the transformer and the phase difference θpt − θs′t between the pri-

mary and secondary sides of the transformer versus the impedance of zt. In

Fig. 3.12 we plot the power transferred through zt and the rank of the W

returned from the convex optimization. In Fig. 3.13 we show cost function

f(W ) and the normalized percent error

e (W ,V (at)) = 100

√√√√∑

i∈N

(√
[W ]ii − |Vi(at)|
|Vi(at)|

)2

, (3.37)

which is determined by the difference between the voltage magnitudes re-

covered from W (zt) and the voltage magnitudes shown in Fig. 3.14 that are

computed from the power flow with rounded discrete tap positions.

In Section 3.3.2, we proposed to choose |zt| several orders of magnitude

larger than the impedance of the adjacent distribution line segments. For

the 15-bus system, the optimization solution tends to match the power flow

49



10−2 100 102 104 106

0

5

10

Orders of Magnitude of zt

R
e
{ S

p
t
s
′ t

}
[p

.u
.]

-3

0

3

(θ
p
t
−
θ
s
′ t
)

[d
eg

]

Re {Sps}
∆θ

Figure 3.11: Power transferred through Spts′t and phase mismatch between
pt and s′t versus |zt|.

10−2 100 102 104 106
-1

0

1

Orders of Magnitude of zt

R
e
{S

t
}[

p.
u.

]

0

1

2

3

4

5

R
an

k(
W

)

Re {St}
Rank(W )

Figure 3.12: Power transferred through zt and the rank of W .

10−2 100 102 104 106
0

3

6

9

Orders of Magnitude of zt

e
(W

,V
(a

t
))

1.2

1.3

f
(W

)

e (W ,V (at))

f(W )

Figure 3.13: Normalized percentage of the voltage error and the objective
function in the form f(W ) = f0(W ) + f2(W ).

50



10−2 100 102 104 106

0.95

1

1.05

Orders of Magnitude of zt

|V
|[

p.
u.

]

Figure 3.14: Power flow results for bus voltages from rounded tap positions.

results better for small values of zt; the desired results were captured when

zt is chosen such that |zt| is two to four orders of magnitude larger than the

magnitude of the impedance of neighboring distribution lines. Within this

interval, the power transferred through zt converges to zero and the system

values in the optimization converge to a steady-state. We also see that the

rank of W is still one with a subtle discrepancy in the angle difference across

the transformer of less than 3 degrees and a normalized voltage magnitudes

error of less than 2% between the power flow results and the resulting W (zt).

After four orders of magnitude difference, the system behaves as the discon-

nected case and we are no longer able to accurately recover the solution. Note

that these results are for this specific case. In other scenarios we have found

that |zt| approximately two orders of magnitude larger than the neighboring

distribution line segments is a good choice for an initial value.

3.6 Summary

In this chapter, we developed a method to optimally set, via a distributed

ADMM-based algorithm, tap positions of voltage regulation transformers in

distribution systems. We demonstrated the applicability of this method via

numerical examples involving single- and three-phase test systems.
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CHAPTER 4

FAST TIME-SCALE:
A FEEDBACK-BASED APPROACH

In this chapter, we provide a feedback control scheme for tracking a speci-

fied voltage profile by controlling the reactive power injections provided by

fast time-scale actuators, i.e., reactive power capable distributed energy re-

sources (DERs). A local controller on each bus of the network monitors the

bus voltage and, whenever there is a voltage violation, it uses locally avail-

able information to estimate the amount of reactive power that needs to be

injected into the bus in order to correct the violation. If the DERs connected

to the bus can collectively provide the reactive power estimated by the local

controller, they are instructed to do so; otherwise, we introduce a secondary

distributed control to supplement the primary control when certain resources

hit their limits. This distributed ‘fair-splitting’ algorithm is also utilized for

bus-level reactive power management discussed in Chapter 2.

4.1 Introduction

Our proposed feedback control scheme consists of two stages. In the first

stage, the voltages at certain buses in the network are monitored by a local

controller. If the local controller at a particular bus senses that its voltage

is above or below certain thresholds imposed by performance specifications

(e.g., ±5% around a nominal value [4]), it will first estimate the amount

of reactive power that should be injected into the bus to clear the voltage

violation. This estimate is obtained by using the sensitivity of the bus voltage

magnitude to changes in reactive power injections in the same bus. Then, if

the DERs directly connected to the bus can provide the estimated reactive

power, they will be instructed to do so; otherwise, they will output their

maximum/minimum capacity. In the second stage, the difference in reactive

power between the local controller estimate and what the DERs connected to
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the bus can provide will be requested from other buses that have additional

capacity. Through a distributed algorithm that only requires an exchange of

information among neighboring controllers (e.g., through wireless or power

line communications), each local controller calculates its fair contribution to

meet the additional request. The proposed algorithm for DER control has

similarities with consensus algorithms that have been studied extensively in

the field of control (e.g., see [62] and the references therein).

The remainder of this chapter is organized as follows. Section 4.2 pro-

vides the distribution system model used for control design purposes, and

the communication network model used to describe the exchange of infor-

mation between local controllers. The proposed two-stage feedback control

scheme is presented in Section 4.3, while Section 4.4 illustrates its opera-

tion on an 8-bus network and Section 4.5 shows its operation with the two

time-scale architecture. Concluding remarks are presented in Section 4.6.

4.2 System Model

In this section, we develop a power distribution system model, which is used

in Section 4.3 to design the feedback control system; this model describes the

evolution of bus voltage magnitudes as active and reactive power injections

change over time. Additionally, we introduce the network communication

model that describes the exchange of information between the local con-

trollers that are geographically dispersed throughout the electrical network.

4.2.1 Power Distribution Network

Consider a distribution system with n + 1 buses indexed by i = 0, 1, . . . , n.

At time instants r = 0, 1, . . . , the voltage magnitude and angle of bus i

are denoted by Vi[r] and θi[r], respectively. We assume that bus 0 is the

feeder and will be treated as an infinite bus; therefore, V0[r] and θ0[r] remain

constant for all r. The remaining n buses are considered to be PQ buses. Let

V [r] = [V1[r], V2[r], . . . , Vn[r]]T denote the vector of bus voltage magnitudes

and θ[r] = [θ1[r], θ2[r], . . . , θn[r]]T denote the vector of bus voltage angles

(both V0[r] and θ0[r] are omitted). At time instant r, let Pi[r] and Qi[r] be the

active and reactive power injections in bus i, respectively; the corresponding

53



active and reactive power injection vectors at the PQ buses are denoted by

P [r] = [P1[r], P2[r], . . . , Pn[r]]T and Q[r] = [Q1[r], Q2[r], . . . , Qn[r]]T . We

define ∆V [r] = V [r + 1] − V [r] and ∆θ[r] = θ[r + 1] − θ[r] as the vectors

describing small variations in voltage magnitudes and angles between times

r and r + 1; while variations in active and reactive power injections at PQ

buses are defined as ∆P [r] = P [r + 1] − P [r] and ∆Q[r] = Q[r + 1] − Q[r].

Then, [
∆P [r]

∆Q[r]

]
=

[
H N

K L

][
∆θ[r]

∆V [r]

]
, (4.1)

where

H =

[
∂Pi
∂θj

]
, N =

[
∂Pi
∂Vj

]
, K =

[
∂Qi

∂θj

]
, L =

[
∂Qi

∂Vj

]
.

[Note that all of the partial derivatives defining the entries of H, N , K, and

L are evaluated at V [r], θ[r], P [r], Q[r], and therefore H, N , K, and L are

functions of r; however, in the remainder, we suppress the argument for ease

of notation.]

A standard assumption used in the analysis of transmission systems is that

the entries of H, L are much larger than the entries of N , K. This effectively

decouples (4.1) so that variations in active power injections primarily affect

bus voltage angles, whereas variations in reactive power injections directly

affect bus voltage magnitudes. This is a consequence of the fact that the per

unit reactance to the per unit resistance ratio of transmission lines, commonly

referred to as “x/r ratio”, is large [63]. In the case of a distribution system,

this assumption is not valid since the transmission line x/r ratios are much

lower [7]. As a result, in distribution systems, bus voltages are much more

sensitive to changes in active power than typically observed in transmission

systems.

In our setting, ∆P [r] describes the changes in active power injections that

arise from DERs, e.g., PV rooftop installations and PHEVs, and represents

an external “disturbance” over which we do not have control. These injec-

tions will have a noticeable impact on the network voltage profile. To miti-

gate the effect of ∆P [r] on system voltages, we assume that we have control

over ∆Q[r]. We are interested in the effect that uncontrolled variations in

active power and controlled variations in reactive power injections have on

bus voltage magnitudes. Assuming that H is invertible, then it follows from
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(4.1) that ∆θ[r] = −H−1N∆V [r] +H−1∆P [r], and

∆V [r] = (L−KH−1N)−1(∆Q[r]−KH−1∆P [r])

= S∆Q[r] + w[r],
(4.2)

where S ≡ (L −KH−1N)−1 is assumed to be invertible, and w[r] ≡ −(L −
KH−1N)−1KH−1∆P [r] captures the effect of uncontrolled variations in ac-

tive power injections on bus voltage magnitude. Now, by unwrapping (4.2),

the recurrence relation that describes how the bus voltage magnitudes evolve

with time is given by

V [r + 1] = V [r] + S∆Q[r] + w[r]. (4.3)

Although we did not make it explicit, the matrix S is in general a function

of r. On the other hand, the variations of S with r are relatively small for

a wide range of operating conditions [63]. In this regard, we verified that

the entries of S typically remain within 3% of their average value for a wide

range of operating conditions for the test systems.

4.2.2 Network Communication

It is assumed that certain buses of the electrical network have a local con-

troller that can monitor the bus voltage and make local control decisions

based on the exchange of information with a subset of other controllers.

Some of these controllers may be located at buses that are directly con-

nected to the bus of the given controller, but, in general, the exchange of

information between the n controllers can be arbitrary. It is convenient to

capture this exchange of information between local controllers by a directed

graph Gd = {V , E}, where V = {1, 2, ..., n} represents the set of vertices

(nodes, which represent the controllers), and E ⊆ V ×V represents the set of

directed edges, i.e., (j, i) ∈ E when node j can receive information from node

i. By convention, we assume that self-loops are not contained in E . All of the

nodes that can send information to node j are said to be the in-neighbors of

node j and are represented by the set N−j = {i ∈ V : (j, i) ∈ E}. The car-

dinality of N−j is called the in-degree of node j and is denoted by D−j . The

nodes that can receive information from node j are called its out-neighbors

and are represented by the set N+
j = {l ∈ V : (l, j) ∈ E}; the out-degree of
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node j is D+
j . A directed graph is considered strongly connected if any two

vertices i, j ∈ V , i 6= j, can be joined by a path that starts at node i and

ends at node j.

4.3 Two-Stage Feedback Control Scheme

In this section, we first provide an overview of the proposed two-stage feed-

back control scheme. Then we formulate each of the stages that comprise

the architecture and analyze their stability and convergence properties.

4.3.1 Overview

Figure 4.1 shows the timeline for the operation of the two stages. Without

loss of generality, assume that at each bus j of the network, there is a local

controller that monitors the bus voltage magnitude Vj. At fixed time instants

r = bk/k0c, k = 0, 1, . . . , for some sufficiently large k0 (to be precisely defined

later), each local controller executes the first stage. In this stage, if the local

controller on bus j detects a voltage violation, i.e., Vj is outside specifications,

it estimates the amount of reactive power that, if injected (or consumed)

in bus j, will correct the violation; then, if the DERs connected to bus j

collectively have the capacity to inject (or consume) the estimated reactive

power request, the controller instructs these DERs to do so. Otherwise, the

local controller will execute the second stage by initiating a request for an

additional amount of reactive power to be injected in other buses of the

network to help clear its voltage violation. This request is relayed by the

local controller to other neighboring local controllers through a distributed

iterative algorithm that ensures that nodes with available reactive power

capacity will provide additional support.

r = 0
k = 5

r = 1 r = m

2nd Stage 2nd Stage

1st Stage 1st Stage 1st Stage

Figure 4.1: Timeline for the execution of the first and second control stages.
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The second stage exploits the sensitivity of Vj to reactive power injections

in neighboring buses and has a net effect of a globally homogeneous raising (or

lowering) of all the bus voltages. This effect is similar to the one that results

from adjusting the taps on a TCUL transformer or a SVR in the sense that

it affects all bus voltages; however, there are some differences. In particular,

the action of a TCUL, or a VR, will uniformly raise (or lower) the voltage

across the network. In the two-stage control architecture, the reactive power

injections in bus j will primarily affect the voltage at this bus and the voltages

at buses downstream of it (in a radial system), with the effect attenuating

as we move towards the feeder. It is important to note that the proposed

voltage control architecture is not intended to replace current voltage control

systems, but rather to supplement their action while (i) minimizing their

usage by handling faster voltage variations due to changes in renewable-

based power injections, and (ii) having them intervene only during extreme

circumstances rather than minor, possibly temporary, violations.

4.3.2 First Stage

At time instants r = 0, 1, . . . , the local controller located on bus j measures

the voltage Vj[r]. If it detects a voltage violation (i.e., Vj[r] 6∈ [V j, V j], where

V j and V j are bus j’s upper and lower voltage limits, respectively), then

the local controller will estimate the amount of additional reactive power

ρj[r] needed to clear the violation. In the first stage, we assume that the

controller at bus j does not have voltage information for other buses available.

Therefore, the estimate of ρj[r] is given by

ρj[r] =





α

sjj
(V j − Vj[r]), Vj[r] < V j,

0, V j ≤ Vj[r] ≤ V j,
α

sjj
(V j − Vj[r]), V j < Vj[r],

(4.4)

where α > 0 is some constant (to be made precise later) and sjj = ∂Vj/∂Qj.

Thus, if the DERs connected to each bus j collectively have the capacity

(with respect to their previous demand) to provide ρj[r], then the net change

in reactive power injections for all of the nodes in the network is given by

∆Q[r] ≡ ρ[r], where ρ[r] = [ρ1[r], ρ2[r], . . . , ρn[r]]T (assuming that the re-
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active power consumed by loads does not substantially change). Next, we

provide a condition on the value that α must take to ensure the stability of

the closed-loop system that results from applying ∆Q[r] ≡ ρ[r] to (4.3).

Choice of α for Stability

Note from (4.4) that, by defining

V ref
j [r] =





V j, Vj[r] < V j,

Vj[r], V j ≤ Vj[r] ≤ V j,

V j, V j < Vj[r],

(4.5)

we can write

∆Q[r] ≡ ρ[r] = αD
(
V ref [r]− V [r]

)
, (4.6)

where V ref [r] = [V ref
1 [r], [V ref

2 [r], . . . , V ref
n [r]]T , α > 0, and D is a diagonal

matrix with dii = 1/sii. Then, by substituting (4.6) into (4.3), we get

V [r + 1] = (I − αSD)V [r] + αSDV ref [r] + w[r], (4.7)

with V ref [r] as defined in (4.5), from where it is easy to see that V ref [r] is

bounded for all r. Also, from the definition of w[r] in (4.3), it is obvious that

w[r] is also bounded for all r.

Then, since the system (4.7) is a linear time-invariant system driven by

bounded inputs V ref [r] and w[r], ensuring the stability of this system, i.e.,

that V [r] remains bounded for all r, is equivalent to ensuring that the system

is internally stable (see, e.g., [64]), i.e., the eigenvalues of (I − αSD) must

lie within the unit circle. This can be accomplished by choosing α such that

α < αc = min
i

{
2 Re{λi}
|λi|2

}
, (4.8)

where λi = Re{λi}+ j Im{λi} denotes the ith eigenvalue of SD. The deriva-

tion of (4.8) is included in Appendix C.1.
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Remark: The developments above assume a fixed electrical network con-

figuration that results in a single S; however, the control system should be

able to adapt to configuration changes (potentially resulting in different S’s)

and ensure that the system in (4.7) is stable for all possible configurations.

In this regard, we envision that the local controller at each bus j could have

a database, calculated off-line, with the value of sjj and α corresponding

to each network configuration. Then, upon a change in configuration, the

local controllers would be notified, and they would update α and the sjj’s

accordingly.

�

Practical Considerations for Implementation

The action of (4.6) on the system dynamics as defined by (4.3), which results

in (4.7), is equivalent to those of a discrete-time integrator. Thus, whenever

there is a voltage violation at bus j, the action of the first stage controller

will asymptotically drive the voltage Vj to either V j or to V j depending on

the nature of the violation. In practice, it is desirable that the first stage

stops iterating after a finite number of steps r0. In order to achieve this, in

(4.4), we replace V j by V j − ε1 and V j by V j + ε1 for some ε1 > 0 small.

The result is such that, for any ε1 > 0, there is some finite r0 such that

Vj[r] ∈ [V j, V j] for all r ≥ r0 and all j; thus the controller action stops after

r0 steps.

In all our numerical experiments, we verified that letting α = 1/n (where n

is the number of buses in the network with the feeder omitted) be the default

gain satisfies the condition in (4.8). This choice of α may not necessarily

result in the shortest settling time; however, it helps prevent overshoots if

several local controllers are acting simultaneously. In this regard, we have

observed that S is in general a full matrix the entries of which are usually

on the same order of magnitude, except for those associated with buses that

are farthest apart; i.e., buses at the end of a sublateral have a low voltage

sensitivity with respect to injections into buses near the feeder, and vice versa.

This implies that injections of reactive power at any bus affect (to varying

degrees) all other bus voltages throughout the network. Furthermore, for

typical distribution system line parameter values, the column and row sums

of SD are typically well below 1.5n, so scaling the contribution of each bus by

59



1/n ensures that the spectral radius of SD is less than 2 [65]. This accounts

for the worst-case scenario in which all the buses are subject to either under-

voltage or over-voltage violations. Finally, it is worth noting that the local

controllers can easily estimate n using a distributed algorithm similar to the

one to be described in Section 4.3.3.

4.3.3 Second Stage

If the reactive power estimate ρj[r] is within the limits that the DERs con-

nected to bus j can provide for all j, then the second stage is not required at

step r. Otherwise, the second stage compensates for the capacity constraint

violations from the first stage by adjusting every node’s contributions to glob-

ally raise, or lower, bus voltages across the network. This is accomplished

through a distributed algorithm that relies on a local exchange of information

among neighboring controllers. We assume that the graph that describes the

exchange of information between local controllers is strongly connected, but

not necessarily complete, i.e., it is not necessarily the case that each node

can communicate directly with every other node in the graph.

Let q
j
, qj, where q

j
≤ 0 ≤ qj, be the total lower and upper limits on

the amount of reactive power that DERs at bus j can provide. Let qj[r] be

the amount of reactive power provided by the DERs connected to bus j at

instant r.1 Then, assuming that q
j
≤ qj[r] ≤ qj ,∀j, the total estimated

reactive power to be provided by node j is

q̂j[r + 1] = qj[r] + ρj[r], (4.9)

where ρj[r] is the estimate from (4.4). Then, if q
j
≤ q̂j[r + 1] ≤ qj ,∀j,

the second stage is not necessary, i.e., every node j can provide itself the

amount of reactive power estimated in the first stage. Otherwise, whenever

q̂j[r+1] ≥ qj or q̂j[r+1] ≤ q
j
, for some j (which means that at least one node

cannot correct its voltage violation by itself), the buses that have additional

capacity will calculate the amount of reactive power they need to provide

1In (4.3), we defined ∆Qj [r] = Qj [r+1]−Qj [r], where Qj [r] is the total reactive power
injection (with appropriate sign) in bus j that arises from both DERs and loads, i.e.,
Qj [r] = qj [r] + qLj , where qLj denotes the (uncontrolled) reactive power injection arising,
e.g., from loads, which is assumed to remain constant, i.e., ∆Q[r] = Q[r + 1] − Q[r] =
q[r + 1]− q[r].
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in an attempt to raise the voltage in the network through the distributed

iterative algorithm described next.

Second Stage ‘Fair-Splitting’ Algorithm

Let G = {V , E} be a strongly connected directed graph describing the ex-

change of information between local controllers. Each node j ∈ V maintains

three auxiliary variables µj[k], νj[k], and νj[k], and updates them to µj[k+1],

νj[k+1], and νj[k+1], respectively, via a weighted linear combination of their

previous µj[k], νj[k], and νj[k], respectively, and those of its in-neighbors,

i.e., {µi[k] | i ∈ N−j }, {νi[k] | i ∈ N−j }, and {νi[k] | i ∈ N−j }, respectively;

specifically,

µj [k + 1] =
∑

i∈{N−j }∪{j}

1

1 +D+
i

µi [k] , (4.10)

νj [k + 1] =
∑

i∈{N−j }∪{j}

1

1 +D+
i

νi [k] , (4.11)

νj [k + 1] =
∑

i∈{N−j }∪{j}

1

1 +D+
i

νi [k] , (4.12)

where D+
i is the out-degree of node i. Each node j sets its initial conditions

in (4.10)–(4.12) respectively to

µj[0] =





q̂j[r + 1]− qj, q̂j[r + 1] > qj,

q̂j[r + 1]− q
j
, q̂j[r + 1] < q

j
,

0, otherwise,

(4.13)

νj[0] =

{
qj − q̂j[r + 1], q̂j[r + 1] < qj,

0, q̂j[r + 1] ≥ qj,
(4.14)

νj[0] =

{
q
j
− q̂j[r + 1], q̂j[r + 1] > q

j
,

0, q̂j[r + 1] ≤ q
j
.

(4.15)
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Then, at every step k, for each j such that νj[k] 6= 0 or νj[k] 6= 0, the

corresponding local controller computes

ηj[k] =





µj[k]

νj[k]
νj[0], µj[k] < 0,

µj[k]

νj[k]
νj[0], µj[k] ≥ 0,

(4.16)

where ηj[k] will asymptotically converge to

ηj =





∑n
i=1 µi[0]∑n
i=1 νi[0]

νj[0], limk→∞ µj[k] < 0,

∑n
i=1 µi[0]∑n
i=1 νi[0]

νj[0], limk→∞ µj[k] ≥ 0;

(4.17)

the derivation of this result can be found in Appendix C.2 and is the ratio

consensus algorithm from [66].

From (4.17), it is obvious that
∑n

j=1 ηj =
∑n

j=1 µj[0], i.e., the total amount

of reactive power (including both positive and negative contributions) that

constrained nodes cannot provide remains asymptotically constant. Also,

ηj ≤ νj[0] if limk→∞ µj[k] ≥ 0 and ηj > νj[0] if limk→∞ µj[k] < 0. Finally,

bus j adjusts its reactive power contribution to

qj[r + 1] =





qj, q̂j[r + 1] + ηj > qj,

q
j
, q̂j[r + 1] + ηj < q

j
,

q̂j[r + 1] + ηj, otherwise.

(4.18)

From the developments above, it follows that the additional reactive power

to be requested in the second stage will either be a net injection or a net

consumption. In this regard, it is reasonable to assume that a distribution

network will typically experience one type of voltage violation at any given

moment. Simultaneous over- and under-voltage violations would imply that

the distribution system lines have substantial losses, which is unlikely in real

systems; however, we assume that this is a possibility. Thus, each node j

maintains νj[k] and νj[k], and computes the appropriate solution in (4.17)

once µj[k] converges.
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Effect of Network Connectivity on Convergence Speed

For any strongly connected graph G = {V , E} describing the exchange of

information between local controllers, the steady-state solution of the dis-

tributed algorithm in (4.17) is independent of G. However, for a given

size of the vertex set V , the connectivity between the nodes as described

by E , which determines the weights in (4.10)—(4.12), affects the conver-

gence speed of the distributed algorithm. In this regard, by letting µ[k] =

[µ1[k], µ2[k], . . . , µn[k]]T , ν[k] = [ν1[k], ν2[k], . . . , νn[k]]T , and ν[k] = [ν1[k],

ν2[k], . . . , νn[k]]T , and defining a matrix P = [pji], with

pji =





1
1+D+

j

, j = i,

1
1+D+

i

, j 6= i, (j, i) ∈ E ,
0, j 6= i, (j, i) /∈ E ,

(4.19)

then, we can write the iterations in (4.10)—(4.12) in matrix form (as in

(C.1)—(C.3) in Appendix C.2). The matrix P is column stochastic and has

the same sparsity structure (except for the diagonal entries) as the adjacency

matrix of G. Furthermore, since G is strongly connected, the matrix P is

primitive [65]. Now, it is well-known (see, e.g., [65]) that, for some accuracy

level ε0, the second largest eigenvalue modulus |λ2| of P determines the

number of iterations k0 after which ‖µ[k]− µ‖∞ ≤ ε0 and ‖ν[k]− ν‖∞ ≤ ε0

(‖ν[k]− ν‖∞ ≤ ε0), ∀k ≥ k0.

In general, the more connected the graph, the faster the algorithm con-

verges, i.e., the smaller k0 is; however, in order to make a quantitative state-

ment, it is necessary to check the value of |λ2|. On the other hand, there are

results in the spectral graph theory literature (see, e.g., [67]) that establish

upper bounds on |λ2| in terms of the number of nodes and the diameter of

G, e.g., the maximum shortest path between any two nodes. In order to

determine the execution time of the algorithm, we need to fix the time τ0

for completing each iteration. In this regard, we have shown in [68] that us-

ing commercial off-the-shelf hardware, we can complete an iteration step τ0

within 10 to 40 ms; should the hardware be designed specifically for this ap-

plication, the iteration step time τ0 might be decreased even further. Then,

given τ0 and k0, the actual time it takes for the distributed algorithm to

converge is τ1 = k0τ0, which in turn determines the minimum time between

actions of the first stage.
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4.4 Example: 8-bus Distribution System

Consider the 8-bus system shown in Fig. 4.2; operational requirements specify

that bus voltage magnitudes must lie within ±5% of 1 p.u. at all times. Line

impedance data, system loading data, and the aggregated reactive power

capacity limits of the DERs can be found in Appendix C.3, from which the

matrices S and D in (4.7) can be obtained. Then, given S and D, and

following the notation in (4.8), we obtain that αc = 0.4, thus, for the first

stage, the gain α of each local controller needs to be chosen so that α < αc.

4.4.1 Second Stage Implementation

We consider the two communication network topologies displayed in Fig. 4.3.

Topology 1 (Fig. 4.3(a)) mirrors the physical network with undirected com-

munication links between the controllers of any two buses that are electrically

connected by a line. In Topology 2 (Fig. 4.3(b)), we add bidirectional com-

munication links between nodes 1 & 7 and nodes 5 & 7, as well as make the

links between nodes 1 & 2 and nodes 4 & 5 directional (directed from 1 to 2,

and from 4 to 5, respectively). For each topology, the matrix P , with entries

as defined in (4.19), is given in Appendix C.3. We assume that each iteration

of the distributed algorithm requires τ0 = 10 ms, which is consistent with

the experimental findings in [68] (see also discussion in Section 4.3.3). For

an accuracy level of ε0 = 10−3, the algorithm needs k0 = 39 iterations to

converge when implemented over Topology 1, and k0 = 17 iterations when

implemented over Topology 2. Thus, the time that it takes for the algorithm

to converge is 0.39 s for Topology 1 and 0.17 s for Topology 2.

Feeder

1 2 3 4 5

6

7

Figure 4.2: 8-bus system: electrical network graph.
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(a) Topology 1.
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(b) Topology 2.

Figure 4.3: 8-bus system: communication network graphs.
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(b) Reactive power support.

Figure 4.4: 8-bus system: response to over-voltage.

4.4.2 System Response for Different Scenarios

Next, we illustrate the operation of the voltage control architecture for both

over-voltage and under-voltage violations. Additionally, for the under-voltage

violation, and assuming different values of α and ε1, we study the time it

takes for the control system to correct this violation.

65



0 0.5 1 1.5 2 2.5 3

−1.5

−1

−0.5

0

Time [s]

R
ea

ct
iv

e
Po

w
er

[p
.u

.]

q̂1 q̂2
q̂3 q̂4
q̂5 q̂6

(a) First stage control q̂.

0 0.5 1 1.5 2 2.5 3

−0.4

−0.2

0

Time [s]

R
ea

ct
iv

e
Po

w
er

[p
.u

.]

η1
η2
η3
η4
η5
η6
η7

(b) Second stage control η.

Figure 4.5: 8-bus system: first and second stage response to over-voltage.

Feeder Over-Voltage

We consider a scenario in which bus 1 is subject to an over-voltage violation;

this could potentially arise if there is a severe over-voltage in the transmission

network and the transformers at the substation could no longer adjust their

taps to lower the bus voltages. In this case, we assume the feeder’s voltage is

1.08∠0 p.u., which results in V1 = 1.0642 p.u. We set the gain of each con-

troller to be α = 0.3 < αc = 0.4. When the second stage is implemented over

the network in Fig. 4.3(a), the evolution of the voltage profile in the network

is displayed in Fig. 4.4(a) for the first 25 s. The corresponding evolution of

reactive power injections that result from the combined action of first and

second stages is displayed in Fig. 4.4(b), whereas the individual responses of

both stages are displayed in Fig. 4.5 for the first 3 s. In this case, the first

stage controller in bus 1 tries to fix the voltage violation by demanding local

consumption of reactive power. As can be seen in Fig. 4.4(b), this results in
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the reactive power provided by bus 1 reaching its minimum capacity within

1 s. Then, the action of the second stage makes the local controllers in the

other buses react in order to bring down the voltage magnitude of bus 1, thus

reactive power starts being consumed in these nodes. This causes an under

voltage violation in buses 5 and 7. However, the violation is corrected by

subsequent actions of the controllers, and the voltage in all buses is restored

to values within ±5% of 1 p.u. after approximately 15 s.

Sublateral Under-Voltage

In this case, the feeder voltage is set to 0.98∠0 p.u., which results in under-

voltages on buses 2 through 7, with the lowest voltage magnitude of 0.8830

p.u. on bus 5. For the first stage, we set the gain of each local controller to

be α = 0.22. Figure 4.6(a) shows the evolution of the voltage profile in all

0 1 2 3 4 5 6

0.9

0.95

1

Time [s]

Vo
lta

ge
[p

.u
.]

V1 V2

V3 V4

V5 V6

V7

(a) Voltage response.

0 1 2 3 4 5 6
0

0.2

0.4

Time [s]

R
ea

ct
iv

e
Po

w
er

[p
.u

.] q1
q2
q3
q4
q5
q6
q7

(b) Reactive power support.

Figure 4.6: 8-bus system: system response to under-voltage.
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Table 4.1: 8-Bus System: Settling Time for Parameter Values

Accuracy Controller Gain Topology

ε1 α Time 1 [s] Time 2 [s]

10−2

1/n 1.17 0.51
0.22 0.39 0.17
αc 0.39 0.17

10−3

1/n 5.46 2.38
0.22 2.34 1.02
αc 0.39 0.17

10−4

1/n 9.36 4.08
0.22 4.68 2.04
αc 0.39 0.17

nodes when the second stage is implemented over the network in Fig. 4.3(b).

In this case, we can see that it takes about 2.1 s to bring the bus voltage

magnitudes within the levels specified by operational requirements (±5% of

1 p.u.). Figure 4.6(b) shows, as time evolves, the reactive power injections

on each of the buses that result from the combined actions of first and second

stages. In this figure, we can see that the local controllers on buses 2 through

7 swiftly begin to demand reactive power so as to raise their bus voltages.

On the other hand, since bus 1 is initially within its voltage limits, the

reactive power injection on this bus does not start until other buses reach

their reactive power capacity limits. Then, the second stage starts demanding

reactive power from any bus that has available capacity, which includes bus 1;

thus, the evolution of q1 is determined by the action of the second stage.

For both communication topologies, Table 4.1 compares the settling times

for different values of ε1 and α. From Table 4.1 and Fig. 4.7, it is clear that

the system response is always faster when the second stage is implemented

using the communication topology in Fig 4.3(b), where Fig. 4.7 compares the

first two intervals of the second stage for Figs. 4.3(a) and 4.3(b), respectively.

Additionally, the time it takes for the system to correct a violation can be

substantially decreased by choosing α closer to its critical value.
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Figure 4.7: 8-bus system: distributed algorithm response to under-voltage.

4.5 Case Study: Two Time-Scale Control

In this section, we demonstrate the interaction between the slow time-scale

control scheme presented in Chapter 3, and the fast time-scale control scheme

developed in this chapter. We will periodically run the OPF in the slow time-

scale control to establish the voltage profile that the fast time-scale control

will track. In the slow time-scale control we run two cases: (i) the transformer

taps are the only decision variables, and (ii) both the transformer taps and

reactive power support are decision variables.

We perform the simulation 15-bus unbalanced three-phase distribution sys-

tem listed in Appendix E.1. We run the two time-scale control architecture

for 400 seconds. The slow time-scale control solves the OPF every 200 sec-

onds, while the controllers for the fast time-scale control sample every second.
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Figure 4.8: Uncontrolled voltage response.
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Figure 4.9: 15-bus, three-phase results with transformer taps only
dispatched by slow time-scale control.
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In the slow time-scale optimization described in Chapter 3, we dispatch the

system to track V r
i = 1 p.u. for all i and the weights wi are proportional to

the distance bus i is from the feeder.

We begin the simulation with the loads at 120% of their specified values.

At t = 100 s and t = 300 s, we change the loads to 105% and 100% of their

specified values, respectively. The feeder is set to have a balanced three-

phase voltage of 1.04 p.u. The uncontrolled voltage response to the loading

is shown in Fig. 4.8. The additional load causes several buses near the end of

the sublaterals to experience under voltages with the remaining bus voltages

dispersed throughout the acceptable voltage magnitude range of 1 ± 0.05 p.u.

In Fig. 4.9 we show the evolution of the two time-scale control with the de-

cision variables for the slow time-scale control the transformer taps only. The

controlled voltage response is shown in Fig. 4.9(a) with the reactive power

support and tap positions shown in Figs. 4.9(b) and 4.9(c), respectively. The

slow time-scale control is able to keep the bus voltages well within ±3%

of 1 p.u.; however, the fast time-scale control is unable return bus voltages

to the profile established in the initial dispatch of the transformers due to

the significant change in the load. Consequently, the transformers are redis-

patched at t = 200 s. The fast time-scale control is able to return the bus

voltages to their desired values with the load change that occurs at t = 300 s.

In Fig. 4.10 our decision variables for the slow time-scale control are both

the transformer taps and the reactive power support qi with limited mini-

mum/maximum reactive power capacities q
i

and qi, respectively. Limiting

the available capacity of the reactive power support in the slow time-scale

control is equivalent to providing a spinning reserve to ensure there will be

resources available to track the desired voltage profile specified with the fast

time-scale control. The controlled voltage response, reactive power support,

and tap positions are shown in Figs. 4.10(a), 4.10(b), and 4.10(c), respec-

tively. Compared to the previous case, the slow time-scale control favors

dispatching reactive power to regulate the bus voltages. Clearly, this ap-

proach produced an initially voltage profile tighter around 1 p.u.; however,

the fast time-scale struggles to track the voltage profile as well. Similar to the

first case, the significant change in load at t = 100 s requires a new optimal

dispatch and the fast time-scale control is able to track the voltage profile

for the smaller load change at t = 300 s.
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Figure 4.10: 15-bus, three-phase results with both transformer taps and
reactive power dispatched by slow time-scale control.
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4.6 Summary

This chapter demonstrates the ability of DERs to shape the voltage profile

in distribution networks with reactive power support. The case study in

Section 4.5 demonstrates the ability of the method to correct voltage viola-

tions, but as demonstrated, it has limited voltage tracking capabilities and

is suboptimal. While the second stage can supplement the primary control

of the first stage, correcting bus voltages is more of a local problem than the

two-stage architecture is designed to handle. To address these concerns, we

pursue the optimization-based approach provided in the next chapter.
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CHAPTER 5

FAST TIME-SCALE:
AN OPTIMIZATION-BASED APPROACH

In this chapter, we propose a fast time-scale control scheme that optimally

sets the reactive power contributions of distributed energy resources (DERs)

present in distribution systems with the goal of regulating bus voltages. We

use the branch power flow modeling approach for radial power systems to

formulate an optimal power flow (OPF) problem. Then, we leverage prop-

erties of the system operating conditions to relax certain nonlinear terms of

this OPF, which results in a convex quadratic program (QP). Furthermore,

we provide a distributed algorithm to efficiently solve this QP; this algorithm

is based on the Alternating Direction Method of Multipliers (ADMM).

5.1 Introduction

We formulate the voltage regulation problem for a balanced network as a

quadratic program (QP) around the operating point determined by the pro-

cedure that we proposed in Chapter 3, which optimally sets voltage regulation

transformers and provides limited reactive power support. To this end, we

leverage a variant of the branch flow model formulation known as the Dist-

Flow (see, e.g., [69–71]). This will allow us to make similar simplifications to

those made by the authors of [25,26], and formulate a problem that has linear

constraints with a quadratic cost function, which is a convex problem around

a particular operating point. Then, we extend the aforementioned formula-

tion for balanced systems to the unbalanced three-phase case by using a sim-

ilar approach to the linear approximation mentioned in [27]. Finally, in order

to efficiently solve these QP problems, we propose a distributed algorithm,

based on the Alternating Direction Method of Multipliers (ADMM) [20].

The DistFlow is a well-established method that recursively solves the power

flow for strictly radial systems; it was originally proposed in [69–71]. The au-
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thors in [24] extended this concept to include branches for both tree networks

and mesh networks. This power flow formulation has a distinct advantage

in that the bus phase angles are irrelevant for a balanced network (described

by its per-phase equivalent) since they are expressed as line power flows and

voltage magnitudes. Unfortunately, the power flow and voltage constraints

have a nonlinear power loss term that makes the problem non-convex. The

authors in [24, 33] provide a lower bound on the losses with a second-order

cone program (SOCP). In this case, the solution to the SOCP relaxation is

exact when equality on the lower bound is satisfied. Recently, by neglecting

the nonlinear terms, the authors of [25,26] used the DistFlow to formulate a

convex quadratic optimal power flow (OPF) to determine the reactive power

support provided by inverters in systems with high penetration of PV instal-

lations. Our approach in this chapter approximates the nonlinear terms as

constants that are periodically updated based on the desired operating point

since we found that the loss terms, in general, cannot be entirely neglected.

Unlike the SOCP-based OPF, the intended purpose of the fast time-scale

control is to maintain the globally optimal solution from the slow time-scale

optimization, rather than finding a global minimum for the entire solution

space.

The remainder of this chapter is organized as follows. In Section 5.2, we

introduce the system model and formulate the voltage regulation problem.

In Section 5.3, we rewrite the OPF as a convex QP and extend the per-phase

equivalent formulation to the unbalanced three-phase case. The proposed

ADMM-based distributed solver is formulated in Section 5.4. Section 5.5

presents the case studies and concluding remarks are presented in Section 5.6.
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5.2 Problem Formulation

In this section, we introduce the power flow model used to formulate an OPF,

the solution of which handles the voltage regulation problem.

5.2.1 Branch Power Flow Formulation

Consider an n + 1 bus power distribution system with a tree topology, i.e.,

a radial network without loops between the branches. We index the feeder

by 0, and let the elements in the set N := {1, 2, . . . , n} index the remaining

n buses of the system. The edge-set that represents the set of distribution

line segments (which could contain conductors for single-, two-, or three-

phase circuits) is denoted by E ⊆ {N ∪ {0}} × {N ∪ {0}}, with (i, k) ∈ E
if there is a distribution line segment between buses i and k, where bus i

is closest to the feeder; i.e., in our notation the edges are directed so that

(i, k) ∈ E ⇒ (k, i) 6∈ E . The impedance for the distribution line segment (i, k)

is given by zik = rik+jxik. We ignore line charging (shunt capacitance) since

lines in distribution systems are typically so short that this admittance can

be neglected [47]. The demand at bus k is denoted by pdk + jqdk.

rik xiki k m

n

Fe
ed

er

Sik Skm

Skn

pdk + jqdk

Figure 5.1: Distribution line segment power flows.

Consider the circuit shown in Fig. 5.1; we formulate the voltage drop and

power flow equations between buses i and k using the notation and orienta-

tion shown in the figure. In [47], the power flow in distribution systems is

computed through a series of forward and backward sweeps. In the forward

sweep, the distribution line currents are computed from the end of the ra-

dial lines up to the feeder with the bus voltages fixed to some initial value.

Then, the currents are fixed and the bus voltages are computed in the back-

ward sweep using the correct feeder bus voltage. We mimic this branch flow
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approach by computing the power transferred through the distribution line

segment (i, k) from the downstream line power flows, and we determine the

voltage of k in terms of the upstream bus i.

Let Hk := {j | (k, j) ∈ E} be the set of buses downstream of bus k (e.g.,

in Fig. 5.1 we have Hk = {m,n}); then, the total power Sik ∈ C transferred

through the distribution line segment (i, k) is

Sik =
∑

j∈Hk
Skj + sdk + zik

|Sik|2

|Vi|2
, (5.1)

where the line power flow Sik is always determined relative to the sending

end voltage, Vi = |Vi|∠θi, of the distribution line segment. Similar to the

backward sweep, we compute the voltage of bus k based on the upstream

bus i by using

Vk = Vi − zik
Pik − jQik

V ∗i
, (5.2)

where the feeder’s voltage is fixed, i.e., V0 = V s = |V s|∠0, for some constant

|V s|. We can remove the dependence on the phase angles in (5.2) by taking

the product of each side of (5.2) with its conjugate. Thus, the branch model

of the power flow equations for an n+ 1 bus network are given by

V0 = V s, (5.3a)

|Vk|2 = |Vi|2 − 2 (rikPik + xikQik) + |zik|2
|Sik|2

|Vi|2
, (5.3b)

Pik =
∑

j∈Hk
Pkj + pdk + rik

|Sik|2

|Vi|2
, (5.3c)

Qik =
∑

j∈Hk
Qkj + qdk + xik

|Sik|2

|Vi|2
, (5.3d)

for all (i, k) ∈ E . This is a natural extension of the DistFlow model originally

proposed in [69, 70], which formulates the line power transfer (5.3c)–(5.3d)

so that the power flow can be solved recursively for a strictly radial system.

The updated expressions in (5.3c)–(5.3d) are designed to handle branches in

a tree network and are similar to the branch flow approach proposed in [24]

to accommodate mesh networks.
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5.2.2 Voltage Regulation Problem

In Chapter 3, we performed a slow time-scale optimization to fix transformer

tap positions so as to establish a voltage magnitude reference, V r ∈ Rn, that

meets certain operational specifications for the system, i.e., minimize system

losses, flatten the voltage profile, or achieve some power factor correction

target. Then, bus voltages can be regulated to V r during the inter-dispatch

time periods by controlling the reactive power contributions of the aggregated

DERs connected to the system buses. Ideally, we would like to determine the

amount of reactive power support needed to track V r as the load fluctuates;

however, there may exist no feasible solution given the current operating

conditions and the lower and upper reactive power limits on the reactive

power capable DERs, q, q, respectively. Thus, we perform an optimization

to minimize the voltage deviations from V r.

Let N = Nc∪Nu, Nc∩Nu = ∅, where Nc and Nu are, respectively, the sets

of buses that have controllable and uncontrolled reactive power resources. We

define qk to be the total reactive power contributions of the DERs connected

to Nc. Then, we can perform the following optimization

min
V

n∑

k=1

wk
(
|Vk|2 − (V r

k )2)2
(5.4a)

such that, for all (i, k) ∈ E ,

V0 = V s, (5.4b)

|Vk|2 = |Vi|2 − 2 (rikPik + xikQik) + |zik|2
|Sik|2

|Vi|2
, k ∈ N , (5.4c)

Pik =
∑

j∈Hk
Pkj + pdk + rik

|Sik|2

|Vi|2
, k ∈ N , (5.4d)

Qik =
∑

j∈Hk
Qkj + qdk + xik

|Sik|2

|Vi|2
− qk, k ∈ Nc, (5.4e)

Qik =
∑

j∈Hk
Qkj + qdk + xik

|Sik|2

|Vi|2
, k ∈ Nu, (5.4f)

and

q
k
≤ qk ≤ qk, k ∈ Nc. (5.4g)
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The weighting term wk > 0 in (5.4a) can be chosen based on heuristics,

e.g., larger penalties will be given to buses that are most susceptible to

voltage violations. We can incorporate the fixed transformer tap positions by

replacing |Vi|2 in (5.4c)–(5.4f) with |Vi|2 /a2
ik, where aik is the per-unit turns

ratio of the voltage regulator connected to the upstream bus i. The benefit

of the branch flow approach is that we are able to remove all dependencies on

the phase angles; however, the problem is still nontrivial due to the nonlinear

terms in the equality constraints. Hence, in the ensuing section we will

discuss how to relax the OPF in (5.4).

5.3 Convex Relaxation

In this section, we make the necessary relaxations to reformulate the OPF

problem in (5.4) as a convex quadratic program (QP) with linear constraints.

Then, we develop the equivalent formulation for the three-phase unbalanced

case.

5.3.1 Relaxed OPF for Balanced Systems

The approach to voltage regulation proposed in this chapter implies that we

dispatch reactive capable DERs so as to minimize voltage deviations with re-

spect to the reference voltage profile, V r, that results from the latest dispatch

using the method proposed in Chapter 3. If the fast time-scale optimization

fails to guarantee some performance specifications, then the slow time-scale

resources are redispatched. Consequently, changes in the quadratic power

loss terms in (5.4) are negligible for small variations in line currents, and

therefore we can replace these terms with the following constant:

cik (V r) =
|Sik(V r)|2

|V r
i |2

, (i, k) ∈ E , (5.5)

which is computed after every slow time-scale optimization is solved.

We found experimentally for the systems in Section 5.5 that, for mild load-

ing conditions, the nonlinear loss terms in (5.4), as given in (5.5), generally

remained constant, and in some instances, they can be neglected. For ex-

ample, the nonlinear term in the voltage relationship (5.4c) was found to be
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3-4 orders of magnitude smaller than the other terms and could be consid-

ered negligible, which is consistent with the results in [25,26]. The nonlinear

terms in the power flow constraints (5.4d) were found to be 2-4 orders of

magnitude smaller than the line power flows. Despite the relative size of

these terms, we found that the optimization results were more accurate com-

pared to a nonlinear OPF when we treated them as constants (as determined

by (5.5)), rather than ignoring them. In particular, the reactive power con-

straint (5.4e)–(5.4f) can be very sensitive to the value of cik under heavy

active power loading and significant reactive power support. For example,

Pik >> Qik implies that Sik ∝ Pik becomes large and the reactive power Qik

diminishes since qk is perceived as a negative load.

Now that (5.5) is treated as a constant, the OPF problem in (5.4) simplifies

to a QP. The power flow constraints in (5.4d)–(5.4f) do not depend on bus

voltages, and the square of the voltage magnitudes in (5.4a)–(5.4c) can be

replaced by the variables Ui = |Vi|2 and U r
i = (V r

i )2. Thus, the equivalent

problem has a quadratic cost function with linear constraints, and can be

formulated as follows:

min
U

n∑

k=1

wk (Uk − U r
k )2 (5.6a)

such that, for all (i, k) ∈ E ,

U0 = |V s|2, (5.6b)

Uk = Ui − 2 (rikPik + xikQik) + |zik|2 cik (V r) , k ∈ N , (5.6c)

Pik =
∑

j∈Hk
Pkj + pdk + rikcik (V r) , k ∈ N , (5.6d)

Qik =
∑

j∈Hk
Qkj + qdk + xikcik (V r)− qk, k ∈ Nc, (5.6e)

Qik =
∑

j∈Hk
Qkj + qdk + xikcik (V r) , k ∈ Nu, (5.6f)

and

q
k
≤ qk ≤ qk, k ∈ Nc. (5.6g)

Next, we discuss additional approaches to improve the linear approximation

of the cik’s.
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5.3.2 Extension to Unbalanced Three-Phase Systems

Up to this point, we have only considered the case when the phases are

balanced; however, distribution systems are inherently unbalanced with un-

transposed distribution line segments, and have single-, two-, and three-phase

radial feeds. Therefore, extending the ideas discussed thus far to unbalanced

three-phase systems is well motivated [27, 52]. Unfortunately, the coupling

between phases for the system voltages in (5.6c) requires additional approx-

imations to simplify the unbalanced case to a QP problem.

For each (i, k) ∈ E , let

V k = V i − zik [(P ik − jQik)� V ∗i ] , (5.7)

where V i = [Via , Vib , Vic ]
T, V k = [Vka , Vkb , Vkc ]

T, P ik = [Pika , Pikb , Pikc ]
T,

Qik = [Qika , Qikb , Qikc ]
T, and zik ∈ C3×3, and � and � denote the element-

wise division and multiplication, respectively. [This is essentially an exten-

sion of (5.2) to the three-phase case.]

Unlike the per-phase equivalent case, multiplying by the complex conjugate

of both sides of (5.7) will not remove the dependence on θ. This is due to

the fact that there is a coupling between the phases at bus i that arises from

the cross-products of the three-phase equations for the phase voltages and

line currents. To address this, we have observed that the voltage magnitudes

between the phases are similar, i.e., |Via| ≈ |Vib| ≈ |Vic |, and that the phase

unbalances on each bus are not very severe, so we assume that the voltages

are nearly balanced. This enables us to approximate the phase differences at

bus i as
cos (θia − θib) = cos

(
ej2π/3 + α

)

= −1

2
cos (α)−

√
3

2
sin (α) ≈ −1

2
,

(5.8)

and
sin (θia − θib) = sin

(
ej2π/3 + α

)

=

√
3

2
cos (α)− 1

2
sin (α) ≈

√
3

2
,

(5.9)

where α represents the relative phase unbalance, which is sufficiently small

[27]. We can update the voltage magnitude constraint in (5.6c) for the un-
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balanced case with

|V k|2 = |V i|2 − 2 (r̃ikP ik + x̃ikQik) + cvik, (5.10)

where

a =
[
1 e−j2π/3 ej2π/3

]T
, (5.11)

r̃ik = Re
{
aaH

}
� rik + Im

{
aaH

}
� xik, (5.12)

x̃ik = Re
{
aaH

}
� xik − Im

{
aaH

}
� rik, (5.13)

and

c vik(V
r) =

[
zik
(
S∗ik(V

r)� V ∗i (V r)
)]
�
[
z∗ik
(
Sik(V

r)� V i(V
r)
)]
, (5.14)

for all (i, k) ∈ E .

The line flow expressions in (5.6d)–(5.6g) for the balanced case will trans-

late directly to the unbalanced problem formulation since the coupling is

captured by the nonlinear distribution line losses, which we treat as some

constants, c pik, c
q
ik, for the active and reactive line power flows, respectively.

Specifically, for the unbalanced case, we update the power loss constant of

the distribution line segment (i, k) ∈ E with

c sik(V
r) = [Sik (V r)� V i(V

r)]� (V i(V
r)− V k(V

r)) , (5.15)

and separate the real and imaginary components as

c pik(V
r) = Re {c sik(V r)} , and c qik(V

r) = Im {c sik(V r)} . (5.16)

We express the unbalanced three-phase voltage regulation QP-based OPF

as

min
U

n∑

k=1

‖wk � (U k −U r
k)‖2

2 (5.17a)
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such that, for all (i, k) ∈ E ,

U 0 = |V s| � |V s|, (5.17b)

U k = U i − 2 (r̃ikP ik + x̃ikQik) + c vik(V
r), k ∈ N , (5.17c)

P ik =
∑

j∈Hk
P kj + pdk + c pik(V

r), k ∈ N , (5.17d)

Qik =
∑

j∈Hk
Qkj + qdk + c qik(V

r)− qk, k ∈ Nc, (5.17e)

Qik =
∑

j∈Hk
Qkj + qdk + c qik(V

r), k ∈ Nu, (5.17f)

and

q
k
≤ qk ≤ qk, k ∈ Nc. (5.17g)

Note that this will reduce to (5.6) for a balanced system.

5.3.3 Accuracy of the Linearized System

We found that the constant in (5.5) based on the initial optimal dispatch

was accurate for modest variations in active power; however, it does not

properly reflect the operating conditions as the system deviates significantly

away from the initial operating point. In this case, we can maintain the

linear constraints in the QP-based OPF in (5.6) and improve its accuracy by

doing the following:

(i) we can recompute the cik’s in (5.5) based on the current distribution

line segment power flows Piko , Qiko and the regulation voltage U r
i , or

(ii) estimate a linear approximation of the nonlinear terms in (5.4) based

on the current distribution line segment power flows Pik + jQik and the

set-point voltage V r.

The nonlinearity in (5.4c)–(5.4f) for the distribution line segment (i, k) ∈ E
attached to bus i is given by

hi (Pik, Qik, Ui) =
P 2
ik +Q2

ik

Ui
, (5.18)

83



where (5.5) is equivalent to cik(V
r) = hi (Pik(V

r), Qik(V
r), (V r

i )2). We define

the approximated nonlinear terms as

c vik(Pik, Qik) = |zik|2hi (Pik, Qik, U
r
i ) , (5.19a)

c pik(Pik, Qik) = rikhi (Pik, Qik, U
r
i ) , (5.19b)

c qik(Pik, Qik) = xikhi (Pik, Qik, U
r
i ) , (5.19c)

for the voltage, active power, and reactive power equality constraints, re-

spectively. We can linearize (5.18) around the operating point (Po, Qo, U
r)

with

hi(Pik, Qik, U
r
i ) ≈ 1

U r
i

[
2PikoPik + 2QikoQik − P 2

iko −Q2
iko

]
. (5.20)

The active power behaves as a disturbance to the network and we compensate

by controlling the reactive power injections to regulate to U r. Consequently,

the branch power flow constraints in the optimization depend on the line

power flows and not the bus voltages since we regulate the system to the

desired set-point; therefore, (5.20) does not have a dependence on U . We

refer the reader to Appendix D for the unbalanced three-phase linear fit of

the nonlinear terms cvik, c
p
ik, and cqik.

Consider the curves shown in Fig. 5.2. In each of the subfigures, we show

the behavior of the nonlinear terms and their approximated values as the

active powers are varied from their rated values. Figures 5.2(a) and 5.2(b)

confirm the intuition discussed in Section 5.3.1 that the magnitudes of c vik
and c pik are small and remain relatively constant compared to the bus voltages

and active power constraints, respectively. As shown in Fig. 5.2(c), accuracy

of the solution to the OPF in (5.6) depends largely on the reactive power con-

straint. For large deviations away from the rated load, the constant approxi-

mation cqik(V
r) is not accurate; however, we can improve this approximation

with the approach in (i) above by recomputing c qik(P,Q) = xikhi(P,Q, U
r)

every time we run the fast time-scale optimization. Furthermore, we can

improve the accuracy for large changes in active power by replacing the con-

stants cvik, c
p
ik, and cqik with the linear equations in (5.19) as suggested by (ii),

where the coefficients can be updated with the current distribution line power

flows and reference voltage. We provide a simple case study to demonstrate

the various approximations of the nonlinear terms in Section 5.5.2.
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(a) Voltage nonlinear term.
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(b) Active power nonlinear term.
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(c) Reactive power nonlinear term.

Figure 5.2: A comparison of the nonlinear terms with respect to the active
power loads.

5.4 Distributed Algorithm

As we mentioned earlier, there are several advantages that motivate the use

of a distributed algorithm to solve the QP-based OPF in Section 5.3; in

this section, we propose the use of ADMM to develop such an algorithm.

ADMM has been proven to be a powerful solution to develop distributed
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algorithms [20]; in particular, with ADMM, the complexity of the OPF prob-

lem scales with the sub-area size rather than with the full network size, and

the communication architecture is simpler than that of a centralized scheme.

ADMM iteratively minimizes the augmented Lagrangian over three types

of variables: (i) the primary variables, i.e., the bus voltages and line power

flows; (ii) the auxiliary variables that are used to enforce boundary conditions

among neighboring areas; and (iii) the multipliers for dualizing the relaxed

problem. The Lagrangian is designed to be separable relative to each type

of variable so that we can cyclically minimize with respect to one variable

type while fixing the others. This allows us to solve the problem distribut-

edly and asymptotically converge to the same minimum costs obtained with

a centralized solver [20].

For each node, let B(k) denote the set that captures the voltage and local

power flow constraints described in (5.6b)–(5.6g). We define the auxiliary

variables U i, P ik, Qik for the boundary conditions on the upstream bus volt-

ages and line power flows, respectively. The global minimization problem

can be formulated as follows:

min
U

n∑

k=1

wk (Uk − U r
k )2 (5.21a)

such that {
U (k), P (k), Q(k)

}
∈ B(k), k ∈ N , (5.21b)

and

U
(k)
i − U i = 0, (i, k) ∈ E , i 6= 0, (5.21c)

U
(i)
i − U i = 0, (i, k) ∈ E , i 6= 0, (5.21d)

P
(k)
ik − P ik = 0, (i, k) ∈ E , i 6= 0, (5.21e)

P
(i)
ik − P ik = 0, (i, k) ∈ E , i 6= 0, (5.21f)

Q
(k)
ik −Qik = 0, (i, k) ∈ E , i 6= 0, (5.21g)

Q
(i)
ik −Qik = 0, (i, k) ∈ E , i 6= 0. (5.21h)

Note that we follow the per-phase formulation in (5.21) corresponding to a

balanced system.
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Let λuik, λ
p
ik, λ

q
ik ∈ R denote the Lagrangian multipliers associated with

the equality constraints (5.21c)–(5.21d), (5.21e)–(5.21f), and (5.21g)–(5.21h),

respectively. Then, the augmented Lagrangian is of the form

Lc(·) =
∑

k∈N
L(k)
c (·), (5.22)

where c > 0 is the penalty coefficient, with the L(k)
c (·)’s defined as

L(k,0)
c

(
U (k), P (k), Q(k), U, P ,Q, λu, λp, λq

)
=

wk

(
U

(k)
k − U r

k

)2

+
∑

j∈Hk

[
λukj

(
Uk − U (k)

k

)

+ λpkj

(
P kj − P (k)

kj

)
+ λqkj

(
Qkj −Q(k)

kj

)]

+
c

2

∑

j∈Hk

[(
Uk − U (k)

j

)2

+
(
P kj − P (k)

kj

)2

+
(
Qkj −Q(k)

kj

)2
]
,

(5.23)

and

L(k)
c

(
U (k), P (k), Q(k), U, P ,Q, λu, λp, λq

)
=

L(k,0)
c

(
U (k), P (k), Q(k), U, P ,Q, λu, λp, λq

)

+ λuik

(
U

(k)
i − U i

)
+ λpik

(
P

(k)
ik − P ik

)
+ λqik

(
Q

(k)
ik −Qik

)

+
c

2

[(
U

(k)
i − U i

)2

+
(
P

(k)
ik − P ik

)2

+
(
Q

(k)
ik −Qik

)2
]
.

(5.24)

The augmented Lagrangian given in (5.23) is specific for the bus directly

downstream of the feeder, i.e., bus k such that (0, k) ∈ E . In this particular

case, there are no upstream boundary conditions on bus voltage or line power

flows since the feeder voltage is fixed; consequently, a local optimization will

not be performed at the feeder. The Lagrangian for the remaining buses, as

given in (5.24), contains additional terms for the upstream voltage and line

flows of k ∈ N . Then, we can cyclically optimize the augmented Lagrangian

L(k)
c (·) with respect to one of the groups of variables, while holding the others

constant with the following three-step update rule for the rth iteration:
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[S1.] Local Optimization: We take the infimum of Lc(·) with respect to the

primal variables, and update them as

U (k)[r] = arg min
{U(k),P (k),Q(k)}∈B(k)

L(k)
c (·), (5.25)

which is dependent on the Lagrangian multipliers and auxiliary vari-

ables from the previous iteration r − 1.

[S2.] Auxiliary Variable Update: We determine the update rules for the aux-

iliary variables by solving

∇U i
Lc(·) = ∇P ik

Lc(·) = ∇Qik
Lc(·) = 0. (5.26)

The update rules for the auxiliary variables will be

U i[r] =
1

2

(
U

(k)
i + U

(i)
i

)
, (5.27)

P ik[r] =
1

2

(
P

(k)
ik + P

(i)
ik

)
, (5.28)

Qik[r] =
1

2

(
Q

(k)
ik +Q

(i)
ik

)
, (5.29)

for all (i, k) ∈ {E\(0, j)}.

[S3.] Multipliers Update: We determine the update rules for the Lagrangian

multipliers by taking the gradient of L(k)
c (·) and utilizing a dual ascent.

The update rules for multipliers will be

λuik[r] = λuik[r-1] +
c

2

(
U

(k)
i [r]− U (i)

i [r]
)T

, (5.30a)

λpik[r] = λpik[r-1] +
c

2

(
P

(k)
ik [r]− P (i)

ik [r]
)T

, (5.30b)

λqik[r] = λqik[r-1] +
c

2

(
Q

(k)
ik [r]−Q(i)

ik [r]
)T

. (5.30c)

Note that in Step S3, we use a single dual variable for each boundary condi-

tion on a distribution line segment rather than two (one for each subproblem)

and account for this through a sign difference between upstream and down-

stream buses.
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5.5 Case Studies

We begin this section by illustrating the ability of the QP-based OPF to

optimally track the system voltage in a 15-bus unbalanced three-phase test

system, and compare the results to those obtained with the SDP formulation

in Chapter 3. Then, we show the results for the ADMM-based algorithm

proposed in Section 5.4. We performed the simulations in MATLAB using

the CVX package [60], which was employed to solve the centralized problem

and to update the primal variables U ,P ,Q in Step S1 of the distributed

algorithm.

First, we will perform the slow time-scale optimization described in Chap-

ter 3 to set the transformer tap positions and initialize the regulation voltage

U r based on the rated loads. We set the reference voltage in the slow time-

scale to V r
k = 1 for all k, and the weighting term, wk, to a positive value

that is a function of the bus distance from the feeder. This effectively flattens

the voltage profile and will penalize the deviation from 1 p.u. for the buses

furthest from the feeder the most.

The SDP-based OPF for the voltage regulation will have the form

min
W�0

f0 (W ) +
∑

k∈N
wk ‖U r

k − diag(W kk)‖2 (5.31a)

such that

Tr
(
H̃kW

)
− Sk − jqk = 0, ∀k ∈ Nc, (5.31b)

Tr
(
H̃kW

)
− Sk = 0, ∀k ∈ Nu, (5.31c)

and

q
k
≤ qk ≤ qk, ∀k ∈ Nc, (5.31d)

where wk = 104 for all k and W kk ∈ C3×3 is the submatrix associated with

bus k. It is necessary for wk to be large in (5.31) to ensure that the solution

to the OPF is tracking U r since the line losses f0(W ) are approximately

four orders of magnitude larger than the voltage penalty term. Note that we

use different limits for the reactive power in (5.31d) for regulation problem

from the initialization procedure. We limit the amount of reactive power

available during the initialization procedure to provide what is equivalent to
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Figure 5.3: 15-bus unbalanced distribution system.

a spinning reserve in transmission systems, i.e., we do not want the DERs

operating at full capacity with the initial dispatch so there is headroom to

regulate up if necessary.

5.5.1 15-Bus Unbalanced Three-Phase Results

We begin with the 15-bus network shown in Fig. 5.3, which we derived

from the IEEE 13-bus—an unbalanced three-phase distribution system, (see,

e.g., [47, 58]). The system has a three-phase voltage regulation transformer

between buses 650 and 632. The rest of the system contains single-, two-,

and three-phase sublaterals. Buses 650 and 651 were added between the

feeder and the transformer so that the transformer was not directly con-

nected to the feeder. Bus 693 was added to account for the distributed load

along line (632, 671), and bus 692 was removed since it corresponds to a closed

switch connected between buses 671 and 675. In all of the simulations, the

feeder is balanced with a voltage magnitude of 1.03 p.u.
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Figure 5.4: Uncontrolled bus voltage magnitudes.

The loads will naturally vary over time, but we are particularly interested

in variations of active power injection (positive or negative) due to renewable-

based generation and uncontrolled load from storage-capable devices (e.g.,

PHEV). In the simulations, we hold the reactive power constant and vary

the active power from 30% to 200% of the rated load. The uncontrolled

voltage response to the load curve is shown in Fig. 5.4. The lowest voltage

is 0.97 p.u. at the rated load. At 200% loading, the system voltages drop to

as low as 0.892 p.u.

We compared three different optimization schemes: (i) the SDP-based

OPF, (ii) the QP-based OPF, and (iii) the QP-based OPF with the constants

in (5.14) and (5.16) recalculated based on the current operating conditions.1

The results for the SDP-based OPF are shown in Fig. 5.5. We ran the OPF in

(5.31) to determine the optimal reactive power support shown in Fig. 5.5(b)

and the resulting voltage waveform in Fig. 5.5(a). In this case, the voltages

are maintained within the original bounds of 0.97 and 1.03 p.u.

Figure 5.6 contains the results for the QP-based OPF described in Sec-

tion 5.3 with the constants cik (as defined in (5.5)) computed with the so-

lution of the initial optimal dispatch, which sets the voltages that we need

to regulate to. In this case, the relaxed problem improves the bus voltage

significantly compared to the uncontrolled case. The results from 30% to

150% of the rated active power are very similar with all of the bus voltages

within [0.97, 1.03] p.u. Under significant loading, the voltages drop to as

1Note that we do not include the results for the linear fit suggested in Section 5.3.3. For
this particular case, the sampled QP-based OPF is equivalent since we gradually change
the load. In Section 5.5.2, we provide an example to illustrate the advantages of the
QP-based approach with a constant, sampled constant, and linear fit.
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(a) Voltage magnitudes.
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(b) Reactive power.

Figure 5.5: SDP-based optimal control of bus voltage magnitudes with
reactive power support.

low as 0.953 p.u., which is still within the desired operating specifications of

1±0.05 p.u.

Lastly, in Fig. 5.7, we show the results for the QP-based OPF with the

constants in (5.14) and (5.16) calculated based on the sampled operating

conditions when the optimization is performed. The results are comparable

to those of the SDP-based OPF with all voltages contained within [0.968,

1.03] p.u. We found that resampling the line current constant cik actually

improved the results of the QP-based OPF since Pik >> Qik with significant

reactive power support.

While the SDP-based approach has an advantage over the QP-based ap-

proach in a wider range of operating points, we have shown that the QP-based

OPF will produce similar results with less of a computational burden. In the

15-bus system, there are 38 unique phases to track (not every bus has all three

phases), so the SDP-based OPF will have approximately 5200 optimization
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(b) Reactive power.

Figure 5.6: QP-based optimal control of bus voltages with reactive power
support.

variables with a positive semidefinite constraint on W . Also, the number of

variables will grow exponentially with respect to the number of buses. The

method proposed in this chapter will have approximately 150 optimization

variables and grows linearly. Figure 5.8 compares the cost function for each

approach given by ∥∥V 2 −U r
∥∥2

2
. (5.32)

We see that the results obtained with the SDP-based approach are better

than those obtained with the QP-based one with the original constants and

comparable to those obtained with the QP-based OPF with the resampled

constants.
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(b) Reactive power.

Figure 5.7: Sampled QP-based optimal control of bus voltages with reactive
power support.
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Figure 5.8: Relative costs for each control method.
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Figure 5.9: Voltage deviations based on the method used to approximate
the nonlinear terms.

5.5.2 Nonlinear Term Approximations

Throughout most of this chapter, we linearize the power flow constraints by

treating the nonlinear terms as constants. Then, in Section 5.3.3, we discuss

how we can improve the accuracy of the linear model by resampling the

constants based on the current operation condition or use a linear curve to

approximate the nonlinear terms (rather than treat them as constants). In

this section, we compare the accuracy of the linear approximation using these

techniques. Figure 5.9 shows the ability of the fast time-scale optimizations

to regulate bus voltages with an arbitrary active power load profile. The

curves represent the following:

(i) This curve shows the results using the SDP-based OPF described in

(5.31). This approach represents the base case to compare against since

it considers the nonlinear system.

(ii) The results for the OPF described (5.6), where we the compute the

constants cvik, c
p
ik, and cqik based on the operating point (Po, Qo, V

r)

from the initial dispatch by the slow time-scale control.

(iii) In this case, we recompute constants based on the current point and

the regulation voltage V r. Ideally, we should be able to regulate to V r,

but the systems losses will change since the distribution line segment

power flows are directly proportional to the system loads.

(iv) This curve represents the first-order approximation of the system losses

that we described in (5.19), where cvik(Pik, Qik), cpik(Pik, Qik), and

cqik(Pik, Qik) are a function of the line flows and initialized based on

the slow time-scale dispatch (Po, Qo, V
r).
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(v) In this optimization, we combine the concepts in (iii)–(iv) and we

reinitialize the coefficients of the linear approximation based on the

current operating conditions (P,Q, V r) rather than the initial point

(Po, Qo, V
r).

The nonlinear SDP-based OPF in (i) provides a lower bound with the con-

stants in (ii) as an upper bound for the accuracy of the optimizations. The

first-order approximation in (iv) does improve the solution compared to esti-

mating cvik, c
p
ik, and cqik as constants (ii); however, updating the system model

based on the current operating conditions improves the accuracy of the linear

system models in (iii) and (v) dramatically.

5.5.3 ADMM-Based Distributed Solution

Next, we perform a single optimization with the distributed algorithm de-

scribed in Section 5.4 on the 15-bus three-phase distribution system and

compare it against the optimizations in Section 5.5.1. For this particular

system, we set the weighting term to be wk = 100 for all k, instead of wk = 1

as in the centralized cases. This was necessary so that the voltage deviations

in the cost function would have the same order of magnitude as the power

flow penalties in the local augmented Lagrangian. Our stopping criterion is

‖U [r]−U [r − 1]‖∞ < ε, (5.33)

where we continue to run the distributed algorithm until the last bus voltage

converges to within the tolerance ε [p.u.]. We found that ε = 1e−5 p.u.

was an appropriate choice in terms of speed and accuracy. Furthermore, we

updated the constants relative to the current operating conditions, since these

are known quantities sampled at the current operating point. Figure 5.10 and

Table 5.1 show the convergence results for several values of c. The system

converged the fastest for c = 55; however, increasing the penalty parameter

to c = 60 caused the algorithm to diverge.

For this simulation, we initialize the reference voltage with the rated loads.

Then, we created an under-voltage situation by increasing the system loads

to 130% of their rated values, which drops the lowest bus voltage from 0.970

to 0.938 p.u. Figure 5.11 shows the evolution of the distributed optimiza-

tion for c = 55 with the local augmented Lagrangians in Fig. 5.11(a), the bus
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Table 5.1: Convergence of the Distributed Algorithm

OPF c Iterations
∥∥V 2-U r

∥∥2

2

SDP - 1.4e-4
QP - 2.0e-3

Sampled QP - 3.2e-4

Distributed QP

15 2281 3.0e-3
30 1650 1.7e-3
45 1383 1.0e-3
55 1278 7.6e-4
60 - -

voltages in Fig. 5.11(b), and the reactive power support shown in Fig.5.11(c).

The cost function for the distributed algorithm returned results that were on

the same order of magnitude as those obtained with the centralized solvers

in Section 5.3. We already demonstrated that the SDP approach scales ex-

ponentially with the system size and the QP-based OPF will scale linearly;

however, the key advantage of the distributed solver is that the complexity of

the local problem will remain constant (approximately 10 to 50 optimization

variables), regardless of system size.
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Figure 5.10: Impacts of the choice of the penalty parameter c.
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Figure 5.11: Convergence of the distributed optimization.
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5.6 Summary

In this chapter, we developed a method to optimally regulate bus voltages

for unbalanced distribution systems via a convex quadratic optimization pro-

gram. We showed the potential of the proposed method and ADMM-based

algorithm with a 15-bus unbalanced three-phase distribution system.

In the next chapter, we will showcase the system-wide control architecture

that arises from combining the ideas put forward in this chapter and those

proposed in Chapter 3.
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CHAPTER 6

IMPLEMENTATION AND SIMULATION
OF THE TWO TIME-SCALE CONTROL

In this chapter, we simulate the two time-scale control architecture described

in Chapter 2. We begin with discussion on how to integrate the optimization

schemes for the slow and fast time-scales described in Chapters 3 and 5,

respectively. Then, we develop the system load models, where we include

the active power injections by PV installations and the charging schedules

for the electric vehicles (EVs). Finally, we showcase the operation of the

two time-scale control architecture in an unbalanced three-phase 123-bus

distribution system.

6.1 Introduction

In this thesis, we develop separate optimization-based control methods to dis-

patch devices that operate at different time scales in unbalanced three-phase

distribution networks. We implement the two time-scale control architecture

described in Chapter 2, using the results for the slow and fast time-scale

optimizations presented in Chapters 3 and 5, respectively. The slow time-

scale control will be used to determine TCUL transformer tap settings and

set a reference voltage for the fast time-scale control to regulate to. This

interaction between the slow time-scale optimization and the fast time-scale

regulation creates a challenging problem on how to integrate the two control

methods without their solutions being detrimental to one another. For ex-

ample, how do we balance performance specifications that benefit both the

utilities and the customers? What is an appropriate control law during the

fast time-scale regulation to signal a redispatch of the TCUL transformer tap

positions and reference voltages?

In this chapter, we provide several examples on how to combine the con-

trol actions of the two time-scales. While there are a number of policy-based
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concerns to address, it is important to examine and understand the operat-

ing conditions of the systems that our control architecture will be applied

to. In this chapter, we assume that the customers connected to the distri-

bution network in this chapter are exclusively residential. In this regard, a

typical American household consumed, on average, 953 kWh and 903 kWh

per month in 2010 and 2012, respectively [72]. We can approximate that the

average daily energy usage is 30 kWh, which we will use to compare the siz-

ing of the distributed energy resources (DERs) that we include in our model,

e.g., residential photovoltaic (PV) installations, electric vehicles (EVs), and

plug-in hybrid electric vehicles (PHEVs).

First, we consider the sizing and penetration of residential PV installations.

In 2010, the average size residential rooftop PV installation in the US was

5.7 kW [73]. This implies that given ideal solar radiance conditions, it is

possible for a customer to inject nearly double their typical energy usage

back into the electric grid. For a high penetration of PV installations, a

reversal of the flow of active power can occur at the feeder, so we consider a

situation where 20% to 30% of the network’s customers have PV installed. In

certain regions of the country, this level of PV installations is expected; e.g.,

12% of the 51,000 customers of Hawaiian Electric have rooftop PV installed

as of December 2014. In August 2014, Hawaiian Electric submitted plans to

achieve 65% renewable resources by 2030, which exceeds the state minimum

requirement of 40%, and intends to triple the amount of distributed rooftop

PV systems [74].

We also consider a situation where there is a large number of EVs attached

to the network. Table 6.1 shows the battery capacities and onboard charging

Table 6.1: 123-Bus Load Data

Vehicle Type Battery Size [kWh] Charger Size [kW]

Tesla Model S EV 85 9.6, 19.2
Tesla Roadster EV 53 16.8

BMW i3 EV 22 7.6
Nissan Leaf EV 24 6.6
Toyota Prius PHEV 4.4 3.8
Ford Fusion PHEV 7.6 3.3

Chevrolet Volt PHEV 17.1 7.2
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Table 6.2: Electric Vehicle Charging Configurations

Configuration Voltage [V] Power [kW]

AC Level 1 120 1.92
AC Level 2 240 19.2
DC Level 1 200-500 DC 40
DC Level 2 200-500 DC 100

capabilities of commercially available EVs and PHEVs [75–80]. In Table 6.2,

we list the J1772 standards for charging solutions provided by the Hybrid-

EV committee of the Society of Automotive Engineers (SAE) [81]. All of

the EV manufacturers include an AC level 1 solution for charging; however,

an AC level 2 solution is recommended for reasonable charge times. To put

the capabilities of the chargers into perspective, a 25 kWh battery with a

20% SOC (state of charge) requires 17 hours for a fully charged battery with

the stock AC level 1 charger, whereas an AC level 2 charger can reduce the

charging time to 1.2 hours. Furthermore, a fast-charge DC solution, e.g.,

a DC level 2 charger, can charge the battery in less than 20 minutes [81].

The fast DC charger will have an external inverter for the car, instead of

an onboard solution, which suggests that it could provide reactive power

support independent of the vehicle location. Currently, there is a very small

penetration of EVs; however, it is projected that EVs will account for 24%

of the American light-vehicle fleet and 64% of the annual vehicle sales by

2030 [82].

The remainder of this chapter is organized as follows. We discuss the

policies and strategies associated with the two time-scale architecture in

Section 6.2. Then, Section 6.3.1 introduces the development of the time-

dependent loads for the system buses, provides the solar data for the PV

installation, and formulates the EV charge schedules. Section 6.4 presents

the case studies and the chapter is summarized in Section 6.5.

102



6.2 Integrating the Two Time-Scale Control

In this section, we discuss important design considerations that need to be

taken into account when integrating the slow and fast time-scale optimiza-

tions without the methods competing with each other. We restate the op-

timization problems with a simplified notation to support a high-level dis-

cussion about the cost functions and control laws, which we validate with

numerical simulations.

6.2.1 Two Time-Scale Optimization-Based Control

The slow time-scale optimization, which is discussed in detail in Chapter 3,

has two important roles: (i) it provides a reference voltage, V r, that meets

specific operational objections for the fast time-scale to regulate to, and (ii)

it sets the tap positions on the TCUL transformers. Each time the slow time-

scale optimization is performed, we will execute it twice. The first run will

return the continuous tap positions, which we are required to round to their

nearest discrete values. We use these results to determine whether or not we

want to dispatch the transformer tap positions. For example, we can have

a secondary objective that limits the number of tap changes, so if the most

recent optimization requires a single tap change, we may reject the solution.

Then, we run the optimization a second time with the fixed tap positions to

ensure the solution is feasible and improve its accuracy. The slow time-scale

optimization has the form:

min
V, a, q̃

f0(V, a, q̃) +
∑

i

fi(V, q̃) (6.1a)

such that

fp(V, a) = 0, (6.1b)

fq(V, a, q̃) = 0, (6.1c)
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and

V ≤ V ≤ V , (6.1d)

qr ≤ q̃ ≤ qr, (6.1e)

aVp ≤ Vs′ ≤ aVp, (6.1f)

where fp(V, a) and fq(V, a, q̃) represent the active and reactive power flow

constraints for the system, respectively. We account for distribution line seg-

ment losses with f0(V, a, q̃), which is required for the rank relaxation that we

introduced in Chapter 3, and we will discuss how to handle the additional

costs fi(V, q̃) in Section 6.2.2. Note that on the second run of the opti-

mization, (6.1f) becomes an equality constraint since the taps are fixed, e.g.,

aVs′ = Vp for some specified tap ratio a that defines the relationship between

the primary-side and virtual secondary-side voltages Vp and Vs′ , respectively.

After we initialize the reference voltage, V r with (6.1), we perform the

following optimization for the fast time-scale control:

min
V, P,Q, q

f(V, P,Q, q) (6.2a)

such that

fv(V, P,Q) = 0, (6.2b)

fp(P,Q) = 0, (6.2c)

fq(P,Q, q) = 0, (6.2d)

and

q ≤ q ≤ q, (6.2e)

where P and Q are the distribution line segment active and reactive power

flows, respectively. The cost function, f(V, P,Q, q), for the fast time-scale

regulates the voltage magnitudes to the reference voltage. In Section 6.2.3,

we provide operating criteria for the fast time-scale that indicates when to

redispatch the system with the slow time-scale optimization.
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Table 6.3: Cost Function Data

Figure αv αp f2(V, q̃) Power Factor

6.1(a) 0 0 2.5810 0.846
6.1(b) 15 0 0.0012 0.953
6.1(c) 0 10 0.5837 1.000
6.1(d) 5 50 0.0024 1.000

6.2.2 Slow Time-Scale Cost Functions

In Chapter 3, we defined a number of cost functions by fi(V, q̃) such that

i ∈ {1, 2, 3, 4}. We ignore the network losses defined by f1(V, q̃), since the

distribution line segment losses captured by f0(V, q̃) account for most, if

not all, of the network losses. In this section, we primarily consider the

voltage regulation and power factor cost functions in the slow time-scale

optimization, which are represented by f2(V, q̃) and f3(V, q̃), respectively.

The final cost function, f4(V, q̃), will penalize reactive power support usage

and is designed to bias the solution of (6.1) to control the system with the

TCUL transformers over the reactive power support q̃.

Voltage Regulation and Power Factor Correction

In the slow time-scale optimization, we seek a balance between regulating to

some nominal system voltage, V n, to meet customer needs and maintain the

power factor at the feeder head to achieve the utility’s desired operational

objectives. The cost function will have the form:

C(V, a, q̃) = f0(V, a, q̃)︸ ︷︷ ︸
losses

+ αvf2(V, q̃)︸ ︷︷ ︸
voltage regulation

+αpf3(V, q̃)︸ ︷︷ ︸
power factor

, (6.3)

where αv, αp ≥ 0 are the penalties for regulating voltage and power factor,

respectively. In Table 6.3, we list the results of the system responses shown

in Fig. 6.1. In Fig. 6.1(b), we found that dispatching system resources to

regulate to V n = 1 will improve the power factor dramatically, compared to

the uncontrolled case in Fig. 6.1(a). Figure 6.1(c) shows the voltage profile

for the 123-bus system operating at unity power factor in the static power

flow. In Fig. 6.1(d), we achieve a good balance to satisfy both objectives.
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Figure 6.1: Voltage profiles for various combinations of the penalties αv, αp.

Setting TCUL Transformer Tap Positions

Integrating the slow and fast time-scale optimizations creates a challenging

problem to simultaneously dispatch both the TCUL transformer tap posi-

tions and reactive power support. In Chapter 2, we suggested that the limits

on the available reactive power support for the slow and fast time-scale opti-

mizations are not necessarily equal, e.g., we can provide additional up/down

regulation in the fast time-scale optimization when q ≤ qr and qr ≤ q. Fig-

ure 6.2 shows the switching behavior of the TCUL transformers and voltage

responses of the network with various reactive power strategies.

First, we show in Fig. 6.2(a) the actions of the tap positions when the

limits on q̃ in the slow time-scale optimization are 30% that of the fast time-

scale limits, e.g., qr = 0.3 q and qr = 0.3 q. The voltage response is displayed

in Fig. 6.2(d). The controlled system response is an improvement over the

uncontrolled case, which has an under-voltage around 18:00 hours, but there

are a large number of oscillating single-tap changes, and the limited reactive

power support restricts the ability of the system to track the nominal voltage.

Next, we found that if we match the limits, i.e., qr = q and qr = q, then the

ability of the system to track the nominal voltage is improved significantly,

which is illustrated in Fig. 6.2(e) with the switching actions of the TCUL

transformers shown in Fig. 6.2(b). For this case, we found that the optimiza-
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(e) Voltage response to all available reactive power support.

Figure 6.2: TCUL transformer tap behavior.
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tion tends to favor the use of reactive power to regulate the bus voltages,

thus reducing the number of tap changes. While we achieve a better voltage

curve in this case, compared to limiting the reactive power support, we may

want to avoid running reactive power resources at their limits, if it can be

helped. We can bias the slow time-scale optimization towards moving the

TCUL transformer taps by including an additional cost function, f4(V, q̃),

that penalizes the reactive power contributions. Figure 6.2(c) shows that

while the control has full access to the network’s reactive power capabilities,

the dispatch for the transformer taps is more aggressive. There is a mild

oscillation that occurs on a single tap between 16:00 and 18:00 hours, but we

can easily filter out that behavior when we decide to accept the solution, i.e.,

we can limit the number of single-tap changes for a certain block of time.

6.2.3 Fast Time-Scale Redispatch Criteria

In the fast time-scale, we explicitly regulate the bus voltages until the current

operating conditions fail to meet some performance criteria. In this chapter,

we propose the following update rules to determine when a redispatch is

necessary:

Designated Dispatch Schedule

In this section, we provide a number of criteria to redispatch the system

resources; however, there are situations in which the system is operating

within specifications, but we can find a better solution to the optimization.

For example, the system can easily maintain the last dispatch after the heavy

nighttime loading (after 21:00 hours), but we may want to rerun the optimiza-

tion to reflect the reduced load, since most of the control rules are designed

to combat disturbances. We can schedule the dispatches based on historical

data for the time of day.

Power Factor Limits

Utility companies prefer that the feeder head operates with a unity power

factor, e.g., no reactive power flow from the (sub)transmission system, since

excess reactive power flow on the distribution line segments increases the line

currents and limits the transfer of active power. The redispatch criteria that
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monitors the phase with the lowest power factor and requires that

min
i∈{0a,0b,0c}

{
cos

(
tan−1

(
Qi

Pi

))}
> εp, (6.4)

for some minimum power factor εp > 0, e.g., we can maintain a power factor

greater than 0.85 with εp = 0.85.

Maximum Voltage Error

The fast time-scale optimization regulates the system voltages to V r; how-

ever, f(V, P,Q, q) in (6.2a) is the sum of the voltage errors and will not

capture buses with severe deviations from the reference. Thus, we can mon-

itor for the worse-case conditions and enforce

‖|V | − V r‖∞ < εv, (6.5)

for some tolerance εv > 0. We can determine εv based on historical data or

we can compare it to the voltage specifications, e.g.,

εv = min
(
V r− 0.95, 1.05− V r

)
. (6.6)

Deviation from Nominal Voltage

The previous rule detects the worst-case conditions for a single bus voltage,

which will occur during heavy loading, but does not account for deviations

away from the nominal voltage, V n, since V r is conditioned on the current

operating point. Similar to the scheduled dispatches discussed earlier, this

criteria detects situations where the slow time-scale optimization can be rerun

after a disturbance has passed, rather than regulating to the reference set

during the event. We can detect this with

‖αn � (|V | − V n)‖2 < εn, (6.7)

for some tolerance εn > 0. The gain αn ≥ 0 is included to filter out buses

that can be ignored; i.e., buses directly connected to a feeder with a high

voltage should not be considered, since their voltage will deviate very little

from the feeder’s voltage. It is also worth noting that this condition requires

additional logic to be implemented, so a redispatch at every time step during

a contingency event is not requested.
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Costs to Regulate System Voltages

In addition to tracking the maximum bus voltage deviation, we can monitor

the incremental costs to regulate the bus voltages with the dual variables

λv, λq, which are associated with the voltage equality constraint (6.2b) and

the reactive power constraint (6.2d) in the fast time-scale optimization, re-

spectively. The desired operating criteria will be

‖λu‖∞ < εu, (6.8)

‖λq‖∞ < εq, (6.9)

for some tolerances εu, εq > 0, which can be determined based on the heuris-

tics associated with previous solutions and operating conditions to determine

the proper thresholds.

In Fig. 6.3, we show the results of a twenty-four hour simulation with

a high penetration of PV installations and EVs. The slow time-scale is

executed once at initialization, and then the fast time-scale optimization

is performed otherwise to observe the behavior of the system parameters.

The uncontrolled and controlled voltage responses are shown in Figs. 6.3(a)

and 6.3(b), respectively. The voltage rise centered around 12:00 hours is

a result of the active power injections from the PV installations, and the

voltage drop in the evening is caused by the base load pickup with additional

loading from the EVs. Interestingly, the significant active power generation

around noon creates a reversal of the flow of active power at the feeder and

causes the power factor shown in Fig. 6.3(c) to reach zero. This suggests

that the minimum power factor, εp, should be a function of the state of

the system rather than being strictly fixed. During time periods where the

system is behaving in a conventional way, i.e., a net load without significant

PV injections, we fix the power factor at a certain threshold; however, we

ignore this criterion entirely as the net load approaches zero. For example,

we can set εp = 0.85 and ignore the criteria if the power factor drops below

εp′ = 0.2 as the active power flow attenuates. Note that the cost function

f3(V, q̃) minimizes the reactive power transfer at the feeder, so it is possible

for the power factor to be low as the flow of active power reverses directions

and the magnitude of the reactive power transfer is small or negligible.

Figure 6.3(d) shows the signals for the maximum voltage error and devia-

tion from nominal voltage described by (6.5) and (6.7), respectively. Using
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Figure 6.3: System response to the fast time-scale reactive power control.
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the maximum voltage deviation to determine a redispatch of the reference

voltage follows naturally since it indicates a disturbance; however, it will not

identify when the contingency passes, and the system will continue to reg-

ulate to the last dispatch. Thus, the deviation from the nominal voltage is

designed to restore the system to its undisturbed state. In practice, we can

enforce the condition in (6.5) during a contingency case and monitor that

the condition in (6.7) is met during normal operations.

Finally, we show the incremental voltage and reactive power costs from the

dual variables in Fig. 6.3(e). Both the incremental costs to meet the voltage

equality constraint, λu, and the reactive power equality constraint, λq, reflect

the voltage error curves in Fig. 6.3(d). This result is intuitive in the sense

that the reactive power support levels at certain system buses are hitting

their limits, which results in higher incremental costs. In Section 6.4, we will

monitor several system values and determine when to rerun the slow time-

scale optimization based on a combination of the desired operating criteria

discussed in this section.
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6.3 Load Models

In this section, we develop the load models for the system buses, installed

PV systems, and EV charging profiles. Figure 6.4 shows the modified IEEE

123-bus test system [58], where we removed the fixed shunt capacitors and

the two voltage regulators that were not three phase. We also moved the

voltage regulator T1 from the distribution line segment (119, 120) to (120, 1)

to simplify tracking the power factor at the feeder head in the slow time-scale

optimization. This system contains a combination of single-, two-, and three-

phase distribution line segment and system loads, along with two three-phase

voltage regulators (the system data is provided in Appendix E.2).

6.3.1 Load Data

In order to develop a realistic loading profile, we utilized distribution-level

load data from [83], which offers datasets on commercial and residential en-

ergy consumption. We assume that all of the loads in our case studies are

residential, so that we can compare the total energy consumed by the network

with the average residential energy consumption, in order to determine the

number of consumers located at each bus based on the rated bus loads of the

123-bus distribution system. As we mentioned earlier, a typical American

household consumed, on average, 953 kWh per month in 2010 and 903 kWh

per month in 2012 [72], so we estimate that the average daily energy usage

is approximately 30 kWh, since daily behaviors are cyclic.

Figure 6.5 shows a representative day in July for an aggregate residential
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Figure 6.5: Single-day aggregate active power system loading.
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Figure 6.6: Single-day aggregate active power loading per bus.

load profile in Austin, Texas, where we assume that there are 1810 residential

customers with a peak load of 3.69 MW based on the system data for IEEE

123-bus system. We increased the granularity of the original load data in [83]

from an hourly to a five-minute time period t through a linear interpolation

and an added random component. The resulting active power load curve is

P (t) = P̃ (t) + ζP̃ (t), (6.10)

where ζ is a zero-mean normally distributed random variable with a variance

of σ = 0.01 and P̃ (t) is the linear resulting five-minute load data. We generate

the load curves for each customer by pseudo-randomly redistributing the total

load at the time interval t between the customers, where the customer loads

are required to be within specified limits. Then, we assign the number of

customers attached to each bus according to the rated loads of the 123-bus

system. Figure 6.6 shows the aggregated bus loads that sum to the curve in

Fig. 6.5.

6.3.2 Solar Data

For generating realistic PV generation profiles, we used measured solar data

from Austin, Texas for the month of July [84]. Figure 6.7 shows the normal-

ized active power injections for a PV system with a five-minute granularity.

Figure 6.7(a) provides an ideal generation curve, and Fig. 6.7(b) considers a

scenario where shading from cloud cover occurs throughout the day.
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(b) Shaded active power generation.

Figure 6.7: Normalized solar active power generation curves.

6.3.3 EV Charge Schedule Data

We consider three electric vehicle charging scenarios: (i) worst-case EV charg-

ing, (ii) delayed-start EV charging, and (iii) optimized EV charging. In the

worst-case EV charging scenario, the EVs are all charged with start times

distributed between 19:00 and 20:00 hours, i.e., all vehicles are charged im-

mediately upon returning home. In the delayed-start EV charging case, each

EV is charged in a contiguous block and the start times of the charging

are drawn from a uniform distribution, such that the vehicles’ charge times

begin between 19:00 hours and 03:00 hours. In the optimized EV charging

schedule, the charging of the EVs in the distribution system is optimized to

minimize the load increase during the charge period. We assume that the

vehicles begin charging with a random SOC in [0, 0.5] and finish with a SOC

within [0.9, 1].
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Figure 6.8 shows the impact of the three charging schedules on the aggre-

gated system load. In this example, we have 120 residential customers with

an average daily energy usage of 30 kWh, and 36 EVs that have a maximum

power draw of 7.2 kW and 50 kWh reservoir capacities. Figure 6.8(a) shows

the worst-case scenario. We can mitigate the peak loading at 20:00 hours

with both the delayed-start and optimal schedules shown in Figs. 6.8(b) and

6.8(c), respectively.

Optimal EV Scheduling

For a given day, we define K as the set of disjoint time intervals so that

∪k∈Kk accounts for the entire day, and each k ∈ K has a length of κ > 0

hours. Let Kc ⊂ K be the time periods in which EV charging is permitted.

Then, we define R as the set of all EVs, where each i ∈ R has a charging

efficiency of ξi to charge the battery from its initial Eo
i to its final state Ef

i .

Within each time period, k ∈ K, EV i has a constant power draw P v
i [k] that

is constrained by P v
i , P

v

i , e.g., P v
i = 0 when the charger is not in use and

P
v

i can be its rated load.

We create a fictional generator with quadratic generation costs C (PG[k]),

where PG[k] is the active power provided by the feeder at time instance

k ∈ K. The generator must produce enough active power to satisfy both the

forecasted system demand PD[k] and EV charging schedules. Thus, we can

formulate the optimization problem as

min
PG

∑

k∈Kc
C (PG[k]) (6.11a)

such that

∑

i∈V
P v
i [k] = PG[k]− PD[k], ∀k ∈ Kc, (6.11b)

κ
∑

k∈Kc
P v
i [k] =

1

ξi

(
Ef
i − Eo

i

)
, ∀i ∈ R, (6.11c)

and

P v
i ≤ P v

i [k] ≤ P
v

i , ∀i ∈ R, ∀k ∈ Kc, (6.11d)

where the EV energy charge constraint in (6.11c) accounts for the energy

required to charge EV i ∈ R and its losses.
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(a) Worst-case EV charging schedule.
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(b) Delayed-start EV charging schedule.
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(c) Optimized EV charging schedule.

Figure 6.8: Impacts on system load by the EV charging schedules.

6.4 Case Studies

In this section, we demonstrate the ability of the two time-scale control ar-

chitecture to optimize and regulate the modified IEEE 123-bus unbalanced

three-phase distribution system with a significant number of DERs attached.
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(a) 123-bus aggregate load curve.
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(b) 123-bus uncontrolled voltage response.

Figure 6.9: Uncontrolled 123-bus system values.

We use the base load described in Section 6.3.1 and assume that there is a

30% penetration of both PV installations and EVs. The PV installations

are assigned the shaded active power generation curve shown in Fig. 6.7(b)

and have a capacity of 5.7 kW. The EVs will follow the delayed charging

schedule shown in Fig. 6.8(b). We assume that all of the EVs have a 50 kWh

battery and either an AC level 2 or a DC level 1 solution that have a peak

charging capacity of 7.2 kW. Figure 6.9 shows the aggregated load and the

uncontrolled voltage response of the system. We fix the feeder’s voltage at

1 p.u. and the system experiences an under-voltage of 0.91 p.u., which is

outside of the required ±5% of the nominal voltage specification.

We assume that all of the inverters used for the PV installations and the

DC EV chargers are capable of providing reactive power support for the slow

and fast time-scale optimizations. Suppose that 20% of the owners with EVs

have DC chargers, then the available reactive power support will be
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q(t) =
∑

i∈N

√
S2
i (t)− P 2

i (t) + 0.2
∑

r∈R
P
v

r , (6.12)

q(t) = −q(t), (6.13)

where the reactive power capabilities of PV inverters are a function of their

power injection, and we assume DC charger solutions can provide P
v

r of

reactive power support at all times.

We perform two case studies in this section: (i) the slow time-scale opti-

mization tracks the nominal voltage, and (ii) the slow time-scale also provides

power factor correction in addition to tracking the voltage. Algorithm 2 pro-

vides the control logic to redispatch the system during the voltage regulation

stage (fast time-scale). We will always rerun the slow time-scale optimization

if the system fails to regulate the bus voltages to V r in the fast time-scale

control; otherwise, we monitor the voltage deviation from the nominal volt-

age, V n, and the power factor. In the case that the system is operating

outside of a desired tolerance from V n, we check the current and previous

Algorithm 2: Signal a Redispatch of the Slow Time-Scale Control

Input : V (t), V r(t), λu(t), P0(t), Q0(t)
Output: ss
Data: V n, εv = 0.01, εn = 0.065, εu = 0.05, εp = 0.85, εp′ = 0.2, αp

begin
initialize:

s = false[5]

pf = cos
(
tan−1 (Q0(t)/P0(t))

)
, P0(t) 6= 0

if ‖|V (t)| − V r(t)‖∞ > εv then s[0] = true ;

if ‖|V (t)| − V n‖2 > εn then s[1] = true ;

if ‖λu(t)‖∞ < εu then s[2] = true ;

if ‖λu(t− 1)‖∞ < εu then s[3] = true ;

if (αp 6= 0) ∧ (pf < εp) ∧ (pf > εp′) then s[4] = true ;

return : ss = s[0] ∨
(∧3

i=1 s[i]
)
∨ s[4]
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incremental costs to regulate the bus voltages with dual variables from the

fast time-scale optimization, e.g., λu(t) and λu(t− 1), since comparing mul-

tiple time steps acts as a filter. The intuition behind this is that most of the

criteria described in Section 6.2.3 react to disturbances and (6.7) restores the

system to a nominal state. We reference the incremental costs to detect if

the disturbance has passed because λu will be large when the reactive power

resources are expensive to maintain V r. The logic to detect the power factor

will attempt to keep the system above εp = 0.85; however, we ignore this

rule when the power factor drops below εp′ = 0.2, which occurs when there is

a large amount of active power generation present in the system. Note that

we can achieve similar results to detect when to ignore the power factor as

εp′ by monitoring the active power flow at the feeder.

6.4.1 Voltage Regulation

In this case study, we select the cost function of the slow time-scale optimiza-

tion to track V n and penalize the usage of reactive power to bias the solution

toward using the TCUL transformers to control the system. Figure 6.10

shows the system response to our proposed control architecture. The bus

voltages in Fig. 6.10(a) are centered around 1 p.u., with Vi ∈ [0.980, 1.018]

for all i ∈ N . The control actions for the reactive power support and the

TCUL transformer taps are shown in Figs. 6.10(b) and 6.10(c), respectively.

6.4.2 Power Factor Correction and Voltage Regulation

Next, we include a penalty for power factor correction in the slow time-scale

optimization. Figure 6.11 shows the controlled system responses to the new

cost function. The bus voltages are maintained within Vi ∈ [0.975, 1.018] for

all i ∈ N . The power factors for both cases are shown in Fig. 6.12, where the

overall power factor is improved in the presence of significant active power

generation around 12:00 hours; otherwise, the curves are similar when power

factor correction is less critical.
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(a) 123-bus controlled voltage response.
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(b) 123-bus reactive power support.
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(c) 123-bus TCUL transformer tap changing behavior.

Figure 6.10: Controlled 123-bus system for strictly voltage regulation.
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(a) 123-bus controlled voltage response.

0 4 8 12 16 20 24

−0.5

0

0.5

Time [h]

R
ea

ct
iv

e
Po

w
er

[p
.u

.]

(b) 123-bus reactive power support.
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(c) 123-bus TCUL transformer tap changing behavior.

Figure 6.11: Controlled 123-bus system for both voltage regulation and
power factor correction.
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Figure 6.12: A comparison between the power factors for the two cases.

6.5 Summary

In this chapter, we implement the two time-scale control architecture intro-

duced in Chapter 2. We provided a number of examples to demonstrate

how to choose the cost function for the slow time-scale optimization, and

we discussed several possible operational criteria to determine the control

law that redispatches the system based on the results of the fast time-scale

optimization. Then, we described how to generate the system data using a

number of parameters for the rated load and the DERs present in the net-

work. Finally, we presented several case studies that demonstrate the two

time-scale architecture’s ability to control a 123-bus unbalanced three-phase

distribution network.
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CHAPTER 7

CONCLUDING REMARKS

In this chapter, we present a summary of the thesis and highlight its main

contribution towards achieving optimal voltage control in unbalanced three-

phase distribution systems. This chapter (and thesis) concludes with the

author’s final thoughts and observations.

7.1 Thesis Summary and Contributions

Chapter 2. In this chapter, we described our hierarchical control architec-

ture in which we perform separate optimizations for the slow and fast time-

scale control of the system devices, and we provided a high-level overview of

the optimization- and feedback-based control methods proposed in this the-

sis. The slow time-scale actuators will, in general, be existing devices, e.g.,

the tap positions of tap-changing under load (TCUL) transformers, that will

be dispatched at appropriate time intervals to reduce the wear on their me-

chanical parts. In contrast, the fast time-scale resources are considered to be

devices that connect to the grid through power electronics, e.g., the inverters

on photovoltaic (PV) installations, and will be used to mitigate the variabil-

ity introduced by the distributed energy resources (DERs) and flatten the

voltage profile of the distribution network.

Chapter 3. In this chapter, we formulated the slow time-scale control prob-

lem with the objective to optimally set the tap position of voltage regula-

tion transformers in distribution systems. We cast the problem as a rank-

constrained semidefinite program (SDP), where the transformer tap ratios are

captured by (i) introducing a secondary-side ‘virtual’ bus per transformer,

and (ii) constraining the values that these virtual bus voltages can take ac-

cording to the limits on the tap positions. We use the solution of the relaxed

SDP to compute the tap positions with the ratios between the primary-side
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bus voltages and the secondary-side virtual bus voltages. In order to solve

the problem, we introduced a distributed algorithm based on the Alternating

Direction Method of Multipliers (ADMM).

Chapter 4. This chapter was the first of the two chapters that focused

on voltage regulation for the fast time-scale control. In this chapter, we

provided a feedback-based approach where the local controller at each bus

of the network monitors the bus voltage, and whenever there is a voltage

violation, locally available information is used to estimate the amount of

reactive power that needs to be injected into the bus to correct the violation.

Then, if the DERs fail to correct all of the limit violations, we provided a

secondary control action that requests additional reactive power support from

other controllers at neighboring buses through a distributed algorithm, which

relies on a local exchange of information among neighboring controllers. The

strength of this approach is that it requires very little information about the

network in order to operate, and it has a simple communication infrastructure

for the secondary control. While this method was able to clear faults, the

reactive power support problem is a regional problem and is better suited for

an optimization-based approach.

Chapter 5. In this chapter, we advanced the ideas presented in Chapter 4

and developed an optimization-based fast time-scale control that optimally

sets the reactive power contributions of DERs with the goal of regulating bus

voltages. We formulated the problem as an optimal power flow (OPF) with

the branch flow modeling approach and relaxed the nonlinear terms of the

equality constraints, based on the operating conditions and desired voltage

profile. Similar to the slow time-scale optimization, we leveraged the ADMM

algorithm introduced in Chapter 3 to efficiently solve the convex quadratic

program (QP).

Chapter 6. Finally, we combined the slow and fast time-scale optimization-

based controls proposed in Chapters 2 and 5, respectively. The focus of

this chapter was: (i) to discuss the intuition behind defining the multi-

objective cost function for the slow time-scale optimization, (ii) to define

several control laws to determine when to switch between the optimizations,

and (iii) to develop an accurate system model where we generated the aggre-

gate load models of the system buses, the active power injections of photo-
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voltaic (PV) installations, and uncontrolled/controlled electric vehicle (EV)

charging schedules. We conclude the chapter by simulating the proposed ar-

chitecture in an unbalanced three-phase distribution system for a twenty-four

hour period.

7.2 Conclusion

In this thesis, we proposed several approaches to control devices in unbal-

anced three-phase distribution networks with the objectives of regulating

voltage. In Chapter 3, we formulated an SDP-based optimization problem to

optimally dispatch the system, based on several performance criteria. While

this approach captures the nonlinearities that the reduced model in Chap-

ter 5 estimates, it is not a practical approach for fast regulation, since the

complexity of the problem scales exponentially.

To address the fast voltage regulation in an optimal manner, we devel-

oped the approximate model in Chapter 5, which can quickly and accurately

regulate to a desired set-point, but it is not designed to consider the entire

solution space. This interaction of the slow time-scale optimization versus

the fast time-scale regulation has an interesting dichotomy that merits more

research. For example, how do we balance performance specifications that

benefit both the utilities and the customers? What is an appropriate control

action to switch between the time-scale optimizations? In Chapter 6, we

provided intuition and preliminary results to explore these questions. We

can also incorporate additional cost functions, i.e., we could potentially in-

clude optimization variables for active injections/loads to provide demand

response and balance the perceived load at the feeder.

We envision that the control and optimization of future distribution sys-

tems will require a number of control and optimization routines that operate

at different time-scales working in tandem with each other to reach both mu-

tual and time-scale specific goals. This thesis provides a number of tools to

develop a basis for this approach to control unbalanced three-phase distribu-

tion systems, but there is still a lot more work required to realize this vision

in a physical system. The proposed control architecture and algorithms will

require real-time monitoring equipment, and there are several computational

and communication aspects to consider for the control hardware.
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APPENDIX A

RELAXATION AND DEVELOPMENT OF
THE SDP FORMULATION

In this appendix, we provide the proof for the global optimality of the relaxed

SDP formulation and give a numerical example to motivate the formulate of

the non-ideal transformer model.

A.1 Global Optimality of the Relaxed SDP

In this section, we provide a proof that the rank relaxation can achieve

the global optimum of the non-convex formulation. The latter refers to the

original optimization problem which only augments the relaxed one (3.18a)

with an additional constraint rank(W ) = 1.

The sketch proof leverages the earlier results in [31]. To this end, we define

regarding the set of two-way real power flow along line (i, k) ∈ E with fixed

bus voltage magnitudes υ, as

Fik(υ) :=

{
(Pik, Pki) :

|Vi| = υi,

|Vk| = υk

}
, ∀(i, k) ∈ E . (A.1)

Furthermore, additional line thermal limits are needed to characterize the

power flow region, as given by

F θik(υ) :=

{
(Pik, Pki) :

|Vi| = υi, |Vk| = υk,

θik ≤ θik ≤ θ̄ik

}
, (A.2)

for all (i, k) ∈ E . The upper and lower bounds of the thermal limits are set

depending on the line admittance values, as

− tan−1

(
bik
gik

)
< θik < θ̄ik < tan−1

(
bik
gik

)
. (A.3)
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It is known that the phase difference along any line is practically close to 0,

and thus the thermal limit conditions are fairly reasonable.

Leveraging the arguments in [31], it can be shown that the relaxed SDP

method essentially replaces the non-convex power flow region by its convex

hull,1 i.e., (Pik, Pki) ∈ conv(F θik(υ)). Using [31, Lemma 1], it is possible to

further argue that

O(F θik(υ)) = O(conv(F θik(υ))). (A.4)

Notice this also applies to the virtual line (pt, s
′
t). Since there is no power

loss, the two-way real power flow simply needs to satisfy Ppts′t + Ps′tpt = 0.

Hence, the power flow region F θpts′t is just a line, and it would be exactly the

same as its convex hull.

To account for the variable voltage levels, one needs to define the set of

voltage magnitude values for all buses

V :=

{
[|Vi|]i∈N :

V ≤ |Vi| ≤ V , ∀i ∈ Nb,
a|Vpt| ≤ |Vs′t | ≤ a|Vpt |

}
. (A.5)

With this, the overall set of bus power injection is given by

P :=
⋃

υ∈V





[∑

k∈Ni
Pik

]

i∈N̄

, (Pik, Pki) ∈ Fθik(υ)



 . (A.6)

As mentioned earlier, the relaxed SDP approach would essentially relax P to

its convex hull. Furthermore, P is a linear combination of all the power flow

regions, and the union operator does maintain the linearity of this mapping.

This is leads to the fact that P and conv(P) have the same Pareto-optimal

points; i.e., O(P) = O(conv(P)). Hence, the relaxed problem (3.18a) is

guaranteed with be a valid power flow solution, which is also the global

optimum to the original problem.

1In fact, the second-order cone program (SOCP) relaxation would actually convex
all the power flow region on the line-by-line basis, but the relaxed SDP can be shown
equivalent to the SOCP relaxation.
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A.2 Development of the Non-Ideal Transformer Model

The transformer constraints originally proposed in [54] for a balanced network

are given by

a2 |Vpt |2 ≤
∣∣Vs′t
∣∣2 ≤ a2 |Vpt |2 (A.7a)

Re {Vpt} × Im
{
Vs′t
}

= Re
{
Vs′t
}
× Im {Vpt} (A.7b)

Re {Vpt} × Re
{
Vs′t
}
≥ 0 (A.7c)

Im {Vpt} × Im
{
Vs′t
}
≥ 0, (A.7d)

which are equivalent to

a2 [W ]ptpt ≤ [W ]s′ts′t ≤ a2 [W ]ptpt (A.8a)

[W ]pts′t − [W ]s′tpt = 0 (A.8b)

[W ]pts′t ≥ 0 and [W ]s′tpt ≥ 0 (A.8c)

for the SDP formulation based on complex vectors/matrices.

A.2.1 Single-Phase Symbolic Example

Consider a radial, single-phase 3-bus network that contains an ideal TCUL

transformer between buses 1 and 2. Let bus 1 be the reference bus and have

a fixed voltage of V1∠θ1. Thus, the voltages are given by

V =



V1∠θ1

V2∠θ2

V3∠θ3


 =




V1∠θ1

aV1∠θ1

V3∠θ3


 , (A.9)

where a is the tap ratio of the transformer. Note that in (A.9), we define

V2 = aV1 instead of V2 = 1
a
V1 as in Chapter 3. The outer product of the

voltages is given by

V V H = W =




V 2
1 V1V2∠(θ1−θ2) V1V3∠(θ1−θ3)

V1V2∠(θ2−θ1) V 2
2 V2V3∠(θ2−θ3)

V1V3∠(θ3−θ1) V2V3∠(θ3−θ2) V 2
3


 . (A.10)
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The desired rank-1 solution will be

W =




V 2
1 aV 2

1 V1V3∠(θ1−θ3)

aV 2
1 a2V 2

1 aV1V3∠(θ1−θ3)

V1V3∠(θ3−θ1) aV1V3∠(θ3−θ1) V 2
3


 ; (A.11)

however, the solution from the SDP problem with the constraints in (A.7a)–

(A.7d) will have the form

W =



V 2

1 w12 w13

w21 a2V 2
1 aV1V3∠(θ2−θ3)

w31 aV1V3∠(θ3−θ2) V 2
3


 , (A.12)

where w12 = w21 and w13 = w∗31 can vary as long as the positive semidefinite

(PSD) constraint is met and W will satisfy the power flow constraints in the

SDP OPF since the underlying graph is disconnected between buses 1 and

2 (i.e., the relationship between buses 1 and 3 is irrelevant in terms of the

power flow constraints).

From this example, it is clear why the solution to the SDP, W ∈ C3×3,

can and will return a solution with rank higher than 1. We can recover the

rank-1 solution by finding the relative voltage magnitude/angle per partition

and setting θ2 = θ1. In a larger system, the r transformers disconnect the

network graph and create r + 1 partitions where the secondary-side virtual

bus in each partition will behave as a local reference bus. Thus, the phase of

the buses located in that partition are defined relative to the secondary side

of the transformer and not the feeder. We can recover the rank-1 solution

by starting with the partition that contains the feeder and recursively adjust

the phase angles in the downstream partitions.

The non-ideal transformer model can address the higher-rank since: (i) it

connects the network so that w13 = w∗31 is no longer ambiguous, and (ii) it

ensures that θ2 ≈ θ1. This will return a rank-1 solution to the SDP OPF

with the caveat that the solution is sensitive to the choice of zt. For the

single-phase case, the non-ideal transformer is not necessary to find a rank-1

solution or determine other control variables such as reactive power support

or the optimal tap ratio.
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A.2.2 Multi-Phase Symbolic Example

Next, we consider a 2-bus, two-phase system with an ideal TCUL transformer

connecting the buses. The bus voltages for the primary and secondary sides

of the TCUL transformer are

V =




Va∠θa
Vb∠θb
Ṽa∠θ̃a
Ṽb∠θ̃b




=




Va∠θa
Vb∠θb
aaVa∠θa
abVb∠θb



, (A.13)

and the outer product of the voltages is

W =




V 2
a VaVb∠θab VaṼa∠θaã VaṼb∠θab̃

VaVb∠θba V 2
b VbṼa∠θbã VbṼb∠θbb̃

VaṼa∠θãa VbṼa∠θãb Ṽ 2
a ṼaṼb∠θãb̃

VaṼb∠θb̃a VbṼb∠θb̃b ṼaṼb∠θb̃a Ṽ 2
b



, (A.14)

where θik = θi − θk. The desired rank-1 solution of W is

W =




V 2
a VaVb∠θab aaV

2
a abVaVb∠θab

VaVb∠θba V 2
b aaVaVb∠θba abV

2
b

aaV
2
a aaVaVb∠θab a2

aV
2
a aaabVaVb∠θab

abVaVb∠θba abV
2
b aaabVaVb∠θba a2

bV
2
b



, (A.15)

but the solutions to the SDP will have the form

W =




V 2
a VaVb∠θab w13 w14

VaVb∠θba V 2
b w23 w24

w31 w32 a2
aV

2
a aaabVaVb∠θãb̃

w41 w42 aaabVaVb∠θb̃ã a2
bV

2
b



, (A.16)

where w13 = w31, w14 = w∗41, w23 = w∗32, and w24 = w42 are unused by the

power flow constraints and can vary while still satisfying the PSD condition.

The problem in the multi-phase case becomes how to enforce the phase sep-

aration when the tap ratios aa and ab are unknown; i.e., the issue is how to

relate the color coded terms in (A.15) and (A.16). There are two possibilities:
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(i) We can reconnect the network so that θa ≈ θ̃a and θb ≈ θ̃b, which allows

us to enforce θa−θb ≈ θ̃a−θ̃b. This is the approach that we proposed in

Chapter 3 with the non-ideal transformer model.

(ii) We can include the tap ratios as optimization variables and define the

necessary constraints. Unfortunately, the optimization problem would

involve product of variables, which results in nonlinearities in the con-

straints. With this approach, the rank relaxation no longer suffices to

obtain a convex problem. Similarly, our constraints will be nonlinear

if we include the tap ratios indirectly as a function of W .

A.2.3 Numerical Example

We decided to omit the single-phase numerical results for brevity; however,

by using the ideal transformer constraints in (A.7a)–(A.7d) and running a

second simulation for the constraints in (A.8a)-(A.8c), we get a rank-2 ma-

trix and can recover the same solution obtained with the non-ideal TCUL

transformer model in the single-phase case.

y1pt yptstV1 Vpt Vs′t Vst

SstSpts
′
t

Figure A.1: 2-bus network with an ideal TCUL transformer.

Figure A.1 shows a 4-bus, two-phase, network we use for our numerical

example. It contains a single TCUL transformer that we hold the tap ratio

at a = aa = ab = 1 so that we can easily compare the results (i.e., we turn

(A.8a) into an equality constraint). The system parameters for the two-phase

case are given by

V 1 =

[
1∠0

1∠− 120◦

]
and Sst =

[
2.35 + j1.90

1.17 + j0.68

]

and

z1pt = zptst =

[
0.0012 + j0.0089 0.0003 + j0.0011

0.0003 + j0.0011i 0.0012 + j0.0090

]
and zt = 0.1× I2.
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First, we run the SDP OPF with the ideal TCUL transformer model from

Fig. 1(b) in the manuscript with the constraints in (A.8a)–(A.8c). The solver

returns a solution with a rank of 2. Specifically, the submatrix associated

with the transformer is

W pts′t =




0.96 -0.48 + j0.85 5e-4 -3e-4 + j5e-4

-0.48− j0.85 0.99 -3e-4− j5e-4 6e-4

5e-4 -3e-4 + j5e-4 0.96 -0.96− j0.17

-3e-4− j5e-4 6e-4 -0.96 + j0.17 0.99



,

which matches the phase orientation of (A.14). The angles of the entries will

be

∠W pts′t =




0 119.64◦ 0 119.64◦

−119.64◦ 0 −119.66◦ 0

0 119.66◦ 0 −170.14◦

−119.64◦ 0 170.14◦ 0



,

and the entry-wise magnitudes are

|W pts′t |=




0.96 0.97 5e-4 5e-4

0.97 0.99 5e-4 6e-4

5e-4 5e-4 0.96 0.97

5e-4 6e-4 0.97 0.99



.

We divide W pts′t into quadrants such that

W pts′t =

[
W pp W ps′

W s′p W s′s′

]
. (A.17)

The intuition from the discussion earlier pertaining to (A.15) and (A.16)

above is verified by the numerical results presented in this example. The off-

diagonals W ps′ and W s′p are irrelevant for the power flow constraints, and

the magnitudes reflect this with the phase constraints enforced accordingly.

The problem is that W s′s′ , which acts as the reference for the downstream

partition of buses {s′t, st}, is incorrect. The off-diagonals of W s′s′ should be

[W s′s′ ]12 = [W s′s′ ]
∗
21 =

(√
0.96×

√
0.99

)
∠119.64◦ = 0.97∠119.64◦.

While the magnitude is correct, the relative phase difference between phases
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A and B on the secondary side of the transformer are not; and we can cannot

recover the correct solution.

Next, we perform the same simulation with the non-ideal TCUL trans-

former. The optimization returns a rank-1 matrix and we find (using the

notation in (A.14)) that

θa = −1.001◦, θb = −120.65◦, θ̃a = −1.00◦, θ̃b = −120.65◦,

with all of the correct magnitudes. The connected network also enforces the

correct values for W ps′ and W s′p since zt couples the power flow constraints

between the two partitions.
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APPENDIX B

LINEAR REFORMULATION OF THE OPF
FOR THE CONVEX SOLVER

This appendix provides the necessary derivation to formulate the linear prob-

lem with SOCP and SDP constraints for the optimizations in Chapters 3 and

5 to implement the SeDuMi solver.

B.1 Linear Reformulation

We would like to hardcode a variant of the relax SDP OPF developed in

Chapter 3. Consider the minimization problem

min
W�0, q, Sps′

∑

(i,k)∈E
Re {Tr (AikW )}+

∑

i∈N
wi
(
[W ]ii − (V r

i )2
)2

(B.1a)

such that

Tr (HiW )− Si − jqi = 0, ∀i ∈ N\Np (B.1b)

Tr (HptW )− Spt + Spts′t − jqi = 0, ∀t ∈ T (B.1c)

Tr
(
Hs′tW

)
− Spts′t = 0, ∀t ∈ T (B.1d)

and

V 2 ≤ [W ]ii ≤ V
2
, ∀i ∈ N (B.1e)

a2 [W ]ptpt ≤ [W ]s′ts′t ≤ a2 [W ]ptpt , ∀t ∈ T (B.1f)

q
i
≤ qi ≤ qi, ∀i ∈ N (B.1g)

where wi ≥ 0 is a weight associated with the voltage regulation. The current

representation presents a couple problems. First, the matrices defined here

are complex and we want to operate in the real domain. Second, the solver
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requires the problem to be posed in the form

min
x
cTx

such that

Ax = b

x ∈ Rn or x ≥ 0

for A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. Finally, the solvers require the problem

to be linear, which the objective function clearly is not. We can linearize

by introducing new optimization variables and leverage Schur’s complement;

however, SeDuMi provides functions to handle (Rotated) Lorentz (quadratic,

second-order cone) constraints to handle this for us [61]. We will address this

in the next section.

B.1.1 Power Flow Equations

We motivate the formulation of the power flow constraints with a two bus

example represented in rectangular coordinates.

Example 3 (Two Bus Example) Consider a system that contains two buses

and a transmission line. Then, it follows from our definitions in Chapter 3

that

Tr(H1W ) = Tr

([
Y ∗11 0

Y ∗12 0

][
|V1|2 V1V

∗
2

V ∗1 V2 |V2|2

])

= Y ∗11|V1|2 + Y ∗12V1V
∗

2 ,

where yik = gik + jbik for the distribution line segment (i, k) ∈ E. We would

would like to reformulate the problem where

Ṽ =




e1

e2

f1

f2




and W̃ = Ṽ Ṽ T =




e2
1 e1e2 e1f1 e1f2

e1e2 e2
2 e2f1 e2f2

e1f1 e2f1 f 2
1 f1f2

e1f2 e2f2 f1f2 f 2
2



.
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The active power flow at bus 1 in rectangular coordinates will be

P1 = g11

(
e2

1 + f 2
1

)
+ g12 (e1e2 + f1f2) + b12 (e2f1 − e1f2) , (B.2)

and similarly for the reactive power

Q1 = −b11

(
e2

1 + f 2
1

)
+ g12 (e2f1 − e1f2)− b12 (e1e2 + f1f2) . (B.3)

We can rewrite (B.2) as

P1 = Tr
(
H̃1W̃

)

= Tr







g11 0 b11 0

g12 0 b12 0

−b11 0 g11 0

−b12 0 g12 0



W̃




= Tr

([
Re{H1} −Im{H1}
Im{H1} Re{H1}

]
W̃

)
,

and similarly for the reactive power

Q1 = Tr
(
M1W̃

)

= Tr

([
Im{H1} Re{H1}
−Re{H1} Im{H1}

]
W̃

)
;

this concludes the example.

�
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Following Example 3, we can remove complex numbers by defining our

matrices as follows:

Ṽ =

[
Re{V }
Im{V }

]
, (B.4)

W̃ = Ṽ Ṽ T, (B.5)

H̃i =

[
Re{Hi} −Im{Hi}
Im{Hi} Re{Hi}

]
, (B.6)

Mi =

[
Im{Hi} Re{Hi}
−Re{Hi} Im{Hi}

]
, (B.7)

Ãik =

[
Re{Aik} −Im{Aik}
Im{Aik} Re{Aik}

]
. (B.8)

B.1.2 Inequality Constraints

SeDuMi requires the uses an equality constraint where the optimization vari-

ables are either free (unsigned) or nonnegative. Consider the inequality con-

straint

a ≤ x ≤ b,

where x ∈ R is a free variable. We can rewrite this expression as

a− x+ s1 = 0,

−b+ x+ s2 = 0,

where s1, s2 ≥ 0 are nonnegative slack variables.

B.1.3 Equivalent Problem

Albeit a slight abuse of notation, i.e., we refer to W̃ as W , etc., we incorporate

all the changes discussed above and the equivalent problem for SeDuMi is

min
W�0, q, Sps′

∑

(i,k)∈E
Tr (AikW ) +

∑

i∈N
wi
∣∣[W ]ii + [W ]̃ĩi − (V r

i )2
∣∣2 (B.9a)
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such that

Tr (HiW )− Pi = 0, ∀i ∈ N\Np (B.9b)

Tr (MiW )−Qi = 0, ∀i ∈ N\Np (B.9c)

Tr (HptW )− Ppt + Ppts′t = 0, ∀t ∈ T (B.9d)

Tr (MptW )−Qpt +Qpts′t = 0, ∀t ∈ T (B.9e)

Tr
(
Hs′tW

)
− Ppts′t = 0, ∀t ∈ T (B.9f)

Tr
(
Ms′tW

)
−Qpts′t = 0, ∀t ∈ T (B.9g)

and

V 2 − [W ]ii − [W ]̃ĩi + li = 0, ∀i ∈ N (B.9h)

−V 2
+ [W ]ii + [W ]̃ĩi + ui = 0, ∀i ∈ N (B.9i)

a2
(

[W ]ptpt + [W ]p̃tp̃t

)
− [W ]s′ts′t − [W ]s̃′ts̃′t + lt = 0, ∀t ∈ T (B.9j)

−a2
(

[W ]ptpt + [W ]p̃tp̃t

)
+ [W ]s′ts′t + [W ]s̃′ts̃′t + ut = 0, ∀t ∈ T (B.9k)

qi − qi + l̃i = 0, ∀i ∈ N (B.9l)

−qi + qi + ũi = 0, ∀i ∈ N , (B.9m)

and

li ≥ 0, ui ≥ 0, l̃i ≥ 0, ũi ≥ 0, ∀i, (B.9n)

where ĩ, p̃t, s̃
′
t are the entries in the lower block diagonal entries of W corre-

sponding to the imaginary components.

B.2 SeDuMi Remarks

In this section, we provide a few useful tips on how to solve (B.9) with

SeDuMi. The constraints in (B.9b)–(B.9n) are linear and straight forward

to implement.
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B.2.1 Trace Operational Equivalent

In Matlab we can convert a matrix to a vector with the vec(x). Similarly,

we can return to a matrix with the command mat(x). For example

vec

([
1 3

2 4

])
=




1

2

3

4




and mat







1

2

3

4







=

[
1 3

2 4

]
.

Thus, the following expressions are equivalent

Tr (HiW ) = vec
(
HT
i

)T
vec (W ) .

B.2.2 Rotated Lorentz Constraint

In SeDuMi we can leverage second-order cone program (SOCP) to handle

both the boundary constraints in the distributed solver (e.g., see Chap-

ters 3 and 5) and the voltage regulation penalty term in (B.9a). The rotated

Lorentz constraint has the following form:

2x1x2 ≥ ‖y‖2
2,

for x1, x2 ∈ R and y ∈ Rn. Thus, the voltage regulation component of (B.9a)

will be

minx1 (B.10a)

such that

2x1x2 ≥ ‖y‖2
2 (B.10b)

x2 = 0.5 (B.10c)

yi =
√
wi
(
[W ]ii + [W ]̃ĩi − (V r

i )2
)
, ∀i ∈ N . (B.10d)
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APPENDIX C

TWO-STAGE VOLTAGE REGULATION

In this appendix, we provide additional support for two key results in Chap-

ter 4, as well as the system data for the 8-bus example.

C.1 Stage One Stability Analysis

Consider the system in (4.7); in order to ensure its stability, we need to ensure

that |σi(I − αSD)| < 1, ∀i, where σi(I − αSD) denotes the ith eigenvalue

of I − αSD. Let λi = Re{λi} + j Im{λi} denote the ith eigenvalue of the

matrix SD. Then, it follows that every σi(I−αSD) is given by σi = 1−αλi.
Therefore, σi = (1−αRe{λi})+jα Im{λi}, and |σi|2 = 1−2αRe{λi}+α2|λi|2.

Then, |σi|2 < 1, if α < 2 Re{λi}/|λi|2. Thus, |σi(I − αSD)| < 1, ∀i, if

α < αc = mini

{
2 Re{λi}
|λi|2

}
.

C.2 Stage Two Convergence Analysis

Let µ[k] = [µ1[k], µ2[k], . . . , µn[k]]T , ν[k] = [ν1[k], ν2[k], . . . , νn[k]]T , and

ν[k] = [ν1[k], ν2[k], . . . , νn[k]]T . Then the iterations in (4.10)—(4.12) can

be rewritten in matrix form as

µ[k + 1] = Pµ[k], (C.1)

ν[k + 1] = Pν[k], (C.2)

ν[k + 1] = Pν[k], (C.3)

where P ∈ Rn×n is a primitive column stochastic matrix. Primitivity follows

since P is (i) a nonnegative matrix, (ii) the assumption that the graph of P

is strongly connected implies that P is irreducible, and (iii) P is aperiodic

since it contains at least one pjj > 0 [65]. This ensures that (C.1)–(C.3)
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converge to the unique solutions µ = limk→∞ µ[k] = (
∑n

i=1 µi[0])π, ν =

limk→∞ ν[k] = (
∑n

i=1 νi[0])π, and ν = limk→∞ ν[k] = (
∑n

i=1 νi[0])π, where

π = [π1, π2, . . . , πn]T is the unique solution of π = Pπ satisfying
∑n

i=1 πi = 1,

and πi > 0, ∀i, (see, e.g., [65]). If
∑n

i=1 µi[0] ≥ 0, then lim
k→∞

µj[k] ≥ 0 ∀j,
and therefore

lim
k→∞

µj[k]

νk[k]
=

∑n
i=1 µi[0]∑n
i=1 νi[0]

, (C.4)

from which it follows that

ηj = lim
k→∞

ηj[k] =

∑n
i=1 µi[0]∑n
i=1 νi[0]

νj[0], ∀j. (C.5)

A similar reasoning can be used to establish that, whenever
∑n

i=1 µi[0] ≤ 0,

ηj = (
∑n

i=1 µi[0]/
∑n

i=1 νi[0])νj[0], ∀j.

C.3 Data for 8-bus System Example

For the topology shown in Fig. 4.3(a), the transition matrix P that results

from the set of weights that define the distributed algorithm is given

P =




1/2 1/3 0 0 0 0 0

1/2 1/3 1/4 0 0 0 0

0 1/3 1/4 1/3 0 1/3 0

0 0 1/4 1/3 1/2 0 0

0 0 0 1/3 1/2 0 0

0 0 1/4 0 0 1/3 1/2

0 0 0 0 0 1/3 1/2




, (C.6)
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whereas for the topology shown in Fig. 4.3(b) is given by

P =




1/3 0 0 0 0 0 1/4

1/3 1/2 1/4 0 0 0 0

0 1/2 1/4 1/3 0 1/3 0

0 0 1/4 1/3 0 0 0

0 0 0 1/3 1/2 0 1/4

0 0 1/4 0 0 1/3 1/4

1/3 0 0 0 1/2 1/3 1/4




. (C.7)

The load and DER capacity data for the example in Section 4.4 are listed

in Table C.1. Note that the capacities are denoted by under and over for

the under-voltage and over-voltage examples, respectively. Line parameters

are listed in Table C.2.

Table C.1: 8-Bus Load Data

Bus PL QL qover qover qunder qunder

1 0.70 0.10 1.000 -1.000 0.20 -0.20
2 0.85 0.25 0.7 00 -0.700 0.20 -0.20
3 0.60 0.15 0.625 -0.625 0.30 -0.20
4 1.25 0.50 0.500 -0.500 0.50 -0.50
5 0.90 0.30 0.425 -0.425 0.35 -0.35
6 0.10 0.10 0.650 -0.650 0.40 -0.40
7 1.00 0.35 0.625 -0.625 0.20 -0.20

Table C.2: 8-Bus Distribution Line Segment Data

From Bus To Bus R [p.u.] X [p.u.] B [p.u.]

1 2 0.0010 0.0077 0.0158
2 3 0.0029 0.0145 0.0275
3 4 0.0015 0.0083 0.0142
4 5 0.0035 0.0153 0.0322
3 6 0.0015 0.0065 0.0134
6 7 0.0011 0.0091 0.0188
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APPENDIX D

LINEARIZATION OF THE FAST
TIME-SCALE OPTIMIZATION

This appendix provides the derivation of the linear approximation of the

nonlinear elements of the unbalanced three-phase optimization problem for-

mulated in Section 5.3.2.

D.1 Bus Voltage Approximation

First, we define to ai ∈ C3 represent the element-wise inverse voltage of bus

i. We can use two approaches to approximate ai in the unbalanced three-

phase case, (i) treat ai as a constant, which is similar to the approach we

took in Section 5.3.2, or (ii) we sample the bus voltages when we update the

power flow constraints for the next optimization. Thus, we can approximate

ai as

ai =
[
1 ej2π/3 e−j2π/3

]T � V r
i ,

which will result in the equality constraints having the form Ax(t) = b(t),

where t is a time dependence; otherwise, we can choose ai to be

ai(t) = 1� V i(t),

which gives us equality constraints that the form A(t)x(t) = b(t). The advan-

tage of (i) is that it is fairly accurate and we compute the coefficient matrix

A once.
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D.2 Nonlinear Voltage Drop Term

In Section 5.3.2, the nonlinear term in the voltage drop equation is

cvik (P ik,Qik) = [zik ((P ik − jQik)� a∗i )]�[z∗ik ((P ik + jQik)� ai)] . (D.1)

Let the updated distribution line segment impedance be

z̄ik = zik diag (a∗i ) = r̄ik + jx̄ik. (D.2)

Then, (D.1) will become

cvik (P ik,Qik) = [r̄ikP ik]� [r̄ikP ik] + [x̄ikQik]� [x̄ikQik]

+ [x̄ikP ik]� [x̄ikP ik] + [r̄ikQik]� [r̄ikQik]

+ 2 [r̄ikP ik]� [x̄ikQik]− 2 [x̄ikP ik]� [r̄ikQik] .

(D.3)

We can approximate the curve linearly around the point
(
P iko ,Qiko

)
as

cvik
(
P iko ,Qiko

)
≈ fp

(
P iko ,Qiko

)
[P ik − P iko ] +

fq
(
P iko ,Qiko

) [
Qik −Qiko

]
+ cvik

(
P iko ,Qiko

)
,

(D.4)

where the partial derivatives are

fp =
∂cvik
∂P ik

= hxx (r̄ik,P ik) + hxx (x̄ik,P ik)

+ 2hxy (r̄ik, x̄ik,P ik,Qik)− 2hxy (x̄ik, r̄ik,P ik,Qik) ,

fq =
∂cvik
∂Qik

= hxx (r̄ik,Qik) + hxx (x̄ik,Qik)

+ 2hxy (x̄ik, r̄ik,Qik,P ik)− 2hxy (r̄ik, x̄ik,Qik,P ik) ,

and

hxx (A,x) = 2A diag (Ax) ,

hxy (A,B,x,y) = A diag (By) .
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D.3 Nonlinear Power Loss Terms

The loss power across the distribution line segment (i, k) ∈ E is given by

S`ik = [Sik � V i]� [zik (S∗ik � V ∗i )] , (D.5)

where we follow the same notation as Section 5.3.2. We update the distribu-

tion line segment impedance to be

z̃ik = r̃ik + jx̃ik = zik �
(
aia

H
i

)
, (D.6)

such that

r̃ik = Re
{
aia

H
i

}
� rik − Im

{
aia

H
i

}
� xik, (D.7)

x̃ik = Re
{
aia

H
i

}
� xik + Im

{
aia

H
i

}
� rik. (D.8)

Thus, we can rewrite (D.5) as

S`ik = [P ik + jQik]� [z̃ik (P ik − jQik)] , (D.9)

where we separate the active and reactive power losses along the distribution

line segment to compute the nonlinear power loss terms

cpik (P ik,Qik) = P ik � [r̃ikP ik + x̃ikQik] +Qik � [r̃ikQik − x̃ikP ik] , (D.10)

and

cqik (P ik,Qik) = P ik � [x̃ikP ik − r̃ikQik] +Qik � [r̃ikP ik + x̃ikQik] , (D.11)

respectively. The linear approximate of (D.10) and (D.11) will be

cpik
(
P iko ,Qiko

)
≈ fp

(
P iko ,Qiko

)
[P ik − P iko ] +

fq
(
P iko ,Qiko

) [
Qik −Qiko

]
+ cpik

(
P iko ,Qiko

) (D.12)

and

cqik
(
P iko ,Qiko

)
≈ gp

(
P iko ,Qiko

)
[P ik − P iko ] +

gq
(
P iko ,Qiko

) [
Qik −Qiko

]
+ cqik

(
P iko ,Qiko

)
,

(D.13)
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where the partial derivatives are

fp =
∂cpik
∂P ik

= hxx (r̃ik,P ik) + hxy (x̃ik,P ik,Qik)− hyx (x̃ik,Qik,P ik) ,

fq =
∂cpik
∂Qik

= hxx (r̃ik,Qik)− hxy (x̃ik,Qik,P ik) + hyx (x̃ik,P ik,Qik) ,

gp =
∂cqik
∂P ik

= hxx (x̃ik,P ik)− hxy (r̃ik,P ik,Qik) + hyx (r̃ik,Qik,P ik) ,

gq =
∂cqik
∂Qik

= hxx (x̃ik,Qik) + hxy (r̃ik,Qik,P ik) + hyx (r̃ik,P ik,Qik) ,

and

hxx (A,x) = diag (Ax) + diag (x)A,

hxy (A,x,y) = diag (Ay) ,

hyx (A,x,y) = diag (x)A.
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APPENDIX E

DISTRIBUTION SYSTEM PARAMETER
DATA SETS

This appendix lists the system data for the 15-bus and 123-bus systems used

throughout this thesis.

E.1 15-Bus Distribution System

The system values are listed in Tables E.1 and E.2, where the base power is

100 kVA. The impedance matrices for the line configurations are the follow-

ing:

Configuration L601

Z =




0.347+j1.018 0.156+j0.502 0.158+j0.424

0.156+j0.502 0.338+j1.048 0.154+j0.385

0.158+j0.424 0.154+j0.385 0.341+j1.035


 Ω/mi

B = j




6.3 −1.996 −1.259

−1.996 5.96 −0.742

−1.259 −0.742 5.639


 µS/mi

Configuration L602

Z =




0.753+j1.181 0.158+j0.424 0.156+j0.502

0.158+j0.424 0.748+j1.198 0.154+j0.385

0.156+j0.502 0.154+j0.385 0.744+j1.211


 Ω/mi

B = j




5.699 −1.082 −1.691

−1.082 5.179 −0.659

−1.691 −0.659 5.425


 µS/mi

Configuration L603

Z =




0 0 0

0 1.329+j1.347 0.207+j0.459

0 0.207+j0.459 1.324+j1.357


 Ω/mi
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B = j




0 0 0

0 4.71 −0.9

0 −0.9 4.666


 µS/mi

Configuration L604

Z =




1.324+j1.357 0 0.207+j0.459

0 0 0

0.207+j0.459 0 1.329+j1.347


 Ω/mi

B = j




4.666 0 −0.9

0 0 0

−0.9 0 4.71


 µS/mi

Configuration L605

Z =




0 0 0

0 0 0

0 0 1.329+j1.347


 Ω/mi

B = j




0 0 0

0 0 0

0 0 4.519


 µS/mi

Configuration L606

Z =




0.7982+j0.446 0.319+j0.033 0.285+j0.014

0.3192+j0.033 0.789+j0.404 0.319+j0.033

0.2849+j0.014 0.319+j0.033 0.798+j0.446


 Ω/mi

B = j




96.61 0 0

0 96.61 0

0 0 96.61


 µS/mi

Configuration L607

Z =




1.343+j0.512 0 0

0 0 0

0 0 0


 Ω/mi

B = j




89.32 0 0

0 0 0

0 0 0


 µS/mi
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Configuration LXFM1

Z =




0.011+j0.02 0 0

0 0.011+j0.02i 0

0 0 0.011+j0.02


 p.u.

Table E.1: 15-Bus Load Data

Bus Phases Vll [kV] Cap [kVAr] Load [kVA]

1 A B C 4.16 0, 0, 0 0, 0, 0
2 B C 4.16 0, 0, 0 0, 170+j125, 0
3 A B C 4.16 0, 0, 0 0, 0, 0
4 A B C 0.48 0, 0, 0 160+j110, 120+j90, 120+j90
5 B C 4.16 0, 0, 0 0, 230+j132, 0
6 A B C 4.16 0, 0, 0 0, 0, 0
7 A C 4.16 0, 0, 0 0, 0, 0
8 A 4.16 0, 0, 0 128+j86, 0, 0
9 A B C 4.16 0, 0, 0 285+j170, 285+j170, 255+j171
10 A B C 4.16 0, 0, 0 0, 0, 0
11 C 4.16 0, 0, 100 0, 0, 170+j80
12 A B C 4.16 200, 200, 200 235+j190, 68+j60, 290+j150
13 A B C 4.16 0, 0, 0 0, 0, 0
14 A B C 4.16 0, 0, 0 0, 0, 0
15 A B C 4.16 0, 0, 0 17+j10, 66+j38, 117+j68
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Table E.2: 15-Bus Distribution Line Segment Data

Line From To Length [ft] Config.

1 1 2 500 L603
2 1 3 500 L602
3 3 4 0 LXFM1
4 2 5 300 L603
5 6 1 2000 L601
6 7 8 800 L607
7 9 7 300 L604
8 9 10 1000 L601
9 7 11 300 L605
10 9 12 500 L606
11 13 6 500 L602
12 14 13 500 L602
13 1 15 667 L601
14 15 9 1333 L601

E.2 123-Bus Distribution System

The system values are listed in Tables E.3 through E.4, where the base

power is 100 kVA. The impedance matrices for the line configurations are

the following:

Configuration 1

Z =




0.458+j1.078 0.156+j0.502 0.153+j0.385

0.156+j0.502 0.467+j1.048 0.158+j0.424

0.153+j0.385 0.158+j0.424 0.461+j1.065


 Ω/mi

B = j




5.677 −1.832 −0.698

−1.832 5.981 −1.165

−0.698 −1.165 5.397


 µS/mi

Configuration 2

Z =




0.467+j1.048 0.158+j0.424 0.156+j0.502

0.158+j0.424 0.461+j1.065 0.153+j0.385

0.156+j0.502 0.153+j0.385 0.458+j1.078


 Ω/mi

B = j




5.981 −1.165 −1.832

−1.165 5.397 −0.698

−1.832 −0.698 5.677


 µS/mi
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Configuration 3

Z =




0.461+j1.065 0.153+j0.385 0.158+j0.424

0.153+j0.385 0.458+j1.078 0.156+j0.502

0.158+j0.424 0.156+j0.502 0.467+j1.048


 Ω/mi

B = j




5.397 −0.698 −1.165

−0.698 5.677 −1.832

−1.165 −1.832 5.981


 µS/mi

Configuration 4

Z =




0.461+j1.065 0.158+j0.424 0.153+j0.385

0.158+j0.424 0.467+j1.048 0.156+j0.502

0.153+j0.385 0.156+j0.502 0.458+j1.078


 Ω/mi

B = j




5.397 −1.165 −0.698

−1.165 5.981 −1.832

−0.698 −1.832 5.677


 µS/mi

Configuration 5

Z =




0.467+j1.048 0.156+j0.502 0.158+j0.424

0.156+j0.502 0.458+j1.078 0.153+j0.385

0.158+j0.424 0.153+j0.385 0.461+j1.065


 Ω/mi

B = j




5.981 −1.832 −1.165

−1.832 5.677 −0.698

−1.165 −0.698 5.397


 µS/mi

Configuration 6

Z =




0.458+j1.078 0.153+j0.385 0.156+j0.502

0.153+j0.385 0.461+j1.065 0.158+j0.424

0.156+j0.502 0.158+j0.424 0.467+j1.048


 Ω/mi

B = j




5.677 −0.698 −1.832

−0.698 5.397 −1.165

−1.832 −1.165 5.981


 µS/mi

Configuration 7

Z =




0.458+j1.078 0 0.153+j0.385

0 0 0

0.153+j0.385 0 0.461+j1.065


 Ω/mi
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B = j




5.115 0 −1.055

0 0 0

−1.055 0 5.170


 µS/mi

Configuration 8

Z =




0.458+j1.078 0.153+j0.385 0

0.153+j0.385 0.461+j1.065 0

0 0 0


 Ω/mi

B = j




5.115 −1.055 0

−1.055 5.170 0

0 0 0


 µS/mi

Configuration 9

Z =




1.329+j1.347 0 0

0 0 0

0 0 0


 Ω/mi

B = j




4.519 0 0

0 0 0

0 0 0


 µS/mi

Configuration 10

Z =




0 0 0

0 1.329+j1.347 0

0 0 0


 Ω/mi

B = j




0 0 0

0 4.519 0

0 0 0


 µS/mi

Configuration 11

Z =




0 0 0

0 0 0

0 0 1.329+j1.347


 Ω/mi

B = j




0 0 0

0 0 0

0 0 4.519


 µS/mi
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Configuration 12

Z =




1.521+j0.752 0.520+j0.277 0.492+j0.216

0.520+j0.277 1.533+j0.716 0.520+j0.277

0.492+j0.216 0.520+j0.277 1.521+j0.752


 Ω/mi

B = j




67.030 0 0

0 67.030 0

0 0 67.030


 µS/mi

Configuration LXFM1

Z =




0.011+j0.02 0 0

0 0.011+j0.02i 0

0 0 0.011+j0.02


 p.u.
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