
c© 2015 Zhuotao Liu

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158302073?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

FLOWPOLICE: ENFORCING CONGESTION ACCOUNTABILITY TO
DEFEND AGAINST DDOS ATTACKS

BY

ZHUOTAO LIU

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Adviser:

Associate Professor Yih-Chun Hu

ABSTRACT

Defending the Internet against distributed denial of service (DDoS) attacks

is a fundamental problem. Despite over a decade of research, little progress

has been made on the real-world deployment of proposed approaches due

to the prohibitive deployment hurdles. This thesis presents FlowPolice, a

new DDoS defense mechanism capable of thwarting millions of attack flows,

while requiring very lightweight deployment. Specifically, FlowPolice can

immediately benefit the first deployed autonomous system (AS) without fur-

ther deployment at other ASs, and a single deployed router can protect all

downstream links that implement a simple prioritization mechanism. The

design of FlowPolice suppresses attack traffic by forcing attackers to be ac-

countable for congestion via proper rate limiting. To learn users’ congestion

accountability, FlowPolice leverages a capability feedback mechanism so that

the deploying router can make rate limiting decisions based only on its self-

generated capability tags.

We use theoretical analysis, large scale simulation and Linux implemen-

tation to demonstrate the effectiveness of FlowPolice. Specifically, the the-

oretical analysis proves that FlowPolice ensures per-flow fair share at the

bottleneck link. Our implementation shows that FlowPolice can scale up to

handle very large scale DDoS attacks and introduces little packet process-

ing overhead. We also perform detailed packet-level simulation to show that

FlowPolice is effective to mitigate DDoS attacks.

ii

To my parents, friends, and colleagues for their love and support.

iii

ACKNOWLEDGMENTS

I would like to thank my adviser, Prof. Yih-Chun Hu, for the advice and

support he has given me along the way.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 DESIGN RATIONALES 4
2.1 Problem Space . 4
2.2 Design Goals . 4
2.3 Enforce Congestion Accountability 5
2.4 Fairness Guarantee . 6
2.5 Why Capability Feedback? . 6
2.6 Why Local Information? . 7
2.7 How to Suppress Attack Traffic? 8
2.8 FlowPolice’s Deployment . 8
2.9 Is FlowPolice Scalable? . 9

CHAPTER 3 SYSTEM DESIGN . 11
3.1 System Overview . 11
3.2 FlowPolice Packet Header . 12
3.3 Secure the Request Channel 13
3.4 Unforgeable Capability . 13
3.5 Flow Table . 14
3.6 Rate Limiting Logic . 16

CHAPTER 4 SECURITY ANALYSIS 24

CHAPTER 5 EVALUATION . 27
5.1 Implementation . 28
5.2 DDoS Attack Mitigation . 30

CHAPTER 6 DISCUSSION . 36

CHAPTER 7 RELATED WORK . 37

CHAPTER 8 CONCLUSION . 39

REFERENCES . 40

v

CHAPTER 1

INTRODUCTION

Distributed denial of service (DDoS) attacks are a serious threat to the In-

ternet. In a flooding based DDoS attack, attackers paralyze Internet services

by sending excessive packets to exhaust the servers’ network bandwidth so

as to stop legitimate users from accessing services. Over the past decades,

the Internet has grown from a small research network to a piece of critical

infrastructure with significant social, economic and political influence. Be-

cause of the newfound importance of the Internet, DDoS attacks can cause

millions of dollars worth of financial losses. However, today’s Internet is still

fragile to DDoS attacks. According to reports from Arbor Networks [1] and

Prolexic [2], DDoS attacks have grown in both size and frequency in 2014.

The meteoric rise in the significance of the Internet has brought forth a

fundamental research challenge: How can we make the Internet more resilient

to large scale DDoS attacks? Over a decade of research, there have been

many proposals [3–19] to address this challenge. The previous approaches

can be categorized into two major groups: network filtering based approaches

(e.g., [6, 10]) and capability based approaches (e.g., [13, 14]). We discuss this

distinction further in Chapter 7. Although these proposals are designed to let

DDoS victims suppress attack traffic, unsatisfactory progress has been made

on the real-world deployment due to prohibitive deployment hurdles [20, 21].

A significant deployment problem is that a deploying autonomous sys-

tem (AS) yields no benefit until other AS also deploys the protocol. The

inter-dependency among ASs creates a chicken-and-egg deployment problem.

Specifically, most previous approaches require cooperation and coordination

among ASs along the path to defend against attack. However, such large-

scale cooperation is difficult to achieve in the Internet due to the large number

of administrative domains. For instance, the filtering based approaches (e.g.,

Pushback [6, 7], Passport [11]) rely on the ASs close to the attack source to

block the attack traffic. However, these ASs may be beyond the control of the

1

Ra

Remote AS Victim AS

Resort to the remote AS close to the
attack source to filter the attack traffic

(a) Filtering based approaches.

A path is secured only if all
its routers are upgraded

Vulnerable links still exist in spite
of a large fraction of deployment

Unenforceable
deployment

(b) Capability based approaches.

Figure 1.1: Deployment hurdles for filter-based and capability-based
systems.

victim AS and may not even deploy the defense protocol (Figure 1.1(a)). Sim-

ilarly, capability based schemes (e.g., TVA [13], NetFence [14]) also require

capability operation at remote ASs and need a large fraction of deployment

to secure the entire AS (Figure 1.1(b)).

In this thesis, we propose a new DDoS defense mechanism, FlowPolice, to

address the chicken-and-egg deployment problem. In particular, FlowPolice

offers three desirable deployment features.

Local deployment: FlowPolice can immediately benefit the first deploying

AS without any additional deployment at other ASs. The local deployment

feature incentivizes deployment, even for the first AS.

Single deployment A FlowPolice deploying router can effectively suppress

attack traffic even if congestion happens on a downstream link where the

cryptographic protections of FlowPolice are not deployed. Therefore, if a

link has a single FlowPolice router along each uplink path, that link is com-

pletely protected. The single deployment feature further reduces deployment

requirements and maximizes deployment efficiency.

2

Minimal trust: The FlowPolice router needs to trust only values created

by that router in making rate limiting decisions. Since FlowPolice places no

trust in other routers or other ASs, FlowPolice is more robust than previous

work with weaker trust models.

FlowPolice’s novel design provides these three desirable deployment fea-

tures while effectively defending DDoS attacks (Chapter 2). (i) In flooding

based DDoS attacks, attackers maliciously inject excessive packets into the

network to cause severe congestion. To suppress attack traffic, FlowPolice

forces attackers to take accountability for the congestion by rate limiting. (ii)

To learn users’ congestion accountability, FlowPolice relies on unforgeable

capability tags created by the deployed router itself. Therefore, FlowPolice

can effectively stop attack traffic and ensure bandwidth share for legitimate

users, while requiring no inter-router trust and deployment only at the victim

AS.

The major contributions of this thesis are the design, implementation and

evaluation of a new DDoS defense approach FlowPolice, which offers three

desirable deployment features. We implement FlowPolice on Linux to demon-

strate that FlowPolice’s scalability. For instance, a single deployment on a

commodity PC can effectively handle 100 million attack flows (Section 5.1).

Furthermore, FlowPolice’s packet processing overhead is small so that the

deploying router introduces negligible networking overhead, Finally, we de-

signed detailed packet-level simulation to demonstrate that FlowPolice can

effectively mitigate large scale DDoS attacks.

3

CHAPTER 2

DESIGN RATIONALES

In this chapter, we describe the insights that lead to the design decisions of

FlowPolice. We start with the problem space and design goals of FlowPolice.

2.1 Problem Space

Network flooding based DDoS attacks: FlowPolice focuses on mitigat-

ing flooding based DDoS attacks where attackers maliciously send excessive

packets to exhaust the network bandwidth so as to stop legitimate users from

getting adequate bandwidth. Resource exhaustion at other layers, such as

the SYN flooding attack [22], are orthogonal to FlowPolice. Some applica-

tion layer defense protocol can be incorporated with FlowPolice to provide

even stronger defense (see more discussion in Chapter 6).

Adversary model: We consider strong adversaries that can compromise

both end hosts and routers and adaptively adjust their attack strategies. For

instance, they can launch on-off shrew attacks [23] to evade detection, collude

to grant each other traffic capabilities, spoof addresses and can recruit large

numbers of botnets to launch large scale DDoS attacks.

2.2 Design Goals

Deployable in the Internet architecture: The major design goal of

FlowPolice is to be a defense system that is deployable in the current Internet

architecture. To this end, we propose FlowPolice with three deployment

features (i.e., local deployment, single deployment and minimal trust) to

minimize deployment hurdles.

Guaranteed fair bandwidth share: FlowPolice provably guarantees that

legitimate users can get at least per-flow fair share for the bottleneck band-

4

width no matter what strategies attackers use. The flow means all aggregate

traffic matching certain patterns. For instance, in the case where attackers

try overflow the network resource of a public server, the worst case band-

width share for legitimate users is determined by the ratio of the number of

compromised hosts to the number of legitimate senders; i.e., per-sender fair-

ness is achievable. When some attackers do not strictly comply with the rate

policing from FlowPolice, legitimate senders can get even more bandwidth

share (see discussion in Chapter 5). Note that to ensure fairness, FlowPo-

lice do not assume that IP address spoofing is eliminated. We will further

elaborate the reason in Section 3.5.

Scalable and lightweight: FlowPolice is proposed to handle large scale

DDoS attacks involving millions of attack flows, while using lightweight

packet processing at relatively few nodes, resulting in negligible network over-

head. When network operators are able to deploy FlowPolice at the upstream

of all potential bottleneck links within their ASes, a single deployment in the

AS is enough to secure the entire AS.

2.3 Enforce Congestion Accountability

Flooding based DDoS attacks represent an extreme form of network conges-

tion where adversaries maliciously inject excessive packets into the network.

A bottleneck router drops packets at random from all senders, regardless of

whose traffic contributes more to the congestion. In other words, congestion

accountability is not considered while dropping packets. Consequently, legit-

imate users are equally affected by congestion, even when such congestion

is disproportionately caused by attackers. FlowPolice addresses this dispro-

portionality by enforcing bandwidth limits on senders that consistently con-

tribute to the congestion in the face of severe packet losses; i.e., FlowPolice

enforces congestion accountability in case of DDoS attacks.

Next we consider how to determine each participating flow’s congestion

accountability. Even in normal scenarios, congestion can also happen in the

Internet. Legitimate senders (e.g., TCP senders) adjust their rates based

on the available bandwidth so that all participating flows are able to get

their share. However, in DDoS attacks, the congestion is deliberately caused

by attackers. They try to overflow the network and may not back off even

5

when they are aware that they are experiencing severe congestion. Therefore,

one sender’s congestion accountability should be determined by whether it

adaptively changes its rate based on the current network condition and tries

to relieve congestion when it happens.

FlowPolice uses the packet loss rate over an extended period of time (much

larger than typical Internet RTTs) to quantify each sender’s congestion ac-

countability since senders that continue to transmit in spite of congestive

losses are more accountable for the congestion. Note that FlowPolice does

not police traffic based on a single or several packet losses to avoid false posi-

tives. FlowPolice enforces bandwidth limits on the senders whose packet loss

rate exceeds a threshold, punishing senders that continuously contribute to

congestion so as to throttle the unwanted traffic.

2.4 Fairness Guarantee

Another desirable feature for FlowPolice’s policing policy is to ensure per-

sender fair share at the bottleneck link. Specifically, FlowPolice keeps a

rate limiting window for each flow in case of DDoS attacks so that no

sender can send faster than its rate limiting window. Via an additive-

increase/multiplicative-decrease (AIMD) update for the rate limiting win-

dows, FlowPolice probably ensures that all senders’ bandwidth share con-

verges to fairness (see details in Section 3.6.4).

Next we discuss how FlowPolice learns each flow’s loss rate so as to deter-

mine its congestion accountability.

2.5 Why Capability Feedback?

Inferring packet losses is the core problem in FlowPolice’s design, since the

further steps rely on correct packet loss information. However, in the In-

ternet, it is challenging for an intermediate router to infer a flow’s packet

losses, since losses can happen downstream, and because return traffic will

likely take a different path. Furthermore, one flow may cross ASs controlled

by different network administrative units, limiting the usefulness of network

management tools in loss-rate inference.

6

In FlowPolice, senders self-report their packet losses. As in re-feedback [24],

in which each packet carries a congestion metric, FlowPolice adopts capability

feedback to infer packet losses. Specifically, each FlowPolice router stamps

a unique unforgeable capability tag on each traversing packet (Section 3.4).

When the packet is received, the receiver returns the capability back to the

sender (as in [13, 14, 25, 26]). Then the sender includes the capability tag

in future packets to demonstrate to the FlowPolice router that the previous

packet has been received. Otherwise, if the capability tag is not sent back

to the FlowPolice router after a certain time interval (defined as detection

period in Section 3.6.3), the router will consider that packet to have been

lost. The router can use these reports to infer packet loss rates regardless of

the number of downstream links the packet traverses.

2.6 Why Local Information?

FlowPolice infers packet losses only based on local information (capabilities

created by the router that uses them). We believe that such a design removes

FlowPolice’s deployment hurdles while enhancing its robustness. Specifically,

as the FlowPolice router infers packet loss using only capabilities created by

that router, FlowPolice does not require coordination with other routers.

Therefore, the first deployed ASs can yield immediate benefits, resolving the

chicken-egg deployment problem. Furthermore, since FlowPolice can infer

remote packet losses, a single deployed router can protect all its downstream

links by suppressing attack traffic locally. Thus FlowPolice only requires a

small deployment to protect a large fraction of the network.

Moreover, trusting only self-created tags improves system robustness. Specif-

ically, FlowPolice capabilities are unforgeable since they are generated based

on FlowPolice router’s private key. Therefore, even though some routers or

even ASes on the path are compromised, they cannot maliciously create valid

capabilities to break the defense protocol.1

1The compromised routers may simply drop all packets. Such a security problem is
known as the Internet hijack [27] or path validation, which is not the focus of this thesis.
Several approaches have been proposed (such as [28–30]) to defend against such attacks.

7

2.7 How to Suppress Attack Traffic?

Congestion may happen at multiple links. However, it is difficult to determine

these bottleneck links before attacks, and enforcing deployment at all these

bottleneck links can be expensive. Therefore, FlowPolice provides a single

deployment feature so that network operators do not have to know where

the congestion happens to perform deployment and bottleneck routers do

not even have to deploy FlowPolice.

To begin with, FlowPolice uses severe packet losses over an extended pe-

riod of time to infer that some (remote) links are under DDoS attacks. Thus

even though bottleneck links may be varying over time, as long as Flow-

Police is placed at the upstream of them, FlowPolice is able to learn that

these links are under attack. In case of DDoS attacks, FlowPolice polices the

traffic as privileged packets and best-effort packets. Via the robust AIMD

updating mechanism for each flow’s rate limiting window, FlowPolice ensures

that all flows can only send fair amounts of privileged packets so as not to

flood the bottleneck link. Thus the bottleneck router can easily suppress the

unwanted traffic by prioritizing privileged packets over best-effort packets.

Note that FlowPolice places almost all the heavy lifting (e.g., state mainte-

nance, cryptography processing) at the upstream deploying router whereas

the downstream bottleneck links only need to implement a simple prioriti-

zation mechanism, which can be relatively achieved, for instance, by QoS

functionality. Furthermore, FlowPolice only polices the traffic that is ac-

countable for the congestion so that the “unaccountable” traffic (e.g., traffic

not traversing the downstream bottleneck router or well behaved senders)

will be not affected.

2.8 FlowPolice’s Deployment

FlowPolice’s single deployment feature allows network operators to secure

their ASs with small amounts of deployment. One example of a small-scale

deployment that can benefit a large number of potential victims is to deploy

FlowPolice in a middle-service, which we call CloudPolice. A potential victim

can obtain an IP address from CloudPolice. Then the victim serves DNS

replies with the CloudPolice IP address so as to redirect all of the victim’s

8

traffic to CloudPolice. CloudPolice itself would deploy within the Internet

core, which increases its possibility to be located before any bottleneck link

and reduce its probability of being overflowed.

When CloudPolice receives a FlowPolice packet, CloudPolice performs

the flow policing functions of the FlowPolice router, then IP-in-IP encapsu-

lates [31] the packet to the actual destination, and finally pulls the FlowPolice

header to the outer IP header. For best effort traffic, CloudPolice simply IP-

in-IP encapsulates the packets without further processing. As long as the

bottleneck link gives sufficient priority to FlowPolice traffic, for example by

allocating a percentage of the link to FlowPolice traffic, all traffic routed

through CloudPolice will receive the benefits of FlowPolice. Depending on

the victim’s service provider’s ingress filtering policies, the victim can either

directly reply using the FlowPolice IP address, or can route its reply back

through CloudPolice using IP-in-IP encapsulation.

2.9 Is FlowPolice Scalable?

When under DDoS attack, a FlowPolice router performs per-sender rate lim-

iting to suppress attack traffic. Attackers may game the defense by exhaust-

ing the router table. The design of FlowPolice enables FlowPolice to scale up

to deal with extremely large scale attacks. To begin with, attackers who re-

cruitNA compromised hosts can only consume up toNA states; i.e., attackers

are not able to spoof IP addresses to fake excessive states in the router table.

Furthermore, FlowPolice’s single deployment feature gives network operators

an opportunity to secure their ASs with a small number of deployed routers,

given that the network operators know the in-AS topology and can perform

in-network routing control via platforms such as RCP [32]. Ideally, a single

deployed router can protect all the links within one AS. Therefore, network

operators can scale up FlowPolice’s performance, with reasonable cost, by

either deploying FlowPolice on a high-end hardware router or implementing

FlowPolice in a software router with large memories and high-speed CPUs.

For instance, our implementation on a commodity PC (with 8GB memory

and 3.4GHz CPUs) can effectively handle 100 million states (Section 5.1). It

is clear that we can further increase FlowPolice’s scalability with more ad-

vanced software router. Therefore, FlowPolice can effectively handle DDoS

9

attacks even involving millions of botnets.

Besides scalability, another good feature offered by the single deployment

is that the packet processing delay is low since FlowPolice’s cryptographic

operations only need to be processed once. For instance, in our implementa-

tion (Section 5.1), per-packet processing overhead is ∼0.08µs, which transfers

to around 150Gbps throughput for the 1500B packet size. Thus, deploying

FlowPolice introduces negligible networking overhead.

10

CHAPTER 3

SYSTEM DESIGN

In this chapter, we describe the design of FlowPolice. We start with the

system overview to construct a clear picture of FlowPolice’s components.

Then we detail the design of each component.

3.1 System Overview

The FlowPolice architecture is illustrated in Figure 3.1. Similar to the pre-

vious capability based approaches [13, 14], FlowPolice categorizes packets

into three types: request packets, regular packets and legacy packets. Each

sender needs to send a request packet to initiate a new flow. In this thesis,

we use the term “flow” to indicate all traffic matching specific pattern (see

details in Section 3.5). The regular packets carry the capabilities stamped

by the FlowPolice router. The legacy packets are sent without carrying the

FlowPolice packet header. Protecting legacy packets is an open problem as

the original design of the Internet places too little emphasis on security [33].

FlowPolice only provide best-effort delivery for legacy packets.

The underlying packet processing logic of FlowPolice is as follows: when a

new packet arrives, the FlowPolice router first determines its type. If it is a

legacy packet, FlowPolice appends it to the legacy channel, which can only

consume a small fraction of the link capacity (e.g., less than 10%). If the

packet is a request packet, FlowPolice add an initial capability in the packet

header and forward the packet to the next hop. If the packet is a regular

packet, the FlowPolice router checks the capability feedback carried by the

packet and polices it based on its rate limiting decisions according to the

rate limiting logic (Section 3.6). Meanwhile, the FlowPolice router updates

information for the corresponding entry in the flow table (Section 3.6.1).

If the link directly connected to the FlowPolice router is not a bottleneck

11

(1) Flow setup (2) Request packet
policing (3) Stamp capability

C

C

(4) Return capability(5) Add capability
feedback

C
(6) Regular packet

policing

C

Sender Receiver

Figure 3.1: The architecture of FlowPolice. The deployed router enforces
congestion accountability to suppress attack traffic. A single deployed
router can protect all its downstream (potential) bottleneck links that
implement a simple prioritization mechanism.

IP Header

FlowPolice
Header

TCP/UDP Header

PROTO(8) Flags(6) Packet ID (16)
Flow ID (32)

Timestamp (32)
MAC (128)

Type(2)

Figure 3.2: FlowPolice packet header format.

link, whereas congestion happens at some remote downstream links (as illus-

trated in Figure 3.1), then the bottleneck router can suppress the unwanted

traffic by simply prioritizing the privileged packets (marked by the Flow-

Police router) over the best effort packets (legacy packets and best-effort

FlowPolice packets).

3.2 FlowPolice Packet Header

We place the FlowPolice header in the shim layer between the IP protocol and

the transport layer protocol so that the applications need not be modified.

The FlowPolice header is illustrated in Figure 3.2.

FlowPolice packets are assigned a specific IP protocol number. The Flow-

Police header has a “next header” field (PROTO field in Figure 3.2) which

is the real protocol number, as in IPv6 hop-by-hop and destination options

headers. The Flags field is reserved. The Type field is used to decide the

12

packet type. 00 represents request packets (marked by the sender), 10 repre-

sents best-effort FlowPolice packets and 11 stands for privileged FlowPolice

packets. The total size of the regular packet header is 28 bytes and the

request packet needs to include a Portcullis [16] header (Section 3.3).

3.3 Secure the Request Channel

The request packets are vulnerable to DDoS attacks as well. Specifically,

attackers can flood the request channel to stop legitimate users from getting

valid capabilities. Such attack is known as the Denial of Capability (DoC)

attack [16]. Two types of approaches have been proposed to address such

an attack. One is implementing per-sender rate limiting [14] at the request

channel so that each sender, including legitimate users, can finally get its

share. The second approach is based on the proof-of-work schemas [16, 17].

For instance, the Portcullis [16] protocol requires each sender to solve a puzzle

to send valid request packets. As adversaries have bounded computational

power, they are not able to flood the request channel all the time.

FlowPolice adopts the Portcullis [16] protocol to secure the request channel

for the sake of easy deployment. The per-send rate limiting approach relies

on source spoof defense protocols such as Ingress Filter [34] and Passport [11].

However, the effectiveness of these protocols relies on universal deployment,

which has not been implemented yet. Therefore, without ubiquitous de-

ployment, Internet-wide source spoofing is still possible [20]. In contrast,

Portcullis [16] is more deployment friendly. For instance, the puzzle can be

obtained relatively easily via the exiting DNS services. Furthermore, the puz-

zle based solution can be integrated into the IPv6 deployment, as proposed

in Mirage [21], which produces further deployment incentive.

3.4 Unforgeable Capability

The design of capability needs to meet the following requirements. (i) The

capability cannot be forged by others. (ii) It can be easily generated so that

the routers are not blocked while processing packets. (iii) The capability can

be re-generated on the fly for the purpose of verification; thus, the router

13

does not need to store previously issued capability. The FlowPolice router

issues its capability as follows:

C = Pid || f || ts || MAC(Pid || f || ts), (3.1)

where Pid is packet ID, f is flow ID and ts is the timestamp. The meaning

of Pid and ts will be described in the next section (Section 3.5). The Mes-

sage Authentication Code (MAC) is computed using the router’s private key.

Since the capability incorporates a keyed MAC, no one besides the FlowPo-

lice router can generate valid capabilities. Further, we use AES-128 based

CBC-MAC for generating MAC due to its fast speed and availability at mod-

ern CPUs [35, 36]. Finally, the verification of capability is simply re-hashing

the inputs carried in the packet header and checking whether the output is

the same as the carried MAC.

3.5 Flow Table

In this section, we detail the flow table maintained by the FlowPolice router.

3.5.1 Flow entry creation

When the initial capability tagged in the request packet is fed back to the

FlowPolice router, the router needs to determine whether to create a new

flow entry in the flow table. If FlowPolice uses the traditional 5-tuple in

the packet to identify a flow, the number of flow entries attackers can con-

sume is determined by their computational power since we incorporate the

Portcullis protocol [16] to secure the request channel. In other words, Flow-

Police achieves per-computation fair share for the flow table among attackers

and legitimate users.

In some cases, we can further reduce the number of states consumed by

attackers in the flow table to the number of botnets they recruit. For instance,

when a AS deploys FlowPolice to protect its public servers (e.g., web servers),

FlowPolice can keep per-sender state (i.e., aggregating all traffic with same

source IP address as one flow) for the traffic sending to its servers. This is

because when attackers fake a source IP address not owned by their botnets

14

f TA Pid RT TC ST PR WR WV LR

64 32 16 1 1 32 32 32 128 64

Figure 3.3: Fields in each flow entry and the corresponding size (bits) for
each field (total ∼50 bytes).

in a request packet, they can only receive the initial capability issued by the

router and send it back to the FlowPolice router if the packet’s destination is

also compromised. Otherwise a legitimate receiver will return the capability

to the spoofed IP address so that attackers cannot obtain the capability.

Therefore, when the destination is known not be compromised,1 the number

of router states consumed by attackers is bounded by the number of botnets

they have. Note that in the case where FlowPolice is deployed in middle-

services, the service provider needs to be aware of the server addresses that

they try to protect.

When source spoofing is eliminated (e.g., Ingress Filter [34] has universal

deployment), it is safe to keep-sender state for all traffic.

3.5.2 Flow entry

We define a flow as all the traffic matching certain patterns. (i) All packets

whose capabilities have secure destination addresses and have the same source

address are aggregated as one flow. (ii) All packets whose capabilities have

insecure destination addresses and have the same destination address are

aggregated as one flow. Each active flow is associated with a unique flow ID in

the table. A simple way of assigning the flow ID is to use the source IP address

as the flow ID if this flow’s destinations are secure, and to use destination

IP address as the flow ID if one flow’s destination may be compromised. We

assign 64 bits for the flow ID field.

The FlowPolice router maintains flow-level information in the flow table.

As depicted in Figure 3.3, each flow entry is composed of 9 fields, but only 3

fields are updated relatively frequently based on packet arrival and the rest

are updated once per detection period. The period TA and packet ID Pid are

used to create capabilities (Section 3.4). RT is a one bit tag to determine

1In this case, if the public servers were compromised, attackers would not need to
leverage flooding traffic to launch DDoS attacks any more. Thus we assume the servers
are not compromised.

15

whether rate limiting should be applied for f . TC indicates whether f is in its

first period. ST indicates the number of consecutive periods that f ’s loss rate

is below the threshold. PR indicates the number of received packets from f .

WR decides the maximum number of privileged packets allowed for f . The

verification window WV is used to infer packet losses. LR is the packet loss

rate for f . In Section 3.6, we will describe how to populate the flow table

and articulate how to use these flow-level information to make rate limiting

decisions.

3.6 Rate Limiting Logic

FlowPolice makes rate limiting decisions based on inferred packet losses. In

normal scenarios (without DDoS attacks), FlowPolice does not enforce rate

limiting so that each flow can get its share of the bandwidth. However, when

FlowPolice infers severe packet losses, it will execute per-flow rate limiting

to suppress attack traffic.

3.6.1 Populating the flow table

Before diving into the detail of the rate limiting algorithm, we first describe

how to populate the flow table. Assume at time ts, a new flow f is established

(puzzle solution is verified). All fields of the newly created flow entry are

initialized to be zero. The router first updates TA as ts. Then it increases

both PR and Pid by one, creates a new capability specific to the new Pid,

adds the capability to the packet header and forwards the packet to next

hop.

When the router receives a regular packet from f , it first increases PR by

one. Then it performs hash verification to determine whether the carried

capability is valid. Unverified packets are dropped. Otherwise, based on the

verified capability, the router updates the verification window WV to keep

track of the received feedbacks. Further, the router may also create a new

capability to replace the old one. We defer the details for updating WV and

generating capabilities in Section 3.6.2.

When kth detection period ends and k+1th period starts, FlowPolice needs

to perform flow analysis (e.g., learn loss rates) and updates the flow table as

16

well. The router detects a new period for f when it receives the first packet

from f in k+1th period. Specifically, when a packet arrives, if TA in its flow

entry is more than one period older than the packet arrival time ts (i.e.,

TA +Dp < ts, where Dp is the length of detection period), the router realizes

that the current packet is the first one received in k+1th period. Then the

router updates TA as ts, and performs the following updates in order.

Period counter: If TC > 0, do not update it. Otherwise, increase TC by

one.

Rate limiting: Update WR, RT , ST and LR according to the Algorithm 1

(§3.6.3).

Reset: Set WV , PR and Pid to zero.

3.6.2 Inferring packet losses

The FlowPolice router uses capability feedback loop to infer packet losses,

especially the losses caused by the remote bottleneck links. Note that the

receiver needs to return the capabilities back to the sender so that the sender

can present these capabilities to the router to prove the delivery of packets.

Thus if the detection period length is at least two times the typical Internet

RTTs, the capabilities stamped in the first half of each period should be

received by the router by the end of the period. In contrast, if some packets

carrying capabilities are lost somewhere on their way to the destination,

the receiver will not receive these packets so it cannot return the capabilities

back to the sender. As a result, the router cannot receive those lost capability

feedbacks as well. Therefore, by monitoring the capability feedback loop, the

FlowPolice router can infer remote packet losses.

Next we describe how to create new capabilities. For each of the first Kth

packets that arrive at during the first half of each period (i.e., the arrive time

ts < TA + Dp/2), the router increases Pid in the flow entry by one, creates

a new capability specific to the new Pid via Equation (3.1), stamps the new

capability in the header to replace the old one and forwards the packet. Then

the router waits for these Kth unique capabilities till the end of the period.

If a flow only sends K0 packets and K0 < Kth, the router will just create K0

capabilities for the flow.

We add two constraints for generating new capabilities: only creating new

17

capabilities during the first half of the period and generating at most Kth

capabilities in each period. The first constraint is because we need to allow

sufficient time (at least half of Dp) for each capability to return back to the

router so that the unreceived capabilities are lost rather than delayed. The

second constraint is added to save memory usage for the capability feedback

verification, as described below.

Assume the router generates Kth distinguished capabilities with packet ID

ranging from [1, Kth] during the first half of the kth period. Each time a new

packet carrying valid capability arrives during this period, the router checks

the packet ID in its capability to determine which previously stamped packet

has been received by the receiver. We implement WV as a window with Kth

bits. Initially all the bits are set as zero. If a packet carrying a capability with

packet ID i is received, the router sets the ith bit in WV as one. Therefore,

if by the end of the period, all the Kth bits in WV are one, the router can

verify that all the stamped packets during the first half of the period have

been received by the receiver. Otherwise, the packets indicated by the zero

bits inWV are lost. To avoid capability reuse attack, the router only accepts

the capability feedbacks issued within the current period (see more details

in Chapter 4).

Note that each issued capability consumes one bit inWV . To save memory

usage and meanwhile be able to learn the statistical packet loss rate, we set

the threshold Kth = 128 so that WR consumes only 16 bytes space, whereas

it is large enough to avoid statistical bias. For the rest of the packets received

during the first half of the period (besides the first Kth ones) and the packets

received during the second half, the router stops issuing new capabilities and

simply performs capability verification to update the WV correspondingly.

The statistical packet loss rate of flow f during the kth period can be

obtained via Pid andWV . Note the number of capabilities generated for f is

recorded in Pid of the flow entry and Pid <= Kth. Thus the inferred packet

loss rate is V0

Pid
, where V0 is the number of unverified bits (zero bits) in WV .

3.6.3 Rate limiting algorithm

FlowPolice makes the rate limiting decision for f based its packet loss rate

LR. One design detail is that during the first detection period, the router

18

cannot make a rate limiting decision for f since it has not yet learned its

packet loss rate. However, if FlowPolice does not place rate limiting for

all flows during the first period, attackers can compromise the defense by

continuing to generate new flows so that these new flows are within the

initial period and can get a free pass.

To address such attacks, FlowPolice sets the packets from flows that are

in their first period (TC is zero) as the best-effort FlowPolice packets by

properly marking the FlowPolice packet header. Note that the bottleneck

router (either the FlowPolice router or the remote one) prioritizes the privi-

lege packets over the best effort packets. Therefore, such a design offers two

good features. First, in normal scenarios without DDoS attacks, the arrived

packets, including the best-effort FlowPolice packets, can be processed timely

since the network is often over-provisioned [37] so that the router has enough

capability to deal will all arrived packets. Therefore, FlowPolice does not

have negative effects in a normal situation. Second, in case of DDoS attacks,

attackers cannot exhaust the bandwidth via excessive new flows since their

packets from the fresh flows are processed with low priority. The only ef-

fect of continuing to generate new attack flows is that legitimated flows that

are in their initial period may experience large queuing delay. However, the

problem has been downgraded from denial of service to low quality of service.

Starting from the second detection period, the router uses the statistical

loss rate to make rate limiting decisions. The rate limiting algorithm is

in Algorithm 1. In particular, FlowPolice adopts the metric packetLoss to

determine whether f ’s rate should be limited. When obtaining packetLoss

for f , we consider its previous packet losses as well as the recently learned

loss rate. Such a design is used to defend against the on-off shrew attack [23]

(see detailed analysis in §4). If packetLoss is larger than the pre-defined

thresholds L↓
Th (§3.6.5), FlowPolice classifies f as a maliciously behaved flow.

Therefore, FlowPolice enables its rate limiting and multiplicatively reduces

its WR. Otherwise, FlowPolice believes that f is well-behaved and turns off

its rate limiting correspondingly.

Based on the rate limiting decisions, executing the rate limiting is simply

marking all the newly arrived packets as best-effort FlowPolice packets when

PR > WR and RT = 1. FlowPolice turns off the rate limiting after f ’s loss

rate has been below the threshold for STh consecutive periods, indicating that

f is not experiencing severe congestion so that FlowPolice does not need to

19

police traffic for f .

Algorithm 1: Rate limiting algorithm.

1 begin

2 for each arrived packet P of flow f do

/* first detection period */

3 if TC < 1 then

4 Mark P as a best-effort FlowPolice packet;

5 else

6 if P is the 1st packet of f in kth period then

7 RateLimit();

8 RateLimit() begin

/* recently learnt packet losses in kth period */

9 recentLoss← V0
Pid

;

10 if recentLoss < L↑
Th then

11 ST ← ST + 1;

12 else

13 ST ← 0;

/* stop policing after STh consecutive low loss periods */

14 if ST > STh then

15 RT ← 0; WR ← RW ;

16 else

17 RT ← 1;

/* policing policy */

18 if RT then

/* consider history packet losses */

19 packetLoss← (1− λ) ∗ recentLoss+ λ ∗ LR;

/* severe packet losses */

20 if packetLoss > L↓
Th then

/* Half the rate limiting window */

21 WR ← (1− β) · WR;

22 else if packetLoss < L↑
Th then

/* set WR as the received packet counter */

23 WR ←WR +4;

/* update LR */

24 LR ← packetLoss;

20

To sum up, FlowPolice’s rate limiting algorithm ensures that in normal

scenarios, all flows can effectively utilize the bandwidth via privileged packets

by turning off their rate limiting tags. In case of DDoS attacks, FlowPolice

polices the traffic via the AIMD updates for each flow’s rate limiting window

to resolve the congestion. Each participating flow has to comply with the

rate limiting and adjust its rate accordingly so as to obtain its fair share

(detailed in §3.6.4). Otherwise, the rate limiting window of misbehaved flows

(e.g., keep sending large volume of traffic in spite of severe losses) will keep

reducing and most of their traffic is marked as best-effort. Therefore, the

bottleneck router (either the FlowPolice router or a remote legacy router)

can easily thwart the unwanted traffic by implementing a simple prioritization

mechanism.

3.6.4 Fair bandwidth share guarantee

In this section, we prove that the rate limiting algorithm ensures per-flow

fairness. We start with the following lemma stating that RW for each flow

converges to the fair share of the bottleneck link.

Lemma 1. Given that NL legitimate flows and NA attack flows share the

bottleneck link with capacity C, the rate limiting window RW for each flow

converges to O(C
NL+NA

) after enough rounds of AIMD updates.

Proof. This lemma is borrowed from the theoretical analysis in [38]. Specifi-

cally, when N users share a link with bounded capacity and each user adjusts

its rate based on link feedback via the AIMD mechanism (i.e., negative feed-

back causes multiplicative decrease to the rate and positive feedback causes

additive increase to the rate), all users’ rates will finally converge to fairness.

In the rate limiting algorithm, FlowPolice updates each flow’s RW based

on packet losses via the AIMD mechanism. Therefore, each flow’s RW will

eventually converge to fairness.

Given Lemma 1, we obtain the following lemma.

Lemma 2. In the steady state, each attack flow can obtain at most (1+LTh)C
NL+NA

share at the bottleneck link.

21

Proof. Note that FlowPolice allows a maximum L↓
Th loss rate before further

cutting the rate limiting window. Thus the optimal strategy for an attacker

flow is to send no more than 1+L↓
Th times its rate limiting window, i.e., to

strictly comply with FlowPolice’s rate limiting. Otherwise, its share will be

further reduced.

Combing the above two lemmas, we obtain the following theorem.

Theorem 1. In the steady state, each legitimate flow can obtain at least
(1+L↓

Th)C

NL+NA
share at the bottleneck link, given that its transport protocol can

fully utilize the allowed bandwidth.

Proof. Given the fairness of rate limiting windows among all users, the fair

bandwidth share for a legitimate flow is (i.e.,
(1+L↓

Th)C

NL+NA
) if its transport proto-

col can fully utilize the allowed bandwidth. Note that the per-flow bandwidth

share is lower-bound for legitimate flows. In the case where attackers do not

use their optimal strategy (e.g., sending flat rates), legitimate flows can get

more bandwidth share than the per-flow fair share (see evaluation results in

Chapter 5).

3.6.5 Parameter discussions

FlowPolice’s design has several important parameters: the length of detection

period Dp, the rate limiting factor β, the additive value 4, the two packet

loss rate thresholds L↑
Th and L↓

Th, the weight for historical packet loss λ and

the STh for stopping traffic policing. We now discuss the reasoning for the

parameter choices.

Dp: The length of detection period should be at least two times the typical

RTTs of the Internet so that the capabilities can have sufficient time to

return back to the router. We tested the RTTs from our lab for top visited

websites [39] located on different continents. Most of the RTTs are within

50∼200ms and the largest one is less than 400ms. Further, relatively longer

detection period helps reduce statistical bias. However, Dp cannot be too

long so that FlowPolice cannot react to attacks agilely. To balance these

factors, 2∼4s is a reasonable choice for the period length.

β and 4: Note that the packet loss rate is a statistical result obtained over

an extended period of time (much longer than the RTTs). There are two

22

cases in which one flow has high loss rate. The first is when it is experiencing

a severe congestion. The second is when the flow does not comply with

FlowPolice’s rate limiting and sends more packets than its RW . Under both

cases, FlowPolice needs to aggressively limit its traffic so that we set β = 0.5

in our algorithm. 4 is the additive value for updating the window. As Dp is

several times larger than the typical RTTs, we set 4 = 3.

L↓
Th and L↑

Th: The choice of L↓
Th should be larger than the normal packet

loss rates. According to the previous measurements [40, 41], we set L↓
Th =

5%. L↑
Th should be small enough to indicate the current congestion is not

that severe so that users can slightly increase their rate. We set L↑
Th = 1%.

In fact, based on their own network designs (e.g., the over-provisioning ratio

and the extent of traffic burstiness), network operators can have customized

settings on L↑
Th and L↓

Th.

λ: The value of λ represents how much credit FlowPolice will give on the

previous packet losses. To defend against the on-off shrew attacks (Chapter

4), FlowPolice gives high weight to the packet loss history by setting λ = 0.5.

Therefore, once a flow misbehaves, it will have a bad reputation for a while.

STh: If f ’s loss rate is below L↑
Th for Sth consecutive periods, FlowPolice stops

policing its traffic. Therefore, Sth should be long enough (e.g., ∼10−100) to

indicate that the congestion has been resolved. In other words, FlowPolice

will stay in active mode until attackers stop launching DDoS attacks.

23

CHAPTER 4

SECURITY ANALYSIS

In this chapter, we perform security analysis to demonstrate FlowPolice’s ro-

bustness. Specifically, we show how smart attackers may adjust their strate-

gies to break the defense and demonstrate that FlowPolice is resilient to their

attacks. FlowPolice uses the capability feedback to suppress illegal traffic.

Therefore, attackers who want to launch DDoS attacks have to break the

capability feedback loop to convince FlowPolice that they are sending legal

traffic. We enumerate the strategies that attackers may adopt to break the

defense.

Capability forgery: The straightforward strategy for attackers is to forge

capabilities to falsely tell the router that the lost packets have been received.

The design of the capability (Section 3.4) ensures that no one besides the

FlowPolice router can create valid capabilities since they are incorporated

with a keyed MAC. As long as the private key is secure, no capabilities can

be forged.

Capability misuse: Attackers may try to misuse capabilities to tell the

router that the lost packets were received. They can misuse capabilities in

the following two ways. First, they try to use the capability to verify the

delivery of a packet with a different packet ID. Second, they try to use the

capability with the same packet ID but issued in previous periods to verify

the delivery of a packet sent in the current period. Specifically, in kth period,

we denote the capability issued with packet ID i by C(i, k), which is carried

by the packet P(i, k). If C(i, k) is fed back to the router by the end of kth

period, FlowPolice confirms that P(i, k) has been successfully received by the

receiver. In the first misuse case, attackers use C(i, k) to verify the delivery

of P(j, k). Clearly, this is infeasible as C(i, k) can only be used to verify

the delivery of P(i, k). In the second case, attackers use C(i, k) (or even

the capabilities issued earlier than the kth period) to verify the delivery of

P(i, k+1). Again, FlowPolice will discard the capability because the router

24

only accepts capabilities issued within the current period. To sum up, the

uniqueness of the combination of the detection period and packet ID ensures

that no capabilities can be reused. If the some packets are lost, there is no

way to deceive the router that they were not.

On-off shrew attack: The on-off shrew attack is also known as the low-rate

TCP attack [23] in which attackers set up periodic on-off “square-wave” flows

to exhausts the network resources. The attack exploits the TCP retransmis-

sion timeout mechanism and periodically causes packet losses for legitimate

TCP flows. Attackers properly tune the attack period so that each time le-

gitimate TCP flows recover from the timeouts, they will face another attack

peak, which forces them to enter even longer timeouts. Since FlowPolice uses

the packet losses inferred in the previous period to determine the rate lim-

iting for the current period, adversaries have the incentive to launch on-off

attack to evade the rate limiting. Specifically, in kth period, the attack flows

send excessive traffic to overload the links. Then in k+1th period, FlowPo-

lice will suppress these flows due to the severe packet losses. However, smart

attackers can simply stop sending in period k+1. As a result, the router will

detect no packet losses for them in the k+1th period so that it will turn off

their rate limiting tags for the k+2th period. Consequently, attackers can

re-launch attacks in period k+2. Such an on-off cycle repeats, and legitimate

flows are throttled to small throughput. The design of FlowPolice has con-

sidered such a smart strategy. Note that when the router makes rate limiting

decisions in Algorithm 1, it uses the metric packetLoss which incorporates

the previous packet losses. And FlowPolice gives high credit to the history

via proper parameter choice. As a result, as long as their flows have severe

packet losses in period k, attackers cannot “clear” the history even if they

stop sending in the k+1th period. As a result, attackers cannot re-launch an

attack in period k+1.

Flow regeneration attack: Attackers may regenerate new flows once their

previous attack flows are detected; i.e., after several detection periods, their

rate limiting windows are small. FlowPolice is resilient to such attacks as

well. On one hand, each time attackers initiate a new flow, they have to solve

a puzzle (Section 3.3). Therefore, the number of flows attackers can initiate

is bounded. Furthermore, as each new generated flow has to go through

rate limiting as well (Section 3.6.3), creating new flows actually makes no

difference.

25

Other strategies: Other strategies (such as collusion between senders and

receivers) cannot break the defense as well since the design of FlowPolice

makes no further assumptions on attackers.

26

CHAPTER 5

EVALUATION

In this chapter, we describe the evaluation of FlowPolice. We implement

FlowPolice on a software router to demonstrate that FlowPolice introduces

small packet processing overhead and can scale up to deal with very large

scale DDoS attacks involving millions of attack flows. We further evaluate

FlowPolice’s packet forwarding performance via Click [42] implementation

on our testbed. Finally, we carefully design detailed packet-level simulation

on ns-3 [43] to prove that FlowPolice is effective to mitigate large scale DDoS

attacks.

To evaluate FlowPolice, we also compare FlowPolice with previous pro-

posed approaches. Arguably, all these approaches are effective under certain

assumptions and deployment requirements. Without loss of generality, we

choose one of the previous proposed approaches, NetFence [14], as our bench-

mark. FlowPolice’s capability feedback design is inspired by NetFence’s con-

gestion policing feedback, whereas NetFence has different ways of inferring

congestion. Specifically, FlowPolice relies on the self-created capabilities but

NetFence relies on the congestion markings by the bottleneck links. Another

difference is that FlowPolice polices bandwidth share based on congestion ac-

countability whereas NetFence ensures per-sender fair for the bottleneck link.

In our evaluation, we demonstrate that FlowPolice improves NetFence in the

following two perspectives. (i) FlowPolice introduces smaller per-packet pro-

cessing overhead. (ii) FlowPolice allows legitimate senders to potentially

achieve (almost) their desired throughput, rather than just per-sender fair

share when attackers do not strictly comply with the rate limiting enforced

by FlowPolice.

27

5.1 Implementation

To evaluate FlowPolice’s packet processing overhead, we implement FlowPo-

lice on a software router equipped with 3.4GHz Intel i7 processors and 8GB

DDR3 RAM. To evaluate FlowPolice’s packet forwarding performance, we

set up a two-system testbed. The first system A sends traffic to the second

system B which serves as both the software router and the receiver. Both

systems are running Ubuntu kernel version 3.2.0-64. We add FlowPolice’s

packet processing logic into B’s Click implementation, whereas A runs the

original Click software. A and B are connected via an Ethernet switch with

1Gbps ports. Click is running at the kernel mode.

In our implementation, we use the CBC-AES (with a 128 bits key) based

on the Intel AES-NI library to compute the MACs in the capabilities due to

its fast speed and available support on our software router [35]. For instance,

our implementation on a single i7 core can support AES encryption at the

rate of ∼4 cycles per byte and decryption at rate of ∼0.7 cycle per byte.

Further optimization is possible [44].

5.1.1 Scalability

As discussed in Section 3.5, the size for one flow entry is ∼50 bytes. Thus,

even though the FlowPolice router maintains a flow table for 100 million

flows, the memory size is only ∼5GB, which can be effectively managed by

our software router with 8G memory. We show the per-packet processing

overheads for three table sizes (1, 10 and 100 million entries) in Table 5.1.

For a flow table with 1 million entries, the overall per-packet processing

overheads introduced by FlowPolice for request packets and regular pack-

ets are ∼0.2µs and ∼0.075µs, respectively.1 The request packet has larger

overhead since the software router needs to assign memory for the new flow

entry, which is time-consuming. As request packets are sent to initiate new

flows and make up only a small fraction of total packets, they cannot be-

come the bottleneck. Note that the overall per-packet processing overhead

is composed of two major parts: flow table update time and AES operation

overhead. In Table 5.1, we also explicitly list the flow table update overhead,

1In Table 5.1, we do not show the overhead for puzzle verification in request packets’
processing overhead. Based on [16], such overhead is less than 1µs.

28

Table 5.1: FlowPolice’s per-packet processing overhead (µs) on our testbed.

Request

Regular

Flow table
size

Packet
type

Table update
overhead

Overall
overhead

1 million
~0.18

~0.047

~0.20

~0.075

Request

Regular
10 million

~0.18

~0.050

~0.20

~0.078

Request

Regular
100 million

~0.18

~0.052

~0.20

~0.080

which makes up over 60% of the overall overhead.

From the results, it is clear that the per-packet processing overheads for

1 and 100 million flow table size are almost the same. Thus FlowPolice can

effectively scale up to deal with DDoS attacks with millions of attack flows.

Furthermore, the ∼0.08µs per-packet processing overhead will transfer to

∼150Gbps throughput for 1500B packets. Thus the deployed router can still

support high speed Ethernet.

As our benchmark, we compare FlowPolice’s packet processing overhead

with NetFence [14]. Based on its implementation, NetFence’s per-packet

processing overhead is around 1.3µs. This is because their software router

cannot support AES operation at line speed. However, even assuming that

NetFence is deployed on routers with AES operation supported at line speed,

it may still introduce larger overhead that FlowPolice. To begin with, Net-

Fence requires cryptography processing at both the access router and the

bottleneck router (may be more than one). However, FlowPolice only in-

troduces one-time overhead at the deploying router. Furthermore, NetFence

needs around 2GB memory at the access router to keep 1 million rate lim-

iters, whereas FlowPolice only requires∼50MB. As memory accessing is more

time-consuming, NetFence may have larger packet processing overhead.

5.1.2 Packet forwarding performance

In this section, we evaluate FlowPolice’s packet forwarding performance. In

particular, we examine the throughput (the bandwidth utilized by whole

29

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500

B
an

d
w

id
th

 (
G

b
p

s)

Packet sizes (bytes)

Baseline
Throughput

Goodput

Figure 5.1: Packet forwarding performance.

packets) and goodput (the bandwidth used to deliver the payload of the

packets, excluding the FlowPolice header). System A sends traffic at its full

speed (up to 1Gbps) with different packet sizes to system B. We perform

measurements at B to learn the throughput and goodput.

The results are illustrated in Figure 5.1. The baseline experiments are

performed without enabling FlowPolice. We consider 4 packet sizes (64B,

512B, 1024B and 1500B, including the FlowPolice header) in the experiments.

Note that for the smallest packet size (i.e., 64B), the baseline throughput is

much less than the available link capacity (1Gbps). The decline is mainly

caused by the limitation of the Click router’s throughput; i.e., although

the network links still have extra bandwidth, the Click router cannot process

packets faster. It is clear that FlowPolice’s throughput is close to the baseline

due to its small packet processing overhead. As FlowPolice’s header size is

fixed (28B), the goodput is close to the throughput for larger packet sizes.

5.2 DDoS Attack Mitigation

In this section, we evaluate the effectiveness of FlowPolice for mitigating

DDoS attacks via detailed packet-level simulations on ns-3 [43].

5.2.1 Methodology

We consider three representative DDoS attack scenarios in our evaluation to

thoroughly investigate FlowPolice’s performance (illustrated in Figure 5.2).

In attack case (a), the bottleneck link directly connects to the FlowPolice

30

100Gbps

100Gbps

100Gbps

20Gbps

20Gbps

Deployed
router

Legacy
router

Attackers

Legitimate

(a)

(b)

(c)

50Gbps

Figure 5.2: Attack cases in our evaluation.

router. In scenario (b), the bottleneck link is located at one of the FlowPolice

router’s downstream links. The third scenario (c) focuses on the case where

multiple remote bottleneck links exist. The second and third settings are

designed to demonstrate the effectiveness of FlowPolice’s single deployment.

We desire to emulate the real-world DDoS attacks in which up to millions

of attack flows try to flood a link whose capacity is on the order of gigabytes

per second. However, the existing packet-level simulators or emulators, such

as ns-2 [45], ns-3 and Mininet [46], will take prohibitively long to emulate

extremely large scale DDoS attacks. Assume that the simulator can process

one million packets per second and that one million attack flows, each sending

at 5Mbps, try to flood a 10Gbps link. Even if we set the packet size as the

maximum allowed size 1500B, it will take the simulator around 140 hours to

simulate just one second of the attack.

To resolve the problem, we adopt the similar approach used in NetFence [14].

Specifically, we fix the number of nodes (both attackers and legitimate users)

and scale down the link capacity to simulate the large scale attacks. For in-

stance, by varying the link capacity from 50Mbps to 500Mbps, we are able to

simulate the attack scenarios where 100K to 1 million attackers try to flood

a 100Gbps link.

We evaluate FlowPolice using two performance metrics: flow completion

time (FCT) and average throughput. To evaluate the first metric, each legit-

imate sender transmits a 2MB file to its destination and we use the file trans-

ferring time as the FCT. Such traffic represents the common web browsing

31

traffic where a typical web page size is around 2MB [47]. We put emphasis on

FCT for this experiment setting since latency is the more important perfor-

mance metric for short flows [48]. To learn the average throughput, legitimate

users are configured to set up long-lived TCP flows. Such case corresponds

to the Internet background traffic such as the WAN workloads [37, 49]. Un-

der such scenarios, throughput is the right metric as these flows carry huge

volumes of traffic and typically are latency insensitive.

5.2.2 Throughput evaluation

As proved in Section 3.6.4, FlowPolice ensures that attackers cannot gain

more than their fair share at the bottleneck even with their optimal strategies.

In reality, it may be difficult for attackers to learn the exact maximum allowed

rates since they are unaware of all these rate-limiting parameters and how

much traffic the bottleneck link can handle. Therefore, attackers need to

probe the available network resources and adjust their rates accordingly.

In our evaluation, we consider three representative strategies for attackers.

The first strategy is a hypothetical in which that attackers can know their

exact allowed rates. The major purpose of considering this strategy is to

align our evaluation with our theoretical analysis. In the second strategy,

attackers probe the available bandwidth so as to comply with their rate limit.

This strategy represents the real-world optimal strategy for attackers. In the

third strategy, attackers do not comply with the rate limiting enforced by

FlowPolice (e.g., sending flat rate in spite of packet losses). Such a strategy is

effective and common in practice when defense protocols do not incorporate

congestion accountability in the traffic policing.

As wide area networks often have 2−3× bandwidth over-provisioning to

tolerate traffic burstiness [37], we set the average traffic volume of legiti-

mate users as half of the link capacity in our evaluation; i.e., the desired

throughput for all legitimate senders is half of the capacity. However, the

attack traffic volume can be as much as 2× the link capacity. The number

of legitimate senders is ∼10% of the attacker number as attackers may re-

cruit large numbers of botnets. Figure 5.4 shows the evaluation results. For

simplicity, we use the TCP protocol for legitimate users’ transport protocol,

whereas attackers can have their self-defined transport protocol. To perform

32

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

A
v

e
ra

g
e
 t

h
ro

u
g

h
p

u
t

ra
ti

o

 (
a
tt

a
c
k
e

r/
le

ig
it

im
a
te

)

The number of attackers (K)

Hypothetical strategy
Optimal strategy

Per-sender fairness
Non-optimal strategy

Figure 5.3: Throughput ratio for attackers. When attackers adopt their
optimal strategy, their throughput share converges to fairness. However, if
attackers do not comply with FlowPolice’s rate limiting, their throughput is
throttled to almost zero. The hypothetical margin is determined by L↓

Th.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

T
h

ro
u

g
h

p
u

t
ra

ti
o

 (

n
o

rm
.

to
 d

e
s

ir
e
d

)

The number of attackers (K)

FlowPolice
Per-sender fairness

Figure 5.4: Throughput ratio for legitimate users when attackers do not
comply with FlowPolice’s rate limiting.

fair comparison with NetFence, we make the same assumption as NetFence in

the evaluation: source spoof is eliminated. However, the design of FlowPolice

does not assume that source spoofing is eliminated.

The results are illustrated in Figure 5.3. It is clear that the optimal

throughput for attackers is the per-sender fair share. If attackers do not

strictly comply with the rate limiting enforced by FlowPolice, their through-

put share is reduced to almost zero. In such a case, legitimate senders can

achieve almost their desired throughput as illustrated in Figure 5.4. Note

that we evaluate all legitimate senders together rather than explicitly evalu-

ate each sender’s throughput. This is because FlowPolice is responsible for

suppressing attack traffic so that legitimate senders are not affected by the

flooding attack. However, FlowPolice does not explicitly assign a rate for each

sender. Thus the volume of bandwidth shared by each legitimate sender is

determined by its individual desired throughput, which can be different for

33

different senders, and the bandwidth utilization efficiency by its transport

protocol (e.g., different TCP standards may have different efficiency).

To sum up, FlowPolice creates a dilemma for attackers: To launch DDoS

attacks, they have to aggressively inject large volumes of traffic into the

network whereas the more traffic they send during the congestion, the less

throughput they are allowed. As proved in theoretical analysis (Section 3.6.4)

and demonstrated in our evaluation, attackers have to probe the network con-

dition to adjust their rates accordingly. In other words, the optimal strategy

for attackers is the least efficient way for launching DDoS attacks. There-

fore, by incorporating congestion accountability, FlowPolice can effectively

regulate behaviors of all participating flows and mitigate DDoS attacks.

Figure 5.3 and Figure 5.4 are based on the case (c) of Figure 5.2, which

is the most general and challenging one in our settings. FlowPolice ensures

similar throughput for legitimate senders in the other two cases. We omit

the results for those two scenarios for clear presentation.

If source spoofing is possible, FlowPolice can still detect misbehaved flows

and place rate limitings as long as they are overloading the bottleneck link.

FlowPolice terminates the rate limiting only if no packets are lost, which

indicates the bottleneck link has enough capacity to handle the arrived

packets. Therefore, legitimate users will get their share of the bandwidth.

However, the bandwidth allowed for legitimate senders may be smaller than

the case where source spoof is eliminated since attackers can generate new

flows to keep filling up the bottleneck link. As FlowPolice incorporates the

Portcullis [16] protocol so that the number of attack flows is limited, such a

problem can be mitigated.

5.2.3 FCT evaluation

To evaluate the FCT performance under attack, we perform a 2MB file trans-

fer between legitimate senders and receivers. We conduct 10 trails for each

sender and receiver pair to learn the average FCT. As we can see from the

results (Figure 5.5), the average FCT increase is ∼1.3× during attacks. How-

ever, we find that without FlowPolice, the file transfer cannot be finished

during attacks. Thus FlowPolice mitigates the problem from denial of ser-

vice to low quality of service. The major cause of FCT inflation is the packet

34

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

A
v
e

ra
g

e
 F

C
T

 (

N
o

rm
.

to
 n

o
 a

tt
a
c

k
)

The number of attackers (K)

Under attack
Baseline (w/o attack)

Figure 5.5: Average FCT for legitimate senders.

queuing delay during the initial stage of the flows (as discussed in Section

3.6.3).

35

CHAPTER 6

DISCUSSION

In this chapter, we make several remarks on the aspects that are not covered

so far.

Application layer defense: Note that the design of FlowPolice focuses

on solving flooding based DDoS attacks at the network layer. However,

FlowPolice can be incorporated with the application layer defense protocols

as well. For instance, if an application can detect attack requests and does

not return the capabilities carried by attack flows back to attackers, the

FlowPolice router will be able to infer large packet losses for attack flows

so as to suppress the attack traffic. As a result, attackers will not be able

to consume the network resource. In fact, combining with application layer

defense protocols provides a new defense primitive for the routers to police

flows.

Congestion probe: FlowPolice’s overhead can be further reduced if conges-

tion probe is available with the AS. Specially, network operators can probe

the network condition via background flows and explicit routing control [32]

within its AS, and enable FlowPolice only if some in-network links are con-

gested and flows need to be policed. Therefore, FlowPolice will introduce

zero overhead in normal scenarios.

Flow paths: FlowPolice assumes that one flow’s path is stable. Although

some load balancing protocols, like ECMP, stripe traffic across multiple

paths, packets from the same flow are still assigned to the same path. Thus

FlowPolice is compatible with ECMP.

36

CHAPTER 7

RELATED WORK

In this chapter, we discuss related work that has inspired the design of Flow-

Police. Generally speaking, we categorize the previous DDoS defense ap-

proaches into two major schools (i.e., filtering based approaches and capa-

bility based approach), whereas there are other approaches built on different

defense primitives.

Filtering-based systems (e.g., IP Traceback [3, 5], AITF[9], Pushback [6, 7],

StopIt [10]) try to defend against DDoS attacks by filtering attack flows.

Therefore, they need to find a way to differentiate attack flows and legitimate

flows. For instance, IP Traceback adopts a packet marking algorithm to

construct the path that carries attack traffic so as to block attack flows. AITF

aggregates all traffic traversing the same series of ASs as one Flow and blocks

such flow if the victim AS suspects attacks. Pushback informs upstream

routers to block certain type of traffic. StopIt assumes the receiver can detect

the attack flows. As mentioned before, filtering based systems often require

remote ASs to block attack traffic, which is difficult to enforce. Furthermore,

these systems may falsely block legitimate flows since the method used to

detect attack flows may have a high false positive rate (e.g., aggregate flows

based on traversing ASs).

The capability based systems, such as SIFF [8] and TVA [13], try to sup-

press attack traffic by only allowing packets carrying valid capabilities, e.g.,

signatures from the routers on the path. The original design is vulnerable

to the aforementioned DoC attack, which is mitigated by the Portcullis [16]

protocol. Further, the colluding attackers located on two sides of the victim

can grant each other capabilities so that they can still flood the network with

privileged packets. NetFence [14] is proposed to achieve per-sender fairness

under the colluding scenario.

However, all these approaches assume universal deployment. CRAFT [50]

and Mirage [21] are proposed towards real-world deployment. A CRAFT

37

router emulates TCP states for all traversing flows so that no one can get a

greater share than what TCP allows. However, since TCP have many stan-

dards and some traffic (e.g., video flows [51]) may even not use standard

TCP protocols, CRAFT is not compatible with a real Internet environment

and also limits future transport protocol innovation. Mirage [21] is a puz-

zle based solution and can be incorporated into IPv6 deployment, but it is

designed only for securing Web applications.

Other DDoS defense solutions, besides the above two categories, include

SpeakUp [17], Phalanx [19], SOS [18] and some future Internet architecture

proposals like XIA [52] and SCION [30]. SpeakUp allows legitimate senders

to increase their rates to compete with attackers. Such an approach is effec-

tive when the bottleneck happens at the application layer so that legitimate

users can get more requests processed given all their requests can be deliv-

ered. In the case where network is the bottleneck, SpeakUp may potentially

congest the network. Phalanx [19] and SOS [18] propose to use large scale

overlay networks to defend DDoS attacks. XIA and SCION focus on building

the clean-state Internet architecture so as to enhance Internet security, e.g.,

packet accountability [33].

38

CHAPTER 8

CONCLUSION

This thesis presents the design, implementation and evaluation of FlowPolice,

a new DDoS defense mechanism offering three desirable deployment features.

(i) The local deployment feature allows FlowPolice to immediately benefit the

first deployed AS without further deployment at other ASs. Such lightweight

deployment requirement provides incentives for large scale deployment. (ii)

The single deployment feature enables a single FlowPolice router to protect

all its downstream bottleneck links that implement a simple prioritization

mechanism, i.e., prioritizing FlowPolice’s privileged packets. With the flexi-

bility provided by FlowPolice, network operators are able to secure all their

ASs with small numbers of deployed routers. (iii) The effectiveness of Flow-

Police is merely based on the self-created capability tags, which increases the

system robustness. In its design, FlowPolice adopts a congestion feedback

mechanism similar to that of NetFence [14], whereas FlowPolice relies on self-

created capability feedback to infer remote congestion so that the deploying

router can perform flow policing at upstream locations. Our implementation

on Linux demonstrates that FlowPolice can scale up to effectively deal with

millions of attack flows with small per-packet processing overhead. Our de-

tailed packet-level simulation proves that FlowPolice can effectively mitigate

DDoS attacks.

39

REFERENCES

[1] A. Networks, “Worldwide infrastructure security report, volume
IX,” http://pages.arbornetworks.com/rs/arbor/images/WISR2014.pdf,
2014.

[2] Prolexic, “Prolexic quarterly global DDoS attack report q2
2014,” http://www.prolexic.com/kcresources/attack-report/
attack report q214/Prolexic-Q22014-Global-Attack-Report-A4.pdf,
2014.

[3] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical network
support for IP traceback,” ACM SIGCOMM Computer Communication
Review, vol. 30, no. 4, pp. 295–306, 2000.

[4] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio,
S. T. Kent, and W. T. Strayer, “Hash-based IP traceback,” in ACM
SIGCOMM Computer Communication Review, vol. 31, no. 4. ACM,
2001, pp. 3–14.

[5] D. X. Song and A. Perrig, “Advanced and authenticated marking
schemes for IP traceback,” in INFOCOM 2001. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Societies. Pro-
ceedings. IEEE, vol. 2. IEEE, 2001, pp. 878–886.

[6] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and
S. Shenker, “Controlling high bandwidth aggregates in the network,”
ACM SIGCOMM Computer Communication Review, vol. 32, no. 3, pp.
62–73, 2002.

[7] J. Ioannidis and S. M. Bellovin, “Implementing pushback: Router-based
defense against DDoS attacks,” Network and Distributed System Secu-
rity Symposium, 2002.

[8] A. Yaar, A. Perrig, and D. Song, “SIFF: A stateless internet flow fil-
ter to mitigate DDoS flooding attacks,” in Security and Privacy, 2004.
Proceedings. 2004 IEEE Symposium on. IEEE, 2004, pp. 130–143.

40

[9] K. J. Argyraki and D. R. Cheriton, “Active internet traffic filtering:
Real-time response to denial-of-service attacks,” in USENIX Annual
Technical Conference, General Track, 2005, pp. 135–148.

[10] X. Liu, X. Yang, and Y. Lu, “To filter or to authorize: Network-layer
dos defense against multimillion-node botnets,” in ACM SIGCOMM
Computer Communication Review, vol. 38, no. 4. ACM, 2008, pp.
195–206.

[11] X. Liu, A. Li, X. Yang, and D. Wetherall, “Passport: Secure and adopt-
able source authentication,” in Proceedings of the 5th USENIX Sympo-
sium on Networked Systems Design and Implementation, ser. NSDI’08.
Berkeley, CA, USA: USENIX Association, 2008, pp. 365–378.

[12] T. Anderson, T. Roscoe, and D. Wetherall, “Preventing internet denial-
of-service with capabilities,” ACM SIGCOMM Computer Communica-
tion Review, vol. 34, no. 1, pp. 39–44, 2004.

[13] X. Yang, D. Wetherall, and T. Anderson, “A DoS-limiting network archi-
tecture,” ACM SIGCOMM Computer Communication Review, vol. 35,
no. 4, pp. 241–252, 2005.

[14] X. Liu, X. Yang, and Y. Xia, “Netfence: preventing internet denial of
service from inside out,” ACM SIGCOMM Computer Communication
Review, vol. 41, no. 4, pp. 255–266, 2011.

[15] X. Wang and M. K. Reiter, “Mitigating bandwidth-exhaustion attacks
using congestion puzzles,” in Proceedings of the 11th ACM conference
on Computer and communications security. ACM, 2004, pp. 257–267.

[16] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and Y.-C. Hu,
“Portcullis: protecting connection setup from denial-of-capability at-
tacks,” ACM SIGCOMM Computer Communication Review, vol. 37,
no. 4, pp. 289–300, 2007.

[17] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and S. Shenker,
“DDoS defense by offense,” in ACM SIGCOMM Computer Communi-
cation Review, vol. 36, no. 4. ACM, 2006, pp. 303–314.

[18] A. D. Keromytis, V. Misra, and D. Rubenstein, “SOS: Secure overlay
services,” ACM SIGCOMM Computer Communication Review, vol. 32,
no. 4, pp. 61–72, 2002.

[19] C. Dixon, T. E. Anderson, and A. Krishnamurthy, “Phalanx: With-
standing multimillion-node botnets,” in NSDI, vol. 8, 2008, pp. 45–58.

41

[20] R. Beverly, A. Berger, Y. Hyun, and k claffy, “Understanding the ef-
ficacy of deployed internet source address validation filtering,” in Pro-
ceedings of the Ninth ACM SIGCOMM/USENIX Internet Measurement
Conference (IMC), November 2009.

[21] P. Mittal, D. Kim, Y.-C. Hu, and M. Caesar, “Mirage: To-
wards deployable DDoS defense for web applications,” arXiv preprint
arXiv:1110.1060, 2011.

[22] H. Wang, D. Zhang, and K. G. Shin, “Detecting SYN flooding attacks,”
in INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, vol. 3.
IEEE, 2002, pp. 1530–1539.

[23] A. Kuzmanovic and E. W. Knightly, “Low-rate TCP-targeted denial of
service attacks: the shrew vs. the mice and elephants,” ser. SIGCOMM
’03. New York, USA: ACM, 2003, pp. 75–86.

[24] B. Briscoe, A. Jacquet, C. Di Cairano-Gilfedder, A. Salvatori, A. Sop-
pera, and M. Koyabe, “Policing congestion response in an internetwork
using re-feedback,” ACM SIGCOMM Computer Communication Re-
view, vol. 35, no. 4, pp. 277–288, 2005.

[25] S. Floyd, “TCP and explicit congestion notification,” ACM SIGCOMM
Computer Communication Review, vol. 24, no. 5, pp. 8–23, 1994.

[26] B. Briscoe, A. Jacquet, T. Moncaster, and A. Smith, “Re-ECN: Adding
accountability for causing congestion to TCP/IP,” IETF ID Draft (work
in progress), 2008.

[27] H. Ballani, P. Francis, and X. Zhang, “A study of prefix hijacking and
interception in the internet,” ACM SIGCOMM Computer Communica-
tion Review, vol. 37, no. 4, pp. 265–276, 2007.

[28] S. Kent, C. Lynn, and K. Seo, “Secure border gateway protocol (s-bgp),”
Selected Areas in Communications, IEEE Journal on, vol. 18, no. 4, pp.
582–592, 2000.

[29] T. H.-J. Kim, C. Basescu, L. Jia, S. B. Lee, Y.-C. Hu, and A. Perrig,
“Lightweight source authentication and path validation,” in Proceedings
of ACM SIGCOMM, 2014.

[30] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, and D. G. An-
dersen, “Scion: Scalability, control, and isolation on next-generation
networks,” in Security and Privacy (SP), 2011 IEEE Symposium on.
IEEE, 2011, pp. 212–227.

42

[31] W. Simpson, “RFC 1853, IP in IP tunneling,” Network Working Group,
1995.

[32] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe, “Design and implementation of a routing control
platform,” in Proceedings of the 2nd conference on Symposium on Net-
worked Systems Design & Implementation-Volume 2. USENIX Associ-
ation, 2005, pp. 15–28.

[33] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon,
and S. Shenker, “Accountable internet protocol (AIP),” in ACM SIG-
COMM Computer Communication Review, vol. 38, no. 4. ACM, 2008,
pp. 339–350.

[34] P. Ferguson and D. Senie, “Network ingress filtering: Defeating denial
of service attacks which employ IP source address spoofing. rfc2827,”
2000.

[35] S. Gueron, “Intel advanced encryption standard (AES) instructions set,”
White Paper, Intel, 2010.

[36] “Helion technology, AES cores,” http://www.heliontech.com/aes.htm,
2010.

[37] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stu-
art, and A. Vahdat, “B4: Experience with a globally-deployed software
defined wan,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp.
3–14, August 2013.

[38] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease algo-
rithms for congestion avoidance in computer networks,” Computer Net-
works and ISDN systems, vol. 17, no. 1, pp. 1–14, 1989.

[39] “Alexa top 500 global sites,” http://www.alexa.com/topsites, 2014.

[40] S. Savage, “Sting: A TCP-based network measurement tool.” in
USENIX Symposium on Internet Technologies and Systems, vol. 2, 1999,
pp. 7–7.

[41] S. Sundaresan, W. De Donato, N. Feamster, R. Teixeira, S. Crawford,
and A. Pescapè, “Broadband internet performance: a view from the
gateway,” in ACM SIGCOMM computer communication review, vol. 41,
no. 4. ACM, 2011, pp. 134–145.

[42] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek,
“The Click modular router,” ACM Transactions on Computer Systems
(TOCS), vol. 18, no. 3, pp. 263–297, 2000.

43

[43] “NS-3: a discrete-event network simulator,” http://www.nsnam.org/.

[44] K. Akdemir, M. Dixon, W. Feghali, P. Fay, V. Gopal, J. Guilford, E. Oz-
turk, G. Wolrich, and R. Zohar, “Breakthrough AES performance with
Intel R© AES new instructions,” Intel white paper, 2010.

[45] “The network simulator: ns-2,” http://nsnam.isi.edu/nsnam/index.
php/User Information, 2014.

[46] “Mininet: An instant virtual network on your laptop,” http://mininet.
org/, 2014.

[47] “The http archive,” http://httparchive.org/index.php, 2014.

[48] N. Dukkipati and N. McKeown, “Why flow-completion time is the right
metric for congestion control,” ACM SIGCOMM Computer Communi-
cation Review, vol. 36, no. 1, pp. 59–62, 2006.

[49] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
wan,” in Proceedings of the ACM SIGCOMM 2013 Conference on SIG-
COMM, ser. SIGCOMM ’13. New York, NY, USA: ACM, 2013, pp.
15–26.

[50] D. Kim, J. T. Chiang, Y.-C. Hu, A. Perrig, and P. Kumar, “Craft: A
new secure congestion control architecture,” in Proceedings of the 17th
ACM conference on Computer and communications security. ACM,
2010, pp. 705–707.

[51] P. Ameigeiras, J. J. Ramos-Munoz, J. Navarro-Ortiz, and J. M. Lopez-
Soler, “Analysis and modelling of youtube traffic,” Transactions on
Emerging Telecommunications Technologies, vol. 23, no. 4, pp. 360–377,
2012.

[52] D. Naylor, M. K. Mukerjee, P. Agyapong, R. Grandl, R. Kang,
M. Machado, S. Brown, C. Doucette, H.-C. Hsiao, D. Han et al., “Xia:
architecting a more trustworthy and evolvable internet,” ACM SIG-
COMM Computer Communication Review, vol. 44, no. 3, pp. 50–57,
2014.

44

