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ABSTRACT 

     The complexity of real world decision problems is exacerbated by the need to make decisions 

with only partial information. How to model and make decisions in situations where only partial 

preference information is available is a significant challenge in decision analysis practice. In most 

of the studies, the probability distributions are approximated by using the mass function or density 

function of the decision maker. In this dissertation, our aim is to approximate representative 

probability and utility functions by using cumulative distribution functions instead of density/mass 

functions. This dissertation consists of four main sections. The first two sections introduce the 

proposed methods based on cumulative residual entropy, the third section compares the proposed 

approximation methods with the methods in information theory literature, and the final section of 

the dissertation discusses the cumulative impact of integrating uncertainty into the DICE model. 

     In the first section of the dissertation, we approximate discrete joint probability distributions 

using first-order dependence trees as well as the recent concept of cumulative residual entropy. 

We formulate the cumulative residual Kullback-Leibler (KL)-divergence and the cumulative 

residual mutual information measures in terms of the survival function. We then show that the 

optimal first-order dependence tree approximation of the joint distribution using the cumulative 

Kullback-Leibler divergence is the one with the largest sum of cumulative residual mutual 

information pairs. 

     In the second part of the dissertation, we approximate multivariate probability distributions with 

cumulative probability distributions rather than density functions in maximum entropy 

formulation. We use the discrete form of maximum cumulative residual entropy to approximate 
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joint probability distributions to elicit multivariate probability distributions using their lower order 

assessments. 

     In the third part of the dissertation, we compare several approximation methods to test the 

accuracy of different approximations of joint distributions with respect to the true distribution from 

the set of all possible distributions that match the available information. A number of methods 

have beeb presented in the literature for joint probability distribution approximations and we 

specifically compare those approximation methods that use information theory to approximate 

multivariate probability distributions. 

     Finally, we study whether uncertainty significantly affects decision making especially in global 

warming policy decisions and integrate climatic and economic uncertainties into the DICE model 

to ascertain the cumulative impact of integrating uncertainty on climate change by applying 

cumulative residual entropy into the DICE model. 
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CHAPTER 1: INTRODUCTION 

1.1. Overview 

The huge amount of carbon based fuel consumption is one of the most urgent challenges 

facing the earth. Over the past century, there is increasing evidence that the atmospheric 

concentrations of greenhouse gases, mainly carbon dioxide (CO2), methane (CH4) and nitrous 

oxide (N2O), have risen significantly. Measurements of CO2 show that CO2 concentration in the 

atmosphere has increased from about 330 ppm in 1960 to about 389 ppm in 2010 and reached the 

400ppm milestone on May 9, 2013, up from around 280ppm ongoing rise in the CO2 concentration 

before the Industrial Revolution (EPA, 2013). That is a huge increase (around 43%) and may lead 

to catastrophic global warming and climate change.  

 

 

Figure 1.1: Atmospheric Concentration of Greenhouse Gases from 1000 to 2000 



2 

 

Human activities, particularly the burning of fossil fuels to produce energy, tropical 

deforestation, industrial processes, and some agricultural practices, have emerged as one of the 

defining factors for increasing concentration of greenhouse gases in the atmosphere. An 

overwhelming amount of research (Fisher and Narain, 2003; Kunreuther et.al., 2013; Peterson, 

2006; Parmeson and Yohe, 2003; Walther et.al., 2003; Tol, 2002a, 2002b; Stern et.al., 2006; Stern, 

2008, academic books (Nordhaus, 1994; Nordhaus and Boyer, 2000; Nordhaus, 2007,2008, and 

2013), and reports of national and international environmental organizations and agencies such as 

the Intergovernmental Panel on Climate Change (IPCC), the United States Environmental 

Protection Agency (EPA), the World Nature Organization (WNO), and the European Environment 

Agency (EEA) point out the potential impacts of climate change and global warming on water 

resources, food production, health, economy and the environment such as falling crop yields, rising 

sea levels, increasing air pollution, decreasing in water availability, increasing frequency of heavy 

precipitation events, and rising number of species facing extinction. 

Increasing concentrations of CO2 and other anthropogenic greenhouse gases, which act as 

an insulator or blanket above the earth, intensify the naturally-occurring greenhouse effect and 

accelerate the increase in the earth’s global temperature in direct proportion to rising carbon 

dioxide levels.  The global average temperature shows an increase of approximately 0.778°C since 

the early 20th Century (EPA, 2014). The red line in Figure 1.2 indicates the rise in surface air 

temperatures from 1955 to 2010 in degrees Celsius, whereas the black line shows a corresponding 

increase in atmospheric carbon dioxide concentrations in parts per million (ppm).   
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1.2. Decision Making and Climate Change 

The issue of climate change has proven one of the most controversial, widely-discussed, 

and difficult decision problems involving significant scientific and socio-economic uncertainties 

(Nordhaus, 1991; Tol, 1997; Stern, 2006; Baker, 2009). The changing climate impacts society and 

ecosystems in a broad variety of ways, causing unpredictable and often catastrophic precipitation 

events and/or drought, influencing agricultural crop yields, creating new health concerns for 

humans and animals, transforming and damaging forests and other ecosystems in alarming ways, 

threatening our access to critical natural resources such as water, and even creating potential 

implications for national and global security. 

Both advances in climate change research and the adverse effects it has demonstrated have 

revealed a great need for urgent action—specifically, creating more ambitious targets for limitation 

and reduction of greenhouse gas emissions. 

Figure 1.2: Global annual average Surface Air Temperature and Carbon Dioxide Concentration 
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Scientists actively work to understand past and future climate trends by using observations 

and theoretical models to match past climate data, make future projections, and link causes and 

effects in climate change. Most climate change literature focuses on integrated assessment models 

(IAM) to solve the economic impacts of global warming and slow climate change through the 

reduction of emissions (Stern, 1977a, 1977b; Anthoff and Tol, 2009; Hope et.al., 2006; Manne 

et.al., 1995 & 2006). IAM models are advantageous in that that they can address important issues 

such as the efficient allocation of abatement problems and accepted damages by specifying the 

costs and benefits of various abatement policies, using a detailed description of both economic and 

environmental improvements.  

There are three main integrated assessment models used by the EPA (United States 

Environmental Protection Agency); DICE (Dynamic Integrated Climate-Economy), FUND 

(Climate Framework for Uncertainty, Negotiation and Distribution), and PAGE (Policy Analysis 

of the Greenhouse Effect). The DICE model is an integrated economic and geophysical model of 

the economics of climate change developed by Nordhaus and colleagues (Norhaus, 1977a, 1977b). 

The FUND model, originally developed by Richard Tol (1997) and improved by David Anthoff 

and Richard Tol (2009), performs cost-benefit and cost-effectiveness analyses of greenhouse gas 

emission reduction policies and examines equity of climate change and climate policy. The PAGE 

model, developed by Chris Hope with John Anderson, Paul Wenman, and Erica Plambeck (2006), 

projects future increases in global mean temperature (GMT), the economic costs of damages 

caused by climate change, implementation of mitigation policies, and adaptation measures.  

Other renowned models and analyses include the Stern Review, a comprehensive analysis 

of the economic aspects of global warming released for the British government on 2006 by 

economist Nicholas Stern; and the MERGE model, developed by Manne et.al. (1995 and 2004), 
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which explicitly accounts for the economy wide impacts of rising energy costs by considering 

alternative sources of energy supply such as hydroelectricity, nuclear energy, and fossil fuels such 

as oil, natural gas, and coal.  

Most of these models are purely deterministic approaches. The DICE model, which 

provides an economic analysis of the problem of global warming, is the focus of this dissertation 

because DICE is an open access model that solves on an EXCEL spread sheet or GAMS program 

code. It therefore has a large audience familiar with the basics of the model. Also, the US 

government especially EPA uses the DICE model, in combination with FUND and PAGE, to 

determine the social cost of carbon. Due to the reasons discussed above, we choose DICE model 

in our dissertation. 

1.3. DICE Model 

The Dynamic Integrated Climate-Economy model (DICE) is an integrated assessment 

model of climate change developed by William Nordhaus and colleagues that integrates both the 

economic costs and benefits of greenhouse gas controls with an aggregate model linking economic 

growth with climate change to reduce emission and slow greenhouse warming (Norhaus, 1977a, 

1977b). A simplified analytical and empirical model that represents the economics, policy, and 

scientific aspects of climate change, the DICE model attempts to quantify how the atmospheric 

concentration of CO2 negatively affects economic output through its impact on global average 

surface temperature. First proposed in a discussion paper for the Cowles Foundation (Nordhaus, 

1991) and iterated over the past two decades (Nordhaus, 1994; Nordhaus and Boyer, 2000; 

Nordhaus, 2007,2008), the most up-to-date version of the DICE model was released with current 

discussion in 2013 (Nordhaus, 2013).  
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DICE is mainly a policy optimization model with an economic objective function 

measuring the economic welfare of consumers or producers. The DICE model includes estimates 

of both the costs of reducing carbon dioxide emissions and the long term future climate impacts 

from climate change, which enables benefits and costs of carbon dioxide emissions to be weighed 

in order to optimize controls in the near term, thus maximizing the welfare function to evaluate 

alternative policies (Figure 6-2).  

 

 

 

 

 

 

 

 

 

  

 

 

 

The social cost of carbon is estimated using Integrated Assessment Models (IAMs), of which 

Nordhaus’ DICE is the oldest and one of the best respected models in the literature. Our goal in 

this dissertation is to incorporate uncertainty into the DICE climate change model. 

 

Fossil fuel use 

generates CO2 

emissions 

Carbon cycle:  

redistributes around  

atmosphere, oceans, etc. 

Climate system: change  

in radiative warming, precipitation,  

ocean currents, sea level rise,… 

Impacts on ecosystems, 

agriculture, diseases, 

forests, … 

Measures to control 

emissions (limits, taxes,  

subsidies, …) 

Figure 1.3: Schematic flow chart of a full integrated assessment model for climate change   

                    science, economics, and policy (Nordhaus, 2013) 
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1.4. Climate Change and Uncertainty 

The impact of carbon emissions on the environment is directly observable, and the 

equivalent monetary values determined for them are very costly: approximately $18 per ton of 

CO2 increasing by about 2.1% per year to $50 in 2055 (Newbold et.al., 2010). Therefore, it is 

crucial to take actions for slowing global warming carefully because carbon emission is very 

expensive and the total cost of carbon emission would amount to hundreds of billions of dollars. 

However, parameters such as population, CO2 emission, and discount rate create uncertainties in 

determining both the costs of emissions reductions and the damages from climate change that may 

not be resolved in this century. Therefore, it is important to analyze the environmental policies by 

integrating uncertain parameters into the DICE model because in DICE model there are eight 

uncertain parameters (Nordhaus, 1998; Pizer, 1999; Nordhaus, 2013) which are assumed as 

deterministic and their mean values are used in the DICE model.  

The importance of addressing the element of uncertainty in scientific calculations is such 

that ignoring or avoiding it could very well lead to under- or overestimating results. In some 

decision or situations, it is preferable to avoid/ignore uncertainty, while in some cases it is 

completely eliminated. However, in most economic models, but particularly in those addressing 

climate change impact, one or more parameters may be highly sensitive in the sense that a slight 

change of its value results in a significant change in output. Hence proper modeling of uncertainty 

is an important aspect in science. Several studies have attempted to incorporate uncertainty into 

the climate change models to deal with global environmental change (Peck and Teisberg, 1993; 

Heal and Kristrom, 2002; McInerney and Keller, 2008; Baker and Shittu, 2008; Baker, 2009; 

Schmidt et.al, 2011; Funke and Paetz, 2011;Babonneau et.al., 2011; Haurie et.al., 2012; Keppo 

and van der Zwann, 2012) . 
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Like most integrated assessment models, the original DICE model is also deterministic and 

cannot determine the optimal policy unless the decision maker knows (or is assumed to know) the 

climate’s response to emissions with certainty. However, accurate evaluation of investments in 

climate change mitigation must take climatic and economic uncertainties into consideration 

because climate change, long-term economic development, and their interactions are highly 

uncertain. Therefore, it is important to incorporate uncertainty into the usual cost-benefit climate 

change models.  

     A few studies have tried to incorporate uncertainty into the DICE model to evaluate climate 

change policies. Pizer (1999) uses a non-recursive stochastic programming approach for 

determining optimal climate change policy under uncertainty. Newbold and Daigneault (2009) run 

several simulations to explore the impact of uncertainty on future climate and economic trends by 

constructing two probability density functions about climate uncertainty. Sokolov et al. (2009) and 

Webster et al. (2012) used Monte Carlo simulation methods and estimated climate uncertainty 

conditional on different policy scenarios. Hu et.al. (2012)  apply a robust simulation approach, 

which finds the worst-case performances to evaluate environmental policies by assuming the 

uncertain parameters of the DICE model follow a multivariate normal distribution.  

1.5. Problem Definition 

Nordhaus (2013) used the DICE model to evaluate and compare a number of different 

environmental policies, including (i) baseline scenario, (ii) optimal tax scenario, (iii) limit 

temperature increase to 2 Celsius degree, (iv) Stern scenario, and (v) Copenhagen Accord scenario. 

Nordhaus pointed out eight critical uncertain parameters in the DICE model and we have selected 

these eight major parameters for further study: uncertainties about the growth rate of total factor 

productivity (ga0), the rate of de-carbonization (dsig), the asymptotic population growth 
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(popasym), the cost of the backstop technology (pback), the damage-output coefficient (a2), the 

transfer coefficient of carbon dioxide (b12), the equilibrium temperature-sensitivity coefficient 

(t2xCO2), and the total availability of fossil fuels (fosslim). The following table (Table 1.1) shows 

the marginal distributions of eight variables. 

 

Variable Definition of the Variable Mean St.Dev Unit

ga0 Rate of Growth of Total Factor Productivity 0.079 0.004 per year

dsig Rate of De-carbonization -0.001 0.002 per year

t2xCO2 Equilibrium Temperature-Sensitivity Coefficient 2.900 1.110 Celcius per CO2 doubling

a2 Damage Parameter 0.003 0.001 Fraction of global output

pback Price of backstop technology 344 138 $ per ton of carbon replaced

popasym Asymptotic global population 10500 1892 millions

b12 Transfer coefficient in Carbon Cycle 0.088 0.017 per decade

fosslim Total Resources of Fossil Fuels 6000 1200 billions of tons of carbon
 

However Nordhaus assumes that there is no uncertainty in the DICE model and fixes all 

the uncertain parameters and use these parameters at their mean values. We use the values given 

by Nordhaus in his books “A Question of Balance” (2008) and “DICE 2013R Manual” (2013) and 

assume that all the marginal distributions are from known families. All the variables in this analysis 

are normally distributed.  

Our purpose is to integrate climatic and economic uncertainties into the DICE model to 

understand whether uncertainty has any significant effect on the performances of the policies. In 

the DICE model, there are eight different variables and each is discretized to three different values 

(see Figure-1.4).  

 

Table 1.1: Marginal distributions of uncertain variables of DICE model 
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     low      low      low      low

0.25 0.25 0.25 0.25

     base      base      base      base

0.5 0.5 0.5 0.5

     high      high      high      high

0.25 0.25 0.25 0.25

     low      low      low      low

0.25 0.25 0.25 0.25

     base      base      base      base

0.5 0.5 0.5 0.5

     high      high      high      high

0.25 0.25 0.25 0.25

0.167

0.189

0.211

4462

6000

7538

168

344

520

8078

10500

12922

Rate of Decarbonization                        

(dsig)

 Temperature Sensitivity 

Coefficient (t2xCO2)

Damage Parameter                                                  

(a2)

0.0010

0.0027

0.0043

Price of backstop technology                       

(pback)

Global population                             

(popasym)

Transfer coefficient in Carbon 

Cycle (b12)

Total Resources of Fossil Fuels 

(fosslim)

Rate of Growth of Total Factor 

Productivity (ga0)

1.4775

2.9000

4.3225

0.0028

0.0079

0.0130

-0.0036

-0.0010

0.0016

 

Figure 1.4: Decision Trees of Each Uncertain Variables 

We then draw the decision tree with the uncertain parameters and the alternative climate change 

policies. Figure 1.5 shows the decision tree of DICE model with 8 uncertain parameters. 

Our aim is to study the effect of uncertainty in global warming policy decisions and 

integrate climatic and economic uncertainties into the DICE model to find out what will be the 

cumulative impact of integrating uncertainty into the DICE model. We use the uncertain 

parameters in our analysis to generate joint probability distributions of eight uncertain parameters 

to evaluate and compare the expected performances of different policies.  

1.6. Approximation with Partial Information  

Modeling real-world decision situations such as those involving climate change often requires 

multivariate distributions, into which information about random events and their interactions is 

encoded. For instance, in the DICE model, there are eight different uncertain parameters and each 

is discretized to three different values, requiring construction of a 3 3 3 3 3 3 3 3        multi- 
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     high      high      high      high      high      high      high      high
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

     low      low      low      low      low      low      low      low
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

     base      base      base      base      base      base      base      base
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

     high      high      high      high      high      high      high      high
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

     low      low      low      low      low      low      low      low
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

     base      base      base      base      base      base      base      base
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

     high      high      high      high      high      high      high      high
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

     low      low      low      low      low      low      low      low
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

     base      base      base      base      base      base      base      base
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

     high      high      high      high      high      high      high      high
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

     low      low      low      low      low      low      low      low
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

     base      base      base      base      base      base      base      base
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

     high      high      high      high      high      high      high      high

Stern Review

Copenhagen Accord

Global population 

(popasym)

Transfer coefficient 

in Carbon Cycle 

(b12)

Total Resources of 

Fossil Fuels (fosslim)

Baseline

Optimal

Temperature Limited

Alternative Scenarios

Rate of Growth of 

Total Factor 

Productivity (ga0)

Rate of 

Decarbonization 

(dsig)

 Temperature 

Sensitivity Coefficient 

(t2xCO2)

Damage Parameter 

(a2)

Price of backstop 

technology (pback)

               

Figure 1.5:   Decision Tree of DICE Model with 8 Uncertain Parameters 

variate probability distribution. In order to construct multivariate distributions concerning the 

specific circumstances and preferences of a given decision situation, information needs to be 

elicited from the decision maker (DM). In real life decisions, however, the amount of information 

we can collect from the decision maker is limited because eliciting more information from the 

decision maker is difficult as the number of variables and lower order assessments increases 

(Howard, 1968; Ku and Kullback, 1969; Abbas, 2006), time consuming (Baker, 2009; Pearl, 1988; 

Keeney, 1973), expensive (Clemen and Reilly, 1999; Abbas, 2010), and because the decision 

maker could be unable or unwilling to make decisions (Matheson and Howard, 1969; Abbas, 2002, 

2006, 2009, 2010).  
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1.6.1. Approximation with Independence Assumption 

Many approximation methods have been discussed to approximate higher order utility and 

probability functions using lower order assessments in the decision analysis literature. In most of 

these studies, the probability distributions or utility functions are approximated by some 

simplifying assumptions such as probability independence (Keeney, 1973; Fishburn and Keeney, 

1974; Brodley, 1982; Howard and Matheson, 1984; Pearl, 1988) or utility independence (Richard, 

1975; Keeney, 1971, 1972, 1973, and 1974; Fishburn and Keeney, 1975).  

A simple way to explain the concept of independence in probability theory is that the 

occurrence of one does not affect the probability of the other. Independence in probability theory 

is formulized as the product of the probabilities of the two individual events or product of their 

marginal distributions. In correspondence with multivariate probability distributions, the 

construction of multiattribute utility functions is also simplified as utility independence 

assumptions are satisfied. Independence concepts in utility and conditions under which preferences 

for some attributes are invariant with respect to others are discussed by Keeney and Raiffa (1976).  

If every attribute is utility-independent of its complement, then the functional form of the utility 

function reduces to a multilinear form. A stronger independence condition also holds if every 

subset of the attributes is utility-independent of its complement and the utility function has either 

the multiplicative or the additive form.  

     Utility or probability independence simplifies the construction of the multiattribute probability 

or utility function significantly. However, very strong conditions must hold in order to use 

independence forms. There are several situations in utility theory in which at least one attribute is 

not utility-independent of its complemen or, in other words, not all the attributes are utility 

dependent on their complement. Thus, the multilinear form propounded by Keeney and Raiffa 
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(1976) is not applicable. This situation is called as partial utility independence in the decision 

analysis literature.  

     Partial utility independence among attributes is used in the literature to approximate utility 

functions in different functional forms. Bell (1988) first characterized the functional forms of 

utility function based on the number of switches and called as m-switch utility functions. Abbas 

and Bell (2011) extended this idea to independent multiple attribute utility functions that lead to a 

maximum of one-switch change and discussed the independence conditions of one-switch for 

multiattribute utility functions (Abbas and Bell, 2012). Then Abbas and Chudziak (2013) applied 

one-switch utility functions in annuity payment decision to derive the functional forms of multiple 

attribute utility functions that lead to a maximum of one-switch change in preferences. 

1.6.2. Approximation in the case of Dependence among Variables 

     In most decision problems, preferences of the decision maker may change with the different 

values of the variables or influences the likelihood of the other variables. Probability dependence 

refers to any situation in which random variables do not satisfy a mathematical condition of 

probabilistic independence Probability independence asserts that that the occurrence of one does 

not affect the probability of the other. Similarly, two random variables are independent if the 

realization of one does not affect the probability distribution of the other. This property is not 

always appropriate in most of the decision situations. Thus, in the case of dependency among 

variables, it is important to incorporate dependence relationships among variables into the decision 

situation when constructing probability distributions and utility functions of decision maker. 

     Several methods are proposed to construct joint probability distributions by incorporating 

dependence relationship among variables. Barron and Barrett (1996) compared three 
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approximation methods and evaluate these according to the quality of the decisions resulting from 

the approximated weights. Hazen (1986) explored the use of partial preference information in 

multiattribute decision making. Kirkwood and Sarin (1985) derived conditions to determine 

whether a pair of alternatives can be ranked, given the partial information about weighting 

constants, and presents an algorithm that partially rank-orders the complete set of alternatives 

based on the pairwise ranking information. Weber (1987) presented a ranking method that allows 

the DM to provide preference information in the form of pairwise comparisons of the alternatives. 

Clemen et. al. (2000), Reilly (2000), Lowell (1994), and Smith et.al (1992) performed several 

analyses to compare the accuracy of methods that assess probability dependence and showed that 

the optimal decision alternative may change when dependence between the variables is 

incorporated. Montiel and Bickel (2012) generated the set of all possible discrete distributions that 

expressed given information and approximated joint probability distributions on the Hit-and-Run 

Sampler algorithm. Clemen and Reilly (1999) used copulas to construct joint probability 

distributions based on lower-order assessments. 

     Several graphical methods are also proposed to construct joint probability distributions by 

incorporating dependence relationship among variables. Howard (1989) explored the use of graphs 

to capture probability dependence and called as knowledge maps. Bedford and Cooke (2001) 

showed multivariate probability distributions graphically for dependent random variables which 

they called vines and derived a general formula for the density of a vine dependent distribution. 

Boutilier et al. (2004) proposed a qualitative graphical representation of preferences that reflects 

conditional dependence and independence of preference statements under a ceteris paribus 

interpretation. Abbas et.al. (2010) presented a new method for constructing joint probability 
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distributions of continuous random variables using isoprobability contours without assessing 

directly the dependence, or association, between the variables.  

     Incorporating preference dependence between the attributes while constructing multiattribute 

utility functions are also discussed by several authors in the field of decision analysis. One 

approach introduced by Matheson and Howard (1968) that constructs a deterministic value 

function over the attributes and then assigns a utility function over the value function to represent 

the decision maker’s preferences. This method is also discussed by Abbas and Howard by an 

example of a value function of a “peanut butter and jelly sandwich” (Abbas and Howard, 2005). 

Abbas (2010) also discussed a variety of methods for constructing multiattribute utility functions. 

Chajewska et.al. (2000) showed how density estimation techniques can be applied to approximate 

a density function from a database of partially elicited utility functions. Abbas (2009) introduced 

the multiattribute utility copula, which is a new functional forms that can be used to model 

preferences over utility dependent attributes. Abbas (2013) extended multiattribute utility copulas 

and proposes a method to construct utility copula functions using univariate utility assessments at 

the boundary values. Wang and Dyer (2012) estimated multivariate distributions through the use 

of a decision tree based on copulas. 

1.6.3. Approximation by Using Elements of Information Theory 

     Several approaches to approximate joint probability distributions use elements of information 

theory. Dependence trees constitute one such well-known method. Chow and Liu (1968) first 

described how to construct a second-order product approximation of a joint probability distribution 

using first order dependence trees with a product of conditional, and pairwise distributions, where 

each child has only one parent. A more extended tree construction algorithm for dependence trees 

was outlined in Meila (1999). Ku and Kullback (1969) generalized Chow and Liu's algorithm, 
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allowing any lower-order marginal distributions to be used in the approximation. Keefer (2004) 

presented a model for approximating probability dependence among binary events. Sutcu and 

Abbas (2014) determined the best first order dependence tree approximation using the concept of 

cumulative residual entropy, which is an alternative measure of entropy that uses cumulative 

probability distributions. 

     Maximum entropy is also used widely to approximate joint probability distributions and 

multiattribute utility functions. The principle of maximum entropy was first expounded by E. T. 

Jaynes in two papers in 1957 where he emphasized a natural correspondence between statistical 

mechanics and information theory (Jaynes 1957a, 1957b). The principle of maximum entropy is 

often used to obtain prior probability distributions for Bayesian inference and used to approximate 

multiattribute utility functions. Chan (1971) discussed what probability distribution should employ 

if only range of a system parameter is known in discrete event simulation. Thomas (1979) 

described a generalized maximum entropy principle for dealing with decision problems involving 

uncertainty if only partial information is available. Smith (1993) computed the moments of joint 

distributions or value lotteries and then use these moments in maximum entropy formulation to 

compute approximate value lotteries or certain equivalents. Mackenzie (1994) used maximum 

entropy formulation to approximate multivariate distribution with given marginal and pairwise 

correlations. Abbas (2006) explored the use of the maximum entropy principle to approximate 

joint distributions using any number of lower order assessments. Abbas (2002) presented a 

graphical method to determine the maximum entropy distribution between upper and lower 

probability bounds and provide an interpretation for the shape of the maximum entropy distribution 

subject to fractile constraints. He also showed the formulation of maximum entropy problems 

given upper and lower bounds on moments and probabilities (Abbas, 2005). Dai et.al (2007) 
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studied and quantified the uncertainties in the software reliability modeling with correlated 

parameter(s) by combining the maximum entropy approach principle into the Bayesian approach. 

     Also, by using the analog between probability and utility, maximum entropy formulation is 

applied to utility. Abbas (2002, 2006), who showed how to apply maximum entropy to single 

attribute utility functions when only partial information is available can be credited with the 

seminal work in assigning utility values using the maximum entropy method. When a decision 

situation has more than one attribute, Abbas (2006) demonstrated one solution method that assigns 

a single attribute utility function over a value function. Abbas (2004) presented a maximum 

entropy method to find an optimal question-algorithm to elicit von Neumann and Morgenstern 

utility values and select the minimum number of questions needed for utility elicitation. In another 

paper, he provided a new method to measure of utility dependence, presented moments and cross-

moments of utility functions, and derived the functional form of a utility function that satisfies 

some given moment assessment (Abbas, 2007). Hadfi and Ito (2012) extended the maximum 

entropy utility principle into an asymptotic maximum entropy utility principle for preference 

elicitation in a situation subject to a large predictive uncertainty with a small learning sample. 

Herfert and La Mura (2004) used the utility functions directly in entropy definition and 

approximated the utility functions of the decision maker by using the maximum entropy utility 

formulation. 

1.7. Contributions of the Dissertation 

In this dissertation, our aim is to help DMs to make better decision using both their 

preferences and the information available. Our current work addresses the problems where partial 

information about the decision situations is known. We approximate representative probability if 

only partial information is elicited from the decision maker by using cumulative distribution 
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functions instead of density/mass functions. Using joint cumulative probability distributions has 

many properties; (i) always non-negative, (ii) valid for both continuous and discrete cases, (iii) 

easy to implement because of using cumulative distribution functions instead of density functions. 

     Our first contribution is to approximate joint probability distributions of a set of discrete random 

variables using a product of second order conditional and marginal distributions based on 

cumulative residual entropy.  We construct optimum first-order tree approximation of the joint 

distribution with respect to the Cumulative Residual Kullback Leibler divergence if its dependence 

tree has the maximum sum of cumulative residual mutual information pairs.  

     Our second contribution is to propose an approximation method similar to maximum entropy 

principle to construct representative joint probability distributions from its lower order assessments 

by using maximum cumulative residual entropy approach. 

     Finally, our third contribution is to take into consideration all the uncertain variables and their 

interactions together and characterize the uncertainty in climate change models to understand 

whether uncertainty significantly affects climate change decisions with regard to climate change 

policies. To do this, we integrate uncertainty into the well-known DICE model to understand 

whether uncertainty has any significant effect on the performances of the policies.   
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CHAPTER 2: REVIEW OF BASIC CONCEPTS, TERMINOLOGY, AND NOTATIONS 

OF INFORMATION THEORY 

2.1. Introduction 

This chapter reviews the fundamental concepts, terminology, and notations of information theory 

in probability that will be used in the remaining sections of the dissertation. We first define the 

marginal, joint, and conditional probability distributions and we also define them for survival 

functions. Then, we explain the entropy definitions of discrete random variables and continuous 

random variables in Section 2.3 and 2.4, respectively. Section 2.5 discusses the differences 

between traditional entropy and cumulative residual entropy. We explain the KL-divergence and 

mutual information in Section 2.6. Section 2.7 defines the maximum entropy approaches in the 

literature. Finally, we review the previous work on related research in Section 2.8. 

2.2 Basic Concepts, Terminology, and Notations of Information Theory in Probability 

This section presents the basic notation and definitions that will be used in the remaining sections 

of the dissertation. Let 

                                                                 ( ) ( )xF x P X x                                                       (2.1)

be the marginal cumulative distribution function of the random variable X ,  and let 

( , ) ( , )F x y P X x Y y                                                (2.2) 

be the bivariate cumulative distribution function of random variables X  and Y . 

Define a marginal survival function for variable X  as 
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                                                         ( ) 1 ( ) ( )x xS x F x P X x                                               (2.3)

Note that ( )xS x  is the probability that X  is alive at the value x  and a bivariate survival function 

for random variables X  and Y  as 

                                ( , ) ( , ) 1 ( ) ( ) ( , )x yS x y P X x Y y F x F y F x y                                  (2.4)

The conditional survival function between two variables ( X  given Y ) is 

|

( , )
( | ) ( | )

( )
  x y

y

S x y
S x y S X x Y y

S y
                                                          (2.5) 

where the variable X  is alive at the time x  given that the Y survived to just before time y . 

2.3. Entropy of Discrete Random Variables 

In this section, we first define the discrete form of Shannon’s entropy and its interpretations; then 

we define the discrete form of cumulative residual entropy which use cumulative functions instead 

of probability mass functions. 

2.3.1 Interpretation of the Discrete Shannon’s Entropy 

In information theory, entropy is a measure of average uncertainty associated with random 

variable. The concept was proposed by Claude E. Shannon in his 1948 paper "A Mathematical 

Theory of Communication"[ ]. Entropy of a discrete random variable is formulized as  

  
1

( ) ( ) log ( )


 
n

i i

i

H X p x p x   (2.6) 

where ( )p x is the probability mass function of a discrete random variable. This measurement 

defines how much information needed to explain the outcome of a variable. In general, the base of 
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the logarithm is “base=2”.  The entropy will then be measured in bits. The entropy is a measure of 

the average uncertainty in the random variable. It is the number of bits on average required to 

describe the random variable. We will provide the following example of entropy expression to 

gain better understanding.  

Example 2.1: Consider a discrete variable X  with four possible outcomes and corresponding 

probabilities as shown below. What is the entropy of this random variable? 

 

1
2

1
4

1
8

1
8

      0

      1
( )

      2

      3





 


 

if x

if x
p x

if x

if x

  (2.7) 

Let us calculate the entropy of X and we use binary logarithm (base 2) in the entropy expression 

which is commonly used. 

 
2 2 2 2

1 1 1 1 1 1 1 1
( ) log log log log

2 2 4 4 8 8 8 8

7
          

4

       
           

       



H X

  (2.8) 

Suppose that we wish to determine the value of X  with the minimum number of binary questions. 

The resulting expected number of binary questions required is 1.75. This turns out to be the 

minimum expected number of binary questions required to determine the value of X . Moreover, 

an interval is found to the minimum expected number of binary questions required to determine 

X  as 

   ( )    ( ) 1  H X Expected number of questions H X   (2.9) 
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The entropy of random variable X  is eventually the lower bound of expected number of questions 

to determine variable X . This formulation is very important to our decision analysis process, and 

simplifies it with binary questions. 

2.3.2 Interpretation of Cumulative Residual Entropy 

After several decades, Rao et.al.(2004) developed an alternative entropy measurement formulation 

by extending Shannon’s entropy from density functions to cumulative distribution functions of 

random variables. Let X  be a random vector in 
NR , then cumulative residual entropy of X  is 

     ( ) | | log | |  



   
NR

X P X P X d   (2.10) 

where  1 2, , , NX X X X , 1 2( , , , )N     and | |  X   means | |  i iX   and 

 ; 0N N

i iR x R x    . 

Shannon’s entropy ( )H X  of X  is computed solely using the probabilities ( )P X t  and 

interprets the entropy as a measure of the “uncertainty” in X . If, X  denotes the life span of a 

machine, the appropriate probabilities to consider are ( )P X t  in which the life span exceeds a 

given time t  and not ( )P X t in which the life span equals t . Cumulative Residual Entropy 

possesses more general mathematical properties than the Shannon entropy. This measure is always 

non-negative and its definition is valid for both continuous and discrete cases. Let’s look at the 

following example to understand better how cumulative residual entropy measures the uncertainty. 

Example 2.2: Consider the same discrete variable X  with four possible outcomes and 

corresponding probabilities in Example 1. In this example, however, we will calculate the entropy 

with new entropy expression. First, we define the cumulative distribution function of the discrete 
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probability distribution of X  and the complementary distribution function (survival function) of 

X : 

 

1 1
2 2

3 1
4 4

7 1
8 8

      0       0

      1       1
( ) ( )

      2       2

1        3 0        3

  
 

  
  

  
   

if x if x

if x if x
P x and P x

if x if x

if x if x

  (2.11) 

Thus, the entropy is calculated by using the complementary cumulative distribution functions as 

 

 2 2 2 2

1 1 1 1 1 1
( ) log log log 0log 0

2 2 4 4 8 8

11
          

8

     
         

     



H X

  (2.12) 

By using the formulation at (4), an interval is found to  

 1.375    2.375 expected number of questions   (2.13) 

Shannon entropy and Rao entropy are consistent in the discrete cases, in that both measurement 

expressions are always non-negative and its definition is valid for both discrete cases. 

Unfortunately, extending Shannon’s discrete entropy to a continuous (differential) entropy case 

poses some challenges. We will introduce and compare both measurement expressions for 

continuous cases in the following section. 

2.4 Entropy of Continuous Random Variables 

In this section, we first define the continuous form of the traditional entropy measure (also called 

differential entropy in the literature) and then define the continuous form of the cumulative residual 

entropy. 
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2.4.1 Interpretation of the Differential Entropy 

 As in the discrete case, it is not difficult to handle the analogous definitions and results of the 

continuous case. Entropy of a continuous random variable X  with cumulative function ( )F X 

( )P X x and density function '( ) ( )F x f x  is formulized as 

  ( ) ( ) log ( ) H X f x f x dx   (2.14) 

This measurement also defines how much information needed to explain the outcome of a variable; 

however, differential entropy does not share all properties of discrete entropy. We will provide the 

following example of differential entropy expression to show the difference. 

Example 2.3: Consider a random variable distributed uniformly from 0 to a , and the density of 

uniform distribution is 

 
1       0

( )
0       otherwise

 
 


a x a
f x   (2.15) 

Then its differential entropy is calculated as 

 
0

1 1
( ) log log

 
   

 

a

h X dx a
a a

  (2.16) 

Unlike discrete entropy, differential entropy can be negative. If 1a  , then ( ) 0h X  , if 1a  , 

then ( ) 0h X  , and entropy takes positive values if a  is bigger than 1. The differential entropy is 

inconsistent in the sense that differential entropy may take any value on the real line. The 

possibility of negative entropy shows that expected number of questions cannot be interpreted and 
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found in the continuous case. Moreover, estimating empirical distributions by using maximum 

entropy is impossible in continuous cases due to the possibility of negative entropy.  

2.4.2. Interpretation of the Cumulative Residual Entropy 

As we discussed in discrete case, Rao et.al. (2004) develop an alternative entropy measurement 

formulation by extending differential entropy from density functions to cumulative distribution 

functions of random variables. Let X  be a random vector in 
NR , then cumulative residual entropy 

of X  is   

     ( ) | | log | |  



   
NR

X P X P X d   (2.17) 

Cumulative residual entropy is always non-negative and its definition is valid for both continuous 

and discrete cases. Let’s look at the following example to understand better how cumulative 

residual entropy measures the uncertainty. 

Example 2.4: Consider the same continuous uniform variable X  which is distributed from 0 to 

a  in Example-3. Let’s calculate the entropy with new entropy expression. First we define the 

cumulative distribution function of the uniform distribution of X  and complementary cumulative 

distribution function (tail distribution) of X . 

 

( )      0       0
( ) ( )

0       otherwise 0           otherwise

   
  

 

a xx
a a

x a x a
F x and F x   (2.18) 

So, the entropy is calculated by using the complementary cumulative distribution functions as 
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 
0

0

( ) (| | ) log (| | )

        ( ) log( )

1
        

4

   

 
 







a

a

X P X x P X x dx

a x a x
dx

a a

a

  (2.19) 

As we see from the previous example, cumulative residual entropy is nonnegative unlike the 

Shannon’s entropy. Differential entropy is inconsistent in the sense that the entropy of uniform 

distribution in an interval of length a is log( )a , which is zero if 1a  and negative if 1a  . 

2.5. The differences between Shannon Entropy and Cumulative Residual Entropy 

The traditional entropy definition uses probability mass functions or density functions in entropy 

formulation. On the other hand, cumulative residual entropy uses cumulative functions in both 

discrete and continuous cases. For any discrete random variable X , Shannon’s entropy ( )H X  of 

X  is computed solely using the probabilities ( )P X t  and interprets the entropy as a measure of 

the “uncertainty” in X . If, X  denotes the life span of a machine, the price of a stock, the number 

of properly functioning components required in a complex system, the appropriate probabilities to 

consider are ( )P X t  which represents life span exceeds a given time t  and not ( )P X t which 

is life span equals t .  

For instance, the discrete variable X has a probability mass function 

    

0.2       1

0.3       2
( )

0.4       3

0.1       4

if outcome

if outcome
p x

if outcome

if outcome


 

 


 
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So, the entropy of random variable X is calculated by Shannon entropy and CRE entropy as

0

0.2

0.4

0.6

0.8

1
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Probability Mass Function 

0
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Survival Function

           

( ) 0.2log0.2 0.3log0.3

0.4log0.4 0.1log0.1

H X  

 
     

( ) 1log1 0.8log0.8

0.5log0.5 0.1log0.1

X  

 
  

 

CRE entropy is calculated by considering the uncertainty that exceeds a given time, whereas 

Shannon entropy calculates the entropy which life span equals a certain time.  

Cumulative residual entropy is more advantageous for the following reasons: 

 It is always non-negative in both discrete and continuous cases 

 It provides consistent definitions in both the continuous and discrete domains 

 It uses cumulative functions which are more regular than the density functions, 

because the density is computed as the derivative of the  cumulative functions; and 

 It can be easily computed from the sample data but eliciting density functions is a 

difficult task. 

On the other hand, Cumulative Residual Entropy can only be applied to numeric variables. It 

cannot be applied to decision situation where the variables are non-numeric. For instance, you are 

planning to go outside but there is 40% chance of rain after 2pm and are not sure whether to carry 

an umbrella. Because this decision situation includes a non-numeric variable, cumulative residual 

entropy is inapplicable.   

Figure 2.1: The Entropy of Random Four Outcome Variable X Calculated by Shannon Entropy  

                    and CRE Entropy 
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In general, we can say that Shannon’s entropy is defined for distributions with densities. The 

entropy of a discrete distribution is always positive, while the differential entropy of a continuous 

variable may take any value on the extended real line. It is “inconsistent” in the sense that the 

differential entropy of a uniform distribution in an interval of length a  is log( )a , which is zero if 

1a  , negative if 1a   , and positive if 1a  . 

Cumulative Residual Entropy overcomes the problems mentioned above, retaining many of the 

important properties of Shannon entropy while preserving the well-established principle that the 

logarithm of the probability of an event should represent the information content in the event. For 

a variable X , maximum entropy and maximum cumulative residual entropy with given constraints 

are defined as shown in Table 2.1. 

Maximum Entropy Maximum CRE 

*( ) arg max ( ) log( ( ))

. .

( ) ( )       

( ) 1

( ) 0

i i

i i i

i

i

p x p x p x

s t

h x p x

p x

p x



 













 

*( ) arg max ( ) log( ( ))

. .

( ) ( )       

( ) ( )

i i

S x S x S x

s t

r x S x

S x E X



 











 

Solution: 0 1 1 2 2( ) ( ) ... ( ) 1*( ) n nh x h x h x
p x e

        
  Solution: 1 1 2 21 ( ) ( ) ( )*( ) e n nr x r x r x

S x
     

  

 

Shannon entropy can be negative or positive depending on the value of the variable but Rao 

entropy is always non-negative. Also, the idea in Rao’s entropy definition is smooth and consistent. 

The distribution function is more regular because it is defined in an integral form unlike the density 

function, which is defined as the derivative of the distribution. The definition also preserves the 

well-established principle that the logarithm of the probability of an event should represent the 

information in the event. 

Table 2.1:  Maximum Entropy and Maximum Cumulative Residual Entropy Formulations 
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The main advantages of our proposed methods are that the entropy measure is always non-negative 

and consistent in both discrete and continuous domains, and use cumulative functions instead of 

density functions. The limitation and drawback of proposed methods is that it cannot be applied to 

decision situation where the variables are non-numeric. 

2.6. Relative Entropy and Mutual Information 

In this section, we define the Kullback-Leibler divergence or relative entropy, and then the mutual 

information which is the special case of the relative entropy. We also define the cumulative 

residual entropy based Kullback-Leibler divergence measure and mutual information. 

2.6.1 Relative Entropy or Kullback-Leibler Divergence 

After Shannon’s entropy formulation, Kullback and Leibler (1951) extended the entropy definition 

and introduced a new measure which is a non-symmetric measure of the difference or distance 

between two probability distributions. For discrete probability distributions P  and Q , the KL- 

divergence of Q  from P  is defined to be 

     
1

( )
( ) log

( )

n
i

KL i

i i

p x
D P Q p x

q x

 
  

 
                                            (2.20) 

Relative entropy is a measure of the information lost when approximate distribution Q , is used to 

approximate true distribution, P .The Kullback-Leibler distance is also known as the cross 

entropy, or relative entropy. The measure is always non-negative and zero if and only if the two 

probability distributions are identical.  
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Following on the entropy definition provided by  Rao et al., Baratpour and Rad (2012) defined a 

measure of the difference or distance between two survival functions and called it cumulative 

Kullback-Leibler divergence. The Cumulative Residual KL-Divergence measure is defined as   

              
0

( )
( : ) ( ) ln [ ( ) ( )]

( )

F
F G F

G

S x
CKL S S S x dx E F E G

S x



                   (2.21)

where FS  and GS  are the survival functions of variables F  and G  respectively. Also, ( )E F  and 

( )E G  are the expected values of variables F  and G  respectively. 

2.6.2. Mutual Information 

In probability, mutual information is a special case of a more general quantity called relative 

entropy, which is a measure of the distance between two probability distributions. Mutual 

information between two variables is the Kullback-Leibler distance between their joint distribution 

and product of their marginal when they are mutually independent (Cover and Thomas, 1991). 

Mutual information is a quantity that measures the mutual dependence of the two random 

variables. The interpretation for the mutual information is how much tells us about the random 

variable, X, when we know the outcome of another random variable, Y. Mutual information 

quantity is always non-negative and zero if and only if two random variables are mutually 

independent. 

For two discrete variables X and Y whose joint probability distribution is ( , )p x y , the mutual 

information between them, denoted ( ; )I X Y , is given by  
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( , )

( ; ) ( , ) ln
( ) ( )x X y Y x y

p x y
I X Y p x y

p x p y 

 
   

 
                                         (2.22)               

where ( )xp x and ( )yp y are the marginal distributions of variables X and Y  respectively.  

In the case of continuous random variables, the double summation is replaced with double 

integration, and the mutual information is given by 

        
,

( , )
( ; ) ( , ) ln

( ) ( )x yy Y x X

p x y
I X Y p x y dxdy

p x p y
 

 
   

 
      (2.23)

where ( , )p x y  is joint probability density distribution, ( )xp x  and ( )yp y  are the marginal 

probability density distribution functions of X and Y respectively. It is symmetric, always non-

negative and equal to zero if and only if variables are mutually independent. The relationship 

between entropy, conditional entropy and mutual information is expressed in Figure-2.2. 

      

( | )H X Y ( ; )MI X Y ( | )H Y X

( , )H X Y

( )H X ( )H Y          

 Figure 2.2: The Relationship between Entropy, Conditional Entropy and Mutual Information 
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After Kullback-Leibler’s divergence measure, Wang et.al. (2003) defined a quantity similar to 

mutual information using cumulative residual entropy measure which is called Cross Cumulative 

Residual Entropy (CCRE) as 

( : ) ( ) [ ( | )]CCRE X Y X E Y X                                         (2.24) 

The cross cumulative residual entropy is not symmetric as the traditional mutual information 

formulation. However, cross cumulative residual entropy can easily be symmetrized; the 

symmetric cross cumulative residual entropy (SCCRE) is given by: 

        
1

( : ) ( , ) ( , )
2

symmetricCCRE X Y CCRE X Y CCRE Y X      (2.25) 

Cross cumulative residual mutual information quantity is also always non-negative and zero if and 

only if two random variables are mutually independent. 

2.7. Maximum Entropy Formulations 

In this section, we define the maximum entropy formulations in information theory literature. We 

first explain the traditional maximum entropy formulation and then the maximum cumulative 

residual entropy for single variable cases. 

2.7.1 Interpretation of the Jaynes Maximum Entropy 

Laplace might be considered the father of maximum entropy, having proposed the underlying 

theme 200 years ago in his “Principle of Insufficient Reason”: when one has no information to 

distinguish between the probabilities of two events, the best strategy is to consider them equally 

likely (Laplace, 1774). Jaynes, a more recent pioneer of maximum entropy, extends the idea to 

maximize entropy subject to certain constraints representing the incomplete information (Jaynes, 
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1957a, 1957b). The idea of Max-Ent is to estimate a target probability distribution by finding the 

probability distribution of maximum entropy subject to a set of constraints that represent the 

incomplete information. The Maximum Entropy principle states that out of all distributions, 

consistent with a given set of constraints, choose one that maximizes entropy. Intuitively, the 

principle of maximum entropy is simple: models all which is known and assume nothing about 

that which is unknown. The Maximum Entropy principle states that out of all distributions 

consistent with a given set of constraints choose one that maximizes entropy. The maximum 

entropy probability mass function for a discrete variable, X , having n  outcomes, when no further 

information is available is 

    

1

1

( ) arg max ( ) log( ( ))

. .

( ) 1

( ) 0,     1,2, ,

n

maxent i i

i

n

i

i

i

p x p x p x

s t

p x

p x where i n





 



 




     (2.26) 

This formulation yields a probability mass function with equal probability for each outcome, 

 
1

( )     1,2, , ip x i n
n

  (2.27) 

This probability mass function has an entropy of log( )n , which is the maximum value that can be 

measured when equal probabilities assigned for each outcome. Consider additional information is 

elicited from decision maker. In that partial information case, additional constraints, and indicator 

function or moment constraints are taken into account in maximum entropy formulation. Then, the 

convex optimization problem turns to a problem as  
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( ) arg max ( ) log( ( ))

. .

( ) ( )       1, 2, ,

( ) 1

( ) 0



 

 











b

maxent

a

b

i i

a

b

a

f x f x f x dx

s t

h x f x dx i n

f x dx

f x

  (2.28) 

where [ , ]a b is the interval of the variable, ( )ih x is an indicator function or a moment constraint, 

and i is given constant. Using the method of Lagrange multipliers, one can obtain the maximum 

entropy density estimation. Taking the partial derivative with respect to ( )f x , equating it to zero, 

and rearranging the equations gives 

 0 1 1 2 2( ) ( ) ... ( ) 1*( )
        

 n nh x h x h x
f x e   (2.29) 

Example 2.5:  If only the first moment is available, then the maximum entropy solution is 

0 1 1*( )
x

f x e
   

  , which is the density of exponential distribution. If the first and second moments 

are available, then the maximum entropy solution is 
2

0 1 2 1*( )
x x

f x e
     

 , nothing but the 

Gaussian density distribution, where i  is the Lagrange multiplier coefficient for each constraint. 

2.7.2 Interpretation of Maximum Cumulative Residual Entropy 

The maximum cumulative residual entropy is also calculated similar to Maximum Entropy. Let X  

be a non-negative random variable, and 1, , nr r are indicator function or moment constraints. Put 

                    
0

( ) ( )
t

i iR t r s ds                                                         (2.30)

Suppose ( ( ))i iE R X  ,   1 i n   is given. In terms of survival function, ( )S x  we can write 
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0

( ) ( )i ir s S x ds 


                                          (2.31)

and define maximum cumulative residual entropy as 

          

* arg max ( ) log( ( ))

. .

( ) ( )       1,2, ,

, ( ) 0

i i

S x S x dx

s t

r x S x dx i n

x F x



 

 






                                 (2.32)

and in all cases, let us write the maximum cumulative residual entropy distribution as 

                *

1

( ) exp ( )
n

i i

i

x r x


 
  

 
                                                (2.33)

Using cumulative probability distribution in maximum entropy formulation finally results in 

complementary cumulative distribution form. The answer is not exactly identical to Shannon’s 

maximum entropy because the density of a function is found in Shannon’s entropy case. The 

maximum cumulative residual entropy formulation calculates a Weibull distribution instead of an 

exponential distribution. 

Example 2.6: Consider 1( ) 1r x   and 2( )r x t . Then 

              
1

0 0

( ) ( ) ( ) [ ]r x S x dx P X x dx E X

 

            (2.34) 

            2

2

0 0

1
( ) ( ) ( ) [ ]

2
F x r x dx P X x xdx E X

 

                                     (2.35)

With a positive support constraint and under first and second constraints, the maximum cumulative 

residual entropy is 
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                   1 22* xe                       (2.36)

So, the maximum CRE is the cumulative exponential distribution with mean 
2[ ]

2 [ ]

E X

E X
  . Here 

the maximum cumulative residual entropy formulation finds an exponential distribution which is 

a special case of Weibull distribution. So, both the traditional maximum entropy approach and the 

maximum cumulative residual entropy approach find an exponential distribution and almost 

approximate similar distributions, 

2.8. Review of Previous Work on Related Research 

We now review the previous work in this section. We first discuss Chow-Liu’s first order 

dependence tree and then the Abbas’ maximum entropy approximation method. 

2.8.1. Chow-Liu’s First Order Dependence Trees (Chow and Liu, 1968) 

In probability theory and statistics, the Chow–Liu tree (Chow & Liu, 1968) is an efficient method 

for constructing a second-order product approximation of a joint probability distribution. Chow 

and Liu show that a probability distribution of first order dependence tree structure is the best 

approximation to the true distribution if its dependence tree has the maximum sum of mutual 

information pairs from all such first order dependence trees. Chow and Liu provide a simple 

algorithm for constructing the optimal tree and determine which conditional probabilities are to be 

used in the product approximation. The method is based on evaluating the mutual information 

pairs of variables at each stage. Then, the algorithm simply adds the maximum mutual information 

pairs to the tree. In first order dependence trees, each variable is conditioned on at most one 

variable, and there cannot be a cycle between the variables. A four-variate joint probability 

distribution 1 2 3 4( , , , )P X X X X  can be approximated as in Figure 2.3.                                



37 

 

                              

     

  

  
 

                
1 2 3 4 1 2 31 2 24( , , , ) ( ) ( | ) ( | ) ( | )tP X X X XX P X P X P X P XX X                 (2.37)  

Chow and Liu show that a probability distribution of the first order dependence tree structure is 

the best approximation to the true distribution if its dependence tree has the maximum sum of 

mutual information pairs from all such first-order dependence trees. 

2.8.2. Maximum Entropy with Lower Order Assessments (Abbas, 2006) 

The maximum entropy principle was first defined by Jaynes (1957). The principle of maximum 

entropy states that the probability distribution which best represents the current state of knowledge 

is the one with largest entropy. Abbas (2006) considered an extension to the maximum entropy 

formulation. He used the discrete form of maximum entropy to approximate joint probability 

distributions given lower order assessments. For example, the maximum entropy formulation of a 

joint distribution of four variables given the knowledge of the pairwise joint assessments is  

                 

 *

, , , , , , , , ,

, , ,

, , , .. , , , . . , , , ..

, , ,

, , , . . , , , . . , , , ..

, , ,

, , , , , ,

, , ,

arg max log

. .

1, 0 , , ,

i j k l i j k l i j k l

i j k l

i j k l ij i j k l i k i j k l i l

k l j l j k

i j k l jk i j k l j l i j k l kl

i l i k i j

i j k l i j k l

i j k l

p p p

s t

p p p p p p

p p p p p p

p p i j k l

 

  

  

  



  

  



     (2.38) 

Figure 2.3: Example of a four-dimensional dependence tree 
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where the subscripts refer to the variables in the order of assessment provided. For example, 
ijklp

refers to the joint probability of the ith outcome (branch of the tree) of the first variable, the jth 

outcome of the second variable, the kth outcome of the third variable, and the lth outcome of the 

fourth variable. A dot “ ” means that variable has been summed over. For example, 23..p  refers to 

the pairwise joint probability of the second branch of the first variable and the third branch of the 

second variable. This formulation produces a joint distribution  

0 .. . . .. . . . . ..1*

, , ,
ij i k i l jk j l kl

i j k lp e
             

                                              (2.39) 

where  ’s are the Lagrange multipliers for the corresponding constraints and the same subscript 

notation as the probability notation is used like 
..ij  corresponds to the constraint which has the 

pairwise assessment in equation 2.38, and 0  is a normalizing constant. 



39 

 

CHAPTER 3 

FIRST-ORDER DEPENDENCE TREES WITH CUMULATIVE RESIDUAL ENTROPY 

3.1. Introduction 

     In this chapter we determine the best first-order dependence tree approximation using the 

concept of cumulative residual entropy (CRE), an alternative measure of entropy that uses 

cumulative probability distributions. In contrast to discrete entropy where probabilities can be 

assigned to non-numeric variables, CRE requires numeric variables for the construction of a 

cumulative distribution.  

     In this chapter, we first formulate the concepts of Kullback-Leibler (KL)-divergence and 

mutual information in terms of cumulative residual entropy. Then we derive the optimal first-order 

dependence tree approximation of the joint distribution in terms of the cumulative residual KL-

divergence. We show that the optimal tree approximation is the one with the highest sum of 

cumulative residual mutual information pairs. This result parallels the Chow-Liu dependence tree 

formulation based on Shannon’s entropy. We then use a Monte Carlo simulation to show that our 

method is an alternative approximation method to Chow-Liu’s first-order dependence tree method.  

     The remainder of this chapter is structured as follows: Section 3.2 presents cumulative residual 

entropy to KL-divergence and mutual information definitions. Section 3.3 discusses the optimal 

cumulative residual entropy-based dependence tree. Section 3.4 presents a Monte Carlo simulation 

to quantify and compare the accuracy of our CRE approximation with the Chow-Liu 

approximation. 
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3.2. Cumulative Residual KL-Divergence and Mutual Information 

     We apply cumulative residual entropy to KL-divergence and mutual information. Our 

definitions differ from Baratpour and Rad’s (2012) cumulative Kullback-Leibler divergence, and 

Wang et.al’s (2003) cross cumulative residual entropy definitions in that we simplify the 

cumulative KL divergence by removing the expected values of random variables and taking the 

absolute value of the expression.  

Definition 3.1: Cumulative Residual Kullback-Leibler Divergence 

     The cumulative residual KL divergence between probability distributions TS  and AS  is  

                                             
( )

( || ) ( ) log
( )

T
CRE T A T

A

S x
KL S S S x

S x
                                             (3.1) 

where ( || ) 0CRE T AKL S S   and equality holds if and only if T AS S . 

     We also define another quantity similar to mutual information and called it as Cumulative 

Residual Mutual Information ( CREMI ).  

Definition 3.2: Cumulative Residual Mutual Information 

     The cumulative residual mutual information ( , )CREMI X Y , between variables X  and Y  is 

         
( , )

( , ) log
( ) ( )

CRE

x X y Y x y

S x y
MI S x y

S x S y 

  
    

   
                               (3.2) 

     The cross-cumulative residual entropy is not symmetric and is defined based on conditional 

cumulative residual entropy. Our definition, however, is symmetric and expressed as a cumulative 

residual Kullback-Leibler divergence of the product of the marginal survival functions of two 

random variables from the joint survival function of random variables.  
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3.3. First-order Dependence Trees using Cumulative Residual Entropy 

     In first-order dependence trees, each variable is conditioned on at most one variable, and there 

cannot be a cycle between the variables. Figure-3.1 shows an example of a first-order dependence 

tree of four variables.  

                               

     

  

  

 

 

     A four-variate joint probability distribution 1 2 3 4( , , , )P X X X X  can be approximated as in 

Figure-3.1 using a first-order dependence tree as 

                 
1 2 3 4 1 2 31 2 24( , , , ) ( ) ( | ) ( | ) ( | )tP X X X XX P X P X P X P XX X                          (3.3) 

 

     We define the optimum first-order dependence tree formulation with respect to the Cumulative 

Residual KL-divergence measure.  

Theorem 1:  

     The first-order dependence tree approximation is an optimum first-order tree approximation 

of the joint distribution with respect to the Cumulative Residual KL-divergence if its dependence 

tree has the maximum sum of cumulative residual mutual information pairs.  

Proof of Theorem 1: 

     In this proof, we follow the proof of Chow-Liu’s first-order dependence tree theorem but apply 

it to the survival functions and the two proposed measures defined in Section 3.2: cumulative 

Figure 3.1: Example of a four-dimensional dependence tree 
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residual KL-divergence (
CREKL ) and cumulative residual mutual information (

CREMI ). Let AS  be 

a second order product approximation (first-order dependence tree). The optimal first-order 

dependence tree is determined by minimizing the cumulative residual KL-divergence between true 

distribution TS  and approximate distribution AS  as * arg min [ || ]CRE T AA
S KL S S  . We first have 

the equation 

 

( )

1

( )
( || ) ( ) log

( )

( ) log ( ) ( ) log ( | )

T
CRE T A T

A

n

T T T A i j i

i

S x
KL S S S x

S x

S x S x S x S x x


 

  



  

  (3.4) 

     The first term of the right hand side of equation (3.4) is cumulative residual entropy of true 

distribution ( TS ), ( ) ( ) log ( )T T TS S x S x  .  So, re-arranging equation (3.4) gives 

  ( )

1

( || ) ( ) ( ) log ( | )
n

CRE T A T T A i j i

i

KL S S S S x S x x


             (3.5)                 

     We can write conditional survival function 
( )( | )A i j iS x x   as 

( )

( )

( , )

( )

A i j i

A j i

S x x

S x
, then equation (3.5) 

can be written as 

  
( )

( )

( )

1 , ( )

( , )
( || ) ( ) ( , ) log

( )
i j i

n
A i j i

CRE T A T T i j i

i x x A j i

S x x
KL S S S S x x

S x

                       (3.6) 

     Multiplying the numerator and the denominator of last term of equation (3.6) by marginal 

survival function, ( )A iS x    

  
( )

( )

( )

1 , ( )

( , ) ( )
( || ) ( ) ( , ) log

( ) ( )
i j i

n
A i j i A i

CRE T A T T i j i

i x x A j i A i

S x x S x
KL S S S S x x

S x S x

            (3.7)       
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     Our aim to multiply by  is to re-arrange the equation (3.6) and obtain cumulative residual mutual 

information. By using the logarithm of a product is the sum of the logarithms of the factors rule, 

we can rewrite equation (3.7) as 

 

( )

( )

( ) ( )

1 1 , ( )

( || )

( , )
( ) ( , ) log ( ) ( , ) log

( ) ( )
i i j i

CRE T A

n n
A i j i

T T i j i A i T i j i

i x i x x A i A j i

KL S S

S x x
S S x x S x S x x

S x S x 



     
  (3.8) 

 

     In order to minimize the cumulative residual KL information, we expect that the true and 

approximate distribution satisfy the equality condition that achieves the maximal value with

( ) ( )( , ) ( , )A i j i T i j iS x x S x x . We rewrite the equation (3.8) by substituting 
( )( , )A i j iS x x  with 

( )( , )T i j iS x x , and have  

               

( )

( )

( )

1 1 , ( )

( || )

( , )
( ) ( ) log ( ) ( , ) log

( ) ( )
i i j i

CRE T A

n n
T i j i

T T i T i T i j i

i x i x x T i T j i

KL S S

S x x
S S x S x S x x

S x S x 



     
      (3.9) 

     Using the rule of subadditivity rule of absolute values, we can rewrite the equation (3.9) as 

                          

( )

1

( )

( )

1 , ( )

( || ) ( ) ( ) log ( )

( , )
( , ) log

( ) ( )

i

i j i

n

CRE T A T T i T i

i x

n
T i j i

T i j i

i x x T i T j i

KL S S S S x S x

S x x
S x x

S x S x





   





 

                (3.10) 

     So, minimizing the cumulative residual KL divergence is same as minimizing the right hand 

side of the equation (3.10). First and second terms of right hand side of equation (3.10) are 

independent to the dependence tree, therefore minimizing the cumulative residual KL divergence 

is equivalent to maximizing the sum of cumulative residual mutual information in each branch.  
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     To illustrate the implications of Theorem-1, we now apply the cumulative residual entropy 

approach to the same probability distribution used in Chow-Liu (1968) to compare the two 

approaches. 

Example 3.1: 

     Consider four binary variables where each variable takes on values “0” and “1”.  Table-3.1 

shows the outcomes and corresponding probabilities of joint distribution.  

    

                                           

0 0 0 0 0.10

0 0 0 1 0.10

0 0 1 0 0.05

0 0 1 1 0.05

0 1 0 0 0.00

0 1 0 1 0.00

0 1 1 0 0.10

0 1 1 1 0.05

1 0 0 0 0.05

1 0 0 1 0.10

1 0 1 0 0.00

1 0 1 1 0.00

1 1 0 0 0.05

1 1 0 1 0.05

1 1 1 0 0.15

1 1 1 1 0.15

1.000

X1 X2 X3 X4 P(                    )     ,  ,  

   =       

     To compare both methods we calculate the mutual information and cumulative residual mutual 

information between pairs of variables. All combination of pairs of variables and mutual 

information and cumulative residual mutual information quantities are given at Table-3.2. 

 

 

 

Table 3.1: 2 2 2 2    Joint Probability Distribution 
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Pair of variables MI

X1-X2 0.07900 0.11175

X1-X3 0.00005 0.00249

X1-X4 0.00510 0.02610

X2-X3 0.18900 0.17872

X2-X4 0.00510 0.02383

X3-X4 0.00510 0.02383

     

 

     We consider two error measures for the deviation of the approximation distribution from true 

distribution: the absolute deviation, and least squares error. Table 3.3 provides the formulae for 

error measures used in this paper. 

                               

FormulaError Measure

Absolute Deviation

Least Squares Error

*

1

n

i i

i

p p




 
2

*

1

n

i i

i

p p



 

     We construct the optimal first-order dependence trees using mutual information and cumulative 

residual mutual information pairs. Figure-3.2 shows the optimal dependence tree approximations. 

The first three diagrams in Figure-3.2 are identical to those in Chow-Liu’s paper. The fourth one 

is the dependence tree obtained using cumulative residual entropy.  

     For comparison purposes of two approximation methods, we calculate the absolute deviation 

and least square error between the true distribution and approximate distributions. From Table 3.4, 

we see that the absolute deviation between the first dependence tree approximation of Chow-Liu 

and true distribution is 0.260055 and the least square errors is 0.005984. The absolute deviation 

and least squares error between dependence trees found by CRE and true distribution are identical 

to the 

Table 3.3:  Error Measures 

Table 3.2:  Mutual Information Quantities between pairs of variables 
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absolute deviation and least squares error between the first dependence tree approximation of 

Chow-Liu and true distribution. On the other hand, the absolute deviation and least squares error 

between second and third approximations of Chow-Liu and true distribution is higher than the  

absolute deviation and least squares error between dependence tree found by CRE method and true 

distribution; so these two dependence tree are not the best approximation.  

 

                   

Chow-Liu 1

Chow-Liu 2

Chow Liu 3

CRE

Absolute Deviation Least Squares Error

0.005984

0.005989

0.005989

0.005984

0.2601

0.2752

0.2752

0.2601
 

     For this specific example, CRE method approximates a first-order dependence tree same as 

Chow-Liu’s first approximation and  a better first-order dependence tree than second and third 

Table 3.4: Optimal Tree Approximations calculated by Chow-Liu and CRE method 

Figure 3.2: Optimal Tree Approximations calculated by Chow-Liu and CRE method 

CRE AppChow Liu App-1 Chow Liu App-2 Chow Liu App-3

1X

2X 4X

3X

1X

3X

2X

4X

1X

2X

3X

4X

2X

1X 3X

4X
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approximations of Chow-Liu method. Therefore, we can say that our proposed method is at least 

as good as Chow-Liu’s method. We now measure the performance of CRE and Chow-Liu methods 

in the long run by a Monte Carlo simulation in section 3.4. 

3.4. Monte Carlo Simulation for CRE First-order Dependence Tree  

     We conducted a simulation to compare Chow-Liu method with CRE method. Simulation steps 

are shown in Figure-3.3. For numeric illustration, we discuss the simulation steps in terms of a 

several multi-variate distributions each variable has different values.  

   

 

     We generated 10 million discrete joint probability distribution samples to check performance 

and accuracy of Chow-Liu’s method and cumulative residual entropy method. Table 3.5 displays 

a summary of mean and variance of errors of second order joint probability distributions calculated 

by Chow-Liu and cumulative residual entropy methods.  

 

                 

Mean St.Dev. Mean St.Dev.

Chow-Liu 0.5888 0.0549 0.0077 0.0018

CRE 0.5879 0.0545 0.0074 0.0017

Absolute Deviation Least Squares Error

 

Generate 80 independent 
samples from U[0,1]

Sort samples from lowest 
to highest

Take difference between 
each consecutive samples

•Calculate MI and MICRE for each pair of 
variables

•Construct first-order dependence tree 
approximation

•Calculate absolute deviation and least 
squares error 

Table 3.5: Comparison of Four-variate Approximations of Chow-Liu and CRE method 

First-order 
Dependence 

Tree 

Figure 3.3: Monte Carlo Simulation Steps for Chow-Liu and CRE Approximations 
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     From Table 3.5, for the case of 3 3 3 3    joint distributions, we have found that Chow-Liu 

and CRE methods’ results are almost exactly same after 10 million runs. The mean of absolute 

deviation for Chow-Liu method is 0.5888, and for CRE method is 0.5879. The ratio of the means 

of absolute deviation of Cho-Liu’s method to the CRE method is less than

(0.5888 / 0.5879) 0.15% . Also, the mean of the least squares error between Chow-Liu 

approximate distribution and true distribution is 0.0077, and for CRE method, the least square 

error is 0.0074 which are a small deviation in many problems. 

     For convenience, we also ran another simulation with several different combination of joint 

distributions, including three binary variables, three three-outcome variables, three four-outcome 

variables, three five-outcome variables, four binary variables, four three-outcome variables, four 

four-outcome variables, and four five-outcome variables. Table 3.6 displays a summary of mean 

and variance of errors of our second-order joint probability distributions calculated by Chow-Liu 

and cumulative residual entropy methods.  

     From the simulation results in Table 3.6, we first observe that the mean and variance of errors 

are very close in the long run for the two methods, which means that the two approximation 

methods are very close but not identical.  

     Second, we observe that the mean value of absolute deviation for our CRE approximation 

method and traditional Chow-Liu method increases with the number of outcomes of a variable, 

while the mean value of least squares error decreases, implying that these two methods are 

sensitive to the number of variables and its outcomes. 
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Table 3.6: Simulation results of Chow-Liu and CRE-based approximations 

Mean St.dev Mean St.dev Mean St.dev Mean St.dev

Three binary variables 0.1810 0.1256 0.1822 0.1264 0.0074 0.0094 0.0077 0.0099

Three variables each has three values 0.3886 0.0866 0.3934 0.0914 0.0095 0.0049 0.0098 0.0053

Three variables each has four values 0.4883 0.0596 0.4942 0.0620 0.0073 0.0017 0.0071 0.0019

Three variables each has five values 0.5505 0.0469 0.5484 0.0441 0.0045 0.009 0.0042 0.008

Four binary variables 0.3612 0.1121 0.3548 0.1118 0.0138 0.0084 0.0136 0.0083

Four variables each has three values 0.5888 0.0549 0.5879 0.0545 0.0077 0.0018 0.0074 0.0017

Four variables each has four values 0.6638 0.0319 0.6557 0.0311 0.0032 0.0004 0.0030 0.0004

Four variables each has five values 0.6980 0.0254 0.6915 0.0241 0.0015 0.0003 0.0015 0.0003

Chow-Liu CRE

Absolute Deviation Least Squares

Chow-Liu CRE

  

3.5. Comparison of CRE Based First Order Dependence Trees with Chow and Liu’s First   

       Order Dependence Tree 

     The Chow-Liu approximation and CRE-based approximation give similar accuracy results and 

sometimes approximate exactly the same distribution in the long run. As seen in figure 3.4, for a 

four binary variable case they both approximated the same first-order dependence trees for more 

than 89% of the samples.  

     In this study, we aim to identify where the CRE-based first-order dependence tree differs from 

Chow-Liu’s first-order dependence tree and explore under what conditions or situations the former 

method gives more accurate results. To further analyze and compare these two methods in the long 

run, we generate different multivariate probability distributions. We analyze the accuracy of 

approximations for three- and four-variate distributions with increasing numbers of values for each 

variable. We start with three binary random variables and then we add a new value to each variable 

to observe the changes in percentage of similarities and differences between these two 

approximation methods. 
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5.77%4.51%

89.72%

CRE method approximates more accurate first order tree

Chow-Liu method approximates more accurate first order tree

Both methods approximate same first order tree

 

Figure 3.4: Simulation results of absolute deviation of Chow-Liu and CRE-based approximations 

     We do the same procedure for four random variable cases with two, three, four, five, six and 

seven values. We first analyze how much percent of the approximation of the sampling 

distributions are the same, then analyze the approximation percentage of the sampling distributions 

where the CRE-based first-order dependence tree method is more accurate and vice versa. We 

further analyze how the approximate distributions’ accuracy changes with the number of random 

variables. In this case, we hold the number of variable values constant and increase the number of 

variables from three to six. Finally, we analyze how the accuracy changes with the dependence 

structure among variables. In our analysis, we use total correlation measure, a dependency measure 

in information theory that can be used to quantify the dependency among a set of random variables. 

We do our analysis for three- and four-variate probability distributions with two, three, and four 

values of each variable. In this analysis, three different accuracy measures are used: absolute 

deviation (AD), least squares (LS), and maximum deviation (MD). 
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3.5.1. Effects of Increasing Number of Values of Each Variable: Three Variable Case  

     We start with three binary random variables and add a new value to the variables to observe the 

changes in the percentage of similarities and differences between these two approximation 

methods. Figure-3.5 shows the results for the three-variable case using absolute deviation as the 

accuracy measure. 

 

 

     From Figure 3.5, we can say that the difference between these two approximation methods 

increases as the number of values of each variable increases. For the binary variable case, both 

methods approximated the same first-order dependence trees more than 92% of the samples and 

this percentage decreased to 70% when each variable has seven different values. These results 

make sense because there is only three variables and three different pairwise combinations of 

variables; X1-X2, X1-X3, and X2-X3.  Therefore, we can only find three possible first-order 

dependence trees and most likely these two methods approximate the same first-order dependence 

tree most of the time. 
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Figure 3.5: Comparison of Chow-Liu and CRE-based First-order Dependence Tree Approximations based on   

                 Absolute Deviation Measure for Three-Variable Case 
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     Another observation from Figure 3.5 is that the CRE-based first-order dependence tree method 

is slightly more accurate than the Chow-Liu method, in that the percentages for CRE method are 

slightly above the 50% and somewhat below 50% for Chow-Liu method. 

     We also run the same simulation for least squares measure and maximum deviation measure. 

Figure-3.6 shows the results of three variable case (Figure 3.6-a: Least Squares, Figure 3.6-b: 

Maximum Deviation). 

 

 

  

     Figure 3.6 shows similar behavior to those in Figure 3.5. However, in Figure 3.6-b, the 

difference between Chow-Liu and CRE methods increases when maximum absolute deviation is 

used as the accuracy measure. So, we may say that Chow-Liu method obtained more extreme 

deviations from the true probability distributions than that obtained by the CRE-based first-order 

dependence tree method. 

3.5.2. Effects of Increasing Number of Values of Each Variable: Four Variable Case  

     We now do the same procedure for a four-random-variable case with two, three, four, five, six 

and seven values. Figure-3.7 shows the results for the four-variable case using absolute deviation 

as the accuracy measure. 
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                             (a)  Least Squares           (b) Maximum Deviation 

Figure 3.6: Comparison of Chow-Liu and CRE-based First-order Dependence Tree Approximations based on   

                 Least Squares and Maximum Deviation Measures for Three Variable Case 

 



53 

 

 

 

 

     The results for the four-variable case are different from those for the three-variable case. In this 

case, four variables yield 125 possible first-order dependence trees. In the four-binary-variable 

case, these two methods approximated the same first-order dependence trees more than 89% of the 

samples. However, these two approximation methods approximate the same distribution for less 

than 20% of the samples for three or more values of variables. The results show that the percentage 

of approximations from the same first-order dependence tree decreases exponentially as the 

number of values of variables increase for AD, LS, and MD measures. For a low number of values 

of variables, the approximations yielded by both methods are nearly identical, but the CRE-based 

first-order dependence tree methods is more accurate than the Chow-Liu method as the number of 

values of variables increases. In Figure 3.8, we also plot the least squares and maximum deviation 

results, which are very similar to absolute deviation results.  
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Figure 3.7: Comparison of Chow-Liu and CRE-based First-order Dependence Tree Approximations based on   

                 Absolute Deviation Measure for Four Variable Case 
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     We also calculate the mean accuracy (error) values of approximations for each measure for 

three and four variable cases with increasing number of values for each variable and for 

independence cases. Figure-3.9 shows the results of mean accuracy values: although there is a 

difference for the percentage results of the four-variate case, the average accuracy values for each 

method are very close. Also, the error values increase with the number of values of variables 

increases for absolute deviation measure, however, decreases for least squares and maximum 

deviation. For higher number of values, the CRE-based first-order dependence tree is slightly 

better than the Chow-Liu method. These results are consistent with the previous results. 

We can say that for higher values of variables, the CRE-based first-order dependence tree method 

outperforms the Chow-Liu first-order dependence tree method. We also observe that as the number 

of values of variables increases, the accuracy values of the independence case converge to the 

accuracy values of Chow-Liu and CRE-based first-order dependence tree approximation 

approaches.   
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                             (a)  Least Squares           (b) Maximum Deviation 

Figure 3.8: Comparison of Chow-Liu and CRE-based First-order Dependence Tree Approximations based on   

                 Least Squares and Maximum Deviation Measures for Four Variable Case 
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3.5.3.   Effects of Increasing the Number of Variables in Multivariate Distributions 

     We now analyze how accuracy of the approximate distributions changes as the number of 

random variables increases in a multivariate distribution. In this case, we hold the number of values 
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     (c)  Least Squares of Three Variable Case                             (d) Least Squares of Four Variable Case 

    (e)  Maximum Deviation of Three Variable Case                  (f) Maximum Deviation of Four Variable Case 

Figure 3.9: The Mean Accuracy (Error) Values of Each Measure for Three and Four Variable Cases with Increasing    

                 Number of Values of Each Variable 
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of variables constant and increase the number of variables from three to six. We do our analysis in 

two parts. First, we analyze for binary variables, then we analyze the case each variable has three 

values.  Table-3.7 shows the results of mean values of each measure for different multivariate 

distributions. 

 

 

     The mean value of absolute deviation for the Chow-Liu method is 0.5888 and for the CRE 

method is 0.5779. The ratio of the mean of absolute deviation of the Cho-Liu method to that of the 

CRE method is less than (0.5888/0.5779)=0.19%. Also, the mean of the least squares error between 

the Chow-Liu approximate distribution and the true distribution is 0.0074, whereas for the CRE 

method the least square error is 0.0077, a small deviation in many problems.  

 In Table-3.7 we first observe that the mean error value is very close in the long run for each of 

the two methods, which means that the two approximation methods are very close but not identical. 

We can say that these two methods are very similar and approximate almost identical joint 

probability distributions for lower number of variables and values of variables. So, our proposed 

Three binary variables 0.0092

Four binary variables 0.0138

Five binary variables 0.0116

Six binary variables 0.0109

Three variables each has three values 0.0074

Four variables each has three values 0.0074

Five variables each has three values 0.0034

Six variables each has three values 0.0013

0.5888

0.6800

0.7174

0.1822

0.3548

0.5181

0.6144

0.3934

0.5779

0.6719

0.7085

0.1810

0.3612

0.5391

0.6267

0.3886

0.0314

0.0160

0.0075

0.0525

0.0377

0.0168

0.0075

0.0745

0.0696

0.0545

0.0408

0.0473

0.0077

0.0032

0.0012

0.0844

0.0738

0.0576

0.0431

0.0098

0.0136

0.0108

0.0104

0.0072

Absolute Deviation Least Squares Maximum Deviation

Chow-Liu CRE Chow-Liu CRE Chow-Liu CRE

Table 3.7: Simulation Results of Mean Values of Error Measures as the Number of Variables Increases 
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method can be used as an alternative method to the Chow-Liu method if cumulative functions are 

present.  

     In Table-3.7 we also observe that the mean values of absolute deviation for our CRE 

approximation method and traditional Chow-Liu method both increase with the number of 

variables while the mean value of least squares error and maximum deviation decrease. This 

implies that these two methods are sensitive to the number of variables and its outcomes. 

     Also, we explore the changes in percentage of similarities and differences between these two 

approximation methods as the number of variables increases in the multivariate distribution. 

Figure-3.10 shows the results for the binary case (Figure 3.10-a-c-e) and the three-value case 

(Figure 3.10-b-d-f) for each error measure. We found that the Chow-Liu and CRE methods 

approximated the same first-order dependence tree for more than 90% of the samples in the three- 

and four-binary variable cases. However, the percentage of sample distributions that were identical 

for both methods decreased sharply as the number of variables increased. Also, where the two 

methods approximate different first-order dependence trees, we analyze the percent of the 

approximation of the sampling distributions where CRE-based first-order dependence tree 

provides more accurate approximations and vice versa.  

     The results of these two approaches, as shown in Figure 3.10 and Table 3.7, are very similar to 

those obtained with increasing number of values of variables. For lower number of variables, these 

two methods show very similar behavior; however,the CRE-based first-order dependence tree 

method provides better approximations than the Chow-Liu method as the number of variables 

increases. We can see that the approximations provided by the CRE-based first-order dependence 

tree are more than 60% more accurate than those for first-order dependence trees for a 5-binary 
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variable case, and more than 70% accurate for 6-binary variable case (Figure-a-c-e).  This 

similarity also extends to the approximations for three-value variables . (Figure-b-d-f). 
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    (a)  Absolute Deviation of Binary Variable Case             (b) Absolute Deviation of Three-outcome Variable Case 

(c)  Least Squares of Binary Variable Case                        (d) Least Squares of Three-outcome Variable Case 

 (e)  Maximum Deviation of Binary Variable Case           (f) Maximum Deviation of Three-outcome Variable Case 

Figure 3.10: The Percent of the Approximation of the Sampling Distributions That CRE-based and Chow-Liu    

                      First-order Dependence Tree Methods are Same and Different 
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     Thus, the CRE method outperforms the Chow-Liu method for more than four variables. 

Moreover, these results indicate that the effect of increasing the number of values of each variable 

is similar to the effect of increasing the number of random variables.  

3.5.4. Effects of Changing the Dependence Structure Between Variables  

     We now discuss the effects of changing dependence structure among variables. We use total 

correlation (TC) as a dependency measure. In probability theory. and particularly in information 

theory, total correlation (Watanabe, 1960) is the amount of information shared among the 

variables. It quantifies the dependency among random variables.  Total correlation is non-negative 

and that it is zero if and only if the random variables are independent ( 0TC  ).  

     Let  1 2, , , nX X X  be discrete random variables. The total correlation is defined as 

 
1 1 2 2

1 2
1 2 1 2

1 2

( , , , )
( , , , ) ( , , , ) log

( ) ( ) ( )
n n

n
n n

x X x X x X n

p x x x
TC X X X p x x x

p x p x p x  


  

      (3.11) 

where 1 2( , , , )np x x x is the probability mass function of variables 1 2, , , nX X X , and 1( )p x  is the 

marginal probability distribution of variable 1X . 

     This total correlation formulation can be reduced to the simpler difference of entropies as 

 1 2 1 2

1

( , , , ) ( ) ( , , , )
n

n i n

i

TC X X X H X H X X X


 
  
 
    (3.12) 

where  ( )iH X  is the entropy of variable iX , 1,2, ,i n .  

     We run a simulation with several different combination of joint distributions, including three 

binary variables, three three-outcome variables, three four-outcome variables, four binary 

variables, four three-outcome variables, and four four-outcome variables. Figure 3.11, 3.12, and 

3.13 display the mean values of errors of our second-order joint probability distributions calculated 
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by Chow-Liu and cumulative residual entropy methods for absolute deviation, least squares, and 

maximum deviation measures, respectively. 

     From Figure 3.11, 3.12, and 3.13, we can say that the cumulative residual approximation and 

the Chow-Liu approximations give almost identical accuracy results when the correlation between 

variables are low. As the correlation among variables increases, the error of approximations 

increases and CRE-based first-order dependence tree approximation is better than Chow-Liu first-

order dependence tree approximation for all accuracy measures. So, we can say that CRE-based 

first-order dependence tree approximation shows higher accuracy as the correlation increases. For 

instance, for four three-outcome variable, when the average total correlation is between 0.2 and 

0.2199, mean absolute deviation of Chow-Liu method is ~0.449, and mean absolute deviation of 

the CRE-based approximation method is ~0.442. On the other hand, when the average total 

correlation is between 0.5-0.519, then the absolute deviation of the CRE-based method is ~0.677, 

and the absolute deviation of Chow-Liu method is ~0.708. 

     Another observation from Figure 3.11, 3.12, and 3.13 is that the difference between the two 

methods is small when the variables are binary. However, the the difference between the two 

methods noticeably increases with the number of values for each variable. Thus, these two methods 

are sensitive to the number of values of variables, or we can say that the dimension of the 

probability distribution has an effect on the accuracy of the approximations. 

Note that the error of approximations increases as both the correlation and dimension of 

the multivariate probability distribution increases. Also note that the CRE-based method gives 

much better approximation when the total correlation is high.   
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(b)  Total Correlation vs. Absolute Deviation for    

Four Binary Variable                      

(a) Total Correlation vs. Absolute Deviation for    

Three Binary Variable                      

(d)  Total Correlation vs. Absolute Deviation for    

Four Three-outcome Variable                      

(c) Total Correlation vs. Absolute Deviation for    

Three Three-outcome Variable                      

(f)  Total Correlation vs. Absolute Deviation for    

Four Four-outcome Variable                      

(e)   Total Correlation vs. Absolute Deviation for    

Three Four-outcome Variable                      

Figure 3.11: Average Values of Errors of Second-Order Joint Probability Distributions Calculated by Chow-Liu   

                      and Cumulative Residual Entropy Methods Using Absolute Deviation as Accuracy Measure 
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(b)  Total Correlation vs. Absolute Deviation for    

Four Binary Variable                      

(a) Total Correlation vs. Least Squares for    

Three Binary Variable                      

(c)   Total Correlation vs. Least Squares for    

Three Three-outcome Variable                      

(d)  Total Correlation vs. Least Squares for    

       Four Three-outcome Variable                      

(f)  Total Correlation vs. Least Squares for    

Four Four-outcome Variable                      

(e) Total Correlation vs. Least Squares for    

Three Four-outcome Variable                      

Figure 3.12: Average Values of Errors of Second-Order Joint Probability Distributions Calculated by Chow-Liu  

                     and Cumulative Residual Entropy Methods Using Least Squares as Accuracy Measure 
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(b)  Total Correlation vs. Maximum Deviation for    

Four Binary Variable                      

(a) Total Correlation vs. Maximum Deviation for    

Three Binary Variable                      

(d)  Total Correlation vs. Maximum Deviation for    

Four Three-outcome Variable                      

(c)   Total Correlation vs. Maximum Deviation for    

Three Three-outcome Variable                      

(f)   Total Correlation vs. Maximum Deviation for    

Four Four-outcome Variable                      

(e)   Total Correlation vs. Maximum Deviation for    

Three Four-outcome Variable                      

Figure 3.13: Average Values of Errors of Second-Order Joint Probability Distributions Calculated by Chow-Liu   

                      and Cumulative Residual Entropy Methods Using Maximum Deviation as Accuracy Measure 
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3.6. Decision Problems where CRE Based First Order Dependence Trees are More Suitable 

or Preferable 

     In the case of censored data, in which the observed value of some variable is only partially 

known, the CRE-based first-order dependence tree must be used. The problem of censored data is 

related to the problem of missing data, where the observed value of some variable is entirely 

unknown. Censoring is an important issue in survival analysis, representing a particular type of 

missing data. Thus, using survival functions instead of density functions in entropy formulation 

helps to take into account the censored data. 

Also, survival functions generally should be used if the variable of interest is the time of an 

event, so CRE-based first-order dependence trees are preferable. Some examples of decision 

problems involving survival functions include time until onset of disease, time until stock market 

crash, time until equipment failure, time until earthquake, and so on. Let X  be the time elapsed 

until a particular event occurs, such as death, infection, the appearance of a tumor, the development 

of some diseases, and so forth.  Also, there are several other areas in which survival functions are 

used to make decisions, such as quality control stages in manufacturing production or preliminary 

medical examinations to determine whether a patient is suitable for treatment. 

3.7.   Summary of the Results 

- The CRE-based first-order dependence tree approach can only be applied to numeric 

variables, but the Chow-Liu first-order dependence tree method can be applied to both 

numeric and non-numeric variables. 

- For lower correlations, lower number of variables, and lower number of values of variables, 

both methods approximate almost the same first-order dependence tree. 



65 

 

- The CRE-based first-order dependence tree method gives more accurate approximation 

when the number of variables more than four.  

- The accuracy of approximations decreases as the correlation and the dimension of the 

multivariate probability distribution increases 

- The CRE-based method gives much better approximation when the total correlation and/or 

dimension of the multivariate distribution is high. 

- For binary variable cases, both methods show almost same performance.  

- The CRE-based first-order dependence tree method gives more accurate approximation as 

the number of values of variables increases. 

- The CRE-based first-order dependence tree needs be used if some of the data are censored. 

- The CRE-based first-order dependence tree is preferable if the variable consists of the time 

elapsed until an event occurs. 

3.8. Conclusion 

     In this chapter, we discussed the problem of approximating multidimensional discrete 

probability distributions using first-order dependence trees. We showed that the optimal first-order 

dependence tree approximation in terms of the cumulative residual KL divergence is the one with 

the largest sum of cumulative residual mutual information pairs.   We then ran a Monte Carlo 

simulation to illustrate the performance of the approximation. The results show that the cumulative 

residual approximation and the Chow-Liu approximations gives similar accuracy results. 

However, the results of these two approximation methods are not identical. So, we characterize 

when CRE-based first-order dependence tree yields approximations different from those of Chow-

Liu’s first-order dependence tree and explore under what conditions or situations that CRE-based 

first-order dependence tree method gives more accurate results.  
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     We can say that CRE-based first-order dependence tree at least as good as the Chow-Liu’s first-

order dependence tree method. The only drawback of our proposed method is that it can only be 

applied to numeric variables. So, we can conclude that cumulative residual entropy method can be 

used as an alternative method to Chow-Liu’s method if cumulative functions, especially survival 

functions, are present. Therefore, we don’t need to calculate the density functions to approximate 

first-order dependence trees, and by using CRE method we can directly approximate first-order 

dependence trees from cumulative functions.  
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CHAPTER 4 

CONSTRUCTION OF JOINT PROBABILITY DISTRIBUTIONS BASED ON 

MAXIMUM CUMULATIVE RESIDUAL ENTROPY 

4.1. Introduction 

     This chapter proposes an approximation method based on the maximum cumulative residual 

entropy principle to construct representative joint probability distributions from its lower-order 

assessments. We formulize a maximum cumulative residual entropy that is similar to maximum 

entropy, but we use cumulative functions rather than density functions. Using cumulative functions 

in our proposed approach simplifies the maximum entropy formulation, reduces the number of 

assessments, captures dependence into model, and approximates less error prone joint probability 

distributions when only partial information is available. The maximum cumulative residual 

entropy principle keeps the probability distribution consistent with observed constraints. It yields 

a probability distribution which is “most likely” to have represented the observed data. The 

remainder of this chapter as follows: In section 2, we discuss the maximum cumulative residual 

entropy formulation. Section 3 presents a Monte Carlo simulation application of the new approach 

and discusses and interprets the results of simulation. Section 4 discusses the comparison of two 

approximation methods. Section 4 presents the conclusion remarks of the chapter. 

4.2. Maximum Cumulative Residual Entropy 

     Laplace proposed in his publication “Principle of Insufficient Reason” that when one has no 

information to distinguish between the probabilities of two events, the best strategy is to consider 

them equally likely (Laplace, 1774). In the same analogy, if the only available information about 
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the probability distribution is the number of outcomes, the maximum entropy formulation assumes 

a uniform distribution with n outcomes as   

 
* 1
( )p x

n
   (4.1) 

     Moreover, if the marginal distributions of variables are known, then the maximum entropy 

formulation assumes independence between variables and produces a joint distribution which is 

equal to product of marginal distributions. For instance, if only marginal distributions of three 

variables, , ,x y z  are available, then the maximum entropy produces a joint distribution as 

 *( , , ) ( ) ( ) ( )x y yp x y z p x p y p y   (4.2) 

     The maximum cumulative residual entropy formulation also produces same results with the 

information number of outcomes, and marginal survival function of random variables. If the only 

available information is the number of outcomes, then the maximum cumulative residual entropy 

finds a uniform survival function with n outcomes.  

 
*( )

n x
S x

n


   (4.3) 

     If additionally marginal survival functions are known, the maximum cumulative residual 

entropy is consistent with maximum entropy and produces a joint distribution which is equal to 

product of marginal survival functions.  

 *( , , ) ( ) ( ) ( )x y yS x y z S x S y S y   (4.4) 

     However, information of number of outcomes and marginal distributions is not enough to add 

dependence between variables into joint distribution. If we want to incorporate dependence 
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between variables into the maximum cumulative residual entropy formulation, we need to consider 

at least pairwise assessments between variables in addition to the marginal distributions of the 

variables. For instance, in the case of three variable decision problems, the available information 

should be marginal and/or pairwise assessments and the maximum cumulative residual entropy 

formulation of a three-variate joint distribution with the pairwise assessments is 

 

1 2 3

3

2

1

*

1 2 3 1 2 3 1 2 3

, ,

1 2 3 1 2

1 2 3 1 3

1 2 3 2 3

1 2 3
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x
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 
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


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



  (4.5) 

where 1ix  refers to thi  outcome of the first variable, and 
1 2 3( , , )i j kS x x x refers to the three variable 

joint survival function of the thi  outcome of the first variable, 
thj  outcome of the second variable, 

and thk  outcome of the third variable. The solution to the maximum cumulative residual entropy 

for three variables using pairwise assessments is 0 . . .1*( ) ij i k jkS x e
       

 .  

 

Example 4.1:  

 

     Assume we want to find the maximum cumulative residual entropy for the joint distributions 

of three binary variables using its pairwise assessments. The binary variables take values “0” and 

“1” in this example. The probability mass function of three binary variables is given as 
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0 0 0 0.380

0 0 1 0.097

0 1 0 0.169

0 1 1 0.178

1 0 0 0.087

1 0 1 0.048

1 1 0 0.009

1 1 1 0.032

1.000

X1 X2 X3 p(                )     ,  

   =

 
     There are a total of 12 pairwise cumulative residual assessments that can be found and these 

pairwise assessments are shown in Table-4.2.  

 

 

   

Probability

1.000

0.388

0.176

0.040

1.000

0.354

0.176

0.040

1.000

0.354

0.388

0.209

Pairwise Assessment

11_S

12 _S

21_S

22 _S

1_1S

1_ 2S

2 _1S

2_ 2S

_11S

_12S

_ 21S

_ 22S

 

     The pairwise assessment, 
12 _S , define a bivariate survival function that the first variable has 

values bigger than one, the second variable has values bigger two, and the third variable takes any 

Table 4.2: Pairwise Probabilities for given 2 2 2   

Distribution 

Table 4.1: 2 2 2   Joint Probability Distribution 
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value. This problem can be solved as an optimization problem that maximizes a concave function 

subject to some given constraints. In the analysis part, we don’t use the full pairwise assessments 

because six of them are redundant and we eliminate them from our optimization analysis to 

simplify the approximation process. Then, the maximum cumulative residual entropy formulation 

for a three binary variable distribution with the independent constraints can be formulized as  

 

1 2 3 1 2 3

3 3

3 2

3

*

1 2 3 1 2 3 1 2 3
( , , ) , ,

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2

( , , ) arg max ( , , ) ln( ( , , ))

. .

( 1, 1, ) 1.000 ( 2, 2, ) 0.041

( 1, 2, ) 0.388 ( 1, , 2) 0.354
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x

S x x x
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



  (4.6) 

     We solve this optimization problem in MATLAB R2013a using the function “fmincon” to find 

the approximate probability distribution using given constraints. For comparison purposes, we also 

calculate the maximum entropy probability distribution. Table-4.3 shows the results of the 

analysis.  

Outcomes True Distribution Maximum Entropy Maximum CRE

0.380 0.382 0.382

0.097 0.095 0.096

0.170 0.168 0.169

0.178 0.180 0.180

0.087 0.085 0.085

0.048 0.050 0.050

0.009 0.011 0.011

0.031 0.029 0.029

    

    
    

    

    

    

    

    

 

Table 4.3: Results of Max-Entropy and Max CRE for Three Binary Variables 
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     As we can see from the results, the approximate probability distributions are very close to each 

other. We compared the values of true distribution with the values obtained using maximum 

entropy and maximum cumulative residual entropy approximations. For this specific example, the 

results are almost identical. The maximum cumulative residual entropy approximation method 

performs similar to maximum entropy method. As a result, we can say the maximum cumulative 

residual entropy approach is also a good approximation method and an alternative method to 

maximum entropy to estimate the probability distributions using lower order assessments. 

 

     Also, we calculate the error between true distribution and maximum entropy formulation, and 

also the error between true distribution and maximum cumulative residual entropy formulation. 

We use absolute deviation and least squares error to measure the error. Table-4.4 shows the 

absolute deviation and the least squares error between the three binary variable joint distribution 

and two approximate distribution (maximum entropy and maximum CRE) using pairwise 

assessments. 

 

 

             

Error Measure Maximum Entropy Maximum CRE

Abs. Deviation 0.01809 0.01805

LSE 54.091 10 54.091 10

 

     From Table-4.4, we observe that there is no a significant difference between the approximation 

provided by the maximum entropy approach and the maximum cumulative residual entropy 

approach. The absolute deviation of maximum entropy is 0.01809 and the absolute deviation of 

maximum cumulative residual entropy is only 0.01805. The difference between two approximation 

methods is less than 0.22% which is so small and the two methods are almost identical for the 

Table 4.4: Error Results between True Distribution and Approximate Distributions 
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Generate 80 independent 

samples from U[0,1] 

Sort samples from lowest 

to highest 

 

CRE 

• Compute marginal, pairwise, and 
three-way assessments 

• Construct approximate distributions 

• Calculate absolute deviation and least

squares error 

Take difference between 

each consecutive samples 

specific example. Now, we discuss the performance of the maximum entropy and maximum 

cumulative residual entropy approximation in the long run using a Monte Carlo simulation. 

4.3. Application of Maximum CRE using Monte Carlo Simulation 

     In this section, we discuss the performance of maximum entropy and maximum CRE 

approximation based on absolute deviation and least squares error using a Monte Carlo simulation.  

In this analysis, we conduct a simulation with four variables and each of four variables has three 

different outcomes. We conduct the simulation to approximate a four variate joint distribution 

using its lower assessments. We generate one million 3 3 3 3    outcome discrete joint 

probability distribution samples.  

4.3.1. Monte Carlo Simulation Steps for Maximum Cumulative Residual Entropy  

     We conduct a simulation to compare the Chow-Liu method with the CRE method. Simulation 

steps are shown in Figure-4.1.  

 

 

 

 

 

 

 

 

 

 

 

     We apply a Monte Carlo simulation to maximum entropy and maximum CRE using lower 

assessments and then compare them to discuss their performances. We generated one million 

Figure 4.1: Monte Carlo Simulation Steps for Maximum Entropy and Maximum CRE   

                    Approximations 
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discrete joint probability distribution samples. After that, we calculate the absolute deviation and 

least square errors between the true probability distribution and approximations using lower order 

assessments. 

4.3.2. Compute the Marginal, Two-way, and Three-way Assessments of Joint Distributions 

     If no information is available, then maximum CRE and maximum entropy assign equal 

probability to each outcome. If only marginal distributions are available as a lower order 

assessment, then maximum entropy and maximum CRE assume probability independence among 

variables. Our aim is to approximate more accurate joint probability distributions, so we need to 

incorporate dependencies among variables into our analysis. We first of all, we compute the lower 

order assessments; (i) marginal distributions, (ii) pairwise distributions, and (iii) three-way 

distributions. Figure-4.2 shows the assessment of marginal distributions for each of the four 

variables. The variables take 3 different values, “1”, “2”, and “3”. Figure-4.3 shows an example 

of the assessments of pairwise joint distribution for variables 1X and 2X .  

Variable-1 Variable-2 Variable-3 Variable-4 

      

      

      

   

   

   

      

      

      

     

     

     

      

      

      

     

     

     

      

      

      

   

   

   

Figure 4.2: Probability Trees of Marginal Distributions using in Monte Carlo Simulation 
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Figure 4.3: Elicitation of Pairwise Joint Distributions for variables 1X  and 2X   

4.3.3. Results of Monte Carlo Simulation  

     Table 4.5 displays a summary of mean and variance of errors of approximate joint probability 

distributions calculated by maximum entropy and maximum cumulative residual entropy methods.  

     The absolute deviation and least squares errors for maximum entropy and maximum CRE is 

almost same in the long run. But, we can say our proposed approach is a little bit better than the 

maximum entropy approach. For instance, we see that the mean of the absolute deviation of the 

pairwise assessments using maximum entropy is 0.52514, on the other hand the mean using 

maximum CRE is 0.52509. There is a small difference between the errors of two methods but this 

difference should be negligible. 
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Table 4.5: Simulation Results for Max-Ent and Max CRE Approximate Distributions 

Assessments

Maximum Entropy Maximum CRE Maximum Entropy Maximum CRE

Marginal (Independent) 0.69088 0.69088 0.01074 0.01074

Pairwise 0.52467 0.52454 0.0059854 0.005985

Three-way 0.21233 0.21233 0.0009298 0.0009297

Absolute Deviation Least Squares Error

 

     Another observation from the Table-4.5 is that when the dependences among variables are 

incorporated into the problem, then we can provide more representative joint probability 

distribution approximations. The value of absolute deviation and least squares error decrease 

significantly if the decision maker provides higher lower-order assessments in a decision situation. 

 

a) Marginal Assessment    b) Pairwise Assessment  

 

                                   c) Three-way Assessment 

Figure 4.4: Comparison of Approximate Joint Distributions Calculated by Each Lower Order Assessment 
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     We also plot the approximate distributions of each lower assessment and true distribution to 

compare them visually. Figure-4.4 shows the plots of approximate joint distributions given each 

lower assessment and the true distribution. Each plot shows the true distribution, maximum 

entropy and maximum CRE approximate distributions given different assessments. Also, we can 

see from Figure-4.4, three-way assessment contains most of the information needed to 

approximate the true distribution. The outcomes of approximate distribution using three-way 

assessments are very close the outcomes of the true distribution. Finally, CRE-based maximum 

entropy provides at least as good approximation for a discrete multivariate probability distribution 

as that provided by the maximum entropy. 

4.4. Comparison of Maximum Entropy and Maximum Cumulative Residual Entropy 

     In this section, we analyze when maximum CRE approximation is different from the traditional 

maximum entropy formulation and explore the situations where maximum CRE method gives 

more accurate results. To compare and discuss the performances of these two methods, we applied 

Monte Carlo simulation to generate different discrete multivariate probability distributions. We 

analyze the accuracy of approximations for three and four variate distributions with increasing 

number of outcomes of each variable. We start with a three-variable case and perform the same 

procedure for four random variable case with two, three, four, and five outcomes of each variable. 

We first analyze how much percent of the approximation of the sampling distributions are identical 

and then analyze the percent of the approximation of the sampling distributions where maximum 

CRE gives a better accuracy of approximation.  

     We further analyze how accuracy of the approximate distributions changes as the number of 

random variables changes. In this case, we hold the number of outcomes of variables constant and 

increase the number of variables from three to five. We finally analyze the relationship between 
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accuracy of the approximations and correlation among variables. In our analysis, we use total 

correlation measure as a measure of dependency among a set of random variables. We do our 

analysis for three and four variate probability distributions with two, three, and four outcomes of 

each variable. There are three different accuracy measures used in this analysis; absolute deviation 

(AD), least squares (LS), and maximum deviation (MD). 

4.4.1. Effects of Increasing Number of Outcomes of Each Variable: Three Variable Case  

     Our first analysis is for three random variable case whee the number of outcomes of each 

variable is increased from two to five. We first analyze what percentage of the approximation of 

the sampling distributions are the same. Then, if these two methods approximate different joint 

probability distributions, we figure out for what percentage of sampling distributions that 

maximum CRE gives better accuracy of approximation and for what percentage of sampling 

distributions that maximum entropy method gives better accuracy of approximation. Figure 4.5 

shows the results for three variable case using absolute deviation as the accuracy measure. 

 

 

     From Figure 4.5, we can say that the maximum CRE approximation method gives significantly 

more accurate results than the traditional maximum entropy method, and the difference between 
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these two approximation methods increases as the number of outcomes of each variable increases. 

These two approximation methods sometimes approximate very similar joint probability 

distributions, but they are not same. To explore what percentage of both methods approximate the 

same joint probability distribution, we assume that if the difference between absolute deviation of 

maximum entropy and absolute deviation of maximum CRE method is less than a value  , then 

these two approximation are same. We checked the difference as

(max ) (max )AD CRE AD entropy   .  In the three-variable case, the value of   is assumed as 

0.0001. The result shows that when the variables are binary, almost 30% of the approximations 

are same. However, when the number of outcomes of each variable increases, the percentage of 

same approximation noticeably decreases to 0.01%. Moreover, as the number of outcomes of 

variables increases, the percentage of sampling distributions that maximum CRE gives better 

accuracy of approximation and the percentage of sampling distributions that maximum entropy 

method gives better accuracy of approximation is getting closer. 

   

 

 

     Another observation from Figure-4.5 is that the maximum CRE method is better than the 

traditional maximum entropy method and gives much higher accuracy results in the case of three-
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                             (a)  Least Squares           (b) Maximum Deviation 

Figure 4.6: Comparison of Maximum Entropy and Maximum CRE Approximation Methods based on   Least  

                    Squares and Maximum Deviation Measures for Three Variable Case 
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variate joint probability distributions with any number of outcomes. However, in the case of four 

variables, the maximum entropy and maximum CRE methods give similar accuracy of 

approximation. We also run the same simulation for least squares measure and maximum deviation 

measure. Figure-4.6 shows the results of three variable case (Figure 4.6-a: Least Squares, Figure 

4.6-b: Maximum Deviation). 

     Figure 4.6 shows behavior similar to that shown in Figure 4.5. So, in general we may say that 

the maximum CRE approximation method obtained more accurate approximate distributions than 

what was observed by maximum entropy approximation method in all three different accuracy 

measures. 

4.4.2. Effects of Increasing Number of Outcomes of Each Variable: Four Variable Case  

     We now perform the steps involved in the three random variable case with two, three, four, and 

five outcomes. In a three-variable case we do only the analysis for pairwise assessments. In this 

case, however, we perform the analysis with two different lower order assessments: pairwise 

assessment and three-variate assessment. Figure 4.7 shows the results of a four variable case using 

pairwise assessments (Figure 4.7-a-c-e) and three-way assessments (Figure 4.7-b-d-f)  when 

absolute deviation (Figure 4.7-a-d), least squares (Figure 4.7-b-e), and maximum deviation (Figure 

4.7-c-f)  are used as the accuracy measure. 

     The results for the four-variable case are different from those for the three variable case. In this 

case, the results show that the percentage of approximating the same joint probability distribution 

increases with the number of outcomes of variables for absolute deviation, least squares, and 

maximum deviation measures for both pairwise and three-way assessments. For the binary variable 

case, maximum CRE gives more accurate accuracy results; however, maximum CRE and 

maximum entropy approximate very similar joint probability distributions as the number of 
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outcomes of variables increases. For a three-way assessment case, maximum CRE gives better 

accuracy results for binary, three-outcome, and four-outcome variable cases.  
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Figure 4.7: Comparison of Maximum Entropy and Maximum CRE Approximation Methods based on Least   

                    Squares and Maximum Deviation Measures for Four Variable Case 

(a) Absolute Deviation of Four Variable Case using  

Pairwise Assessment                     

(b) Absolute Deviation of Four Variable Case using  

Three-way Assessment                     

(c)   Least Squares of Four Variable Case using  

Pairwise Assessment                     

(d) Least Squares of Four Variable Case using  

Three-way Assessment                     

(e) Maximum Deviation of Four Variable Case using  

Pairwise Assessment                     

(f) Maximum Deviation of Four Variable Case using  

Three-way Assessment                     
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     We also calculate the mean accuracy (error) outcomes of approximations for each measure for 

three- and four-variable cases with an increasing number of outcomes for each variable and for an 

independence case. Figure-4.8 shows the results of mean accuracy values.  

   

                             

   

 

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

 variable with two
values

 variable with three
values

 variable with four
values

 variable with five
values

Maximum Entropy Maximum CRE Independence

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

 variable with two
values

 variable with three
values

 variable with four
values

Maximum Entropy Maximum CRE Independence

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

 variable with two
values

 variable with three
values

 variable with four
values

 variable with five
values

Maximum Entropy Maximum CRE Independence

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

 variable with two
values

 variable with three
values

 variable with four
values

Maximum Entropy Maximum CRE Independence

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

 variable with two
values

 variable with three
values

 variable with four
values

 variable with five
values

Maximum Entropy Maximum CRE Independence

0.00

0.02

0.04

0.06

0.08

0.10

0.12

 variable with two
values

 variable with three
values

 variable with four
values

Maximum Entropy Maximum CRE Independence

      (a)  Absolute Deviation of Three Variable Case                    (b) Absolute Deviation of Four Variable Case 

     (c)  Least Squares of Three Variable Case                             (d) Least Squares of Four Variable Case 
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Figure 4.8: The Mean Accuracy (Error) Values of Each Measure for Three and Four Variable Cases with Increasing    

                 Number of Outcomes of Each Variable 
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      The results show that although the percentage results of four variate case differ, the average 

accuracy values for each method is very close. Also, the error values increases with the number of 

outcomes of variables for absolute deviation measure but decreases for least squares and maximum 

deviation. For higher number of outcomes of variables, the maximum CRE method is slightly 

better than the maximum entropy method. Also, the maximum CRE approximation method 

outperforms the maximum entropy method (i) in three variable case for both binary and three-

outcome cases and (ii) when the variables are binary. These results are consistent with the previous 

results.  

4.4.3. Effects of Increasing the Number of Variables in Multivariate Distributions 

     We now analyze how accuracy of the approximate distributions changes as the number of 

random variables increases in joint probability distributions. We first analyze what percentage of 

the approximation of the sampling distributions is identical. If they differ, we analyze for what 

percentage of sampling distributions maximum CRE approximates more accurately and for what 

percentage of sampling distributions maximum entropy approximates more accurately. In our 

analysis for binary and three-outcome variables we increase the number of variables from three to 

five. Figure-4.9 shows the results for binary case (Figure 4.9-a-c-e) and three-value case (Figure 

4.9-b-d-f) for each error measure. 

     We found that the maximum entropy and maximum CRE methods approximated the same first 

order dependence tree for less than 40% of the samples in the three- and four-variable cases. 

Moreover, the percentage of sample distributions for which these two methods are same decreased 

for the binary variable case and increased for the three-outcome case as the number of variables 

increased.  
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     If we look at the results of these two approaches in Figure 4.9, the results are very similar to 

those obtained with increasing number of outcomes of variables. When the variables have three 
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    (a)  Absolute Deviation of Binary Variable Case             (b) Absolute Deviation of Three-outcome Variable Case 

(c)  Least Squares of Binary Variable Case                        (d) Least Squares of Three-outcome Variable Case 

 (e)  Maximum Deviation of Binary Variable Case           (f) Maximum Deviation of Three-outcome Variable Case 

Figure 4.9: The Percent of the Approximation of the Sampling Distributions That Maximum CRE and Maximum 

Entropy Methods are Same and Different 
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outcomes, these two methods show very similar behavior, but the maximum CRE method is better 

than the maximum entropy methods where the variables are binary. We can see that maximum 

CRE yields more than 80% more accurate approximated joint distribution for the three binary 

variable case (Figure 4.9-a-c-e)and more than 90% for 3 three-outcome variable case (Figure 4.9-

b-d-f).  However, the results for the four three-outcome variable and five three-outcome variable 

case are different from the results obtained from the other joint probability distributions. In the 

case of four and five three-outcome variables, the maximum CRE and maximum entropy 

approximation methods are very similar and approximate almost identical joint probability 

distributions.  

     So, we can say that the maximum CRE method outperforms the maximum entropy method 

when (i) the number of variables are three, or (ii) the variables are binary. Moreover, these results 

indicate that the effect of increasing the number of outcomes of each variable is similar to the 

effect of increasing the number of random variables.  

4.4.4. Effects of Changing the Dependence Structure Between Variables  

     We now analyze the effects of changing dependence structure among variables. We use total 

correlation (TC) as a dependency measure. We discussed the total correlation in detail in Chapter 

3. The total correlation is defined as 

 
1 1 2 2

1 2
1 2 1 2

1 2

( , , , )
( , , , ) ( , , , ) log

( ) ( ) ( )
n n

n
n n

x X x X x X n

p x x x
TC X X X p x x x

p x p x p x  


  

      (4.7) 

where 1 2( , , , )np x x x is the probability mass function of variables 1 2, , , nX X X , and 1( )p x  is the 

marginal probability distribution of variable 1X . 

     We run a simulation with several different combination of joint distributions including; three 

binary variables, three three-outcome variables, three four-outcome variables, four binaryvariables 
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(b)  Total Correlation vs. Absolute Deviation for    

Four Binary Variable                      

(a) Total Correlation vs. Absolute Deviation for    

Three Binary Variable                      

(d)  Total Correlation vs. Absolute Deviation for    

Four Three-outcome Variable                      

(c) Total Correlation vs. Absolute Deviation for    

Three Three-outcome Variable                      

(d)  Total Correlation vs. Absolute Deviation for    
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(e)   Total Correlation vs. Absolute Deviation for    

Three Four-outcome Variable                      

Figure 4.10: Average Values of Errors of Joint Probability Distributions Calculated by Traditional Maximum 

Entropy and Maximum Cumulative Residual Entropy Methods Using Absolute Deviation as Accuracy Measure 
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(b)  Total Correlation vs. Least Squares for    

Four Binary Variable                      

(a) Total Correlation vs. Least Squares for    

Three Binary Variable                      

(c)   Total Correlation vs. Least Squares for    

Three Three-outcome Variable                      

(d)  Total Correlation vs. Least Squares for    

       Four Three-outcome Variable                      

(f)  Total Correlation vs. Least Squares for    
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(d) Total Correlation vs. Least Squares for    
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Figure 4.11: Average Values of Errors of Joint Probability Distributions Calculated by Traditional Maximum 

Entropy and Maximum Cumulative Residual Entropy Methods Using Least Squares as Accuracy Measure 
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(b)  Total Correlation vs. Maximum Deviation for    
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(a) Total Correlation vs. Maximum Deviation for    

Three Binary Variable                      

(d)  Total Correlation vs. Maximum Deviation for    

Four Three-outcome Variable                      
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Figure 4.12: Average Values of Errors of Joint Probability Distributions Calculated by Traditional Maximum 

Entropy and Maximum Cumulative Residual Entropy Methods Using Maximum Deviation as Accuracy Measure 
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four three-outcome variables, and four four-outcome variables. Figure 4.10, 4.11, and 4.12 display 

the mean values of errors of approximated joint probability distributions calculated by Maximum 

entropy and maximum CRE methods for absolute deviation, least squares, and maximum deviation 

measures, respectively. For the three-variable case, maximum CRE method demonstrates better 

performance at lower total correlation. As the total correlation between variables increases, 

maximum CRE and maximum entropy methods give closer accuracy results.  

     Overall the results show that the maximum CRE approximation method shows performance 

comparable or better than maximum entropy approximation method for all accuracy measures. For 

instance, for three three-outcome variable, when the average total correlation is between 0.14 and 

0.1599, the mean absolute deviation of maximum entropy approximation method is ~0.7035 and 

the mean absolute deviation of maximum CRE approximation method is ~0.2398 .On the other 

hand, when the average total correlation is between 0.42 and 0.4399, the absolute deviation of 

maximum CRE is ~0.3317, and the absolute deviation of maximum entropy is ~0.4113. 

     We also observe from  Figure 4.10, 4.11, and 4.12 that the difference between the two methods 

is considerable when the total correlation is low. However, when the total correlation between 

variables increases, the difference between the two methods noticeably decreases. So, these two 

methods are sensitive to correlation among variables. We can also say that the dimension of the 

probability distribution has an effect on the accuracy of the approximations because maximum 

CRE and maximum entropy methods show almost identical accuracy results at four three-outcome 

and four four-outcome variable cases, but in other cases, there is a significant difference between 

maximum entropy and maximum CRE methods. 
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4.5. Summary of the Results 

- Maximum CRE approach can only be applied to numeric variables, but the traditional 

maximum entropy method can be applied both numeric and non-numeric variables. 

- There is a significant difference between maximum CRE and maximum entropy methods 

in the case of lower correlation, lower number of variables, and lower number of outcomes 

of variables. 

- The accuracy of approximations decreases as the total correlation and the dimension of the 

multivariate probability distribution increases 

- For binary variable cases and lower total correlation, maximum CRE approximation 

method gives much better approximation.  

- Maximum CRE and traditional maximum entropy methods get closer as the number of 

outcomes of variables, total correlation, and number of variables increases. 

4.6. Conclusion  

     Eliciting the decision maker’s preferences with regard to a decision situation is one of the main 

steps in decision analysis. In this chapter, we are interested in using a method similar to the 

maximum entropy approach to elicit multivariate probability functions using lower-order 

assessments. Such a model can capture dependence into the model and approximate less error-

prone probability functions. The main advantage of the proposed approach is to use cumulative 

functions in entropy formulation instead of density functions.  

We simulate four-variate joint probability distribution using a Monte Carlo simulation to illustrate 

its performance and show the applicability of the proposed approach using each lower order 

assessment. We can say that the maximum cumulative residual entropy approach is at least as good 

as the maximum entropy approach.  
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     This chapter was also intended to familiarize the reader with the maximum cumulative residual 

entropy approach and its ability to incorporate many types of decision situations with partial 

information. Maximum CRE applications would help readers to approximate smoother and better 

probability distributions by using cumulative distributions. In this chapter, we compare the 

maximum entropy and maximum cumulative residual entropy methods to explore the situations 

where maximum CRE method gives more accurate results and where these two methods are 

different.   
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CHAPTER 5:  

COMPARISON OF INFORMATION THEORY BASED APPROXIMATION METHODS 

5.1. Introduction 

     In this chapter, we compare several approximation methods to find the best approximate 

probability distribution based on the given information. The objective of our research is to test the 

accuracy of different approximations of joint distributions with respect to the true distribution from 

the set of all possible distributions that match available information. There are a number of 

methods presented in the literature for joint probability distribution approximations. We 

specifically compare approximation methods that use information theory to approximate 

multivariate probability distributions in the literature. The approximation methods that are used in 

our analysis are listed in Table 5.1. 

Approximation Method Author(s), Year

Chow-Liu first order dependence tree approximation Chow&Liu, 1968 

CRE based first order dependence tree approximation Sutcu&Abbas, 2014 

Maximum entropy approximation Abbas, 2006 

Maximum CRE approximation Sutcu&Abbas, 2014 

Lewis product approximation Lewis, 1959

Brown’s maximum entropy approximation Brown, 1959 

Ku and Kullback’s lower-order marginal distributions approximation Ku&Kullback, 1969 

Keefer’s binary event approximation Keefer,2004 

Kirkwood Superposition approximation Kirkwood, 1935

Independence approximation
 

Table 5.1: Approximation methods proposed in the literature 
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     Our aim is to analyze the performance of our proposed approximation methods. The traditional 

approach in the multivariate probability distribution approximation concentrates on probability 

mass/density function, whereas the proposed methods use cumulative distributions, especially 

survival functions, instead of probability mass/density functions. To the best of our knowledge, 

however, this extension has never been examined in the literature. The primary innovation of our 

approach is to integrate survival functions into the maximum entropy, KL divergence measure, 

and mutual information formulations.  

     The remainder of this chapter is organized as follows. We first discuss previous approximation 

methods based on information theory. Then, we apply our proposed methods and the previous 

methods to the two different cases to test the accuracy of the approximation methods: (i) four 

binary variables and (ii) four-variable decision problems that take three different values each. We 

then analyze the effects of increasing both the number of variables and the number of alternatives 

or outcomes and discuss our results. 

5.2. Information Theory based Approximation Methods 

     Much of the recent literature has used information theory for joint probability approximations. 

We already discussed the Chow-Liu first-order dependence tree and the maximum entropy method 

in Chapter 3. We also discussed in detail our proposed approaches, CRE-based first-order 

dependence tree and maximum CRE, in Chapter 3 and 4, respectively. We now describe briefly 

previous studies listed in Table 5.1. 

5.2.1. Lewis’ Product Approximation (1959) 

     Lewis (1959) considered the problem of approximating a multivariate distribution by a product 

of several lower order distributions. Lewis showed that the product approximation has the 
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minimum information based on Kullback-Liebler divergence and maximum entropy. Several 

product approximations to a three variate probability distribution 1 2 3( , , )P x x x  can be listed as 

 
1 2 3 1 2 3 1

1 2 3 1 3 2 3

1. ( ) ( ) ( ) 3. ( , ) ( | )

2. ( , ) ( ) 4. ( , ) ( | )

P x P x P x P x x P x x

P x x P x P x x P x x
  (5.1) 

     However, Lewis’s method does not compose the best approximation based on the partial 

information.  This method selects all the product approximations under certain conditions and from 

those further selects the best approximation by calculating the entropies of all lower order 

assessments under certain conditions. 

5.2.2. Brown’s maximum entropy approximation (1959) 

     After Lewis’ product approximation, Brown (1959) presented an iterative method to 

approximate joint probability distributions using any subset of the variables or any lower 

distributions. This approximation method iterates each step and converges to give an 

approximation that has the minimum information. Brown’s approximation method is more general 

than the product approximation and can be applied to any set of component distributions. In this 

method, the iteration starts with a product approximation and stops when convergence is attained. 

For instance for a three-variate probability distribution 1 2 3( , , )P x x x , one of the iteration steps 

would be 

 

1

3 2 1 2

2 1 1 3
1 2 3 1

1 3

3 2 2 3
1 2 3 2

2 3

( | ) ( , ) a product approximation (first step)

( , )
( , , ) (second step)

( , )

( , )
( , , ) (third step)

( , )

p p x x p x x

p x x
p p x x x

p x x

p x x
p p x x x

p x x







  (5.2) 
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     This method can be applied to any set of lower order assessments. Also, the approximation give 

more accurate results if more and higher order distributions are used. However, the iteration 

procedure cannot compose the best approximation because numerous iterations are required to 

attain full convergence which is very difficult when the number of variables increase. 

5.2.3. Ku and Kullback’s lower-order marginal distributions approximation (1969) 

     Ku and Kullback obtained an approximation distribution by a convergent iterative algorithm in 

terms of lower order marginal distributions. Ku and Kullback extended Brown’s approximation 

by using the lower order marginals. In this method, lower order assessments or marginal restraints 

are used as constraints and the convergent iterative procedure satisfy these marginal restraints. For 

instance, a three variate probability distribution 1 2 3( , , )p x x x  can be approximated with the subset 

of second order marginals 1 2 1 3 2 3( , ), ( , ), ( , )p x x p x x p x x  as 

 *

1 2 3 1 2 1 3 2 3 1 2 3( , , ) ( , ) ( , ) ( , ) ( , , )p x x x a x x b x x c x x x x x   (5.3) 

where 1 2 1 3 2 3( , ), ( , ), ( , )a x x b x x c x x  are determined to satisfy the marginal restraints. 

5.2.4. Keefer’s binary event approximation (2004) 

     Keefer presented a method to approximate probabilistic dependence between variables which 

is called as “underlying event (UE)”. This method requires the assessment of only one conditional 

probability in addition to the marginal probabilities. However, Keefer’s method can be applied 

only to the binary events in decisions. First of all, the method assess the marginal probabilities and 

then choose the largest and second largest values to assess the conditional probabilities. For 

instance, for a n project model, the method for calculating the conditional probabilities in terms of 

assessed probabilities as 
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 

  (5.4) 

where ip  is the value of one of the event’s probability. Here, 
jp  is the largest value and defined 

as  

  max , 1,2,...,j ip p i n    (5.5) 

and kp  is the second largest value and defined as 

  max , , 1,2,...,k ip p i j i n     (5.6) 

5.2.5. Kirkwood Superposition approximation (1935) 

     The superposition approximation was introduced by John Kirkwood in 1935 to approximate 

multivariate discrete probability distributions. The method generally works by using all the product 

of probabilities over all subset of variables. The Kirkwood approximation for a discrete probability 

distribution  
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
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
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






  (5.7) 

where ( )
i

i

V

p





  is the product of probabilities over all subsets of variables of size i  in variable 

setV . For the three-variable case, the approximation reduces to simply 
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 * 1 2 1 3 2 3
1 2 3

1 2 3

( , ) ( , ) ( , )
( , , )

( ) ( ) ( )

p x x p x x p x x
p x x x

p x p x p x
   (5.8) 

where the numerator contains the product of pairwise assessments of three-variate distribution and 

the denominator contains the product of marginal distributions.  The main concern in the 

superposition method is that the Kirkwood approximation does not generally produce a valid 

probability distribution because superposition approximation method violates the normalization 

condition (sum of the probability is not equal to 1).  

5.3. Approximating the Four Binary Variable Probability Distribution 

     We now provide an example of joint probability distribution of four binary variables and the 

approximations derived from this joint distribution using its lower order assessments. An example 

of the four binary distribution is given in Table 5.2.  

Table 5.2: Four Binary Joint Distribution 

 

 

 

 

 

 

     In this example, the variables may take two different values: “1” or “2”. The first four column 

in Table 5.2 describe the different combinations of joint distribution. The fifth column contains 

the probabilities of the joint events generated by using the method described in Chapter 3.  For 

1 1 1 1 1 0.0186

2 1 1 1 2 0.0478

3 1 1 2 1 0.0037

4 1 1 2 2 0.1949

5 1 2 1 1 0.0524

6 1 2 1 2 0.0527

7 1 2 2 1 0.0101

8 1 2 2 2 0.1062

9 2 1 1 1 0.0646

10 2 1 1 2 0.0179

11 2 1 2 1 0.0109

12 2 1 2 2 0.0266

13 2 2 1 1 0.0629

14 2 2 1 2 0.0761

15 2 2 2 1 0.2433

16 2 2 2 2 0.0114

X1 X2 X3 X4 P(                    )     ,  ,  
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instance, the probability of the fourth combination of the variables where variable 1 and variable 

2 take the values “1”, and variable 3 and variable 4 take the value “2” is 0.1949. The true four 

binary distribution and the approximations generated using the information taken from the true 

distribution is given in Table-5.3. 

1 1 1 1 0.0186 0.0063 0.0163 0.0110 0.0221 0.0110 0.0221 0.0101 0.0102 0.0104 0.0237 0.0238 0.0343

1 1 1 2 0.0478 0.0762 0.0771 0.0845 0.0443 0.0845 0.0443 0.0977 0.0988 0.0964 0.0697 0.0243 0.0392

1 1 2 1 0.0037 0.0115 0.0299 0.0175 0.0002 0.0175 0.0002 0.0185 0.0174 0.0168 0.0436 0.0009 0.0532

1 1 2 2 0.1949 0.1399 0.1416 0.1519 0.1984 0.1519 0.1984 0.1794 0.1695 0.1749 0.1279 0.2236 0.0605

1 2 1 1 0.0524 0.0236 0.0136 0.0205 0.0489 0.0205 0.0489 0.0198 0.0197 0.0202 0.0468 0.0454 0.0548

1 2 1 2 0.0527 0.0654 0.0645 0.0555 0.0562 0.0555 0.0562 0.0439 0.0436 0.0425 0.0313 0.0672 0.0629

1 2 2 1 0.0101 0.0434 0.0250 0.0358 0.0136 0.0358 0.0136 0.0364 0.0378 0.0364 0.0859 0.0087 0.0846

1 2 2 2 0.1062 0.1201 0.1184 0.1097 0.1027 0.1097 0.1027 0.0805 0.0837 0.0863 0.0574 0.0646 0.0968

2 1 1 1 0.0646 0.0345 0.0384 0.0316 0.0611 0.0316 0.0611 0.0188 0.0190 0.0195 0.0131 0.1120 0.0362

2 1 1 2 0.0179 0.0306 0.0133 0.0217 0.0214 0.0217 0.0214 0.0206 0.0208 0.0203 0.0386 0.0285 0.0414

2 1 2 1 0.0109 0.0455 0.0507 0.0376 0.0144 0.0376 0.0144 0.0248 0.0235 0.0226 0.0173 0.0097 0.0560

2 1 2 2 0.0266 0.0404 0.0175 0.0291 0.0231 0.0291 0.0231 0.0272 0.0257 0.0265 0.0509 0.0075 0.0640

2 2 1 1 0.0629 0.1301 0.1262 0.1354 0.0664 0.1354 0.0664 0.1458 0.1448 0.1484 0.1018 0.0539 0.0578

2 2 1 2 0.0761 0.0263 0.0436 0.0328 0.0726 0.0328 0.0726 0.0363 0.0361 0.0352 0.0680 0.0640 0.0663

2 2 2 1 0.2433 0.1716 0.1664 0.1770 0.2398 0.1770 0.2398 0.1923 0.1997 0.1922 0.1342 0.2468 0.0895

2 2 2 2 0.0114 0.0347 0.0575 0.0484 0.0149 0.0484 0.0149 0.0479 0.0497 0.0513 0.0897 0.0191 0.1024

* After 6 iterations

Brown*
Ku&    

Kullback*
Keefer* Kirkwood

Indepen-

dence
Lewis*X1 X2 X3 X4 P(                    ) Chow-Liu

CRE 

FODT

MaxEnt 

(pairwise)

MaxEnt 

(three-way)

MaxEnt CRE 

(pairwise)

MaxEnt CRE 

(three-way)
     ,  ,  

      

Column-6 of Table-5.3 shows the results of Chow-Liu first-order dependence tree, column-7 

shows the results of CRE-based first-order dependence tree, column-8 shows the results of 

maximum entropy with pairwise assessments, column-9 shows the results of maximum entropy 

with three-way assessments, column-10 shows the results of maximum CRE with pairwise 

assessments, column-11 shows the results of maximum CRE with three-way assessments, from 

column-12 to column-16, the columns show the results of Lewis, Brown, Ku&Kullback, Keefer’s 

binary, and Kirkwood’s superposition approximation methods respectively. The last column 

(column-17) shows the results of the independence approximation. Also, Lewis, Brown, 

Ku&Kullback, and Keefer’s binary event approximation are iterative methods, and the iterative 

process is stopped after six iterations. 

Table 5.3: Approximations of Four Binary Distribution 
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     We measure the accuracy of the each methods, especially the errors of each approximation, 

which makes the performance results more informative.  We analyze and observe the performance 

of the approximations with respect to the original distribution for three different measures. We use 

absolute deviation (AD), least squares (LS), and maximum deviation (MD) measures in our 

analysis. For this specific four binary variable example, we calculate the results with respect to the 

three error measures. The results are shown in Table-5.4.  

 

Approximation Method Absolute Deviation(AD) Least Squares (LS) Maximum Deviation (MS)

CRE First Order Dependence Tree 0.4872 0.0219 0.0717

Chow-Liu Dependence Tree 0.4955 0.0215 0.0769

Maximum Entropy (Three-way ) 0.0559 0.0199 0.0035

Maximum Entropy (Pairwise ) 0.4502 0.0002 0.0725

Maximum CRE Entropy (Three-way ) 0.0559 0.0199 0.0035

Maximum CRE Entropy (Pairwise ) 0.4502 0.0002 0.0725

0.0202 0.0829

Brown's Approximation 0.4567 0.0199 0.0819

Kirkwood Approximation

Lewis Product Approximation 0.4554

Keefer Binary Approximation 0.5229

0.2353

0.0282 0.0970

Ku&Kullback's Approximation 0.4553 0.0206 0.0855

0.0064 0.0474

Independence Approximation 0.6987 0.0634 0.1538
 

 In this example, we see that the maximum entropy approximation (MaxEnt-three way) and the 

maximum CRE approximation (MaxEnt CRE- three way) outperform the other methods; the third 

best performance is achieved by the Kirkwood’s superposition approximation method. On the 

other hand, independence approximation is clearly the worst approximation. This shows that if 

dependence or relationship exists among variables, then the accuracy of the approximation 

decreases due to the independence approximation among variables.  

Table 5.4: Example of Approximations of Four Binary Variable Distribution 
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     To further evaluate the performances of approximation methods in the long run, we run a 

simulation to compare the performance of the different approximation methods and show which 

method(s) is the best.  For each of the approximation methods, we generated 1.000.000 discrete 

joint probability distribution samples. Table-5.5 displays a summary of mean of errors of 

approximate distributions calculated by approximation methods in Table 5.1.   

     Overall the best performance was obtained with the maximum entropy approximation 

(MaxEnt-three way) and the maximum CRE approximation (MaxEnt CRE- three way) methods.         

 

 

Approximation Method Absolute Deviation(AD) Least Squares (LS) Maximum Deviation (MS)

CRE First Order Dependence Tree 0.3548 0.1118 0.0499

Chow-Liu Dependence Tree 0.3612 0.1121 0.0506

Maximum Entropy (Three-way ) 0.0739 0.0006 0.0046

Maximum Entropy (Pairwise ) 0.3113 0.0099 0.0443

Maximum CRE Entropy (Three-way ) 0.0732 0.0006 0.0046

Maximum CRE Entropy (Pairwise ) 0.3112 0.0099 0.0443

0.0189 0.0680

Brown's Approximation 0.3775 0.0149 0.0588

Kirkwood Approximation

Lewis Product Approximation 0.4220

Keefer Binary Approximation 0.4633

0.2126

0.0228 0.0766

Ku&Kullback's Approximation 0.3383 0.0118 0.0519

0.0074 0.0509

Independence Approximation 0.5848 0.0363 0.1062
       

     These two methods consistently achieve a better performance in the long run. However, there 

is no general agreement regarding which method performs best. The third method that performs 

best is the Kirkwood’s superposition approximation method. These results are acceptable and 

justifiable because all of these three approximation methods use three-variate lower order 

assessments which are the highest lower order assessments in a four variable joint distribution. 

Table 5.5: Simulation Results of Approximations of Four Binary Variable Distribution 
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The other approximation methods are not as good as these three methods because they use the 

conditional assessments or pairwise assessments as the highest assessment in the analysis. The 

results also show that the amount of available information and the accuracy of the approximations 

are positively related. If more information is available, then more accurate joint distributions are 

approximated.  

     We also performed another analysis to find out how many percent of the samples performs best, 

second best, third best, and worst in the long run. Table 5.6 presents the percentage of time each 

approximation is the best, second best, third best, and worst. The results in Table-5.6 shows that, 

best approximation for 1% of the samples. After sampling one million four binary joint probability 

distribution, maximum entropy and maximum CRE  are the best approximation methods for 99% 

of the samples, and Kirkwood is the  Although the difference between maximum entropy and 

maximum CRE is small in the long run, the maximum CRE is slightly better than maximum 

entropy method. As we can see from the Table-5.6 and the Figure-5.1, the third best approximation 

method is the Kirkwood’s superposition method but the accuracy of the Kirkwood’s superposition 

approximation method is far away from the maximum entropy and maximum CRE 

approximations. 

     In our analysis, we didn’t take into account the independence approximation. The independence 

approximation is the worst approximation method for more than 99% of the samples. So, we 

remove the accuracy results of the independence approximation method to make the results of the 

approximation methods more informative and understandable.     

     As we can see from Figure 5.1, the results show that the other approximation methods provide 

a reasonable approximation, but the results of errors are higher compared to the maximum entropy 

and maximum CRE methods.  On the other hand, maximum entropy, maximum CRE, and  
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Approximation Measure
% of Distributions                

Best

% of Distributions 

Second Best

% of Distributions           

Third Best

% of Distributions 

Worst

AD 0.0% 0.0% 5.7% 8.4%

LS 0.0% 0.0% 5.5% 8.5%

MD 0.0% 0.0% 4.2% 8.2%

AD 0.0% 0.0% 6.5% 6.9%

LS 0.0% 0.0% 6.7% 7.3%

MD 0.0% 0.0% 5.3% 7.1%

AD 0.0% 0.0% 6.9% 3.1%

LS 0.0% 0.0% 11.3% 2.7%

MD 0.0% 0.0% 15.7% 2.9%

AD 48.3% 50.4% 1.3% 0.0%

LS 48.6% 50.7% 0.5% 0.0%

MD 49.5% 50.1% 0.1% 0.0%

AD 0.0% 0.0% 16.7% 4.4%

LS 0.0% 0.0% 14.1% 3.9%

MD 0.0% 0.0% 14.3% 4.1%

AD 50.8% 48.7% 0.5% 0.0%

LS 51.0% 49.0% 0.0% 0.0%

MD 50.5% 49.5% 0.0% 0.0%

AD 0.0% 0.0% 1.7% 27.6%

LS 0.0% 0.0% 1.5% 27.3%

MD 0.0% 0.0% 1.4% 26.7%

AD 0.0% 0.0% 4.1% 19.7%

LS 0.0% 0.0% 4.2% 20.1%

MD 0.0% 0.0% 1.7% 19.9%

AD 0.0% 0.0% 6.0% 14.1%

LS 0.0% 0.0% 5.1% 15.0%

MD 0.0% 0.0% 4.3% 12.1%

AD 0.0% 0.0% 6.7% 8.9%

LS 0.0% 0.0% 7.1% 7.8%

MD 0.0% 0.0% 6.3% 8.3%

AD 0.9% 0.9% 43.9% 6.9%

LS 0.4% 0.3% 44.0% 7.4%

MD 0.0% 0.4% 46.7% 10.7%

Lewis

Brown

Ku&Kullback

Kirkwood

Chow-Liu

CRE FODT

MaxEnt 

(pairwise)

MaxEnt       

(three-way)

MaxEnt CRE 

(pairwise)

MaxEnt CRE 

(three-way)

Keefer

 

Kirkwood superposition approximation approaches require more computational effort because 

these three methods use three-way assessments in the approximation procedure.  

Table 5.6: Percentage of Distributions for Different Approximations and Measures for Four             

                  Binary Variable Example 
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     For clearer presentation and interpretation, the results are divided into two groups. The first 

group consists of  the percentage of the best three approximation methods for each error measure 

in Figure 5-2 (a,b,c). The second group consists the percentage of the third best and the worst 

approximations for each error measure in Figure 5-2 (d,e,f).  The first group of the results shows 

that the maximum entropy and maximum CRE methods are very similar and approximate almost 

identical joint probability distributions. So, we can say these two methods can be used as an 

alternative methods to one another.  

     From Figure 5.2-d-e-f, we have found that Keefer’s binary event approximation method is the 

second worst approximation method after independence approximation. The percentage of the 

maximum CRE (pairwise) as the third best approximation is more than 10%, and the best 

approximation after Kirkwood’s superposition approximation. Maximum entropy (pairwise) 

follows the maximum CRE approximation and gives closer approximation to the maximum CRE  

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00%

Chow-Liu FODT

CRE FODT

Maximum Entropy two-way)

Maximum Entropy (three-way)

Maximum CRE two-way)

Maximum CRE (three-way)

Lewis

Brown

Ku and Kullback

Kirkwood

% of Distributions Best % of Distributions Second Best % of Distributions Third Best % of Distributions Worst

Figure 5.1: Percentage of Four Binary Distribution Approximations of Approximation Methods  

                    for Absolute Deviation Measure 
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approximation. Lewis’, Brown’s, and Ku-Kullback approximation methods give also similar 

results to the maximum CRE and maximum entropy results, but these methods requires more 

computational effort. The accuracy of the approximation result can be improved by increasing the 
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Figure 5.2: Percentage of Approximations of Four Binary Distributions for Different Error   

………….  Measures 
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Methods for Absolute Deviation Measure 

d) Percentage of Best Three Approximation 
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number of iterations. We can do so many steps of an iterative method as necessary to reach proper 

accuracy. Although a higher number of iteration steps implies a better approximation, the cost per 

iteration usually increases exponentially. So, in our analysis, we spend the same number of 

iteration steps to get to the result. 

5.4. Approximating the Four Three-outcome Variable Joint Distributions  

     We now provide another analysis with four variables, each of which contains three different 

values or outcomes. In this case, we have 81 different combinations or alternatives. As in the 

previous case, we first show an a specific example of a four-variate distribution where each 

variable takes three different values, along with approximations from lower order assessments 

derived from use of the true distribution. We then generate one million four-variate joint 

distributions and compare the performances of the different approximations with respect to the 

original distribution. An example of the four-variate probability distribution is given in Table-5.7.  

In the case that each variable has three values, the variables take three different values: “1”, “2”, 

or “3”.The first four columns in Table 5.7 describe the different combinations of joint distribution. 

The fifth column contains the probabilities of the joint events generated by using the method 

described in Chapter 3.  For instance, the probability of the combination of the variables where 

variable 1 and variable 2 take the values “1”, variable 3 takes the value “2” and the variable-4 takes 

the value “3” is “0.0023”. 

     We apply the same error measures used in the four binary joint distribution example to analyze 

and observe the performance of the approximations. Keefer’s binary event approximation method 

is only applied to binary variables, so we discard Keefer’s approximation method from the 

analysis. The results of four variable joint distribution are shown in Table-5.8. 
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1 1 1 1 0.0188 0.0149 0.0148 0.0128 0.0172 0.0128 0.0172 0.0143 0.0131 0.0130 - 0.0173 0.0159

1 1 1 2 0.0209 0.0131 0.0130 0.0121 0.0224 0.0122 0.0224 0.0147 0.0134 0.0123 - 0.0243 0.0153

1 1 1 3 0.0029 0.0165 0.0163 0.0151 0.0031 0.0152 0.0031 0.0151 0.0138 0.0150 - 0.0057 0.0160

1 1 2 1 0.0211 0.0139 0.0151 0.0156 0.0194 0.0156 0.0194 0.0129 0.0139 0.0157 - 0.0202 0.0112

1 1 2 2 0.0146 0.0124 0.0135 0.0148 0.0154 0.0147 0.0154 0.0132 0.0143 0.0149 - 0.0150 0.0108

1 1 2 3 0.0023 0.0102 0.0111 0.0122 0.0032 0.0123 0.0031 0.0136 0.0146 0.0121 - 0.0045 0.0112

1 1 3 1 0.0064 0.0123 0.0114 0.0113 0.0098 0.0112 0.0098 0.0123 0.0128 0.0114 - 0.0082 0.0129

1 1 3 2 0.0126 0.0142 0.0131 0.0138 0.0104 0.0138 0.0104 0.0126 0.0131 0.0140 - 0.0094 0.0124

1 1 3 3 0.0221 0.0143 0.0133 0.0141 0.0210 0.0141 0.0210 0.0130 0.0135 0.0140 - 0.0199 0.0130

1 2 1 1 0.0223 0.0197 0.0164 0.0166 0.0228 0.0166 0.0227 0.0154 0.0169 0.0168 - 0.0234 0.0189

1 2 1 2 0.0036 0.0173 0.0144 0.0146 0.0054 0.0146 0.0055 0.0146 0.0159 0.0146 - 0.0066 0.0182

1 2 1 3 0.0224 0.0217 0.0180 0.0228 0.0202 0.0226 0.0202 0.0188 0.0206 0.0224 - 0.0189 0.0190

1 2 2 1 0.0221 0.0133 0.0166 0.0147 0.0188 0.0148 0.0188 0.0139 0.0130 0.0147 - 0.0200 0.0133

1 2 2 2 0.0112 0.0119 0.0149 0.0130 0.0106 0.0130 0.0106 0.0131 0.0122 0.0128 - 0.0087 0.0128

1 2 2 3 0.0185 0.0098 0.0123 0.0134 0.0224 0.0134 0.0224 0.0169 0.0158 0.0131 - 0.0241 0.0134

1 2 3 1 0.0033 0.0123 0.0126 0.0110 0.0062 0.0110 0.0062 0.0132 0.0124 0.0111 - 0.0065 0.0154

1 2 3 2 0.0097 0.0141 0.0145 0.0125 0.0086 0.0125 0.0085 0.0125 0.0117 0.0125 - 0.0086 0.0148

1 2 3 3 0.0212 0.0143 0.0147 0.0159 0.0195 0.0159 0.0195 0.0161 0.0151 0.0158 - 0.0166 0.0154

1 3 1 1 0.0183 0.0192 0.0180 0.0165 0.0195 0.0165 0.0196 0.0170 0.0166 0.0165 - 0.0175 0.0194

1 3 1 2 0.0222 0.0169 0.0158 0.0166 0.0189 0.0166 0.0189 0.0187 0.0183 0.0167 - 0.0191 0.0186

1 3 1 3 0.0152 0.0212 0.0199 0.0196 0.0172 0.0196 0.0172 0.0180 0.0177 0.0192 - 0.0169 0.0195

1 3 2 1 0.0008 0.0158 0.0183 0.0172 0.0059 0.0171 0.0058 0.0153 0.0152 0.0172 - 0.0069 0.0136

1 3 2 2 0.0196 0.0142 0.0164 0.0174 0.0194 0.0174 0.0194 0.0168 0.0167 0.0175 - 0.0203 0.0131

1 3 2 3 0.0216 0.0117 0.0135 0.0135 0.0167 0.0136 0.0168 0.0162 0.0162 0.0134 - 0.0176 0.0137

1 3 3 1 0.0157 0.0148 0.0139 0.0131 0.0094 0.0132 0.0094 0.0146 0.0149 0.0134 - 0.0097 0.0157

1 3 3 2 0.0175 0.0170 0.0160 0.0173 0.0209 0.0173 0.0210 0.0160 0.0164 0.0175 - 0.0196 0.0151

1 3 3 3 0.0172 0.0172 0.0162 0.0167 0.0200 0.0167 0.0199 0.0155 0.0159 0.0165 - 0.0184 0.0158

2 1 1 1 0.0091 0.0091 0.0094 0.0093 0.0076 0.0093 0.0076 0.0102 0.0093 0.0093 - 0.0078 0.0115

2 1 1 2 0.0151 0.0080 0.0082 0.0079 0.0104 0.0078 0.0104 0.0095 0.0087 0.0079 - 0.0091 0.0110

2 1 1 3 0.0040 0.0100 0.0103 0.0082 0.0101 0.0082 0.0101 0.0083 0.0076 0.0082 - 0.0103 0.0115

2 1 2 1 0.0163 0.0084 0.0081 0.0093 0.0129 0.0093 0.0129 0.0078 0.0084 0.0095 - 0.0125 0.0080

2 1 2 2 0.0007 0.0075 0.0072 0.0080 0.0050 0.0080 0.0050 0.0072 0.0078 0.0081 - 0.0055 0.0077

2 1 2 3 0.0064 0.0062 0.0059 0.0055 0.0055 0.0055 0.0055 0.0063 0.0068 0.0056 - 0.0046 0.0081

2 1 3 1 0.0011 0.0075 0.0075 0.0084 0.0059 0.0085 0.0059 0.0091 0.0094 0.0084 - 0.0065 0.0093

2 1 3 2 0.0022 0.0086 0.0086 0.0093 0.0027 0.0093 0.0027 0.0084 0.0088 0.0094 - 0.0036 0.0089

2 1 3 3 0.0190 0.0087 0.0087 0.0080 0.0138 0.0080 0.0138 0.0073 0.0076 0.0079 - 0.0128 0.0093

2 2 1 1 0.0161 0.0155 0.0134 0.0156 0.0145 0.0155 0.0146 0.0143 0.0156 0.0155 - 0.0147 0.0136

2 2 1 2 0.0073 0.0136 0.0118 0.0122 0.0102 0.0122 0.0102 0.0122 0.0133 0.0122 - 0.0106 0.0131

2 2 1 3 0.0220 0.0170 0.0148 0.0159 0.0206 0.0160 0.0206 0.0133 0.0146 0.0159 - 0.0197 0.0137

2 2 2 1 0.0008 0.0104 0.0115 0.0115 0.0081 0.0115 0.0081 0.0108 0.0101 0.0114 - 0.0075 0.0096

2 2 2 2 0.0101 0.0093 0.0103 0.0091 0.0061 0.0092 0.0061 0.0092 0.0086 0.0090 - 0.0059 0.0092

2 2 2 3 0.0088 0.0077 0.0085 0.0079 0.0055 0.0078 0.0055 0.0101 0.0095 0.0078 - 0.0061 0.0096

2 2 3 1 0.0177 0.0096 0.0107 0.0107 0.0119 0.0107 0.0119 0.0126 0.0118 0.0106 - 0.0111 0.0110

2 2 3 2 0.0184 0.0111 0.0122 0.0109 0.0195 0.0108 0.0195 0.0108 0.0101 0.0108 - 0.0214 0.0106

2 2 3 3 0.0043 0.0112 0.0124 0.0116 0.0090 0.0117 0.0090 0.0118 0.0111 0.0115 - 0.0094 0.0111

2 3 1 1 0.0113 0.0145 0.0141 0.0146 0.0143 0.0146 0.0142 0.0150 0.0147 0.0146 - 0.0139 0.0139

2 3 1 2 0.0103 0.0127 0.0124 0.0133 0.0122 0.0133 0.0122 0.0150 0.0146 0.0134 - 0.0111 0.0134

2 3 1 3 0.0149 0.0159 0.0156 0.0131 0.0101 0.0131 0.0102 0.0123 0.0120 0.0130 - 0.0106 0.0140

2 3 2 1 0.0164 0.0119 0.0121 0.0127 0.0124 0.0127 0.0125 0.0114 0.0114 0.0129 - 0.0117 0.0098

2 3 2 2 0.0174 0.0107 0.0109 0.0116 0.0171 0.0116 0.0172 0.0113 0.0113 0.0118 - 0.0180 0.0094

2 3 2 3 0.0064 0.0088 0.0090 0.0077 0.0106 0.0077 0.0106 0.0093 0.0093 0.0077 - 0.0096 0.0098

2 3 3 1 0.0157 0.0111 0.0113 0.0122 0.0167 0.0122 0.0167 0.0133 0.0136 0.0122 - 0.0172 0.0113

2 3 3 2 0.0151 0.0128 0.0129 0.0144 0.0136 0.0145 0.0135 0.0132 0.0136 0.0145 - 0.0147 0.0109

2 3 3 3 0.0038 0.0129 0.0131 0.0116 0.0043 0.0116 0.0043 0.0108 0.0111 0.0116 - 0.0052 0.0113

3 1 1 1 0.0027 0.0120 0.0152 0.0146 0.0059 0.0145 0.0058 0.0157 0.0143 0.0143 - 0.0068 0.0120

3 1 1 2 0.0115 0.0105 0.0134 0.0123 0.0148 0.0123 0.0147 0.0145 0.0132 0.0121 - 0.0145 0.0116

3 1 1 3 0.0222 0.0132 0.0168 0.0149 0.0158 0.0150 0.0158 0.0151 0.0138 0.0150 - 0.0149 0.0121

3 1 2 1 0.0079 0.0111 0.0078 0.0089 0.0129 0.0089 0.0129 0.0071 0.0077 0.0087 - 0.0132 0.0084

3 1 2 2 0.0135 0.0100 0.0070 0.0075 0.0084 0.0075 0.0084 0.0066 0.0071 0.0074 - 0.0084 0.0081

3 1 2 3 0.0052 0.0082 0.0058 0.0062 0.0052 0.0061 0.0052 0.0069 0.0074 0.0062 - 0.0040 0.0085

3 1 3 1 0.0174 0.0099 0.0096 0.0105 0.0092 0.0106 0.0092 0.0111 0.0115 0.0103 - 0.0091 0.0097

3 1 3 2 0.0059 0.0114 0.0111 0.0116 0.0077 0.0116 0.0078 0.0102 0.0106 0.0113 - 0.0077 0.0094

3 1 3 3 0.0117 0.0115 0.0112 0.0115 0.0180 0.0115 0.0180 0.0107 0.0111 0.0115 - 0.0165 0.0098

3 2 1 1 0.0162 0.0160 0.0170 0.0185 0.0172 0.0186 0.0173 0.0171 0.0188 0.0187 - 0.0157 0.0143

3 2 1 2 0.0206 0.0141 0.0149 0.0145 0.0160 0.0146 0.0159 0.0145 0.0159 0.0145 - 0.0153 0.0137

3 2 1 3 0.0222 0.0177 0.0187 0.0220 0.0257 0.0220 0.0257 0.0191 0.0209 0.0227 - 0.0247 0.0144

3 2 2 1 0.0126 0.0108 0.0088 0.0082 0.0086 0.0082 0.0086 0.0078 0.0073 0.0082 - 0.0083 0.0100

3 2 2 2 0.0032 0.0097 0.0078 0.0065 0.0078 0.0065 0.0078 0.0066 0.0062 0.0065 - 0.0070 0.0097

3 2 2 3 0.0034 0.0080 0.0065 0.0065 0.0028 0.0065 0.0028 0.0087 0.0081 0.0067 - 0.0040 0.0101

3 2 3 1 0.0059 0.0100 0.0108 0.0101 0.0089 0.0101 0.0089 0.0121 0.0113 0.0101 - 0.0093 0.0116

3 2 3 2 0.0194 0.0115 0.0124 0.0103 0.0194 0.0103 0.0195 0.0102 0.0096 0.0102 - 0.0204 0.0111

3 2 3 3 0.0059 0.0116 0.0125 0.0127 0.0029 0.0128 0.0029 0.0135 0.0126 0.0131 - 0.0052 0.0116

3 3 1 1 0.0188 0.0127 0.0152 0.0151 0.0146 0.0150 0.0146 0.0153 0.0149 0.0149 - 0.0160 0.0146

3 3 1 2 0.0056 0.0111 0.0133 0.0136 0.0070 0.0136 0.0071 0.0151 0.0148 0.0135 - 0.0075 0.0140

3 3 1 3 0.0215 0.0140 0.0167 0.0156 0.0243 0.0156 0.0242 0.0148 0.0145 0.0158 - 0.0239 0.0147

3 3 2 1 0.0081 0.0105 0.0078 0.0079 0.0070 0.0080 0.0070 0.0069 0.0069 0.0078 - 0.0068 0.0103

3 3 2 2 0.0045 0.0094 0.0070 0.0072 0.0051 0.0072 0.0050 0.0069 0.0069 0.0071 - 0.0048 0.0099

3 3 2 3 0.0058 0.0077 0.0058 0.0055 0.0064 0.0055 0.0064 0.0067 0.0067 0.0056 - 0.0055 0.0103

3 3 3 1 0.0142 0.0098 0.0096 0.0100 0.0195 0.0100 0.0195 0.0107 0.0110 0.0099 - 0.0201 0.0118

3 3 3 2 0.0109 0.0112 0.0110 0.0117 0.0091 0.0118 0.0090 0.0106 0.0109 0.0116 - 0.0084 0.0114

3 3 3 3 0.0081 0.0114 0.0112 0.0110 0.0047 0.0110 0.0048 0.0104 0.0107 0.0112 - 0.0067 0.0119

Indepen-

dence

MaxEnt 

(three-way)

MaxEnt CRE 

(three-way)

Ku&    

Kullback*

MaxEnt CRE 

(pairwise)
Lewis* Brown* Keefer KirkwoodX3 X4 P(                    )

CRE 

FODT

MaxEnt 

(pairwise)

(*) After 6 iterations

Chow-LiuX1 X2      ,  ,  

 

Table 5.7: Approximations of Four Binary Distribution 
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Approximation Method Absolute Deviation(AD) Least Squares (LS) Maximum Deviation (MD)

CRE First Order Dependence Tree 0.39752 0.00291 0.01750

Chow-Liu Dependence Tree 0.40842 0.00296 0.01456

Maximum Entropy (Three-way ) 0.22996 0.00095 0.00819

Maximum Entropy (Pairwise ) 0.38322 0.00278 0.01637

Maximum CRE Entropy (Three-way ) 0.22973 0.00095 0.00818

Maximum CRE Entropy (Pairwise ) 0.38299 0.00278 0.01632

Brown's Approximation 0.39202 0.00285 0.01441

Lewis Product Approximation 0.40124 0.00290 0.01443

Independence Approximation 0.43624 0.00321 0.01457

Ku&Kullback's Approximation 0.38263 0.00277 0.01640

Keefer Binary Approximation - - -

Kirkwood Approximation 0.24433 0.00104 0.00826

  

     From Table 5.8, for the case of 3 3 3 3    joint distributions, we have found that the results 

are very similar to those obtained with the four-binary joint distribution case. In this case, we see 

that the maximum entropy approximation (MaxEnt-three way) and the maximum CRE 

approximation (MaxEnt CRE- three way) are also the best approximations; the third best 

performance is achieved by the Kirkwood’s superposition approximation method. 

     For convenience, we also run another simulation with 3 3 3 3    joint distributions. Table 5.9 

displays a summary of mean of errors of four three-outcome joint probability distributions 

calculated by methods in Table 5.1.  

 

 

 

 

Table 5.8: Example of Approximations of Four Three-Outcome Variable Distribution 
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Approximation Method Absolute Deviation(AD) Least Squares (LS) Maximum Deviation (MD)

0.2856 0.0019 0.0171

Independence Approximation 0.6904 0.0107 0.0441

Ku&Kullback's Approximation 0.5296 0.0061 0.0273

Keefer Binary Approximation - - -

Kirkwood Approximation

Lewis Product Approximation 0.5896 0.0077 0.0329

Brown's Approximation 0.5594 0.0069 0.0299

Maximum CRE Entropy (Pairwise ) 0.5251 0.0060 0.0251

Maximum CRE Entropy (Three-way ) 0.2128 0.0009 0.0085

Maximum Entropy (Pairwise ) 0.5251 0.0060 0.0258

Maximum Entropy (Three-way ) 0.2128 0.0009 0.0084

Chow-Liu Dependence Tree 0.5888 0.0030 0.0146

CRE First Order Dependence Tree 0.5719 0.0029 0.0175

 

     From Table 5.9, we can see that the mean of absolute deviation for the Maximum CRE (three-

way) is 0.212867, and for the maximum entropy (three-way) method is 0.212868. The ratio of the 

means of absolute deviation of maximum CRE method to the maximum entropy method is less 

than %0.01. Also, the mean of the least squares error between maximum CRE approximate 

distribution and true distribution is 0.0009, and for maximum entropy method, the least square 

error is 0.0009, a small deviation in many problems. The Kirkwood superposition approximation 

is the third best approximation with an absolute deviation error of 0.2856, and least squares error 

of 0.0019.  

     We also performed the percentage analysis for this example to find out what percentage of the 

samples performs best, second best, third best, and worst in the long run. Table 5.6 presents the 

percentage of time each approximation is the best, second best, third best, and worst. The results 

are shown in Table 5.10. 

 

Table 5.9: Simulation Results of Approximations of Four Three-Outcome Variable Distribution 
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Approximation Measure
% of Distributions                

Best

% of Distributions 

Second Best

% of Distributions           

Third Best

% of Distributions 

Worst

AD 0.0% 0.0% 0.0% 27.4%

LS 0.0% 0.0% 0.0% 27.1%

MD 0.0% 0.0% 0.1% 29.7%

AD 0.0% 0.0% 0.0% 29.1%

LS 0.0% 0.0% 0.0% 26.6%

MD 0.0% 0.0% 0.3% 22.5%

AD 0.0% 0.0% 0.0% 3.7%

LS 0.0% 0.0% 0.0% 3.9%

MD 0.4% 1.2% 0.8% 5.0%

AD 49.0% 48.1% 1.7% 0.0%

LS 49.2% 48.8% 0.7% 0.0%

MD 39.3% 45.1% 10.1% 0.0%

AD 0.0% 0.0% 0.0% 3.2%

LS 0.0% 0.0% 0.0% 3.5%

MD 0.0% 1.4% 1.2% 4.7%

AD 49.7% 48.5% 1.5% 0.0%

LS 50.6% 47.5% 1.3% 0.0%

MD 39.1% 49.2% 8.8% 0.0%

AD 0.0% 0.0% 1.7% 16.1%

LS 0.0% 0.0% 1.0% 17.5%

MD 0.0% 0.0% 3.1% 15.9%

AD 0.0% 0.0% 3.1% 11.9%

LS 0.0% 0.0% 2.6% 12.5%

MD 0.0% 1.1% 2.7% 10.4%

AD 0.0% 0.0% 6.7% 7.7%

LS 0.0% 0.0% 5.6% 8.3%

MD 0.9% 0.8% 7.2% 8.5%

AD 1.3% 3.4% 85.3% 0.9%

LS 0.2% 3.7% 88.8% 0.6%

MD 20.3% 1.2% 65.7% 3.3%

Kirkwood

MaxEnt CRE 

(pairwise)

Chow-Liu

CRE FODT

MaxEnt 

(pairwise)

Lewis

Brown

Ku&Kullback

MaxEnt       

(three-way)

MaxEnt CRE 

(three-way)

 

      

     The results are very similar to what we found for the four binary variable case. The results for 

absolute deviation measure show that, after sampling one million four three-outcome joint 

probability distribution, maximum entropy and maximum CRE are the best approximation 

Table 5.10: Percentage of Distributions for Different Approximations and Measures for Four  

        Three-Outcome Variable Example 
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methods for almost 99% of the samples, and the Kirkwood superposition approximation is the best 

approximation for 1.3% of the samples. In our example, we again didn’t take into account the 

independence approximation because the independence approximation is the worst approximation 

method for more than 99% of the samples. We also didn’t consider the Keefer’s approximation 

method because this method can only be applied to binary variables. 

 

 

     Maximum CRE and maximum entropy methods are obviously the best approximation methods 

so far. We now discuss the other approximation methods to understand how they perform in the 

long run. For our detailed analysis, we again divided the results into two groups for clearer 

presentation and interpretation. Our first group shows the results of each error measure of the best 

three approximation methods: maximum CRE, maximum entropy, and Kirkwood’s superposition 

approximation. The second group consists of the percentage of the third best and the worst 

approximations of each error measure. Figure 5.4 shows the results of each group.  

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00%

Chow-Liu FODT

CRE FODT

Maximum Entropy two-way)

Maximum Entropy (three-way)

Maximum CRE two-way)

Maximum CRE (three-way)

Lewis

Brown

Ku and Kullback

Kirkwood

% of Distributions Best % of Distributions Second Best % of Distributions Third Best % of Distributions Worst

Figure 5.3: Percentage of Four Three-Outcome Distribution Approximations for Absolute  

                    Deviation Measure 
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Figure 5.4: Percentage of Approximations of Four Three-Outcome Distributions for Different   

                   Error Measures 
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     The first group of the results shows that the maximum entropy and maximum CRE methods 

are very similar; thus we can say these two methods can be used as an alternative methods to one 

another. Another observation from the first group of the results is that the Kirkwood superposition 

approximation is the third best approximation. However, this approximation method is not 

consistently gives good results because superposition approximation method violates the 

normalization condition and gives the worst results more than 7% of the time in the long run. 

     From second group of the results, we have found that Chow-Liu first-order dependence tree 

approximation method is the second worst approximation method after independence 

approximation, and the Ku&Kullback’s approximation method is the best approximation after 

maximum CRE (three-way), maximum entropy (three-way), and the Kirkwood’s superposition 

approximation. We can see from Table 5.9 and Figure 5.4 that the mean of errors are very close in 

the long run for the methods which means that these approximation methods are very close but 

they are not same. We can say that these methods are very similar and approximate almost identical 

joint probability distributions.  

     Another observation from the simulation results is that Lewis’s, Brown’s, and Ku&Kullback’s 

methods are much harder to apply because these methods are iterative methods. The iteration 

procedure cannot compose the best approximation because numerous iterations are required to 

attain full convergence which is very difficult when the number of variables increase. 

5.5. Summary of the Results 

 The maximum entropy approximation (MaxEnt-three way) and the maximum CRE 

approximation (MaxEnt CRE- three way) outperform the other methods.  
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 Kirkwood superposition approximation are dominated by maximum entropy and 

maximum CRE methods and dominate the rest of the approximation methods. So, the third 

best performance is achieved by the Kirkwood’s superposition approximation method.  

 Independence approximation is clearly the worst approximation. After independence 

approximation, Keefer’s binary event approximation is the second worst approximation. 

 Maximum entropy (pairwise), maximum CRE (pairwise), Chow-Liu first-order 

dependence tree, CRE-based first-order dependence tree, Lewis, Brown, and 

Ku&Kullback approximation methods give similar accuracy results, however, the 

computational effort grow exponentially for the iterative approximation methods and 

makes these methods difficult to apply especially when the number of variables increases. 
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CHAPTER 6 

APPLICATION TO DICE MODEL: APPLYING CUMULATIVE RESIDUAL ENTROPY 

INTO THE DICE MODEL 

6.1. Introduction 

This chapter is divided into four sections. Section 1 introduces the DICE model. Section 2 explains 

the global warming policies used in the DICE model. In section 3, we study the uncertain 

parameters used in the model and discuss how to use them in our analysis. In section 4, we run 

simulation experiments for five different policies, and discuss the results of the analysis. 

6.2. Dynamic Integrated Climate Economy Model 

The Dynamic Integrated Climate-Economy model, referred to as the DICE model, is an integrated 

assessment model of climate change developed by William Nordhaus and colleagues that 

integrates both the economic costs and benefits of greenhouse gas controls with an aggregate 

model linking economic growth with climate change to reduce emission and slow greenhouse 

warming. The DICE model is a simplified analytical and empirical model that represents the 

economics, policy, and scientific aspects of climate change. The DICE model attempts to quantify 

how the atmospheric concentration of CO2 negatively affects economic output through its impact 

on global average surface temperature. The model appears to have first been proposed in a 

discussion paper for the Cowles Foundation in 1992, and the final version of the model is published 

with updated discussion of the model in 2013. Figure 6-1 shows a schematic flow chart of a full 

integrated assessment model for climate change science, economics, and policy of the DICE 

model. 
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The DICE model is a policy optimization model with an economic objective function that 

measures economic welfare. The DICE model includes the estimates of both the costs of reducing 

both carbon dioxide emissions and long term future impacts on climate, enabling costs and benefits 

of carbon dioxide emissions to be weighed in order to help determine the optimal level of near-

term controls. So, the main goal of the DICE model is to maximize the welfare function to evaluate 

alternative policies. 

The DICE Model seeks to choose a policy that maximizes the social welfare function,W , that is 

the discounted sum of the population-weighted utility of per capita consumption.  The objective 

Fossil fuel use 

generates CO2 

emissions 

Carbon cycle:  

redistributes around  

atmosphere, oceans, etc. 

Climate system: change  

in radiative warming, precipitation,  

ocean currents, sea level rise,… 

Impacts on ecosystems, 

agriculture, diseases, 

forests, … 

Measures to control 

emissions (limits, taxes,  

subsidies, …) 

Figure 6.1: Schematic flow chart of a full integrated assessment model for climate change  

                    science, economics, and policy (Nordhaus, 2013) 
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 function that DICE seeks to maximize is 

 
1

max [ ( ), ( )] ( )
maxT

t

U c t L t R t


   (6.1) 

where  c t is per capita consumption, ( )L t  is total population, ( )R t  is the discount factor and 

   ,U c t L t    is the total worldwide utility of consumption.   

The utility function in equation 1.1 is defined as 

 
 

1
( )

[ ( ), ( )] ( )
1

c t
U c t L t L t





 
  

  

  (6.2)  

where utility is equal to population multiplied by per-capita consumption.  Per capita consumption 

is adjusted by an elasticity parameter ( ) to account for disparities in equality. If   is close to 

zero, then the consumptions are close substitutes, with low aversion to inequality; if   is high, 

then the consumptions are highly differentiated, which reflects high inequality aversion.  

( )R t  in objective function is the discount factor and defined as  

 ( ) (1 ) tR t      (6.3) 

where the pure rate of social time preference,  , is the discount rate which provides the welfare 

weights on the utilities of different generations. Equation 6.3 takes the total utility in each period 

and discounts it back to the present using the social discount rate (  ). 

The objective function is non-linear in the DICE model and solved by non-linear optimization.  

Nordhaus divides the constraints into two groups: economic constraints and environmental 
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constraints. The economic constraints of the DICE model are (i) output of the economy defined 

with Cobb-Douglas production function and (ii) the capital stock. Environmental constraints are 

(i) flow of emissions of greenhouse gases, (ii) concentration of GHGs in the atmosphere, (iii) 

change in temperature in atmosphere and shallow oceans, (iv) damage resulting from increasing 

temperatures, and (v) economic cost of climate change policies. 

6.3. Global Warming Policies used in DICE Model 

We now briefly explain the five different environmental policies that are used in our analysis. 

These policies are selected from the DICE-2013R model (Nordhaus and Sztorc, 2013). 

1) Baseline: The baseline policy includes existing policies as of 2010; no new policies are 

included to slow or reverse greenhouse warming. This policy enables individuals and companies 

to take precautions or steps to slow down climate change, but governments are assumed to take no 

steps to control or limit greenhouse-gas emissions. 

2) Optimal: The opptimal policy involves weighing the present value of the costs of climate 

change abatement against the present value of its benefits. This policy sets emission reduction 

levels to maximize the value of net economic consumption and is the best possible policy for 

emissions reductions, given our estimated economic, technological, and geophysical constraints. 

3) Temperature-Limited: The aim of this policy is to limit the increase in the global temperature 

to 2oC from the 1900 average (pre-industrial level). The constraints are adapted to not exceed 2oC. 

4) Stern Review: The Stern Review-recommended policy uses very low discount rates and is 

implemented using a time discount rate of 0.1 percent per year and a consumption elasticity of 1, 

leading to low real interest rates and generally to higher carbon prices and emissions control rates. 
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5) Copenhagen Accord: This policy is based on the Copenhagen Accord, a continuation of the 

Kyoto Protocol. In this scenario, developed countries are assumed to implement deep emissions 

reductions over the next four decades, with developing countries following gradually.  

6.4. Analysis of the Model 

In this section, we discuss the uncertain variables and their parameters and analyze the model. Our 

purpose is to integrate climatic and economic uncertainties into the DICE model and find out the 

cumulative impact of integrating uncertainty on climate change by applying CRE into the DICE 

model. The aim of the DICE model is to maximize the present value of net welfare for the next 

sixty time periods, with each period representing five years. We run the simulation for five 

different scenarios from 2010 to 2300. In the DICE model, there are eight different variables and 

each is discretized to three different values ( 3 3 3 3 3 3 3 3        joint distribution). We 

calculate our analysis for pairwise assessments of maximum entropy and maximum approximation 

CRE methods. We also calculate deterministic and independence cases. 

Nordhaus pointed out eight critical uncertain parameters in the DICE model and we have selected 

these eight major parameters for further study: i) uncertainties about the growth rate of total factor 

productivity (ga0), ii) the rate of de-carbonization (dsig), iii) the asymptotic population growth 

(popasym), iv)  the cost of the backstop technology (pback), v) the damage-output coefficient (a2), 

vi) the transfer coefficient of carbon dioxide (b12), vii) the equilibrium temperature-sensitivity 

coefficient (t2xCO2), and viii) the total availability of fossil fuels (fosslim). Earlier studies have 

shown that these parameters have the largest impact on both outcomes and policies. The following 

table (Table 6.1) shows the marginal distributions of eight variables. We use the values given by 

Nordhaus in his books “A Question of Balance” (2008) and “DICE 2013R Manual” (2013) and 
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assume that all the marginal distributions are from known families. All the variables in this analysis 

are normally distributed.  

 

Variable Definition of the Variable Mean St.Dev Unit

ga0 Rate of Growth of Total Factor Productivity 0.079 0.004 per year

dsig Rate of De-carbonization -0.001 0.002 per year

t2xCO2 Equilibrium Temperature-Sensitivity Coefficient 2.900 1.110 Celcius per CO2 doubling

a2 Damage Parameter 0.003 0.001 Fraction of global output

pback Price of backstop technology 344 138 $ per ton of carbon replaced

popasym Asymptotic global population 10500 1892 millions

b12 Transfer coefficient in Carbon Cycle 0.088 0.017 per decade

fosslim Total Resources of Fossil Fuels 6000 1200 billions of tons of carbon
 

We discretized each variable by using the McNamee and Celona’s  (1990) discretization method. 

We especially use the shortcut of the McNamee-Celona which is called equal areas method. This 

method divides the cumulative distribution function into intervals between the P100 and the P75, 

the P75 and the P25, and the P25 and the P0. This produces a weighting of 0.25, 0.50, and 0.25, 

respectively. This method weights the 10th (P10), 50th (P50), and 90th (P90) percentiles of 

probability distribution by 0.250, 0.500, and 0.250, respectively.  10% (Low), 50% (Base) and 

90% (High) percentiles for each uncertainty by using equal areas method are given in Table 6.2.  

 

 

 

 

 

 

Table 6.1: Marginal distributions of uncertain variables of DICE model 



120 

 

 

Variable Low(10%) Base(50%) High(90%)

ga0 0.0739 0.0790 0.0841

dsig -0.0036 -0.0010 0.0016

t2xCO2 1.4775 2.9000 4.3225

a2 0.0010 0.0027 0.0043

pback 168 344 520

popasym 8075 10500 12925

b12 0.0662 0.0880 0.1098

fosslim 4462 6000 7538

Percentiles

 

We also show the variables in a decision tree format with their three different outcomes using the 

low, base and high percentiles of each variable in Figure-6.2. 

0.25 0.25 0.25 0.25

0.5 0.5 0.5 0.5

0.25 0.25 0.25 0.25

0.0010

0.0027
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0.0079
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h) fosslim
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344

8078

10500
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0.211

f) popasym g) b12

520

e) pback

 

 

Table 6.2: Low, Base and High Percentiles of uncertain variables of the DICE model 

Figure 6.2: Decision trees of eight discretized variables of DICE model 
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6.5. Results of the Analysis 

Nordhaus (2013) used the DICE model to evaluate and compare a number of different 

environmental policies including (i) baseline scenario, (ii) optimal tax scenario, (iii) limit 

temperature increase to 2 Celsius degree, (iv) Stern scenario, and (v) Copenhagen Accord scenario. 

There are eight uncertain parameters in the DICE model; however Nordhaus assumes that there is 

no uncertainty in the DICE model and fixes all the uncertain parameters to their mean values. In 

this study, our aim is to integrate uncertainty into the DICE model to understand whether 

uncertainty has any significant effect on the performances of the policies. We take an approach to 

handle the dependence between variables and uncertainty in the DICE model instead of fixing the 

uncertain parameters to their mean values. We incorporate uncertainty into the DICE model by 

discretizing uncertain parameters. Then we use the uncertain parameters in our analysis to generate 

joint probability distributions of eight uncertain parameters using our proposed methods to 

evaluate and compare the expected performances of different policies.  

To understand whether uncertainty significantly affects decision making and welfare 

consequences, three different optimizations are performed. We first assume that there is no 

uncertainty in the model and fix the values of each uncertain parameter into their mean values 

same as the Nordhaus’ analysis. Our second approach assumes that the parameters are uncertain 

but they are independent. Finally, we don’t assume any independence among variables and take 

into consideration dependence among variables and integrate it into the DICE model. 

In this study, we consider five different types of performance measures to compare and evaluate 

different global warming policies. We prefer to use performance measures often used in the 

literature. The performance measures are (i) carbon price or social cost of carbon, which is 
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optimized from the second period, (ii) carbon concentration in the atmosphere, (iii) average global 

temperature increase above preindustrial level, (iv) total carbon emission, and (v) net output of 

abatement cost and climate damages. 

The following figures show the results of the analysis. Figure 6.3 and 6.4 show the results for the 

optimal carbon prices, figure 6.5 and 6.6 show the results of average carbon concentration in the 

atmosphere, figure 6.7 and 6.8 show the results of global temperature increase above preindustrial 

level, figure 6.9 and 6.10 show the results of total carbon emission, figure 6.11 and 6.12 show the 

results of net output of abatement cost and climate damages for five climate change policies.  

The results of the simulation experiments indicate that uncertainty does in fact matter and 

uncertainties about the future cannot be eliminated. Ignoring uncertainty could limit our capability 

to take corrective actions in the future, resulting in poor policies, leading to inefficient use of 

resources, and decreasing our ability to avoid many of the more severe consequences of climate 

change. 

In the short run, the difference between the deterministic, independence, and uncertain cases is 

very small. In the long run, however, a deterministic assumption in which all uncertainties are 

ignored leads to an underestimate of average carbon prices between 2100 and 2200, and after 2200, 

a deterministic case leads to an overestimate of carbon prices for the baseline scenario. For the 

other more aggressive scenarios, the carbon prices for a deterministic case is much higher than the 

uncertain case after 2050. 

The results for the carbon concentration in the atmosphere shows behavior similar to those for the 

carbon prices. In the 21st century, ignoring uncertainty overestimated carbon concentration in the  
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                             (c)  Stern Scenario      (d) Copenhagen Accord 

Figure 6.4: Carbon Prices under Alternative Policies from 2010 to 2300 for Deterministic, Independence, and   

                    Dependence Cases 

 

                     (a)  Optimal Tax Scenario                                 (b) Limit 2oC Scenario 

Figure 6.3: Carbon Prices under No Policy 2010-2300 for Deterministic, Independence, and Dependence Cases 

 



124 

 

 

 

 

 

300

500

700

900

1100

1300

1500
p

p
m

Deterministic Pairwise Max CRE Independence

300

350

400

450

500

550

600

p
p

m

Deterministic Pairwise Max CRE Independence

200

250

300

350

400

450

500

p
p

m

Deterministic Pairwise Max CRE Independence

250

300

350

400

450

500

550

p
p

m

Deterministic Pairwise Max CRE Independence

300

350

400

450

500

550

600

650

p
p

m

Deterministic Pairwise Max CRE Independence

Figure 6.5: Carbon Concentration under No Policy 2010-2300 for Deterministic, Independence, Dependence Cases 

 

                     (a)  Optimal Tax Scenario                                 (b) Limit 2oC Scenario 

                             (c)  Stern Scenario         (d) Copenhagen Accord 

Figure 6.6: Carbon Concentration under Alternative Policies from 2010 to 2300 for Deterministic, Independence,    

                    and Dependence Cases 
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Figure 6.7: Temperature Increase under No Policy 2010-2300 for Deterministic, Independence, Dependence Cases 

 

                     (a)  Optimal Tax Scenario                                 (b) Limit 2oC Scenario 

                             (c)  Stern Scenario          (d) Copenhagen Accord 

Figure 6.8: Temperature Increase under Alternative Policies from 2010 to 2300 for Deterministic, Independence,  

                    and Dependence Cases 
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Figure 6.9: Total Carbon Emission under No Policy 2010-2300 for Deterministic, Independence, Dependence Cases 

 

                     (a)  Optimal Tax Scenario                                 (b) Limit 2oC Scenario 

                             (c)  Stern Scenario          (d) Copenhagen Accord 

Figure 6.10: Total Carbon Emission under Alternative Policies from 2010 to 2300 for Deterministic, Independence,  

                    and Dependence Cases 
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Figure 6.11: Net Output under No Policy 2010-2300 for Deterministic, Independence, and Dependence Cases 

 

                     (a)  Optimal Tax Scenario                                 (b) Limit 2oC Scenario 

                             (c)  Stern Scenario          (d) Copenhagen Accord 

Figure 6.12: Net Output under Alternative Policies from 2010 to 2300 for Deterministic, Independence, and  

                    Dependence Cases 
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atmosphere. By starting the 22nd century, the rate of carbon concentration decreases significantly 

when uncertainty is considered. Uncertainty clearly has a dramatic effect on the future path of 

carbon concentration and average carbon prices, but with a relatively small consequence for 

immediate decisions. Also, these results show that the carbon concentration in the atmosphere is 

negatively correlated to carbon prices. As the carbon prices increases, the carbon concentration 

decreases gradually. 

When we analyze the results for the temperature increase performance measure (Figure 6.7 and 

Figure 6.8) we can say that the results are very similar for deterministic and uncertain cases up to 

2100. However after 2150, the deterministic method overestimates the temperature increase. The 

temperature goes almost constant under deterministic case after 2150 but decreases sharply in the 

case of uncertainty for optimal tax, limit 2ºC, and Stern scenarios. Significantly, the expected 

change in mean global temperature associated with the optimal, Stern, and limit 2ºC scenarios is 

never greater than 3.5 ºC above the pre-industrial norm, peaking in the year 2150 for three 

scenarios. For the Baseline and Copenhagen Accord scenarios, the temperature is increasing 

gradually for all time periods and gives similar result under uncertain, independent, and 

deterministic conditions. Also, temperature increase is inversely proportion to carbon prices and 

directly proportional to carbon concentration. These results are reasonable because as the price of 

carbon increases, people and companies prefer to use less carbon-based fuel, which helps to 

decrease both carbon concentration and average temperature increase from the preindustrial level. 

For total carbon emission, the results are very different compared to the other performance 

measures. The results are closer under uncertain and certain situations for baseline scenario; 

however, in the other four scenarios the total carbon emission decreases to zero around 2060 under 

deterministic conditions which doesn’t make sense. If we assume that all the values of uncertain 
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parameters fix to their mean values, this results show that the optimal tax, limit-2°C, Stern, and 

Copenhagen scenarios are very powerful and achieve the desired goals in a short time. However, 

in reality, it takes a long time to reduce carbon emission, and the damages resulting from the 

temperature increase near zero in the long run. If we compare the results with carbon concentration 

then we can also say that this is impossible in a short period of time. The results under uncertainty, 

however, make sense because the carbon emission decreases to zero after 2200, which means that 

after 200 years the policies have influenced people and companies to decrease carbon emission 

and halt the temperature increase.   

Ignoring uncertainty in the net output of abatement cost and climate damages initially appears very 

similar under uncertain and deterministic conditions; however the deterministic case leads to an 

overestimation of costs and damages for all scenarios because carbon intensity may decrease at a 

faster rate under uncertainty and abatement costs are assumed to be directly proportional to carbon 

intensity. 

From Figure 6.11 and 6.12, the estimate values of net values of abatement costs and climate 

damages under certainty is very similar to net values under uncertainty. Also, the graphs show 

very similar behavior as time periods increases. It seems that the deterministic case is competitive 

with the uncertain case because net present values under deterministic and uncertain cases are very 

close. However, assuming certainty about the future while making global warming decisions is 

clearly not true in the majority of the policies and performance measures. Although the net present 

values under deterministic and uncertain cases are close, the average values of temperature 

increase and carbon emissions show that making decisions under certainty about the global 

warming may lead to catastrophic climate change. 
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Ignoring uncertainty in temperature increase, net output of abatement cost and climate damages, 

and carbon price performance measures causes overestimation of the benefits for all scenarios, but 

ignoring uncertainty causes slightly underestimation for total carbon emission and significant 

underestimation for carbon concentration. If there is not enough information to assume that the 

parameters are deterministic or independent, then dependence among variables and uncertainty 

should be considered in  global warming decisions, as dependence and uncertainty may have a 

significant impact on climate change and global warming decisions.  

We also calculate the average values and standard deviations of the each policy for all performance 

measures under deterministic and uncertain cases. The following table (Table 6.3) shows the mean 

and standard  deviation values of  five output variables from 2010 to 2300; the optimal carbon 

price, carbon concentration in the atmosphere , temperature increase from the preindustrial level,   

total carbon emission, and the net output of abatement cost and climate damages.      

The results in Table 6.3 show that if uncertainty is taken into account, there is a significant impact 

on all performance measures and substantial change on the average values of all performance 

measures. However, the independence case results are slightly different than those of the pairwise 

assessment case. In this instance,  dependence among variables by using pairwise assessments may 

have very little impact on the average values of performance measures.  

Also, if we analyze the results for carbon prices, we can easily say that the deterministic case leads 

to an overestimate of carbon prices for all scenarios. Moreover, the average value of global 

temperature increase associated with the Limit 2oC and Stern scenarios is lower than 2.0 ºC above 

the pre-industrial norm under deterministic and uncertain cases; however, there is a 0.4 ºC 
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difference, which is huge for our earth and for us, between the average temperature increase under 

deterministic case and the average temperature increase under uncertainty.  
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Mean St.Dev Mean St.Dev Mean St.Dev Mean St.Dev Mean St.Dev

Deterministic 34.33 36.72 893.09 246.77 4.78 1.96 52.65 35.98 1040.83 731.69

Pairwise Max CRE 34.00 32.77 967.87 289.95 3.71 1.43 64.69 35.43 985.12 689.34

Independence 33.98 32.82 984.26 295.90 3.83 1.44 71.73 28.51 1123.18 829.76

Deterministic 112.22 52.99 476.55 41.23 2.60 0.62 13.32 20.45 1171.02 860.20

Pairwise Max CRE 86.76 41.15 440.35 36.72 2.35 0.70 21.12 17.77 1039.70 799.05

Independence 91.66 41.75 466.72 40.87 2.44 0.71 35.92 21.55 1126.36 831.78

Deterministic 143.83 64.95 389.67 22.08 1.81 0.27 6.63 16.95 1177.75 859.55

Pairwise Max CRE 128.14 50.79 347.94 56.23 1.44 0.39 9.74 10.39 1066.94 823.19

Independence 134.26 49.48 391.67 39.74 1.48 0.40 12.36 11.17 1145.03 848.00

Deterministic 155.64 65.65 370.25 19.24 1.61 0.20 5.42 17.49 1290.23 941.65

Pairwise Max CRE 120.40 53.65 343.70 30.02 1.40 0.56 6.59 9.13 1167.55 889.50

Independence 130.17 54.31 355.78 37.50 1.52 0.53 9.45 11.97 1302.19 937.06

Deterministic 100.28 40.29 539.68 46.12 3.02 0.85 19.42 10.16 1151.36 836.98

Pairwise Max CRE 79.21 34.79 519.21 44.53 2.94 0.79 19.19 11.34 1103.49 795.44

Independence 91.97 35.39 547.35 52.19 2.97 0.81 22.20 11.34 1122.52 836.18

Base

Optimal

Limit 2C

Stern

Copenhagen

Scenarios Method

(1) $ per ton (2) ppm (3) Degrees Celcius (4) GTCO2 (5) $ trillion

                                                                               

 

Table 6.3: Mean and Standard Deviation of Each Performance Measure under Each Policy 2010-2300 for Deterministic,  

                  Independence, and Dependence Cases 
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CHAPTER 7: CONCLUSIONS 

7.1. Summary of the Results 

Estimating the functional form of multivariate probability distributions with partial information is 

important because the decision maker is often unable or unwilling to provide precise information, 

but the decision maker may be able to assess certain relations among subsets of attributes. So, in 

decision analysis literature, most of the real world problems are often solved on the basis of given 

certain conditions and assumptions. Most of the decision problems assume independence among 

variables. However, in real life decisions, the decision maker must make decisions which involve 

trade-offs and uncertainties among variables. Assuming independence simplifies the 

approximation process, but the accuracy of the decisions reduces due to the loss of information. If 

we know more information about decision maker’s preferences, this helps to approximate or elicit 

more accurate joint probability distribution, but eliciting more information from the decision 

maker is difficult, time consuming and expensive. So, our main goal in this work is to address the 

problems where partial information about the decision situations is known.  

Our first contribution, in Chapter 3, is to approximate joint probability distributions of a set of 

discrete random variables using a product of second order conditional and marginal distributions 

based on cumulative residual entropy.  We construct optimum first order tree approximation of the 

joint distribution if its dependence tree has the maximum sum of cumulative residual mutual 

information pairs.  

Our second contribution, in Chapter 4, is to propose an approximation method similar to maximum 

entropy principle to construct representative joint probability distributions from its lower order 

assessments by using maximum cumulative residual entropy approach. 
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Chapter 5 compares several approximation methods to find the best approximate probability 

distribution based on the given information. . The objectives of this chapter is to test the accuracy 

of different approximations of joint distributions with respect to the true distribution from the set 

of all possible distributions that match available information. 

Chapter 6 takes into account the climatic and economic uncertainties because climate change, 

long-term economic development, and their interactions are highly uncertain. Climatic and 

economic uncertainties are integrated into the DICE model, and to find out what will be the 

cumulative impact of integrating uncertainty on climate change by applying CRE to the DICE 

model. 

7.2. Future Work 

The existing research can be extended in several ways: 

 A new method to compare approximate probability distributions or utility functions with 

respect to the true distribution from the set of all possible distributions that match same 

available information can be developed.  

 It is essential to construct utility functions for the decision maker if only the decision 

maker’s partial preference information. Abbas used the analogy between probability and 

utility and introduced the utility density functions, implementing it in his maximum entropy 

formulation (Abbas, 2002 and 2006). In a similar way, the maximum CRE entropy 

formulation can be further studied to apply utility functions. One future research direction 

would be to construct an alternative measure of uncertainty by using the analogy between 

utility and probability to incorporate the multiattribute utility function into the cumulative 

residual entropy. 
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  In this study, first order dependence trees with CRE and maximum entropy 

approximations can only be used with CRE Kullback Leibler divergence. There are also 

several other measures in the literature like Bregman divergence (Bregman, 1967) and 

Csiszar divergence (1963 and 1967). Another future research direction would be to use 

other divergences such as Bregman divergences or Csiszar divergence.   

 Another future direction of this research involves taking climate change into account in 

buying a new car and analyzing the effects of climate change on buying decisions: e.g., 

whether climate change has a major impact on a decision maker’s decision or decision 

maker is focused on the price of the car and disregards altogether its carbon footprint.  

 Abbas (2002 and 2006) uses the analogy between probability and utility to produce an 

entropy definition for utility functions. But a formulation similar to mutual information and 

KL-divergence in probability has not been extended for utility functions. By using the 

analogy between utility and probability, mutual information and KL-divergence measures 

can be extended to utility functions using the Cumulative Residual entropy measure. 
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