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ABSTRACT

This thesis is concerned with developing novel rank aggregation methods for

gene prioritization. Gene prioritization refers to a family of computational

techniques for inferring disease genes through a set of training genes and

carefully chosen similarity criteria. Test genes are scored based on their av-

erage similarity to the training set, and the rankings of genes under various

similarity criteria are aggregated via statistical methods. The contributions

of our work are threefold: a) First, based on the realization that there is

no unique way to define an optimal aggregate for rankings, we investigate

the predictive quality of a number of new aggregation methods and known

fusion techniques from machine learning and social choice theory. b) Second,

we propose a new approach to genomic data aggregation, termed HyDRA

(Hybrid Distance-score Rank Aggregation), which combines the advantages

of score-based and combinatorial aggregation techniques. We also propose

incorporating a new top-vs-bottom (TvB) weighting feature into the hybrid

schemes. The TvB feature ensures that aggregates are more reliable at the

top of the list, rather than at the bottom, since only top candidates are tested

experimentally. Specifically, we combine score-based Borda and Kendall per-

mutation distance aggregation methods with TvB weightings. c) Third, we

propose an iterative procedure for gene discovery that operates via success-

ful augmentation of the set of training genes by genes discovered in previous

rounds, checked for consistency.

We tested HyDRA on a number of gene sets, including Autism, Breast

cancer, Colorectal cancer, Endometriosis, Ischaemic stroke, Leukemia, Lym-

phoma, and Osteoarthritis. Furthermore, we performed iterative gene dis-

covery for Glioblastoma, Meningioma and Breast cancer, using a sequentially

augmented list of training genes related to the Turcot syndrome, Li-Fraumeni

condition and other diseases. The methods outperform state-of-the-art soft-

ware tools such as ToppGene and Endeavour.
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Chapter 1

INTRODUCTION

1.1 Introduction to Molecular Biology

We begin with a brief introduction to molecular biology, summarized from

parts of Cooper and Hausman [1]. The basic cell theory states that 1) all

living organisms are composed of one or more cells, 2) the cell is the most

basic unit of life, and 3) all cells arise from pre-existing living cells. Thus,

in order to study living organisms, such as humans, it is crucial to study

our cells. The macromolecule deoxyribonucleic acid (DNA) contains the

hereditary information that is passed on from cell to cell, thereby making

it an important molecule to study. DNA is composed of two pyrimidines,

cytosine (C) and thymine (T), and two purines, adenine (A) and guanine

(G). The discovery of the structure of DNA goes back to 1949, when Chargaff

realized that the amount of adenine was similar to the amount of thymine,

and likewise the amount of guanine was almost the same as the amount

of cytosine, which suggests A and T may be linked, and G and C may be

related in structure as well. Later, Rosalind Franklin and Maurice Wilkins

suggested a helical model of DNA, based on X-ray diffraction patterns, and

James Watson and Francis Crick concluded that the only model that worked

is a double helix (Figure 1.1). Today it is widely known that the DNA is a

double helix with complementary base pairing, A with T and C with G.

DNA has the ability to replicate itself, thanks to the complementary base-

pairing property. There were three proposed models for replication: semi-

conservative, conservative, and dispersive, as shown in Figure 1.2. Our goal

is to preserve the sequences of both strands of DNA after the replication,

and the conservative model fails by preserving only one copy of itself and

introducing an error prone replicate. Likewise, the dispersive model fails

to produce even one copy of the original DNA. The most reasonable model
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Figure 1.1: Complementary base-pairing of DNA. Source: wikipedia.

is semiconservative as it utilizes the complementary base pairing property.

According to this model, one strand is used as a template to synthesize the

complementary bases, and likewise the other strand is a template and adds

on the complementary bases. As a result, the molecule successfully makes

two copies of itself from one copy, where the red indicates one strand from

the original copy and the pink corresponds to the newly synthesized strand.

This process is known as DNA Replication.

Ribonucleic acid (RNA) is another information storage molecule made up

of nucleotides, but unlike DNA, RNA does not have a hydroxyl group, and is

usually single-stranded. RNA has two pyrimidines, thymine (T) and uracil

(U), and two purines, adenine (A) and guanine (G). Transcription is the

process of copying the DNA molecules into RNA molecules by using the

complementary base-pairing property.

The information in RNA is used to build proteins, which performs many

crucial functions in living organisms, through a process called translation.

The protein is made up of a sequence of 20 amino acids according to the

codon table in Table 1.1. As there are 4 bases in RNA, if two nucleotides

code for one amino acid, there would be 42 = 16 amino acids, which is less

than 20. Thus, each amino acid is made up of three nucleotides, and the

genetic code is called a triplet code, and the nucleotides are read in groups

of 3 called codons. This results in 43 = 64 possibilities, where 61 specify an
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Figure 1.2: Semiconservative model of DNA replication. Source: wikipedia.

amino acid and 3 specify the end of the protein (STOP codon). As illustrated

in Table 1.1, an amino acid can be specified by more than one codon, in which

case the genetic code is considered degenerate.

As an analogy, DNA replication can be thought of as an oral statement

of the sentence “Biology is fun”, the transcription is writing down the sen-

tence in English, the only differece being the medium of language, and the

translation is interpreting the sentence into a different language. The flow of

genetic information from DNA to RNA to protein is known as the “Central

Dogma of Molecular Biology”, as illustrated in Figure 1.3.

1.2 Mutations and Diseases

All three processes of the central dogma of molecular biology depend on reli-

able pairing of complementary bases. Unfortunately, no biological process is

completely accurate in its implementation and execution. DNA replication

is the most reliable of the three because mistakes in replication lead to al-

terations in the nucleotide sequence in the DNA and they are passed on to

daughter cells when the cell divides. The heritable changes in the DNA are

called mutations, and they can have positive or negative effects. Genes refer

to DNA and RNA sequences that code for proteins and functional RNAs,

which are responsible for genetic traits. As a general convention, we denote

a normal, unmutated (wild type) gene by gene+ and a mutated form of the

gene by gene−. In single-cell organisms, all daughter cells have the mutation.

In multi-cell organisms, mutations can be either somatic, that is passed to
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Table 1.1: The genetic codon table.

daughter cells in the area, or germ-line, that is passed to new organisms. In

general, germ-line mutations may affect the survivability of an organism, as

all new cells acquire the mutation. On the other hand, mistakes in tran-

scription or translation are not as critical because many copies of RNA are

produced, and RNAs are not heritable over multiple generations.

Even though DNA corrects mistakes through proofreading and mismatch

repair, it fails to correct all mistakes, leading to mutations carried over to

daughter cells. There are 4 main types of mutations: base substitutions,

frameshift, insertion, and deletion. Base substitutions and frameshift muta-

tions are referred to as point mutations, and insertions and deletions (which

are sometimes called “indels” collectively) are on a larger scale, chromosomal

mutations.

Base substitution mutations occur when the DNA polymerase mistakenly

replaces one basepair with another. There are 3 categories of base substi-

tution mutations: missense, nonsense, same sense. Suppose the template

DNA was AAC, which codes for the UUG = Leu protein. If the first base

changed to a C, which codes for GUG = Val, a missense mutation occurred,

where the message has been changed. If the second base changed to a T,
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Figure 1.3: Central dogma of molecular biology. Source: wikipedia.

which codes for UAG = STOP, this truncates the message due to the stop

codon. On the other hand, if the third base changed to a T, encoding UUA

= Leu, the message did not change at all, and the same sense mutation oc-

curred. Same sense mutations may not have phenotypical consequences, as

they do not change the encoded protein. Nevertheless, the full impacts of

sense mutations are currently not well understood. Nonsense mutation causes

premature termination and may affect the protein function if the region was

important. However, missense mutation can potentially be disastrous. For

example, sickle cell anemia, which is characterized by defective β-globin sub-

unit in hemoglobin protein, is caused by a change in the β-globin gene at

position 7. Likewise, phenylketonuria (PKU) is also caused by a single base

change in an enzyme.

Frameshift mutations disrupt the normal reading frame by an insertion or

deletion of 1 or 2 bases. As a result, all codons after the insertion or deletion

are altered and usually result in premature truncation. On the other hand, if

there is a deletion of 3 bases, the protein only loses one amino acid and does

not change the reading frame, making it non-frameshift mutation. However,

the loss of a single amino acid could be detrimental as well. Cystic fibrosis
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is characterized by faulty protein CFTR, where 70% of the cystic fibrosis

is caused by an in-frame removal of a Phe codon in CFTR, preventing the

protein from folding properly.

At the chromosomal level, there are two main types of mutations: inser-

tions and deletions. Insertions are caused by large pieces of DNA inserted

into gene sequence, usually more than 100 bases. Examples of diseases caused

by insertions are: 1) Huntington’s disease, where the HTT gene contains a

repeated sequence of CAG; 2) hemophilia, caused by insertions in the F8

gene; and 3) fragile X syndrome, a result of CGG repeats in the fragile X

mental retardation 1 (FMR1) gene on the X chromosome. On the other

hand, deletions are due to loss of large pieces of DNA sequence. For in-

stance, Duchenne’s muscular dystrophy disorder is caused by deletions in

the dystrophin (DMD) gene.

All of the above relationships between genetic mutations and diseases

have been studied through long, laborious “knockout” experiments, where

the scientists genetically modify a mouse and observe changes in its behav-

ior and appearance. As data scientists, we propose a solution, collectively

called “gene prioritization,” to eliminate the number of knockout experi-

ments, thereby saving time, cost, and mice. In the subsequent chapters, we

delve into gene prioritization methods, which have been previously presented

in [2].
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Chapter 2

MOTIVATION AND LITERATURE
REVIEW

2.1 Motivation

Fundamental results from social choice theory, political and computer sci-

ences, and statistics have shown that there exists no consistent, fair and

unique way to aggregate rankings. Instead, one has to decide on an aggrega-

tion approach using a predefined set of desirable properties for the aggregate.

The aggregation methods fall into two categories, score-based and distance-

based approaches, each of which has its own drawbacks and advantages. This

work is motivated by the observation that merging these two techniques in

a computationally efficient manner, and by incorporating additional con-

straints, one can ensure that the predictive quality of the resulting aggrega-

tion algorithm is very high. We refer to these methods as hybrid methods,

and outline how they can be used in an iterative discovery procedure and

subsequently aggregated to produce very accurate gene rankings.

Identification of genes that predispose an individual to a disease is a prob-

lem of great interest in medical sciences and systems biology [3]. The most

accurate and powerful methods used for identification are experimental in

nature, involving normal and disease samples [4]. Experiments are time-

consuming and costly, complicated by the fact that typically, multiple genes

have to be jointly mutated to trigger the onset of a disease. Given the large

number of human genes (≥ 25, 000), testing even relatively small subsets of

pairs of candidate genes is prohibitively expensive [5].

To mitigate this issue, a set of predictive analytical and computational

methods have been proposed under the collective name gene prioritization

techniques. Gene prioritization refers to the complex procedure of ranking

genes according to their likelihoods of being linked to a certain disease. The

likelihood function is computed based on multiple sources of evidence, such
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as sequence similarity, linkage analysis, gene annotation, functionality and

expression activity, gene product attributes – all determined with respect to

a set of training genes.

2.2 Prior Work

A wide range of tools has been developed for identifying genes involved in

a disease, as surveyed [6]. Existing software includes techniques based on

network information, such as GUILDify [7] and GeneMANIA [8], data min-

ing and machine learning-based approaches as described in [9], POCUS [10],

and SUSPECTS [3], and methods using statistical analysis, including En-

deavour [11, 12], ToppGene [13], and NetworkPrioritizer [14]. Here, we focus

on statistical approaches coupled with new combinatorial algorithms for gene

prioritization, and emphasize one aspect of the prioritization procedure: rank

aggregation.

The methods of choice for aggregating multiple sources of similarity evi-

dence include Q-statistics and order statistics (Endeavour) and Fisher statis-

tics (ToppGene). An exception is the very recent work NetworkPrioritizer,

which relies on a small number of well known combinatorial techniques from

social choice theory that does not make direct use of scores in the form of

p-values.

The problem of aggregating rankings of distinct objects or entities provided

by a number of experts, voters, or search engines has a rich history [15]. One

of the key findings is that various voting paradoxes arise when more than

three candidates are to be ranked: it is frequently possible not to have a

candidate that wins all pairwise competitions (the Condorcet paradox) and it

is theoretically impossible to guarantee the existence of an aggregate solution

that meets a certain predefined set of criteria (such as those imposed by

Arrow’s impossibility theorem [15]). These issues carry over to aggregation

methods used for gene discovery, and as a result, the rank-ordered lists of

genes heavily depend on the particular aggregation method used.

Two families of methods have found wide applications in rank aggregation:

combinatorial methods (including score- and distance-based approaches) [16]

and statistical methods. In the bioinformatics literature, the aggregation

methods of choice are statistical in nature, relying on pre-specified hypothe-
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ses to evaluate the distribution of the gene rankings. One of the earliest

prioritization softwares, Endeavour, uses the Q-statistics for multiple signifi-

cance testing, and measures the minimum false discovery rate at which a test

may be called significant. In particular, rankings based on different similarity

criteria are combined via order statistics approaches. For this purpose, one

uses the rank ratio (normalized ranking) of a gene g for m different criteria,

r1(g), . . . , rm(g) and recursively computes the Q-value, defined as

Qi(r1(g), . . . , rm(g)) = m!

∫ r1(g)

0

∫ r2(g)

s1

. . .

∫ rm(g)

sm−1

dsmdsm−1 . . . ds1 .

Post-processed Q-values are used to create the resulting ranking of genes.

The drawbacks of the method are that it is based on a null hypothesis that

is difficult to verify in practice, and that it is computationally expensive, as

it involves evaluating an m-fold integral. To enable efficient scaling of the

method, Endeavour resorts to approximating the Q-integral. The influence

of the approximation errors on the final ranking is hard to assess, as small

changes in scores may result in significant changes of the aggregate orderings.

Likewise, ToppGene uses a well-known statistical approach, called the

Fisher χ2 method. It first determines the p-values of similarity score indexed

by j, denoted by p(j), for j = 1, . . . ,m. The p-values are computed through

multiple pre-processing stages, involving estimation of the information con-

tents (i.e., weights) of annotation terms, setting up a similarity criteria based

on Sugeno fuzzy measures (i.e., non-additive measures) [17], and performing

meta-testing. The use of fuzzy measures ensures that all similarities are non-

negative. Then, under the hypothesis of independent tests, ToppGene uses

Fisher’s inverse χ2 result, stating that −2
∑m

j=1 log p(j) → χ2(2m). Here,

χ2(2m) stands for the chi-square distribution with 2m degrees of freedom.

The result is asymptotic in nature, and based on possibly impractical and

unverifiable independence assumptions.

A number of methods, and additive scoring methods in particular, have the

following drawbacks: a) they assume that only the total score matters, and

the balance between the number of criteria that highly ranked the gene and

those that ranked it very low is irrelevant. For example, outlier rankings may

reduce the overall ranking of a gene to the point that it is not considered a

disease gene candidate, while the outlier itself may be a problematic criterion.
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To illustrate this observation, consider a gene that was ranked 1st, 2nd,

1st, 20th by four criteria. At the same time, consider another gene that

was ranked 6th by all four criteria. It may be unclear which of these two

genes is more likely to be involved in the disease, given that additive score

methods would rank the two genes equally (as one has (1+2+1+20)/4=6).

Nevertheless, it appears reasonable to assume that the first candidate is a

more reliable choice for a disease gene, as it had a very high ranking for three

out of four criteria. b) No distinction is made about the accuracy of ranking

genes in any part of the list; i.e., the aggregate ranking has to be uniformly

accurate at the top, middle and bottom of the list. Clearly, neither of the

two aforementioned assumptions is justified in the gene prioritization process:

there are many instances where genes similar only under a few criteria (such

as sequence similarity or linkage distance) are involved in the same disease

pathway. Furthermore, as the goal of prioritization is to produce a list of

genes to be experimentally tested, only the highest ranked candidate genes

are important and should have higher accuracy than other genes in the list.

In addition, most known aggregation methods are highly sensitive to outliers

and ranking errors.

2.3 Our Contributions

We propose a new approach to gene prioritization by introducing a number of

novel aggregation paradigms, which we collectively refer to as HyDRA (Hy-

brid Distance-score Rank Aggregation). The gist of HyDRA is to combine

combinatorial approaches that have universal axiomatic underpinnings with

statistical evidence pertaining to the accuracy of individual rankings. Our

preferred distance measure for combinatorial aggregation is the Kendall dis-

tance [18], which counts the number of pairwise disagreements between two

rankings, and was axiomatically postulated by Kemeny in [16]. The Kendall

distance is closely related to the Kendall rank correlation coefficient [19], [20].

As such, it has many properties useful for gene prioritization, such as mono-

tonicity, reinforcement and Pareto efficiency [21]. The Kendall distance can

be generalized to take into account positional relevance of items, as was done

in our companion paper [22]. There, it was shown that by assigning weights

to pairs of positions in rankings, it is possible to a) eliminate negative outliers
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from the aggregation process, b) include quantitative data into the aggregate,

and c) ensure higher accuracy at the top of the ranking than at the bottom.

The contributions of this work are threefold. First, we introduce new

weighted distance measures, where we compute the weights based on statis-

tical evidence in the form of a function of the difference between p-values of

adjacently ranked items. Aggregation weights based on statistical evidence

improve the accuracy of the combinatorial aggregation procedure and make

the aggregate more robust to estimation errors. Second, we describe how

to scale the weights obtained based on statistical evidence by a decreasing

sequence of TvB (Top versus Bottom) multipliers that ensure even higher

accuracy at the top of the aggregated list. As aggregation under the Kendall

metric is NP hard [23], and the same is true of the weighted Kendall metric,

we propose a 2-approximation method that is stable under small perturba-

tions. Aggregation is accomplished via weighted bipartite matching, such as

the Hungarian algorithm and derivatives thereof [24]. Third, we test HyDRA

within two operational scenarios: cross-validation and disease gene discovery.

In the former case, we assess the performance of different hybrid methods

with respect to the choice of the weighting function and different number of

test and training genes. In the latter case, we adapt aggregation methods to

gene discovery via a new iterative re-ranking procedure.
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Chapter 3

SYSTEM AND METHODS

In our subsequent exposition, we use Greek lower case letters to denote com-

plete linear orders (permutations), and unless explicitly mentioned otherwise,

our findings also hold for partial (incomplete) permutations. Latin lower case

letters are reserved for score vectors or scalar scores, and which of these en-

tities we refer to will be clear from the context. The number of test genes

equals n, while the number of similarity criteria equals m. Throughout the

chapter, we also use [k] to denote the set {1, . . . , k} and Sn to denote the set

of all permutations on n elements – the symmetric group of order n!.

For a permutation σ = (σ(1), . . . , σ(n)), the rank of element i in σ,

rankσ(i), equals σ−1(i), where σ−1 denotes the inverse permutation of σ.

For a vector of scores x = (x(i))ni=1 ∈ Rn, σx represents a permutation de-

scribing the scores in decreasing order, i.e., σx(i) = argmaxk∈Tix(k), where

Ti is defined recursively as Ti = Ti−1 \ σx(i), with T0 = [n]. For example,

if x = (2.5, 3.8, 1.1, 0.7), then σx = (2, 1, 3, 4). Note that if p is a vector of

p-values, higher scores are associated with smaller p-values, so that argmax

should be replaced by argmin.

The terms gene and element are used interchangeably, and each permu-

tation is tacitly assumed to be produced by one similarity criterion. For

a set of permutations Σ = {σ1, . . . , σm}, σi = (σi(1), . . . , σi(n)), an aggre-

gate permutation σ∗ is a permutation that optimally represents the rank-

ings in Σ. Combinatorial aggregates may be obtained using score-based and

distance-based methods. Note that score and distance-based methods do not

make use of quantitative information such as, for example, p-values (for the

case of gene prioritization) or ratings (for the case of social choice theory

and recommender systems). In what follows, we briefly describe score and

distance-based methods and introduce their hybrid counterparts which allow

to integrate p-values and relevance constraints into combinatorial aggrega-

tion approaches.
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3.1 Score-Based Methods

Score-based methods are the simplest and computationally least demanding

techniques for rank aggregation. As inputs, they take a set of permutations

or partial permutations, Σ = {σ1, . . . , σm}, σi = (σi(1), . . . , σi(n)). For each

permutation σi ∈ Σ, the scoring rule awards s(σi(1), i) points to element

σi(1), s(σi(2), i) points to element σi(2), and so on. For a fixed i, the scores

are non-increasing functions of their first index. Each element k ∈ [n] is

assigned a cumulative score equal to
∑m

j=1 s(k, j). The simplest scoring

method is Borda’s count, for which s(k, j) = n− k + 1 independent on j.

The Borda count and related scoring rules exclusively use positional infor-

mation in order to provide an aggregate ranking. Ignoring actual p-values

(ratings) may lead to aggregation problems, as illustrated by the next exam-

ple.

Example 1: Assume that n = 5 elements were rated according to x =

(7.0, 7.01, 0.2, 0.45, 7.001). The ranking induced by this rating equals σx =

(2, 5, 1, 4, 3), indicating that element 2 received the highest rating, element 5

received the second highest rating and so on. According to the Borda rule,

element 2 receives 5 points, element 5 receives 4 points, etc. Despite the

fact that candidates 2 and 1 are almost tied with scores of 7.01 and 7.0,

and that the difference in their scores may be attributed to computational

imprecision, element 2 receives 5 points while element 1 receives only 3 points.

As a result, very small differences in ratings may result in large differences

in Borda scores.

One way to approach the problem is to quantize the score and work with

rankings with ties, instead of full linear orders (i.e. permutations). Elements

tied in their rank receive the same number of points in the generalized Borda

scheme. A preferred alternative, which we introduce in this work, is the

Hybrid Borda method.

Let p(i, j) denote the p-value of gene i computed under similarity criteria

j, j = 1, . . . ,m. The cumulative score of element i in the hybrid Borda setting

13



is computed as

Si =
m∑
j=1

(∑
k 6=i p(k, j)1{p(k,j)≥p(i,j)}

p(i, j)

)
.

The overall aggregate is obtained by ordering S in a descending order. It

is straightforward to see that the previous score function extends the Borda

method in so far as it scores an element (gene) according to the total score of

elements ranked lower than the element. Recall that in Borda’s method, the

element ranked i is awarded n− i+ 1 points, as n− i+ 1 elements are ranked

below it, each receiving the same score 1. In our Hybrid Borda method, each

element is awarded a score in accordance with the p-values of elements ranked

below it.

Example 2: Let n = 4 and m = 2, where the two ratings equal to

p1 = (0.2, 0.3, 0.01, 0.12) and p2 = (0.1, 0.4, 0.2, 0.35). The Hybrid Borda

scores Si for genes i = 1, 2, 3, 4 are computed as S1 = 0.3
0.2

+ (0.4+0.2+0.35)
0.1

= 11,

S2 = 0, S3 = (0.2+0.3+0.12)
0.01

+ (0.4+0.35)
0.2

= 65.75, and S4 = (0.2+0.3)
0.12

+ 0.4
0.35

= 5.3.

By ordering the values Si in a descending manner, we obtain the overall

aggregate σHB = (3, 1, 4, 2).

The hybrid Borda method can be extended further by adding a TvB fea-

ture, resulting in the Weighted Hybrid Borda method. This is accomplished

by including increasing (multiplier) weights into the score aggregates, thus

stressing the top of the list more than the bottom. More precisely, the score

of gene i is computed as:

Si =
m∑
j=1

(∑
k 6=iwm(k, j)p(k, j)1{p(k,j)≥p(i,j)}

wm(i, j)p(i, j)

)
,

where one simple choice for the weight multipliers that provides good empir-

ical performance equals

wm(i, j) =
1

n− rankσj(i) + 1
.

Note that other weight functions are possible as well, but we used the above

formula for its simplicity and good empirical performance.
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Figure 3.1: Four rankings: σ1, σ2, σ3, σ4, and their aggregate (median)
ranking π.

3.2 Distance-Based Methods

Another common approach to rank aggregation is distance-based rank ag-

gregation. As before, assume that one is given a set of permutations Σ =

{σ1, . . . , σm}. For a given distance function between two permutations σ and

π, d(σ, π), aggregation reduces to

π = arg min
σ

m∑
i=1

d(σ, σi).

The aggregate π is frequently referred to as the median of the permuta-

tions, and is illustrated in Figure 3.1.

Table 3.1: Two frequently used distance measures for permutations,
accounting for swaps or element-wise differences. In the second example,
the Kendall tau distance between the permutation σ1 = (a, b, c) and
σ2 = (c, b, a) equals 3: one first swaps elements at positions 1 and 2 to get
(b, a, c), then elements at positions 2 and 3 to get (b, c, a), and finally
elements at positions 1 and 2 to get σ2 = (c, b, a). All swaps contribute the
same weight (one) to the distance.

Distance Measurement Example
Spearman’s
footrule

Sum of differences of ranks of
elements.

dF (abc, cba) = 2 + 0 + 2 = 4

Kendall Minimum number of adjacent
swaps of entries for transform-
ing one ranking into another.

dK(abc, cba) = 3

One of the most important features of distance-based approaches is the

choice of the distance function. Table 3.1 lists two of the most frequently

used distances, the Kendall tau distance and the Spearman footrule. As may

be seen from the table, the distance measures are combinatorial in nature,

15



and do not account for scores or p-values. Furthermore, as already mentioned

in the introduction, it is known that aggregation under the Kendall metric

is computationally hard. Nevertheless, there exist a number of techniques

which provide provable approximation guarantees for the aggregate, including

the weighted Bipartite Graph Matching (WBGM) method (using the fact

that the Spearman distance aggregate is a 2-approximation for the Kendall

aggregate), linear programing (LP) relaxation, and Page Rank/Markov chain

(PR) methods [20, 25, 26].

The Kendall distance also does not take into account the fact that the top

of a list is more important than the remainder of the list. To overcome this

problem, we introduced the notion of weighted Kendall distances, where each

adjacent swap is assigned a cost, and where the cost is higher at the top of

a list. This ensures that in an aggregate, strong showings of candidates are

emphasized compared to their weaker showings, accounting for the fact that

it is often sufficient to have strong similarity with respect to only a subset of

criteria. Furthermore, such weights ensure that higher importance is paid to

the top of the aggregate ranking.

The idea behind the weighted Kendall distance dw is to compute this dis-

tance as the shortest path in a graph describing swap relationships between

permutations. The key concepts are illustrated in Figures 3.2 and 3.3, where

each edge is assigned a length proportional to its weight W . This weight

depends on the swap being made at the top or at some other position in

the ranking. Given that it is computationally demanding to aggregate under

the weighted Kendall distance, we use a specialized approximation function

Dw(σ, θ) for dw, of the form

Dw(σ, θ) =
n∑
i=1

w(σ−1(i) : θ−1(i)), (3.1)

where

w(k : l) =


∑l−1

h=kW (h, h+ 1), if k < l,∑k−1
h=l W (h, h+ 1), if k > l,

0, if k = l

(3.2)

denotes the sum of the weights of edges W (·) representing adjacent transposi-

tions (k k+1), (k+1 k+2), . . . , (l−1 l), if k < l, the sum of the weights of edges

W (·) representing adjacent transpositions (l l+ 1), (l+ 1 l+ 2), . . . , (k− 1 k),
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Figure 3.2: The Kendall distance is the weight of the shortest path between
two vertices labeled by two permutations, with each edge having length
(weight) one. Edges are labeled by the adjacent swaps used to move
between the vertex labels. For example, the two vertices labeled by acb and
cab are connected via an edge bearing the label < 12 >, indicating that the
two permutations differ in one swap involving the first and second element.

if l < k, and 0, if k = l.

Example 3: Suppose that one is given four rankings, (1, 2, 3), (1, 2, 3), (3, 2, 1)

and (2, 1, 3). There are two optimal aggregates according to the Kendall τ

distance, namely (1, 2, 3) and (2, 1, 3). Both have cumulative distance four

from the set of given permutations. If the transposition weights are non-

uniform, say such that W (12) > W (23), the solution becomes unique and

equal to (1, 2, 3). If the last ranking is changed from (2, 1, 3) to (2, 3, 1),

exactly three permutations are optimal from the perspective of Kendall τ

aggregation: (1, 2, 3), (2, 1, 3), and (2, 3, 1). These three solutions give widely

different predictions of what one should consider the top candidate. Never-

theless, by choosing once more W (12) > W (23) the solution becomes unique

and equal to (1, 2, 3).

It can be shown that for any non-negative weight function w, and for two

permutations σ and θ, one has

1/2Dw(σ, θ) ≤ dw(π, σ) ≤ Dw(σ, θ).

In a companion paper [25], we presented extensions of the WBGM and PR

aggregation methods for weighted Kendall distances. Here, we will pursue the

WBGM framework, and propose a new method to compute the weights W (·)
of edges (swaps) based on the p-values of the genes within each similarity
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Figure 3.3: The weighted Kendall distance is the weight of the shortest
path between two permutations, with edges having possibly different
lengths (weights). Edges are labeled by the adjacent swaps used to move
along the vertices.

criterion ranking. We refer to the resulting weighted model as the Hybrid

Kendall method.

To start, arrange the p-values of all genes based on all similarity criteria

into an n × m matrix P . Next, rearrange the p-values of genes for each

criterion in an increasing order, and denote the resulting rearranged matrix

by P ∗ = (p∗(i, j)). We use the following (n− 1)×m swap weight matrix W,

with entries

W(i, j) = c

(
P ∗(i+ 1, j)− P ∗(i, j)

P ∗(i+ 1, j)

)
× dn−i,

indicating how much it costs to swap positions i and i + 1 for criterion

j. The parameters c, d are constants independent of n and m, used for

normalization and for emphasizing the TvB constraint, respectively. For our

simulations, we set c = 10 and d = 1.05, as these choices provided good

empirical performance on synthetic data. The swap matrix assigns high

weight to the top of the list.

To compute the aggregate based on the approximate distance Dw(θ, σ),

we only need to accumulate each of the contributions from the training per-

mutations in Σ. This may be achieved by using a n × n total cost matrix

C, with entry C(i, j) indicating how much it would “cost” for gene i to be
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ranked at position j:

C(i, j) =
1

m

m∑
k=1

max(j,σpk (i))−1∑
l=min(j,σpk (i))

W(l, k).

The total cost matrix C is the input to the WBGM algorithm, where C(i, j)

denotes the weight of an edge connecting gene i with position j (see Fig-

ure 3.4 for an example of the bipartite graph, with the left-hand side nodes

denoting genes and the right-hand side nodes denoting their possible posi-

tions; the minimum weight matching is represented by bold edges). To find

the minimum cost solution, or the maximum weight matching, we used the

classical Hungarian algorithm [24] implemented in [27].

Example 4: Let n = 4 and m = 2, where the two ratings equal to

p1 = (0.2, 0.3, 0.01, 0.12) and p2 = (0.1, 0.4, 0.2, 0.35). Then

P ∗ =


0.01 0.1

0.12 0.2

0.2 0.35

0.3 0.4

 , W =

10.61 5.79

4.41 4.73

3.5 1.31

 ,

C =


7.51 5.1 5.23 7.67

15.18 6.98 2.4 0

2.9 5.3 9.88 12.28

10.57 2.37 2.2 4.61

 .
For example, since gene 3 was ranked 1st and 2nd by the two criteria,

C(3, 3) = 1
2
(10.61 + 4.41) + 1

2
(4.73) = 9.88. The minimum cost solution of

the matching with cost matrix C, based on the Hungarian algorithm, yields

the aggregate σHK = (3, 1, 4, 2).

3.3 The Lovász-Bregman Divergence Method

A previously reported, distance measure represents another possible mean for

performing hybrid rank aggregation. The so called Lovász-Bregman method

[28] calls for a distance measure between real-valued vectors x ∈ Rn
≥0 and

permutations.
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Figure 3.4: A matching in a weighted bipartite graph.

To define the Lovász-Bregman divergence that acts as a distance proxy

between rankings and ratings, we start with a submodular set-function, i.e.

a function f such that for a finite ground set V , f : 2V → R, and for all

S, T ⊂ V , it holds f(S)+f(T ) ≥ f(S∪T )+f(S∩T ). The Lovász extension

of f , fL(x), equals

fL(x) =
n∑
i=1

x(σx(i))
[
f(Sσxj )− f(Sσxj−1)

]
,

where Sσxj denotes the set {σx(1), . . . , σx(j)}. Note that under some mild

conditions, the Lovász extension is convex. Let us next define the differential

of f as

hfσx(σx(j)) = f(Sσxj )− f(Sσxj−1).

Then the Lovász-Bregman divergence is defined via the dot product

dr(x||σ) = x · (hfσx − h
f
σ).

Despite its seemingly complex expression, the Lovász-Bregman divergence

allows for closed form aggregation for a large class of submodular functions

f . The optimal aggregate reduces to the ranking induced by the sum of

real-valued rating vectors, ordered in a decreasing manner.

If, as before, p(i, j) denotes the p-value of gene i under criterion j, we

define the normalized Lovász-Bregman score for gene i as

L(i) =
m∑
j=1

p(i, j)
1
n

∑n
i=1 p(i, j)

,

where the sum of p-values over criteria is normalized by the average of the

p-values for each criterion. The aggregate equals σL, where L = (L(i))ni=1.
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Example 5: Let n = 4 and m = 2, where the two ratings equal to p1 =

(0.2, 0.3, 0.01, 0.12) and p2 = (0.1, 0.4, 0.2, 0.35). Note that 1
n

∑n
i=1 p(i, 1) =

1
4
(0.2 + 0.3 + 0.01 + 0.12) = 0.1575, and 1

n

∑n
i=1 p(i, 2) = 1

4
(0.1 + 0.4 + 0.2 +

0.35) = 0.2625. The Lovász-Bregman scores L(i), i = 1, 2, 3, 4, equal L(1) =
0.2

0.1575
+ 0.1

0.2625
= 1.65, L(2) = 0.3

0.1575
+ 0.4

0.2625
= 3.43, L(3) = 0.01

0.1575
+ 0.2

0.2625
= 0.83,

L(4) = 0.12
0.1575

+ 0.35
0.2625

= 2.1. By ordering L(i) in an ascending manner, one

arrives at σLB = (3, 1, 4, 2).
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Chapter 4

ALGORITHMS AND IMPLEMENTATION

We now turn our attention to testing different aggregation methods on lists

of p-values generated by Endeavour and ToppGene. The aforementioned

methods rely on a set of training genes known to be involved in a disease.

The test genes are compared to all the training genes according to a set

of similarity criteria, and the p-value of each comparison is computed in

the process. For example, if the criterion is sequence similarity, the p-value

reflects the z-value, describing the number of standard deviations above the

mean for a given observation. Given the p-values, the question of interest

becomes how to aggregate them into one ranking. Computing the p-values

is a routine procedure, and the challenge of the prioritization process is to

most meaningfully and efficiently perform the aggregation step.

There are two settings in which one can use the aggregation algorithms.

The first setting is cross-validation, a verification step that compares the

output of an aggregation algorithm with existing, validated knowledge. This

mode of operation is aimed at discovering shortcomings and advantages of

different methods. In the second setting, termed gene discovery, the aim is

to identify sets of genes implicated in a disease which are not included in the

database. Clearly, cross-validation studies are necessary first steps in gene

discovery procedures, as they explain best aggregation strategies for different

datasets and different similarity and training conditions.

For both methods, a list of genes involved in a certain disease (referred to as

onset genes) was obtained from the publicly available databases OMIM [29]

and/or the Genetic Association Database (GAD) [30]. Both of these sources

rely on the literature about genetic association for a vast number of diseases,

but OMIM typically provides a more conservative (i.e., shorter) list than

the GAD. Onset genes were tested along with random genes, obtained by

randomly permuting 19, 231 human genes in the GeneCards database [31],

and retaining the top portion of the list according to the chosen number of
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test genes.

4.1 Cross-Validation

We performed a systematic, comparative performance analysis of the Topp-

Gene and Endeavour aggregation algorithms and the newly proposed hybrid

methods. Given a list of r onset genes, we first selected t onset genes to serve

as target genes (henceforth referred to as target onset genes) for validation;

we used the remaining r − t onset genes as training genes. Of the n test

genes, n − t genes were selected randomly from GeneCards [31]. Our cross-

validation procedure closely followed that of Endeavour and ToppGene: we

fixed t = 1, and tested all r individual genes from the pool of onset genes,

and then averaged the results. Averaging was performed as follows: we took

target onset genes one-by-one and averaged their rankings over
(
r
t

)
t=1

= r

experiments. Note that in principle, one may also choose t ≥ 2; in this case,

the lowest ranking of the t genes (i.e., the highest positional value that a

target onset gene assumed) should serve as a good measure of performance.

One would then proceed to average the resulting rankings over
(
r
t

)
experi-

ments, producing a “worst case scenario” for ranking of target onset genes.

For fair comparison with Endeavour and ToppGene, we only used the first

described method with t = 1 and the same set of p-values as inputs. As

will be described in subsequent sections, we used t ≥ 2 for gene discovery

procedures.

4.2 Gene Discovery

The ultimate goal of gene prioritization is to discover genes that are likely

to be involved in a disease without having any prior experimental knowledge

about their role. We describe next a new, iterative gene discovery method.

The method uses aggregation techniques or combinations of aggregation tech-

niques deemed to be most effective in the cross-validation study.

Given a certain disease with r onset genes, we first identify s suspect genes.

Suspect genes are genes that are known to be involved in diseases related to
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that under study,1 but have not been tested in this possible role. Suspect

genes are processed in an iterative manner, as illustrated in Algorithm 1. In

the first iteration, r onset genes are used for training, and s suspect genes,

along with n− s randomly selected genes, are used as test genes. From the

aggregate results provided by different hybrid algorithms, we selected q top-

ranked genes and moved them to the set of training genes and simultaneously

declared them as potential disease genes. The choice for the parameter q is

governed by the number of training and test genes, as well as the empirical

performance of the aggregation methods observed during multiple rounds of

testing. The second iteration starts with r + q training genes, s− q suspect

genes, and n − s + q randomly selected genes; the procedure is repeated

until a predetermined stopping criterion is met, such as the size of the set of

potential disease genes exceeding a given threshold.

1As an example, a suspect gene for glioblastoma may be a gene known to be implicated
in another form of brain cancer, say meningioma.
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Algorithm 1: Gene Discovery

Input: Set of onset genes, O = {o1, o2, . . . , or}, set of suspect genes, S =
{s1, s2, . . . , ss}, number of test genes, n ∈ Z+, a cut-off threshold, τ ∈ Z+,
and the number of allowed iterations, l ∈ Z
Output: Set of potential disease genes, denoted by A
Initialization:

• Set i = 1, A = ∅, R = {r1, r2, . . . , rn−s} – a set of randomly chosen
genes, training set TR = O, test set TS = S ∪R

For i ≤ l do

1. Run a gene prioritization suite using the training set TR, test set TS,
and m similarity criteria

2. Run k aggregation methods on the p-values produced in Step 1, and
denote the resulting rankings by σ1, . . . , σk

3. Let B = {σ1(1), . . . , σ1(τ)} ∪ · · · ∪ {σk(1), . . . , σk(τ)}

4. A← A ∪B ; TR← TR ∪B ; S ← S \B

5. TS ← S ∪R′, R′ = set of n− |S| randomly chosen genes

6. i← i+ 1

End
Return A
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Chapter 5

RESULTS

We performed extensive cross-validation studies for eight diseases using both

Endeavour- and ToppGene-generated p-values. Our results indicate that the

similarity criteria that exhibit the strongest influence on the performance of

the ToppGene and the Endeavour method are the PubMed and literature

criteria, which award genes according to their citations in the disease related

publications. In order to explore this issue further, we performed additional

cross-validation studies for both ToppGene and Endeavour datasets to ex-

amine how exclusion of the literature criteria changes the performance of the

two methods as well as our hybrid schemes. Our results reveal that HyDRA

aggregation methods outperform Endeavour and ToppGene procedures for a

majority of quality criteria, but they also highlight that each method offers

unique advantages in prioritization for some specific diseases.

For gene discovery, we again used Endeavour and ToppGene p-values, and

investigated three diseases – glioblastoma, meningioma and breast cancer

– including all criteria available. We recommend as best practice a nested

aggregation method, i.e., aggregating the aggregates of Endeavour, HyDRA,

and ToppGene, coupled with iterative training set augmentation.

5.1 Cross-Validation

Cross-validation for HyDRA methods was performed on autism, breast can-

cer, colorectal cancer, endometriosis, ischaemic stroke, leukemia, lymphoma,

and osteoarthritis. Tables 5.1 and 5.2 provide the summary of our results,

pertaining to the average rank of one selected target gene. Table 5.1 illus-

trates that HyDRA methods offer optimal performance in 11 out of 16 tests

when compared to ToppGene aggregates, and Table 5.2 illustrates that Hy-

DRA outperforms Endeavour in 12 out of 16 cases. In the former case, the

Weighted Hybrid Kendall method outperformed all other techniques.

26



Table 5.1: Cross-validation result of ToppGene and HyDRA methods for 8
diseases. Diseases without “*” refer to results using all similarity categories
in ToppGene. Diseases indexed by “*” denote results which did not use the
“Human Phenotype, Mouse Phenotype, Pubmed, Drug, Disease” similarity
criteria in ToppGene. The scores describing the best average rank are
bolded and shaded.

Disease No.
onset
genes

ToppGene Lovasz-
Bregman

Hybrid
Borda

Hybrid
Kendall

Autism 40 7.275 11.2 9.75 6.85
Autism* 40 21.675 25.4 19.775 21.65
Breast Cancer 10 4.6 7.1 12 2.5
Breast Cancer* 10 6.9 17.8 8.1 7.1
Colorectal Cancer 20 7.3 5.2 7.85 8.7
Colorectal Cancer* 20 13.35 9.5 19.6 12.5
Endometriosis 43 6.46 8.63 10.63 7.74
Endometriosis* 43 9.53 9.76 15.84 9.7
Ischaemic Stroke 44 5.61 7.25 9.25 6.05
Ischaemic Stroke* 44 8.43 7.5 12.8 8.7
Leukemia 10 5.5 12 6.6 10.2
Leukemia* 10 20.8 22.8 24.3 20.5
Lymphoma 42 3.74 6.45 9.26 2.93
Lymphoma* 42 7.71 9.55 10.71 6.76
Osteoarthritis 41 6.44 6.51 13.54 5.41
Osteoarthritis* 41 8.73 8.32 14.1 8.02
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Table 5.2: Cross-validation result of Endeavour and HyDRA methods for 8
diseases. Diseases without “*” refer to results using all similarity categories
in Endeavour. The indexing by “*” corresponds to exclusion of similarity
criteria “Precalculated-Ouzounis, Precalculated-Prospectr, Text” on
Endeavour data. The scores describing the best average rank are bolded
and shaded.

Disease No.
onset
genes

Endeavour Lovasz-
Bregman

Hybrid
Borda

Hybrid
Kendall

Autism 40 17.96 19.3 17.78 16.9
Autism* 40 23.35 24.5 24.38 21.78
Breast Cancer 10 14.4 15 12.5 15.7
Breast Cancer* 10 16.6 12.8 15.5 17.8
Colorectal Cancer 20 8.55 8.65 7.8 8.1
Colorectal Cancer* 20 9.75 10.65 9.55 11.2
Endometriosis 43 5.3 6.37 4.81 5.65
Endometriosis* 43 6.12 7.63 6.86 6.6
Ischaemic Stroke 44 6.18 7.3 7.07 6.09
Ischaemic Stroke* 44 7.95 9.66 9.86 8.86
Leukemia 10 13.7 14.8 7.1 12.1
Leukemia* 10 19.5 19.9 16.6 21.3
Lymphoma 42 9.57 10.69 9 8.81
Lymphoma* 42 12.52 12.9 13.67 11.67
Osteoarthritis 41 5.56 6.32 7.46 6.29
Osteoarthritis* 41 6.41 7.41 6.51 7.22
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Note that for all eight diseases, we performed two tests, in one of which we

excluded those similarity criteria that contain strong prior information about

disease genes, such as the “Disease” and “PubMed” category. Table 5.1

and Table 5.2 demonstrate the significant differences in average ranks of

the target genes when literature information is excluded, suggesting that

ToppGene and Endeavour both significantly benefit from this prior onset gene

information when ranking the target genes. For true “discovery” methods

one would usually not have such priors available, and results using these

similarity criteria have to be treated with caution.

Another means for evaluating the performance of HyDRA algorithms com-

pared to that of ToppGene and Endeavour is to examine the receiver operat-

ing characteristic (ROC) curves of the techniques. In this setting, we follow

the same approach as used by both ToppGene and Endeavour. Sensitivity is

defined as the frequency of tests in which prospect genes were ranked above

a particular threshold position, and specificity as the percentage of prospect

genes ranked below this threshold. As an example, a sensitivity/specificity

pair of values 90/77 indicates that the presumably correct disease gene was

ranked among the top-scoring 100−77 = 23% of the genes in 90% of the pri-

oritization tests. The ROCs plot the dependence between sensitivity and the

reflected specificity, and the area under the curve (AUC) represents another

useful performance measure. The higher the AUC and specificity, the bet-

ter the performance of the method. Figure 5.1 and Figure 5.2 are the ROC

curves for cross validations comparing HyDRA with Endeavour and Topp-

Gene, respectively. Endeavour reported 90/74 sensitivity/specificity values

for their chosen set of test and training genes, as well as an AUC score of

0.866. Similarly, ToppGene reported 90/77 sensitivity/specificity values, and

an AUC score of 0.916 for their tests of interest. Our specificity/sensitivity

and AUC values are listed in Table 5.3 and Table 5.4, with best AUC and

Sensitivity/Specificity values shaded in gray. Note that although the AUC

values appear close in all cases, the HyDRA methods have very low overall

computational complexity.
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Table 5.3: AUC and Sensitivity/Specificity values for ToppGene and
HyDRA rankings, pertaining to diseases listed in Table 5.1 using all criteria.

ToppGene Lovasz-
Bregman

Hybrid
Borda

Hybrid
Kendall

AUC 0.951 0.93 0.911 0.947
Sensitivity/
Specificity

90/84 90/75 90/75 90/84

Table 5.4: AUC and Sensitivity/Specificity values for Endeavour and
HyDRA rankings, pertaining to diseases listed in Table 5.2 using all criteria.

Endeavour Lovasz-
Bregman

Hybrid
Borda

Hybrid
Kendall

AUC 0.908 0.899 0.918 0.91
Sensitivity/
Specificity

90/69 90/63 90/79 90/72

5.2 Gene Discovery

The genetic factors behind Glioblastoma, the most common and aggressive

primary brain tumor, are still unknown. We study this disease, as well as

meningioma and breast cancer, in the gene discovery phase. Our choice is

governed by the fact that few publications are available pointing towards

the causes of this form of brain cancer, and by the fact that it is widely

believed that the genetic base of this disease is related to the genetic base

of the Von Hippel-Lindau (VHL), Li-Fraumeni (LF), and Turcot syndromes

(TS), neurofibromatosis (N), and tuberous sclerosis (TS) [32]. Furthermore,

recent findings [33] indicate that brain cancers and breast cancers share a

common line of mutations in the family of immunoglobulin GM genes, and

that the human cytomegalovirus (HCMV) puts patients at risk of both brain

and breast cancer.

Consequently, we used genes documented to be involved in glioblastoma

as training genes for three discovery tests. In the first test, for the suspect

genes we selected a subset of 15 genes known to be implicated in the VHL,LF,

TS, N and TS syndromes. We subsequently ran Algorithm1 with l = 3,

s = 15, n = 100, τ = 3. In the second test, we selected 18 genes known

to be involved in breast cancer as suspect genes for glioblastoma, and ran

Algorithm1 with l = 3, s = 18, n = 100, τ = 3. Finally, we performed the

same analysis on suspect genes known to be involved in meningiomas, by
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Figure 5.1: Cross-validation results: ROC curves for disease listed in
Table 5.2 using all criteria and Endeavour data.

setting the parameters of iterative HyDRA gene discovery to l = 3, s = 19,

n = 100, τ = 3. The results are shown in Table 5.5. Note that in our

algorithmic investigation, we used l = 3 (i.e., top-three) ranked genes, since

this parameter choice offered a good trade-off between the size of the union of

the top-ranked genes and the accuracy of the genes produced by the HyDRA

discovery methods. The number of suspect genes was governed by the size

of the available pool in OMIM/GAD and was targeted to be roughly 20% of

the size of the test set. Such a percentage is deemed to be sufficiently high

to allow for meaningful discovery, yet sufficiently low to prevent routine gene

identification.

Table 5.5 reveals a number of results currently not known from the liter-

ature. The genes KRAS and CDH1, both implicated in breast cancer and

meningioma, as well as CCND1 involved in meningioma1 appear to be highly

similar to genes implicated with glioblastoma. KRAS is a gene encoding for

the K-Ras protein that is involved in regulating cell division, and hence an

obvious candidate for being implicated in cancer. On the other hand, CDH1

is responsible for the production of the E-cadherin protein, whose function is

to aid in cell adhesion and to regulate transmission of chemical signals within

cells, and control cell maturation. E-cadherin also often acts as a tumor sup-

pressor protein. GeneCards reveals that the CCND1 gene is implicated in

1As well as in colorectal cancer.
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Figure 5.2: Cross-validation results: ROC curves for disease listed in
Table 5.1 using all criteria and ToppGene data.

altering cell cycle progression, and is mutated in a variety of tumors. Its role

in glioma tumorogenesis appears to be well documented [34], but surpris-

ingly, neither KRAS nor CDH1 nor CCND1 are listed in the OMIM/GAD

database as potential glioblastoma genes.

Another interesting finding involves genes ranked among the top three

candidates, but not identified as “suspect” genes. For instance, according

to GeneBank, GSTM2 regulates an individual’s susceptibility to carcinogens

and toxins and may suggest glioblastoma being in part caused by toxic and

other environmental conditions; KAAG1 appears to be implicated with kid-

ney tumors, while TP73 belongs to the p53 family of transcription factors

and is known to be involved in neuroblastoma.
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Table 5.5: The union of top 3 ranked genes from ToppGene, Endeavour,
and HyDRA methods for the three suspect gene discovery sets, with the
“suspect” genes in bold. In all cases, the training genes are genes
implicated in Glioblastoma. The “Disease” category indicates from which
family of diseases the test genes were drawn. VHL = Von Hippel-Lindau,
LF = Li-Fraumeni, TS = Turcot Syndromes, N = Neurofibromatosis, and
TS = Tuberous Sclerosis.

Test Dis-
ease

Iteration 1 Iteration 2

Breast
Cancer

AKT1, ATM, BRIP1,
CDH1, CHEK2, GSTM2,
KAAG1, RAD51, TP73

BARD1, CASP7, ITGA4,
KRAS, PALB2, PHB,
SMAD7, UMOD

VHL, LF,
TS, N, TS

CCND1, CD28, CD74,
CDK4, CHEK2, MLH1,
MSH2, MSH6, NBPF4,
PMS2, PRNT, TSC2

ALCAM, APC, MRC1,
NCL, NF1, NF2, SNCA,
TAF7, TOPBP1, TSC1,
VHL

Meningioma CCND1, HLA-DQB1,
KLF6, KRAS, TGFB1,
TGFBR2, XRCC5

BAGE, BAP1, CAV1,
CD4, CDH1, NF2,
PDGFB, PSMC2, RFC1,
SAMD9L, SERPING1,
SMARCB1
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Chapter 6

CONCLUSION

We start by discussing the results in Table 5.1 and Table 5.2. The first

observation is that the Lovász-Bregman method performs worse than any

other aggregation method. This finding may be attributed to the fact that

the p-values have a large span, and small values may be “masked” by larger

ones. Scaling all p-values may be a means to improve the performance of

this technique, but how exactly to accomplish this task remains a question.

In almost all cases, except for leukemia and lymphoma, the average rank-

ings produced by ToppGene and the weighted Kendall distance appear to

be almost identical. But average values may be misleading, as individual

rankings of genes may vary substantially between the methods. It is for this

reason that we recommend merging lists generated by different methods as

best aggregation practice. Another important observation is that HyDRA

methods have significantly lower computational complexity than ToppGene

and, especially, Endeavour, and hence scale well for large datasets.

Another finding is the fact that the good performance of ToppGene and all

other methods largely depends on including prior literature on the genes into

the aggregation process. We observed situations where the rank of an element

dropped by roughly 90 positions when this prior was not available. This

implies that for gene discovery, it is risky to rely on any single method, and

it is again good practice to merge top-ranked entries generated by different

methods. Finally, it is not clear how to optimally choose the number of

training genes for a given set of test genes, or vice versa. Choosing more

training genes may appear to be beneficial at first glance, but it creates a more

diverse pool of candidates for which some similarity criteria will inevitably

fail to identify the right genes. In this case, we recommend using the weighted

Kendall to eliminate outliers, and in addition, we recommend the use of a

fairly large TvB scaling parameter.
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