
AN EFFICIENT WAY FOR PATH PLANNING OF COOPERATIVE
AUTONOMOUSLY SOARING GLIDERS

BY

MUHAMMAD ANEEQ UZ ZAMAN

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Mechanical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Adviser:

Professor Naira Hovakimyan

ABSTRACT

This thesis attempts to solve the problem of planning paths for a group of gliding UAVs

performing a task. These gliders have start and goal configurations (positions and orienta-

tions) in 2-dimensional space and also a starting altitude. This can be thought of as the

starting energy of the glider. The task, given to the gliders, is to visit a set of interest points

in 2-dimensions. Since the gliders start with a limited energy and are constantly losing it,

the paths should be planned such that the energy lost while traveling over the paths is mini-

mized. Moreover, exploitation of free energy present in the environment, called Autonomous

Soaring, can also be used to maximize the range of the aircraft, potentially allowing the

gliders to visit even more interest points.

The task of planning paths for the gliders is decoupled into two parts (i) planning the

best sequence of waypoint visitation (for each glider) and, (ii) planning paths over these

sequences. This decoupled approach results in increased computational efficiency of the

framework.

The first section of the thesis deals with assignment and sequencing of waypoints for each

glider, such that the cumulative energy lost by the team of gliders is minimized. This section

uses an estimate of the actual energy, spent by the gliders going from point to point. The

second section deals with planning paths over this sequence of waypoints, such that the

dynamic constraints of the gliders are respected and the energy lost by each glider, over the

course of its mission, is minimized.

Each section starts with a review of the literature relevant to that topic. The problem

is formulated in a rigorous way and is followed by the proposed solution. Any theoretical

guarantees which follow from the proposed solution are stated and proved. After which

simulation results are presented.

ii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my adviser, Professor Naira Hovakimyan, for

encouraging me to take on challenging problems and ideas, creating opportunities for me

that help me grow and providing me with guidance when it was most needed. I would also

like to thank her for allowing me into her research lab which is full of wonderful people.

I would also like to thank my lab mates for being tremendously helpful and fun to work

with. I would specifically like to thank Syed Bilal Mehdi for introducing me firstly, to this

research group and secondly, to the idea of Cooperative Autonomous Soaring which took

hold of my imagination and later lead to this research. I am thankful to Enric Xargay for

his thoughtful suggestion about including interest points in the problem formulation. I am

grateful to Ronald Choe for the great pains he took to peruse my research and help me make

it better. I am also indebted to him for lending me his codes and his expertise of Pythagorean

Hodograph Beziér curves. I would also like to thank Professor Cedric Langbort for being so

approachable and for the many thought provoking discussions we had on this research.

Finally, I would like to thank my family for standing by me through thick and thin. I thank

them for their advice in times of need and their unconditional love and support throughout

my stay in the US.

iii

TABLE OF CONTENTS

LIST OF ABBREVIATIONS . v

CHAPTER 1 INTRODUCTION . 1
1.1 Visitation Sequence Planning . 3
1.2 Energy-preserving Path Planning . 4

CHAPTER 2 VISITATION SEQUENCE PLANNING 7
2.1 Literature Review . 8
2.2 Introduction to Graph Search . 9
2.3 Multi-Tier Graph Search . 10
2.4 Bi Level Graph Search (BLGS) for solving the VSP 18
2.5 LPA*-Modification . 29
2.6 Simulations . 34

CHAPTER 3 ENERGY-PRESERVING PATH PLANNING 39
3.1 Literature Review . 40
3.2 Gliding Flight and Soaring . 41
3.3 Pythagorean Hodograph Bézier Curves . 45
3.4 Solution for a Single Glider . 47
3.5 Simulations . 51

CONCLUSION . 54

APPENDIX . 56

REFERENCES . 82

iv

LIST OF ABBREVIATIONS

DTSP Dynamic Travelling Salesman Problem

VSP Visitation Sequence Planning

EPP Energy-preserving Path Planning

ETOP Euclidean Team Orienteering Problem

MTGS Multi-Tier Graph Search

BLGS Bi-Level Graph Search

LPA* Lifelong Planning A*

PH Pythagorean Hodograph

v

CHAPTER 1

INTRODUCTION

In 1994 NASA started the Environmental Research Aircraft and Sensory Technology (ERAST)

Program with the objective of developing high endurance unmanned aircraft for high altitude

missions. The principle technology being used to increase endurance was solar power. To

maximize the flight endurance, the weight of the prototype was optimized to the limit. This

compromised the structural integrity of the prototype and it broke up in mid-flight near the

Hawaiian Island of Kauai in 2003 [1]. This leads us to the realization that to increase range

and endurance of glider flight, other forms of renewable energy must be explored, which do

not impose strict limitations on the structure of the gliders and are also dependable.

Autonomous Soaring is the exploration and exploitation of free energy present in the

environment (like convective air flow and wind shear), by a glider-like UAV to increase its

flight range endurance. Manned Soaring was first investigated in 1958 in [2], [3] but research

on the problem of autonomous soaring [4], [5], [6] and thermal centering [7] has recently

gained momentum. Cooperative autonomous soaring defines a group of aircraft performing

a task cooperatively while soaring and has been researched by authors of [8], [9]. The

ultimate vision for Cooperative Autonomous Soaring is to have groups of gliders roaming

worldwide for years on end without any need for human intervention.

There are several applications for these high endurance missions like

� Surface Monitoring

� Earth Systems Monitoring

� Extended Communications Coverage

� Forest Fire Detection

1

� Oceanographic Research

� Disaster Recovery

The aim of the research presented in this thesis is to plan trajectories for a group of gliders,

which are performing a task, while soaring autonomously. The task is to visit a number of

points. These points are called interest points. The gliders have a starting energy which is

lost as the gliders travel. The ability of these gliders to visit all the interest points might

be restricted by their starting energies. As we know there are certain phenomena available

in the environment that can provide energy and hence increase the range to the gliders.

These phenomena are called thermals and their locations are known a priori. The problem

now is to plan a path over the interest points and thermals that minimizes the energy lost

while maximizing the number of interest points visited. Please note that interest points and

thermals have different kinds of utility for us. The objective of the group of gliders is to visit

as many interest points as possible, while the thermals can be used by gliders to increase

the energy of the glider and help it visit even more interest points.

A problem very similar to ours, called Dynamic Traveling Salesman Problem (DTSP),

is addressed in [10], [11]. Here the robots are considered to be Dubins vehicles. Dubins

vehicles can only travel on paths where the curvature of the path is constrained. In [12]

Dubins was able to characterize the optimal paths for these kinds of vehicles. These paths

are appropriately called Dubins paths. Dubins paths have the useful property that for a

given start and end configuration (position and orientation) of the vehicle, the best path is

already known. But Dubin’s vehicles have an undesirable characteristic. The curvature of

a Dubin’s path, although bounded, can be discontinuous. A glider can not follow a path

which has a discontinuous curvature because it would mean an instantaneous change in the

bank angle of the aircraft which is impossible. Hence, we cannot use this approach and our

problem requires a little more work. The approach to solving our problem is outlined below.

The task of planning paths for the gliders is decoupled into two parts, (i) planning se-

quences of waypoint visitation for each glider and, (ii) planning paths over this sequence.

Chapter 2 of the thesis deals with how to assign waypoints to each robot and to calculate

the best sequence over the assigned waypoints. This is called Visitation Sequence Planning

2

(VSP). Section 3 tackles the problem of planning paths over these sequences of points which

preserve energy. This is called Energy-preserving Path Planning (EPP).

1.1 Visitation Sequence Planning

Visitation Sequence Planning is the problem of planning a sequence of waypoint visitation

for each robot. This sequence should minimize the cumulative energy lost by the gliders.

The solution to VSP involves evaluating the cost of a sequence, which means the energy lost

by a glider while traveling over the sequence. This cost is compared with the costs of other

sequences to pick the best sequence. It is made sure that not every sequence of waypoint

visitation is evaluated since that would be prohibitively computationally expensive.

But there is a problem in this decoupled approach. The cost of a sequence can only be

determined if the exact path of the glider over the sequence is known, since the loss of energy

of glider depends on the path it takes. Because we have a decoupled solution, the VSP part

does not know what exact path is going to be planned for a sequence. Hence the exact cost

of each sequence is unknown. To tackle this problem an estimate of the actual cost is used

instead.

A problem similar to our task of assigning and sequencing waypoints (for a group of robots)

has been investigated in Operations Research. It is called the Euclidean Team Orienteering

Problem (ETOP). The ETOP is a Multiple Euclidean Travelling Salesmen Problem with

the constraints of a Knapsack Problem. Meaning that in ETOP, a team of agents have

to find a path, from start positions to goal, while visiting a given set of waypoints, and

also respecting the energy constraint of each robot. Our problem called the Visitation

Sequence Planning (VSP) is a variation of the ETOP. Several solutions have been proposed

for ETOP including techniques like Column Generation [13], Branch-and-Price scheme [14],

Tabu Search [15], [16], Variable Neighborhood Search [17] etc.

The solution presented in [18] guarantees a solution to the ETOP. It employs a multi-tier

graph search based technique to find the optimal path for each agent which visits a maximum

number of waypoints. But this certainty comes at a price of increased time complexity. The

authors justify this by pointing out that the algorithm can be run on-the-fly to provide

3

intermediate solutions while computing and converging to the optimal one.

The first part of the thesis builds on the work by [18] to solve the ETOP and adapts it

to help solve the VSP. There are some fundamental differences between VSP and ETOP

that need to be addressed before a solution can be found. In ETOP all waypoints are

equally valuable. In VSP interest points and thermals have different utility for the gliders.

Furthermore, ETOP only allows for a problem where the energy of the robots can only

decrease, whereas, we need a solution that caters for increasing and decreasing energy of the

gliders, since they lose energy while traveling and gain energy when visiting thermals.

Chapter 2 deals with solving the VSP. The proposed approach solves these problems by

augmenting the afore-mentioned multi-tier graph search based approach. Furthermore, a

major improvement to the graph search algorithm is proposed, which is inspired by the

LPA* search algorithm. LPA* is a sound and complete graph search algorithm, which is

guaranteed to have better time complexity than A* search.

Lastly theoretical guarantees for the feasibility and optimality of the solution obtained

from the algorithms are presented in form of theorems along with their proofs. These

algorithms are then tested by different scenarios, for different number of robots, interest

points and thermals and for different waypoint placements. Simulation results are presented

to illustrate the performance of the algorithm and validate the theoretical findings.

1.2 Energy-preserving Path Planning

Once the best sequence of waypoint visitation for each glider has been determined, the path

the glider needs to take (over the waypoints) has to be computed. Chapter 3 deals with the

problem of planning feasible paths over these waypoint sequences. Since the gliders start

with a finite energy, the paths need to be planned such that the energy lost while traversing

the paths is optimized, hence the term energy-preserving. Furthermore, gliders can only fly

on paths that respect the dynamic constraints of the gliders like, maximum and minimum

speed, maximum acceleration, maximum turning rate etc.

This chapter starts with studying the flight dynamics of a glider, to come up with a

trajectory which minimizes the energy lost by the glider. Since, the optimization problem is

4

nonlinear and non-convex, the solutions found are sub-optimal.

Trajectory generation as a problem has been widely studied. References [19], [20] proposed

optimal trajectory planning by using multiple shooting methods. Pseudospectral optimal

control methods were proposed by [21], [22] and nonlinear trajectory generation methods

were proposed by [23], [24]. Randomized trajectory generation methods have recently gained

momentum with examples such as Rapidly-exploring Random Trees (RRT) [25], Probabilis-

tic Roadmaps [26] and direct method for rapid trajectory prototyping [27].

The method proposed by [28] uses Pythagorean Hodograph Beziér curves to plan optimal

paths. The solution consists of a Pythagorean Hodograph Beziér curve over 2-dimensional

space and a corresponding timing law which defines how the robot moves over the curves.

The hodograph of a curve is the locus defined by the first parametric derivative of the

curve. Pythagorean Hodograph (PH) curves are particularly interesting because they have

the nice property that the parametric speed at any given point is an analytic function of the

parameter. The arc length of the PH curve can be obtained in closed form.

Beziér curves give us some other nice properties like expressions for parametric speed,

acceleration, direction cosines, spatial separation etc can be obtained analytically. Using

these two together the speed and acceleration, turning rates and temporal separation between

two gliders, can also be expressed as analytical expressions. These expressions can then be

used to check the feasibility of the paths.

Chapter 3 formulates the problem of energy-preserving path planning and uses the tech-

niques used in [28] to solve it. The PH Beziér curve discussed earlier is formulated using

control points in 2-dimensional space. This curve is defined by a dimension-less parameter

ζ . The timing law converts the parametrized curve (defined by the parameter) to a curve

w.r.t. time t. Expressions for various parameters like turning rate are calculated to check

whether the constraints are being met. The control points of the PH Beziér curves can

be used to optimize the cost function (which is the energy lost), while also respecting the

equality and inequality constraints. We use the in-built MATLAB function fmincon which

is part of the Optimization Toolbox.

These algorithms are then tested for different scenarios like, different number of robots

and waypoints and for different waypoint placements. Simulation results are presented to

5

illustrate the performance of the algorithm and validate the theoretical findings.

6

CHAPTER 2

VISITATION SEQUENCE PLANNING

Recalling the problem at hand, we are given a number of robots, each with start and end

configurations (locations and orientations) and a number of interest points to be visited. The

robots each have an initial energy, which they use up as they travel through space. There

are certain phenomena available in space, called thermals, which can be used by the robots

to gain some of the lost energy. Hence visiting a thermal will increase a robot’s energy and

enable it to travel farther and even visit more interest points. Paths have to be planned

for each robot such that the energy lost is minimized, while as many interest points are

visited, as possible. These paths have to satisfy constraints like the robot should never run

out of energy, should always remain inside their dynamic envelope and other mission specific

constraints.

The way the path planning problem for multiple robots is solved is by partitioning the

problem into two sub problems; waypoint visitation planning and energy-preserving path

planning. The reason for decoupling sequence visitation planning and path planning is to

be able to come up with a solution in a time-efficient manner. The problem addressed in

this section is of waypoint assignment planning, which means planning the best sequence of

waypoint visitation for each glider.

At the time of waypoint assignment the exact path that is going to be planned for a given

sequence is not known. This means that the actual cost of the sequence (the energy lost) is

not known. To tackle this problem an estimate of the actual cost is used. Chapter 3 proves

that minimizing the energy lost by the glider corresponds to minimizing the arc length of

the path of the glider. We will use the terms energy lost by a glider and distance traveled by

a glider interchangeably in Chapter 2. Typically the interest points and thermals are spread

out over a large area and as the distances between them become larger, the paths the gliders

7

take (going from waypoint to waypoint) can be approximated as straight lines. Hence, the

estimated cost of a sequence is the sum of straight line distances of traveling from one point

to another in the sequence.

Now we move on to a review of the relevant literature related to our problem.

Note: In this chapter the terms robot and glider are used interchangeably.

2.1 Literature Review

A similar problem to our task of assigning and sequencing waypoints has been investigated

in Operations Research. It is called the Euclidean Team Orienteering Problem (ETOP)

which is a variant of Team Orienteering Problem. In the ETOP, a team of agents has to

find an optimal path from start positions to goal, while visiting a given set of waypoints and

respecting the time constraint of each robot. The cost to go from one point to another is

the Euclidean distance between the two points. The ETOP is NP-hard, hence our problem

which can be considered a special case of ETOP is also NP-hard.

Although our specific problem has not been studied in the literature, several solutions

have been proposed for solving the ETOP. In 1999 an exact approach to solve the ETOP

was proposed in [13] using column generation. Another exact algorithm was proposed in

[14], which formulated a branch-and-price scheme by using column generation coupled with

Branch-and-Bound technique. A Multi-Tier Graph Search based method is presented in [18],

which is provably optimal. This method is discussed in detail in the following section. There

has been a lot of work in heuristic methods to solve the ETOP. The heuristic approach was

pioneered by [29], proposing a five-step heuristic, by augmenting, the five-step heuristic used

to solve the Orienteering Problem. Similarly [15] used a Tabu Search Heuristic embedded

in an Adaptive Memory Procedure (AMP) to address the problem. The AMP is similar to

genetic algorithms in design. Solutions generated using AMP are stored and further refined

using Tabu Search.

A Slow and a Fast Variable Neighborhood Search method was developed in [16]. An Ant

Colony Optimization (ACO) approach to solve the ETOP problem was proposed in [30]. In

ACO, a feasible solution is created and then updated via a local search. The authors of [31]

8

focus on getting good ETOP solutions in a small amount of time. The approach involves

Guided Local Search and a Skewed Variable Neighborhood Search. In [32], the ETOP is

solved using two variants of Greedy Randomized Adaptive Search Procedure; one is a slow

version, which gets solutions closer to the optimal, whereas the fast version gives results fast.

While ETOP is similar to our problem in several ways like having multiple robots and

multiple waypoints, there are certain noteworthy differences too. Firstly, in our problem we

have two types of waypoints; interest points and thermals. For us the utility of visiting both

these waypoints is distinct. Visiting interest points is the objective, so it has direct utility.

Visiting thermals increases the total energy of the system possibly enabling it to reach new

interest points, which were unreachable beforehand. But traveling to and from the thermals,

also uses up energy so there is a trade-off. The solution presented in the following sections

endeavors to answer this question.

2.2 Introduction to Graph Search

A graph is a mathematical representation of a search problem. Any problem that has a

discretized state space and a finite number of actions (or inputs) can be realized as a graph.

A graph is a collection of nodes, connected by links called edges. Each node represents a

state in the discretized state space. Each edge represents an action being performed on

the node. Whenever an action is performed on a node, a new node is created, also called

a successor or child node. Conversely, the old node can also be called predecessor or the

parent of the new node. Because there are a finite number of actions, a node has a finite

number of successors. When all possible successors of a node have been created, the node

is said to be expanded. Each action performed at any node incurs a cost, which is called an

edge cost.

The first node in a graph is called root node. This can be thought of as the starting state

of a system. The node that satisfies a terminal condition, is called a goal node. This can

be thought of as a goal state of the system. Each node in the graph has a value associated

with it. This is usually the summation of a sequence of edge costs starting from the root

node to that particular node. When there are multiple sequences from the root node to that

9

particular node, the sequence with the smallest cumulative cost is considered. The objective

of graph search is to find the goal node which has the least value.

There are several graph search techniques that can get us the correct solution (meaning

the goal node with the least value over all the goal nodes). We will primarily deal with two

types of graph search methods, (i) Uniform Cost Graph Search and (ii) A* Graph Search.

Uniform cost graph search works in the following way. It maintains an ordered set of

unexpanded nodes, called the OPEN set. It starts with just the root node in the OPEN

set. It takes the node from the OPEN set, which has the least value and expands it. This

node is then discarded from the OPEN set but its successors are put back in the OPEN set

in order. Uniform cost search terminates, when a goal node is expanded. This goal node is

guaranteed to be the correct solution, if the edge costs are guaranteed to be positive [33].

A* search is similar to the uniform cost search in many ways. It too maintains an ordered

set of unexpanded nodes, called the OPEN set. It starts with just the root node in the

OPEN set. The order of expansion of nodes is different from the uniform cost search. Here

the order of expansion is determined by an augmented value, which is the sum of value of

the node and a heuristic. The heuristic is an estimate of the cost-to-go to the goal node.

A* search terminates, when a goal node is expanded. This goal node is guaranteed to be

the correct solution, if the edge costs can only be positive and the heuristic is admissible.

For A* search to be optimal (meaning it finds the best solution), the heuristic has to be

admissible or optimistic [33].

2.3 Multi-Tier Graph Search

This section outlines the work done in [18], which proposes a Multi-Tier Graph Search

(MTGS) based solution to solve the ETOP. MTGS involves an iterative graph search over

three layers of graphs. This approach will be modified for use in solving the VSP. The

reasons for using this approach above others is that i) it is sound and complete, and ii)

due to its iterative nature it lends itself for easy adaptation to solving the VSP. The graph

layers involved in the search are; Top Level Waypoint Assignment Graph GT , Middle Level

Single Robot Opportunistic Graph GMi
and Low Level Cost-to-Go Graph GL. A pictorial

10

depiction of the graphs is given in Figure 2.1 followed by detailed explanation.

Figure 2.1: Pictorial Depiction of Multi-Tier Graphs

Top Level Waypoint Assignment Graph GT is the graph, in which waypoints, interest

points and thermals are assigned to different robots. Whenever one node of the Top Level

Graph is grown, one whole corresponding Middle Level Single Robot Opportunistic Graph

GMi
is constructed. Hence, there is a one-to-one correspondence between edges in GT and

middle level graphs GMi
. The edge cost for each edge in the GT is obtained from the corre-

sponding GMi
. Similarly, for each edge in the Middle Level graph a whole new corresponding

Low Level Cost-to-go Graph GL is constructed, and likewise the edge costs in the middle

level graph are obtained from the corresponding low level graph.

2.3.1 Top Layer Waypoint Assignment Graph GT

The search over Top Layer Graph determines the best waypoint assignment for each robot.

The MTGS involves one graph search procedure through this graph. Each node in GT is a

vector of M elements (where M is the number of waypoints); it represents which waypoint

11

has been assigned to which robot. Each element in the node corresponds to a waypoint

and represents the robot, to which the waypoint has been assigned to. Lets take the node

q = {qi}, if qj = l. This means that the jth waypoint has been assigned to the lth robot. If

l is zero, it means the waypoint has not been assigned to any robot.

A node can be a successor of another node, only if one waypoint which was unassigned

in the parent node, is assigned in the child node, and all the other waypoint assignments in

the parent node are transferred to the child node. A middle level graph GMi
is constructed

corresponding to the new edge, which joins the parent and child nodes. The edge cost of

this edge is obtained from GMi
. GMi

also provides the number of waypoints not visited by

that robot. The value of a node in GT is the summation of all the edge costs starting from

the root node and ending at that particular node. If there are multiple routes from the root

node, then the one with the smallest accumulated edge cost is taken. The value of a node q

represents the energy spent by all the robots, to travel over the waypoints as assigned in q.

If the child node is also a goal node, then there is an extra penalty cost in addition to the

edge cost. It is called PT and the value is:

PT =
N∑
i=1

Tmaxi + 1.

Tmaxi is the maximum time the robot i can travel. This penalty term makes the goal nodes

with more unvisited waypoints undesirable. The root of the graph is qstart, which is a vector

of 0s, since no waypoint has been assigned to any robot in the beginning. Similarly qgoal

is the goal node, which corresponds to all the waypoints being assigned. Notice that there

can be many different combinations of waypoint assignment to robots; hence there are many

vectors qgoal. Consequently the aim now is to find the qgoal, which has the minimum value.

The algorithm for computing the best qgoal, which is a search through GT , is presented

below.

12

The search through the graph is similar to uniform cost search, except for the additional

penalty term added to the cost, when the child node is also a goal. The solution to the

graph search is the first goal node to be expanded from among all the goal nodes. The value

of the goal node is

V alue =
N∑
i=1

c(πi) + k′PT ,

where c(πi) is the cost of the path for the ith robot obtained from GMi
, k′ is the total number

of unvisited waypoints, and PT is the terminal penalty term.

2.3.2 Middle Level Single Robot Opportunistic Graph

A search over Middle Level Graph determines the best possible route through the assigned

waypoints for a particular robot. This Middle Level Graph is constructed every time a node

is expanded in the top level graph. Lets say a waypoint has been assigned to the robot l

in the top level graph. Top level graph provides a set of waypoints assigned to l. Observe

that all of these assigned waypoints might not be visited by l, since it might not be feasible

for l (meaning it might not be possible for l to visit all the waypoints). The edge between a

parent and its child has a cost; this edge cost is obtained from the low level graph GL.

Whenever each node in GMi
is expanded into a successor, a waypoint is appended to the

end of the sequence. For each successor node a low-level graph is constructed. The cost of

13

transition from parent to child is obtained from the low level graph. Every node has a value,

which is the summation of all the edge costs starting form the root node of the graph and

ending at the particular node. The value of a node n represents the energy spent by l to

travel over the assigned waypoints. If the child node happens to be a goal node too, then

there is an extra penalty cost in addition to the edge cost. It is called PM and the value is

PM = Tmaxi + 1.

Tmaxi is the maximum time the robot i can travel. Each node n in the GMl
is a sequence,

representing which of the assigned waypoints have been visited and in what order. The root

of the graph is nstart, which corresponds to the situation when no waypoint has been visited.

Similarly, ngoal is the goal node, achieved when the last waypoint in the sequence is the

goal point of l. Notice that there can be many different combinations of waypoint visitation

ending in the goal; hence there are many ngoal vectors. Consequently, the objective now is

to find the ngoal which has the smallest value. Note that a path containing just the start and

goal points (going from start to goal) might be the shortest path, but will have the highest

penalty and hence the highest value.

The algorithm for computing the best qgoal is presented below

14

The search through the graph is similar to uniform cost search, except for the additional

penalty term added to the cost when the child node is also a goal. At each expansion, if

the cost of the path exceeds the Tmaxi , it is considered invalid and deleted from the openset.

This means that the path is not feasible for travel. The solution (or the best sequence of

waypoint visitation) is the first goal node to be expanded from among all the goal nodes.

The cost of this sequence is,

Cost =
k̂+1∑
i=1

c(ni−1, ci) + (k − k̂)PM .

Here c(ni−1, ni) is the cost to go from one waypoint to the other, k is the number of assigned

waypoints, k̂ is the number of visited waypoints, and PM is the terminal penalty term.

Figure 2.2: Low Level Cost-to-Go Graph

2.3.3 Low Level Cost-to-Go Graph

Given a start and an end waypoint, the Low Level Graph determines the best path to go

from one waypoint to the other. This Low Level Level Graph is constructed every time a

15

node is expanded in the Middle Level graph, which also provides the above mentioned start

and the end waypoints.

The graph is either a Dubins path from start to goal [12] or is an A* search over discretized

action space. For the A* search the action space is discretized in such a way that under the

application of actions the state space is a finite set. This is represented in Figure 2.2.

The A* search is considered, if there is an obstacle in the Dubins path. This is depicted

in Fig. 2.2. The cost of the graph is the max over the two costs, one obtained from the

Dubins Path and the other from the A* Search.

2.3.4 Theorems for MTGS

16

The reason for choosing this algorithm was that it is sound and complete, meaning it is

guaranteed to provide the best solution. Theorems 1 and 2, taken from [18], show that the

algorithm is provably optimal. The Proofs are given in the Appendix.

Theorem 1 states that, given that the Low Level Graph Search provides the optimal

solution, the solution obtained through Middle Level Graph Search will have a) maximum

number of waypoints visited b) in the most efficient way possible (with the least possible

energy loss).

Similarly. Theorem 2 states that, given that the Middle Level Graph Search provides

the optimal solution, the solution obtained through Top Level Graph Search will have a)

maximum number of waypoints visited over all the gliders and, b) the least possible energy

loss over all the gliders.

17

2.4 Bi Level Graph Search (BLGS) for solving the VSP

Bi-Level Graph Search (BLGS) is the modified version of MTGS, to solve the Visitation

Sequence Planning. The MTGS approach to solving ETOP, lends itself particularly well to

solving our problem of VSP. But there are some differences between the two problems. We

start with formulating the problem in a mathematically rigorous way. Then the differences

between ETOP and VSP are discussed.

2.4.1 Problem Formulation

Firstly, we define the notation used in solving the VSP. Consider a set of gliders Iv =

{1, 2, ..., nv}, with starting positions Bx = {xi ∈ R2|i ∈ Iv}, starting orientations Bθ = {θi ∈

[−π, π]|i ∈ Iv}, goal positions Bg = {gi ∈ R2|i ∈ Iv} and starting energies Bε = {εi ∈

R|i ∈ Iv}. The quantity starting energy εi, used in this thesis, is the distance a glider can

travel before hitting the ground. The set of interest points Iip = {1, 2, ..., nip} are located at

positions Bip = {pi ∈ R2|i ∈ Iip}. All interest points have equal importance for the gliders.

The set of thermals It = {1, 2, ..., nt} are located at positions Bγ = {γi ∈ R2|i ∈ It} with

utilizable energy B∆ = {∆i ∈ R|i ∈ It}. Here again the utilizable energy of the thermal

∆i, is the additional distance a glider can travel when it acquires the thermal. The set of

waypoints is Iwp = {1, ..., nip, nip + 1, ..., nwp}, where nwp = nip + nt. The corresponding

positions of the waypoints are Bwp = {wi|i ∈ Iwp, If i ≤ nip, wi = pi otherwise wi = γi−nip
}.

Note that interest points and thermals have different kinds of importance. Interest points

need to be visited by the gliders, and thermals enable the gliders to reach more interest

points.

We assume that the starting energy εi, of any glider should be larger than the Euclidean

distance between any two waypoints. This is required for the VSP problem to be solvable,

since without it the glider is unable to reach any waypoint. We later use this assumption to

formulate a heuristic in Section 2.4.3.

Our robot starts with a starting energy called εi, i ∈ Iv and gradually loses energy as it

travels through space. The first difference between ETOP and VSP is that now we have two

18

kinds of waypoints, interest points and thermals. The objective is to maximize the collection

or visitation of interest points, while making sure that none of the robots run out of energy.

We also have another waypoint type called the thermal, which is like a refueling point for the

robot. The robot can gain energy, as it visits the thermal waypoints by extending its range.

Consequently the thermals have a different type of indirect utility for us. They can allow

the gliders to visit far-off waypoints, which were impossible to visit beforehand. The energy

a thermal imparts to a robot ∆i, i ∈ It and initial energy of the robot εi are considered

known.

The second difference between the two problems is that now the energy of the robot is

changing. It gains energy as it visits thermals and loses it as it travels.

2.4.2 Approach to Solution

To cater for these differences the penalty costs discussed in Sections 2.3.1 and 2.3.2 are

modified, and a structure is put into place which removes clearly infeasible solutions. The

reasons for using this approach above others is that it is sound and complete. This new

approach is called the Bi-Level Graph Search (BLGS).

BLGS has a two-layered graph structure. The graph layers involved in the search are upper

level graph ΓU and lower level graph ΓL. A search over ΓL computes the best sequence of

waypoint visitation for one robot, given the waypoints assigned to that robot. A search over

ΓU finds the best possible assignment of waypoints (interest points and thermals) for each

robot in a group of robots. Each node in ΓU represents a particular assignment of waypoints

to robots. The objective of BLGS is to find the node in ΓU , where all the waypoints have

been assigned to the robots, the accumulated cost (the energy lost by the gliders while

traveling over the waypoints) is minimized and the number of unvisited interest points is

also minimized. This accumulated cost is calculated using ΓL. This is discussed in detail in

the following sections.

It should be noted here that a waypoint assigned to a robot in ΓU does not ensure that

the waypoint would be visited by that robot in ΓL. It is possible that when search over ΓU

assigns a waypoint to a robot, the search over ΓL might decide that visiting the waypoint is

19

not feasible, meaning the waypoint isn’t reachable by the robot.

2.4.3 Lower Level Graph ΓL

The lower level graph determines, the best possible route through the assigned waypoints,

for one particular robot l. This lower level graph is constructed every time a new node is

made in the upper level graph. Upper level graph provides a set of assigned waypoints to

be visited by that robot, Ξ. Ξ is defined in section 2.4.4. Ξip is the set of interest points

assigned to the robot and Ξt is the set of thermals assigned to the robot l. Observe that all

of these waypoints might not be visited by the robot, since visiting some of the waypoints

might be unprofitable or infeasible.

Each node λ in ΓL is a sequence λ = {λi|λi ∈ Ξ ∪ {gl}} of waypoints that are visited

after the starting position of the robot xl ∈ Bx. The expression given above signifies that

the robot can visit either one of the assigned waypoints or gl ∈ Bg, which is the goal location

for robot l. The root of the graph λstart = {} is an empty sequence, meaning no assigned

waypoint has been visited. When the last waypoint in a node is the goal position gl ∈ Bg,

the node is called the goal node. Notice that there can be many different waypoint sequences

ending with gl. Hence, Λgoal is the set of all goal nodes. Consequently the aim now is to find

the best goal node λ∗, which is not infeasible, minimizes the number of unvisited interest

points and plans a sequence with the least expended energy for robot l.

Whenever each node in ΓL is expanded into a successor, a waypoint is appended to the

end of the sequence. Consider two nodes in ΓL, λ′ and λ. λ has j elements and λ′ has j+ 1

elements

λ′ ∈ Succ(λ) only if , (2.4.1)

λ′i =

 λi if i ≤ j

µ ∈ {Ξ \ λ} if i = j + 1 ,
(2.4.2)

where the set Succ(λ) is the set of successors of λ.

Each node λ has a value associated with it called the transition cost. It can be described

as the estimate of energy spent by the glider to travel over the sequence λ. The transition

20

cost of a node λ with j elements, is defined as

TL(λ) =

∑Card(λ)−1

i=1 ||wλi+1
− wλi ||2 + ||wλ1 − xl||2, if λj 6= gl ,∑Card(λ)−2

i=1 ||wλi+1
− wλi ||2 + ||wλ1 − xl||2 + ||gl − wλj−1

||2, if λj = gl ,

(2.4.3)

where wλi ∈ Bwp are positions for the waypoints in λ, Card(.) is the cardinality operator,

TL(λ) is an estimate of the energy required by the glider to travel over the sequence λ.

Note that we use an estimate of the energy spent by the glider and not the actual energy

spent by the glider. As discussed in the beginning of Chapter 2, we do not know the actual

energy that the glider is going to spend while traveling over the sequence. But we do

know that if the waypoints get farther apart, the energy spent by the glider approaches the

Euclidean distance between the waypoints. Another thing that is true is that the Euclidean

distance between two waypoints is also the lower limit of the energy spent by a glider, while

traveling over the waypoints. This knowledge can be later used to root out the sequences

which are definitely infeasible.

Another value associated with a node λ is VL(λ). It is the total cost of the node. A node

is selected for expansion in graph search, according to this cost. It is defined as

VL(λ) =

TL(λ) if λ /∈ Λgoal

TL(λ) + k′PL if λ ∈ Λgoal ,

(2.4.4)

where PL = εl +
∑
i∈Ξt

∆i + 1 , (2.4.5)

where k′ is the number of unvisited interest points in node λ. For obtaining the correct

solution of the graph search over ΓL, PL is required to be greater than the maximum possible

energy of the glider, given by εl+
∑

i∈Ξt
∆i. This expression is the summation of the starting

energy of the glider εl and the sum of the energies of all the thermals
∑

i∈Ξt
∆i that the glider

can possibly acquire. Hence, a glider cannot possibly have energy higher than PL.

The algorithm for computing the goal node λ̂ is an A* Search over the lower level graph

ΓL. The pseudo code for the search is presented in Algorithm 1. The heuristic ζ(λ) for the

21

A* Search, which is an estimate for the cost to go from λ to λ̂, is defined below:

ζ(λ) =

Emin(Card(Ξip \ λ) + 1) if λ /∈ Λgoal

ζ(λ) = 0 if λ ∈ Λgoal ,

(2.4.6)

where Emin = min
wi,wj∈Ξ∪{xl,gl},i 6=j

||wi − wj ||2 .

Lemma 2.4.1 shows that ζ(λ) will always be admissible.

Lemma 2.4.1 The heuristic ζ(λ) of cost-to-go from λ to λgoal is an admissible heuristic,

meaning it will always be less than the real cost-to-go to any node in the set Λgoal.

Proof For λ ∈ Λgoal the heuristic is automatically admissible. Consider the node λ /∈ Λgoal.

The number of assigned interest points is Card(Ξip). The number of interest points already

visited in the node is Card(λ ∩ Ξip). Assume that the robot decides to visit a sequence of

waypoints π (culminating in gl) after the sequence λ, where 0 ≤ Card(π) ≤ Card(Ξ \ λ).

The cost of this sequence is

VL(π) =

Card(π)+1∑
i=1

||wλi+1
− wλi ||2 + Card({Ξip \ λ} \ π)PL

≥ (Card(π ∩ Ξip) + 1)Emin + Card({Ξip \ λ} \ π)PL ,

≥ (Card(π ∩ Ξip) + 1)Emin + Card({Ξip \ λ} \ π)Emin ,

≥ Emin.(Card(Ξip \ λ) + 1) ,

= ζ(λ) .

The second step in the proof above, follows from the fact εl < PL, and we know from

our assumption that Emin < εl (which is needed for the problem to be solvable), hence

Emin < PL. Hence it has been proven that the heuristic ζ(λ) is an admissible heuristic. �

Algorithm 1 presents the A* search over graph GL. Line 13 in the algorithm roots out

nodes in ΓL, which are guaranteed to be infeasible. It does this by comparing the lower limit

of energy spent by the glider TL(λ′) with the sum of starting energy, and the energy gained

22

Algorithm 1 Lower Level Graph Search

Require: l, xl, εl, gl,Ξ
1: Ω = {λstart}
2: VL(λstart) = 0
3: VL(λ) =∞ ∀λ ∈ V ertices(ΓL) and λ 6= λstart
4: while λ /∈ Λgoal do
5: remove λ from Ω with the smallest VL(λ) + ζ(λ)
6: for all λ′ ∈ Succ(λ) do
7: TL(λ′) = as calculated in (2.4.3)
8: if λ ∈ Λgoal then
9: VL(λ′) = TL(λ′) + k′PL
10: else
11: VL(λ′) = TL(λ′)
12: end if
13: if TL(λ′) ≤ εl +

∑
i∈(Ξt∩λ) ∆i then

14: Insert λ′ into Ω with cost VL(λ′)
15: end if
16: end for
17: end while
18: λ̂ = λ
19: return λ̂, TL(λ̂), k̂

by visiting the thermals εl +
∑

i∈(Ξt∩λ) ∆i. If the lower limit of energy spent is larger than

the sum of the starting energy and the energy gained by visiting the thermals, that node is

definitely not feasible. A critical point to note here is that as we are using the lower limit of

energy spent, there may be some other possibly infeasible nodes that we cannot root out.

The objective of the algorithm is to find λ∗, which is the node that makes the robot visit

as many interest points as possible, with the least possible transition cost. Since the heuristic

ζ() is admissible, it will return the node λ̂ ∈ Λgoal such that VL(λ̂) ≤ VL(λ),∀λ ∈ Λgoal.

Lemma 2.4.2 presents the soundness guarantees for the algorithm, meaning λ̂ = λ∗.

In the algorithm, l is the robot for which ΓL is being constructed, Ω denotes the Open set

(the set of nodes yet to be expanded), V ertices(ΓL) refers to the set of all possible nodes

in ΓL, k′ = Card(Ξip \ λ) is the number of unvisited interest points. Once the A* search is

done λ̂, TL(λ̂), k̂ are returned to the upper level graph.

Lemma 2.4.2 An A* search on the graph ΓL, as described in Algorithm 1, returns the path

λ̂, with k̂ number of unvisited interest points. It is guaranteed that λ̂ = λ∗, meaning that

23

(a) k̂ has the minimum number of unvisited interest points, (b) for all nodes in Λgoal with

number of unvisited interest points = k̂, TL(λ̂) is the least transition cost.

Proof (a) We prove by contradiction. Suppose, λ̃, which is a feasible path and also a goal

node, has less unvisited interest points than λ̂, k̃ < k̂. Since Algorithm 1 is an A* search,

and Lemma 2.4.1 ensures that the heuristic ζ(λ) is admissible, λ̂ will have least total cost

VL(λ̂) ≤ VL(λ̃) ,

TL(λ̂) + k̂ ∗ PL ≤ TL(λ̃) + k̃PL ,

(k̂ − k̃)PL ≤ TL(λ̃)− TL(λ̂) ,

(k̂ − k̃)PL ≤ εl +
∑
i∈Ξt

∆i .

The last step was made possible by the fact that the transition cost TL(λ) for any feasible

node λ should be less the maximum possible energy of the glider. Using the definition of PL

and the fact that k̃ − k̂ ≥ 1, we arrive at a contradiction.

(b) Assume another node λ̃ ∈ Λgoal, such that it has number of unvisited interest points

k̃ and k̃ = k̂. Using the logic used in part (a) λ̂ will have least total cost

VL(λ̂) ≤ VL(λ̃) ,

TL(λ̂) + k̂PL ≤ TL(λ̃) + k̃PL ,

TL(λ̂) ≤ TL(λ̃) .

Hence λ̂ has the is the minimum transition cost for all goal nodes with number of unvisited

interest points equal to k̂. �

This lemma shows that Algorithm 1 finds the goal node with the least transition cost.

Since transition cost is a summation of the estimated cost, this node may not be the best

node if you consider the real cost. Future work must include a better estimate of the cost

so that more substantial claims can be made.

24

Graph search over ΓL returns the sequence λ̂, with the number of unvisited interest points

k̂ and the transition cost TL(λ̂) to the upper level graph ΓU .

2.4.4 Upper Level Graph ΓU

Upper level graph is the graph, in which waypoints (interest points and thermals) are as-

signed to different robots. A search through this upper level graph determines the best

waypoint assignment for all the robots. The correct solution to the search is the waypoint

assignment which makes the robots visit as many interest points as possible, with the least

possible energy lost over all robots. Notice for VSP an estimate of lost energy is used, as

discussed in the beginning of Chapter 2.

In ΓU , each node τ = [τ1, ..., τnwp]T with τi ∈ Iv, is a vector of nwp elements (where nwp

is the number of waypoints). Each element in the vector represents which robot has been

assigned to each waypoint. So, for example if τj = l, it means that the jth waypoint has been

assigned to lth robot. If l = 0, then the waypoint has not been assigned to any robot. The

first node in the graph is when no robots have been assigned to any waypoint, hence the root

of the graph τ start is an all 0 vector. The node where all the waypoints have been assigned

is called a goal node. There can be many possible goal nodes, since there are many possible

combinations of waypoint assignments. The set of goal nodes is called T goal. Consequently

the aim now is to find the best goal node τ ∗, which makes the robots visit as many interest

points as possible with the least amount of energy expended.

Whenever one node of the upper level graph ΓU is grown, it corresponds to one waypoint

being assigned to one robot. The set of possible successors of τ is called Succ(τ). Suppose

τ ′ ∈ Succ(τ), where the jth waypoint has been assigned to lth robot. Consider τ =

[τ1, ..., τnwp], τ ′ = [τ ′1, ..., τ
′
nwp]. Then the set Succ() is defined as:

τ ′ ∈ Succ(τ) only if , (2.4.7)

τ ′i =

 τi if i 6= j

l if i = j, τj = 0 .

25

The statement implies that only an unassigned waypoint can be assigned to a new robot

and the assignments for all the other waypoints are carried over from the parent node τ

to the child node τ ′. When a node τ ′ is grown from a parent node τ , a new waypoint j

is assigned to l and a new ΓL is created for the robot l. The set of assigned waypoints Ξ

that is to be passed to ΓL, is defined as Ξ = {ξi = j|τj = l}. This means that Ξ contains

all the waypoints assigned to robot l. ΓL returns the best sequence λ̂ through the assigned

waypoints, the number of unvisited interest points in this sequence k̂ and the transition cost

for this sequence TL(λ̂).

Each node in the ΓU has a vector of costs C(τ) = [c1, c2, ..., cnv]T , ci ∈ R associated with

it. Each cl corresponds to robot l and is obtained from the lower level graph ΓL, grown for

robot l and node τ . ΓL computes the sequence λ̂ of visitation over the assigned waypoints

as is described in Section 2.4.3. Using the case where the jth waypoint has been assigned to

the lth robot and letting C(τ) and C(τ ′) be the vectors of costs of parent τ and the child

node τ ′ respectively, one has

c′i = ci ∀i 6= l and cl = TL(λ̂) . (2.4.8)

This means that the costs c′i corresponding to all the robots other than l are copied form

the vector C(τ) of the parent node τ and just the cost corresponding to robot l is taken

from the lower level graph constructed for the new node. The accumulated transition cost

TU(τ) of a node τ is defined as

TU(τ) =
Iv∑
i=1

ci , (2.4.9)

where ci are the elements of C(τ). TU(τ) is an estimate of the energy expended by the

group of robots for node τ .

Another cost associated with a node is the total cost. VU(τ) is the total cost of the node

τ . A node is selected for expansion in uniform cost graph search, according to this cost. It

is defined as

VU(τ) =

TU(τ) if τ 6= τ goal

TU(τ) +K ′PU if τ = τ goal ,

(2.4.10)

26

where PU =
Iv∑
i=1

εi +
It∑
j=1

∆j + 1 , (2.4.11)

and K ′ is the total number of unvisited interest points over all robots in the node τ . For

obtaining the correct solution, PU is required to be greater than the maximum possible

energy of the system of gliders, given by
∑Iv

i=1 εi +
∑It

j=1 ∆j. Here
∑Iv

i=1 εi is the sum of the

starting energies of the robots and
∑It

j=1 ∆j is the sum of energies of all the thermals. As is

obvious, this is the maximum energy attainable by the group of gliders.

The aim now is to find the best goal τ ∗, which makes the robots visit as many interest

points as possible with the least amount of energy expended over all the gliders. Algorithm

2 is a uniform cost search over ΓU . It returns the goal node τ̂ ∈ T goal, where VU(τ̂) ≤

VU(τ),∀τ ∈ T goal, because it is a uniform cost search. Lemma 2.4.3 presents the guarantees

for the algorithm being sound, meaning τ̂ = τ ∗. This lemma assumes that the lower

level graph search also returns the correct solution, meaning that for each robot it returns

a solution with least number of unvisited interest points and the best possible sequence

through them. The guarantee of correctness of graph search over low level graph is presented

by Lemma 2.4.2.

Algorithm 2 Upper Level Graph Search

Require: Bx,Bε,Bg,Bθ,Bip,Bγ,B∆

1: Ψ = {τ start}
2: VU(τ start) = 0
3: VU(τ) =∞ ∀τ ∈ V ertices(ΓU) and τ 6= τ start
4: while τ 6= τ goal do
5: remove τ from Ψ with the smallest VU(τ)
6: for all τ ′ ∈ Succ(τ) and VU(τ ′) =∞ do
7: TU(τ ′) = as calculated in (2.4.9)
8: if τ ′ = τ goal then
9: VU(τ ′) = TU(τ ′) +K ′.PU
10: else
11: VU(τ ′) = TU(τ ′)
12: end if
13: Insert τ ′ in Ψ with cost VU(τ ′)
14: end for
15: end while
16: τ̂ = τ
17: return τ̂

27

In the pseudo code for Algorithm 2, Ψ is the Open Set (the set of nodes not yet expanded),

and V ertices(ΓU) refers to the set of all possible nodes in ΓU . Notice that once a node cost

has been evaluated, it is not reevaluated. This is unnecessary, because it will have the same

waypoint assignments. We know that for the same waypoint assignments and for the same

robot the lower level graph built will be exactly the same and will return the same answers.

Hence it will have the same TU .

Lemma 2.4.3 A search on the graph ΓU , as described in Algorithm 2, returns the path

τ̂ = τ ∗, meaning that (a) τ̂ has the minimum number of unvisited interest points K̂ and (b)

for all τ ∈ T goal with K̂ unvisited interest points, TU(τ̂) is the least accumulated transition

cost.

Proof (a) We prove by contradiction. Suppose τ̃ ∈ T goal, τ̃ 6= τ̂ , has fewer unvisited

interest points K̃ < K̂, where K̃ is the number of unvisited interest points in τ̃ . τ̃ and τ̂

have cost vectors C(τ̃) and C(τ̂) respectively. Uniform cost search ensures

VU(τ̂) ≤ VU(τ̃) ,

Iv∑
i=1

ĉi + K̂PU ≤
Iv∑
i=1

c̃i + K̃PU ,

(K̂ − K̃)PU ≤
Iv∑
i=1

c̃i −
Iv∑
i=1

ĉi ,

(K̂ − K̃)PU ≤
Iv∑
i=1

εi +
It∑
j=1

∆j .

The last step was made possible by the fact that the summation of costs over all the gliders

should be less than the maximum possible energy of the system, otherwise the solution is

not feasible. Using the definition of PU and the fact that K̂− K̃ ≥ 1, we get a contradiction.

(b) Assume there is another node τ̃ ∈ T goal, τ̃ 6= τ̂ , with the number of unvisited interest

points K̃ and K̃ = K̂, where τ̂ has unvisited interest points K̂..Uniform cost search ensures

VU(τ̂) ≤ VU(τ̃) ,

28

Iv∑
i=1

ĉi + K̂PU ≤
Iv∑
i=1

c̃i + K̃PU ,

Iv∑
i=1

ĉi ≤
Iv∑
i=1

c̃i .

Hence node τ̂ has the minimum accumulated transition cost for equal number of unvisited

interest points. �

Theorem 2.4.1 The solution found by BLGS has minimum total number of unvisited in-

terest points K̂ and the minimum accumulated transition cost TU(τ̂) across all robots.

Proof Lemma 2.4.3 guarantees that the upper level graph search returns a solution with

the least number of unvisited interest points K̂ and the least accumulated transition cost

TU(τ̂). But this upper level graph search assumes that the lower level graph search returns a

feasible path with the least number of unvisited interest points and the best possible sequence

through them. This is guaranteed by Lemma 2.4.2; hence the proposed BLGS returns the

correct solution. �

2.5 LPA*-Modification

As stated in the earlier sections, in the upper level graph when a new node τ ′ is grown from

a node τ , a whole new lower level graph ΓL is grown from scratch. However, only some

of the edge costs in the new lower level graph ΓL would be different from the same graph

grown for τ . Hence, intuitively, the search procedure shouldn’t be very different from the

search done previously. This is the main motivation behind formulating a dynamic search

approach to update the lower level graph rather than building it from scratch.

There has been some work done on incremental search procedures [34]. Dynamic SWSFP-

FP uses information from previous searches to find shortest paths for a series of path planning

problems. This algorithm can potentially do better than solving each path planning problem

from scratch.

Lifelong Planning A* is an incremental planning version of A* search algorithm proposed

in [35] by Sven Koenig, Maxim Likhachev and David Furcy. It builds on the functionality

29

of A* and enables dynamic searches with changing cost function and even a changing tree

structure. This provides us with a tremendous benefit of not having to generate trees from

scratch, if some of the edge costs are changed. Moreover LPA* guarantees less operations

than a standard A* search. The following sections detail how BLGS was modified with

LPA* in mind.

2.5.1 LPA*-modified Search Procedure

A natural solution to this problem is by using incremental techniques like LPA*. We try

modifying the lower level graph for the parent node τ to obtain the lower level graph for

the child node τ ′. In principle this should be much more efficient than making a new graph

from scratch. Notation used in this section is borrowed from [35].

LPA* deals with finite graphs whose edge cost varies over time. We use LPA* for making

the lower level graph search faster. The way this is achieved is by modifying the edge

costs for the lower level graph. Now rather than considering only the assigned waypoints,

all waypoints are considered while expanding the nodes. This means that when a node

is expanded in the modified lower level graph, now it will have successors which have all

the waypoints and not just the assigned waypoints. However, the nodes with unassigned

waypoints will have infinity cost. It is equivalent to claiming that the graph search can go

there, but with infinite edge cost, which is akin to restricting the graph search from going

there. The other nodes with assigned waypoints only will be assigned cost, as defined in

section 2.4.3.

In this modified version of graph search, when τ is expanded into τ ′, and a new waypoint

j is assigned to a robot l, we begin by copying all the lower level graphs corresponding to

τ over to the lower level graphs of τ ′. Now only the lower level graph corresponding to

τ ′ and l is modified, since only l has gained a new waypoint j. Now all the edge costs

corresponding to waypoint j are changed from infinity to their actual values. On this graph

with changed edge costs, the LPA* algorithm performs computations until this new graph is

locally consistent. Local consistency ensures that LPA* search procedure gives us the same

guarantees of soundness as the uniform cost and A* search. For more details, the paper

30

about LPA* search [35] can be consulted. The details of the algorithm are given in Figure

2.3.

LPA* uses a non-negative and consistent heuristic similar to A* search. Consistency of

heuristic implies that it satisfies the triangle inequality. The costs for each node are computed

in a similar way to A*, but they are kept and carried forward for new iterations. LPA* uses

a one-step look ahead value called rhs or right-hand side value for each node, and it always

satisfies the following condition.

In the algorithm for LPA* given below, sstart is the start node of a graph, pred(s) means

the set of all predecessors of node s, g(s) is the cost to go from sstart to s, and c(s′, s) is the

cost to go from s′ to s. The algorithm for LPA* search is given in Figure 2.3.

A vertex is called locally consistent, if its g-value is equal to its rhs-value. If all nodes are

consistent, their g-values satisfy

When all nodes are consistent, the search procedure is finished, but LPA* does not make

all nodes consistent. It focuses on the nodes that might help in getting to the best path.

LPA* maintains an OPEN set just like A*. The nodes in the OPEN set are ordered by

their key values. The key k of a node is defined as

k(s) = [k1(s), k2(s)]wherek1(s) = min(g(s), rhs(s)) + h(s)andk2(s) = min(g(s), rhs(s)).

The vertex chosen form the OPEN set is according to lexicographical ordering of the

k-values.

The LPA* search procedure is outlined below. The Main() function calls the Initialize()

function first. Initialize() sets the initial g-values and rhs-values for all the vertices. After

initialization ComputeShortestPath() is called and it works exactly like A* search. Now

31

Figure 2.3: LPA* Search Pseudo code

we change the edge costs. UpdateV ertex() is called to update the keys and rhs-values of

all the nodes affected by the changes. It also rearranges them in the OPEN set according

to lexicographic ordering. Finally, the ComputeShortestPath() is called to recompute the

shortest path.

2.5.2 Evaluation of LPA*-modification

LPA* and the previous algorithm were tested simultaneously on the same datasets. They

are matched against exhaustive search for performance.

Although LPA* is guaranteed to perform less operations than A* search, it lags behind in

32

converting this into actual benefit. The reason being that in Bi-level Graph Search a lower

level graph has to be stored for each node in the top level graph. This results in a lot of

save-retrieve operations for the computer and hence worsens the efficiency. Moreover, the

amount of stored data grows exponentially. One positive thing about LPA* is that it starts

to catch up as the number of interest points and thermals increase.

33

2.6 Simulations

The algorithms described in the section have been rigorously tested and evaluated for accu-

racy and efficiency. An exhaustive algorithm is also implemented for checking the correctness

of the proposed algorithm. The proposed algorithm is first implemented in MATLAB on an

Intel Core 2 Quad CPU running at 2.66 GHz. These algorithms are then compiled using

MATLABs Code Compiler functionality to test the speed of the algorithm. The compiled

version of an algorithm is naturally much faster than the uncompiled version, and since

MATLAB is an interpreted language, compiling the code can give us an increase in effi-

ciency by orders of magnitude. The MATLAB code for the algorithms are given in the

Appendix. Below are some of the test cases that were performed. Robot start points are

represented as circles, goals as crosses, thermals as diamonds and interest points as squares.

2.6.1 Test Cases

Below some test cases are presented to showcase that the algorithm works and provides the

optimal path. The first case shows that the algorithm chooses the best ordering of waypoints.

Figure 2.4: Interest points change order

Figure 2.4 depicts a robot which has to visit two interest points and is also provided with

a thermal. As can be seen the interest point that is closer to the goal of the robot is shifted

towards the starting point such that changing the ordering of the two interest points in the

34

path becomes a better option for the robot. Notice that the thermal is not utilized since

the robot has enough energy to traverse the path and going to the thermal will cost extra

energy.

Figure 2.5: Interest points swap routes

Figure 2.5 shows two robots which have to visit 3 interest points and are provided with a

thermal. One interest point, which is in the path of one robot, is shifted such that it comes

closer to the path of the other robot. At this point it becomes cheaper for the other robot

to visit the interest point and hence it swaps routes. The thermal is again left untouched,

since it is not needed.

Figure 2.6: Robot starts using thermal when path becomes infeasible

Figure 2.6 depicts a robot, which has to visit two interest points and is also provided with

a thermal. The interest point closer to the goal is moved away from the path such that

35

the starting energy of the robot is insufficient to visit both interest points and reach the

goal. Hence the thermal is acquired by the robot to gain the extra energy and complete the

mission.

Figure 2.7: Robot modifies path due to different initial energy

Figure 2.7 depicts the optimal path computed by the algorithm as the starting energy of

the robot is gradually decreased. In the first case the starting energy is enough to get it to

all the Interest Points without using the Thermal. In the second case the starting energy

has been decreased, so now it has to utilize the thermal to visit both interest points. In the

third case the starting energy has been decreased further; now if it goes to the thermal it

can still get one interest point. So it saves its energy that would have been spent to go to

the thermal and visits just one interest point.

36

2.6.2 Two robots, three thermals and four interest points

The following test cases present the performance of the algorithm on various test cases

with two robots, three thermals and four interest points. The robots’ starting points are

represented as circles, goals as crosses, thermals as diamonds and interest points as squares.

Figure 2.8: Test cases with 2 robots, 3 Thermals and 4 Interest Points

Furthermore the algorithm was tested several times on different combinations of interest

37

points and thermals. The mean it took for the algorithm to compute a solution is tabulated

in the table below.

When compiled on average the algorithm takes 100 times less, which is an unprecedented

decrease in execution time.

38

CHAPTER 3

ENERGY-PRESERVING PATH PLANNING

Now that the best way of sequencing the interest points and thermals have been computed,

the next step is to plan close-to-optimal, feasible paths for the gliders in a time efficient

manner. The paths being feasible means that they have to be achievable by the robot.

This means that the paths respect the dynamics of the robot. This thesis only plans paths

but doesn’t deal with controlling the gliders to follow those paths. The task of designing a

trajectory tracking controller has been explored in the literature; see [36], [37] and [38].

Furthermore the path has to be as close to optimal as possible provided that it is computed

in a timely fashion. For the purposes of this thesis an optimal path is defined as a path

achievable by the glider, which goes from one point to another with the least loss-of-energy

of the glider during the commute. Since the problem is non-convex, a suboptimal solution

is found. Hence, the method proposed in this thesis plans a close-to-optimal path for the

gliders, but in doing so assures a timely execution of the algorithm. For this reason we call

the approach Energy-preserving Path Planning.

As explained in the succeeding sections, the flight dynamics of a glider can only follow

paths that fulfill certain constraints. Because of the non-availability of thrust, pure gliding

flight cannot achieve trajectories planned for regular aircraft; for example, if at time t0 the

glider has attained a height h0 at a certain speed s0, it cannot achieve height h0 with speed

s0 for time t > t0 without any external source of energy. Hence the glider is losing its

mechanical energy at a steady speed. In conditions like these, it becomes imperative for the

path planning to be as close-to-optimal as possible.

In gliding flight, loss of energy manifests itself as loss of height, since the velocity of the

glider doesn’t deviate too much. As is discussed in section 3.2.1, loss of height primarily

depends on the path length and also on the turn rate of the glider. Hence, optimizing energy

39

loss translates to optimizing path length and turn rate. For the purposes of optimizing energy

loss, a fast way to compute these expressions is needed. Pythagorean Hodograph (PH) curves

proposed in [39] solve these problems by forcing the parametric speed of the curves to have

a particular structure. This thesis uses PH curves for the purpose of planning paths for the

gliders.

In the following sections we start with a review of literature relevant to the topic of

path planning. The next section discusses the dynamics of gliding flight and how choosing

an optimal velocity for the glider reduces the 3 dimensional optimization problem to a 2

dimensional optimization problem. This is followed by an introduction to the Pythagorean

Hodograph Bézier curves. Then the solution to EPP is proposed. In this section we discuss

how PH Bézier curves are patched together to form a path that optimizes energy loss of

the glider, while respecting the dynamic constraints of the glider. The last section presents

simulation results that validate our theoretical findings.

3.1 Literature Review

Trajectory Generation as a problem has been widely studied. Optimal trajectory planning

by using multiple shooting methods is proposed by [19], [20]. Multiple shooting methods are

numerical methods for solving boundary value ordinary differential equations.

Pseudospectral optimal control methods proposed by [21], [22] have recently gained mo-

mentum. Pseudospectral optimal control is a combination of pseudospectral theory and

optimal control theory. Pseudospectral methods are numerical methods for solving par-

tial differential equations. Pseudospectral optimal control is an approximate method which

solves the optimal control problem by approximating continuous functions by quadrature

nodes. Using this approximation the optimal control problem is solved very efficiently. PS

optimal control has been very successful in solving important problems. In March 2007, the

International Space Station executed a Zero Propellant Move planned using a pseudospectral

optimal control method. As for cooperative trajectory generation, few publications [21], [22]

have proposed a PS optimal control methodology that ensures temporal deconfliction of

trajectories, but spatial deconfliction cannot be guaranteed.

40

Nonlinear trajectory generation methods proposed by [23], [24] use mapping of higher

dimensional state variables to lower dimensional output space variables to plan optimal

paths. Randomized trajectory generation methods have recently gained momentum with

examples such as Rapidly-exploring Random Trees (RRT) [25], Probabilistic Roadmaps

(PRM) [26] and direct method for rapid trajectory prototyping [27]. But these randomized

trajectory generation methods are ill-suited for optimal path planning in general.

Pythagorean Hodograph (PH) Bézier curves [39] provide the solution to our problems.

We use PH Bézier curves for the problem of path planning, since they provide closed-form

analytical expressions for the arc length, velocity, turn rate and other useful variables that

need to be constrained and also optimized over. PH Bézier curves are discussed in great

detail in the succeeding sections.

3.2 Gliding Flight and Soaring

Gliding flight is heavier-than-air flight without any means of propulsion. In nature, gliding

flight has been used for millennia by animals like gliding squirrels, hylid frogs and even

snakes. The first human to successfully design and build a flyable airplane was Sir George

Cayley , an Englishman, in early 19th Century. He was the first one to understand the

importance of streamlining and a need for cambered aerofoil for efficient lifting power. In

1804, he introduced the stabilizing tailplane and fin mounted behind the wing, based on his

work with model gliders. It proved so successful that it has been a standard followed by

aircraft designers ever since.

Thermal Soaring is the exploration and exploitation of free energy present in the environ-

ment (like convective air flow and wind shear) by a glider-like aircraft to increase its flight

endurance. Soaring was first performed by the Wright brothers by using the up current

winds created by the wind blowing over a ridge of hills. Using this procedure, they were able

to make an extraordinary nine minutes and 45 seconds long flight. Their other contributions

to flight include, among many things, also introduction of control surfaces as an active flight

control mechanism. Gliding as a sport emerged after the first World War amongst Euro-

peans, especially Germans, since it was not banned for them under the Treaty of Versailles.

41

The ridges hills effect was very well known, but another phenomenon was soon discovered

that was even more dependable and powerful. This was the phenomena of columns of rising

hot air also called thermals.

In the following sections we describe the flight dynamics of a glider in symmetric and

turning flight. We are primarily concerned with minimizing the loss of height of the glider

as it travels over a path. For given flight conditions, like angle of attack of aircraft and bank

angle, the loss of height of the glider is predetermined. As it turns out, for each glider there

is an optimal angle of attack, which minimizes its loss of height. If we use this angle of

attack throughout the path the loss of height will vary with the curvature of the path alone.

So in effect we have converted a 3-dimensional path planning problem into a 2-dimensional

one.

3.2.1 Dynamics of a Glider in symmetric flight

The equations that govern the longitudinal flight dynamics of a single glider traveling in

symmetric flight, as taken from [40], are

v =
2W

SρCL
cos(γd) , (3.2.1)

tan(γd) =
CD
CL

, (3.2.2)

RD = v sin(γd) =

√
2WC2

D

SρC3
L

cos3(γd) , (3.2.3)

where v is velocity of the glider, W is weight, S the wing area, ρ the density of air at the

altitude the glider is flying, CD is the drag coefficient, CL is the lift coefficient, γd is the

flight path angle of the glider (positive downwards) and RD is the rate of descent of the

glider (also positive downward).

We assume that the glider is traveling at low subsonic flight speeds, the air is static and

Reynolds number effects are negligible. We further assume that the glider has a parabolic lift-

drag polar [40] meaning that the relationship between lift coefficient CL and drag coefficient

42

CD can be expressed as a 2nd order equation:

CD = CD0 +KLD(CL − CL0)2 , (3.2.4)

where CD0 and KLD are constants and depend on the shape of the glider. Changing the

angle of attack α of the glider corresponds to a change in the lift coefficient CL. In turn,

that changes the drag coefficient CD by virtue of the relationship 3.2.4.

The objective is to determine a path that loses the least amount of energy, while the glider

travels a certain distance along the path. Alternatively, this can be stated as, a path needs

to be planed that maximizes the distance traveled s, while the glider is falling a certain

height ∆h. The relationship between the two is

s = ∆h/ tan(γd) . (3.2.5)

As is evident from Equation (3.2.5) the flight path angle needs to be minimized. This can

be achieved by maximizing the lift-to-drag ratio CL/CD according to Equation (3.2.2). This

is depicted in Fig. 3.1.

The optimal flight path angle obtained using (CL/CD)max is γdmin
. The velocity corre-

sponding to these flight conditions is called vopt, and the angle of attack for these conditions

is called αopt.

This is true for symmetric flight, but for the case of turning flight, the descent rate RD

is higher than what is given in Equation (3.2.3). The reason for that is that part of the lift

force is used up to counter the centrifugal force induced by the turning, and hence the glider

falls faster. This is discussed in the following section.

43

Figure 3.1: Lift Drag Polar and γdmin

3.2.2 Dynamics of a Glider in Turning Flight

The dynamics of a glider in turning flight, as stated in [40], is given below. Here the glider

flight path angle is assumed to be close to zero, γd ≈ 0.

v =

√
2W

SρCL cos(φ)
, (3.2.6)

tan(γd) =
CD

CL cos(φ)
, (3.2.7)

RD =

√
2WC2

D

SρC3
L(cos(φ))3

, (3.2.8)

κ =
g tan(φ)

v2
, (3.2.9)

where φ is the bank angle, κ is the curvature of the path taken by the glider and the other

symbols are defined as in Section 3.2.1.

Using the same reasoning used in the previous section, to optimize the path, we need to

44

minimize the flight path angle γd. Notice that the CD and CL values that optimize the path

in symmetric flight also optimize it in gliding flight. Hence the angle of attack αopt also does

not need to change. The only difference is that now tan(γd) is scaled by a constant, which

depends on the bank angle φ.

For a glider to have an achievable path, the curvature of the glider must be bounded

|κ| < κmax. This means that the bank angle of the glider must also be upper and lower

bounded. This translates to γdmin
also being bounded. So the extra amount of descent

caused by turning flight will also be bounded. Hence, this thesis neglects the effects of

higher descent rate due to turning flight. We assume that the glider flight path angle γd is

constant and equal to γdmin
, mentioned in Section 3.2.1.

So now that the 3-dimensional path planning problem has been converted to a 2-dimensional

path planning problem, we turn to optimization. Since we assume that the flight path angle

is constant γdmin
, the primary aim of this section is to minimize the arc length of the curve.

Generally speaking, computing the arc length of a curve is not an easy problem. Refer-

ence [41] introduces the Pythagorean Hodograph (PH) Bézier Curves that have the property

of having an analytical expression for the arc length of the curve. Due to this great ease

of computing the arc length, the computational cost of the problem is drastically reduced.

The succeeding sections deal with using PH Bézier curves to plan paths for the gliders.

3.3 Pythagorean Hodograph Bézier Curves

3.3.1 Bézier curves

Bézier curves were invented by Dr. Pierre Bézier as a tool to design shapes for car manu-

facturing in the early 1960s. The curve r is defined by a set of control points r̄k ∈ R2:

r(ζ) =
n∑
k=0

r̄kb
n
k(ζ) , (3.3.1)

45

where n is the degree of the Bézier curve, ζ ∈ [0, 1] is a dimensionless parameter, and bnk(ζ)

are the Bernstein polynomials defined as

bnk(ζ) =

(
n

k

)
(1− ζ)n−kζk . (3.3.2)

The control points r̄1, ..., r̄n ∈ R2 define the Bézier curve. The curve starts at the first

control point and ends at the last control point. The curve is entirely contained inside

the control polygon (the convex polygon defined by the control points). The curve starts

tangent to the line joining r̄0 and r̄1 and ends tangent to the line joining r̄n−1 and r̄n. The

set of Bézier curves also have the useful property of being closed under the operations of

differentiation, integration, summation, multiplication and composition among others. The

parametric derivative of a Bézier curve r(ζ) is also a Bézier curve, whose control points

depend on the control points of r(ζ):

r′(ζ) = dr/dζ = h(ζ) =
n−1∑
k=0

h̄kb
n−1
k (ζ) , (3.3.3)

h̄k = n(r̄k+1 − r̄k) for k = 0, ..., n− 1 .

Similarly the product of two Bézier curves is also a Bézier curve. Let r(ζ) be a Bézier curve

of degree n and w(ζ) be a Bézier curve of degree m. Then the control points c̄k of their

product c(ζ) = r(ζ).w(ζ) are given by (3.3.4)

c̄k =

min(m,k)∑
j=max(0,k−n)

(
m
j

)(
n
k−j

)(
m+n
k

) rk−jwj for k = 0, ..., (m+ n) . (3.3.4)

3.3.2 Pythagorean Hodograph Curves

The arc length of a curve can be calculated as follows

s(ζ) =

∫ ζ

0

||r′(ω)||dω =

∫ ζ

0

√
x′2(ω) + y′2(ω)dω .

46

The the parametric speed of the curve σ(ζ) is given by

x′2(ζ) + y′2(ζ) = σ2(ζ) . (3.3.5)

This results in arc length

s(ζ) =

∫ ζ

0

σ(ω)δω . (3.3.6)

PH curves force a Pythagorean structure on the hodograph r′(ζ) = [x′(ζ), y′(ζ)]T of the

curve. Theorem 17.1 of [41] states that the PH condition will be fulfilled, if the hodograph

r′(ζ) is defined as

x′(ζ) = u2(ζ)− v2(ζ) ,

y′(ζ) = 2u(ζ)v(ζ) , (3.3.7)

σ(ζ) = u2(ζ) + v2(ζ) .

If r(ζ) is a Bézier curve, u(ζ) and v(ζ) are also lower-order Bézier curves by virtue of the

closedness property of the class of Bézier curves. Having found a closed form solution for

the arc length, an expression for the curvature of the curve is needed. It is given as

κ(ζ) = 2
u(ζ)v′(ζ)− u′(ζ)v(ζ)

σ2(ζ)
. (3.3.8)

Since u(ζ) and v(ζ) are Bézier curves, κ(ζ) can be transformed into a rational Bézier curve.

For a trajectory to be continuously flyable, the curvature also needs to be continuous through-

out the trajectory.

3.4 Solution for a Single Glider

This section deals with using PH Bézier curves to plan smooth paths over the set of waypoints

that need to be visited by a glider. The waypoints are the solutions to the VSP, computed

by BLGS as described in Chapter 2 .Each section of the trajectory going from waypoint-to-

47

waypoint is called a path. Each path is a PH Bézier curve denoted by rlj

rlj(ζ
l
j) =

n∑
k=0

r̄lk,jb
n
k(ζ lj) , (3.4.1)

where l ∈ Iv is a robot from the group of robots, n is the order of the curve and 1 ≤ j ≤

Card(λ̂τ̂ ,l), where j corresponds to a waypoint in the sequence λ̂τ̂ ,l. The sequence λ̂τ̂ ,l is the

sequence produced by the lower level graph search, corresponding to the node τ̂ (in upper

level graph) for robot l, r̄lk,j is the control point for the jth trajectory of lth glider. ζ lj ∈ [0, 1]

is the dimensionless parameter for this path. All the paths corresponding to the robot l,

joined together are called the route of l.

Quintic (fifth order) PH Bézier curves are used to generate the paths. The reason for

using quintics is that they are the simplest PH Bézier curves that can be used for first-order

Hermite interpolation [39].

These paths need to be patched together to form a route. To satisfy the continuity of the

route for robot l, the paths rlj need to satisfy the following constraints:

rl1(0) = xl ∈ Bx, rli(1) = rli+1(0) = λ̂i,∀1 ≤ i ≤ (n− 1),

rln(1) = gl ∈ Bg , (3.4.2)

where λ̂i ∈ λ̂τ̂ ,l. This states that the paths need to start and end at the corresponding

waypoints and the first and the last waypoints are the start and the goal positions of the

robot, respectively. Since the robot also has a starting orientation, we have

y′
l
1(0)/x′

l
1(0) = tan(θl), where θl ∈ Iθ . (3.4.3)

Moreover, the curvature of the paths also needs to be bounded. This constraint can be

expressed as:

|κlj(ζ lj)| ≤ κmax ∀ζ lj ∈ [0, 1] . (3.4.4)

Two paths meeting at an interest point need to satisfy continuity of parametric speed and

48

curvature. We start with parametric speed:

d

dζ ij

[
xij(ζ

i
j)

yij(ζ
i
j)

]∣∣∣∣∣
ζij=1

=
d

dζ ij+1

[
xij+1(ζ ij+1)

yij+1(ζ ij+1)

]∣∣∣∣∣
ζij+1=0

,

r′
l
j(1) = r′

i
j+1(0) ,

using equations (3.3.3), (3.3.4) and (3.3.7)

[(ūl2,j)
2 − (v̄l2,j)

2, 2ūl2,j v̄
l
2,j]

T = [(ūl0,j+1)2 − (v̄l0,j+1)2, 2ūl0,j+1v̄
l
0,j+1]T .

This condition is satisfied, if

ūl0,j+1 = ūl2,j, v̄
l
0,j+1 = v̄l2,j . (3.4.5)

Furthermore the curvature of the route also needs to be continuous. The curvature κlj(ζ
l
j)

throughout the length of one path will always be continuous, since it is a rational Bézier

curve and it is bounded by κmax. The curvature of route is also required to be continuous

at the interest points. If j ∈ Iip then

κlj(1) = κlj+1(0) ,

2
ulj(1)v′lj(1)− u′lj(1)vlj(1)

(σlj(1))2
= 2

ulj+1(0)v′lj+1(0)− u′ij+1(0)vlj+1(0)

(σlj+1(0))2
,

using equations (3.3.1), (3.3.5), (3.3.7) and (3.3.3), we have

v̄l2,jū
l
1,j − ūl2,j v̄l1,j

((ūl2,j)
2 + (ūl2,j)

2)2
=
ūl0,j+1v̄

l
1,j+1 − v̄l0,j+1ū

l
1,j+1

((ūl0,j+1)2 + (ūl0,j+1)2)2
.

The constraint is satisfied, if

v̄l2,j(ū
l
1,j+1 + ūl1,j) = ūl2,j(v̄

l
1,j + v̄l1,j+1) . (3.4.6)

Notice that the constraints (3.4.5), (3.4.6) need to be satisfied at interest points, but not at

49

thermals. This is due to the spiral ascending maneuverer that the gliders execute to gain

energy at thermals. This thesis deals with the routes leading up to the thermals, but not

the ascending maneuver.

Now that the route has been formulated it needs to be optimized, while making sure that

the constraints are met. The optimization variables are ūlk,j, v̄
l
k,j. The cost function to be

optimized is the arc length of the curve slj(1) for each path and for each robot, while the

constraints (3.4.5), (3.4.6) and (3.4.4) are respected.

So now the problem can be formulated as an optimization problem, where the cost to be

minimized is

min
ūlk,j ,v̄

l
k,j

l=nv ,j=Card(λ̂τ̂ ,l)∑
l=1,j=1

slj(1) , (3.4.7)

subject to constraints (3.4.2)-(3.4.6) ,

where l ∈ Iv, n is the number of elements in λ̂τ̂ ,l.

The function fmincon from the MATLAB Optimization Toolbox is used for solving the

optimization problem (3.4.7). The next section discusses simulation results for the approach.

50

3.5 Simulations

We simulate several scenarios with 2 robots that have to achieve 4 interest points coopera-

tively, and there are 3 thermals available. As in Section 2.6 the squares represent interest

points, circles represent the starting points of gliders and crosses their goals and the thermals

are represented by diamonds. The control points for the PH Bézier curves are also shown.

−2 0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

X−axis (km)

Y
−

ax
is

 (
km

)

Interest points
Starting points
Goal points
Thermals
Robot 1
Robot 2

Figure 3.2: VSP for Scenario 1

−2 0 2 4 6 8 10 12 14

0

2

4

6

8

10

X−axis (km)

Y
−

ax
is

 (
km

)

Control points
Robot 1
Robot 2
Interest points
Starting points
Goal points
Thermals

Figure 3.3: EPP for Scenario 1

First, the VSP plans the assignment and sequencing of the waypoints for each robot, and

51

then the EPP plans the best path over the sequence. The curvature of the paths needs to be

continuous at the interest points, but not at the thermals as discussed in section 3.4. The

PH Bezier curve planned for EPP in scenario 2 does a loop in the beginning, because the

maximum curvature constraint restricts the curve to go straight to the interest point.

−2 0 2 4 6 8 10 12 14

−2

0

2

4

6

8

10
Y

−
ax

is
 (

km
)

X−Axis (km)

Interest points
Starting points
Goal points
Thermals
Robot 1
Robot 2

Figure 3.4: VSP for Scenario 2

−2 0 2 4 6 8 10 12 14

−2

0

2

4

6

8

Y
−

ax
is

 (
km

)

X−axis (km)

Figure 3.5: EPP for Scenario 2

52

−2 0 2 4 6 8 10 12 14

0

2

4

6

8

10

Y
−

ax
is

 (
km

)

X−axis (km)

Interest points
Starting points
Goal points
Thermal
Robot 1
Robot 2

Figure 3.6: VSP for Scenario 3

−2 0 2 4 6 8 10 12 14

0

2

4

6

8

10

X−axis (km)

Y
−

ax
is

 (
km

)

Figure 3.7: EPP for Scenario 3

53

CONCLUSION

The thesis addresses the problem of a path planning for a group of Cooperative Autonomous

Soaring gliders. The task given to the gliders is to visit a set of interest points, while also

being provided a set of thermals. Thermals can be used by the gliders to gain energy and

increase the reach of the gliders. Since the gliders are constantly losing energy (while not

visiting thermals) the paths planned should minimize the energy lost by the gliders. The

problem is decoupled into two subproblems, (i) assigning the waypoints (interest points and

thermals) to the robots and computing the best sequence over them, (ii) planning achievable

paths over these sequences, which optimizes the energy lost by the gliders.

The first problem also called VSP, is solved by modifying a Multi-Tier Graph Search

(MTGS) based approach (originally meant to solve the Euclidean Team Orienteering Prob-

lem). The problem is to find the best assignment of waypoints for the gliders. The different

assignments, are evaluated based on the energy lost by the gliders, while traveling over these

assignments. Since the actual energy lost is not known, an estimate is used instead. The

Bi-Level Graph Search (BLGS), which is a modified version of MTGS, then uses this esti-

mate to find the best assignment. One thing to remember here is that this best assignment

depends on how good the estimate of energy is. For the kind of estimate used in this thesis,

as the distances between the waypoints increase, the estimate approaches the actual value.

The second problem also called the EPP, is solved by using Pythagorean Hodograph (PH)

Bézier curves. Once the best assignment of waypoints to robots has been computed by the

VSP, we plan paths for the gliders over these assignments. The paths must be achievable

by the gliders and must minimize the energy lost by the gliders. As it turns out, minimizing

the arc length of a path corresponds to minimizing the energy lost by gliders. The PH

Bézier curves provide us with an easy way to check the feasibility of the path, as well as an

54

analytical expression for its arc length. Nonlinear programming techniques are used to solve

this minimization problem.

Future work for this research includes obtaining performance guarantees for this algorithm

like, the upper bound on the energy lost by the gliders, and the upper bound on the deviation,

from the most optimal solution.

55

APPENDIX

A.1 Proof of Theorem 1 Section 2.3.4

56

A.2 Proof of Theorem 2 Section 2.3.4

57

A.3 MATLAB Code for Visitation Sequence Planning

function [] = MultiTierGraphSearch()

%MULTITIERGRAPHSEARCH The top level graph search

% Detailed explanation goes here

% Author: Muhammad Aneeq uz Zaman

tic;

addpath('C:\Users\mazaman2\Dropbox\Project\path');

% global N M X T max dt max thermals intpts goals robot pos

load('Data&Results/data2.mat','M','N','T max','X','dt max',...

'goals','intpts','robot pos','scale','thermals');

bigmed = zeros(1,N+M+1);

bigmed(1,1) = factorial(N+M+1)/factorial(N+M);

for g = 2:N+M+1

bigmed(1,g) = bigmed(1,g−1) + factorial(N+M+1)/factorial(N+M+1−g);

end

bigtop = (X+1)ˆ(N+M);

open = zeros(1,bigtop);

open = 1; % adding the root to the open set

t = tree(0,bigtop); % tree structure for storing waypoint

↪→ assignment

f init = zeros(X,1);

best path yet = (N+M+1)*ones(bigtop,X);

% adding vertices pertaining to no waypoint assignment

for x = 1:X

f init(x,1) = costtotraverse(robot pos(x,1:2), goals(x,:));

end

f = tree(f init,bigtop); % tree for storing f(cost) values

% for each vertex assignment for different robots

unvisit = tree(zeros(X,1),bigtop); % tree for storing the number of

↪→ assigned

% unvisited interestpoints for each robot

58

q = 1; % current vertex

A = zeros(1,N+M);

A new = zeros(1,N+M);

A = int2digits(t.get(q),N+M);

while (˜isgoal(A))

% choose the vertex q with smallest f value in the open set

small = inf;

for i = 1:length(open)

if small > sum(f.get(open(i)))

q = open(i);

small = sum(f.get(open(i)));

end

end

disp(q);

A = int2digits(t.get(q),N+M);

% Expand q, iterate for each successor q' of q, assigning all waypoints (

↪→ thermals

% and interest points)

for way = 1:N+M

% check if way has already been assigned to any robot in vertex q

if A(1,way) ˜= 0

continue;

end

% assign the waypoint to each robot seperately

for robot = 1:X

% robot

% calculating new matrix

A new = A;

A new(1,way) = robot;

if any(t.find(digits2int(A new)))

continue;

end

59

% add a new vertex q' in the graph which should be ordered

q prime = t.addnode(q,digits2int(A new));

% run single robot interleave to calc the cost f of q'

% just for the robot which has the new waypoint

% the function returns the cost plus the 'interest points' not

% visited

ccost = f.get(q);

coordset = [intpts;thermals;goals(robot,:)];

best path yet(q prime,:) = best path yet(q,:);

[ccost(robot,1), unvis, best path yet(q prime,robot)] = single robot plan(

↪→ A new,robot);

% adding unvisited assigned interest points to the tree

u = unvisit.get(q);

u(robot,1) = unvis;

unvisit.addnode(q,u);

% if q' is the goal node add the additional terminal cost

% this is the terminal cost for the case where one thermal is

% assigned to one robot

if isgoal(A new)

ccost(robot,1) = ccost(robot,1) + sum(unvis)*(sum(T max) + M*dt max + 1);

end

f.addnode(q,ccost);

% add q' to open set

end

end

% take q off open sets

open = open(open ˜= q);

end

open = 0;

60

toc;

save('MTGS vars.mat');

%% Plotting Results

load('MTGS vars.mat');

figure;

axis([−2 scale+5 −2 scale+1]);

axis equal;

hold on;

ColOrd = [0 0 1.0000

0 0.5000 0

1.0000 0 0

0 0.7500 0.7500

0.7500 0 0.7500

0.7500 0.7500 0

0.2500 0.2500 0.2500];

%scatter(intpts(1:N−1,1), intpts(1:N−1,2), 's');

scatter(intpts(:,1), intpts(:,2), 120, 's', 'b');

scatter(robot pos(:, 1), robot pos(:, 2), 120, 'o', 'g');

scatter(goals(:, 1), goals(:, 2), 120, 'x', 'r');

scatter(thermals(:,1), thermals(:,2), 120, 'd', 'c');

for robot = 1:X

a = int2digitstpath(best path yet(q,robot))+1;

pt kind = (a<=N+1 & a>1)+2;

pt kind (1) = 1;pt kind (end) = 4;

coordset(end,1:2) = goals(robot,:);

coordset m = [robot pos(robot,1:2); coordset];

path d = coordset m(a,:);

Col = ColOrd(robot,:);

plot(path d(:,1), path d(:,2), 'Color', Col);

way kind{robot} = pt kind;

path rob{robot} = path d;

end

psi i = (robot pos(:,3)−pi)*180/pi;

save ('pathplan.mat','path rob','psi i','way kind');

%% Single Robot plan

61

function [pathcost, unvis, best path] = single robot plan(combo, rob)

% global N M X T max dt max thermals intpts goals robot pos

waypoints = [find(combo == rob),N+M+1];

% no of assigned interest points

n assigned = length(find(waypoints<=N));

% no of assigned thermals

m assigned = length(waypoints) − n assigned − 1;

t med= tree(0,bigmed(1,numel(waypoints))); % tree of

↪→ waypoints, starting at origin of robot

f med = tree(0,bigmed(1,numel(waypoints))); % tree of f−values

↪→ (numerical) for each vertex

Time = tree(T max(rob,1),bigmed(1,numel(waypoints))); % tree that tracks

↪→ T max for each vertex

n cov = tree(0,bigmed(1,numel(waypoints))); % no. of covered

↪→ waypoints at each vertex

openset = zeros(1,bigmed(1,numel(waypoints)));

openset = 1; % indices of open

↪→ vertices on tree

q med = 1; % current

↪→ index

% while the goal is not expanded

while (˜isgoalsingle(int2digitstpath(t med.get(q med)),N+M+1))

% quit algo if path not found

if isempty(openset)

pathcost = −1;

unvis = −1;

% save('SingleRobot.mat');

return;

end

% get q with the smallest f value from the open set

small med = inf;

62

% iterate for each successor and the goal (+1 is for the goal)

for waypt = 1:length(waypoints)

% check if the waypoint is already in the queue, if yes continue

if any(path == waypoints(waypt))

end

if waypt == length(waypoints)

new path = [path,N+M+1];

else

new path = [path,waypoints(waypt)];

end

% calculate cost of transition form last waypoint to new one

% use euclidean distance for now

if path(1,end) == 0

cost = costtotraverse(robot pos(rob, 1:2), coordset(waypoints(waypt),:));

else

cost = costtotraverse(coordset(path(1,end),:), coordset(waypoints(waypt),:));

end

% add cost to cost of parent vertex

cum cost med = cost + f med.get(q med);

% check if cost exceeds T max i, if yes continue

if Time.get(q med) < cum cost med

continue;

end

% check if waypoint is goal, if yes add additional penalty to the

% cost

n = length(find(new path<=N))−1; % no of interest points in new path

m = length(new path) − n − 1; % no of thermals in new path

if waypt == length(waypoints)

m = m − 1; % since the dest has been counted as a

↪→ thermal

cum cost med = cum cost med + (n assigned − n)*(T max(rob,1) + m assigned*

↪→ dt max + 1);

63

end

% add vertex with the new waypoint in tree

q prime med = t med.addnode(q med, digits2int(new path));

%disp(t.tostring)

% add corresponding node for f tree

f med.addnode(q med, cum cost med);

%disp(f.tostring)

% add corresponding T max i to tree

Time.addnode(q med, T max(rob,1)+m*dt max);

%T prime

%disp(T.tostring)

n cov.addnode(q med,n);

% add this new vertex to the open set

openset = [openset, q prime med];

end

openset = openset(openset ˜= q med);

end

unvis = n assigned − n cov.get(q med);

pathcost = f med.get(q med);

% pathcost = f med.get(q med) − unvis*(T max(rob,1) + m assigned*dt max +

↪→ 1);

best path = t med.get(q med);

end

end

function [num2] = int2digitstpath(num)

%INT2DIGITS Summary of this function goes here

% Detailed explanation goes here

64

num2 = sscanf(sprintf('%u', num), '%1d')';

if num2(1) == 0

return;

end

num2 = [0,num2];

end

function [num2] = int2digits(num , len)

%INT2DIGITS Summary of this function goes here

% Detailed explanation goes here

num2 = sscanf(sprintf('%u', num), '%1d')';

num2 = [zeros(1,len−length(num2)),num2];

end

function [d] = digits2int(arr)

%DIGITS2INT Summary of this function goes here

% Detailed explanation goes here

s = arr.*(10.ˆ(length(arr)−1:−1:0));

d = sum(s);

end

function output = isgoal(A)

if isempty(find(A==0,1))

output = 1;

else

output = 0;

end

end

function isgoal = isgoalsingle (a, goal)

if a(1,end) == goal

isgoal = 1;

else

isgoal = 0;

end

65

% cost of going for a to b

function cost = costtotraverse(a, b)

cost = norm(a−b);

end

66

A.4 Code for Visitation Sequence Planning with LPA*

modification

%#codegen

function [] = MultiTierGraphSearch LPAstar mexble()

%MULTITIERGRAPHSEARCH The top level graph search

% Detailed explanation goes here

% Author: Muhammad Aneeq uz Zaman

global N M X T max dt max robot pos coordset tpath tkey tg trhs openset ttime

↪→ allwd leafset

n asg = 0;

m asg = 0;

cost = 0;

uvis = 0;

gindex = 0;

S = coder.load('data4.mat');

M = S.M;

N = S.N;

T max = S.T max;

X = S.X;

dt max = S.dt max;

goals = S.goals;

intpts = S.intpts;

robot pos = S.robot pos;

scale = S.scale;

thermals = S.thermals;

%% Preallocating Data

bigmed = 0;

for a = 1:N+M+1

bigmed = bigmed + factorial(N+M+1)/factorial(N+M+1−a);

end

67

maxstruct.path = tree(0,bigmed);maxstruct.key = tree([0;0],bigmed);maxstruct.g

↪→ = tree(0,bigmed);

maxstruct.rhs = tree(0,bigmed);maxstruct.time = tree(0,bigmed);

↪→ maxstruct.openset = zeros(1,bigmed);

maxstruct.leafset = zeros(bigmed); maxstruct.best = 0;

bigtop = (X+1)ˆ(N+M);

mystruct = repmat(maxstruct,X,bigtop); tkey = tree(maxstruct.key);tg = tree(

↪→ maxstruct.g);

trhs = tree(maxstruct.rhs);ttime = tree(maxstruct.time);leafset = zeros(bigmed

↪→);

openset = zeros(bigmed);

%%

coordset = [intpts;thermals;goals(1,:)];

open = zeros(1,bigtop);

open = 1; % adding the root to the open set

t = tree(0,bigtop); % tree structure for storing waypoint

↪→ assignment

f init = zeros(X,1);

% adding vertices pertaining to no waypoint assignment

for x = 1:X

Initialize(x);

coordset(end,1:2) = goals(x,:);

allwd = N+M+1;

[pathcost, ˜, ind] = single robot plan init(x);

mystruct(x,1).path = tree(tpath); mystruct(x,1).key = tree(tkey);mystruct(x,1)

↪→ .g = tree(tg);

mystruct(x,1).rhs = tree(trhs);mystruct(x,1).openset = openset; mystruct(x,1)

↪→ .time =

f = tree(f init,bigtop); % tree for storing f(cost) values

% for each vertex assignment for different robots

unvisit = tree(zeros(X,1),bigtop); % tree for storing the number of

↪→ assigned

% unvisited interestpoints for each robot

q = 1; % current vertex

68

A = zeros(1,N+M);

A new = zeros(1,N+M);

A = int2digits(t.get(q),N+M);

while (˜isgoal(A))

% choose the vertex q with smallest f value in the open set

small = inf;

for i = 1:length(open)

cum cost = sum(f.get(open(i)));

if small > cum cost

q = open(i);

small = cum cost;

end

end

disp(q);

A = int2digits(t.get(q),N+M);

% Expand q, iterate for each successor q' of q, assigning all waypoints (

↪→ thermals

% and interest points)

for way = 1:N+M

% check if way has already been assigned to any robot in vertex q

if A(1,way) ˜= 0

continue;

end

% assign the waypoint to each robot seperately

for robot = 1:X

% robot

% calculating new matrix

A new = A;

A new(1,way) = robot;

if any(t.find(digits2int(A new)))

% disp('WTF');

continue;

end

69

% add a new vertex q' in the graph which should be ordered

q prime = t.addnode(q,digits2int(A new));

% run single robot interleave to calc the cost f of q'

% just for the robot which has the new waypoint

% the function returns the cost plus the 'interest points' not

% visited

ccost = f.get(q);

%% Getting Data from mystruct

tpath = tree(mystruct(robot,q).path);

tkey = tree(mystruct(robot,q).key);

tg = tree(mystruct(robot,q).g);

trhs = tree(mystruct(robot,q).rhs);

openset = mystruct(robot,q).openset;

leafset = mystruct(robot,q).leafset;

ttime = tree(mystruct(robot,q).time);

allwd = [find(A new == robot),N+M+1];

coordset(end,1:2) = goals(robot,:);

%%

[ccost(robot,1), unvis, ind] = single robot plan(way, robot);

% adding unvisited assigned interest points to the tree

u = unvisit.get(q);

u(robot,1) = unvis;

unvisit.addnode(q,u);

% if q' is the goal node add the additional terminal cost

% this is the terminal cost for the case where one thermal is

% assigned to one robot

if isgoal(A new)

ccost(robot,1) = ccost(robot,1) + sum(unvis)*(sum(T max) + M*dt max + 1);

end

f.addnode(q,ccost);

%% Storing Data into mystruct

for r = 1:X

70

if r == robot

end

end

%%

% add q' to open set

open = [open,q prime];

end

end

% take q off open sets

open = open(open ˜= q);

end

%% Plotting Results

figure;

axis([−1 scale+1 −1 scale+1]);

hold on;

%scatter(intpts(1:N−1,1), intpts(1:N−1,2), 's');

scatter(intpts(:,1), intpts(:,2), 's');

scatter(thermals(:,1), thermals(:,2), 'd');

scatter(robot pos(:, 1), robot pos(:, 2), 'o');

scatter(goals(:, 1), goals(:, 2), 'x');

for robot = 1:X

tree path = mystruct(robot,q).path;

a = int2digitstpath(tree path.get(mystruct(robot,q).best))+1;

coordset(end,1:2) = goals(robot,:);

coordset m = [robot pos(robot,1:2); coordset];

path d = coordset m(a,:);

ColOrd = get(gca,'ColorOrder');

[j,robot] = size(ColOrd);

if ColRow == 0

ColRow = j;

end

Col = ColOrd(ColRow,:);

plot(path d(:,1), path d(:,2), 'Color', Col);

end

%%

71

end

function [pathcost, unvis, ind] = single robot plan init(r)

global N M robot allwd n asg m asg cost uvis gindex leafset

% tpath contains the tree of paths from prev iteration

% tvalues values contains all the values of the tree

% open set is the open set in that tree

n asg = length(find(allwd<=N));

m asg = length(find(allwd>N & allwd<=M+N));

cost = inf;

uvis = 0;

gindex = 0;

robot = r;

% this is the part inside the "if edge costs change" loop

% the cost of traversal to the new vertex and the penalty costs

% have changed

% for all directed edges with changed edge costs, do

% update edge cost

% UpdateVertex(u)

ComputeShortestPath();

pathcost = cost;

unvis = uvis;

ind = gindex;

end

function [pathcost, unvis, ind] = single robot plan(new way, r)

global N M robot tpath allwd n asg m asg cost uvis gindex leafset openset

% tpath contains the tree of paths from prev iteration

% tvalues values contains all the values of the tree

% open set is the open set in that tree

72

allwd = allwd(allwd ˜= 0);

n asg = length(find(allwd<=N));

m asg = length(find(allwd>N & allwd<=M+N));

cost = inf;

uvis = 0;

gindex = 0;

robot = r;

% this is the part inside the "if edge costs change" loop

% the cost of traversal to the new vertex and the penalty costs

% have changed

% for all directed edges with changed edge costs, do

% update edge cost

% UpdateVertex(u)

% only update nodes in the openset and leafset

for j = 1:length(leafset)

path = int2digitstpath(tpath.get(leafset(j)));

if any(path == new way)

UpdateVertex(leafset(j));

elseif any(path == N+M+1)

end

end

ComputeShortestPath()

pathcost = cost;

unvis = uvis;

ind = gindex;

end

function key = CalculateKey(s)

global tg trhs

% Calculate key

73

if s == 0

key = [inf;inf];

else

key = [min(tg.get(s),trhs.get(s)) + Heuristic; min(tg.get(s),trhs.get(s))];

end

end

function Initialize(rrobot)

global N M tpath tkey tg trhs ttime openset T max allwd leafset

% open is null

% Configure all rhs and g values to be inf, might have to deal with it in a

% different manner

tpath = tree(0);

ttime = tree(T max(rrobot,1));

tg = tree(inf);

% rhs(start) = 0

trhs = tree(0);

allwd = N+M+1;

% insert goal into tree while calculating key

leafset = 1;

openset = 1;

tkey = tree([0;0]);

leafset = [];

end

function UpdateVertex(u)

global N M coordset robot pos tpath dt max T max robot tkey tg trhs openset

↪→ ttime allwd n asg m asg cost uvis gindex

% if u != start, rhs(u) = min(cost(u,s p) + g(s p)) + terminal cost, where

% s p is pred(u), remember cost(u,s p)=inf if the path cost exceeds T max + dt

if u ˜= 1

if any(allwd == path(end))

if path(end−1) == 0

74

rhs = tg.get(trhs.getparent(u)) + costtotraverse(coordset(path(end),:),

↪→ robot pos(robot, 1:2));

else

rhs = tg.get(trhs.getparent(u)) + costtotraverse(coordset(path(end),:),

↪→ coordset(path(end−1),:));

end

if rhs > ttime.get(ttime.getparent(u))

rhs = inf;

end

else

rhs = inf;

end

if isgoalsingle (path, N+M+1)

n = length(find(path<=N))−1;

rhs = rhs + (n asg − n)*(T max(robot,1) + m asg*dt max + 1);

if rhs < cost

cost = rhs;

uvis = n asg − n;

gindex = u;

end

end

trhs = trhs.set(u, rhs);

end

% if u in open, remove from open

openset = openset(openset ˜= u);

% if g(u) != rhs(u), insert in open with new calculated key, remember

% g(u)=inf if its a new vertex

if tg.get(u) ˜= trhs.get(u)

key = CalculateKey(u);

tkey = tkey.set(u, key);

% insert u into openset according to lexial ordering

flag = 0;

if isempty(openset)

75

openset = u;

elseif lexiless(key,tkey.get(openset(1)))

openset = [u;openset];

else

for i = 2:length(openset)

if lexiless(key,tkey.get(openset(i)))

openset = [openset(1:i−1);u;openset(i:end)];

flag = 1;

break;

end

end

if flag == 0

openset = [openset;u];

end

end

end

end

function ComputeShortestPath()

global N M dt max T max robot tpath tkey tg trhs openset ttime gindex leafset

% loop while top key in open set < key of goal or rhs(goal)!=g(goal)

if gindex == 0

rhsu = inf; gu = inf;

else

rhsu = trhs.get(gindex);gu = tg.get(gindex);

end

while lexiless(tkey.get(openset(1)),CalculateKey(gindex)) | | rhsu ˜= gu

% u = pop the top vertex from open set

u = openset(1);

openset = openset(2:end);

% if g(u) > rhs(u), g(u) = rhs(u), for all succ(u) updatevertex

tg = tg.set(u,trhs.get(u));

% if u has already been expanded, update all its successors

if ˜tg.isleaf(u)

76

child = t.getchildren(u);

for i = 1:length(child)

UpdateVertex(child(i));

end

% if u is leaf, calculate succ(u), initialize g, rhs and other tree vertices

↪→ as inf and updatevertex

elseif ˜isgoalsingle(int2digitstpath(tpath.get(u)),N+M+1)

leafset = leafset(leafset˜=u);

for rway = 1:N+M+1

path = int2digitstpath(tpath.get(u));

if any(path == rway)

continue;

end

new path = [path,rway];

index = tpath.addnode(u,digits2int(new path));

m = length(find(new path>N & new path<=M+N));

ttime.addnode(u,T max(robot,1) + m*dt max);

tkey.addnode(u,[0;0]);

tg.addnode(u,inf);

trhs.addnode(u,inf);

% the new node is added in leafset

leafset = [leafset,index];

% update

UpdateVertex(index);

end

end

else

% else, g(u) = inf, for all succ(u) and u updatevertex

tg = tg.set(u,inf);

% if u has already been expanded, update all its successors

% if u is leaf, calculate succ(u), initialize g, rhs and other tree vertices

↪→ as inf and updatevertex

if ˜tg.isleaf(u)

child = tg.getchildren(u);

for i = 1:length(child)

UpdateVertex(child(i));

77

end

elseif isgoalsingle(int2digitstpath(tpath.get(u)),N+M+1)

UpdateVertex(u);

else

leafset = leafset(leafset˜=u);

for kway = 1:N+M+1

path = int2digitstpath(tpath.get(u));

if any(path == kway)

continue;

end

new path = [path,kway];

index = tpath.addnode(u,digits2int(new path));

m = length(find(new path>N && new path<=M+N));

ttime.addnode(u,T max(robot,1) + m*dt max);

tkey.addnode(u,[0;0]);

tg.addnode(u,inf);

trhs.addnode(u,inf);

% the new node is added in leafset

leafset = [leafset,index];

% update

UpdateVertex(index);

end

end

end

if gindex ˜= 0

rhsu = trhs.get(gindex);

gu = tg.get(gindex);

end

if isempty(openset)

break;

end

end

function [num2] = int2digits(num , len)

%INT2DIGITS Summary of this function goes here

% Detailed explanation goes here

78

buff = num2str(num);

temp = zeros(1,2*length(buff));

temp([1:2:2*length(buff)])=buff;

num2=str2num(char(temp));

num2 = [zeros(1,len−length(num2)),num2];

end

function [num2] = int2digitstpath(num)

%INT2DIGITS Summary of this function goes here

% Detailed explanation goes here

buff = num2str(num);

temp = zeros(1,2*length(buff));

temp([1:2:2*length(buff)])=buff;

num2=str2num(char(temp));

num2 = [0,num2];

end

function [d] = digits2int(arr)

%DIGITS2INT Summary of this function goes here

% Detailed explanation goes here

s = arr.*(10.ˆ(length(arr)−1:−1:0));

d = sum(s);

end

function output = searchtree(t,A new,N,M)

depth = 1;

queue = zeros(1,N+M);

node no = 1;

node no parent = 0;

output = 0;

% children = zeros(1,N+M);

while (node no <= t.nnodes)

A = int2digits(t.get(node no),N+M);

if all(A new == A)

output = 1;

return;

79

elseif ˜t.isleaf(node no) && all(A(A˜=0) == A new(A˜=0))

depth = depth + 1;

queue(depth) = 1;

node no parent = node no;

children = t.getchildren(node no parent);

node no = children(1);

else % if not even partial match or

↪→ isleaf

queue(depth) = queue(depth) + 1; % go to next node at same depth

children = t.getchildren(node no parent);

while queue(depth) > numel(children) % if node larger than maximum

↪→ branch no, go up one step and repeat

if depth == 1

return;

end

queue(depth)=0;

depth = depth − 1;

queue(depth) = queue(depth) + 1;

node no parent = t.getparent(node no parent);

children = t.getchildren(node no parent);

end

node no = children(queue(depth));

end

end

end

function output = isgoal(A)

if length(find(A==0)) == 0

output = 1;

else

output = 0;

end

end

function isgoal = isgoalsingle (a, goal)

if a(1,end) == goal

80

isgoal = 1;

else

isgoal = 0;

end

end

function cost = costtotraverse(a, b)

cost = norm(a−b);

end

function h = Heuristic ()

h = 0;

end

function l = lexiless (key1, key2)

if key1(1)<key2(1) | | (key1(1)==key2(1) && key1(2)<key2(2))

l = 1;

else

l = 0;

end

end

81

REFERENCES

[1] “Helios crash probed,” 2007. [Online]. Available:
http://www.nasa.gov/missions/research/helios.html/

[2] P. B. MacCready, “Optimum airspeed selector,” Journal of Soaring, 1958.

[3] H. Reichmann, “Cross-country soaring,” Soaring Society of America, pp. 91–92, 1993.

[4] J. Wharingtoni, Ph.D. dissertation.

[5] M. J. Allen and V. Lin, “Guidance and control of an autonomous soaring uav,” NASA,
Tech. Rep. TM-2007-214611/REV1, April 2007.

[6] K. Cheng and J. W. Langelaan, “Guided exploration for coordinated autonomous soar-
ing flight,” in AIAA Guidance, Navigation, and Control Conference, January 2014.

[7] K. Andersson, I. Kaminer, V. Dobrokhodov, and V. Cichella, “Thermal centering con-
trol for autonomous soaring; stability analysis and flight test results,” Journal of Guid-
ance, Control, and Dynamics, vol. 35, no. 3, pp. 963–975, 2012.

[8] W. B. Kagabo and J. R. Kolodziej, “Trajectory determination for energy efficient au-
tonomous soaring,” in American Control Conference (ACC), 2011. IEEE, 2011, pp.
4655–4660.

[9] A. T. Klesh, P. T. Kabamba, and A. R. Girard, “Optimal cooperative thermalling of un-
manned aerial vehicles,” in Optimization and Cooperative Control Strategies. Springer,
2009, pp. 355–369.

[10] J. Le Ny, E. Frazzoli, and E. Feron, “The curvature-constrained traveling salesman
problem for high point densities,” in Decision and Control, 2007 46th IEEE Conference
on. IEEE, 2007, pp. 5985–5990.

[11] J. Le Ny and E. Feron, “An approximation algorithm for the curvatureconstrained
traveling salesman problem,” in Proceedings of the 43rd Annual Allerton Conference on
Communications, Control and Computing, 2005, pp. 620–9.

[12] L. E. Dubins, “On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents,” American Journal of
mathematics, pp. 497–516, 1957.

82

[13] S. E. Butt and D. M. Ryan, “An optimal solution procedure for the multiple tour max-
imum collection problem using column generation,” Computers & Operations Research,
vol. 26, no. 4, pp. 427–441, 1999.

[14] S. Boussier, D. Feillet, and M. Gendreau, “An exact algorithm for team orienteering
problems,” 4or, vol. 5, no. 3, pp. 211–230, 2007.

[15] H. Tang and E. Miller-Hooks, “A tabu search heuristic for the team orienteering prob-
lem,” Computers & Operations Research, vol. 32, no. 6, pp. 1379–1407, 2005.

[16] C. Archetti, A. Hertz, and M. G. Speranza, “Metaheuristics for the team orienteering
problem,” Journal of Heuristics, vol. 13, no. 1, pp. 49–76, 2007.

[17] P. Vansteenwegen, W. Souffriau, G. V. Berghe, and D. Van Oudheusden, “Metaheuris-
tics for tourist trip planning,” in Metaheuristics in the service industry. Springer, 2009,
pp. 15–31.

[18] D. Thakur, M. Likhachev, J. Keller, V. Kumar, V. Dobrokhodov, K. Jones, J. Wurz, and
I. Kaminer, “Planning for opportunistic surveillance with multiple robots,” in Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE,
2013, pp. 5750–5757.

[19] M. Diehl, H. G. Bock, H. Diedam, and P.-B. Wieber, “Fast direct multiple shooting
algorithms for optimal robot control,” in Fast motions in biomechanics and robotics.
Springer, 2006, pp. 65–93.

[20] V. H. Schulz, H. G. Bock, and R. W. Longman, “Optimal path planning for satellite
mounted robot manipulators,” NASA STI/Recon Technical Report A, vol. 95, p. 81363,
1993.

[21] K. P. Bollino, L. R. Lewis, P. Sekhavat, and I. M. Ross, “Pseudospectral optimal control:
a clear road for autonomous intelligent path planning,” in Proceedings of the AIAA
InfoTech at Aerospace Conference and Exhibit, 2007, pp. 1228–1241.

[22] I. M. Ross and F. Fahroo, “Pseudospectral methods for optimal motion planning of
differentially flat systems,” Automatic Control, IEEE Transactions on, vol. 49, no. 8,
pp. 1410–1413, 2004.

[23] T. Inanc, K. Misovec, and R. M. Murray, “Nonlinear trajectory generation for un-
manned air vehicles with multiple radars,” in Decision and Control, 2004. CDC. 43rd
IEEE Conference on, vol. 4. IEEE, 2004, pp. 3817–3822.

[24] Z. Hao, K. Fujimoto, and Y. Hayakawa, “Optimal trajectory generation for nonlinear
systems based on double generating functions,” in American Control Conference (ACC),
2013. IEEE, 2013, pp. 6382–6387.

[25] S. M. LaValle, “Rapidly-exploring random trees a ew tool for path planning,” 1998.

83

[26] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic roadmaps
for path planning in high-dimensional configuration spaces,” Robotics and Automation,
IEEE Transactions on, vol. 12, no. 4, pp. 566–580, 1996.

[27] O. A. Yakimenko, “Direct method for rapid prototyping of near-optimal aircraft tra-
jectories,” Journal of Guidance, Control, and Dynamics, vol. 23, no. 5, pp. 865–875,
2000.

[28] R. Choe, V. Cichella, E. Xargay, N. Hovakimyan, A. C. Trujillo, and I. Kaminer,
“A trajectory-generation framework for time-critical cooperative missions,” AIAA In-
fotech@ Aerospace, Boston, MA. AIAA, vol. 4582, 2013.

[29] I.-M. Chao, B. L. Golden, and E. A. Wasil, “A fast and effective heuristic for the
orienteering problem,” European Journal of Operational Research, vol. 88, no. 3, pp.
475–489, 1996.

[30] L. Ke, C. Archetti, and Z. Feng, “Ants can solve the team orienteering problem,”
Computers & Industrial Engineering, vol. 54, no. 3, pp. 648–665, 2008.

[31] P. Vansteenwegen, W. Souffriau, G. V. Berghe, and D. Van Oudheusden, “Metaheuris-
tics for tourist trip planning,” in Metaheuristics in the service industry. Springer, 2009,
pp. 15–31.

[32] W. Souffriau, P. Vansteenwegen, G. V. Berghe, and D. Oudheusden, “A greedy ran-
domised adaptive search procedure for the team orienteering problem,” in EU/MEeting,
2008, pp. 23–24.

[33] S. Russell, P. Norvig, and A. Intelligence, “A modern approach,” Artificial Intelligence.
Prentice-Hall, Egnlewood Cliffs, vol. 25, 1995.

[34] G. Ramalingam and T. Reps, “An incremental algorithm for a generalization of the
shortest-path problem,” Journal of Algorithms, vol. 21, no. 2, pp. 267–305, 1996.

[35] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning a,” Artificial Intelligence,
vol. 155, no. 1, pp. 93–146, 2004.

[36] P. Morin and C. Samson, “Trajectory tracking for nonholonomic vehicles,” in Robot
Motion and Control. Springer, 2006, pp. 3–23.

[37] P. Bhatta, “Nonlinear stability and control of gliding vehicles,” Ph.D. dissertation,
Princeton University, 2004.

[38] E. Xargay, I. Kaminer, A. Pascoal, N. Hovakimyan, V. Dobrokhodov, V. Cichella,
A. Aguiar, and R. Ghabcheloo, “Time-critical cooperative path following of multiple
uavs over time-varying networks,” DTIC Document, Tech. Rep., 2011.

[39] R. T. Farouki and T. Sakkalis, “Pythagorean hodographs,” IBM Journal of Research
and Development, vol. 34, no. 5, pp. 736–752, 1990.

84

[40] G. J. Ruijgrok, Elements of airplane performance. Delft university press, 1990.

[41] R. T. Farouki, Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable.
Springer, 2008.

85

