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Abstract

This work presents a simulation framework for modeling high enthalpy ionized gas flows during

planetary entry flights and ground-based arc-jet testing. The system of Favre-averaged Navier-

Stokes equations in thermo-chemical non-equilibrium with Spalart-Allmaras turbulence closure is

outlined, along with models for thermodynamics, chemical kinetics, transport properties, and the

applied electric field. The electric field and the Joule heating term are computed using a Poisson

equation and the generalized Ohm’s law. A standard two-temperature model is implemented to

account for non-equilibrium effects. A numerical method based on the streamline upwind Petrov-

Galerkin (SUPG) finite element formulation is utilized. A two-way loose coupling strategy between

the flow solver and the electric field is introduced to achieve convergence. The methodology is first

tested by modeling hypersonic axisymmetric flows over a blunt body for a range of increasingly

complex flight conditions. We then apply it to simulate the flow-field and electrical discharge inside

the 20 MW NASA Ames Aerodynamic Heating facility (AHF) to further confirm the capabilities

and robustness of the developed framework.
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“It was the best of times, it was the worst of times”

— Charles Dickens, A Tale of Two Cities
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Chapter 1

Introduction

1.1 Introduction

The entry of space vehicles into a planetary atmosphere from outer space occurs at hypersonic

speeds. The vehicle encounters denser atmospheric layers as it progresses towards the surface, dis-

sipating its kinetic energy through drag. A strong bow shock develops in front of the capsule which

heats up the gas to several thousand degrees Kelvin. The sudden temperature jump, experienced

by the flow, brings about strong collisions among the gas particles, provoking changes in chemical

composition of the gas and exciting the internal energy modes of its atoms and molecules. At

sufficiently high temperatures, the gas ionizes and the flow becomes a weakly ionized plasma. The

radiation emitted and absorbed by the gas can also play an important role in the distribution of

energy around the vehicle at such high temperatures. The different physical and chemical phenom-

ena occurring during atmospheric entry are outlined in Figure 1.1. Thermal and chemical processes

require a finite amount of time to occur. When the characteristic time of these processes is of the

same order as the flow characteristic time, a state of thermal (internal modes out of equilibrium

with the translational mode) and chemical non-equilibrium is reached by the gas. The characteri-

zation of the non-equilibrium phenomena occurring in the flow strongly affects the total convective

and radiative heating experienced by the vehicle during the entry phase.

The spacecraft is protected from this harsh environment by using thermal protection systems

(TPS), which are critical for reducing and dissipating the large heat fluxes being received by the

entry capsule. The heat loads experienced during entry dictate the choice of the TPS and ultimately

drive the overall design process for the protection of the vehicle. Thus, in order to design reliable
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Figure 1.1: Flowfield during hypersonic vehicular planetary entry.

(Source: NASA)

spacecraft, the heat flux distribution over the heat-shield must be accurately characterized. Tradi-

tionally, this has been achieved through extensive wind tunnel testing. Conventional wind tunnel

facilities are not capable of replicating conditions during non-equilibrium high speed entries for a

significant duration in time. Arc-jets and inductively coupled plasma (ICP) heaters are capable of

generating high enthalpy flows which provide the necessary temperature levels and heating rates. In

these high enthalpy facilities, an electro-magnetic discharge heats up the gas, generating a plasma

flow. This hot gas mixture is typically accelerated by means of a converging- diverging nozzle into

the test chamber where the actual testing takes place.

Since, the exact flight conditions cannot be replicated for the entire vehicle, the objective is to

match physical parameters for critical parts of the heat-shield. An example of this is stagnation

line testing, which aims at reproducing heating rates at the stagnation point region [1]. The link

between in-flight and experimental conditions is established on the basis of approximate theories,
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like Local Heat Transfer Simulation (LHTS) [2], to reconstruct flight conditions using overly sim-

plified assumptions. A better approach is to apply the same computational and physical models

to both flight and ground-based testing. The advent of powerful computing capabilities enables

Computational Fluid Dynamics (CFD) simulations that can capture the complex physics of both

entry flight and ground-based test facilities. The present work aims at creating an integrated simu-

lation framework for high fidelity CFD analysis of both hypersonic entry and ground-based testing,

with accurate physical models for the description of the thermodynamic, chemical, non-equilibrium

(NLTE) energy transfer and transport properties of high temperature gaseous mixtures, and the

associated electric field (for arc-jet flows).

Continuous finite element methods as a discretization tool have largely been overlooked in favor

of finite volume methods in numerical solvers investigating different classes of flows. This trend

is now changing with advancements being made in the development of stabilized finite element

techniques, especially for hypersonic applications. The fully-Implicit Navier-Stokes (FINS-S) [3, 4]

hypersonic solver, a parallel, adaptive, unstructured, finite element based solver built using the

LIBMESH framework [5], represents the state of the art of hypersonic solvers due to its advanced

numerical capabilities. Recently, FIN-S has been coupled with CANTERA for simulating chemi-

cally reacting flows [6]. CANTERA is a widely used software library, for the calculation of ther-

modynamics, chemistry and transport phenomenon [7]. Unfortunately, CANTERA, in its present

form, cannot simulate weakly ionized plasmas. Thus, FIN-S, despite its sophisticated numerical

algorithms, is limited to modeling low speed entry problems (e.g. Low Earth Orbit (LEO) entry

conditions) [8]. The present work addresses this shortcoming by implementing improved physical

models for weakly ionized plasmas for flight conditions relevant to Mars and lunar return entry

applications [9, 10, 11]. The new library, that supplies FIN-S with the necessary information per-

taining to the gaseous mixture, is hosted in MUTATION++ [12], a C++ library being developed

at the von Karman Institute, Belgium, to model Local Thermodynamic Equilibrium chemically

reacting flows.

In this work, we will simulate and present results from the new capability for the FIRE II lunar

return conditions, and the flow in arc-heaters, with regards to modeling high enthalpy flows in

3



Figure 1.2: SPRITE model under test in the NASA Ames 20 MW Aerodynamic Heating Facility.

(Source: NASA Ames Research Center)

ground-based test facilities. The second numerical investigation focuses on the 20 MWAerodynamic

Heating Facility (AHF) at NASA Ames Research Center (Figure 1.2). The AHF is a segmented-type

arc heater which comprises of a constricted-arc heater section (anode, cathode, and constrictor), a

nozzle section, and a test chamber [13]. The electric discharge causes the incoming gas to heat up.

The high pressure in the heater section ensures that the flow is in local thermal equilibrium (LTE).

However, the acceleration in the converging-diverging nozzle causes the density to decrease along

with the collision frequency, leading to thermochemical non-equilibrium. The flow chemistry freezes

while traveling through the nozzle. The flow then enters a large chamber where sample testing is

carried out.

Test planning and the design of arc-jet facilities require accurate characterization of the physical

properties of the flow at the nozzle exit, deeming the complete modeling of the different phenomenon,

that manifest in the flow-field, critical to the overall success of this endeavor. Despite the spurt in
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research targeting this problem, there are only a few CFD codes that attempt to solve for these

physical processes through an integrated analysis. The current investigation attempts to create a

two-way coupling between the electric field and the corresponding arc discharge, and the flow-field.

The intense electric currents result in energy being added through Joule heating which subsequently

affects the value of electrical conductivity and causes the electric field to continue evolving along

with the flow. A separate module for computing the electric field and the resultant Joule heating

term is added to FIN-S. Additionally, the Spalart-Allmaras turbulence model is used to account

for the effect of turbulence. FIN-S is therefore, used to model the entire range of flows – subsonic

in the electric heater, supersonic at the nozzle exit, and hypersonic flows for free flight simulations.

The application of the same physical models and numerical techniques will aid in establishing a link

between subsonic and hypersonic flows. This can be utilized for developing operating characteristics

for ground-based test facilities for given flight conditions and for interpreting experimental data from

test facilities.

1.2 Thesis Outline

This thesis presents an overview of the governing equations, the numerical solution procedure, and

two investigations related to flight conditions and ground-based facilities. Chapter 2 describes the

set of governing equations and property models used to describe flows in chemical and thermal non-

equilibrium. This chapter also presents a simplified formulation for the electric field equation and

the Joule heating term, along with the turbulence model used in this study. The stabilized finite

element technique in FIN-S is detailed in Chapter 3. The time-integration strategy and treatment

of the boundary conditions are also discussed in Chapter 3. The results obtained for free flight and

ground-based arc-jet testing are summarized in Chapter 4. Finally, conclusions and a description

of future work is presented in Chapter 5.
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Chapter 2

Physical Model

The flow governing equations comprise of species mass conservation, momentum conservation and

energy conservation equations. These conservation equations can be obtained by taking successive

moments of the Boltzmann equation. The description for the flow field generated in an arc-heated

wind tunnel requires an additional coupling with the Maxwell equations governing the electro-

magnetic fields that sustain the plasma discharge. Under an imposed electric field assumption, the

two sets of equations are coupled through electrical conductivity, that is present in the electric field

equation and the Joule heating term (on the flow side).

To solve the governing equations expressions for thermodynamic and transport properties are

required. In this work, a two-temperature model is used to model thermal nonequilibrium effects.

It is assumed that:

• the rotational states are in equilibrium with the heavy particle translational energies charac-

terized by a common translational-rotational temperature, Thr / T ;

• and the electronic energies of the heavy particles and vibrational energies of the molecular

mixture components are equilibrated with the translational energies and are defined by a

common electronic-vibrational temperature, Tev / Tv .

The full Maxwell equations, in the absence of a strong plasma induced magnetic field, can be

simplified further to obtain a Poisson equation. Thus, the final form of the governing equations

closely resemble the Navier-Stokes equations, supplemented by the generalized Ohm’s law and the

electric field equation.
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2.1 Governing Magneto-Hydrodynamics Equations

2.1.1 Hydrodynamics Conservation Equations

A simplified representation that disregards the internal degrees of freedom is used for describing the

ionized plasma mixture. The distribution of s-particles in the phase space, (d−→rs , d
−→ws) is represented

with the distribution function, fs(
−→rs ,
−→ws), and satisfies the Boltzmann’s equation:

∂fs
∂t

+ −→ws · ∇fs +
1

ms

−→
Fs · ∇−→ws

fs =

[

∂fs
∂t

]

el

+

[

∂fs
∂t

]

ch

(2.1)

where
−→
Fs is the Lorentz-force on the s-particles, with the effect of other body forces like gravity

neglected. The terms on the right hand side represent the net production of particles due to elastic

and inelastic collisions respectively.

The hydrodynamic equations required for the mathematical modeling of high-enthalpy flows

are derived by taking the moments of mass, momentum, and energy of the Boltzmann equation

(Equation 2.1). Equation 2.1 is multiplied by θs and integrated over −→ws to obtain Enskog’s equation:

∂

∂t
(ns 〈θ〉s) + ∇ · (ns 〈

−→wθ〉s) −
ns

ms

〈−→
Fs · ∇−→ws

θ
〉

s
=

∫

θs

[

∂fs
∂t

]

el

d−→ws +

∫

θs

[

∂fs
∂t

]

ch

d−→ws (2.2)

where a molecular quantity enclosed within the parenthesis 〈·〉 represents its averaged value.

Continuity Equation

Mass continuity equations for individual mixture constituents are critical for computing the mixture

composition. The n species continuity equations are obtained by assuming θ = ms:

∂ρs
∂t

+ ∇ ·
[

ρs

(

−→u +
−→
Us

)]

= ωs (2.3)

where ωs represents species’ net production rate through chemical reactions and
−→
Us is the diffusive

velocity of species s. The mixture continuity equation is obtained by adding up Equation 2.3 over
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all species:

∂ρ

∂t
+ ∇ · (ρ−→u ) = 0 (2.4)

The chemical source term on the right hand side disappears because total mass is conserved for the

complete system.

Momentum Equation

The species momentum equation is obtained when θs = ms
−→ws. By adding up the momentum

equations for the n individual mixture components, the mixture momentum equation is obtained:

∂ρ−→u

∂t
+ ∇ ·

(

ρ−→u−→u + pÎ − τ̂
)

=
−→
E ′nc +

−→
J ×

−→
B (2.5)

where τ̂ is the viscous stress tensor. The effect of the Lorentz force,
−→
E ′nc +

−→
J ×

−→
B , is neglected

since the mixture is considered to be quasi-neutral and the imposed arc current is the dominant

electric current.

Total Energy Equation

θs = msw
2
s/2 gives the total energy equation for individual species. These can be summed to

obtain the equation for the mixture:

∂ρe

∂t
+ ∇ · (ρ−→u h) + ∇ ·

(

∑

s

ρs
−→
Ushs

)

+ ∇ · −→q = ∇ · (−→u : τ̂ ) +
−→
J ·
−→
E (2.6)

where the total energy per unit mass is defined as E = u2/2 + e and the total enthalpy per unit

mass is written as H = u2/2 + h.
−→
J ·
−→
E is the contribution of the Joule heating.

2.1.2 Electric Field and Current

We assume that the imposed electric field is the dominant field and that the electric current gener-

ated by flow of the plasma is too small to induce a strong enough magnetic field. Thus, a simplified
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electric field equation, that is derived from the full Maxwell equations and generalized Ohm’s law,

can be used to model the arc dynamics.

Ohm’s Law

The electric field
−→
E can be expressed as the sum of an irrotational electrostatic part

−→
ES and a

divergence-free induced part
−→
EI :

−→
E =

−→
ES +

−→
EI (2.7)

where
−→
ES = −∇φ and

−→
EI = −∂

−→
A
∂t .
−→
EI = 0, due to the absence of an effective induced magnetic

field in the arc-heated wind tunnel facility. The conduction current in unmagnetized plasmas is

mostly due to the flow of light electrons (and not heavy ions) and can be expressed as:

−→
J =

∑

s

ns
−→
Usqs ≈ ne

−→
Ueqe =

−→
Je. (2.8)

−→
J can then be expressed using Ohm’s law:

−→
J = σ

(−→
ES + ��

−→
EI + ✘✘✘✘−→u ×

−→
B
)

= σ (−∇φ) (2.9)

where σ =
n2
eq

2
e

pe

∑
j 6=e

xjDej
, is the electrical conductivity.

Electric Field Equation

The electric field equation is obtained by taking the divergence of the Ampere’s circuital law equa-

tion while neglecting the displacement current:

∇. [σ (∇φ )] = 0 (2.10)
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The electric field
−→
E and Joule heating rate Ṡjoule are computed as:

−→
E = −∇φ (2.11)

−→
J = σ

−→
E (2.12)

Ṡjoule =
−→
J .
−→
E

= σ (∇φ .∇φ) (2.13)

2.2 Thermodynamic Properties

A detailed description of the different thermodynamic models that have been used for predicting the

properties of air plasmas can be found in [14, 15, 16]. Molecules and atoms have discrete internal

energy modes, which can be computed using quantum physics. The thermodynamic properties of

plasmas in the current work are evaluated using a more realistic description that includes these

energy modes. Diatomic molecules are modeled using the rigid rotor harmonic oscillator model.

This allows the different energy modes, namely rotational, vibrational, and electronic, to become

decoupled from one another. It has been shown that the error in the calculated mixture properties

originating from neglecting this coupling, for the class of flows being investigated, is of the order

of 1%. Thus, thermodynamic properties of individual species (and the mixture) can be evaluated

using straightforward statistical mechanics formulations [17]. A further simplification is obtained

by taking into account only a finite number of electronic levels [16]. Therefore, only a minimum

number of electronic levels that produce a non-negligible change of energy in the temperature range

encountered during the course of this study, are considered while computing electronic energy. The

hydrodynamics equations derived in the preceding section can be extended to a more accurate form

by including the effect of internal degrees of freedom.

Three different mixture models are used in the present work:

1. Air-11:

• Neutral species: N2, O2, NO, N, O

10



• Charged species: N+
2 , O

+
2 , NO

+, N+, O+, e−.

2. Air-5: N2, O2, NO, N, O (only neutral species).

3. Argon-3: Ar, Ar+, e−.

The computationally cheaper three-species argon model has been employed to expedite the process

of developing the multi-physics framework for simulating plasma-heated wind tunnel flows.

2.2.1 Statistical Mechanics

The population of the excited states is estimated using a two-temperature Boltzmann distribution:

nr,v,e
s

ns
=

grrot,sg
v
vib,sg

e
el,sexp

(

−ǫrrot,s/kBThr

)

exp
(

−
(

ǫvvib,s + ǫeel,s

)

/kBTev

)

Qrot,sQvib,sQel,s
(2.14)

where nr,v,e
s denotes the number density of the s particles in the (r, v, e) quantum state. Qrot,s,

Qvib,s and Qel,s represent the partition functions and are defined as:

QM,s =

∞
∑

m=0

gmM,sexp
(

−ǫmM,s/kBTM

)

(2.15)

Rotational Energy

Qrot,s can be evaluated as:

Qrot,s =
Thr

σsθrot,s
+

1

3σs
+

θrot,s
15σsThr

(2.16)

where θrot,s represents the characteristic temperature of rotational energy and σs is the symmetry

number. The rotational energy per unit mass of molecular species s can be expressed as:

erot,s = (kB/ms)Thr

(

1−
θrot,s

θrot,s + 3Trot,s

)

. (2.17)
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Vibrational Energy

The expression for Qvib,s is given by:

Qvib,s =
1

1− exp (−σvib,s/Tev)
(2.18)

where θvib,s defines the characteristic vibrational temperature. The vibrational energy per unit

mass of molecular species s can then be defined as:

evib,s = (kB/ms)
θvib,s

exp (θvib,s/Tev − 1)
. (2.19)

Electronic Energy

There is no complete analytical expression for computing the total energy associated with all elec-

tronic states for a given chemical species. The electronic energy is evaluated using an explicit

formula:

Qel,s =
∞
∑

e=0

geel,sexp
(

−ǫeel,s/kBTev

)

. (2.20)

As discussed before, this summation can be truncated at a maximum energy level emax,s with

minimal impact on accuracy. The electronic energy per unit mass is defined as:

eel,s = (kB/ms)

∑emax,s

e=0 geel,sǫ
e
el,sexp

(

−σe
el,s/kBTev

)

kBQel,s
. (2.21)

2.2.2 Hydrodynamics Equations with the two-temperature model

The previously derived hydrodynamics governing equations for the flow-field can be expanded to

include the internal degrees of freedom. The inelastic collisions between quantum states are treated

as chemical reactions. Elastic collisions between species are considered to be independent of their

quantum states (Eucken assumption). The process of energy exchange between different internal

modes is described using simplified models for the different types of interactions.
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Continuity

The continuity equation for particles of species s in a particular quantum state is:

∂ρr,v,es

∂t
+ ∇ ·

[

ρr,v,es

(

−→u +
−−−→
U r,v,e
s

)]

= ωr,v,e
s . (2.22)

The continuity equations for species s can then be obtained by adding up the above equation for

all quantum states:

∂ρs
∂t

+ ∇ ·
[

ρs

(

−→u +
−→
Us

)]

= ωs (2.23)

−→
Us = (1/ρs)

∑

r,v,e

ρr,v,es

−−−→
U r,v,e
s . (2.24)

Momentum

The mixture momentum equation derived for the plasma heated flows requires no modification:

∂ρ−→u

∂t
+ ∇ ·

(

ρ−→u−→u + pÎ − τ̂
)

= 0 (2.25)

Internal Mode Energy

The total internal energy associated with any given mode M (rotational, vibrational, electronic)

for an individual species can be obtained by summing over all quantum states for that mode. The

mixture internal energy for a mode is given by eM =
∑

s yseM,s and the corresponding governing

equation is:

∂ρeM
∂t

+ ∇ · (ρ−→u eM ) + ∇ ·

(

∑

s

ρs
−→
UseM,s

)

= ∇ · (ΛM∇TM ) +
∑

s,r,v,e

ǫr,v,eM,s ω
r,v,e
s

ms
(2.26)
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where TM = Thr for M = rotational and Tev for M = (vibrational, electronic) in the two-

temperature model. The mixture’s thermal conductivity ΛM can be expressed as:

ΛM = n
∑

s

xsĈp,I,s
∑

j 6=e (xj/Dsj)
. (2.27)

Total Energy

The total energy equation is obtained by adding up the translational energy equation (Equation 2.6)

derived using the Boltzmann equation with the equations for rotational, vibrational and electronic

modes:

∂ρe

∂t
+ ∇ · (ρ−→u h) + ∇ ·

(

∑

s

ρs
−→
Ushs

)

= ∇ · [(λh + λr)∇Thr]

+∇ · [(λv + λel + λe)∇Tev] + ∇ · (
−→u : τ̂) +

−→
J ·
−→
E .

(2.28)

Electronic-vibrational Energy Equation

The energy in the electronic and vibrational modes of the heavy particles are assumed to be in

equilibrium with the translation energy of the free electrons at a common temperature Tvib =

Telec = Tev. Therefore, the electronic-vibrational energy of the mixture is given by:

∂ρeev
∂t

+ ∇ · (ρ−→u eev) + ∇ ·

(

∑

s

ρs
−→
Ushev,s

)

= ∇ · [(λv + λel + λe)∇Tev]

+
∑

s∈mol.

ρs
e∗V,s − eV,s

〈 τs 〉
+ 2 ρe

3

2
R (T − Tev)

∑

s

νes
Ms
−
∑

s∈ions

ṅe,s Îs +
∑

s∈mol.

Cs ẇs D̂s

(2.29)

where −→qe denotes the thermal conduction vector associated with the electronic and vibrational

energy. The first term on the right defines the energy exchange (relaxation) between the vibrational

and translational modes for molecular species due to collisions using the Landau-Teller model (ΩV T ).

The second term denotes the energy exchange due to elastic collisions between electrons and heavy

particles (ΩET ); the third term represents the energy loss (summed over all ionized species) due to

electron impact ionization (ΩI). The last term gives the net change in vibrational energy due to
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the dissociation of molecular species (ΩCV ).

2.3 Chemical Kinetic Model

Modeling reacting fluid flows that are in a state of thermal non-equilibrium requires calculating the

chemical composition of the mixture and the population of internal energy modes. This information

is also critical for accurately computing the transport and thermodynamic properties to close the

system of governing equations. The energy relaxation processes for a two temperature model have

already been defined in Equation 2.29. This section summarizes the modeling of chemical kinetics

in the flow-field.

2.3.1 Local Thermodynamic Equilibrium (LTE)

A state of local thermodynamic equilibrium can be attained when the underlying chemistry for the

given conditions is sufficiently fast with respect to the characteristic time of the flow. A simplified

description for the mixture composition is then obtained by solving a system of non-linear algebraic

equations [15, 17]. The solution obtained under LTE conditions is equivalent to solving the species

conservation PDEs for chemical non-equilibrium in the limit of infinitely fast reactions. The classical

LTE formulation assumes constant fraction of elements, allowing the mixture composition to be

computed as a function of pressure and temperature throughout the flow-field. Flow solutions under

the assumption of LTE have not been studied during the present work.

2.3.2 Chemical Non-equilibrium (CNEQ)

The capability to simulate chemical non-equilibrium conditions provides for a more complete de-

scription of the flow properties. The hydrodynamics equations include the effect of advection,

diffusion and chemical processes and produce a flow-field with varying species concentration. The

species continuity equations contain the mass production term due to chemical reactions for indi-

vidual species which are computed using the law of mass-action. This net rate of mass production
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of species s per unite volume can be defined as:

ωs = Ms

Nr
∑

r=1

(βs,r − αs,r) (Rf,r −Rb,r) (2.30)

Rf,r = kf,r
∏

s

(ρs /Ms)
αs,r (2.31)

Rb,r = kb,r
∏

s

(ρs /Ms)
βs,r (2.32)

where Nr represents the total number of reactions for a given species s. αs,r and βs,r represent

the stoichiometric coefficients for the reactants and products for the rth reaction. The forward,

Rf,r, and backward, Rb,r reaction rates for reaction r are defined using Equations 2.31 and 2.32

respectively. kf,r and kb,r are the forward and backward reaction rate coefficients.

These calculations require accurate rate constants for all constitutive reactions for a given mix-

ture. A multitude of databases for these rate constants with varying levels of uncertainity for high-

temperature air are available in the literature. Therefore, the reliability of the rate data being used

would have a strong bearing on the accuracy of any simulation involving chemical non-equilibrium.

The present work uses the Park model [10, 11, 18] which gives rates values for the forward reaction

rates. The backward reaction rates can then be calculated, according to the principle of detailed

balance, by using the equilibrium constant [17].

2.3.3 Non-local Thermal Equilibrium (NLTE)

Multi-temperature models allow better representation of the physics by incorporating thermal non-

equilibrium. The population of each internal energy mode for all species can then be calculated

using a Maxwell-Boltzmann distribution at a specific temperature characterising a given mode

(rotational Tr, vibrational Tv, or electronic temperature Te). The chemical kinetics model is also

modified to include NLTE effects. The macroscopic rate coefficients are computed for an empirical

temperature value that is defined in terms of the different temperatures in the flow. The present

work uses the Park model [11].
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Park 2-T Model

The Park model [11] has been applied to a variety of flow problems and can be considered the

standard model to account for thermo-chemical non-equilibrium effects. Reaction rate coefficients

are computed for a geometric average of temperatures:

Ta = T 1−qi
hr T qi

ev (2.33)

where qi is defined as the vibration-dissociation coupling term for the ith reaction. The value of qi is

usually set to 0.5 in the absence of reaction specific data. The current study uses different values of

this parameter for Nitrogen and Oxygen dissociation due to the different dynamics of dissociation

for the two molecules.

Vibration-Chemistry Coupling

Chemical reactions involving molecules affect the total vibrational energy present in the mixture.

Therefore, an additional source term arising from chemical non-equilibrium is introduced in the

electronic-vibrational energy equation (Equation 2.29). Candler and MacCormack [19] have devel-

oped a simplified formulation for the change in vibrational energy:

ΩCV =
∑

s∈mol.

Cs ẇs D̂s (2.34)

where D̂s denotes the dissociation energy per unit mass for a given molecular species s. Cs represents

the fraction of dissociation energy lost as vibrational energy during the dissociation of s. The exact

amount of energy that is lost due to a specific chemical reaction can be determined through a state-

to-state (or collisional radiative models) approach [20, 21, 22, 23, 24, 25]. However, this becomes

computationally prohibitive for complex CFD applications due to the large number of equations

and individual kinetic processes.

The different dissociation models that have been described in literature can be classified as

1) preferential 2) non-preferential . The preferential models are based on the assumption that

17



dissociation occurs from the higher vibrational quantum states and molecules in the lower states

must be excited to higher states (ladder climb) before they dissociate. The present work uses a

non-preferential model, which assigns equal probability of dissociation to all quantum states of

a given molecule. This assumption becomes increasingly valid as the free-stream kinetic energy

approaches the dissociation energy of molecules, resulting in dissociation at all levels without the

ladder climb process. The constant Cs is assumed to be equal to one for the non-preferential model

and would assume larger values for preferential dissociation.

2.4 Transport Properties

The transport properties module in the original version of Mutation++ uses the Chapman-Enskog

method [16, 26] to obtain transport fluxes as linear functions of gradients of flow variables with the

transport coefficients appearing as constants of proportionality. Although the Chapman-Enskog

method is formulated on rigorous kinetic theory, it is computationally expensive and challenging to

implement efficiently. The complicated expressions also lend themselves poorly to improving the

overall stability of the simulation framework. Consequently, non-physical transport coefficients can

be obtained for a perfectly plausible set of state values at a given point in the flow field, severely

retarding solver capabilities.

This complicated approach has been dropped in favor of simplified expressions for different

properties outlined by Gnoffo et al. [10] for an ionized mixture. This formulation is very similar to

the one obtained by Lee [27] and expands upon the work of Yos [28] to include the effects of thermal

non-equilibrium. The use of Gnoffo’s techniques for modeling transport properties has improved

reliability and reduced computing costs, with negligible effect on the accuracy of the solution for

the flow conditions being studied during the present work.

2.4.1 Collision Integrals

Collision integrals, Ω
(l,m)

sr can be viewed as generalized cross-sections describing the interactions

between s and r, with the indices l and m denoting the type of collision being considered. The

18



collision integrals for heavy particles are computed using the heavy-particle translational temper-

ature, Thr, while collisions integrals for interactions involving electrons are based on the electron

/ electronic-vibrational temperature, Tev. The collision integrals are computed using curve-fitted

expressions as functions of temperature, generated from tabulated data in literature [15]. Two

modified collision integrals that are used extensively in all subsequent property calculations are as

follows:

∆(1)
sr (T ) =

8

3

[

2MsMr

πRuT (Ms +Mr)

]1/2

Ω
(1,1)

sr (2.35)

∆(2)
sr (T ) =

16

5

[

2MsMr

πRuT (Ms +Mr)

]1/2

Ω
(2,2)

sr (2.36)

2.4.2 Heavy Particle Transport Properties

The molar concentration of species s, γs, is defined as

γs =
ρs
ρMs

(2.37)

The mixture viscosity can then be computed using the following expression by adding up the

contributions of all heavy-particle species:

µ =
∑

s∈heavy

msγs
∑

r∈heavy

γr∆
(2)
sr (Thr) + γe∆

(2)
sr (Tev)

+
meγe

∑

r
γr∆

(2)
er (Tev)

(2.38)

The translational energy thermal conductivity of heavy particles, λt, is computed by the following

expression

λt =
15

4
k
∑

s∈heavy

γs
∑

r∈heavy

asrγr∆
(2)
sr (Thr) + 3.54γe∆

(2)
se (Tev)

(2.39)
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where asr is defined by

asr = 1 +
[1− (ms/mr)][0.45− 2.54(ms/mr)]

[1 + (ms/mr)]
2 (2.40)

The molecular rotational modes are considered to be fully excited and the thermal conductivity

associated with rotational energy, λr, is expressed as

λr = k
∑

s∈mol.

γs
∑

r∈heavy

γr∆
(1)
sr (Thr) + γe∆

(1)
se (Thr)

(2.41)

The vibrational thermal conductivity λv is assumed to be equal to the rotational thermal conduc-

tivity λr. Therefore,

λv = λr (2.42)

The binary diffusion coefficient for a pair of heavy particles s and r is given by

Dsr =
k Thr

p∆
(1)
sr (Thr)

(2.43)

The binary diffusion coefficient when one of the species is a free electron is:

Der =
k Tev

p∆
(1)
er (Tev)

(2.44)

The effective diffusion for species s in the mixture, Ds, is computed using the following mixture

average rule:

Ds =
1− xs

∑

r 6=s

xr/Dsr
(2.45)

The diffusion of ions and electrons is coupled due to the electron pressure gradient term that
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induces an electric field. Thus, a partially ionized gas can be described with the ambipolar diffusion

coefficient Da
ion, where

Da
ion = 2Dion (2.46)

2.4.3 Electron Particle Transport Properties

The thermal conductivity of the free electron, λe, is given by

λe =
15

4
k

γe
∑

r
1.45γr∆

(2)
er (Tev)

(2.47)

The diffusion velocity of each ion is calculated by treating it as the only ionic species present in the

gaseous mixture. Developing the ambipolar constraint further, the effective diffusion coefficient of

electrons, De, is computed by equating the diffusion velocity of electrons with the diffusion velocity

of ions. Thus, De can then be calculated using:

De = me

∑

s∈ions

Da
s γs

∑

s∈ions

ms γs
(2.48)

The electrical conductivity is expressed using a single non-vanishing Sonine polynomial:

σ =
3neq

2
e (8kBTev/πme)

−1/2

4me

∑

j 6=e

njΩ
(1,1)

ej

(2.49)

2.4.4 Comparative Analysis Between Transport Property Formulations

A comparison with results obtained through the Chapman-Enskog method combined with the

Eucken correction is essential for establishing the suitability of transport property models used by

Gnoffo et al.[10]. A two-fold analysis has been carried out: 1) Comparison for different transport

properties for a zero-dimensional reaction mixture comprising of LTE Air-11 at 1 atm. 2) Evaluation

of stagnation line properties for two-dimensional hypersonic flow over a cylinder.
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Figure 2.1: Calculated values of viscosity for LTE Air-11 at 1 atm

Figure 2.1 shows the temperature variation in viscosity values for LTE Air-11 at 1 atm. The

simplified mixture rules for viscosity presented in [10] demonstrate good accuracy, with significant

deviations occurring only at temperatures in excess of 10000 K. Figure 2.2 presents a comparison

between different components of the mixture thermal conductivity for the same zero-dimensional

test case. Translational thermal conductivity of both heavy particles and electrons are in excellent

agreement over a wide temperature range. The contributions of rotational and vibrational modes

match up as well. Electronic thermal conductivity is not modeled using mixture rules outlined by

Gnoffo et al. and is assigned a value equal to zero. Thus, despite values of individual components

differing for the two approaches, the total thermal conductivity can be calculated to a high degree

of accuracy up to 10000 K, using mixture rules.

The impact of transport property models on flow solutions for actual CFD applications has

been studied by analyzing the stagnation line properties obtained for a two-dimensional flow over
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Figure 2.2: Calculated values of thermal conductivity for LTE Air-11 at 1 atm
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Figure 2.3: Temperature distribution along stagnation line for hypersonic flow over cylinder using
different transport property models
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a cylinder of radius, R = 0.8 m. The following free-stream variables are used for this analysis:

u∞ = 10480 m/s

ρ∞ = 7.80×10−4 kg/m3

T∞ = 276 K

A strong bow shock is formed upstream to the cylinder which produces strong thermal and chem-

ical non-equilibrium effects in its vicinity. Figure 2.3 illustrates the stagnation line temperature

distribution obtained using mixture rules and Chapman-Enskog formulations. Results obtained

using both methods are in excellent agreement. Discrepancies in transport property values at very

high temperatures are largely local and have no discernible impact on the macroscopic distribu-

tion of flow properties. Thus, the use of simplified mixture rules provides clear cost and stability

advantages without compromising the accuracy of flow-field solutions.

2.5 Turbulence Modeling

The computational cost of resolving all the scales of turbulence for high enthalpy flows in thermo-

chemical non-equilibrium is prohibitive due to the size of the system of governing equations (Equa-

tions 2.22 – 2.29) and the complex property models required for defining the problem. Consequently,

Equations 2.22 – 2.29 are density weighted time averaged to obtain the Favre-averagedNavier-Stokes

(FANS) equations. The averaging over non-linear terms requires a turbulence model to close the

system of equations. The concept of eddy viscosity is used to account for the effects of turbulence.

The system of equations remains unchanged but transport properties are modified to include the
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effect of “eddy” transport variables in the following manner:

µ → µ+ µt

D → D +Dt

k → k + kt

λ → λ+ λt

λev → λev + λev,t

Eddy viscosity, µt, is used to calculate eddy mass diffusivity, Dt, and thermal conductivities, λt

and λev,t:

Dt =
µt

ρ Sct

kt =
µt Cp

Prt
(2.50)

λev,t = η µt C
ev
v

where Sct, Prt, and η represent model parameters. The eddy viscosity is computed using the

Spalart-Allmaras (SA) one-equation model [29]. This requires adding an additional transport equa-

tion for the working variable νSA. µt is then obtained from νSA by solving a set of algebraic closure

relationships. The extra transport equation is as follows:

∂ρνSA

∂t
+ ∇ · (ρ−→u νSA) = cb1 SSA ρ νSA − cw1fwρ

(νSA

d

)2

+
1

Prt
· [(µ + ρνSA∇νSA] +

cb2
Prt

ρ∇νSA · ∇νSA (2.51)
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The algebraic closure relationships for the SA model are:

µt = ρ νSA fv1 (2.52)

fv1 =
χ3

χ3 + c3v1
(2.53)

fv2 = 1−
χ

1 + χ, fv1
(2.54)

χ =
νSA

ν
(2.55)

fw = g

(

1 + c6w3

g6 + c6w3

)1/6

(2.56)

g = r + cw2 (r
6 − r) (2.57)

r =
νSA

SSA κ2 d2
(2.58)

A slightly modified form of the final closure function, SSA, has been used in the present work. The

original formulation for SSA is:

SSA = Ω+
νSA

κ2d2
fv2 (2.59)

where Ω represents the vorticity magnitude. Equation 2.59 is modified to ensure SSA is always

greater than zero. The final form is:

SSA = Ω+ Sm (2.60)

Sm is defined in the following manner:

Sm =















Sm0, if Sm0 ≥ −cv2Ω

Ω(c2v2 + cv3 Sm0)
((cv3−2cv2)Ω−Sm0)

, otherwise.

(2.61)

Sm0 =
νSA

κ2 d2
fv2 (2.62)
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Chapter 3

Numerical Method

3.1 System Form of Equations

Equations 2.22 – 2.29 can be written in the conservative form in the following manner:

∂U

∂t
+

∂Fi

∂xi
=

∂Gi

∂xi
+ Ṡ (3.1)

where U = [ ρs, ρuj , ρe, ρeev, ρνSA ]T is the vector of conservative variables representing species

density, cartesian components of momentum per volume, total energy per unit volume, electronic-

vibrational energy per unit volume. Fi and Gi are the inviscid and viscous fluxes, respectively,

in the ith direction. The vibronic energy equation is omitted while modeling flows in thermal

equilibrium. The Spalart-Allmaras working variable, νSA, is added for the turbulent case.

The second term on the left hand side of Equation 3.1, which is the divergence of the inviscid

flux vector, can be described using the inviscid flux Jacobian, Ai = ∂Fi / ∂xi, in terms of the U

vector:

∂Fi

∂xi
=

∂Fi

∂U

∂U

∂xi
= Ai

∂U

∂xi
(3.2)

The inviscid flux vector is further split into convective (contributions stemming from the fluid

velocity) and pressure contributions. Analogous to the previous expression for the inviscid fluxes,
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a description employing the inviscid flux Jacobian is also obtained for this split formulation:

Fi = FC
i + FP

i (3.3)

∂Fi

∂xi
=

∂FC
i

∂xi
+

∂FP
i

∂xi

= AC
i

∂U

∂xi
+AP

i

∂U

∂xi
(3.4)

This form for the invsicid flux vector is unconventional but is extremely useful for implementing

boundary conditions. Similarly, the viscous flux vector Gi can also be written as:

∂Gi

∂xi
=

∂

∂xi

(

Kij
∂U

∂xj

)

(3.5)

where Kij is the diffusivity matrix. The matrices Ai and Kij can be expressed in terms of the

independent variables U. The strong form of the second order system, that is the basis for all

further developments, is then obtained from Equations 3.1, 3.4, and 3.5.

∂U

∂t
+
(

AC
i +AP

i

) ∂U

∂xi
=

∂

∂xi

(

Kij
∂U

∂xj

)

+ Ṡ (3.6)

In the case of inviscid flows, Equation 3.6 reduces to the first-order, hyperbolic reacting Euler

equations.

3.2 Weak Formulation

3.2.1 Galerkin Weak Statement

The weak form of the system of equations described in 3.6 can be formulated by multiplying by an

appropriate set of test functions W and then integrating over the entire domain Ω. The convective

components of the inviscid flux and the viscous terms can be integrated by parts to obtain the final
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form of the weak statement:

∫

Ω

[

W .

(

∂U

∂t
+ AP

i

∂U

∂xi
− Ṡ

)

+
∂W

∂xi
.

(

Kij
∂U

∂xj
−AC

i

∂U

∂xi

)]

dΩ

−

∫

Γ

W . (g − f)dΓ = 0 (3.7)

where U satisfies the essential boundary and initial conditions for all W in an appropriate function

space. The last term is the integral of the normal components of the viscous fluxes, g = G . n̂, and

the convective inviscid fluxes, f = FC . n̂, on the boundary Γ with unit normal n̂.

3.2.2 Stabilized Upwind Formulation

The standard Galerkin formulation employed in Equation 3.7 is unstable and can generate non-

physical oscillations in regions of steep solution gradients or strong convection. This oscillatory

behavior for convection dominated flows can persist even after including the effects of vicosity. This

is a well documented phenomenon afflicting standard Galerkin formulations (or equivalent central

difference schemes on a structured grid), and occurs because they produce a difference stencil whose

solutions admit oscillatory behavior [30, 31]. This instability can also stem from inadequate spatial

resolution for some class of flows and can be resolved using a sufficiently fine mesh. An example of

such problems are low speed incompressible flows where there is an approximate balance between

the convective and diffusive length scales. Unfortunately, such balance is seldom observed for

compressible flows. Additionally, Euler equations have no diffusion terms, rendering the standard

Galerkin formulation ill-suited for modeling inviscid flows, irrespective of the mesh resolution.

Several techniques have been proposed that seek to remedy the stability issues encountered by

the standard Galerkin formulation. The Lax-Wendroff finite difference scheme, when applied to a

finite element problem, results in the Taylor-Galerkin scheme. The Taylor-Galerkin scheme uses

a second-order Taylor series in time and an exchange of spatial and temporal differentiation while

discretizing Equation 3.1. This creates a second-order term that can be viewed as a stabilizing

diffusion. The Taylor-Galerkin scheme has recently been used to model hypersonic non-equilibrium

flows, highlighting its applicability to the class of flows being investigated in the current study [32].
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Carey et al. have used a different approach – the Least-Squares finite element method. In this

method, the test function W in Equation 3.7 is substituted with the variation of the residual of

governing equations [33, 34] and results in the least square minimization of the residual. Least-

squares minimization can be combined with the Galerkin weak statement to obtain the so-called

Galerkin/least-squares scheme.

An upward bias can be added to the test function W for improving stability through numerical

dissipation due to upwind differencing. The directed streamline-upwind Petrov/Galerkin (SUPG)

formulation provides for a stabilization mechanism in convection dominated flows and reduces

cross-wind dissipation in two or three dimensions. The modified test function with suitable upwind-

biasing is defined as follows:

Ŵ = W + τSUPG Ai
∂W

∂xi
(3.8)

where W is the unbiased standard Galerkin test function and τSUPG is the stabilization matrix

that introduces the minimum amount of diffusion required for stabilizing the scheme.

3.2.3 Streamline-Upwind Stabilization Matrix

The stabilization matrix, τSUPG, employed by FIN-S is based on the work of Erwin et al. [35].

τ−1
SUPG =

∑

i=nodes

( ∣

∣

∣

∣

∂φi

∂xj
Aj

∣

∣

∣

∣

+
∂φi

∂xj
Kjk

∂φi

∂xk

)

(3.9)

where φi is the shape function associated with the ith node in the finite element. This formulation

does not depend on the heuristic definition of a flow-aligned length scale and has been extensively

used for a wide variety of applications. τSUPG can be computed by expressing the absolute value

matrix on the right hand side of Equation 3.9 as:

∣

∣

∣

∣

∂φi

∂xj
Aj

∣

∣

∣

∣

= R |Λ|R−1 (3.10)

where Λ represents the diagonal matrix containing the eigen-values and R represents the right eigen

vector matrix of the inviscid Jacobian. Analytic expressions of Λ and R, obtained for laminar flow
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in thermal non-equilibrium, have been used. The matrix ∂φi

∂xj
Aj can be visualized as the component

of the inviscid flux in the direction defined by the shape function gradients. Also

∂φi

∂xj
Aj = RΛR−1 (3.11)

Therefore, the inviscid contribution in Equation 3.10 can be calculated using |Λ| obtained from

Equation 3.11.

3.2.4 Discontinuity Capturing Operator

The schemes that have been discussed so far seek to address instabilities caused by strong con-

vective flows that plague the standard Galerkin formulation. Supersonic flows with strong shock

waves would require additional stabilizing schemes to eliminate non-physical oscillations stemming

from strong gradients. This is achieved through a discontinuity capturing operator, νDCO, which

introduces isotropic artificial dissipation locally and allows the shock to be captured in a thin region

comprising of a few cells. νDCO depends on gradients in the computational space encapsulated in

the contravariant metric tensor

gij =
∂xi

∂ξk

∂xj

∂ξk
(3.12)

The discontinuity operator for a system of conservative variables has been devised by LeBeau and

Tezduyar [36, 37, 38], and are a modified form of the original function used by Hughes et al. for

entropy variables [39]. The present work employs the following form of this operator:

νDCO =









∥

∥

∥

∂U
∂t +AP

i
∂U
∂xi
− ∂

∂xi

(

Kij
∂U
∂xj

) ∥

∥

∥

2

A
−1

0

(∆Uh)T A−1
0 ∆Uh + gij

(

∂Uh

∂xi

)T

A−1
0

∂Uh

∂xi









1/2

(3.13)

where A−1
0 is the mapping from conservation to entropy variables. ∆Uh is the change in Uh over
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one time step and can be calculated as:

∆Uh =
∂Uh

∂t
∆t (3.14)

This approach of combining streamline upwinding and shock capturing to obtain stable solutions

within a finite element formulation is similar to the upwinding and limiting encountered in total-

variation-diminishing (TVD) finite difference and finite volume schemes. TVD schemes use up-

winding for the inviscid flux terms to improve stability in convection-dominated flows while flux

or slope-limiters impose monotonicity in the presence of strong shocks. The discontinuity operator

outlined in the present work performs similarly to limiters and attempts to restore monotonicity in

regions of large gradients.

3.2.5 Boundary Conditions

For the class of flows investigated in the present work, the system of Navier-Stokes equations is a

mixed parabolic-hyperbolic set of partial differential equations. The different boundary conditions

that are relevant for such flows are as follows:

Supersonic Inflow

In the case of supersonic inflow, all characteristics point towards the domain, and therefore, each

variable can be imposed as an essential boundary condition. Freestream density, velocity, and

temperature are the usual prescribed variables for aerothermodynamic studies.

Supersonic Outflow

At boundaries with supersonic outflow, the flow state is defined entirely by the information from

inside the domain. In case of viscous flows, it is important that the viscous terms, obtained after

integrating Equation 3.7 by parts, are retained in the boundary integral.
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Viscous Walls

A no-slip and no-penetration boundary condition, u = ρu = 0 is imposed as a Dirichlet condition

on viscous walls. Additionally, the wall is assumed to be in thermal equilibrium with T = Tv.

This is implemented by linearizing the residual equation Rρeev , wall = (T −Tv) with respect to the

conservative variables and imposing the resultant value as a Dirichlet constraint [40].

1. Isothermal Walls: T = Twall is ensured through an additional Dirichlet constraint obtained

by linearizing Rρe, wall = (T − Twall), with respect to the conservative variables.

2. Convecting Walls: This condition provides for a more realistic description of the heating

phenomenon at the wall. The numerical stiffness of the flow problem, compared to a case

with isothermal boundary, is also reduced, especially in the presence of large temperature

gradients near the wall region. The energy flux on the wall surface is defined as:

q . n̂ = −hw (T − Twall) (3.15)

3. Mass injection: The test gas is injected through the walls of the constrictor in segmented

arc heaters. Therefore, it is necessary to incorporate a boundary condition that reproduces

this feature in order to obtain accurate simulations. A constant mass flux is imposed on the

wall surface. Temperature can be specified in the manner of either isothermal or convecting

wall condition. This allows the wall normal velocity to be computed which is necessary for

specifying the momentum flux on the boundary.

Characteristic-based boundaries

In case of subsonic inlet and subsonic outlet, the state of the system at the boundary, U, is computed

by solving the characteristic equations, using the reference state U∞ and solution on the boundary

UB . The conserved variables can be transformed into the characteristic variables in the following

manner:

δÛ =
∂Û

∂U
δU = M−1 δU (3.16)
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where δU is the perturbed value of the conserved variables and δÛ is the corresponding vector of

characteristic variables. M−1 is the transformation matrix formed by the left eigenvectors obtained

from Eigen decomposition of the inviscid flux in a specified direction.

The correct state at the boundary can be obtained through a series of iterations, by computing

δÛ from the incoming and the outgoing characteristics that are consistent withU∞ andUB . In case

of negative eigenvalues information flows into the domain from the farfield, hence components from

δÛ− are used. Conversely, for positive eigenvalues, information is exiting the domain, therefore,

components from δÛ+ are used. The task of selecting the proper values from δÛ+ and δÛ− is

carried out by the combine () operator. Characteristic boundary conditions are computed using

the following algorithm:

1. Assume U = UB as the initial guess

2. do

3. Calculate the transformation matrix M−1 = M−1 (U)

4. Define δÛ+ = U−UB

5. Define δÛ− = U−U∞

6. Combine the two characteristic incriments: δÛ = combine (δÛ+, δÛ−), where each

component depends on the sign of the associated eigenvalue.

7. Compute incrimental value M−1 δU ≡ −r = δÛ

8. Update state U←− U+ δU

9. while ||δU||∞ > ǫit

10. Compute inviscid flux on the boundary and apply to weak statement.

Spalart-Allmaras turbulence model

νSA = 0 is imposed at the wall. A value of νSA = 5 ν (where ν is the kinematic viscosity in the

freestream) is used at the inlet to obtain fully turbulent flows.
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3.3 Finite Element Formulation

An approximate finite element formulation is obtained upon discretizing the weak form generated

through the test functions, Wh by introducing the approximate solution, Uh, and the corresponding

shape functions.

nel
∑

e=1

∫

Ωe

[

Wh .

(

∂Uh

∂t
+ AP

i

∂Uh

∂xi
− Ṡh

)

+
∂Wh

∂xi
.

(

Kij
∂Uh

∂xj
−AC

i

∂Uh

∂xi

)]

dΩ

+

nel
∑

e=1

∫

Ωe

τSUPG
∂Wh

∂xk
.Ak

[

∂Uh

∂t
+ Ai

∂Uh

∂xi
−

∂

∂xi

(

Kij
∂Uh

∂xj

)

− Ṡh

]

dΩ

nel
∑

e=1

∫

Ωe

νDCO

(

∂Wh

∂xi
. gij

∂Uh

∂xj

)

dΩ−
nel
∑

e=1

∫

Γe

Wh . (gh − fh) dΓ = 0 (3.17)

Uh (x, t) and Fi (x, t) can be expressed as a linear combination of the nodal solution values,

Uh (xj , t), and nodal inviscid flux components, Fi(xj , t) = Ai (Uh (xj , t))Uh (xj , t), respectively,

using the finite element basis functions.

Uh (x, t) =
∑

j

Nj(x)Uh (xj , t) (3.18)

Fi (x, t) =
∑

j

Nj(x)Fi(xj , t) (3.19)

Nj consists of a set of standard piecewise linear Lagrangian basis polynomials, which results in a

second–order accurate scheme. Previous research on the application of the finite element method to

the compressible Navier-Stokes equations indicates that the current scheme can easily be extended to

higher-order spatial discretization, in the absence of shocks, by using a higher order finite element

basis [41]. The manner in which Fi is discretized, as described in Equation 3.19, has shown to

improve the stability of the SUPG method in the presence of strong shocks [3].
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3.4 Solution Methodology

The set of equations defined in 3.17 form a transient, tightly coupled nonlinear system whose solution

are the unknown nodal values, Uh (xj , t). Even in the case of steady state problems, time marching

is carried out to reach the steady solution by integrating 3.17 in time. This approach is especially

appropriate for compressible flows with strong shocks, since regions with strong gradients result in an

extremely small zone of attraction for non-linear implicit scheme such as Newton’s method [42, 43].

The transient system can be solved using two kinds of methods: explicit and implicit. The h-

dependence of δt for explicit methods, which can impede attempts to locally resolve flow physics

at smaller scales (by reducing h), renders them unsuitable for the present work. Conversely, the

improved stability offered by implicit methods comes at high computational costs associated with

solving a non-linear implicit system at each time step. Preconditioned Krylov subspace iterative

methods are well suited for overcoming this constraint and can also be implemented in a parallel

framework [44].

The METIS unstructured graph partitioning library [45] has been used to achieve non-overlapping

domain decomposition with a unique set of elements assigned to each processor used in the sim-

ulation. This approach allows each processor to compute the system matrix contributions of only

the local elements. These are then aggregated into a sparse matrix data structure and used by the

Krylov subspace solver to obtain an approximate solution to the linear system [46, 5, 47].

A backward difference scheme has been use to discretize the semi-discrete set of equations in

3.17. A Taylor series expansion about Uh (tn+1) = Un+1 is used to obtain both first and second

order accurate in time formulations.

Un = Un+1 +
∂Un+1

∂t
(tn − tn+1) +

∂2 Un+1

∂t2
(tn − tn+1)

2

2
+O

(

(tn − tn+1)
3
)

Un−1 = Un+1 +
∂Un+1

∂t
(tn−1 − tn+1) +

∂2 Un+1

∂t2
(tn−1 − tn+1)

2

2
+O

(

(tn−1 − tn+1)
3
)

These expressions can be used to obtain difference formulas that allow for time stepping that is

first-order (p = 1) or second-order (p = 2) accurate in time. The coefficients for these schemes are
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p αt βt γt

1 1
∆tn+1

−1
∆tn+1

0

2 −βt − γt −
[

1
∆tn+1

+ 1
∆tn

]

∆tn+1

∆tn (∆tn+1+∆tn)

Table 3.1: Coefficients for time discretization schemes

presented in Table 3.1.

∂Un+1

∂ t
= αt Un+1 + βt Un + γt Un−1 +O

(

∆ tpn+1

)

(3.20)

The system of equations defined by 3.17 can be written in residual form to form a non-linear

algebraic system as a function of the unknown nodal values Un+1 ≡ Uh (tn+1):

R (Un+1) = 0 (3.21)

Equation 3.21 can be reduced to a series of linear problems, which upon solving, converge to the

solution, Un+1, of the non-linear system. Taylor series expansion of Equation 3.21 about iterate

Ul
n+1 can be used to derive the expression for Newton’s method:

[

∂R
(

Ul
n+1

)

∂Un+1

]

δUl+1
n+1 = −R

(

Ul
n+1

)

(3.22)

where ∂R
∂U is the Jacobian for the non-linear system and δUl+1

n+1 = Ul+1
n+1−Ul

n+1. Thus, an implicit

linear system for δUl+1
n+1 is obtained which when solved for a sequence of iterates (l = 0, 1, ...)

converges to Un+1. The Newton method provides second-order conditional convergence where

residuals decrease quadratically if the intial guess is close enough to the final solution. Both ∂R
∂U and

R
(

Ul
n+1

)

are stored while solving Equation 3.22. Since the system matrix is large but sparse (due to

the use of piecewise-linear elements), storing it efficiently is critical. FIN-S makes use of the parallel

sparse matrix format available through the PETSc toolkit, along with PETSc iterative solvers [47].
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The system matrix once computed, can also be modified for use as a preconditioner. A parallel

block-Jacobi ILU-0 preconditioner has been used for the present work [48, 49]. The matrix-vector

product can be obtained directly after calculating the system matrix and the preconditioner.

Steady state simulations undertaken during the course of the current study have been carried out

using a first-order accurate time discretization, with only one iteration of the approximate newton

solve per time-step. Time accurate studies on the other hand have been run using a second-order

time accurate scheme with multiple Newton sub-iterations (3-5) per time step.

3.5 Electric Field Coupling

The flow-field in the arc-jet has been computed by loosely coupling the electric field with the flow

solver. Although, this coupling strategy can have an adverse impact on the convergence properties

of the overall simulation, it minimizes computational costs at each time step and provides for ease

of implementation. The computed flow solution for a given time-step, is used for calculating the

electric field. This is achieved by extracting the state of the gaseous mixture at every node point

in order to calculate the electrical conductivity, σ, using Equation 2.49. This distribution for σ is

then plugged into the electric field equation (2.10) to solve for φ, and obtain electric current and

the Joule heating term. The contribution of the Joule heating is treated as an explicit source term

and is held constant while integrating the system of flow equations for the next time step. The

Joule heating adds energy to the flow-field, which modifies the state of the system. This in turn

changes the electrical conductivity, and results in an altered electrical field distribution. Therefore,

a two-way coupling is established between the flow solution and the associated electric field. Similar

solution procedures have been used for linking hypersonic reacting flows with radiative heat transfer

and surface ablation models [50].

The weak form of the electric field equation (2.10) can be obtained by multiplying by an ap-

propriate set of test functions W and then integrating over the entire domain Ω. Equation 2.10

being elliptic in nature, is ideal for solving through the standard Galerkin formulation and requires

no biasing through additional stabilization terms. The approximate finite element discretization
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of the weak form of the electric field equation, using the test functions, Wh, and the approximate

solution, φh, is as follows:

nel
∑

e=1

∫

Ωe

σh
∂Wh

∂xi
.
∂φh

∂xi
dΩ−

nel
∑

e=1

∫

Γe

W ǫh dΓ = 0 (3.23)

The last term in Equation 3.23 is the normal component of the imposed current density, ǫh =
−→
J . n̂,

where
−→
J =

−→
J imposed at a given node point on the prescribed boundary surface. φh (x, t) and

σh (x, t) can be reconstructed through a linear combination of the nodal solution values, φh (xj , t),

and σh (xj , t) with the finite element basis functions (Nj) as the coefficients.

φh (x, t) =
∑

j

Nj(x)φh (xj , t) (3.24)

σh (x, t) =
∑

j

Nj(x)σh (xj , t) (3.25)

Boundary Conditions

φ = 0 is imposed at the cathode. Since, the arc is powered by a constant-current source, a constant

current density
−→
J =

−→
J imposed calculated from the total current, I, is imposed at the anode.

Cathode: φ = 0 (3.26)

Anode:

∫

Γanode

σ∇φ . n̂ dΓ = −

∫

Γanode

−→
J imposed .n̂ dΓ

= I (3.27)

Additionally, in order to ensure current continuity at the cathode and allow the electrical cur-

rent to enter the electrode from the flowstream, the electrical conductivity is defined as σ =

max (σcalc, 8.10
3) (σ and σcalc are in S-m−1, where σcalc is the electrical conductivity computed

using the state of the plasma at a given point). Although, this results in an unphysically high

current density at the electrode surface, it provides for a stable arc attachment with no impact on

the accuracy of the overall solution in the flow chamber.
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Chapter 4

Results

This chapter presents results obtained for both atmospheric entry flights and ground based arc-jet

testing. The capabilities of the developed multi-physics simulation framework are demonstrated by

modeling the vastly different flow regimes and associated physical phenomena encountered in these

two problems. Consequently, the focus is not only on presenting solutions but also on describing

the methodology for these challenging simulations.

4.1 Hypersonic Atmospheric Entry

The combination of FIN-S and the updated version of Mutation++ provides the perfect platform

for modeling flows found in the vicinity of high speed atmospheric entry vehicles, which are char-

acterized by thermal and chemical non-equilibrium and the presence of strong shocks waves. The

free-stream conditions encountered during the Flight Investigation of Re-entry Environment (FIRE)

experiment have been used to obtain solutions for hypersonic flow around an axisymmetric bluff

body [51, 52]. Project FIRE was an attempt at investigating re-entry heating rates on a sub-scale

Apollo configuration at lunar-return entry velocity. The experimental aero-thermal data from the

FIRE project has been extensively used for designing re-entry systems and for validating a multi-

tude of CFD codes. Employing free-stream conditions observed at different points along the FIRE

II trajectory opens up a rich body of work for code-to-code comparison [53] and validation using

experimental data. The first case presented in this section simulates re-entry conditions at 1643 s

for the FIRE II experiment. The second case employs the same conditions but with the free-stream

velocity increased considerably, resulting in a numerically stiffer problem.
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4.1.1 CASE 1: FIRE II

Problem Description and Solution Procedure

The 1643 s case entails an axisymmetric hypersonic viscous reacting laminar flow around a sphere

of radius, Rwall = 80.5 cm. The free-stream variables have been defined using the following values:

u∞ = 10480 m/s

ρ∞ = 7.80×10−4 kg/m3

T∞ = 276 K

The surface of the sphere is assumed to be a non-catalytic wall with Twall = 640 K. The strong

thermal non-equilibrium nature of the flow at the shock and after necessitates the use of a 2-

Temperature model. Chemical kinetics, and thermodynamic and transport properties for the gas

mixture are calculated using the Mutation++ library. The reaction mixture used in this study is

Air-11 [54], with the elemental ratio fixed at N : O = 0.79 : 0.21.

The computational grid used for this case is presented in Figure 4.1. It consists of 60 × 100

elements in the circumferential and normal directions respectively. Care has been taken to ensure

that the mesh edges in the circumferential direction align with the strong bow shock produced by the

bluff body. Additionally, the mesh has been sufficiently refined in the normal direction to resolve the

boundary layer near the surface and to ensure that the jump across the shock occurs over multiple

grid points. A uniform initial solution based on the free-stream values is used. Time-marching is

used until the normalized unsteady flow residual decreases by 6 orders of magnitude.

(Rn)normal =
Rn

R1
=

∥

∥

∥

∥

∆Un+1

∆ t

∥

∥

∥

∥

∞

≤ 10−6 (4.1)

The inflow boundary uses supersonic inlet boundary conditions (BC) and the downstream outflow

BC is defined as supersonic outflow. A no-slip convective wall boundary with hw = 1000 is used

initially to accelerate the process of the shock moving upstream from the wall surface towards
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Figure 4.1: Computational grid for FIRE II 1643 s case

its final steady state location. Once the shock layer has traversed far enough from the wall, the

simulation is restarted with an isothermal boundary condition at the wall.

Flow-field and Stagnation Line Properties

The steady flow-field for Case 1 is shown in Figure 4.2. A strong bow shock with a discontinuous

change in properties develops upstream to the body. A subsonic high temperature region behind

the shock in the proximity of the body axis is also formed, along with an expansion zone where the

flow cools down and accelerates. There is an increase in total pressure, density, and temperature
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Figure 4.2: Steady state flowfield for FIRE II 1643 s case
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and a corresponding decrease in Mach number across the shock. An interesting feature of the

flow-field is the temperature distribution, which is starkly different from solutions obtained for

a typical calorically perfect gas in which the post-shock stagnation region temperature remains

largely constant. The shock thickness appears more diffused in the downstream region, away from

the forebody centerline. This can be attributed to the slight misalignment between the mesh edges

and the shock in that region.

A knowledge of the chemical composition and distribution of internal energy modes is critical

for characterizing weak plasmas that are generated in the post shock region. Figures 4.3 presents

the evolution of translational-rotational (T ) and electronic-vibrational (Tv) temperatures along the

stagnation line. The shock stand-off distance predicted using the current framework shows excellent

agreement with results obtained by Hash et al. using the DPLR baseline code [53]. Differences in

the exact distribution of flow properties stem from the use of different computational meshes,

physical models and reaction and property databases.The jump in T across the shock is followed

by a re-distribution of energy among the internal modes and the onset of chemical reactions. This

ultimately results in a post-shock equilibrium state. The electronic-vibrational temperature initially

increases rapidly but levels off due to the activation of chemical reactions.

The degree of thermal non-equilibrium is strongly contingent on the nature of the coupling be-

tween internal energy and chemistry. Figures 4.4 and 4.5 show the degree of ionization and species

distribution along the stagnation line. The use of a geometric average temperature as the rate

controlling temperature retards dissociation. Thus, the sharp jump in T and the corresponding

low value for Tv is not only indicative of thermal non-equilibrium but also points towards delayed

dissociation and chemical non-equilibrium. The largest contribution to the formation of free elec-

trons appears to be coming from atomic nitrogen with significant contribution from atomic oxygen

as well. Ionized molecular oxygen, nitrogen and NO appeared to be formed immediately after

the shock, but their mole fractions decrease rapidly as molecules dissociate and the flow reaches

equilibrium. A strong consideration while estimating the extent of thermal non-equilibrium for

these classes of flows is the dissipation rate of free-electron energy by the excitation and ionization

of atomic species. The kinetic energy lost by free-electrons during electron-impact ionization has
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Figure 4.5: Species mole-fractions along stagnation line for FIRE II 1643 s case

a tendency to slow down further reactions, decelerating the process of thermal equilibration, i.e.

conversion of translational energy into internal energy. A major component of this loss comes from

exciting the electronic states of the constituent species, which makes the role of radiation and the

need to accurately model it absolutely crucial for predicting the dynamics of thermal and chemical

relaxation.

4.1.2 CASE 2: u
∞

= 16 km/s

Problem Description and Solution Procedure

The set of conditions used for Case 2 are the same as Case 1, with the only difference being an

increase in the freestream velocity to simulate a Mars sample return case. Therefore, the free-stream

variables used to define the problem are:

u∞ = 16000 m/s

ρ∞ = 7.80×10−4 kg/m3

T∞ = 276 K

46



x [m]

y 
[m

]

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 4.6: Computational grid for Case 2: u∞ = 16 km/s

The geometry employed is identical to Case 1. The surface of the bluff body is assumed to be non-

catalytic and Twall = 640 K. The flow-field has been simulated using a 2-Temperature model and

Air-11 as the reaction mixture. The computational grid used for Case 2 (Figure 4.6) consists of the

same number of elements (60× 100), with only minor modifications made in the mesh alignment to

accommodate changes in the shock location and curvature. Similar considerations with regards to

resolving the boundary layer and the bow shock have been made while refining the mesh. A uniform

initial solution based on the free-stream conditions is used. Time-marching for convergence upto 6

orders of magnitude has been carried out. Supersonic inflow and outflow boundary conditions have
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been prescribed on the domain inlet and outlet. A solution strategy employing both convective and

isothermal type wall boundary conditions has been employed to accelerate convergence.

Flow-field and Stagnation Line Properties

The steady state flow-field for Case 2 is presented in Figure 4.7. As expected, a stronger disconti-

nuity across the shock occurs and therefore, the spike in total pressure, temperatures, and density

is larger for Case 2. The shock layer again appears to be slightly under-resolved in the downstream

region, which is due to mesh edges cutting across the shock face.

Figure 4.8a illustrates the variation in T and Tv along the stagnation line. The bow shock is

formed closer to the body and the temperatures immediately in the post shock region and further

downstream are obviously higher. In contrast to results obtained for Case 1, there appears to be

no overshoot in the electronic-vibrational temperature after the shock. Figures 4.8b and 4.9 show

the degree of ionization and the distribution of species mole-fractions along the stagnation line. A

key feature of the obtained flow solution is the faster rate of thermal and chemical equilibration

which results in the equilibrium state being attained closer downstream to the shock as compared

to Case 1. This is a direct consequence of the higher total pressure and density encountered behind

the shock, which results in an increased rate of collisions between particles, accelerating chemical

reactions and the re-distribution of energy in the internal modes. The reaction mixture is ionized

to a greater extent and the post-shock equilibrium electron mole fraction is close to 0.38. Atomic

nitrogen again appears to be the largest source of free-electrons, followed by atomic oxygen. The

reaction mixture contains ionized molecular oxygen, nitrogen and NO in the immediate vicinity of

the shock but they dissociate as the flow moves downstream.
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Figure 4.7: Steady state flowfield for Case 2: u∞ = 16 km/s
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Figure 4.9: Species mole-fractions along stagnation line for Case 2: u∞ = 16 km/s
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4.2 Aerodynamic Heating Facility

4.2.1 Problem Description and Solution Procedure

There have been multiple studies that have attempted to model the distribution of flow variables

such as temperature, enthalpy, and species composition in an arc-jet [55, 56]. The AHF and the

Ames 60 MW Interaction Heating Facility (IHF) have recently been investigated using three codes

named ARCFLO2, ARCFLO3, and ARCFLO4 [57, 58, 59, 60, 61], which assume the flow to be

axis-symmetric and incorporate a heating section with a turbulence and radiation model. Takahashi

et al. [62] have studied various arc heaters such as the constrictor-type (Kyushu University Wind

Tunnel) and segmented-type arc heaters (JAXA Wind Tunnel and AHF) using multi-temperature

Reynolds-averaged Navier-Stokes equations with a three-band radiation model developed by Sakai

and Olejniczak [59, 61].

The high enthalpy reacting flows and the associated electric field in the AHF have been simu-

lated in the present work with the following assumptions: 1) The flow is considered to be turbulent,

steady, continuum and axisymmetric. 2) The injected test gas mixture is Argon-3, which reduces

computational costs and provides first order estimates for operating conditions. 3) A single tem-

perature, T , is used for defining the total internal energy of the flow. 4) The flow-field is in a

state of chemical non-equilibrium. 5) The arc current is not large enough to induce an effective

magnetic field. Consequently, Lorentz force, Hall current, and ion slip are neglected. 6) The effects

of radiation are not considered.

The internal geometry of the constricted arc heater and the nozzle assembly that constitute

the 20 MW AHF at NASA Ames is presented in Figure 4.10. The test gas is injected through

the segmented disks along the length of the constrictor. The flow in the facility has an azimuthal

(swirl) velocity component designed to enhance mixing and to stabilize the arc current. A small

amount of argon is also introduced in the anode chamber to shield the electrodes. The walls of the

heater are water cooled to counteract the effect of the large amount of heating due to electrical

discharge.

The computational grid that we use for modeling this complex facility introduces certain sim-
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Figure 4.10: Internal geometry of the 20 MW Aerodynamic Heating Facility (AHF)

(Source: NASA Ames Research Center)

Section Start coordinate [m] End coordinate [m]

Anode −2.82 −2.56

Constrictor −2.56 −0.27

Cathode −0.27 0.00

Throat 0.00 0.03

Nozzle 0.03 0.18

Table 4.1: Demarcation between different AHF sections along the axial direction

52



x [m]

y 
[m

]

-2.5 -2 -1.5 -1 -0.5 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x [m]

y 
[m

]

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Cathode and Nozzle

x [m]

y 
[m

]

-2.8 -2.75 -2.7 -2.65 -2.6 -2.55 -2.5 -2.45 -2.4 -2.35 -2.3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Anode

F
ig
u
re

4
.1
1
:
C
o
m
p
u
ta
ti
o
n
a
l
g
ri
d
fo
r
m
o
d
el
in
g
th
e
2
0
M

W
A
er
o
d
y
n
a
m
ic

H
ea
ti
n
g
F
a
ci
li
ty

(A
H
F
)

5
3



Wall temperature, K 1000

Total current, A 1600

Constrictor mass injection rate, g/s 0.5

Anode mass injection rate, g/s 0.25

Table 4.2: AHF operating parameters

plifications to the geometry. It is composed of 85× 425 elements in the radial and axial directions

respectively. The origin for the computational domain is located on the centerline at the beginning

of the throat. The different sections that constitute the facility have been demarcated in the axial

direction according to Table 4.1. The grooves created by the series of discrete electrode packages

comprising of alternating copper rings and spacer disks have been replaced by a continuous straight

edge of equivalent length which acts as the electrode surface. The electrically conducting edge is

positioned in the middle of the horizontal wall section in both the anode and cathode chamber. This

ensures that each electrode is surrounded by a strip of insulation that prevents the current from

flowing too close to the walls. Chamfering has been carried out at all corner points. These changes

represent only a minor deviation from the original layout and are expected to have a minimal impact

on the final solutions.

The operating parameters for the AHF are listed in Table 4.2. The flow-field in the AHF is

initialized using the following values:

uinitial = 10−3 m/s

ρinitial = 5.84 kg/m3

Tinitial = 1000 K

Pinitial = 12 atm

An isothermal no-slip boundary condition is prescribed on the walls for the converging-diverging

(C/D) nozzle. A convection type boundary condition, with hw = 105 is imposed on all other walls,

where the specified wall temperature is simply analogous to the target temperature. This results
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in improved convergence and reduces stiffness, especially in the presence of strong temperature

gradients created due to the electrical discharge. A test gas mixture consisting of Argon-3 at

equilibrium composition is injected from the electrically conductive edge section in the anode and

the walls of the constrictor using a mass injection wall boundary condition. Constant current

density computed from the total current value is imposed on the anode while the electric potential

for the cathode is fixed at zero. νSA was assigned an initial value of 5 νinitial, where νinitial is the

kinematic viscosity of the initial flow-field. νSA = 0 has been enforced at the walls. Since, the

C/D nozzle exits into a test chamber at very low pressure, a vacuum exit type outflow condition

is used. This entails reducing the specified exit pressure incrementally at each time step until the

flow turns supersonic; the supersonic outflow boundary condtion is used subsequently.

The process of coupling the electric field with the flow solver initially results in a massive

upsurge in instabilities in the flow domain. “Switching on” the electric field is akin to a detonation

occurring in the narrowed confines of the constrictor which causes an instant rise in temperature

and the flow being pushed outwards from both its ends. The flow-field eventually stabilizes with a

well-defined path, comprising of hot gases, forming for the electric current. The debilitating effect of

this transient period of chaos on the overall stability of the flow simulation is managed by gradually

ramping up the total current, In, being imposed at the anode for a given time step:

In = Imax
n

c

where Imax is the maximum total current listed in Table 4.2 and n is the current time step count.

c is the current growth factor which needs to be adjusted for a given set of initial and operating

conditions and has been fixed at 103. Time-marching has been carried for convergence upto 4

order of magnitude. The normalized unsteady residual increases initially with more current being

introduced in the flow-field. The residual eventually starts decreasing but stagnates at a value

of approximately 10−4. Although, the flow features at this point become well established, small

perturbations get introduced due to oscillating re-circulation regions, thereby, retarding further

convergence.
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4.2.2 Simulation Results

The physicochemical characteristics of the AHF can be better understood by analyzing the distri-

bution of various properties in the entire flow domain and along the centerline. Figure 4.12 shows

the flow streamlines in the AHF arc-heater and the adjoining nozzle assembly. The effect of mass

injection is clearly highlighted through this figure, with streamlines emanating from the constrictor

walls and the anode. Re-circulation regions are formed both in the anode and cathode chambers.

The anode re-circulation bubble is dynamic in nature and its size and strength continues oscillat-

ing. This introduces perturbations in the flow-field, which owing to the loose coupling between the

flow-solver and the electric field do not get dampened quickly enough. This has an adverse impact

on the convergence properties of the simulation, resulting in the residual turning stagnant after a

certain number of time steps have been completed, and the flow remaining unsteady.

Figure 4.13 presents the temperature distribution in the flow-field. The electrical discharge

from the anode causes temperature in its immediate vicinity to increase sharply, resulting in strong

gradients close to the electrode surface. The combination of mass injection and heat loss at the

walls, causes a high temperature region to be formed along the centerline in the constrictor. The

current density (Figure 4.14) mirrors the variation in temperature. A self-sustaining coupling is

formed; higher temperature implies larger electrical conductivity, and results in greater electrical

current flow and Joule heating. The gaseous mixture cools rapidly as it progresses through the

throat and nozzle. The flow is completely subsonic in the heating section but accelerates to choke

at the throat exit. The continuous expansion in the diverging section of the nozzle results in the

flow going supersonic. The change in Mach number downstream to the cathode chamber has been

illustrated in Figure 4.15.

Figure 4.16 presents the axial distribution of flow properties for the AHF. The observed temper-

ature increases due to Joule heating, reaching its peak value in the constrictor. A sharp drop occurs

due to the rapid expansion encountered in the nozzle. The high total pressure values observed in the

heating section points towards enhanced particle collision rates. Thus, thermal equilibration occurs

rapidly and a single temperature for characterizing the flow can be used. Takahashi et al. [62]
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Figure 4.15: Mach number distribution in the 20 MW Aerodynamic Heating Facility (AHF)

have come to the same conclusion after studying the degree of thermal non-equilibrium by em-

ploying a 4-temperature model to model arc heaters. The expansion through the nozzle and the

ensuing decrease in collision rate, coupled with a decline in the electron energy due to recombina-

tion reactions, introduces strong thermal non-equilibrium in the flow. Therefore, a more rigorous

model for defining energies in each individual internal mode is required for modeling the flow in the

converging-diverging nozzle assembly.

Ionization occurs in the arc column and results in the formation of free-electrons. These electrons

are the primary current carriers for the electric discharge between the anode and cathode. Recom-

bination reactions start to occur as the plasma approaches the nozzle. These reactions progress

slowly and the energy released is not enough to arrest the decrease in temperature due to expan-

sion. Flow properties remain largely constant along the axial direction in the constrictor. This

feature can be exploited to compute the contribution of radiative flux by using the relatively inex-

pensive cylindrical slab method. Although the present work is focused on simulating the time-mean

axisymetric current distribution observed in experiment facilities, the effect of unsteady near-wall

current fluctuations needs to be further investigated to make better predictions.
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Figure 4.16: Flow properties along the centerline for the 20 MW Aerodynamic Heating Facility
(AHF)

61



Chapter 5

Conclusions and Future Work

The most significant contribution of the current work has been the development of a new frame-

work, built around enhancing the numerical capabilities of FIN-S with a new chemistry library,

for accurate modeling of fluid flows in thermal and chemical non-equilibrium as well as adding the

capability of imposing an electric field on the fluid. Robust routines that are based on efficient

formulations for calculating thermodynamics and transport properties of the gas, and chemical and

thermal relaxation in multi-temperature reaction mixtures have been added to the Mutation++

library. This implementation draws upon both the Chapman and Enskog method and simplified

mixture rules to create a software toolkit that offers improved stability and sufficient accuracy for

CFD analysis of high enthalpy flows. A separate module for simulating the effects of an applied

electric field and adding the contribution of the Joule heating term to the energy equation, for quasi-

neutral flows has been introduced through a two-way coupling with the flow solver. Thus, a whole

spectrum of flow problems ranging from hypersonic vehicular re-entry to ground-based arc heated

wind-tunnel testing can be studied using the same code. This versatility can have an immediate

impact in devising test conditions for given flight conditions and interpreting experimental data to

further refine the vehicle design process. Research work on improving the simulation framework is

already underway and is directed towards investigating the following objectives:

1. Implementing a radiative tranport model, which is crucial for predicting the transfer of heat

and momentum from the hot core to the cold wall region in large segmented-type constricted-

arc heater facilities.

2. Performing a full three-dimensional analysis of the AHF in order to account for instabilities

62



in the azimuthal direction of swirling flows.

3. Modeling the full set of Maxwell equations to generate a more generalized description of the

electro-magnetic interactions.
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