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ABSTRACT

With transistor dimensions shrinking to the atomic scale, a plethora of new
reliability problems presents a barrier to continued Moore’s law scaling. Tra-
ditional modular redundancy techniques with 2x and 3x area cost eliminate
the area reduction benefits of such scaling. In this study, we take a partial
redundancy approach to the reliability problem for arithmetic-orientated dat-
apaths by performing lightweight shadow computations in the mod-b space,
where b is the base of our modulo residue, for each main computation. We
leverage the binding and scheduling flexibility of high-level synthesis to de-
tect control errors through diverse binding and minimize area cost through
intelligent checkpoint scheduling and modulo-b reducer sharing. We intro-
duce logic and dataflow optimizations to further reduce cost. We evaluated
our technique with 12 high-level synthesis benchmarks from the arithmetic-
oriented PolyBench benchmark suite using FPGA emulated netlist-level er-
ror injection. When b = 3, we observe coverages of 99.2% for stuck-at faults,
99.5% for soft errors, and 99.8% for timing errors with a 25.7% area cost and
negligible performance impact. When b = 5, we observe coverages of 99.4%
for stuck-at faults, 99.8% for soft errors, and 99.9% for timing errors with a
48.5% area cost and negligible performance impact. Leveraging a mean er-
ror detection latency of 13.92 and 14.96 cycles, with both mod-3 and mod-5
units respectively (2554x faster than end result check) for soft errors, we also
explore a rollback recovery method with an additional area cost of 28.0% for
both cases, observing 411x increase in reliability against soft errors.
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CHAPTER 1

INTRODUCTION

Moore’s law has been defined as a firm ruler in the electronics industry. With
demand for more computation density and more performance per watt, there
are a huge number of reliability problems which could threaten to end such
scaling. With higher chip densities, permanent faults such as burnt-out power
supplies become quite common. Transient faults such as particle strikes
and intermittent faults such as loose connections have higher probabilities
of occurrence. Due to increases in process variations and the challenge of
reliably powering billions of transistors, timing errors have also become more
common.

Unfortunately, this trend has resulted in increasingly complex hardware
that requires high development cost to design. This rapid increase in hard-
ware system complexity has encouraged designers to explore higher levels
of abstractions with better productivity than low level RTL [1]. High level
Synthesis (HLS) has emerged as a promising way to handle this complexity
and reduce development efforts through higher levels of abstraction [2], [3],
[4]. Higher abstraction levels also provide synthesis engines with richer infor-
mation about the behavioral intent of the hardware designer (e.g. algebraic
computation expressions, control flow), thus enabling transformations and
higher level optimizations which would not be possible at the RTL level.

A traditional approach to error detection in hardware designs is by du-
plicating each component, also called dual modular redundancy (DMR) [5].
But this approach comes with a 2x area cost that eliminates the area and
power reduction benefits of Moore’s law scaling. DIVA [6] is another popular
technique which uses an extra checker core to verify the correctness of the
main core computation and commit only non-faulty results. Concurrent error
detection (CED) [7] uses HLS to introduce redundancy at the functional unit
level. Although each component is fully duplicated, this technique aims at
reducing area and performance overhead through resource sharing. But this
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technique can incur at least 75% area cost for simple and small datapaths.
Another approach is time-redundancy, where we re-compute results using

the same hardware units to detect errors. [8] uses a time redundancy-based
concurrent error detection scheme with diverse binding solutions in its re-
computation stage but has performance overheads even though it incurs low
area cost. Argus [9] is a prototype processor with a modulo-3 arithmetic
checker that can detect up to 98.0% and 98.8% of unmasked transient and
permanent errors respectively. Argus has low area (17%) and performance
(4%) costs but it is limited to the Von Neumann processor architecture and,
to the best of our knowledge, there is no similar work in high-level synthesis
that targets application-specific custom logic and accelerator designs.

The traditional approach to reliable hardware is triple modular redundancy
(TMR) [10] where 2 additional units are added to the main unit and a major-
ity voting unit. The 3 units perform the same computation and if any of the
three units fail, the other two units can correct and mask the fault. Although
TMR has a high fault coverage, it has a 3x area cost. [11] integrated modu-
lar redundancy into high-level synthesis and presented techniques to increase
reliability with cost and performance constraints and decrease cost given
reliability constraints, but not both together. New approaches to modular
redundancy such as statistical error compensation (SEC) involving pairing
an estimator module with unreliable hardware still come with high (50-100%)
area cost [12]. Razor [13] is a gate level transformation that adds a shadow
latch for each flip-flop to detect timing errors. Although it has a low area and
performance overhead (<3%), it is limited to only detecting timing errors.
[14] proposes a technique to recover from soft errors but does not perform
any error injection experiments and has a passive approach to masking errors
whereas we actively detect and correct errors.

In this study, we take a low-cost approach to the error detection prob-
lem through modulo-3 arithmetic targeting custom hardware through a fully
automated high-level synthesis process enabling rapid development of self-
checking hardware. Our innovations are as follows:

1. Intelligent scheduling of intermediate register consistency checks for
maximum coverage with minimum consistency checker allocation

2. Pipelining for deferred scheduling of the shadow datapath to reduce
area and latency cost and binding diversity to improve fault coverage.
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3. Full-coverage handling of mixed arithmetic and non-arithmetic data
paths

4. High coverage of 99.42% of unmasked errors for an assortment of three
different kinds of fault models with low area overhead.

5. A register-duplication based checkpointing technique to demonstrate
the error correction potential of our approach.

6. Previously unexplored area/latency optimizations to modulo-3 func-
tional units through the exploitation of don’t care cases.

7. An FPGA accelerated, fully automated error injection framework using
a gate-netlist transformation to enable accelerated injection for three
fault models.

8. The unmasked error detection latency is 4150x faster than existing end
result check methods.

This work in this thesis is based on our publication, which is to appear in
Design Automation Conference (DAC), June 2015 [15].
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CHAPTER 2

BACKGROUND

2.1 High-level Synthesis

High-level synthesis (HLS) is an automated transformation which interprets
software and creates custom digital hardware that implements the behavior.
HLS typically involves the following steps:

1. Compilation: Lowering the code to an intermediate sequence of assembly-
like instructions and optimizing those instructions typically through the
use of a software compiler framework such as LLVM [16].

2. Allocation: Determining the number of physical registers and func-
tional units of each type to allocate.

3. Scheduling: Generating a state machine corresponding to the control
flow of the instructions and assigning instructions to states.

4. Binding: Mapping instructions to physical functional units and vari-
ables to physical registers.

5. RTL Generation: Generating an RTL description of the state ma-
chine and datapath from the scheduling and binding solutions.

2.2 Error Detection through Modular Arithmetic

Given two integers, a (the dividend) and b (the divisor), a mod b is the
remainder of the Euclidean division of a by b. Given integers x, y, z, b with
b ≥ 1, let (x′, y′, z′) = (x, y, z) mod b. We can now list the properties of the
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mod operator key to our work:

x + y = z =⇒ z′ = (x′ + y′) mod b (2.1)

xy = z =⇒ z′ = x′y′ mod b (2.2)

Suppose the left-hand sides of Equations (2.1) and (2.2) represent some
computation performed by a functional unit. Then the computation can be
checked by computing x′, y′, z′ and verifying that the right-hand equation
holds. Through the use of substitution and noting that x − y = x + (−1)y,
we can see that this “shadow computation” property holds for arbitrarily
complex arithmetic expressions composed of the primitives in Equations (2.1)
and (2.2). We can check division operations through shadow multiplications,
but we focused on addition and multiplication in our study because they are
the most fundamental for datapath design.

The choice of b is important as given A, an n-bit binary encoding of an
integer a, we want a mod b to be a function of all of the bits in A such that if
any bit in A changes, a mod b changes. This is true for a signed or unsigned
encoding iff 2i mod b 6= 0 for 0 ≤ i < n iff b is odd and b ≥ 3, enabling the
detection of any single-bit error. To keep our shadow computation logic as
lightweight as possible, we choose b = 3 and b = 5, the two smallest values
which satisfy the above constraint.

2.3 Fault Models

In this study, we consider error detection for three fault models: stuck-at
faults, transient errors, and timing errors. Stuck-at faults are the result of
fabrication defects that leave a gate output stuck at either 0 or 1 regardless
of the input. Transient errors simulate soft errors, which are caused by
particle strikes induced by cosmic rays that cause an erroneous state change
for a flip-flop. Timing errors are the result of a logic value change failing
to propagate along a combinational path from a launch flop to a latch flop
before the latch window deadline due to unexpectedly high delays along the
path. Such delays can be induced by transistor wear-out, voltage droops, or
process variation.
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2.4 Aliasing

Aliasing, in this context of study, refers to two inputs that map to the same
output through f(x) = x mod b. For example, (7 mod 3) = (10 mod 3) = 1.
Suppose 7 is a correct computation result and 10 is an erroneous computation
result. In such a case, the error may not be detected through the shadow
computation since the mod-3 residue matches the correct result.

2.5 Zero Masking Problem

Zero masking problem refers to the case when a value in the mod-b space
(where b is the base for our modulo residue) is zero. This is common when
we multiply a number by a constant, which in the mod-b space evaluates to
0. For example, let us consider a case when x = 7 and we multiply it with
constant 6. With b = 3, x′ = 1 and y′ = 0, due to which the result in mod-3
space evaluates to 0. In such a case, some of the upstream logic is optimized
out by the optimizer and the input to the subsequent unit is set to constant
0. In such a case, we treat these as mod-3 sinks (Section 4.1) such the errors
propagated prior to this have been detected.

6



CHAPTER 3

SHADOW FUNCTIONAL UNITS

3.1 Mod-3 Functional Units

Mod-3 functional units represent the types of functional units which operate
in the mod-3 space. Since only two bits are required to encode 3 possible
values in mod-3 space, a simple approach is to use two representations for
0: 00 and 11, which is the approach taken for previous designs of mod-
3 functional units. Our key innovation is to ignore the 11 encoding and
optimize it as a don’t care (U).

Thus if either input is the U value, then the output doesn’t matter as
the U case will never occur in normal operation. As illustrated in Table 3.1
for the mod-3 adder, there are 9 fixed output cases and 7 don’t care output
cases for each two-input mod-3 unit. Through the use of Karnaugh maps, we
optimally exploited these don’t cares to find a low area cost design expressed
as a sum of products. We verified the optimality of our sum of products
solution through exhaustive search of all 47 possible don’t care assignments
(i.e. to check for better solutions involving compound gates). Table 3.2
shows the effects of our optimization. For logic synthesis, we implemented
our designs in Verilog, used Synopsys Design Compiler 2013-12.sp4 with an
ARM 45nm standard cell library, and optimized for minimum area. We
measure area in µm2 and delay in ns.

Table 3.1: Modulo-3 adder functional specification table

value encoding
0 00
1 01
2 10
U 11

+3 0 1 2 U
0 0 1 2 X
1 1 2 0 X
2 2 0 1 X
U X X X X
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Table 3.2: Optimization results for shadow mod-3 units

Function 32-bit unit naive shadow optimized shadow
area delay area delay area delay

Add 163 1.30 17.6 0.15 9.30 0.08
Multiply 2381 2.05 10.9 0.08 5.75 0.05

3.2 Mod-3 Constant Functional Units

We also consider an additional class of constant operation units generated by
high-level synthesis, units that have a constant as one input. We can think
of this constant as “baked-in” to the logic of the unit so that structurally the
unit has a single input and a single output. For example, a “+10” constant
operation unit takes some value x as input and outputs x + 10.

Table 3.3: Shadow mod-3 unit metrics for operation with constant c

Function c = 0 c = 1 c = 2
area delay area delay area delay

Add c 0 0 0.96 0.02 0.96 0.02
Multiply by c 0 0 0 0 0 0

Table 3.3 shows the cost of the constant operation versions of our mod-3
units. Since we can reduce each constant to its mod-3 residue at compile
time, there are only three versions of each constant unit. We observe that
the operations +0 and x1 have no area cost since they lower to the identity
function and x0 lowers to the constant zero for multiplication. As discussed
in Section 4.4, such operations are optimized out by our high-level synthesis
optimization passes.

With such functional unit optimizations, our method has an even greater
area-cost advantage over double or triple modular redundancy for arithmetic
datapaths.

3.3 Mod-5 Functional Units

Mod-5 functional units represent the types of functional units which operate
in the mod-5 space. Since only three bits are required to encode 5 possible
values in mod-5 space, we perform the same optimizations for mod-5 units
like we did for mod-3 units (Section 3.1). Since 0, 1, 2, 3 and 4 are the only
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Table 3.4: Optimization results for shadow mod-5 units

Function 32-bit unit naive shadow optimized shadow
area delay area delay area delay

Add 163 1.30 89.7 0.76 37.0 0.60
Multiply 2381 2.05 75.0 0.75 35.4 0.80

legal values in mod-5 space, we can have the following representations which
allow 5, 6 and 7 to be don’t cares.

1. 0: 000 and 101

2. 1: 001 and 110

3. 2: 010 and 111

Since functional units in the mod-5 space operate over larger bits, they will
incur larger area when compared to mod-3 units. But since they cover more
values, they are less susceptible to aliasing (Section 2.4). Table 3.4 shows
the cost of the optimized versions of our mod-5 units.

3.4 Mod-5 Constant Functional Units

Like the mod-3 case, we also consider a class of constant operation units
generated by high-level synthesis. Table 3.5 shows the cost of the constant
operation versions of our mod-5 units. We observe that the operations +0
and x1 have no area cost since they lower to the identity function and x0
lowers to the constant zero for multiplication. Such operations are optimized
out by our high-level synthesis optimization passes.

Table 3.5: Shadow mod-5 unit metrics for operation with constant c

Function Add c Multiply by c
area delay area delay

c = 0 0 0 0 0
c = 1 5.42 0.91 0 0
c = 2 4.78 0.95 5.40 0.95
c = 3 6.70 0.88 6.10 0.91
c = 4 5.42 0.95 3.83 0.95
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3.5 Modulo-b Reducers

Mod-b reducers are our modulo-b residue computing units, where b is the
base of the modulo residue. They are implemented as a tree of mod-b adders
with the highest level as a series of normalizers, which normalize the input
value to be of width dlog2 be. The input to the normalizers is a sequence of
repeating modular weights. For example when b = 3, we have 20 mod 3 = 1,
21 mod 3 = 2, 22 mod 3 = 1, 23 mod 3 = 2, etc. Since we see a repeating
sequence of 2, the input width to the normalizer is 2. When b = 5, we see a
repeating sequence of 4 and hence the input width to the normalizer is 4.

When b = 3, the normalizers are implemented as mod-3 adders. Thus they
can be implemented as a tree of dlog n/2e stages of modulo-3 adders where n

is the input width, similar to the tree approach in [17]. An example reducer
for n = 16 is illustrated in Figure 3.1. The design works by grouping the
input bits into pairs and effectively constructing a base 22 = 4 representation
of the input value. Since 4n mod 3 = 1 for all n ≥ 0, each base 4 digit has
the same weight in mod-3 space and thus we can compute the mod-3 sum of
all of the digits in a straightforward tree reduction.

+3 +3 +3 +3

+3 +3
+3

16

22 22 2222

2

x

x mod 3

Figure 3.1: Optimized mod-3 reducer topology for a 16-bit unsigned
reducer. Optimized mod-3 adders are colored blue.

Since the first stage adders must take all possible values (0, 1, 2, and 3)
as inputs, we cannot perform don’t care optimizations for those units. But
since we design the first stage adders to normalize their output to be 0, 1, or
2, all subsequent stages can optimize the fourth (“3” or U) value as a don’t
care. To the best of our knowledge, this optimization was not previously
explored. With this optimization, we observe a 22-23% area cost reduction
and a 23-26% delay reduction compared to [17].
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Table 3.6: Optimization results for 32-bit mod-3 reducer

Reducer Type [17] ours
area delay area delay

Unsigned 263 0.62 203 0.46
Signed 267 0.66 207 0.51

Thus far, we have assumed that the original datapath uses an unsigned
bit encoding for all variables. To modify our reducers to handle a signed
(2s complement) variable, we leverage that the only difference between the
unsigned and signed (2s complement) encodings is the weight of the most
significant bit (MSB). In the unsigned encoding, the MSB has a weight of
2n−1 while in the signed encoding, it has a weight of −2n−1 where n is the
number of bits. Without loss of generality, if we assume n is even, then
2n−1 mod 3 = 2 and −2n−1 mod 3 = 1. Since the second most significant
bit always has a weight of 1, the insertion of a half-adder is sufficient to
normalize the two most significant bits for a signed reducer. Table 3.6 shows
the small cost of this extra half-adder.

If b = 5, the first stage is a normalizer unit which normalizes 4 bits from
the input vector to 3 bits in the mod-5 space, such that it can an input
to a tree of mod-5 adders. These mod-5 adders can be optimized because
the outputs from the normalizers do not have values outside of the mod-5
space. This optimization helps reduce area cost, as shown in Table 3.7. The
additional delay in the optimized versions can be compensated for by using
pipeline stages.

Table 3.7: Results for 32-bit mod-5 reducer

Reducer Type Unoptimized Optimized
area delay area delay

Unsigned 771 1.09 773 1.48
Signed 409 1.11 408 1.51
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CHAPTER 4

HIGH LEVEL SYNTHESIS
TRANSFORMATIONS

Our approach to protecting a hardware design is a series of low-cost shadow
datapath high-level synthesis transformations. An overview of how these
transformations fit into the high-level synthesis process is illustrated in Fig-
ure 4.1a [15]. We perform scheduling with the LegUp high-level synthesis
engine [4] and binding with our in-house binding engine. We perform our
reliability transformations after scheduling but before binding to insure that
the latency of the hardware function does not increase.

Figure 4.1 provides an overview of our basic modulo-3 shadow datapath
transformation. Integration of our reliability transformations into the high-
level synthesis process is described in Figure 4.1a and the illustration of our
core modulo-b transform is described in Figure 4.1b, where b is the base for
our modulo residue. The original datapath is colored black/white and the
shadow datapath is in blue. For each input port, we add a mod-b reducer to
compute the input value mod-b residue, effectively creating a shadow mod-b
input. For each arithmetic functional unit (e.g. add, subtract, multiply), we
add a corresponding shadow mod-b functional unit (Chapter 3). For each
datapath flip-flop, we add a corresponding log2 b-bit flip-flop to store and
propagate the mod-b checksum in a parallel datapath. For each output port,
we add a mod-b checker which consists of a reducer and log2 b-bit equality
comparator, which then drives shared error ports. The result is then that
each main computation is independently performed in mod-b space as well,
and the two results are checked for consistency.

Our transformations operate on a scheduled control/data flow graph. By
leveraging the state machine and data flow graph information available in
this HLS stage, we can perform transformations and optimizations not pos-
sible at the RTL or gate-level stage. In the following subsections, we discuss
how we handle mixed arithmetic-nonarithmetic datapaths, the scheduling of
intermediate register consistency checks for maximum coverage with opti-
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Front-end (clang+LLVM)

Scheduler (LegUp)

Modulo-b Transform

Shadow Datapath 
Optimization Passes

Binder (in-house)

Verilog RTL

C source code

LLVM-IR

Scheduled CDFG

Scheduled CDFG

Scheduled CDFG

(a) HLS Overview

+ 

+
+

+ + + 

%b

%
b

= 

%
b

= 

Input 
Reducers

Register
Checkers

Output
Checkers

Shadow 
Functional 
Units

error

error

Shadow
Registers

(b) Modulo-b Transform

Figure 4.1: Overview of our method. (a) Integration of our reliability
transformations into the high-level synthesis process. (b) Illustration of our
core mod-b transform. The original datapath is colored black/white and
the shadow datapath is in blue.

mized sharing, pipelining for deferred shadow datapath scheduling to elimi-
nate clock period overhead and lower area cost, and binding diversity between
the main and shadow datapaths for improved fault coverage.

4.1 Shadow Datapath Transformations

HLS generated designs involve non-arithmetic components including state
machine logic, bitwise operations, and comparators that have single bit out-
puts. Each non-arithmetic component is duplicated such that such com-
ponent has a redundant counterpart. However, such units have low area
overhead. For example, bitwise operations have very low area cost and shift
by constants have zero area costs. We also observe low overheads for dupli-
cation of non-arithmetic units (Area and Delay overheads are mentioned in
Table 5.1) .

There are a number of cases to deal with when we generate shadow connec-
tions for arithmetic and non-arithmetic components, which are illustrated in
Figure 4.2. Connections between two duplicate components and between two
mod-b components are straightforward: just make connections correspond-
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(a) non → non

%3

⨉ ⨉ 

(b) non → arith

+ + 

(c) arith → non

+ + 

⨉ ⨉

(d) arith → arith

Figure 4.2: Shadow/duplicate connection cases. For each subfigure, the
original graph is on the left and the redundant logic is on the right. For the
redundant logic, nonarithmetic components (“non”) are duplicated with the
duplicates in grey. Arithmetic components (“arith”) are mod-b shadowed
with the shadows in blue. The unit labeled “%3” is a mod-3 reducer.

ing to those in the original datapath (Figures 4.2a and 4.2d). We can connect
a duplicate component output (full bit width) to a mod-b component input
(log2 b bit) through a mod-b reducer (Figure 4.2b, where b = 3). Connecting
a mod-b component output to a duplicate component input is not possible
since information lost in the mod-b reduction cannot be recovered. Thus the
duplicate component input is connected to the same output as the original
component (Figure 4.2c).

Making connections this way can leave some mod-b components with out-
puts unconnected, which we call mod-b sinks. For example, the mod-b adder
in Figure 4.2c may not have a mod-b component to connect to in its fanout.
Such mod-b sinks may output an inconsistent mod-b checksum due to an er-
ror that occurred in the main datapath, but there would be no way to detect
it. Thus we add a mod-b checker for each mod-b sink to insure such errors
are detected.
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4.2 Register Consistency Check Scheduling

Some errors may be masked in the main datapath (and thus masked in the
shadow datapath) before they reach the primary output. Other errors may
be unmasked, but undetected due to aliasing (Section 2.4) that occurs in
the shadow datapath. To maximize our chances of detecting such errors, we
insert checkers on the output of datapath registers, using strategic scheduling
of check operations to share as many mod-b reducers as possible.

Compared to the rest of the shadow datapath, reducers are expensive (Ta-
bles 3.6 and 3.7). Reducers are scheduled in fixed states for use at output
ports and mod-b sinks to produce residues for checkers as well as at input
ports to provide a shadow inputs (Figure 4.1b). Intermediate register check-
points, on the other hand, have flexible scheduling constraints corresponding
to their liveness state machine subgraph.

To exploit this flexibility and minimize reducer allocation, we select register
liveness intervals that are more than one cycle long and that extend across
a basic block boundary (control flow divergence or convergence). For each
liveness interval, we attempt to schedule a checkpoint at each use (read) of
the corresponding SSA variable1 with the constraint that we cannot schedule
more reducers at a state than have been allocated. The intuition behind this
method is that we want to catch errors right before they leave a register
to go through functional units where they may be masked or aliased. If the
checkpoint cannot be scheduled at a state, we attempt to recursively schedule
it at each of the state’s predecessors.

The core recursive algorithm is listed in Algorithm 1. In the event of a
scheduling failure, we allocate an additional reducer and try again until check
scheduling succeeds.

4.3 Pipelining for Deferred Shadow Datapath
Scheduling

While our mod-b shadow functional units have low latency (Tables 3.2, 3.3,
3.4 and 3.5), our mod-b reducers have high latency (Tables 3.6 and 3.7). In

1Single-static assignment variable which is written only once and thus corresponds to
one liveness interval for a variable.
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Algorithm 1 Core recursive scheduling algorithm
function schedule(var, state)

if (var, state) has not been visited or scheduled then
if reducer count[state] = max reducers then

preds ← state predecessors that var is live in
if preds = ∅ then

increment max reducers
restart scheduling process

end if
for each pred in preds do

schedule(var, pred)
end for

else
schedule check for (var, state)
increment reducer count[state]

end if
end if

end function

addition, the insertion of a mod-b checker on a mod-b sink’s corresponding
main component can cause severe timing violations if the main component
is part of an operation chain. Even if the timing violations are corrected
through gate sizing, the area cost can be quite large as 1x transistors are
replaced with 4x and 8x transistors to meet timing requirements. Ideally, we
want all of the mod-b components to be mapped to 1x gates for minimum
area overhead.

Thus our solution is to insert pipeline flip-flops both in front of and behind
each mod-b reducer. The shadow datapath schedule is then deferred by 2
cycles, adding 2 cycles of error detection latency in exchange for reduced area
cost.

4.4 Shadow Datapath Optimization Passes

Our mod-b transformation can create no-op identity operations and redun-
dant components. This superfluousness motivated us to add a shadow dat-
apath optimization pass to eliminate them as shown in Figure 4.1a which
consists of two components:

1. Constant propagation and identity elimination: A +6 adder
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results in the generation of a +0 mod-3 component, which is an identity.
A x6 multiplier evaluates to a constant 0 in mod-3 space, which could
then propagate to other operations and make their result evaluable at
compile time.

2. Redundant component elimination: A x8 and a x11 multiplier
both result in the generation of a x2 mod-3 component. If both multi-
pliers are connected to the same input, the second x2 mod-3 component
is redundant and can be removed.

4.5 Diverse Binding

We perform binding of our optimized and scheduled control and data flow
graph with our in-house binding engine, which creates diverse (different)
binding solutions between the original and duplicate / mod-b datapaths
as well as for duplicated non-arithmetic components. Such diverse bind-
ing makes it difficult for control errors and stuck-at faults to affect both
redundant datapaths in the same way. Further state machine checking is
enabled by comparing the state registers of the redundant state machines
and using one state machine to control the main datapath and other one
to control the duplicate and shadow datapaths. Both the shadow datapath
and the duplicate state machine run 2 cycles behind the main computation,
so synchronization is not an issue. The binding engine’s primary goal is to
maximize sharing where profitable for area cost, minimizing the number of
reducers allocated.

4.6 Recovery

To enable error recovery for soft errors, we use a checkpoint and recovery
register transformation, illustrated in Figure 4.3. For each state and datapath
register, we add a duplicate register to store checkpoint data. At regular
intervals (configurable), we assert the “save” signal to take a snapshot of
the state of each datapath and state register in a corresponding duplicate.
Error detection triggers a “restore” signal which recovers the state from the
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previously recorded checkpoint, i.e. the cycle where the “save” signal was
asserted.

data in data out

(a) Original flop

data in
data out

restore

save

0
1

0
1

(b) Transformed flop

Figure 4.3: Flip-flop transformation for soft error recovery.

Our error recovery technique will work for soft errors as long as the error
has not made it into the checkpoint snapshot. A checkpoint is corrupted when
an error is activated before, but detected after the checkpoint, as shown in
Figure 4.4.

C
he
ck
po
in
t Error!

Checkpoint
Corrupted!

D
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Time

Figure 4.4: Checkpoint corruption.

We consider an error to be masked if it does not affect the primary out-
puts of the generated core or the timing of those outputs. Otherwise, it is an
unmasked error. The probability of checkpoint corruption, PCC , is defined as
in Equation (4.1), where l is the unmasked error detection latency, Pl is the
probability of that particular latency (i.e. ∑

l Pl = 1) and CI is the check-
point interval (configurable). An error is removed if either it is masked to
begin with or it is unmasked, detected, and successfully recovered by rolling
back to an uncorrupted checkpoint; we formally define the error removal rate
as the number of removed errors divided by number of total errors, as for-
malized in Equation (4.2). In this equation, E is the error removal rate;
M is the error masking rate (defined as number of masked errors divided by
number of total errors); and U is the unmasked error detection rate (defined
as number of unmasked errors detected divided by number of total errors).
An error is detected (ED) in a given cycle if an error occurred in that cycle
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and it was detected by our detection logic, as formalized in Equation (4.3),
where Perror stands for the probability of error activation in each cycle and
det stands for total error detection rate given error activation. Avg.rollback

is the number of cycles, on average, that we would rollback on detection of
an error. Since the rollback length distribution is uniform, the average is ap-
proximately half the checkpoint interval (Equation (4.4)). Thus, the average
rollback cycle overhead is the product of the average rollback length and the
probability of an error being detected in a given cycle (Equation 4.5).

PCC =
∑

l

Pl
min(l, CI)

CI ≤ lavg

CI (4.1)

E = M + U(1− PCC) (4.2)

ED = Perror × det. (4.3)

Avg. Rollback =
CI∑

r=1

r

CI = CI + 1
2 (4.4)

Cycle Overhead = ED× Avg. Rollback (4.5)
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CHAPTER 5

EXPERIMENTAL RESULTS

5.1 Setup

Our experimental setup is illustrated in Figure 5.1. We performed logic
synthesis with Synopsys Design Compiler 2013-12.sp1 with an ARM 45nm
standard cell library, and optimized for maximum clock frequency. We eval-
uated the detection coverage of our approach with error injection enabling
netlist transformations which support stuck-at, transient, and timing errors.

Reliable High-level 
Synthesis

Synopsys Design 
Compiler

Timing Error
Activation Simulation

Error Injection Enabling 
Netlist Transforms

Altera Quartus Stratix III FPGA

Verilog
RTL

FPGA
Bitfile

Timing 
Errors

Technology Mapped Netlist

Technology Mapped Netlist

Error injection results

C source code Area and Delay results

Figure 5.1: Our error detection coverage evaluation framework. Our
“reliability-centric” high-level synthesis process is elaborated in Figure 4.1a.
Our customized steps are highlighted in yellow.

To inject stuck-at faults, the netlist transform inserts AND (for stuck-at
0) or OR (for stuck-at 1) gates at randomly selected gate outputs. To inject
transient errors, we insert XOR gates at the “D” inputs of randomly selected
flip-flops. For timing errors, we induce setup time violations by performing
timing simulations with a fast clock to collect flop-cycle pairs where timing
errors are activated while continuing error-free execution with the use of a
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razor flip-flop like transformation, similar to the activation detection method
of [18]. Then we pass these flop-cycle pairs as a subset of transient errors to
our error injection enabling netlist transformation [15].

To accelerate fault effect evaluation, we map the ASIC netlist to an Altera
Stratix III FPGA for emulation. A hardware test driver module mapped
to the FPGA communicates with the host system to facilitate thousands
of rapid (<1 second each) back-to-back full runs of the design under test,
injecting one error from the sample list at a time. As one would expect,
stuck-at faults are activated for the duration of the design execution, while
transient errors are activated for one cycle.

5.2 Results

We used benchmarks from the PolyBench/C 3.2 benchmark suite and modi-
fied the benchmarks to use fixed-point encodings for originally floating-point
encoded values as our transformations currently do not support floating-point
operations. We implemented fixed point arithmetic with C integer arithmetic
operations with shifts for binary point alignment. “Matrix 4x4” is a tiled ver-
sion of the matrix multiply benchmark that completely unrolls 4× 4 tiles to
explore performance/area tradeoff.

We synthesized our benchmarks using our method (Chapter 4) and used
our experimental setup (Section 5.1). With the addition of our mod-b units,
we tested for area overhead and fault coverage, with b = 3 and b = 5.

To determine the area cost of our error detection approach, we compare
the core area of an unprotected baseline benchmark synthesized without our
mod-3 shadow datapath transformations against our experimental version
synthesized with the mod-3 transforms. Tables (5.1 and 5.2) show the area
and clock period overhead for both the detection logic and estimated over-
head (through characterization of the hardware in Figure 4.3) for the total
logic which includes both detection and recovery. We measure area in µm2

and delay in ns. Area overhead (area ov.) and clock period overhead (delay
ov.) are measured as percentage increase over baseline area.

We observe on average an area cost of 25.7% and 48.5% with detection
for mod3 and mod5 units respectively. We estimate 53.7% and 76.4% for
both detection and recovery with mod3 and mod-5 units respectively. In-
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terestingly, we observe a 9.5% and 22% detection area cost with mod-3 and
mod-5 units respectively for the highly parallelized “Matrix 4x4” benchmark,
suggesting that lower overheads are achievable in large high-throughput ac-
celerator designs.

Table 5.1: Area and delay overhead results for mod-3 units

Benchmark Baseline Detection Total
area delay area ov. delay ov. area ov. delay ov.

Atax 13 434 0.89 31.8 -3.1 56.2 1.2
Bicg 13 923 0.90 24.0 -4.1 54.1 0.2

Floyd-Warsh 12 764 0.70 25.2 0.44 55.7 10
Gemm 13 380 0.84 25.8 2.5 51.9 7.1

Gemver 18 855 1.00 28.3 3.3 56.9 7.2
Gesummv 13 230 0.84 26.8 5.0 53.9 9.7

Matrix 4X4 65 258 1.03 9.5 3.9 33.3 7.7
Matrix 11 151 0.80 22.8 1.0 56.3 5.9

Mvt 16 212 0.88 41.6 -1.6 69.2 2.9
Symm 16 943 0.84 23.5 1.1 55.9 5.7
Syr2k 15 183 0.85 26.9 0.8 52.7 5.4

Syrk 13 975 0.89 22.4 0.4 48.2 4.8
Median 13 949 0.86 25.5 1.0 54.9 5.8

Mean 18 763 0.87 25.7 1.1 53.7 5.7

To observe fault coverage, we injected a sampling of 2,000 stuck-at, 10,000
transient and 10,000 timing errors into each synthesized core. The outcome
of our fault injection experiments is shown in Tables ( 5.3) and ( 5.3).

For unmasked errors, we observe an average stuck-at fault coverage of
99.2%, soft error coverage of 99.5%, and timing error coverage of 99.8% with
mod-3 units. To provide some context, Argus, which we consider to be a state
of the art error detecting microprocessor, can detect 98.0% of transient errors
and 98.8% of stuck-at faults [9]. For unmasked errors with mod-5 units, we
observe an average stuck-at fault coverage of 99.4%, soft error coverage of
99.8%, and timing error coverage of 99.9%. There is an increase in fault
coverage with mod-5 units, mainly due to lower probabilities of aliasing.
Thus with higher bases, we will observe higher fault coverage, but with more
area overhead.

It is difficult to make a direct comparison with previous HLS work since
high-level synthesis benchmarks with experimental error injection and area
cost are quite limited. For reference, Concurrent Error Detection [7] uses
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Table 5.2: Area and delay overhead results for mod-5 units

Benchmark Baseline Detection Total
area delay area ov. delay ov. area ov. delay ov.

Atax 13 434 0.89 52.9 -4.6 77.3 0.2
Bicg 13 923 0.90 43.5 -4.8 73.7 -0.4

Floyd-Warsh 12 764 0.70 54.8 2.1 85.4 7.7
Gemm 13 380 0.84 43.6 2.3 69.7 6.9

Gemver 18 855 1.00 47.6 -0.4 76.1 3.5
Gesummv 13 230 0.84 61.6 0.1 88.7 4.8

Matrix 4X4 65 258 1.03 22.0 1.7 45.8 5.5
Matrix 11 151 0.80 44.8 1.1 78.3 6.0

Mvt 16 212 0.88 75.6 0.2 103 4.9
Symm 16 943 0.84 45.3 1.4 77.6 6.1
Syr2k 15 183 0.85 51.8 -0.5 77.6 4.1

Syrk 13 975 0.89 37.9 -0.1 63.7 4.3
Median 13 949 0.86 46.4 0.3 77.5 4.8

Mean 18 763 0.87 48.5 -0.1 76.4 4.4

HLS to fully duplicate each component but attempts to compensate for area
cost through resource sharing and has around 75% area cost for a simple,
fully arithmetic datapath which in theory is not susceptible to aliasing.

Figures 5.2 and 5.3 shows the estimated soft error removal rate and roll-
back cycle overhead, with mod-3 and mod-5 units respectively, for our error
recovery method with checkpoint intervals ranging from 10 to 100k cycles
calculated through Equations (4.1) - (4.5). With mod-3 units, the baseline
average masking rate of the unmodified designs is 70.1% (indicated by the
lower dotted line), and we achieve an total error removal rate (indicated
by the “Error Removal Rate” curve) arbitrarily close to the theoretical up-
per bound (all errors detected are corrected) which is 99.8% (indicated by
the upper dotted line).With mod-5 units, the baseline average masking rate
of the unmodified designs is 71.8%, and we achieve an total error removal
rate arbitrarily close to the theoretical upper bound (all errors detected are
corrected) which is 99.9% (indicated by the upper dotted line).

We cannot achieve an error removal rate of 100% as we have a small per-
centage of undetected, unmasked errors. The 4 parallel lines represent roll-
back cycle overheads for different soft errors rates. For reference, [19] reports
a worst case error rate of around 10−16 errors / cycle for a space environment
assuming a clock frequency of 1GHz.
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Table 5.3: Fault coverage with mod-3 units

Benchmark Unmasked Masked
stuck-at transient timing stuck-at transient timing

Atax 99.8 99.8 100 73.6 28.7 69.6
Bicg 99.1 97.4 100 77.5 30.6 54.8

Floyd-Warsh 99.7 100 100 74.9 41.5 70.5
Gemm 99.3 100 100 75.4 31.3 79.3

Gemver 99.2 99.9 100 76.7 19.1 82.0
Gesummv 99.9 99.2 100 72.7 38.0 79.9.1

Matrix 4X4 99.2 98.7 99.5 66.7 48.3 67.5
Matrix 99.9 99.9 100 75.6 25.7 48.8

Mvt 96.7 100 100 77.6 16.7 65.0
Symm 99.8 99.3 99.9 78.6 36.4 82.3
Syr2k 98.7 99.7 99.3 73.8 33.4 84.6

Syrk 99.3 100 100 73.5 32.3 82.6
Median 99.3 99.9 100 75.2 31.8 75.0

Mean 99.2 99.5 99.8 74.6 31.9 72.5

What is interesting to observe is the tradeoff between the error removal
rate and rollback cycle overhead. Larger checkpoint intervals reduce the
chance of checkpoint corruption, resulting in higher error removal rates. At
the same time large checkpoint intervals result in larger jumps back in time
for each error detection triggered rollback, resulting in larger cycle overheads.

Figures 5.4 and 5.5 shows the soft error detection latency distribution for
unmasked errors, masked errors and both. “End Result Check” (ERC) is a
basic error detection method involving comparing the benchmark’s output

Figure 5.2: Error removal rate and rollback cycle overhead with mod-3
units.
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Table 5.4: Fault coverage with mod-5 units

Benchmark Unmasked Masked
stuck-at transient timing stuck-at transient timing

Atax 99.3 99.8 100 78.0 28.1 62.4
Bicg 99.7 99.5 100 82.3 33.3 63.1

Floyd-Warsh 99.9 100 100 74.8 41.9 79.2
Gemm 99.1 100 100 77.3 29.1 74.7

Gemver 99.3 100 100 75.5 19.5 72.4
Gesummv 100 99.5 100 72.6 38.5 60.9

Matrix 4X4 99.1 99.0 99.5 68.1 50.1 80.1
Matrix 100 100 100 77.2 29.2 52.8

Mvt 98.9 100 100 67.7 17.3 61.4
Symm 99.1 99.5 100 78.9 38.2 84.3
Syr2k 98.9 100 100 75.9 33.9 88.2

Syrk 99.1 100 100 76.1 33.9 72.1
Median 99.3 100 100 76.0 33.6 72.5

Mean 99.4 99.8 99.9 75.4 33.0 71.0

with its expected output once execution is complete. With mod-3 units, we
observe mean latencies of 11.04, 16.02, 13.92, and 35.5k cycles for unmasked,
masked, both and ERC respectively. With mod-5 units, we observe mean
latencies of 11.18, 16.28, 14.26, and 35.8k cycles for unmasked, masked, both
and ERC respectively. In both cases, we observe an error detection latency
improvement of 2554x over the ERC.

Figure 5.3: Error removal rate and rollback cycle overhead with mod-5
units.
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Figure 5.4: Soft error detection latency distribution.

Figure 5.5: Soft error detection latency distribution.
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CHAPTER 6

CONCLUSION

We have designed and implemented a fully automated high-level synthesis
process to create error detecting cores capable of detecting an average of
99.5% of unmasked errors, with mod-3 functional units, for an assortment of
three different kinds of fault models with negligible delay cost, 26% area cost,
and a detection latency 3302x faster than an end result check. With mod-5
functional units, we observe an area cost of 48.5% and negligible delay cost
and are capable of detecting 99.7% of unmasked errors on average. We have
taken the first step towards the fully automated generation of low area cost,
low development cost reliable hardware through high-level synthesis. We also
explored a rollback recovery method for soft errors with an additional area
cost of 28% for both, through which we achieve up to a 411x increase in relia-
bility against soft errors. We observe a mean error detection latency of 13.92
and 14.26 cycles for soft errors, with mod-3 and mod-5 units respectively.

Our next steps include adding support for floating-point operations and
fixing suck-at faults through fail-over techniques and timing errors through
rollback combined with frequency-voltage scaling. We also plan to include
mixed-modular datapaths where we include multiple modulo bases and try
to improve fault coverage and area cost.
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