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Abstract

Maude-NPA is a narrowing-based model checker for analysing cryptographic

protocols in the Dolev-Yao model modulo equations. Maude-NPA is a powerful

analyzer that is sound and never returns spurious counter-examples. Maude-

NPA is also very flexible, providing the user great flexibility in designing his/her

own custom notation. Maude-NPA also supports a large variety of equational

theories (any theory possessing the finite variant property, plus dedicated al-

gorithms for homomorphism and exclusive or). However, Maude-NPA relies

on a strand-based notation that, while very precise, is less familiar to users of

the Alice-Bob notation. Furthermore, the input language itself is rather dif-

ficult to read and write. This makes Maude-NPA hard to use, and therefore

a less attractive option for protocol verification despite its power. We pro-

pose a new input language called the Maude Protocol Specification Language

(Maude-PSL). The Maude-PSL extends the Alice-and-Bob notation with the

following additional pieces of information: the interpretation each principal has

for every message he/she sends and receives, the information each principal is

assumed to know at the start of the protocol execution, and the information the

principal should know after execution. The Maude-PSL also provides simple

yet expressive syntax for specifying intruder capabilities, secrecy attacks and

authentication attacks. The Maude-PSL retains the flexible, Maude-like syn-

tax for specifying the operators, type structure, and algebraic properties of a

protocol. The semantics of the language is defined as a rewrite theory that

rewrites Maude-PSL specifications into Maude-NPA strands. This provides a

formal grounding of Maude-PSL specifications in a well understood model of

cryptographic protocols.
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Chapter 1

Introduction

In the modern day explosion of Internet-based commerce, a means of establish-

ing secure communications between two geographically distant strangers has

become tremendously important. For example, thousands of users across the

globe need to be able to form a secure connection with their banks, so that they

may view their bank account information in the comfort and security of their

own home (amongst other places). However, the nature of the Internet is such

that anyone may be listening in on and interfering with any one of these com-

munications, with neither the user nor the bank the wiser. As a result, over the

past half a century, a tremendous amount of effort has been put into develop-

ing processes for establishing secure communications across insecure channels,

called cryptographic protocols.

Unfortunately, developing secure protocols is a very difficult and subtle pro-

cess. The security of a protocol may hinge on the absence of a single number.

The smallest tweak may make an insecure protocol secure, or give a previously

secure protocol a giant hole. To highlight the difficulty in designing a secure

cryptographic protocol, cautionary tale is that of the Needham-Schroeder public

key protocol [22]. The protocol was developed in 1978, was proven secure, and

was believed to be secure for many years. However, in 1998, twenty years after

the protocol’s introduction, Gavin Lowe found an exploit [18]. Due to the diffi-

culty in proving a protocol secure, and the high stakes involved in ensuring that

a cryptographic protocol is in fact secure, a lot of work has been done on trying

to automate the proofs of security. The idea is that an automated, exhaustive

proof should be able to catch the kind of subtle exploits that humans often fail

to see immediately. As a result, of this research, a variety of tools have been

developed, including but not limited to Maude-NPA[12], AVISPA[29], CPSA[8]

and ProVerif [3]. However, the notation typically used by protocol designers

to discuss cryptographic protocols (called here the Alice and Bob notation) is

not precise enough to perform automated verification. As a result, a major

component of all of these tools has been the development of a domain specific

language for protocol specification.

Cryptographic protocol specification is a tricky balancing act. On the one

hand, the specification must be provided in a formal logic with all the details

needed to perform automatic verification. On the other, it is often difficult
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to debug specifications provided to formal tools, because these tools do not

execute the protocol in the normal sense of the word. As a result, the specifi-

cation needs to be clear enough, and simple enough to ensure that the specifier

provides a correct specification. Furthermore, if the specification language is

either too complex or too different from what protocol analyzers are used to,

the tool will not be used due to the steep learning curve. One tool that ex-

emplifies this exact problem is Maude-NPA. Maude-NPA is a powerful tool for

cryptographic protocol analysis based on symbolic model checking. Maude-NPA

provides the user the ability to define their own syntax, and to verify protocols

modulo a large class of equational theories. Furthermore, Maude-NPA analysis

is sound, and does not produce spurious attacks. However, despite this power

and flexibility, the input language is fairly complex, requires the user to include

a variety of extra syntactic “kibble” that is necessary for the tool to function,

but is semantically meaningless with respect to the protocol. Furthermore, in

Maude-NPA, protocols are formulated based on a mathematical object called

“strands.” While strands are not particularly complicated, they do formulate

protocols from a point of view that protocol designers may not be used to.

Finally, attacks are specified in Maude-NPA using fragments of Maude-NPA

states, which not only exposes internal implementation details to the user, but

also forces code duplication.

Therefore, to improve the usability of Maude-NPA, we present a new input

language called the Maude Protocol Specification Language (Maude-PSL) for

Maude-NPA. Rather than using strands, the Maude-PSL uses an extension of

the Alice and Bob notation. This ensures that information about the destination

and source of each message is preserved. Second, the syntax is made as minimal

as possible. Everything that the user writes has to do with the protocol, the

properties of the operations used by the protocol, and the environment in which

the protocol is being executed. Third, attacks are specified without explicitly

rewriting the protocol, but rather by referencing it. In particular, attacks only

need to be modified if the variables used in the protocol are changed. So long as

those stay constant, attacks are not affected by modifications to the protocol.

The Maude-PSL also introduces additional more stringent static checks that are

meant to capture as many subtle, otherwise hard-to-detect errors as possible.

The Maude-PSL is implemented on top of Maude-NPA by using the original,

strand-based input language as an intermediary language. The translation from

a Maude-PSL specification to the corresponding Maude-NPA specification is

implemented using a combination of Python and Maude. At the Python level,

we decompose the specification into the high level syntax and user-defined terms.

The Python level then performs a variety of checks on the top level syntax. If

the specification passes all of these checks, then Python uses the specification to

generate a term to be rewritten by Maude. This term is then fed into Maude.

Maude then performs certain checks that Python cannot easily handle (such

as the syntactic correctness of user-defined terms). If the specification-derived-
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term passes all of these checks as well, then Maude rewrites the term into a

Maude-NPA specification. Python then writes this specification to a file. From

this point on, the user may load the Maude-NPA specification into Maude-NPA,

and interact with Maude-NPA in the exact same manner as if he/she had written

the specification in Maude-NPA’s original input language. Figure 1 provides a

high-level, visual depiction of the translation process.

Maude-PSL
Specification

Maude Term

Maude-NPA
Specification

Maude

Figure 1.1: An overview of the translation from a Maude-PSL specification to
a Maude-NPA specification.

The Maude-PSL tool can be found at

http://maude.cs.uiuc.edu/tools/Maude-NPA/Maude-PSL/.
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Chapter 2

Background

The goal of the Maude-PSL is to provide a user-friendly specification language

for use with Maude-NPA, an order-sorted rewriting-based tool for the verifi-

cation of cryptographic protocols. Therefore, the user of the language must

have some familiarity with order-sorted term rewriting, cryptographic protocol

analysis, and Maude-NPA.

2.1 Rewriting Logic and Maude

2.1.1 Rewrite Theories

Term rewriting is a Turing-complete computational model based on the step-by-

step modification of mathematical entities called terms. A program is modeled

in rewriting logic using a rewrite theory. Maude is a declarative programming

language where programs are (various flavors of) rewrite theories, called mod-

ules [6]. Since the Maude-PSL uses a fragment of Maude as a sub-language, a

basic understanding of both rewriting logic and Maude are imperative to un-

derstanding how to use the Maude-PSL. Therefore, we shall introduce the two

in tandem. We shall explain various flavors of rewriting logic, and write out

example theories in Maude code.

When specifying protocols in the Maude-PSL, we are concerned with equa-

tional theories. Equational theories are pairs (Σ, E), where Σ, called the theory’s

signature consists of a set of symbols called operators, and E , called the theory’s

equations, is a set of equalities between terms. For example, the equational

theory of the natural numbers with addition may consist of a constant 0 rep-

resenting the number zero, an operator s representing the successor (plus one)

function, an operator + representing addition, and the equations

x+ 0 = x (2.1)

0 + x = x (2.2)

s(x) + y = s(x+ y) (2.3)

One can then use these equations to perform equational reasoning (replacing

equals by equals) to prove terms equal modulo the equations. For example, the

terms s(0) + s(0) and s(s(0)) can be proven equal modulo E , written s(0) +
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s(0) =E s(s(0)) as follows: s(0) + s(0) =2.3 s(0 + s(0)) =2.2 s(s(0))

Unfortunately, equational reasoning is difficult to automate. Equations may

be applied either left to right, or right to left, and it may not be obvious which

direction should be applied at any given point. However, if we orient the two-

directional equations into one-directional rules such that the rules are confluent

and terminating (see Section 2.1.5), then we may safely use the one-directional

rules instead of the two-directional equations to automate equational reason-

ing. Equational theories whose equations have been oriented are called rewrite

theories, and are denoted (Σ, R), where R is the set of rules1.

What follows is an exploration of some of the basic concepts in term rewrit-

ing. However, this section provides only the barest of glimpses into the richness

and complexity of rewriting logic, and only covers those concepts needed to use

the Maude-PSL. References to resources that provide a more in-depth treatment

may be found in Section 2.1.6.

Signatures

Every operator f ∈ Σ is associated with a natural number n called the arity of

the operator. Operators with an arity of 0 are called constants. Operators of

arity n are called n-ary. 1-ary and 2-ary operators have special names: unary

and binary respectively.

Terms are defined recursively as follows:

1. If f ∈ Σ is a constant, then f is a term.

2. If t1, . . . tn are terms, and f ∈ Σ is an n-ary operator, then f(t1, . . . , tn) is

a term.

Note that t1, . . . tn in rule 2 are referred to as the arguments of f .

Example 2.1.1. Suppose we have the signature {0, s,+} where 0 is a constant,

s is unary, and + is binary (This signature will be defined in Maude when we

cover many-sorted theories).

The following are terms:

• 0

• s(0), where the argument of s is 0.

• +(s(0), 0), where the arguments of + are s(0) and 0.

• s(+(s(0), 0)), where the argument of s is +(s(0), 0).

The operators in the example above are expressed using prefix syntax, i.e.

the operator appears before its arguments. It is also possible to express opera-

tors using mixfix syntax, in which operator appear interwoven with the opera-

tor’s arguments. For example, we may define the + operator above as + .

1Technically, a rewrite theory is just a signature and a set of rules. The rules do not need
to be derived from an equational theory. However, such rewrite theories are beyond the scope
of this document.
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+

s

0

0

Figure 2.1: Tree of the term s(0) + 0

The underscores indicate the position at which arguments should be placed rel-

ative to the operator name. So, we may write the term +(s(0), 0) as s(0) + 0.

However, since each mixfix operator can be trivially turned into a prefix opera-

tor, we will assume all operators are prefix when discussing generic theories.

Terms may also be viewed as trees. Each node is an operator, and the

children of each node are exactly the arguments of the corresponding operator.

The root is the outermost operator, and the leaves are constants. See Figure 2.1

for a tree representation of s(0) + 0. The subtrees of a term tree are called the

subterms of the term.

A position p in a term is a path from the root of the term tree to some node

in the tree. The subterm t′ of term t at position p, denoted tp, is the subterm

rooted at position p in the term tree. The empty position λ is the position of

the root of the entire tree.

We assume that every signature has a countably infinite set X of constants

called variables, disjoint from the rest of the signature. We only consider finite

signatures. Finite signatures are those that can be decomposed into a disjoint

union of a finite set of operators, and a countably infinite set of variables.

Substitutions

A substitution θ is a function from variables to terms. Every substitution may

be uniquely extended to a function θ from terms to terms as follows:

1. θ(a) = a if a is a constant, and a is not in the domain of θ

2. θ(x) = θ(x).

3. θ(f(t1, . . . , tn)) = f(θ(t1), . . . , θ(tn)).

Because the extension is unique, we may refer to both the original substitution

θ and its extension θ as θ without ambiguity. Furthermore, instead of writing

θ(t) for t a term, we write tθ.

A substitution θ is called idempotent if and only if for every term t, tθθ = tθ.

Rules

The rules of a rewrite theory consists of a set of ordered pairs of terms {(u1 →
v1), . . . , (un → vn)}. Computation is performed by using these rules to rewrite

terms into other terms. We assume that for every rule u→ v, vars(v) ⊆ vars(u).
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Given two terms t, t′, we say that t rewrites to t′ with rule u → v ∈ R

at position p with substitution θ, denoted t →p,θ,u→v t
′ (t → t′ if the rules,

position and substitution are understood) iff uθ = tp, and vθ = t′p. In this case,

we say that u matches t, with matching substitution θ. We denote the transitive

closure by t→+ t′, and the reflexive-transitive closure by t→∗ t′.
A term t is called R-normalized (or just normalized) iff there is no rule

u→ v, no term t′, and no substitution θ such that t→ t′. Usually, computation

in a rewrite theory consists of normalizing some term t, i.e. rewriting t until the

term is R-normalized, and then taking the normalized term(s) as the result(s)

of the computation.

Example 2.1.2. Recall the signature {0, s, + } from Example 2.1.1. Suppose

we also have the following rules:

x+ 0→ x (2.4)

0 + x→ x (2.5)

s(x) + y → s(x+ y) (2.6)

Then, we can rewrite the term s(s(0)) + s(0) to the normalized term

s(s(s(0))) as follows:

s(s(0)) + s(0)→{x7→s(0),y 7→s(0)},λ, 2.6

s(s(0) + s(0))→{x7→0,y 7→s(0)},λ.1, 2.6

s(s(0 + s(0)))→{x7→0,y 7→s(0)},λ.1.1.1, 2.5

s(s(s(0)))

If 0 is treated as the natural number 0, s as the successor (or plus one) function

on natural numbers, and + as natural number addition, then we see that we

have computed the value of the expression 2 + 1!

Now, observe that any term may be used as an argument to any operator.

Since rewriting itself only depends on pattern matching, this may lead to unex-

pected behavior when attempting to model systems (such as programs written

in programming languages with types) that do place restrictions on the types

of computation that may be performed on different types of data.

Example 2.1.3. Consider the theory from Example 2.1.2, plus the additional

operators:{>,⊥, ∧ } where > and ⊥ are constants, while ∧ is binary,

and the rules:

> ∧ z → z (2.7)

z ∧ > → z (2.8)

⊥ ∧ z → ⊥ (2.9)

z ∧ ⊥ → ⊥ (2.10)
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These rules are meant to model the boolean values true and false, while the

rules define ∧ to be the boolean operation and.

However, there is nothing stopping us from considering (and evaluating) the

term (s(0) +>)∧ (>+ 0) to s(>), even though conceptually the successor of >
(or > plus a number for that matter) makes no sense.

In order to get around this problem, one would have to introduce explicit

operators and rules that disallow this kind of mixing. However, this is tedious,

time consuming, and error prone. A more attractive approach is to introduce a

notion of types, called sorts. To distinguish a rewriting theory with sorts from

one without, we refer to a rewrite theory without sorts as an unsorted rewrite

theory.

2.1.2 Many Sorted Rewriting

A many sorted rewriting theory is very much like an unsorted rewriting theory,

except with several extensions to account for the sorts.

First, the signature Σ is now a pair (S, F ), where S is a finite set of sorts,

and F a finite set of operators. Furthermore, each n-ary operator f ∈ F now

has n+ 1 sorts associated with it: s1, s2, . . . sn+1. The first n sorts are the sorts

of the operator’s arguments, while the last sort is the result sort. An n-ary

operator f with sorts s1, . . . , sn+1 is denoted f : s1, . . . sn → sn+1.

We now have a family of countable sets of variables, one for each sort:⋃
s∈S Xs.

Next, each term has associated with it at least one sort. We use t : s to

denote that t is of sort s. This sort is defined as part of the recursive definition

of terms:

1. Every constant a :→ s is a term of sort s

2. Let f : s1 . . . sn → sn+1 be an n-ary operator, and t1, . . . tn be terms.

Then, f(t1, . . . , tn) is a term of sort sn+1 iff ti : si for all 1 ≤ i ≤ n.

A substitution θ is valid only if it preserves the sorts. In other words, it

must be the case that for every x in the domain of θ, x : s iff xθ : s.

Example 2.1.4. Recall the theory from Example 2.1.3. Now, we shall write

that theory as a many-sorted theory in Maude.

mod NAT -BOOL is

sorts Nat Bool .

op 0 : -> Nat .

op s : Nat -> Nat .

op _+_ : Nat Nat -> Nat .

op True : -> Bool .

op False : -> Bool .
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op _/\_ : Bool Bool -> Bool .

vars X Y : Nat .

var Z : Bool .

eq 0 + X = X .

eq X + 0 = X .

eq s(X) + Y = s(X + Y) .

eq Z /\ True = Z .

eq True /\ Z = Z .

eq Z /\ False = False .

eq False /\ Z = False .

endm

The keywords op, var(s), and eq stand for “operator,” “variable(s),” and

“equation” respectively, while /\ is an ASCII approximation of the boolean and

operator “∧.” The keywords mod and endm are used to begin and end a module

of name NAT-BOOL. Despite the name, equations are in fact oriented from left to

right as rules. By declaring rules to be equations, the programmer is claiming

that the rules so defined are confluent and terminating (see Section 2.1.5 for

more details).

Now, s(0) + True) /\ (True + 0) is not a valid Σ-term, because the _+_

operator is only defined on pairs of terms of sort Nat . In other words, the above

specification preserves the intuitive separation between natural numbers and

booleans.

While a many-sorted theory allows us to naturally enforce the separation

between different data types, it does not provide an easy means of encoding

subtypes. For example, the fact that natural numbers are also integers, or the

fact that encrypted and unencrypted messages are both still messages.

Example 2.1.5. Suppose we would like a theory that makes a distinction be-

tween integers and natural numbers, but still has them behave the same on

shared data. In other words, we would like the natural numbers to be a subtype

of integers. Our first attempt may look something like this:

mod NATS -INTS

sorts Nat Int .

op 0N : -> Nat .

op s : Nat -> Nat .

op _+_ : Nat Nat -> Nat .

op 0I : -> Int .

op s : Int -> Int .

op p : Int -> Int .

9



op _+_ : Int Int -> Int .

vars X1 X2 : Nat .

vars Y1 Y2 : Int .

eq X1 + 0N = X1 .

eq 0N + X1 = X1 .

eq s(X1) + X2 = s(X1 + X2) .

eq Y1 + 0I = Y1 .

eq 0I + Y1 = Y1 .

eq s(Y1) + Y2 = s(Y1 + Y2) .

eq p(Y1) + Y2 = p(Y1 + Y2) .

eq s(p(Y1)) = Y1 .

eq p(s(Y1)) = Y1 .

endm

where the p operator, or predecessor can be thought of as the inverse of the s or

successor operation (i.e. p represents “minus one” as opposed to “plus one”).

Obviously, there is a lot to be desired here. First, unless we are willing to

tolerate an ambiguous signature (i.e. allow the term s(0) to have two parses:

one as a Nat, the other as an Int) we do not actually have any overlap between

natural numbers and integers. Second, there is a lot of repetition, both of

operators and rules. If we would like to mix integers and naturals, then we

would have even more rules. Finally, if we wish to transition between natural

numbers and integers, we need to introduce an explicit function to perform that

conversion.

There are smarter approaches to modeling subtyping in many-sorted theo-

ries. We can use predicates to model subtypes in much the same way that we

can simulate sorts in an unsorted theory. However, doing this manually is again

tedious, error prone, and can clutter up the theory with bookkeeping that we

would rather not deal with. Therefore, it would be nice if we had some notion

of subtypes built into the logic.

2.1.3 Order-Sorted Rewriting

In order-sorted rewriting, we extend many sorted rewriting with a notion of sub-

sorts. The signature of an order-sorted rewrite theory is now a pair ((S,<), F ),

where S and F are as described in Section 2.1.2, and < is a partial order on

sorts. The partial order has a simple meaning: the sort s1 is a subsort of s2,

written s1 < s2 if and only if for every Σ-term t of sort s1, t is also of sort s2.

In other words, the set of all terms of sort s1 is a subset of the set of all terms

of sort s2.
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Example 2.1.6. The following is the order-sorted equivalent of the theory from

Example 2.1.5

sorts Nat Int .

subsort Nat < Int .

op 0 : -> Nat .

op s : Nat -> Nat .

op s : Int -> Int .

op p : Int -> Int .

op _+_ : Int Int -> Int .

vars X Y : Int .

eq s(p(X)) = X .

eq p(s(X)) = X .

eq X + 0 = X .

eq 0 + X = X .

eq s(X) + Y = s(X + Y) .

eq p(X) + Y = p(X + Y) .

Since natural numbers are also integers, the equations apply to natural numbers

as well as integers, so we may evaluate s(0) + s(0) to s(s(0)), p(0) + p(0)

to p(p(0)), and s(0) + p(0) to 0 using the same equations for addition.

2.1.4 Rewriting Modulo Axioms

While orienting equations into rules provides an intuitive and general means for

automating equational reasoning, some equations, such as commutativity and

associativity, do not lend themselves well to orientation.

Example 2.1.7. Suppose we would like to explicitly make addition associative

and commutative. Our first instinct would be to define the following module.

mod NAT is

sorts Nat .

op 0 : -> Nat .

op s : Nat -> Nat .

op _+_ : Nat Nat -> Nat .

vars X Y Z : NAT .

eq X + Y = Y + X .

eq (X + Y) + Z = X + (Y + Z) .

eq 0 + X = X .

eq s(X) + Y = s(X + Y) .

endm
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There are two problems with this. First, every term of the form X + Y will

have an infinite rewrite sequence X + Y → Y + X → X + Y → . . ., because

we can always map X to Y and Y to X. This is clearly not desirable. Second,

the associativity equation does not give us true associativity. The associativity

equation groups all elements of the additions except the first into one term. As

a result, we are essentially forced to treat a sequence of multiple additions as

a poor man’s dequeue: we can add additions to the front and back, but can

only access the first number in the addition in the pattern of a rule. However,

associativity is supposed to allow us to freely group elements within the addition,

allowing us to isolate arbitrary elements in the middle. So for the term s(0) +

s(0) + 0 + 0 + 0 we should be able to work with any of s(0) + (s(0) + 0 + 0 + 0),

(s(0) + s(0)) + 0 + (0 + 0), (s(0) + s(0) + 0 + 0) + 0 and so on.

To get around this, we can split our rules into a disjoint union: B ] R.

B is a set of equations, called axioms that we do not try to orient. Instead

we use a different method to reason about the equality of terms modulo B

(typically an algorithm designed explicitly for the equations in B). Furthermore,

we will now apply the rules in R modulo B. We define the relation →R/B to

be =B ;→R; =B where ; is relation composition in diagrammatic order, and we

perform all rewriting as t→R/B t′. A rewrite theory modulo axioms is written

as a triple (Σ, B,R) where Σ is the signature of the theory, B is the set of

axioms, and R the set of rewrite rules.

Example 2.1.8. Maude supports associativity, commutativity, and unit (ACU)

as axioms (among others, however Maude-NPA only supports commutativity,

associativity, and unit). So in order to make addition commutative and asso-

ciative, we add the following operator attributes:

fmod NAT is

sorts Nat .

op 0 : -> Nat .

op s : Nat -> Nat .

op _+_ : Nat Nat -> Nat [assoc comm] .

vars X Y : Nat .

eq 0 + X = X .

eq s(X) + Y = s(X + Y) .

endfm

Note the assoc (associativity) and comm (commutativity) between brackets at

the end of the _+_ operator. Furthermore, observe that we have removed the

equation X + 0 = X . This is because the comm attribute makes this equation

unnecessary. Now, if we have the term X + 0, Maude will rewrite it as follows:

X + 0 ={comm,assoc} 0 +X →R X ={comm,assoc} X.
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We can also eliminate the equation X + 0 = X by introducing the identity

axiom:

fmod NAT is

sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat .

op _+_ : Nat Nat -> Nat [assoc comm id: 0] .

vars X Y : Nat .

eq s(X) + Y = s(X + Y) .

endfm

Now, the equation eq 0 + X = X . is not necessary, because s(0) + s(0) →R

s(0 + s(0)) =id: 0 s(s(0)). However, the identity attribute is a little bit danger-

ous, because it allows Maude to not only remove an identity from a term, but

also to add an identity to a term. Therefore, if the user is not careful, he/she

can very easily make Maude loop. For example, suppose we try to reduce the

term s(0) in the module above. Intuitively, we would expect the result to be

s(0). However, Maude will in fact loop on the following sequence:

s(0) =ACU s(0) + 0→ s(0 + 0) =ACU s(0)

It is possible to avoid this problem through a careful application of sorts.

For example, consider the following module.

fmod NAT is

sorts Zero Nat NzNat .

subsorts Zero NzNat < Nat .

op 0 : -> Zero .

op s : Nat -> NzNat .

op _+_ : Nat Nat -> Nat

[assoc comm id: 0] .

vars X : Nat .

var Y : NzNat .

eq s(X) + Y = s(X + Y) .

endfm

Here, because 0 is not of sort NzNat , the equation s(X) + Y = s(X + Y )

does not apply to the term s(0) + 0. Therefore, s(0) =ACU s(0) + 0 =ACU s(0)
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with no intermediate rewrite step possible.

However, implementing this fix is predicated on the knowledge that there

is a problem in the first place. Since Maude-NPA is attempting to solve an

undecidable problem, there is no guarantee that Maude-NPA will terminate.

Therefore, a failure of Maude-NPA to terminate in a reasonable timespan says

nothing about the correctness of the specification. So in the interest of mini-

mizing the chance of error, the identity attribute is strongly discouraged.

Technically Maude does not perform →R/B rewriting because →R/B is un-

decidable in general. Instead, Maude performs the (in general) weaker rewriting

relation →R,B [15]. Although the →R,B relation is in general weaker, there is

a class of rewrite theories for which →R,B and →R/B are equivalent in power

with respect to computing normal forms. These theories are called coherent

modulo the axioms. Decision procedures exist for making well-formed equa-

tional theories coherent modulo C, AC, and ACU [25]. Maude-PSL leverages

previous implementations of these procedures in Maude to automatically make

all user-provided theories coherent. Therefore an understanding of the distinc-

tion between→R/B and→R,B is not necessary to correctly use the Maude-PSL.

Therefore, since coherence is rather subtle, its discussion is omitted. The inter-

ested reader may wish to look at Jouannaud, Kirchner, and Kirchner’s work on

coherence [15], or Meseguer’s overview of rewriting logic [19] for more details

about coherence.

2.1.5 Confluence, Termination, and Least Sorted

One of the greatest strengths of Maude-NPA is the ability to reason about cryp-

tographic protocols modulo an equational theory. Therefore, one of the purposes

of the Maude-PSL is to allow us easily specify which equational theory we would

like to reason modulo. We do this by defining an order-sorted rewrite theory,

very similar to the modules in Example 2.1.8. However, in order to ensure that

our order-sorted rewrite theory correctly models the desired equational theory,

the rewrite theory must have two properties: termination, and confluence.

Termination

A rewrite theory is terminating if for every term t, there is no infinite rewrite

sequence t → t1 → . . . → ti → . . .. In other words, every rewrite sequence

starting at t is of the form t→ t1 → . . .→ tn, for some n ∈ N, and tn in normal

form.

Confluence

A rewrite theory is confluent if for any term t, we have that t →∗R/B t1 and

t→∗R/B t2, implies that there exists a term t′ such that t1 →∗R/B t′ and t2 →∗R/B
t′. If the theory is terminating, then a rewrite theory is confluent if and only if
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every term t has a unique normal form, called the canonical form of t, denoted

t ↓R/B , or just t ↓ if R and B are understood. We write t →!
R/B t′ to indicate

that t is being rewritten to canonical form t′.

In other words, if a theory is confluent and terminating, then the theory’s

only nondeterminism is “don’t care nondeterminism:” we will always (eventu-

ally) the same result, namely t ↓, regardless of the order in which we apply our

rules.

It should be noted that if the axioms B are non-empty, then we care only

about termination and confluence modulo B.

Example 2.1.9. Consider a theory of sets of natural numbers:

mod NAT -SET is

sorts Nat Set .

subsort Nat < Set .

op 0 : -> Nat .

op s : Nat -> Nat .

op mt : -> Set .

op _,_ : Set Set -> Set [assoc comm]

var S : Set .

eq S, S = S .

endm

Then, the set 0, 0, s(0) →!
R/B 0, s(0). Observe that one can rewrite 0, s(0) as

s(0), 0. However, because both terms are equal modulo the axioms, they may

be treated as “one” term, of which 0, s(0) is simply a representative.

Confluence and termination gives us the following key property, called the

Church-Rosser property. Let (Σ, E) be an equational theory, and (Σ, B,R) be an

order-sorted rewrite theory obtained from E by orienting some equations into R

and treating the rest as axioms. Then, if (Σ, B,R) is confluent and terminating

modulo B, then for any two terms t, t′, t =E t
′ iff t ↓R/B=B t′ ↓R/B . In other

words, equality may be determined by blindly rewriting both terms to canonical

form, and then comparing the two canonical forms for equality modulo B.

2.1.6 Rewriting Resources

For additional information about (unsorted) rewriting, see the book

Term Rewriting and All That by Franz Baader and Tobias Nipkow [2] or Ad-

vanced Topics in Term Rewriting by Enno Ohlebusch [23]. For details on order-

sorted rewriting with axioms, see the survey paper Twenty Years of Rewriting

Logic by José Meseguer [19].
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The Maude Manual by Manuel Clavel, et. al. contains additional informa-

tion about Maude [6]. A copy of the Maude Manual may be found on the Maude

website: http://maude.cs.illinois.edu.

2.2 Cryptographic Protocol Analysis

The entire purpose of the Maude-PSL is to specify cryptographic protocols,

which are then verified by Maude-NPA. Therefore, this section is meant to

provide the reader with a brief introduction to the concepts in cryptography

that he/she will need to use and understand the Maude-PSL.

2.2.1 Basic Concepts in Cryptography

Terminology

First, we need to introduce some basic terminology.

• plain/ciphertext - Plaintext is an unencrypted message that can be un-

derstood as-is. Ciphertext, is an encrypted message, which appears to be

meaningless until decrypted.

• symmetric key - An unguessable object used by the encryption and de-

cryption operations to generate the ciphertext (resp. plaintext) from the

plaintext (resp. ciphertext).

• principal - An entity (such as a person, computer, or server) that is capable

of sending messages over a network.

• protocol - A sequence of message passes between two or more principals.

• nonce - A value guaranteed to be unique, and unguessable (typically a

sufficiently large random number). Nonces are typically used to give a

message a watermark unique to the protocol execution for which the mes-

sage was generated. This ensures that an intruder cannot blindly use a

message acquired in a previous session as part of an attack on a future

session (called a replay attack).

• asymmetric key - A pair of keys p, s with the property that any message

encrypted with p can be decrypted only with s, and vice versa. However p

(resp. s) cannot decrypt anything encrypted with p (resp. s), unlike with

symmetric keys. Typically, one key is made publicly available (p), and the

other (s) is kept secret. Then, anyone who wishes to securely send the

owner of s a message encrypts the message with p. If the owner of p and

s wishes to sign a message, he/she encrypts the message with s.
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Alice and Bob

Next, we introduce one of the most popular notations for providing a loose

specification of protocols: the Alice and Bob notation. In the Alice and Bob

notation, a protocol is specified as a numbered sequence of message passes of

the form

1. A→ B : M1

2. B → A : M2

3. A→ S : M3

...

where each of A, B, and S represent three different principals (typically referred

to as “Alice,” “Bob,” and “the Server” respectively), and each Mi is a message.

Each line A→ B : M1 says that Alice is sending the message M1 to Bob.

Example 2.2.1. Consider the Needham-Schroeder public key authentication

protocol, spelled out below [22]. Note that as originally presented, this protocol

included steps in which Alice and Bob each interact with a third party server

to obtain the other’s public key. To simplify the protocol, we are going to leave

out the interactions with the server, and assume that Alice and Bob already

know the other’s public key.

A represents the principal Alice, and B represents the principal Bob. M1;M2

is the concatenation of messages M1 and M2. e(K1,M1) is the encryption of

message M1 with key K1. PKA (resp. PKB) is the public key of A (resp. B).

SKA and SKB are the associated secret keys. NA is a nonce generated by A,

and NB is a nonce generated by B.

1.A→ B : e(PKB , A;NA)

2.B → A : e(PKA, NA;NB)

3.A→ B : e(PKB , NB))

2.2.2 Cryptographic Protocols

The entire purpose of the Maude-PSL is to specify cryptographic protocols,

which are then verified by Maude-NPA. A cryptographic protocol is a protocol

that make certain security guarantees about the data sent and the principals

involved. Typically, these protocols attempt to make two guarantees: the au-

thenticity of the principals, and the secrecy of one or more terms sent during

the protocol. If Alice wishes to communicate with Bob, then the first step is

to make sure she is actually communicating with Bob, and not some unknown

entity pretending to be Bob. Similarly, if Bob receives a message from Alice,

he wants to make sure that he actually received a message from Alice, and not
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a pretender. Therefore, suppose a protocol claims to successfully complete if

and only if all principals involved are who they claim they are. Then we say

that the protocol authenticates the principals. The protocol from Example 2.2.1

provides an example of an authentication protocol, i.e. a cryptographic protocol

whose purpose is to authenticate the participants with each other.

Once Alice has confirmed that she is speaking with Bob, she usually wishes

to send him sensitive information (perhaps a key for a different, more efficient

encryption/decryption algorithm, or a meeting place). Then, she may encrypt

the message with Bob’s public key, or a symmetric key known only by the two

of them, and send the message to Bob. A protocol guarantees the secrecy of

a given message if and only if it is impossible for the intruder to obtain the

message in plaintext.

When studying cryptographic protocols, we typically assume two things:

perfect encryption, and that the intruder has complete control over the network.

Perfect encryption says that the only way to decrypt an encrypted message

is with the appropriate key. Giving the intruder complete control over the

network, allows the intruder to receive every message sent, to send any message

he/she can build to anyone on the network, and to destroy messages. The

intruder is also capable of initiating separate protocol sessions with any other

principal. This is called the Dolev-Yao model of the intruder [9]. The Dolev-

Yao model allows us to focus solely on the protocol, and see if the guarantees

it makes hold even under the most hostile environment imaginable. Attacks

usually consist of the attacker either executing additional protocol sessions with

the honest principals, or intercepting and replacing messages in such a way

that the principals accidentally give the intruder access to secret information,

or give the intruder the information he/she needs to impersonate one or more

principals.

Example 2.2.2. Recall the Needham-Schroeder protocol from Example 2.2.1.

Needham and Schroeder published the protocol in 1978. In 1995, Gavin Lowe

found an attack that allows the intruder to impersonate A (in other words, a

violation of the very authentication guarantee that the original protocol was

designed to provide) [17]. The attack requires two sessions. In session 1, A

initiates a valid session with I. In session 2, I begins a session with B in which

I impersonates A. Following the convention from the original paper that reveals

the attack, we write I(A) to represent the intruder, and we use x.y to indicate

the sending of message y in session x. So 1.1 represents the sending of the first

message in the first session.
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The attack is as follows:

1.1 A→ I : (PK I , A;NA)

2.1 I(A)→ B : e(PK I , A;NA)

2.2 B → I(A) : e(PKA, NA;NB)

1.2 I → A : e(PKA, NA;NB)

1.3 A→ I : e(PK I , NB)

2.3 I(A)→ B : e(PKB , NB)

In other words, the Intruder manages to successfully execute the protocol

with B by passing the messages he/she receives from A in session 1 to B in

session 2, and passing the messages he/she receives from B in session 2 to A

in session 1. Note that the Intruder manages to accomplish this without ever

learning the secret keys of A or B, or trying to break the encryption. Instead,

A does all the work of authenticating the Intruder’s identity as A to B. The

fact that it took not quite two decades to find this attack is a testament to the

difficulty in designing secure protocols and in verifying their security.

2.2.3 Protocol Strands

Due to the difficulty in proving cryptographic protocols secure, a lot of work

has gone into developing tools that leverage ideas in formal methods (model

checking, automated theorem proving, etc.) to prove cryptographic protocols

(in)correct. However, in order to formally analyze a cryptographic protocol, we

first need a mathematical model of cryptographic protocols. Two of the most

popular such models are the π-calculus [21] (and various derivatives, such as

the spi-calculus [1]), and the strand space model [14]. Since Maude-NPA uses

strand spaces, we will focus exclusively on strands here.

Strand spaces model protocols by associating with each principal a strand.

A strand is a sequence of signed messages (terms) ±m1,±m2, . . . ,±mn that the

associated principal sends and receives. A positive term +m is a term that the

owner of the strand sends, while a minus term −m is a term that the owner

of the strand receives. A strand is denoted A : [±m1,±m2, . . . ,±mn] where A

is the principal who owns the strand, and each ±mi represents either +mi or

−mi depending on whether A sends or receives mi as a part of the protocol.

Example 2.2.3. Recall the Needham-Schroeder protocol from Example 2.2.1:

1. A→ B : e(PKB , A;NA)

2. B → A : e(PKA, NA;NB)

3. A→ B : e(PKB , NB)
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Then, the strand space that models this protocol is:

A : [+(e(PKB , A;NA)),−(e(PKA, NA;NB)),+(e(PKB , NB))]

B : [−(e(PKB , A;NA)),+(e(PKA, NA;NB)),−(e(PKB , NB))]

It should be noted that the strand space model has no notion of time. As

a result, it cannot naturally track the state of a partial execution. Therefore,

Maude-NPA augments the strands with a vertical bar “|” that separates past

messages from future messages [12].

Example 2.2.4. Recall the strand space from Example 2.2.3. Before the pro-

tocol begins executing, our augmented strands are the following:

A : [nil |+ (e(PKB , A;NA)),−(e(PKA, NA;NB)),+(e(PKB , NB))]

B : [nil | − (e(PKB , A;NA)),+(e(PKA, NA;NB)),−(e(PKB , NB))]

Note that nil represents an empty list of signed terms.

Now suppose Alice has sent +(e(PKB , A;NA)), and Bob has received it.

Furthermore, Bob has sent e(PKA, NA;NB), but Alice has not yet received it.

Then our strands would be the following:

A : [+(e(PKB , A;NA))| − (e(PKA, NA;NB)),+(e(PKB , NB))]

B : [nil | − (e(PKB , A;NA)),+(e(PKA, NA;NB))| − (e(PKB , NB))]

Note that bar after the first term in Alice’s strand, and after the second in Bob’s

strand.

2.2.4 Maude-NPA

Maude-NPA is a tool for cryptographic protocol verification using the strand

space model [12]. It is built in Maude, and its specifications are written using

Maude. A specification consists of three modules:

• PROTOCOL-EXAMPLE-SYMBOLS

• PROTOCOL-EXAMPLE-ALGEBRAIC

• PROTOCOL-SPECIFICATION.

PROTOCOL-EXAMPLE-ALGEBRAIC defines the signature, Σ and the ax-

ioms B.PROTOCOL-EXAMPLE-ALGEBRAIC defines the equations (i.e. al-

gebraic properties) of the operators defined in PROTOCOL-EXAMPLE-

SYMBOLS. In PROTOCOL-SPECIFICATION we define at least three equa-

tions:

• STRANDS-DOLEVYAO

• STRANDS-PROTOCOL
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• Some number of ATTACK-STATE(N) for N a natural number.

STRANDS-DOLEVYAO defines the capabilities of the intruder (while the

Dolev-Yao model says that the intruder can do anything that honest principals

can do, precisely what “anything an honest principal can do” actually is will

often vary from specification to specification). STRANDS-PROTOCOL defines

the strands of the honest principals, while ATTACK-STATE(N) allows us to

specify an attack we would like to prove our protocol (in)secure against.

Example 2.2.5. The following is a Maude-NPA specification of the NS protocol

from Example 2.2.1 using the strands from Example 2.2.3. Three dashes (---)

represents comments. The operators pk and sk are used to represent encryption

with a role’s public and secret key respectively. The modules DEFINITION-

PROTOCOL-RULES and DEFINITION-CONSTRAINTS-INPUT are part of

the implemenation of Maude-NPA, and provide the built-in sorts Msg, Fresh,

and Public amongst other things.

fmod PROTOCOL -EXAMPLE -SYMBOLS is

protecting DEFINITION -PROTOCOL -RULES .

sorts Name Nonce Key .

subsort Name Nonce Key < Msg .

subsort Name < Key .

subsort Name < Public .

op pk : Key Msg -> Msg [frozen] .

op sk : Key Msg -> Msg [frozen] .

op n : Name Fresh -> Nonce [frozen] .

op a : -> Name . --- Alice

op b : -> Name . --- Bob

op i : -> Name . --- Intruder

op _;_ : Msg Msg -> Msg

[gather (e E) frozen] .

endfm

fmod PROTOCOL -EXAMPLE -ALGEBRAIC is

protecting PROTOCOL -EXAMPLE -SYMBOLS .

var X : Name . var Z : Msg .

eq pk(X, sk(X, Z)) = Z [variant] .

eq sk(X, pk(X, Z)) = Z [variant] .

endfm

fmod PROTOCOL -SPECIFICATION is
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protecting PROTOCOL -EXAMPLE -SYMBOLS .

protecting DEFINITION -PROTOCOL -RULES .

protecting DEFINITION -CONSTRAINTS -INPUT .

var Ke : Key .

vars X Y Z : Msg .

vars r r’ : Fresh .

vars A B : Name .

vars N N’ N1 N2 : Nonce .

eq STRANDS -DOLEVYAO

= :: nil :: [ nil | -(X), -(Y), +(X ; Y),

nil ] &

:: nil :: [ nil | -(X ; Y), +(X),

nil ] &

:: nil :: [ nil | -(X ; Y), +(Y),

nil ] &

:: nil :: [ nil | -(X), +(sk(i,X)),

nil ] &

:: nil :: [ nil | -(X), +(pk(Ke ,X)),

nil ] &

:: nil :: [ nil | +(A), nil ]

[nonexec] .

eq STRANDS -PROTOCOL

=

---Alice

:: r ::

[ nil | +(pk(B,A ; n(A,r))),

-(pk(A,n(A,r) ; N)), +(pk(B, N)),

nil ] &

---Bob

:: r’ ::

[ nil | -(pk(B,A ; N’)),

+(pk(A, N’ ; n(B,r’))),

-(pk(B, n(B,r’))), nil ]

[nonexec] .

var S : StrandSet . var K : IntruderKnowledge .

eq ATTACK -STATE (0)

= :: r ::

[ nil , -(pk(b,a ; N)), +(pk(a, N ; n(b,r))),
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-(pk(b,n(b,r))) | nil ]

|| n(b,r) inI , empty

|| nil

|| nil

|| nil

[nonexec] .

eq ATTACK -STATE (1)

= :: r ::

[ nil , -(pk(b,a ; N)), +(pk(a, N ; n(b,r))),

-(pk(b,n(b,r))) | nil ]

|| empty

|| nil

|| nil

|| never

(:: r’ ::

[ nil , +(pk(b,a ; N)), -(pk(a, N ; n(b,r)))

| +(pk(b,n(b,r))), nil ]

& S

|| K)

[nonexec] .

The sort Fresh is an implementation detail. Variables of sort Fresh are used

to enforce the uniqueness of entities like nonces or timestamps. Therefore, by

defining an operator with an argument of sort Fresh (i.e. n : Name Fresh ->

Nonce) we are saying that said operator will be unique across sessions. In order

to properly enforce this guarantee, the strands must explicitly track all fresh

variables generated by that strand. A fresh variable is generated by a strand if

the fresh variable first appears inside of a sent (i.e. positive) term. The variables

generated by a strand are specified between the double colons at the beginning

of each strand. So Alice’s strand generates the fresh variable r.

Intruder capabilities are also modeled as strands. However each intruder

strand must follow the following structure: A list of zero or more received (i.e.

negative) messages followed by a single sent (positive) message. An intruder

strand :: nil :: [−m1,−m2, . . . ,−mn,+m] says that if the intruder knows (i.e.

intercepted) the terms m1,m2, . . . ,mn, then the intruder can learn the term m

(i.e. send the term to himself/herself). For example, the strand :: nil :: [nil| −
(X),−(Y ),+(X;Y ), nil] says that the intruder can concatenate any messages

he/she knows to obtain a new message.

Maude-NPA verifies cryptographic protocols by performing a form of state

space exploration. Therefore, attacks are defined as states that should be un-

reachable during protocol execution. Each fragment of the state is separated by

double bars ||. First, we specify one or more strands in some stage of execution
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(usually fully executed). This tells us which principal(s) is expected to have ex-

ecuted the protocol. Then, we specify a list of terms in the intruder knowledge.

The next two state fragments (both containing nil) are implementation details.

They are only used when debugging Maude-NPA (but not when debugging the

specification). The final stage fragment is called a never pattern. Never pat-

terns are themselves state patterns that may not appear in a valid path from

the start state to the attack state.

For example, attack 0 asks whether it is possible for Bob to execute the

protocol successfully, and for the intruder to learn Bob’s nonce. Meanwhile,

attack 1 asks whether it is possible for Bob to successfully execute the protocol

without Alice successfully executing the protocol. In other words, is it possible

for the intruder to impersonate Alice.

Finally, observe that the strands for Alice and Bob are not exactly what

one would expect. A straight translation of the NS protocol into strands would

suggest the following two strands:

---Alice

:: r ::

[ nil | +(pk(B,A ; n(A,r))),

-(pk(A,n(A,r) ; n(B, r’))),

+(pk(B, n(B, r’))), nil ] &

---Bob

:: r’ ::

[ nil | -(pk(B,A ; n(A, r))),

+(pk(A, n(A, r) ; n(B,r’))),

-(pk(B, n(B,r’))), nil ]

However, instead the specification has the following two strands:

---Alice

:: r ::

[ nil | +(pk(B,A ; n(A,r))),

-(pk(A,n(A,r) ; N)),

+(pk(B, N)), nil ] &

---Bob

:: r’ ::

[ nil | -(pk(B,A ; N’)),

+(pk(A, N’ ; n(B,r’))),

-(pk(B,n(B,r’))), nil ]

Observe that Bob’s nonce is represented as the variable N in Alice’s strand, and

N’ is used to represent Alice’s nonce in Bob’s strand. This is because Maude-

NPA makes use of an idea called perspective [12]. Perspective will be explored

in greater detail in Chapter 3.2.3, however the basic idea is that each principal

can only derive a limited amount of information from the messages they receive.

For example, Alice expects to receive a nonce from Bob, but she has no way
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of knowing for certain that the nonce she received was in fact generated by

Bob (proving this is the whole purpose of the protocol). Maude-NPA requires

the user to make these holes in each principal’s knowledge explicit by replacing

unknown terms with variables of the appropriate sort (or of sort Msg if it is

assumed the principals cannot even type check a message).

In short, Maude-NPA is a tool that uses the strand-space model to model

cryptographic protocols. The strand space model relies on specifying each prin-

cipal’s actions as a strand: a sequence of sent and received messages. Maude-

NPA is implemented in Maude, a declarative language based on order-sorted

rewriting with axioms, which is a model of computation based on one-way equa-

tional reasoning with subtyping.
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Chapter 3

Language Description

A Maude-PSL specification consists of four sections. Each section contains a

sequence of statements, with each statement terminated by a space and pe-

riod. The four sections are: Theory, Protocol, Intruder, and Attacks. Theory

defines the equational theory, Protocol specifies the protocol, Intruder contains

the intruder capabilities, and Attacks contains the types of attacks (e.g. au-

thentication, secrecy violations) to check for.

We will explain the language using a specification of the Diffie-Helman(DH)

protocol as a running example [7].

Example 3.0.6. The top level of the specification is as follows:

spec DH is

Theory

...

Protocol

...

Intruder

...

Attacks

...

ends

Variables must be declared within a section. Variables inside of the Theory

and Intruder sections only have scope within their respective sections. Variable

declarations are not allowed in the Attack section. Instead, the Attack section

relies on the variables declared in the Protocol section. This is because the

attacks depend upon the variables used in the protocol specification. Therefore,

attacks should only use variables that appear in the protocol.

Example 3.0.7. In the following two statements, we declare two variables

AName and BName of sort Name, and one variable M of sort Msg.

vars AName BName : Name .

vars N M : Msg .

Observe the use of the keyword vars when declaring multiple variables of the

same sort, and var when declaring a single variable.
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Variable names must be single identifiers.

With the exception of the protocol section, variable meanings are not pre-

served between statements. For example, the following two equations (equations

are explained in more detail in Section 3.1):

eq pk(AName , sk(AName , M)) = M .

eq sk(AName , pk(AName , M)) = M .

are equivalent to the following two equations:

eq pk(AName , sk(AName , M)) = M .

eq sk(BName , pk(BName , N)) = N .

Note the use of BName instead of AName, and N instead of M in the fourth equation.

The section headers (Theory, Protocol, Intruder and Attacks) do not end

in a space and period. Each specification is begun with the keyword spec and

terminated with the ends keyword. DH is the name chosen for the Diffie-Helman

specification.

We will now look at each section in turn.

3.1 Theory

In this section, we define the algebraic theory of the cryptographic protocol.

The theory is a Maude functional module (for details, see [6]) with a few small

additions, and some restrictions on user-defined operators. We will only focus

on those aspects of Maude functional modules that are important to algebraic

theories typically used in cryptographic protocols.

A theory is meant to define two things: The “language” in which the specifi-

cation will be written, and the properties of the operations (e.g. the commuta-

tivity of XOR) that the protocol depends upon. The language is defined using

a user-defined sort structure and set of operator symbols. The properties are

defined using equations and operator attributes.

3.1.1 Type Structure

The type structure is used to model the capabilities of each principal to perform

type-checking. A richer or poorer type structure may be used to model stronger

or weaker type checking capabilities, respectively.

There are three built-in sorts: Msg, Public, and Fresh, with Public a sub-

sort of Msg. Msg represents the set of all messages that may be sent during

protocol execution. Public represents those messages that are publicly known

(e.g. public keys). Fresh is a special sort that is used to help model session-

specific values like nonces and timestamps (see Page 21).
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Sorts are defined using one of the sort, sorts, type, or types keywords1,

followed by the name(s) of the new sort(s). Sort names are single identifiers.

Multiple sorts may be declared in a single line by separating their names with

whitespace.

Example 3.1.1. The following statement declares the types used by our spec-

ification of DH:

types Name Nonce MultipliedNonces

Generator Exp Key GeneratorOrExp

Secret .

Name represents the set of all principal names. Nonce is obvious. We will be

using nonces to represent the secret exponents used by DH to construct the

symmetric key. MultipliedNonces represents the exponents that have been

multiplied together as part of building the shared key. A Generator is the

public base used for generating keys. An Exp is a generator (or a generator

raised to one or more exponents) raised to one or more exponents. Terms of

sort Secret represent the data that Alice and Bob wish to share securely.

Subsort relations are defined using one of the following keywords: subtype,

subtypes, subsort, or subsorts.

Example 3.1.2. The following is the subtyping structure for DH.

subtypes Generator Exp < GeneratorOrExp .

subtype Exp < Key .

subtypes Name Generator < Public .

subtype Nonce < MultipliedNonces .

So every Generator, and every Exp is a GeneratorOrExp. Meanwhile, an Exp is

treated as a key. All names and all generators are publicly known. Furthermore

a single Nonce is viewed as a degenerate set of MultipliedNonces.

The Maude-PSL automatically makes all user-defined sorts subsorts of Msg.

3.1.2 Operators

In order to specify a protocol, we first need to define a language for the op-

erations (e.g. exponentiation, encryption, and decryption) performed during

protocol execution.

The language of the protocol is defined by declaring operators. These oper-

ators are then used to build terms, which provide a symbolic representation of

the actions performed. For example, the term e(K, M) may be used to represent

a message M encrypted with the key K.

1We consider the notion of type and sort to be the same; therefore, the keyword type,
(resp types) is equivalent to the keyword sort (resp. sorts).
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Example 3.1.3. The following statements declare some of the operators needed

by DH.

ops sec n : Name Fresh -> Secret .

ops a b i : -> Name .

ops e d : Key Msg -> Msg .

The operator sec encodes secret information: the term sec(AName, r) (for

AName a variable of sort Name, and r a variable of sort Fresh) represents some

secret information known only by Alice. The nonce operator n is very similar,

except that it is used to represent nonces rather than arbitrary secret data.

The constants a, b, and i represent concrete names of distinct principals

(Alice, Bob, and the Intruder respectively).

The operators e and d represent encryption and decryption respectively.

Operator declarations that declare a single operator begin with op, while

operator declarations that declare multiple operators begin with ops, as done

above for sec and n.

Following the op keyword is a string of one or more tokens defining the

operator. The operator name is terminated by a space and colon. When defining

multiple operators in a single declaration, each operator must be separated from

the others by whitespace. If an operator containing whitespace is declared using

the ops keyword, then the operator must be wrapped in parentheses.

Following the colon is a space separated list of argument sorts, then an ASCII

arrow, then the result sort.

In Example 3.1.3, the non-constant operators sec, n, e, and d are declared

in prefix syntax. In other words, to encrypt a message M with a key K, we write

e(K, M). However, the Maude-PSL also allows the user to define operators using

mixfix syntax.

Example 3.1.4. The following is the mixfix operator for message concatena-

tion.

op _;_ : Msg Msg -> Msg .

The underscores represent where the operator’s arguments are placed. For

example, to concatenate two messages M and N we write M ; N (note the blank

spaces between M and ;, and between ; and N). When declaring a mixfix oper-

ator, there must be exactly as many underscores as there are argument sorts.

Finally, it is possible to assign certain attributes to each operator. In partic-

ular, we can declare binary operators to be associative, commutative, or having

a unit element, using the keywords assoc, comm, or id: c (with c a constant

of the appropriate sort), respectively. For parsing purposes (but not really as

equational axioms) we can avoid parentheses in a binary operator by requir-

ing the parser to parse terms as left- or right-associative using the attributes

gather(E e) or gather(e E) respectively.

29



Example 3.1.5. Here we make the concatenation operator right-associative,

and declare also an associative-commutative operator for multiplying nonces.

op _;_ : Msg Msg -> Msg [gather (e E)] .

op _*_ : MultipliedNonces MultipliedNonces

-> MultipliedNonces [assoc comm] .

In order to use the comm axiom, both operator arguments must have the

same sort. In order to use the assoc axiom, both arguments and the result

must have the same sort. For technical reasons, the Maude-NPA does not allow

assoc without comm, or id without comm and assoc.

The unit axiom id: should be used carefully, if at all. Treating the unit

as a built-in axiom can lead to unexpected non-termination, because the unit

axiom allows Maude to insert new terms (the unit constant) into other terms

at will. This is particularly problematic with the Maude-PSL, because the

equational theory is not executed directly by the user. Rather it is used behind

the scenes by a symbolic model-checker attempting to solve a semi-decidable

problem. Therefore, it may be difficult to realize that the protocol verification

is non-terminating, not because the search space is infinite, but because the unit

axiom has led to unexpected looping.

Any legal attribute in Maude is also a legal attribute in Maude-PSL. In

particular, this includes parsing precedence attributes, which may be useful if

the user is specifying a large number of mixfix operators. Chapter 3.9 of the

Maude Manual describes the operator precedences, while Chapter 4.4 describes

all other operator attributes ([6]). Note however that the only axioms that

are allowed are the comm, assoc and unit axioms as explained above. Axioms

are any attributes that influence the rewrite relation itself, rather than just the

writing and printing of terms.

To ease implementation, we assume that the user-defined operators are dis-

joint from the tokens used by the built-in syntax. For a list of built-in tokens,

see Appendix 6.3.

3.1.3 Algebraic Properties

Now that we know how to define the language of the protocol, the next step

is to specify the properties of the operators. Certain built-in properties (i.e.

associativity and commutativity) are already defined alongside the operators,

but what about others, such as the relationship between multiplication and

exponentiation? Such properties are defined as equations between terms.

Example 3.1.6. Mathematically, we define the relationship between exponen-

tiation and multiplication as follows:

(gy)z = gy∗z
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for g the base of the exponentiation, and y, z exponents. In Maude-PSL, using

the signature defined in Section 3.1.2, we write the above equation as follows:

var G : Gen . vars Y Z : MultipledNonces .

eq exp(exp(G, Y), Z) = exp(G, Y * Z) .

Each equation begins with the eq keyword, and ends with a space and pe-

riod. Contrary to equations in the mathematical sense, which are viewed in a

symmetric way (i.e. (gy)z = gy∗z and gy∗z = (gy)z are the same equation), in

the Maude-PSL, the orientation of an equation matters. This is because the

equations are used from left to right as simplification rules. Furthermore, how

the equation is oriented may have an impact on both its executability by sim-

plification and whether or not the theory terminates. To ensure termination,

equations should be written (from left to right) from “complex” to “simple,” the

idea being that every term, no matter how complex, will eventually become too

“simple” to reduce further. What “complex” and “simple” mean is dependent

upon the theory. Furthermore, the equational theory must also be confluent.

Equations are specified modulo the attributes commutativity, associativity,

and unit that may have been declared as part of the operator declarations. So

we could have just as easily written eq exp(exp(G,Y),Z) = exp(G, Z * Y)

. (where we have swapped the order of Z and Y in the multiplication). The

commutativity of * means that both equations are considered identical by the

Maude-PSL.

Note that because the Maude-PSL is translated into the strand-based lan-

guage used by Maude-NPA, the equational theory must meet the restrictions

imposed by Maude-NPA [12]. The restrictions are as follows:

1. If an operator has axioms, then those axioms must be commutative,

commutative-associative, or commutative-associative-identity. So an asso-

ciative operator is not allowed unless it is also commutative. Maude-PSL

will throw an error if an operator has an incompatible combination of

axioms.

2. The equations are confluent modulo the axioms. This is not automatically

checked.

3. The equations are terminating modulo the axioms. This is not automati-

cally checked.

4. The equations are coherent modulo the axioms [15]. The Maude-PSL

automatically makes equations coherent modulo the axioms, as discussed

in Chapter 2.1.4.

5. The equations have the finite variant property [13]. This is not automat-

ically checked.
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3.2 Protocol

To fully specify a protocol, we need to specify three pieces of information (and

an optional fourth):

1. The protocol’s input.

2. The protocol itself.

3. The protocol’s output.

4. (Optional) Shorthand for terms, referred to as definitions.

The protocol’s input and output are specified for each principal, while the

protocol itself is specified using an extension of the standard Alice-Bob syntax.

However, before we begin we must first draw a very important distinction

between three related but subtly different ideas: roles, role names, and role

patterns.

3.2.1 Roles

A role is one of the jobs that can be performed by a principal to execute the

protocol. At the very minimum, each protocol has an initiator role and a re-

sponder role. Many protocols also have a neutral third party role, such as for

example, a key server. Each role has a particular sequence of messages that it

must send and receive, as dictated by the protocol.

Meanwhile, a role name is the name we use to represent each role. For exam-

ple, Alice (A for short) is the name often used for the initiator role. Similarly,

Bob is the name often used for the receiver role, and Server can sometimes be

used as the name of a neutral third party role.

In the Maude-PSL we must explicitly name each role. The roles are named

using a space-separated list of identifiers prepended by the keyword roles:

roles role1 role2 ... roleN .

Example 3.2.1. Below, we name the two roles for DH: A (initiator) and B

(responder) roles.

roles A B .

Note that the order in which the names are declared does not matter.

Finally, we have role patterns. A role pattern is a principal’s approximation

of a role name based on the limited information available to that principal.

Role patterns are what variables of sort Name actually represent in our DH

specification.
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In the Alice-Bob notation, all three notions are conflated. Consider the first

step of DH: A → B : A,B, gpa . Here the initiator role with role name A is

sending a message containing the concatenation of two role patterns representing

the initiator’s and the responder’s name and half of the Diffie-Helman key. The

responder then receives an encrypted message containing two role patterns and

half of a Diffie-Helman key.

This distinction between roles, role names, and role patterns is important

to the Maude-PSL’s syntax, which endeavors to make explicit the knowledge

that each protocol may infer when receiving a message at each stage of protocol

execution. Roles are explicitly declared using the roles keyword declared above.

Role patterns are represented using variables (typically of type Name).

So in summary, we have two ways of identifying roles:

• role names - These are the true names of each role. They are explicitly

declared in the Maude-PSL using the roles keyword.

• role patterns - Potentially incorrect names associated with each role by

the principals based on their limited knowledge.

To ease exposition, when it is clear from context that a role pattern is an

accurate representation of a role name (e.g. the role pattern that represents

Alice’s knowledge of her own name), then we will refer to both as role names.

3.2.2 Principal Input

Each protocol makes certain assumptions about the starting knowledge of each

principal (for example, that Alice knows Bob’s name, or that Alice and Bob

already have a shared key).

These assumptions are codified by specifying input for each role.

Example 3.2.2. The following two statements specify the input of Alice and

Bob in the DH protocol.

vars ANAME BNAME : Name .

In(A) = ANAME , BNAME .

In(B) = BNAME .

Here, we assume that Alice knows both her name and Bob’s (she knows Bob’s

name, because she wants to speak with him). Bob only knows his own name,

because he doesn’t know for certain that it is Alice, as opposed to Claire, who

wishes to communicate with him.

The token In takes a role name as argument. The input is a comma-

separated list of variables, and must be defined for every role (since all roles

must at the very least know their own name, the input is guaranteed to be

non-empty). Note that although in the above example, all inputs are names, in

general the input variables may be of any sort.
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3.2.3 Protocol Specification

The protocol itself is specified using an extension of the Alice-Bob syntax that

makes explicit the viewpoint of each principal, and what each principal can infer

when receiving a message.

Example 3.2.3. Consider the Diffie-Helman public key authentication pro-

tocol, spelled out below [7]. Note that technically, the Diffie-Helman requires

the user to perform an exponentiation modulo a large prime number. This is

meant to help ensure that the exponentiation cannot be easily brute forced.

However we are only interested in attacks in which the attacker does not use

brute force, but rather manipulates the execution of the protocol to trick the

honest principals into revealing sensitive information, or to trick one honest

principal into thinking the intruder is a different honest principal. Therefore,

to simplify exposition, we will ignore the modulus operation, and focus only on

the exponentiation.

A represents the principal Alice, and B represents the principal Bob. M1;M2

is the concatenation of messages M1 and M2. e(K1,M1) is the encryption of

message M1 with key K1. PKA (resp. pkB) is the public key of A (resp. B).

SKA and SKB are the associated secret keys. NA is a nonce generated by A,

and NB is a nonce generated by B.

1. A→ B : A;B, gpa

2. B → A : A;B; gpb

3. A→ B : e((gpb)pa , s)

where pa and pb are the secret, large numbers used as exponents by A and B, g

is the shared base, and s is the secret information to be exchanged.

The following is the specification in the Maude-PSL.

vars AName BName A1Name : Name .

vars r1 r2 r3 : Fresh .

vars XEA XEB : Exp .

var S : Secret .

1 . A -> B : ANAME ; BNAME ;

exp(g, n(ANAME , r1))

|- A1NAME ; BNAME ; XEB .

2 . B -> A : A1NAME ; BNAME ;

exp(g, n(BNAME , r2))

|- ANAME ; BNAME ; XEA .

3 . A -> B : e(exp(XEA , n(ANAME , r1)),
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sec(ANAME , r3))

|- e(exp(XEB , n(BNAME , r2)),

S) .

Recall that A and B are the role names declared in Example 3.2.1.

The most obvious difference from the standard Alice-Bob notation is that

each message is split it into two different perspectives. The first term represents

the sender’s perspective of the message he/she is sending, while the second is

the receiver’s perspective of the message he/she is receiving.

Perspective

In the standard Alice-Bob notation, the protocol is described from an omniscient

point of view in an ideal world: we know exactly what is sent by the sender, and

we know that the receiver always receives that exact message. However, things

are messier in practice. Whenever a principal receives a message, he/she can

only derive a limited amount of information from the message. For example,

consider the message sent by Alice in the first step of DH: AName ; BName ;

exp(g, n(AName, r1)). When Bob receives the message, he does not know a

priori that it was sent by Alice, since he does not know ahead of time that he will

be speaking to Alice. Furthermore, he does not know what the value of Alice’s

nonce is, so he cannot break the exponentiated value into its component pieces

(base and exponent). Therefore, from his point of view, he receives a message

of the form A1Name ; BName ; XEB ., where A1Name is some role pattern that

may or may not be Alice’s name, and XEB is some exponentiated value that may

or may not have been generated by Alice.

The sharp-eyed reader may observe that when Alice sends the name BName

in the first step, Bob receives that exact same name, BName. Recall from Sec-

tion 3.2.2 that we assumed that both Alice and Bob know Bob’s name. There-

fore, Alice knows to send Bob’s name, and Bob expects (and can verify) that

the second name is his (we assume that although Bob does not know who he

will be communicating with, he does know that he will be using DH).

A perspective implicitly encodes the capabilities of a principal to decode a

message. Therefore, when building each perspective, the user has to ask him-

self/herself “What types of information can this principal reasonably derive?”

For example, we know that Bob can look inside the term e(exp(XEB, n(B,

r2)), S) and extract S, because the term is encrypted using the shared key

he has constructed with Alice. Furthermore, thanks to the properties of ex-

ponentiation and multiplication, we know that Bob will see the key as some

base XEB raised to his exponent n(B, r2). Alice meanwhile, sees the key as

e(exp(XEA, n(A, r1)) because she knows the value of her nonce, but has no

computationally easy way to derive Bob’s nonce.
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3.2.4 Role Names vs. Role Patterns

Observe that although B receives the name A1Name in the first step, in the second

step he sends his message to A, instead of some role A1. This is because of the

distinction between role names and role patterns discussed at the beginning of

the chapter. The character A is a role name, while A1Name is a role pattern.

Because of this distinction, the following two specifications are equivalent to

that found in example 3.2.3:

vars AName BName A1Name : Name .

vars r1 r2 r3 : Fresh .

vars XEA XEB : Exp .

var S : Secret .

roles initiator responder .

1 . initiator -> responder : ANAME ; BNAME ;

exp(g, n(AName , r1))

|- A1NAME ; BNAME ;

XEB .

2 . responder -> initiator : A1NAME ; BNAME ;

exp(g, n(BNAME , r2))

|- ANAME ; BNAME ;

XEA .

3 . initiator -> responder :

e(exp(XEA , n(ANAME , r1)), sec(ANAME , r3)) |-

e(exp(XEB , n(BNAME , r2)), S)

and

vars A B A1 : Name .

vars r1 r2 r3 : Fresh .

vars XEA XEB : Exp .

var S : Secret .

roles A B .

1 . A -> B : A ; B ; exp(g, n(A, r1))

|- A1 ; B ; XEB .

2 . B -> A : A1 ; B ; exp(g, n(B, r2))

|- A ; B ; XEA .

3 . A -> B : e(exp(XEA , n(A, r1)), sec(A, r3))

|- e(exp(XEB , n(B, r2)), S) .

Note in the third version that the same characters (A and B) are used to

represent both the role names and the role patterns. This is perfectly legal,
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and may make the specification more concise and closer to Alice-Bob notation.

However, the user runs the risk of conflating role names and patterns if he/she

uses this style.

Once a role name has been chosen, it must be used throughout the entire

specification. For example, in the second version of the specification, where the

initiator role is named initiator, the input must be specified as In(initiator)

= ANAME, BNAME ..

The Maude-PSL enforces that all variables between roles are disjoint with

the exception of those declared in the role’s inputs. If the same variable shows

up in both Alice’s and Bob’s inputs, then that same variable may be used in

both Alice’s and Bob’s perspectives.

3.2.5 Principal Output

A principal’s output is very similar to the input, and has a very similar syntax.

A principal’s output is a set of terms that the user deems to be “important,”

and that are (or can be) generated from terms in the protocol and input. For

example, since the whole point of DH is to establish a shared key between Alice

and Bob, the two perspectives on the shared key can be deemed important.

Example 3.2.4. The following are the outputs of Alice and Bob for our spec-

ification of DH

Out(A) = exp(XEA , n(A, r1)) .

Out(B) = exp(XEB , n(B, r2)) .

Note that the variables in the output terms of a particular role must have

already appeared in the role’s half of the protocol, or in the role’s input. How-

ever, a term does not have to appear in the input or in the protocol specification

in order to be considered output.

Output is meant to be used for protocol composition, and is included for

future compatibility.

3.2.6 Definitions

In protocols of even moderate complexity (such as Otway-Rees [24]), the terms

used in the specification quickly become painfully large. In complicated terms,

it is often difficult to quickly separate out and mentally compartmentalize sub-

terms into the purposes they are meant to serve (for example, recognizing the

term n(A, r1) as the exponent in the term exp(g, n(A, r1))). Furthermore,

it is not unusual in a cryptographic protocol for a term to be repeated many

times, for example when encrypting multiple messages with the same key. As

a result, any time that a term is modified, it needs to be manually changed

everywhere in the protocol (and potentially in the attacks), which is highly

error-prone.
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To ease this burden we allow users to define what are essentially let state-

ments for terms, referred to as definitions.

Example 3.2.5. The following are some definitions for our DH specification.

Def(A) = pa := n(AName , r1),

secret := sec(AName , r’) .

Def(B) = pb := n(BName , r2) .

Observe that the definitions are specific to each role. Furthermore, the

definition names (pa, s, pb) of each role must be disjoint from the names used

by other roles, and from variable and operator names.

Using these definitions gives us the following protocol specification:

1 . A -> B : AName ; BName ; exp(g, pa)

|- A1Name ; BName ; XEB .

2 . B -> A : A1Name ; BName ; exp(g, pb)

|- AName ; BName ; XEA .

3 . A -> B : e(exp(XEA , pa), secret)

|- e(exp(XEB , pb), S) .

This is both visually simpler than the specification in example 3.2.3 and also

much closer to the original Alice-Bob description. Internally, each definition

name is replaced by the corresponding term in a simple token replacement. So

if we have a definition xp := exp(g, M), and a term exp(xp, M), then exp(xp,

M) will be automatically replaced with exp(exp(g, M), M).

Definition names may be any identifier and definitions may be used in other

definitions (though be careful not to create circular dependencies). To illustrate,

consider the following alternative set of definitions:

Def(A) = pa := n(A, r1),

s := sec(A, r’),

g^pa := exp(g, pa),

xea^pa := exp(XEA , pa) .

Def(B) = g^pb := exp(g, pb),

pb := n(B, r2),

xeb^pb := exp(XEB , pb) .

Note that the order in which the definitions are defined does not matter. For

example, we are defining g^pb using pb before we have defined pb. This is

perfectly legal.

Using these definitions gives us the following specification:

1 . A -> B : A ; B ; g^pa

|- A1 ; B ; XEB .

2 . B -> A : A1 ; B ; g^pb

|- A ; B ; XEA .
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3 . A -> B : e(xea^pa, secret)

|- e(xeb^pb, S) .

which is even closer to the original Alice-Bob description of the protocol. How-

ever, while on the face of it this may seem like an appropriate use of definitions,

it is not. Definitions are meant to give names to complex terms. They are not

meant to give the user a poor man’s user-defined syntax. Especially since a very

powerful system of user-defined syntax is already provided! If the user desires

mixfix exponentiation, then the user should define a mixfix operator ^ and

use that instead.

For an example of the proper use of non-trivial definitions, see Chapter 5,

in which we specify the Otway-Rees protocol.

3.3 Intruder

The Intruder section defines the capabilities of the intruder. In the Maude-PSL

it is assumed that the Intruder has complete control over the network: he/she

can intercept messages, destroy messages, and inject his/her own messages into

the communication at will. All that remains to be specified is what kinds of

messages the Intruder can create, and what he needs to know to create them.

Therefore, an intruder capability takes the form of an implication: if the

intruder knows terms t1, t2, . . . , tn, then he/she can learn t′1, t
′
2, . . . , t

′
m.

Example 3.3.1. The following are the intruder capabilities for the DH speci-

fication.

var r : Fresh . var P : Name .

vars M1 M2 : Msg . vars NS1 NS2 : Nonce .

var K : Key . var GE : GeneratorOrExp .

K, M1 => e(K, M1), d(K, M1) .

NS1 , NS2 => NS1 * NS2 .

GE , NS1 => exp(GE, NS1) .

M1 ; M2 <=> M1 , M2 .

=> n(i, r), g, P .

The statement

K, M1 => e(K, M1), d(K, M1) reads: “If the Intruder knows a key K and a

message M1, then he/she can learn the terms e(K, M1) and d(K, M1).” In other

words, if the intruder has a key, then he/she can encrypt an arbitrary message

with said key, or attempt to decrypt an arbitrary message with said key.

The statement M1 ; M2 <=> M1, M2 . says that the Intruder can concate-

nate arbitrary messages, and split concatenated messages into their component

pieces.
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The statement => n(i, r), g, P. says that the Intruder can generate

his/her own nonces, he/she knows the generator being used by Alice and Bob,

and he/she knows every role’s name.

3.4 Attacks

The Attacks section contains a sequence of numbered attack patterns. Each

attack pattern encodes an attack that the protocol needs to be proven secure

against. Currently, the attack syntax is geared towards specifying two kinds of

attacks: a violation of secrecy (in which the intruder learns a particular term

that is supposed to be private), and a violation of authentication (in which Alice

erroneously believes she has successfully executed the protocol with Bob).

Before we dive into the syntax for attack patterns, we first need to define

the variables of a role. The variables of a role are represented as a set of all the

variables that appear in the input and terms associated with a particular role.

Example 3.4.1. Recall the DH specification from example 3.2.3 with the input

from example 3.2.2:

vars AName BName A1Name : Name .

vars r1 r2 r3 : Fresh .

vars XEA XEB : Exp .

var S : Secret .

In(A) = AName , BName .

In(B) = BName .

1 . A -> B : AName ; BName ;

exp(g, n(AName , r1))

|- A1Name ; BName ; XEB .

2 . B -> A : A1Name ; BName ;

exp(g, n(BName , r2))

|- AName ; BName ; XEA .

3 . A -> B : e(exp(XEA , n(AName , r1)),

sec(AName , r3))

|- e(exp(XEB , n(BName , r2)),

S) .

Then, the variables of the role A are AName, BName, r1, XEA, r3, while the

variables for role B are A1Name, BName, XEB, r2, S.

When using definitions, the variables are computed after expanding the

definitions. For example, consider a version of the above specification, where

we use the definitions from example 3.2.5:

In(A) = AName , BName .
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In(B) = BName .

1 . A -> B : AName ; BName ; exp(g, pa)

|- A1Name ; BName ; XEB .

2 . B -> A : A1Name ; BName ; exp(g, pb)

|- AName ; BName ; XEA .

3 . A -> B : e(exp(XEA , n(AName , r1)),

secret)

|- e(exp(XEB , n(BName , r2)),

S) .

Here, both A and B have the exact same variables as the first specification.

Each variable (with the exception of a variable of sort Fresh, which is solely

an implementation artifact) represents a possible blind spot, i.e. a piece of data

that could potentially be changed without affecting a “successful” execution

of the protocol. For example, AName represents a blind spot in the sense that

there is nothing forcing Alice to send her actual name to Bob, and Bob would

never know: she could decide to send Claire’s name instead. Meanwhile, the

variable XEB encodes the fact that there is no guarantee that Bob actually

receives the half-key generated by Alice: he might receive a half-key generated

by the intruder. Determining whether or not these are actual blind spots is of

course the entire purpose of the Maude-PSL and Maude-NPA.

Now, we can examine the syntax for specifying attacks.

Example 3.4.2. The following are four sample attack patterns from the DH

specification.

0 .

B executes protocol .

Subst(B) = A1Name |-> a, BName |-> b,

S |-> sec(a, r’) .

without:

A executes protocol .

Subst(A) = AName |-> a, BName |-> b .

1 .

B executes protocol .

Subst(B) = A1Name |-> a, BName |-> b,

S |-> sec(a, r’) .

Intruder learns sec(a, r’) .

2 .

B executes protocol .

Subst(B) = A1Name |-> a, S |-> sec(a, r’) .

With constraints BName != a .
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Intruder learns sec(a, r’) .

Note that the constants a, and b were declared in example 3.1.3 as constants

of sort Name. The first attack represents an authentication attack, the second a

secrecy attack. The third is similar to the second, except slightly more general

(the role pattern B may be any term of sort Name except a).

Observe that no variables are declared. The Attack section uses all of the

same variables as the Protocol section, because the semantics of the Attack

and Protocol section are inextricably linked through variable instantiation. The

vast majority of the time, the attack patterns and the protocol will use the

same variables. Furthermore, most of the cases in which an attack pattern

uses a new variable will be because the variable is misnamed. If the misnamed

variable is not caught, then it will introduce a subtle error in which a protocol

execution is not properly instantiated. Forcing the Attack section to have the

same variables as the Protocol section allows us to easily catch these kinds of

errors. Note that a variable does not have to be used in the Protocol section

to be used in the Attack section, it merely needs to be declared in the Protocol

section. Therefore, the user may still introduce new variables into an attack if

so desired.

“B executes protocol .” tells us that Bob will fully execute his half of the

protocol. It is also possible to specify a partial execution using “B executes

up to N.”, where N is the number of steps in the protocol Bob should execute.

For example, suppose we wish to see if an attack is possible within the first two

steps of the protocol. Then, we would write “B executes up to 2 .”.

“Subst(B) = A1 |-> a, B |-> b, S |-> sec(a, r’) .” defines a sub-

stitution instantiating a subset of the variables associated with Bob. Typically,

this is used to fix the names in the protocol to particular names (represented

by user-provided constants like a, b, or i). This allows us to define precisely

which name Bob actually recieves. For example, in all three attacks, the fact

that we are instantiating A1 to a means that Bob is in fact receiving Alice’s

name. If we wished to consider an attack where Bob definitely receives someone

else’s name, we would instead map A1 to either i or some other constant de-

fined in the Equational Theory. For every statement of the form “P executes

protocol .” there must be defined a corresponding substitution. However,

substitutions may be provided for principals without a corresponding execution

statement. Furthermore, the substitutions need to be well-formed order-sorted

substitutions. If the user wishes to use the identity substitution, then the user

must use the special keyword id. So the statement “Subst(B) = id .” defines

Bob’s substitution as the identity substitution. If the substitution is not the

identity, then the domain of the substitution, and the variables contained in the

range of the substitution should be disjoint.

The statement “Intruder learns sec(a, r’) .” defines the intruder

knowledge. If the intruder should know more than one term, then the terms
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should be specified as a comma-separated list. Furthermore, the defined substi-

tution will be applied to the intruder knowledge, so writing Intruder learns

sec(A1Name, r’) . is equivalent to writing Intruder learns sec(a, r’) ..

It should also be noted that terms in the intruder knowledge do not have to ex-

actly match terms that appear in the protocol. In particular, the user is free

to rename variables as he/she desires. For example, writing Intruder learns

sec(C, r’) . is equivalent to writing Intruder learns sec(D, r’) . for

variables C, D of sort name. Of course, in the above attacks, Intruder learns

sec(C, r’) . is not equivalent to writing Intruder learns sec(A1Name,

r’) . because A1Name will be instantiated to the constant a, but C will not.

The without: keyword allows us to specify protocol executions that can’t

happen during the specified attack. For example, attack 0 ask whether it is

possible for Bob to execute the protocol without Alice executing the protocol

as well. Intruder knowledge statements may not appear in without blocks.

This is because of a subtlety in how Maude-NPA works. Maude-NPA works

by performing backwards state space exploration. In other words, Maude-NPA

begins at the attack state and goes backwards (i.e. into the past) until it reaches

an initial state, or has explored all possible paths. There is another environment

very similar to the without: blocks: the state-space-reduction blocks:

B executes protocol .

Subst(B) = A1NAME |-> a, B1NAME |-> b .

state -space -reduction:

avoid:

A executes protocol .

Subst(A) = A1NAME |-> a .

Intruder learns sec(a, r’) .

avoid:

...

The avoid blocks have no restrictions on which attack statements appear in-

side of them. The state-space-reduction environment is translated into the

same thing as without blocks within Maude-NPA (never patterns). However,

they are meant solely to optimize the search. They are not meant to contain any

semantic information about the attack itself. Note that when one uses the state-

space-reduction environment to optimize an attack, one risks losing soundness.

In other words, if the specifier is not careful, he/she may optimize out a valid

attack. Therefore, like all optimizations, the state-space-reduction environ-

ment is best avoided unless the specifier really understands how Maude-NPA

works.

The statement With constraints B != a . allows us to impose certain

restrictions on how the principal’s terms may be instantiated during model

checking. For example, the above statement says that the role pattern B may

not be instantiated to the concrete name a. However, it may be instantiated
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to any other term of sort Name (i.e. b or i) during the model checking process.

Constraints are specified as a comma-separated list of disequalities of the form

T1 != T2 where T1 and T2 are arbitrary terms. Multiple constraints are treated

as a conjunction. Constraints are not used often, but they are for example

invaluable when proving indistinguishability properties [26].

It is also possible to have multiple principals executing the protocol in a

single attack pattern.

Example 3.4.3. The following is an attack pattern similar to pattern 1 in

example 3.4.2, except with both Alice and Bob executing the protocol.

3 .

B executes protocol .

Subst(B) = A1Name |-> a, BName |-> b,

S |-> sec(a, r’) .

A executes protocol .

Subst(A) = AName |-> a, BName |-> b .

Intruder learns sec(a, r’) .

In this case, the union of all the defined substitutions are applied to the

Intruder knowledge. So the attack in example 3.4.3 is equivalent to

4 .

B executes protocol .

Subst(B) = A1Name |-> a, BName |-> b,

S |-> sec(a, r’) .

A executes protocol .

Subst(A) = AName |-> a, BName |-> b .

Intruder learns sec(AName , r’) .

All substitutions must agree on shared variables. So in example 3.4.3, since

Bob’s substitution maps B to b, Alice’s substitution must map B to b, and vice

versa.

It is also possible to use the definitions in 3.2 in the attack patterns. However,

if a definition is used, there must be a substitution defined for the associated

role.

Example 3.4.4. The following is not a legal attack pattern, because the secret

definition (which is associated with Alice) is being used in an attack pattern that

only has a substitution defined for Bob’s variables.

1 .

B executes protocol .
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Subst(B) = A1Name |-> a,

BName |-> b, S |-> secret .

Intruder learns secret .

On the other hand, the following attack pattern is legal.

1 .

A executes protocol .

Subst(A) = AName |-> a, BName |-> b .

Intruder learns secret .

because there is a substitution defined for Alice, for whom secret is defined.

A sharp-eyed reader may also observe that secret is equivalent to the term

sec(A, r’). So a literal reading of the substitution would seem to suggest that

S is being mapped to sec(A, r’), violating our requirement that the domain

of the substitution be disjoint from the variables in the range. In order to deal

with this, internally the Maude-PSL applies each substitution to itself until

it reaches an idempotent fixed point. The resulting idempotent substitution

is then used instead of the substitution defined by the user. Of course, it is

possible to define a substitution for which there is no idempotent fixed point,

such as {A 7→ B,B 7→ A}. To handle this possibility, the translator throws

an error if it fails to reach a fixed point after 100 applications. An important

consequence of the computation of an idempotent fixed point substitution is

the implicit assumption that the user desires a consistent instantiation across

all the terms in the attacks. If the user desires an inconsistent instantiation

between protocol roles and intruder knowledge (say, instantiating the variable

AName to a in Alice’s substitution, but mapping the secret sec(AName, r3) in

the intruder knowledge to sec(b, r3)), then the user must manually instantiate

the Intruder’s knowledge.

3.5 Conclusion

The syntax and organization above makes the Maude-PSL an expressive, and

simple language. It allows the user to keep the different parts of the specification

separate, which allow for easier reuse. It allows the user to define non-trivial

algebraic properties for his/her protocol to use. It allows the user to specify the

protocol in a manner very close to the high-level Alice-Bob definition. Finally,

it provides the user with great flexibility and clarity when defining attacks.

The next question is: Is this specification language sufficiently precise? That

is, does this language formally specify a protocol in sufficient detail to perform

formal verification? This will be answered in the affirmative in the next section,

in which we define the formal semantics of the language in terms of strands.
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Chapter 4

Rewriting Semantics of PSL

In this chapter we the formal semantics of the Maude-PSL as a rewrite theory

(Σ, E ]B,R) that transforms Maude-PSL programs into sets of strands, which

have a well-understood semantics with respect to protocol verification [28]. The

set of rules R contains the translation rules themselves, while the set of equa-

tions E defines a variety of helper functions, syntax desugaring, and structural

simplifications. The set of equations B contains equational properties that are

not amenable to oriented equations, such as the associativity and commutativity

of operators.

This semantics has been implemented directly in Maude, and is used to

translate Maude-PSL-specifications into Maude-NPA specifications. As a result,

the following rewrite rules use the flavor of strands used by Maude-NPA. See

Chapter 2.2.4 for details about Maude-NPA strands.

4.1 Bird’s Eye View of the Translation

The translation takes place inside of an ACU soup, which is represented by the

sort TranslationData (see Figure 4.1 for a visual representation). The following

are included inside a single TranslationData term:

1. The PSL-specification as an associative-commutative soup of sections:

Theory, Protocol, Intruder, and Attacks. Each section contains an as-

sociative list of statements with the identity symbol pass.

2. Intermediate data structures that the PSL specification will be translated

into, which are then translated into Maude-NPA code.

The bulk of the rules extract data from the provided PSL-statements, and

then insert that data into the appropriate intermediate data structures. Once

the entirety of the PSL-specification has been translated, these intermediate

data structures are then converted into the Maude-NPA module

PROTOCOL-SPECIFICATION (see Figure 4.2). Note that these semantics

assume that the user-defined equational theory has already been converted

into the PROTOCOL-EXAMPLE-SYMBOLS, and PROTOCOL-EXAMPLE-

ALGEBRAIC modules. This is a trivial process (barely more than an auto-

mated copy-paste), the details of which are omitted.
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TranslationData

PSL
Specification StrandData

AttackData StrandSet

definitions

Figure 4.1: The largest oval represents the soup in which the other entities
are floating. The smaller ovals represent distinct entities within that soup. PSL
Specification is the PSL specification to be translated. StrandData is a mapping
from roles to strands (used for building the protocol strands). StrandSet is a set
of strands (used to build the Intruder capabilities). AttackData is a mapping
from numbers to Maude-NPA states (used to build the Maude-NPA attack
patterns). Definitions is the set of user-provided definitions.

4.2 Signature

The signature Σ decomposes into the disjoint union: NPA ] P ] Ω ]H where

1. NPA is the Maude-NPA signature [12].

2. P is all the user-defined operators, plus several enrichments. The enrich-

ments are:

(a) All user-declared sorts are made subsorts of Msg (a sort provided by

the Maude-NPA signature) if they are not so already.

(b) A free operator $; : Msg Msg → Msg , which will be used

internally, is added to the signature.

(c) For every definition T := t, with t a term of sort s, a constant T :→ s

is added to the signature.

(d) All operators in P are made frozen if they are not so already. Essen-

tially, if an operator is frozen, then Maude will not attempt to rewrite

any subterms of the frozen operator. This allows Maude-NPA code to

have complete control over how terms are rewritten. See the Maude

Manual for more details about frozen operators [6].
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TranslationData

PSL
Specification StrandData

StrandSet AttackData

PROTOCOL-SPECIFICATION

eq ATTACK-STATE(0) = ...

eq STRANDS-DOLEV-YAO = ...

eq STRANDS-PROTOCOL = ...

definitions

Figure 4.2: The square along the bottom of the diagram represents the Maude-
NPA module PROTOCOL-SPECIFICATION. Each square contains the begin-
ning of a (set of) statement(s) required by the PROTOCOL-SPECIFICATION
module. StrandData, AttackData, and StrandSet are all populated using data
extracted from PSL Specification, and definitions. The Maude-NPA attack
states are built using information from StrandData and AttackData. The Dolev-
Yao strands are built from StrandSet, while the protocol strands are built from
StrandData.

3. Ω contains all of the operators and sorts used to encode the

PSL-specification and data structures used in the translation.

4. H contains the symbols for internal helper functions.

4.2.1 Contents of Ω

Ω contains a sort TranslationData that consists of an ACU soup of data struc-

tures. The first data structure is a mapping from roles to triples. Each triple

contains a strand, the strand’s input, and the strand’s output (see Chapter 2.2.4

for details about input and output of a strand):

mt : → StrandData

7→ { } { } : Role MsgSet Strand MsgSet → StrandDatum

& : StrandData StrandData → StrandData

[ ] : StrandData → TranslationData

where StrandDatum is a subsort of StrandData, the operator & is ACU
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with identity mt, and Strand is a sort defined by Maude-NPA.

Example 4.2.1. The following describes the initiator role of DH from Exam-

ple 3.2.3 with the input from Example 3.2.2 and the output from Example 3.2.4

as a term of sort StrandDatum:

A 7→ {AName,BName}

:: r1 :: [nil|

+ (AName; BName; exp(g, n(AName, r1))),

− (AName; BName; XEA),

+ (e(exp(XEB , n(BName, r2)), S),

nil]

{exp(XEA, n(A, r1))}.

The subsignature Ω also contains an operator for associating numbers with

attack patterns:

[ 7→ ] : Nat System → AttackData

where System is a sort of Maude-NPA attack patterns.

Finally, Ω contains injection functions from AttackData into Translation-

Data, and from StrandSet (a sort provided by Maude-NPA) into Translation-

Data:

[ ] : AttackData → TranslationData

[ ] : StrandSet → TranslationData.

4.3 Semantics

The following rules assume that some simple pre-processing has already been

performed on the specification. In particular, it is assumed that when com-

putation begins, the PSL-specification is floating in an AC soup with several

other terms: a set of Definitions(see Chapter 3.2.6) that have already been ex-

tracted from the specification, an empty set of StrandData that will represent

the protocol strands, and an empty set of strands that will represent the in-

truder capabilities. Note that both the empty set of StrandData and the empty

StrandSet will be populated as computation progresses. Furthermore, we do not

assume that the soup contains an empty set of attack patterns. The generation

of the empty set of attack patterns is used to ensure that the Protocol section is

translated before the Attack section. More details can be found in Section 4.3.3.

Example 4.3.1. Suppose the user has declared the following definitions as part

of a larger PSL specification P :
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Def(A) = nA := n(AName , r) .

Def(B) = nB := n(BName , r1) .

where A and B are roles, n is an operator for building nonces, AName and BName

are variables of sort Name and r and r1 are variables of sort Fresh. Then, we

begin executing the semantics with the following term:

P [nA := n(AName, r),nB := n(BName, r1)] [empty .StrandSet ]

[mt .StrandData]

As computation proceeds, P will be eliminated one statement at a time,

while the terms [empty .StrandSet ] and [mt .StrandData] are populated. Once

the set of StrandData has been fully populated, the term [mt .AttackData] will

be created and then populated.

4.3.1 Protocol

The Protocol semantics consist of two rules (not including error detection): one

for processing the input and output, and one for processing each step in the

protocol. The rules are shown in Figure 4.3.

The function fresh extracts the fresh variables from the passed term (if any),

while applyDefs applies the user-provided definitions to the passed term. Both

functions rely heavily on the reflective capabilities of rewriting logic, making

them rather complex, and not particularly enlightening. Therefore, their defi-

nitions are omitted.

Rule 4.1 generates an empty strand for each role, while rule 4.2 populates

the generated strands with the appropriate messages, following an algorithm

inspired by work by Chevalier and Rusinowitch [5]. However, rule 4.1 does not

fire unless a role has an input and an output associated with it. Furthermore,

observe that the strands are actually generated with the time keeping bar (|) at

the end of the strand, rather than at the beginning. However, this is immaterial.

First, the notion of a present is a necessity of the implementation of the Maude-

NPA, not an inherent property of strands. Furthermore, while the protocol

strands require the bar to be at the beginning of the strand, the attack strands

typically have the bar at the end. Therefore, when these strands are used to

build a Maude-NPA specification, the bar will be shifted appropriately.

4.3.2 Intruder

The semantics for the Intruder section consists of a single rule, a helper function,

and several equations that perform syntactic desugaring.

Figure 4.4 contains the desugaring equations, while Figure 4.5 contains the

single rule.

The function signedList takes a list of messages, ms, and a single message,

m. It returns a list of signed messages, where all the messages in ms are marked
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Protocol

p1 In(R) = i. p2 Out(R) = o. p3

s [d] [sd ]

−→ (4.1)

Protocol

p1 p2 p3

[d]

[R 7→ {i} :: nil :: [nil|nil]{applyDefs(o, d)} & sd ]

Protocol

n. A→ B : mA ` mB .

p1

[d]

[A 7→ {iA} :: fA :: [lA|nil]{oA}&
B 7→ {iB} :: fB :: [lB |nil]{oA}&
sd ]

−→ (4.2)

Protocol

p1

[d]

[A 7→
{iA} :: fA, fresh(applyDefs(mA, d)) ::

[lA,+(applyDefs(mA, d))|nil]{oA}&
B 7→
{iB} :: fB ::

[lB ,−(applyDefs(mB , d))|nil]{oA}&
sd ]

Figure 4.3: Semantics for the Protocol Section. R is a role. p1, p2, p3 are lists of
statements in Protocol. d is the set of definitions (Section 3.2.6), sd is strand data
(Section 4.2). Variables i and o are lists of messages. N is a natural number, A and
B are both roles, mA and mB are both messages, and iA, iB , oA, and oB are lists of
messages. Finally, lA, and lB are lists of signed messages.

with a minus sign, while m is marked with a plus sign. See Section 4.3.1 for an

explanation of the functions applyDefs and fresh.

4.3.3 Attacks

The Attack semantics is the most complex, with two rules and three non-trivial

helper functions. The first rule handles attacks that contain without blocks,
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(⇒ ms.) = (∅ ⇒ ms.)

(ms ⇒ m1,m2,ms1.) = (ms ⇒ m1.)(ms ⇒ m2,ms1 .)

(ms1 ⇔ ms2.) = (ms1 ⇒ ms2.)(ms2 ⇒ ms1.)

Figure 4.4: Desugaring equations for intruder capabilities. The variables ms,ms1 ,
and ms2 are lists of messages, while m, m1 and m2 are messages. The constant ∅ is
an empty list of messages. Parentheses are solely to improve readability.

Intruder

ms ⇒ m.

i

[s] [d]

−→
Intruder

i

[d]

[:: fresh(m) :: [nil| signedList(applyDefs(ms, d), applyDefs(m, d))] & s]

Figure 4.5: Translation semantics for the Intruder section. The variable ms is a list
of messages, m is a message, and i is a sequence of PSL statements. The variable s is
a set of strands, and d is the set of user provided definitions.

while the second rule handles attacks that do not contain without blocks.

Attack statements are split into two categories: the core block, and a set

of without blocks. Core blocks are sets of execution statements (A executes

protocol .), substitution statements (Subst(A) = A |-> a .), intruder

knowledge statements (Intruder learns a .), and constraint statements

(With constraints a != B .). A without block is a core block prefixed by

the without: keyword. Observe that in the semantics, a without block has

fewer restrictions than they do at the syntactic level(see Chapter 3.4). This is

because without: and avoid blocks are turned into never patterns. By making

the semantics more flexible than the syntax allows, we can reduce avoid blocks

to without blocks.

Example 4.3.2. Consider the attack from Example 3.4.2:

0 .

B executes protocol .

Subst(B) = A1Name |-> a, BName |-> b,

S |-> sec(a, r’) .

without:

A executes protocol .

Subst(A) = AName |-> a, BName |-> b .
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Here, B executes protocol . and Subst(B) = A1Name |-> a, BName |->

b, S |-> sec(a, r’) are part of a core block, while A executes protocol .

and Subst(A) = AName |-> a, BName |-> b . form a without block.

The semantics for the Attack section can be found in Figure 4.6. K and S in

the rules in Figure 4.6 are constants that Maude-NPA will interpret as variables

of sort IntruderKnowledge and StrandSet respectively.

In order to guarantee that the strands have been fully processed before we

use them to populate the attacks, we also have the following equation:

Protocol pass = [mt .AttackData]

where mt .AttackData is the identity element for attack data. Since both rules

in Figure 4.6 assume that a set of attack data already exists somewhere in the

soup (represented by [ad ] in both rules), neither rule will fire until the Protocol

section has been completely translated.

Unlike in the other sections, the helper (partial) functions used for translat-

ing the attacks are non-trivial, and each will be considered in turn. The first

we will look at is subst, which is defined in Figure 4.7. This function accom-

plishes two tasks. First, it takes the disjoint union of the attack substitutions,

to get a new substitution θ. Then, it attempts to build an idempotent substi-

tution from θ as described in Chapter 3.4. To accomplish this, subst depends

on three partial functions: makeIdem, isValid and extractSubst. The function

extractSubst is a straightforward function that extracts and takes the union of

all substitution statements defined in the passed core attack. isValid meanwhile

checks that the substitution, θ, returned by extractSubst is a valid order-sorted

substitution. If θ is an order-sorted substitution, then isValid returns the sub-

stitution unchanged. Otherwise, isValid is undefined. makeIdem attempts to

make the passed substitution idempotent. The definitions of all three functions

can also be found in Figure 4.7.

The function containsSubst returns true if the passed core attack has at

least one substitution statement, and false otherwise. Given a substitution,

θ, the partial function checkSorts returns θ iff θ is a well-formed order-sorted

substitution. Much like applyDefs, checkSorts relies on the reflective capabilities

of rewriting logic. As a result, despite being relatively straightforward (for each

mapping x 7→ t, check if the sort of t is a subsort of the sort of x), the definition

is rather technical. Therefore, it is ommitted.

Next, consider the function genAttStrands, defined in Figure 4.8.

The function prefix takes a strand, :: r :: [±m1,±m2, . . . ,±mn, . . . ,±mp]

and a natural number n, and returns a strand of the form

:: r :: [±m1,±m2, . . . ,±mn|L] where L is a constant representing a list of signed

messages, which will be treated as a variable by Maude-NPA. In other words,

when a role R executes up to N , the role is actually executing the first N steps of

the role, and then doing whatever he/she wants, be it the rest of the protocol,
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Attacks

n. c w

a

[d] [sd ] [ad ]

−→
Attacks

a

s [d] [sd ]

[[n 7→ genAttStrands(c, subst(c), sd , d) & S

|| genIntKnowledge(c, subst(c), d), K

||nil

||nil

||never(genNeverPatterns(w, sd , d))]

ad ]

Attacks

n. c

a

s [sd ] [d] [ad ]

−→
Attacks

a

[d] [sd ]

[[n 7→ genAttStrands(c, subst(c), sd , d) & S

|| genIntKnowledge(c, subst(c), d), K

||nil

||nil

||nil ]]

Figure 4.6: The semantics for attacks. The first rule handles the case where an
attack contains at least one without block. The second handles the case where
there are no without blocks. The variable n is a number, c is a set of core
attack statements, and w a set of without blocks. The variable a represents the
rest of the attack section, while d is the set of definitions. sd is the strand data
computed by the rules in Figure 4.3, and ad is the set of other attacks that have
already been translated.
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subst(c, d) = makeIdem(isValid(extractSubst(c, d)))

extractSubst(Subst(r) = θ. c, d) = applyDefs(θ, d), extractSubst(c, d)

extractSubst(c, d) = none if ¬ containsSubst(c)

isValid(θ) = checkSorts(isFunction(θ))

isFunction(m1 7→ m2,m1 7→ m2, θ) = isFunction(m1 7→ m2, θ)

isFunction(m1 7→ m2, θ) = m1 7→ m2, isFunction(θ) if m1 6∈ Dom(θ)

isFunction(∅) = ∅
makeIdem(θ) = makeIdem(θ, θ, false, 0)

makeIdem(θ1, θ2, false, n) = makeIdem(θ1, θ2θ1, θ2 == θ2θ1, s(n))

if n ≤ 100.

makeIdem(θ1, θ2, true, n) = θ2

Figure 4.7: Definition of the function subst, which returns the substitution used
to instantiate attack strands. The variable c is a set of attack statements,
d the user-defined definitions, and θ, θ1, and θ2 are (potential) substitutions.
Variables m1 and m2 are of sort Msg, and n is a natural number.

genAttStrands(R executes protocol . c, θ, R 7→ {i}s{o} & sd , d) =

applyDefs(s, d)θ & genAttStrands(c, θ, R 7→ {i}s{o} & sd , d)

genAttStrands(R executes up to n. c, θ, R 7→ {i}s{o} & sd , d) =

applyDefs(prefix(s, n), d)θ & genAttStrands(c, θ, R 7→ {i}s{o} & sd , d)

genAttStrands(c, θ, sd , d) =

∅ if ¬hasExecutionStmt(c)

Figure 4.8: Definition of the partial function genAttStrands. R is a role, c a set
of core attack statements, θ is an order-sorted substitution, i a set of variables,
s is a strand, and o a set of terms. sd is a set of strand data, d is a set of
definitions, and n is a natural number.

nothing, or some random set of messages. The predicate hasExecutionStmt

checks whether or not there is an execution statement in a core attack c.

The partial function genIntKnowledge is defined in Figure 4.9. The con-

straint statements are handled by genIntKnowledge as well, because Maude-

NPA uses the same part of the state for both the disequality constraints and

the intruder knowledge (though conceptually, disequality constraints are not a

part of the intruder knowledge). Furthermore, since both the Maude-PSL and

Maude-NPA use the same syntax for disequality constraints, no special trans-

formations need to be performed. Finally, hasIntruderStmt is a predicate on

core attacks that returns true if there is at least one intruder knowledge or

constraint statement in the passed core attack.

Finally, we have the function genNeverPatterns, defined in Figure 4.10. Ob-
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genIntKnowledge(Intruder learns M. c, θ, d) = inI(applyDefs(M,d)θ),

genIntKnowledge(c, θ, d)

genIntKnowledge(With constraints E. c, θ, d) = applyDefs(E, d)θ,

genIntKnowledge(c, θ, d)

genIntKnowledge(c, θ, d) = ∅ if ¬hasIntruderStmt(c)

inI(m,M) = m inI , inI(M)

inI(∅) = nil

Figure 4.9: Definition of genIntKnowledge. M is a set of messages, c is a set
of core attack statements, θ is an order-sorted substitution, and d is a set of
definitions. E is a set of disequalities between messages, and m is a message.

serve that each never pattern is computed using its own substitution, derived

from the substitution statements defined as part of the without block. As such,

the substitution for each without block is independent of the substitution com-

puted for the core of the attack, and of substitutions for other without blocks.

genNeverPatterns((without : c)w, sd , d) = neverPattern(c, sd , d)

genNeverPatterns(w, sd , d)

genNeverPatterns(∅) = nil

neverPattern(c, sd , d) = genAttStrands(c, subst(c), sd , d)&S

|| genIntKnowledge(c, subst(c, d)),K

Figure 4.10: Semantics for the partial function genNeverPatterns. c is a set
of core attack statements, w is a set of without blocks, sd is a set of strand
data, and d a set of definitions. S and K are constants of sort StrandSet
and IntruderKnowledge respectively, which will be treated as variables by the
generated Maude-NPA specification.

From here, it is a simple matter to extract the generated strands and Maude-

NPA states, and wrap them in a Maude-NPA module. This part of the semantics

is implemented in Maude, with some minor syntactic modification, and is used

as the final stage of the translation from a Maude-PSL specification to Maude-

NPA modules.

56



Chapter 5

Case Study

In this chapter we do an in-depth analysis of the Otway-Rees protocol [24]. The

Otway-Rees protocol is meant to provide efficient, timely (i.e. no replay attacks

possible) mutual authentication without the explicit use of clocks. Otway-Rees

is interesting because it has a much more complicated term structure than the

Diffie-Helman protocol, and it makes use of more than two principals. As a

result, Otway-Rees allows us to see how the Maude-PSL handles a more com-

plicated protocol. However, the Otway-Rees protocol is still simple enough to

make a thorough study of the specification, translation, and verification of the

protocol a worthwhile endeavor.

Following is the Otway-Rees protocol in Alice-Bob notation. C represents a

conversation identifier generated by Alice. The conversation identifier is meant

to be used as a nonce: a means of marking the conversation to protect against

replay attacks. SKA and SKB are the secret keys of A and B respectively. R1

is Alice’s challenge, a unique value generated by Alice and used by her to ensure

that the session key she receives from the server actually came from the server.

KC represents the session key to be used between A and B.

1. A→ B : C;A;B; e(SKA, RA;C;A;B)

2. B → S : C;A;B; e(SKA, RA;C;A;B); e(SKB , RB ;C;A;B)

3. S → B : C; e(SKA, RA;KC); e(SKB , RB ;KC

4. B → A : C; e(SKA, RA;KC)

5.1 Specification

The first step is to define the language (i.e. operators) we will use to express the

protocol. The bare minimum that we need is a means of representing session-

only values (i.e. nonces), a means of encrypting and decrypting messages with

keys, and a means of concatenating messages. With that in mind, consider the

following Theory section:

Theory

types UName SName Name Key Nonce Masterkey

Sessionkey .

subtypes Masterkey Sessionkey < Key .

57



subtypes SName UName < Name < Public .

op n : Name Fresh -> Nonce .

ops a b i : -> UName .

op s : -> SName .

op mkey : Name Name -> Masterkey .

op seskey : Name Name Nonce -> Sessionkey .

op e : Key Msg -> Msg . // encryption

op d : Key Msg -> Msg . // decryption

op _;_ : Msg Msg -> Msg [gather (e E)] .

var K : Key .

var Z : Msg .

eq d(K, e(K, Z)) = Z .

eq e(K, d(K, Z)) = Z .

A master key corresponds to the SKA and SKB in the original specification.

This is a key shared by a principal and the server, and only the principal and

server.

Observe that our types are more precisely defined than may be strictly neces-

sary. For example, distinguishing between master and session keys is not strictly

necessary. Indeed, the encryption and decryption equations make no distinction

between master and session keys. However, a more precise type system often

makes Maude-NPA more efficient. Maude-NPA will not waste time exploring

paths in which the protocol uses a master key like a session key. The downside

is that any attacks that rely upon a confusion of types will not be caught. If

the specifier is concerned about attacks that rely on confusing types, then a

weaker type system must be used (at the extreme end, in which we assume no

typing information at all, every term would be of sort Msg). Therefore, it is

recommended a specifier starts with a more precise type system first, and cor-

rect any attacks found with the stronger type system. Then, gradually weaken

the types until either the protocol has been proven secure at all levels of type

sophistication desired, or Maude-NPA fails to terminate.

Next we need to specify the protocol. The terms in the Otway-Rees protocol

are fairly complex, and can be difficult to process. Therefore, we will be making

use of definitions to blackbox some of these terms, and give them a name that

hints at their meanings, as well as matching them up more closely with names

given them in the Alice-Bob notation. As a convention, definition names start

with a lower case letter, in order to distinguish them from variables, which are

(with the exception of variables of sort Fresh, since those are special) in all caps.

Protocol

vars ANAME BNAME : UName .

vars ANAME1 BNAME1 : UName .

var SNAME : SName .
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vars r r’ r’’ rM : Fresh .

vars RA CB CS RB : Nonce .

vars M1 MA : Msg .

var KCA KCB : Sessionkey .

roles A B S .

Def(A) = c := n(ANAME , rM),

ra := n(ANAME , r),

skA := mkey(ANAME , SNAME) .

Def(B) = rb := n(BNAME , r’),

skB := mkey(BNAME , SNAME) .

Def(S) = skA := mkey(ANAME , SNAME),

skB := mkey(BNAME , SNAME),

kc := seskey(ANAME , BNAME ,

n(SNAME , r’’)) .

In(A) = ANAME , BNAME , SNAME .

In(B) = BNAME , SNAME .

In(S) = ANAME , BNAME , SNAME .

1 . A -> B : c ; ANAME ; BNAME ;

e(skA , ra ; c ; ANAME ; BNAME)

|- CB ; ANAME1 ; BNAME ; M1 .

2 . B -> S : CB ; ANAME1 ; BNAME ;

M1 ;

e(skB , rb ; CB ; ANAME1 ; BNAME)

|- CS ; ANAME ; BNAME ;

e(skA , RA ; CS ; ANAME ; BNAME) ;

e(skB , RB ; CS ; ANAME ; BNAME) .

3 . S -> B : CS ; e(skA , RA ; kc) ;

e(skB , RB ; kc)

|- CB ; MA ;

e(skB , rb ; KCB) .

4 . B -> A : CB ; MA

|- c ; e(skA , ra ; KCA) .
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Out(A) = c, ra , KCA .

Recall that our role names are arbitrary, and do not need to conform to the

Alice-Bob convention. The role identifiers used are purely a matter of taste.

To get a feel for how different role identifiers look for a slightly more complex

protocol, consider the following slight modification to the specification above.

Protocol

vars I R : UName .

var S : SName .

vars r r’ r’’ rM : Fresh .

vars RI CR CS RR : Nonce .

vars M1 MI : Msg .

var KCI KCR : Sessionkey .

roles init resp server .

Def(init) = c := n(I, rM),

ri := n(I, r),

ski := mkey(I, S) .

Def(resp) = rr := n(R, r’),

skr := mkey(R, S) .

Def(server) = ski := mkey(I, S),

skr := mkey(R, S),

kc := seskey(I, R, n(S, r’’)) .

In(init) = I, R, S .

In(resp) = R, S .

In(server) = I, R, S .

1 . init -> resp : c ; I ; R ;

e(ski , ri ; c ; I ; R)

|- CB ; I1 ; R ;

M1 .

2 . resp -> server : CB ; I1 ; R ;

M1 ;

e(skB , rr ; CB ; I1 ; R)
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|- CS ; I ; R ;

e(ski , RI ; CS ; I ; R) ;

e(skr , RR ; CS ; I ; R) .

3 . server -> resp : CS ;

e(ski , RI ; kc) ;

e(skr , RR ; kc)

|- CR ;

MI ;

e(skr , rb ; KCR) .

4 . resp -> init : CR ;

MI

|- c ;

e(ski , ri ; KCI) .

Out(init) = c, ri , KCI .

Out(resp) = rr , KCR , MI , M1 , CR .

Out(server) = kc , RI , RR , CS .

The advantage here is that the role identifiers are even more distinct from

the names that each principal associates with each role. However, the meaning

is exactly the same as the original specification.

Recall that the Maude-PSL requires that variables associated with each prin-

cipal be disjoint, with the possible exception of those variables declared as part

of each principal’s input. Similar, only those definitions declared for a specific

principal may be used in that principal’s terms. As a result, we are forced to

use a separate variable CB and CS to represent Bob’s and the server’s perspec-

tives on the conversation identifier c (n(A, rM)). We are also forced to declare

the definition skA and skB twice. While variable sharing does not affect the

semantics of the translation (since Maude-NPA automatically renames the vari-

ables of each strand to make them disjoint), the Maude-PSL requires (mostly)

disjoint variables for two reasons. The first is to emphasize all the possible

cracks in the protocol. For example, the fact that CB becomes CS in the second

step emphasizes that the server does not know for certain that the conversation

identifier it received is the same as the identifier that Bob sent. Second, disjoint

variables increases the chances that we will catch a subtle semantic error arising

from sloppy copy-paste. For example, observe that Bob’s perspective on the

term e(skB, rb ; CB ; ANAME1 ; BNAME) is very similar to the server’s per-

spective on the same term e(skB, RB ; CS ; ANAME ; BNAME). Therefore, the

user would be tempted to just copy and paste Bob’s term. However, if the user
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does not properly modify the term to reflect the server’s perspective, then a very

subtle semantic error is introduced into the specification. In particular, if the

server receives the term e(skB, rb ; CS ; ANAME1 ; BNAME), then this sug-

gests that the server should be able to recognize that the nonce it receives was

generated by Bob. However, this is clearly incorrect. As a result, any attacks

that rely on that uncertainty would not be caught, but Maude-NPA would not

complain. Furthermore, it is highly unlikely that such a subtle mistake would

be caught solely by eyeballing the terms. However, in this case, the Maude-PSL

will throw an error because a definition rb appears in an S-term, but has not

been declared for use by the server. Therefore, the user becomes aware of this

mistake, and can correct it by replacing rb with RB.

Intruder capabilities are standard. The intruder needs to be able to know

all names, including the server’s name. The intruder should be able to generate

a masterkey between himself/herself and any other principal. Similarly, the

intruder should be able to encrypt/decrypt any message in his/her possession

with any key in his/her possession, and should be able to concatenate messages,

and split apart concatenated messages. This gives us the following intruder

capabilities:

Intruder

vars P : UName .

vars K : Key .

vars N M : Msg .

=> s, P, mkey(i, s) .

M, N <=> M ; N .

K, M => d(K, M), e(K, M) .

P => mkey(P, i) .

Now, for the attacks. We are interested in two attacks: one in which the

intruder learns the session key even though Alice successfully executes the pro-

tocol, and one in which the intruder successfully tricks Alice into thinking she

has executed the protocol with Bob, when in fact Bob has not. In other words,

an attack in which Alice executes the protocol, but Bob does not. However,

to simplify the search as much as possible, we are going to assume that Bob

does receive the first encrypted message that Alice sent. In other words, we

shall instantiate M1 in Bob’s half of the protocol to e(skA, ra ; c ; ANAME ;

BNAME). This is a trade-off between coverage and speed. Instantiating M1 im-

mediately throws out any possible attacks that rely on the intruder replacing

e(skA, ra ; c ; ANAME ; BNAME) with a different term while en route to Bob.

At the same time, Maude-NPA will not bother exploring any paths that rely on

the intruder intercepting e(skA, ra ; c ; ANAME ; BNAME) with something

else, so the search space will be that much smaller.
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Note that we also have a third attack (attack 0) that does not actually check

for any violations of secrecy or authentication. This is an “empty” attack, and

is meant to help the user debug the specification. If attack 0 fails to find an

attack, then there is an error in the specification. This is because attack 0 simply

says that one of the principals executes the protocol. There should always be

at least one way to execute the protocol: a successful execution. Therefore, if

Maude-NPA cannot find a way to successfully execute the protocol, then the

protocol is improperly specified.

Attacks

0 .

A executes protocol .

Subst(A) = ANAME |-> a, BNAME |-> b,

SNAME |-> s .

1 .

A executes protocol .

Subst(A) = ANAME |-> a, BNAME |-> b,

SNAME |-> s .

Intruder learns KCA .

2 .

A executes protocol .

Subst(A) = ANAME |-> a, BNAME |-> b,

SNAME |-> s .

without:

B executes protocol .

Subst(A) = ANAME |-> a, BNAME |-> b,

SNAME |-> s .

Subst(B) = M1 |-> e(skA , c ; na ; ANAME ;

BNAME),

ANAME1 |-> a, BNAME |-> b,

SNAME |-> s .

Observe that no variables are declared in the Attack section. Recall that

the Attack section uses the same variables as the Protocol section. This ensures

that we do not try to instantiate variables that do not actually appear in the

Protocol section. Furthermore, observe that the second attack gives us an ex-

ample of a non-idempotent substitution after definition expansion:

Subst(B) = M1 |-> e(mkey(ANAME , SNAME), n(ANAME , rM) ;

n(ANAME , r) ; ANAME ; BNAME),

ANAME1 |-> a, BNAME |-> b, SNAME |-> s .

Subst(A) = ANAME |-> a, BNAME |-> b, SNAME |-> s .
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However the Maude-PSL will automatically generate the idempotent solution

M1 |-> e(mkey(a, s), n(a, rM) ; n(a, r) ; a ; b),

ANAME |-> a, BNAME |-> b, SNAME |-> s,

ANAME1 |-> a .

during the translation process. Note: If you do not wish to fully instantiate

e(keyAS, c ; ra ; ANAME ; BNAME) (say you do not wish to instantiate the

last two occurrences of ANAME, BNAME), then you need to rename those variables.

For example, we could add the variable declaration vars ANAME1 BNAME1 :

UName to the Protocol section, and then map M1 to e(keyAS, c ; ra ;

ANAME1 ; BNAME1). Then, Maude-PSL will only instantiate those occurrences

of ANAME, BNAME that appear in keyAS, c, ra.

The full specification is as follows:

spec Otway -Rees is

Theory

types UName SName Name Key Nonce Masterkey

Sessionkey .

subtypes Masterkey Sessionkey < Key .

subtypes SName UName < Name < Public .

op n : Name Fresh -> Nonce .

ops a b i : -> UName .

op s : -> SName .

op mkey : Name Name -> Masterkey .

op seskey : Name Name Nonce -> Sessionkey .

op e : Key Msg -> Msg . // encryption

op d : Key Msg -> Msg . // decryption

op _;_ : Msg Msg -> Msg [gather (e E)] .

var K : Key .

var Z : Msg .

eq d(K, e(K, Z)) = Z .

eq e(K, d(K, Z)) = Z .

Protocol

vars ANAME BNAME : UName .

vars ANAME1 BNAME1 : UName .

var SNAME : SName .

vars r r’ r’’ rM : Fresh .

vars RA CB CS RB : Nonce .

vars M1 MA : Msg .

var KCA KCB : Sessionkey .
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roles A B S .

Def(A) = c := n(ANAME , rM),

ra := n(ANAME , r),

skA := mkey(ANAME , SNAME) .

Def(B) = rb := n(BNAME , r’),

skB := mkey(BNAME , SNAME) .

Def(S) = skA := mkey(ANAME , SNAME),

skB := mkey(BNAME , SNAME),

kc := seskey(ANAME , BNAME ,

n(SNAME , r’’)) .

In(A) = ANAME , BNAME , SNAME .

In(B) = BNAME , SNAME .

In(S) = ANAME , BNAME , SNAME .

1 . A -> B : c ; ANAME ; BNAME ;

e(skA , ra ; c ; ANAME ; BNAME)

|- CB ; ANAME1 ; BNAME ; M1 .

2 . B -> S : CB ; ANAME1 ; BNAME ;

M1 ;

e(skB , rb ; CB ; ANAME1 ; BNAME)

|- CS ; ANAME ; BNAME ;

e(skA , RA ; CS ; ANAME ; BNAME) ;

e(skB , RB ; CS ; ANAME ; BNAME) .

3 . S -> B : CS ; e(skA , RA ; kc) ;

e(skB , RB ; kc)

|- CB ; MA ;

e(skB , rb ; KCB) .

4 . B -> A : CB ; MA

|- c ; e(skA , ra ; KCA) .

Out(A) = c, ra , KCA .

Out(B) = rb , KCB , MA , M1 , CB .

Out(S) = kc , RA , RB , CS .

65



Intruder

vars P : UName .

vars K : Key .

vars N M : Msg .

=> s, P, mkey(i, s) .

M, N <=> M ; N .

K, M => d(K, M), e(K, M) .

P => mkey(P, i) .

Attacks

0 .

A executes protocol .

Subst(A) = ANAME |-> a, BNAME |-> b,

SNAME |-> s .

1 .

A executes protocol .

Subst(A) = ANAME |-> a, BNAME |-> b,

SNAME |-> s .

Intruder learns KCA .

2 .

A executes protocol .

Subst(A) = ANAME |-> a, BNAME |-> b,

SNAME |-> s .

without:

B executes protocol .

Subst(A) = ANAME |-> a, BNAME |-> b,

SNAME |-> s .

Subst(B) = M1 |-> e(skA , c ; na ; ANAME ;

BNAME),

ANAME1 |-> a, BNAME |-> b,

SNAME |-> s .

ends

5.2 Translation

We have two methods for generating the Maude-NPA file from the above spec-

ification. In the first case, we can invoke the python script directly:

$ ./psl.py directory/to/Otway -Rees.psl

on the command line (assuming our file is named Otway-Rees.psl). This will

generate the Maude-NPA file directory/to/Otway-Rees.maude, but will not
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do anything else with it. Alternatively, we can run the bash script psl.sh:

$ ./psl.sh directory/to/Otway -Rees.psl

This will do the exact same thing as if we invoked the python file directly,

except it will also load the Otway-Rees.maude file directly into Maude-NPA,

allowing the user to immediately begin a Maude-NPA session.

The Maude-PSL generates the following Maude-NPA file. Note that the

generated module has been reformatted for ease of readability. Furthermore

terms of the form X : SortName are inline declarations of variables. In Maude,

inline declarations only have scope within the statement in which they appear.

Inline variable declarations are not allowed in the Maude-PSL, due to subtleties

in the relationship between a single statement in Maude-NPA, and a single

statement in the Maude-PSL that make the semantics of inline declarations in

the Maude-PSL unclear.

fmod PROTOCOL -EXAMPLE -SYMBOLS is

protecting DEFINITION -PROTOCOL -RULES .

sorts UName SName Name Key Nonce Masterkey

Sessionkey .

subsorts Masterkey Sessionkey < Key .

subsorts SName UName < Name < Public .

subsorts UName SName Name Key Nonce Masterkey

Sessionkey < Msg .

op n : Name Fresh -> Nonce [ frozen ] .

ops a b i : -> UName .

op s : -> SName .

op mkey : Name Name -> Masterkey [ frozen ] .

op seskey : Name Name Nonce ->

Sessionkey [ frozen ] .

op e : Key Msg -> Msg [ frozen ] .

op d : Key Msg -> Msg [ frozen ] .

op _;_ : Msg Msg ->

Msg [ gather ( e E ) frozen ] .

op _$;_ : Msg Msg ->

Msg [ctor gather(e E) frozen ].

endfm

fmod PROTOCOL -EXAMPLE -ALGEBRAIC is

protecting PROTOCOL -EXAMPLE -SYMBOLS .

eq d ( K:Key , e ( K:Key , Z:Msg ) ) =

Z:Msg [ variant ] .

eq e ( K:Key , d ( K:Key , Z:Msg ) ) =

Z:Msg [ variant ] .
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endfm

fmod PROTOCOL -SPECIFICATION is

protecting PROTOCOL -EXAMPLE -SYMBOLS .

protecting DEFINITION -PROTOCOL -RULES .

protecting DEFINITION -CONSTRAINTS -INPUT .

eq STRANDS -DOLEVYAO =

:: nil ::

[ nil | +(s), nil] &

:: nil ::

[ nil | +(P:UName), nil] &

:: nil ::

[ nil | +(mkey(i, s)), nil] &

:: nil ::

[ nil | -(M:Msg), -(N:Msg), +(M:Msg ; N:Msg),

nil] &

:: nil ::

[ nil | -(P:UName), +(mkey(P:UName , i)), nil]

&

:: nil ::

[ nil | -(K:Key), -(M:Msg),

+(e(K:Key , M:Msg)), nil] &

:: nil ::

[ nil | -(K:Key), -(M:Msg),

+(d(K:Key , M:Msg)), nil] &

:: nil ::

[ nil | -(M:Msg ; N:Msg), +(N:Msg), nil] &

:: nil ::

[ nil | -(M:Msg ; N:Msg), +(M:Msg), nil]

[nonexec ].

eq STRANDS -PROTOCOL =

:: r’: Fresh ::

[ nil |

-(CB:Nonce ; ANAME1:UName ; BNAME:UName ;

M1:Msg),

+(CB:Nonce ; ANAME1:UName ; BNAME:UName ;

M1:Msg ;

e(mkey(BNAME:UName , SNAME:SName),

n(BNAME:UName , r’: Fresh) ; CB:Nonce ;

ANAME1:UName ; BNAME:UName)),

-(CB:Nonce ; MA:Msg ;
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e(mkey(BNAME:UName , SNAME:SName),

n(BNAME:UName , r’: Fresh) ;

KCB:Sessionkey )),

+(CB:Nonce ; MA:Msg), nil] &

:: r’’:Fresh ::

[ nil |

-(CS:Nonce ; ANAME:UName ; BNAME:UName ;

e(mkey(ANAME:UName , SNAME:SName),

RA:Nonce ; CS:Nonce ; ANAME:UName ;

BNAME:UName) ;

e(mkey(BNAME:UName , SNAME:SName),

RB:Nonce ; CS:Nonce ; ANAME:UName ;

BNAME:UName)),

+(CS:Nonce ;

e(mkey(ANAME:UName , SNAME:SName),

RA:Nonce ;

seskey(ANAME:UName , BNAME:UName ,

n(SNAME:SName , r’’:Fresh ))) ;

e(mkey(BNAME:UName , SNAME:SName),

RB:Nonce ;

seskey(ANAME:UName , BNAME:UName ,

n(SNAME:SName , r’’:Fresh )))), nil]

&

:: r:Fresh ,rM:Fresh ::

[ nil |

+(n(ANAME:UName , rM:Fresh) ; ANAME:UName ;

BNAME:UName ;

e(mkey(ANAME:UName , SNAME:SName),

n(ANAME:UName , r:Fresh) ;

n(ANAME:UName , rM:Fresh) ;

ANAME:UName ; BNAME:UName)),

-(n(ANAME:UName , rM:Fresh) ;

e(mkey(ANAME:UName , SNAME:SName),

n(ANAME:UName , r:Fresh) ;

KCA:Sessionkey )), nil] [nonexec ].

var LIST : SMsgList -R .

var K : IntruderKnowledge .

var S : StrandSet .

eq ATTACK -STATE (0)=

:: r:Fresh ,rM:Fresh ::

[ nil ,
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+(n(a, rM:Fresh) ; a ; b ;

e(mkey(a, s), n(a, r:Fresh) ;

n(a, rM:Fresh) ; a ; b)),

-(n(a, rM:Fresh) ;

e(mkey(a, s), n(a, r:Fresh) ;

KCA:Sessionkey )) | nil]

|| empty

||

nil

||

nil

||

nil[nonexec ].

eq ATTACK -STATE (1)=

:: r:Fresh ,rM:Fresh ::

[ nil ,

+(n(a, rM:Fresh) ; a ; b ;

e(mkey(a, s), n(a, r:Fresh) ;

n(a, rM:Fresh) ; a ; b)),

-(n(a, rM:Fresh) ;

e(mkey(a, s), n(a, r:Fresh) ;

KCA:Sessionkey )) | nil]

||

KCA:Sessionkey inI

||

nil

||

nil

||

nil[nonexec ].

eq ATTACK -STATE (2)=

:: r:Fresh ,rM:Fresh ::

[ nil ,

+(n(a, rM:Fresh) ; a ; b ;

e(mkey(a, s), n(a, r:Fresh) ;

n(a, rM:Fresh) ; a ; b)),

-(n(a, rM:Fresh) ;

e(mkey(a, s), n(a, r:Fresh) ;

KCA:Sessionkey )) | nil]

|| empty

||
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nil

||

nil

|| never(

(S &

:: r’: Fresh ::

[ nil ,

-(CB:Nonce ; a ; b ;

e(mkey(a, s), n(a, rM:Fresh) ;

n(a, r:Fresh) ; a ; b)),

+(CB:Nonce ; a ; b ;

e(mkey(a, s), n(a, rM:Fresh) ;

n(a, r:Fresh) ; a ; b) ;

e(mkey(b, s), n(b, r’: Fresh) ;

CB:Nonce ; a ; b)),

-(CB:Nonce ; MA:Msg ; e(mkey(b, s),

n(b, r’: Fresh) ;

KCB:Sessionkey )),

+(CB:Nonce ; MA:Msg) | nil] )

|| K)[ nonexec ].

endfm

select MAUDE -NPA .

From here, the specifier interacts with Maude-NPA in the exact same manner

as if he/she had written a Maude-NPA file directly. See the Maude-NPA manual

for details [12].

5.3 Maude-PSL vs. Maude-NPA

Now, we will highlight aspects of the two specifications that best illustrate the

improvements the Maude-PSL makes over the strand-based language.

First, consider the specification of the protocol itself. Suppose we are de-

bugging the specification, and we wish to make sure that we have correctly

encoded the perspectives in the first step of the protocol. Determining that in

Maude-PSL is as simple as comparing the two messages in the first step:

1 . A -> B : c ; ANAME ; BNAME ;

e(skA , ra ; c ; ANAME ; BNAME)

|- CB ; ANAME1 ; BNAME ;

M1 .

Each subterm has been aligned along the concatenation operator, and the two

perspectives are (vertically) as close as possible. Therefore, comparing the per-

spective is as simple as a few eye flicks, and a bit of thought.
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Now, suppose we wish to compare perspectives using the Maude-NPA style

strands. First, we need to isolate the strand for Alice, and the strand for Bob

from the following strand set:

:: r’: Fresh ::

[ nil |

-(CB:Nonce ; ANAME1:UName ; BNAME:UName ;

M1:Msg),

+(CB:Nonce ; ANAME1:UName ; BNAME:UName ;

M1:Msg ;

e(mkey(BNAME:UName , SNAME:SName),

n(BNAME:UName , r’: Fresh) ; CB:Nonce ;

ANAME1:UName ; BNAME:UName)),

-(CB:Nonce ; MA:Msg ;

e(mkey(BNAME:UName , SNAME:SName),

n(BNAME:UName , r’: Fresh) ;

KCB:Sessionkey )),

+(CB:Nonce ; MA:Msg), nil] &

:: r’’:Fresh ::

[ nil |

-(CS:Nonce ; ANAME:UName ; BNAME:UName ;

e(mkey(ANAME:UName , SNAME:SName),

RA:Nonce ; CS:Nonce ; ANAME:UName ;

BNAME:UName) ;

e(mkey(BNAME:UName , SNAME:SName),

RB:Nonce ; CS:Nonce ; ANAME:UName ;

BNAME:UName)),

+(CS:Nonce ;

e(mkey(ANAME:UName , SNAME:SName),

RA:Nonce ;

seskey(ANAME:UName , BNAME:UName ,

n(SNAME:SName , r’’:Fresh ))) ;

e(mkey(BNAME:UName , SNAME:SName),

RB:Nonce ;

seskey(ANAME:UName , BNAME:UName ,

n(SNAME:SName , r’’:Fresh )))), nil]

&

:: r:Fresh ,rM:Fresh ::

[ nil |

+(n(ANAME:UName , rM:Fresh) ; ANAME:UName ;

BNAME:UName ;

e(mkey(ANAME:UName , SNAME:SName),

n(ANAME:UName , r:Fresh) ;
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n(ANAME:UName , rM:Fresh) ;

ANAME:UName ; BNAME:UName)),

-(n(ANAME:UName , rM:Fresh) ;

e(mkey(ANAME:UName , SNAME:SName),

n(ANAME:UName , r:Fresh) ;

KCA:Sessionkey )), nil] [nonexec ].

If we’re lucky, the person who wrote the specification was kind enough to leave

comments indicating the strands for Alice, Bob, and the server. If we are not so

lucky, then we need to determine which strand is which based on the pattern of

messages. Fortunately, in Otway-Rees isolating Alice’s strand is relatively easy:

it is the strand whose first message is a sent message (i.e. the third strand in the

set of strands above). Then, we need to take that first message, and compare it

against the first messages in the other two strands in order to find the message

that has the same basic structure as Alice’s first message. For terms as complex

as those used in Otway-Rees, this is not trivial. In this case, the first strand

is Bob’s strand. In other words, the two terms we care about are as far away

from each other as they can be! The easiest approach to comparing the terms

now is to copy and paste one of the terms next to the other, and compare them

side-by-side.

Note that the Otway-Rees protocol can be written far more conveniently

than it is above. For one thing, the strands are usually labeled in comments.

For another, since the server and Alice never communicate directly, we can place

Alice’s and Bob’s strand next to each other, and every principal will be next

to every other principal with whom they communicate. However, even in that

case, the first term in Alice’s strand is still separated from the first term in

Bob’s strand by the entiretly of Alice’s strand. Furthermore, there are other

protocols for which the server does communicate with both Alice and Bob. In

that case, there will always be two principals who communicate with each other,

but whose strands are not next to each other.

Now, suppose we are approaching this specification for the first time, and we

wish to how the specification varies (if at all) from the protocol the specification

is ostensibly describing. Or perhaps we are explaining the specification to a

colleague. Either way, we need to be able to look at the specification, and

reverse engineer the high-level description. Suppose we wish to construct the

first step of the protocol. Then, in the Maude-PSL specification, we need only

look at the following statement:

1 . A -> B : c ; ANAME ; BNAME ;

e(skA , ra ; c ; ANAME ; BNAME)

|- CB ; ANAME1 ; BNAME ;

M1 .

From here, it is a simple matter of converting the notation used in Maude-

PSL to that used in the Alice-Bob notation. First, we replace ANAME, BNAME,

73



ANAME1, BNAME1 with A, and B as appropriate (and obvious). Everything else

simply differs from the high level specification by capitilization, giving us:

1. A→ B : C;A;B; e(SKA, RA;C;A;B)

Obviously, if we want to dig a bit deeper into precisely how Maude-PSL is

representing the challenge (C), or the secret key of A, then we need to investigate

the definitions. However, not only has this allowed us to very quickly reconstruct

the first step, but it has also allowed us to more easily modularize our reverse

engineering:

1. Determine the equivalent Alice-Bob step by converting the Maude-PSL

notation into the standard Alice-Bob notation.

2. Expand the definitions as necessary, depending on how detailed one wishes

to get.

For explaining the step in the protocol to a colleague, one may only need to

convert the Maude-PSL notation into the Alice-Bob notation. For debugging

the specification, or if the colleague asks a particularly subtle question, it may

be necessary to expand definitions. However, that is a mechanical process. Most

of the work involved in understanding the definitions lies in a knowledge of how

the terms and equations are being modeled, not in parsing the specification

itself.

Subsequent steps are slightly more complicated, because one also needs to

instantiate perspectives, which may percolate through multiple steps. For ex-

ample, suppose we now wish to determine the second step. Then, we look at

the second step in the Maude-PSL specification:

2 . B -> S : CB ; ANAME1 ; BNAME ;

M1 ;

e(skB , rb ; CB ; ANAME1 ; BNAME)

|- CS ; ANAME ; BNAME ;

e(skA , RA ; CS ; ANAME ; BNAME) ;

e(skB , RB ; CS ; ANAME ; BNAME) .

From the previous step (to say nothing of the variable name), we know that

CB is Bob’s perspective of Alice’s challenge c. So that becomes C. Similarly,

M1 corresponds to the term e(skA, ra ; c ; ANAME ; BNAME). A little bit of

variable renaming gives us the step:

2. B → S : C;A;B; e(SKA, RA;C;A;B); e(SKB , RB ;C;A;B)
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Similarly for the last two steps.

Determining the strand of a principal, P, is equally simple. Simply scan

through the steps, and incrementally add messages. For each step in which P is

sending a message, the message before the turnstile (|-) should show up in P’s

strand as a sent message. For each step in which P is receiving a message, the

message after the turnstile should appear in the strand as a received message.

Now, suppose we wish to construct the same information from the Maude-

NPA specification. First, we need to go through the same process discussed

earlier for isolating the strands that we care about. Then, we need to extract

the two terms we care about:

-(CB:Nonce ; ANAME:UName ; BNAME:UName ;

M1:Msg)

-----------

+(n(ANAME:UName , rM:Fresh) ; ANAME:UName ;

BNAME:UName ;

e(mkey(ANAME:UName , SNAME:SName),

n(ANAME:UName , r:Fresh) ;

n(ANAME:UName , rM:Fresh) ;

ANAME:UName ; BNAME:UName ))

Then we need to go through the same process as in Maude-PSL: compare

the two perspectives and from there reconstruct the first high-level step. How-

ever, Maude-NPA does not have any sense of shorthand like the Maude-PSL.

Therefore, we need to be able to recognize that n(ANAME, rM) is the challenge

C, and mkey(ANAME, SName) is Alice’s secret key. In other words, it becomes

much harder with the Maude-NPA specification to control the level of detail

at which you view the protocol. You always see all the details, all the time,

whether you need to see them or not.

Now, suppose we wish to write a simple secrecy attack, in which the intruder

manages to learn the session key that Alice and Bob are attempting to securely

share, despite the fact that Alice successfully executes the protocol. Further-

more, suppose that Alice, Bob, the Server and the Intruder are all distinct

entities. Then, we only need to write the following five lines in the Maude-PSL:

1 .

A executes protocol .

Subst(A) = ANAME |-> a, BNAME |-> b,

SNAME |-> s .

Intruder learns KCA .

Similarly, if we wish to understand what the attack is doing, we need to

only read the above four lines. The only part of the attack that is at all subtle

is the the substitution. However, much like the definitions, understanding all

the subtleties may not be necessary, such as when explaining the attack to a
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colleague. So again, the specifier is free to focus on the level of detail that is

necessary for the job at hand.

However, in order to specify the exact same attack in Maude-NPA, we first

need to find, and then copy and paste Alice’s strand into an attack state. Then

we need to manually instantiate the strand, add the intruder knowledge, and

pepper the state with various nil constants to make the state fit the appropriate

syntax. This gives us:

eq ATTACK -STATE (1)=

:: r:Fresh ,rM:Fresh ::

[ nil ,

+(n(a, rM:Fresh) ; a ; b ;

e(mkey(a, s), n(a, r:Fresh) ;

n(a, rM:Fresh) ; a ; b)),

-(n(a, rM:Fresh) ;

e(mkey(a, s), n(a, r:Fresh) ;

KCA:Sessionkey )) | nil]

||

KCA:Sessionkey inI

||

nil

||

nil

||

nil[nonexec ].

First, this construction is very prone to error (i.e. it is very easy for the user

to forget to replace a variable ANAME with the constant a). Second, not only

is there additional information (in the form of the various nil keywords) that

has no bearing whatsoever on the attack, but the attack state does not even

make clear whose strand is being used, and how the strand is being instantiated.

Therefore, if the specifier (or somebody else) approaches the specification later,

and wishes to figure out what the attack is doing, he/she first has to deter-

mine which strand is being used, and then try to determine how it has been

instantiated.

Finally, suppose we have edited the protocol, and now need to update the

attacks to reflect the new protocol. In the case of the Maude-PSL, we only need

to modify the attack state if the variables have been changed, which is unlikely if

the protocol is only being tweaked. Even then, the only change that needs to be

made is to the substitution. However, even the smallest change in the Maude-

NPA specification requires the specifier to go through each attack that uses that

strand (which may not be obvious), and make the exact same small change to

every one of those attack states, while also preserving the intended instantiation.

In short, the Maude-NPA specification, in addition to being harder to read, is
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also much more brittle.
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Chapter 6

Related Works and
Conclusion

6.1 Related Works

ProVerif is one of the most popular protocol verification tools. ProVerif is based

on the typed π calculus, and as a result protocols are encoded in a variant of

the applied pi calculus [3]. Much like the Maude-PSL, ProVerif allows the user

to specify custom types and function symbols, and allows the user to define a

custom equational theory using rewrite rules. However, ProVerif also requires

the user to explicitly formalize the types of checks that principals perform on

the messages they receive (i.e. verifying digital signatures, extracting keys,

etc.). These checks are implicitly formalized in the Maude-PSL through the

use of perspectives. The notation of the applied π calculus is quite distant

from the standard Alice and Bob syntax typically used to informally describe

protocols. Furthermore, since the applied π calculus is a very general logic meant

to model parallel processes, it is also relatively “low-level” for the purposes of

verifying cryptographic protocols. As a result, it can be difficult to write and

read ProVerif specifications, especially if the specifier lacks a deep understanding

of applied π calculus. On the other hand, a deep understanding of strand spaces

is not necessary to read or write Maude-PSL specifications (though admittedly

it is necessary to understand the attacks generated by Maude-NPA.

The High Level Protocol Specification Language (HLPSL) is another major

protocol specification language, this one used by the AVISPA suite of tools [4].

HLPSL is based on Lamport’s Temporal Logic of Actions [16]. HLPSL is similar

to the original Maude-NPA strand-based input language, in that protocols are

specified in terms of each role, rather than in terms of the messages sent and

received. However, HLPSL allows the user more explicit control over the actions

performed by each principal upon receipt of a message. For example, HLPSL al-

lows the user to specify keyrings, and only request a key from a server if said key

is not already in the principal’s keyring. In other words the Maude-PSL requires

the user to work at a much higher level of abstraction than HLPSL necessarily

requires. For example, the Maude-PSL would abstract away keyrings by either

assuming that the principals already know everyone else’s public keys, or by

specifying the keys as input). However, HLSPL shares some of the same down-

sides as Maude-NPA: specifically the role-based specification makes it difficult
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to extract the universal sequence of message passes that serve as the intuitive

formulation of protocols. The notation is also, like ProVerif, quite different from

how protocol designers usually describe and think about protocols.

The Casper language, like the Maude-PSL, mixes a global specification of the

protocol with role-specific information [18]. Both also allow for the specification

of some algebraic properties (such as the commutativity of a given operator). In

addition, the method of specifying the guarantees to be checked is very similar.

For example, in Casper, the user claims that if the protocol is secure, then a

given term will remain a secret after a successful run of the protocol. In the

Maude-PSL the user claims that if a given term does not remain a secret after

a successful run, then the protocol is not secure.

However, in Casper, in addition to specifying the sender and receiver view-

point of a message, the specifier can also define tests that a principal performs

upon receipt of a message. If these tests fail, then the user aborts the run. The

Maude-PSL does not support such tests, though in many cases the information

that would be gleaned are implicitly encoded in the points of view. Furthermore,

Casper has separate syntax for each attack type, while in the Maude-PSL the

attacks are defined using different combinations of more primitive statements.

This provides the Maude-PSL greater flexibility in defining attacks, and reduces

the syntax that needs to be learned. Also the Maude-PSL provides much greater

flexibility in defining the term structure of the messages in the protocol.

The CAPSL language, developed at the Standford Research Institute, can

be thought of as the spiritual ancestor of the Maude-PSL [20]. Some features,

such as the Definitions, were inspired by similar features in CAPSL. Like the

Maude-PSL, the CAPSL language attempts to surround an Alice and Bob spec-

ification with additional information that can then be translated into a given

tool’s potentially less intuitive input language. Furthermore, the basic structure

of Maude-PSL specifications share many similarities to specifications in CAPSL.

However, typically the only role-specific information provided in CAPSL are a

list of assumptions. For example, in CAPSL, one may assume that Alice knows

the name (Bob) of the principal he/she would like to communicate with. CAPSL

specifications may also specify perspective, though it is not required like it is in

the Maude-PSL. Furthermore, CAPSL was meant as a lingua franca between

many different tools, much like HLPSL, while the Maude-PSL was designed ex-

plicitly for the Maude-NPA. As a result, CAPSL does not not have a natural

means of handling the built-in axioms (i.e. commutativity and associativity)

supported by Maude. Furthermore, CAPSL only supports user-defined pre-

fix symbols, whereas the Maude-PSL supports more flexible mixfix operators,

allowing the Maude-PSL specifications to more closely match the specifier’s pre-

ferred syntax. Furthermore, the Maude-PSL and CAPSL differ in terms of how

they specify the guarantees to verified. CAPSL takes a positive approach: the

user specifies the goals directly. For example, SECRET K asserts that the key

K must be kept secret. Meanwhile, the Maude-PSL takes a negative approach:
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the user specifies an attack pattern that, if successful, violates the goal. For ex-

ample, an attack in which Alice executes the protocol, and the intruder learns

the key K. Finally, the Maude-PSL allows the user to customize the capabilities

of the Intruder in the Intruder section.

6.2 Future Work

As it stands, the Maude-PSL supports almost all the features of Maude-NPA.

The only feature that the Maude-PSL currently lacks is support for protocol

composition. Therefore, the next step is to implement protocol composition.

After implementing protocol composition, the Maude-PSL will be able to ex-

press all types of protocol specifications that Maude-NPA currently supports. A

means of importing sections (such as Theory and Intruder sections) would also

be very valuable. For example, if a user wishes to use a theory of XOR, or a

theory of asymmetric cryptography, then the user should be able to just import

the requisite equational theories, rather than repeatedly rolling their own. In

addition to saving the user time, this will also standardize specifications to some

extent (since all specifications that import theories will have a core of shared

syntax), and it will also drastically increase the chances that the user’s equa-

tional theories meets all the assumptions made by Maude-NPA. Furthermore,

if the user is importing one or more pre-defined theories, then the user should

also be able to import the associated intruder capabilities. This would allow

the user to focus on what is important: the protocol and attacks.

Maude-NPA makes a large number of assumptions about the equational

theory provided [12]. Some of them, particularly termination and confluence,

are non-trivial to verify, and therefore often are not. However, these properties

are absolutely essential if we want the output of Maude-NPA to make any sense.

Fortunately, tools have already been developed for checking if an equational

theory written in Maude is terminating and confluent: the Maude Termination

Tool and Church-Rosser Checker respectively [10, 11]. Therefore, in order to

ensure that our proofs are not “built on sand” so to speak, the translation should

include an option to perform heavy checks. When this option is activated, then

in addition to performing the standard syntactic and simple semantic checks, the

Maude-PSL translator would also automatically invoke the Maude Termination

Tool and Church Rosser-Checker on the equational theory. If the checks succeed,

then the specification is translated like normal. If the checks fail, then the

output of the tool is displayed to the user, and the translation process aborted.

Then, the user may make the necessary changes, and attempt to translate the

theory again, just like any other translation error. Of course, these checks are

undecidable in general, and they may take non-trivial amount of time, so they

should not be required in order to perform a successful translation. However, if

all it takes to perform the checks is a flag on the command line, then the user

is much more likely to perform the checks at least once.
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Currently when Maude-NPA finds an attack, the attack is printed as a

Maude-NPA state. Therefore, the attack as printed is displayed in a man-

ner quite distant from the message passing notation typically used to express

attacks. As a result, in order to understand the output of the tool, the user does

still need to understand the structure of a Maude-NPA state, which includes a

set of strands. Therefore, a means of automatically translating Maude-NPA

states into a message passing notation similar to that used by the Maude-PSL

would drastically improve the usability of the tool, because it would allow the

user to work at the same level both for the input and the output. Alternatively

(or in addition) there is a graphical user interface built by Santiago and Talcott

to visualize attacks (and the state space in general) of a Maude-NPA specifica-

tion [27]. Integrating the Maude-PSL with this interface would greatly enhance

the usability of Maude-NPA.

6.3 Conclusion

The specification of cryptographic protocols is a careful balancing act. On one

end, we have the classic Alice and Bob notation. This notation is intuitive, clear,

and expressive. However it is also relatively informal, and sacrifices precision

simplicity and readability. On the other hand, we have notation like that used

by Maude-NPA: a very precise notation that provides all the information needed

by a computer to perform automatic reasoning, but at the cost of simplicity,

and readability. Furthermore, the original Maude-NPA input language has a

slew of other weaknesses, chief among them a variety of syntactic artifacts that

are required by Maude, but don’t contribute to the meaning of the specification,

and a tremendous amount of code repetition.

In an effort to fix some of these issues, and to bring these two extremes

closer together, we have in this document proposed a new input language for

Maude-NPA: the Maude Protocol Specification Language (Maude-PSL). The

Maude-PSL begins with the Alice and Bob notation, and extends it slightly to

provide additional information. It also provides a means, through the Theory

and Intruder sections to make explicit information usually ignored by the stan-

dard Alice and Bob notation: the algebraic properties of the operations used in

the protocol, and the capabilities of the intruder. All of this information is en-

coded in a concise notation that minimizes repetition and improves readability.

Finally, attacks are specified in a combination of mathematical notation and

natural language that makes it possible to describe attacks succinctly, clearly

and in a manner that makes them resilient to changes in the protocol. Further-

more, the Maude-PSL performs a variety of syntactic and semantic checks that

endeavor to minimize the chances of the user committing subtle errors that are

all but impossible to detect. The Maude-PSL also opens the door for a deeper

integration of Maude-NPA with other tools developed to aid Maude develop-

ers, such as the Maude Termination Tool, and the Church-Rosser Checker. We
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believe that the Maude-PSL will highlight subtleties in protocols before verifi-

cation even begins, simplify the specification, communication, and verification

of said protocols, and increase user confidence of the results of said verification.
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Appendix: Formal Syntax

Here we provide a BNF specification of the Maude-PSL syntax. Note that this

BNF grammar is necessarily incomplete: the full grammar of a specification

cannot be known until the user has defined all custom operators. We use the

non-terminal 〈term〉 to represent terms built using the user-defined operators.

Meanwhile, 〈id〉 refers to sequences of characters that do not contain whitespace.

Finally, the nonterminal 〈nat〉 refers to natural numbers, and 〈string〉 refers to

any string. Furthermore, spaces in the grammar represent actual spaces.

Note that although the 〈spec〉 rule generates the 〈theory〉, 〈protocol〉,
〈intruder〉, and 〈attack〉 sections in a specific order, they can in fact appear in

any order. However they all must appear exactly once. Similarly with the core

attack statements.

〈spec〉 ::= ‘spec’ 〈id〉 ‘is’ 〈theory〉 〈protocol〉 〈intruder〉 〈attacks〉 ‘ends’

〈theory〉 ::= ‘Theory’ 〈theoryStmts〉

〈theoryStmts〉 ::= 〈theoryStmt〉 ‘.’

| 〈theoryStmt〉 ‘.’ 〈theoryStmts〉

〈theoryStmt〉 ::= 〈typeStmt〉
| 〈subtypeStmt〉
| 〈opStmt〉
| 〈varStmt〉
| 〈eqStmt〉

〈typeStmt〉 ::= ‘type’ 〈ids〉
| ‘types’ 〈ids〉
| ‘sort’ 〈ids〉
| ‘sorts’ 〈ids〉

〈ids〉 ::= 〈id〉
| 〈id〉 〈ids〉

〈subtypeStmt〉 ::= ‘subtype’ 〈ids〉 ‘<’ 〈subtypes〉
| ‘subtypes’ 〈ids〉 ‘<’ 〈subtypes〉
| ‘subsort’ 〈ids〉 ‘<’ 〈subtypes〉
| ‘subsorts’ 〈ids〉 ‘<’ 〈subtypes〉
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〈subtypes〉 ::= 〈ids〉
| 〈ids〉 ‘<’ 〈subtypes〉

〈opStmt〉 ::= ‘op’ 〈idsUscore〉 ‘:’ 〈ids〉 ‘->’ 〈id〉
| ‘ops’ 〈idsUscore〉 ‘:’ 〈ids〉 ‘->’ 〈id〉
| ‘op’ 〈idsUscore〉 ‘:’ 〈ids〉 ‘->’ 〈id〉 ‘[’ 〈opattrs〉 ‘]’

| ‘ops’ 〈idsUscore〉 ‘:’ 〈ids〉 ‘->’ 〈id〉 ‘[’ 〈opattrs〉 ‘]’

〈idsUscore〉 ::= 〈id〉
| ‘_’

| 〈id〉 〈idsUscore〉
| 〈id〉‘_’ 〈idsUscore〉
| ‘_’〈idsUscore〉

〈opattrs〉 ::= 〈opattr〉
| 〈opattr〉 〈opattrs〉

〈opattr〉 ::= ‘comm’

| ‘assoc’

| ‘id:’ 〈term〉
| ‘iter’

| ‘gather(e E)’

| ‘gather(E e)’

〈varStmt〉 ::= ‘var’ 〈ids〉 ‘:’ 〈id〉
| ‘vars’ 〈ids〉 ‘:’ 〈id〉

〈eqStmt〉 ::= ‘eq’ 〈term〉 ‘=’ 〈term〉
| ‘eq’ 〈term〉 ‘=’ 〈term〉 ‘[’ 〈eqAttrs〉 ‘]’

〈eqAttrs〉 ::= 〈eqAttr〉
| 〈eqAttr〉 〈eqAttrs〉

〈eqAttr〉 ::= ‘variant’ | ‘metadata’ 〈string〉 | ‘homomorphism’

〈protocol〉 ::= ‘Protocol’ 〈protocolStmts〉

〈protocolStmts〉 ::= 〈protocolStmt〉 ‘.’

| 〈protocolStmt〉 ‘.’ 〈protocolStmts〉

〈protocolStmt〉 ::= 〈varStmt〉
| 〈roleStmt〉
| 〈inStmt〉
| 〈defStmt〉
| 〈stepStmt〉
| 〈outStmt〉

〈roleStmt〉 ::= ‘roles’ 〈ids〉

86



〈inStmt〉 ::= ‘In(’〈id〉‘) =’ 〈idList〉

〈idList〉 ::= 〈id〉
| 〈id〉‘,’ 〈idList〉

〈defStmt〉 ::= ‘Def(’〈id〉‘) =’ 〈defPairs〉

〈defPairs〉 ::= 〈defPair〉
| 〈defPair〉, 〈defPairs〉

〈defPair〉 ::= 〈id〉 ‘:=’ 〈term〉

〈stepStmt〉 ::= 〈int〉 ‘.’ 〈id〉 ‘->’ 〈id〉 ‘:’ 〈term〉 ‘|-’ 〈term〉

〈outStmt〉 ::= ‘Out(’〈id〉‘) =’ 〈termList〉

〈termList〉 ::= 〈term〉
| 〈term〉‘,’ 〈termList〉

〈intruder〉 ::= ‘Intruder’ 〈intruderStmts〉

〈intruderStmts〉 ::= 〈intruderStmt〉 ‘.’

| 〈intruderStmt〉 ‘.’ 〈intruderStmts〉

〈intruderStmt〉 ::= 〈varStmt〉
| 〈capabilitiesStmt〉

〈capabilitiesStmt〉 ::= ‘=>’ 〈termList〉
| 〈termList〉 ‘=>’ 〈termList〉
| 〈termList〉 ‘<=>’ 〈termList〉

〈attack〉 ::= ‘Attacks’ 〈attackPatterns〉

〈attackPatterns〉 ::= 〈attackPattern〉
| 〈attackPattern〉 〈attackPatterns〉

〈attackPattern〉 ::= 〈int〉 ‘.’ 〈coreAttack〉
| 〈int〉 ‘.’ 〈coreAttack〉 〈withoutBlocks〉
| 〈int〉 ‘.’ 〈coreAttack〉 〈reduction〉
| 〈int〉 ‘.’ 〈coreAttack〉 〈withoutBlocks〉 〈reduction〉

〈coreAttack〉 ::= 〈executions〉 ‘.’ 〈learns〉 ‘.’ 〈constraints〉
| 〈executions〉
| 〈executions〉 〈learns〉
| 〈executions〉 ‘.’ 〈constraints〉

〈executions〉 ::= 〈execution〉 ‘.’

| 〈execution〉 ‘.’ 〈executions〉

〈execution〉 ::= 〈executes〉 ‘.’ 〈subst〉
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〈executes〉 ::= 〈id〉 ‘executes protocol’

| 〈id〉 ‘executes up to’ 〈nat〉

〈subst〉 ::= ‘Subst(’ 〈id〉 ‘) =’ 〈substMappings〉

〈substMappings〉 ::= 〈substMapping〉
| 〈substMapping〉‘,’ 〈substMappings〉

〈substMapping〉 ::= 〈id〉 ‘|->’ 〈term〉

〈learns〉 ::= ‘Intruder learns’ 〈termList〉

〈constraints〉 ::= ‘With constraints’ 〈neqList〉

〈neqList〉 ::= 〈neq〉
| 〈neq〉, 〈neqList〉

〈neq〉 ::= 〈id〉 ‘!=’ 〈term〉

〈withoutBlocks〉 ::= 〈withoutBlock〉
| 〈withoutBlock〉 〈withoutBlock〉

〈withoutBlock〉 ::= ‘without:’ 〈executions〉

〈reduction〉 ::= ‘state-space-reduction:’ 〈avoidBlocks〉

〈avoidBlocks〉 ::= 〈avoidBlock〉 ‘.’

| 〈avoidBlock〉 〈avoidBlocks〉

〈avoidBlock〉 ::= ‘avoid:’ 〈coreAttack〉
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