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ABSTRACT

Powered prosthetic devices have shown to be capable of restoring natural gait to am-

putees. However, the commercialization of these devices is faced by some challenges, in

particular in prosthetic controller design. A common control framework for these devices

is called impedance control. The challenge in the application of this framework is that it

requires the choice of many controller parameters, which are chosen by clinicians through

trial and error for each patient. In this thesis we automate the process of choosing these

parameters by learning from demonstration. To learn impedance controller parameters

for flat-ground, we adopt the method of learning from exemplar trajectories. Since we

do not at first have exemplar joint trajectories that are specific to each patient, we use

invariances in locomotion to produce them from pre-recorded observations of unimpaired

human walking and from measurements of the patient’s height, weight, thigh length, and

shank length. Experiments with two able-bodied human subjects wearing the Vander-

bilt prosthetic leg with an able-bodied adaptor show that our method recovers the same

level of performance that can be achieved by a clinician but reduces the amount of time

required to choose controller parameters from four hours to four minutes.

To extend this framework to learning controllers for stair ascent, we need a model

of locomotion that is capable of generating exemplar trajectories for any desired stair

height. Motivated by this challenge, we focus on a class of learning from demonstration

methods called inverse optimal control. Inverse optimal control is the problem of com-

puting a cost function with respect to which observed trajectories of a given dynamic

system are optimal. We first present a new formulation of this problem, based on min-

imizing the extent to which first-order necessary conditions of optimality are violated.

This formulation leads to a computationally efficient solution as opposed to traditional

approaches. Furthermore, we develop the theory of inverse optimal control for the case

where the dynamic system is differentially flat. We demonstrate that the solution further

simplifies in this case, in fact reducing to finite-dimensional linear least-squares mini-

mization. We show how to make this solution robust to model perturbation, sampled

data, and measurement noise, as well as provide a recursive implementation for online
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learning. Finally, we apply our new formulation of inverse optimal control to model

human locomotion during stair ascent. Given sparse observations of human walkers, our

model predicts joint angle trajectories for novel stair heights that compare well to motion

capture data. These exemplar trajectories are then used to learn prosthetic controllers

for one subject. We show the performance of the learned controllers in a stair ascent

experiment with the subject walking with the Vanderbilt prosthetic device.
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CHAPTER 1

INTRODUCTION

There are over one million lower-limb amputees in the United States, and this number is

expected to double by 2030 [1]. To restore locomotive functions to lower-limb amputees,

different prosthetic devices such as the Rheo knee and the C-leg have been developed over

the years [2]. Although these prostheses have made significant advances over previous

mechanical systems, they are still limited by their passive nature. Passive prostheses

cannot provide net power over a gait cycle, and therefore cause increased consumption of

metabolic energy [3], and also have difficulty providing locomotive functions such as stair

climbing, slope ascent and running. Therefore, powered prostheses have been suggested

as a natural solution to overcome these limitations. Technological advances in the design

of actuators, batteries and microprocessors along with improvements in control strategies

have enabled the design of various powered prosthetic devices. These include prototype

devices such as the Vanderbilt leg [4], but only one commercially available device called

the BiOM prosthetic ankle. Although recent advancements are paving the way for the

widespread use of powered prosthetic devices, we are still faced with important challenges

that need to be addressed for such devices to become commercial.

In this thesis we focus on the problem of controller design for prosthetic devices, while

many challenges related to the mechanical design of these devices such as power efficiency

are still remaining and are equally important. Lower-limb prosthetic controllers often

have a hierarchical structure that loosely resembles the structure and functionality of

the human central nervous system (CNS) [5]. In this structure, a high-level controller

is responsible for inferring the user’s locomotive intent based on input signals from the

device, the user and the environment. Once the high-level intent is inferred, a mid-level

controller is designed to generate the desired output state for the given intent. Given

these desired outputs states, a low-level device-specific controller is employed to execute

the desired movement on the device. The active research in the area of prosthetic control

is involved in solving challenges in one or a few of these levels. In this thesis, we will

focus on the mid-level prosthetic controller.

One common strategy for mid-level control of lower-limb prostheses is impedance
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control [4]. It proceeds by breaking a gait cycle into four phases, and by applying a

proportional derivative (PD) feedback policy within each phase [4, 6, 7]. A challenge in

the application of this framework is that it requires the choice of many controller param-

eters, in particular 12 parameters for the knee joint. Currently clinicians often choose

these parameters by trial and error for each patient [4, 8, 9]. This tuning process takes

four hours for each locomotion mode, for example level ground walking or stair/ramp

ascent. Furthermore, in locomotion modes such as stair ascent, a separate controller has

to be tuned for every desired stair height.

An approach to address the prosthetic controller tuning challenge is to learn controllers

from demonstrations of locomotion. Techniques for learning from demonstration have

been studied vastly in robotics. One line of work is learning from exemplar trajectories,

or policy learning, which has been successfully applied in robotic applications [10–13].

These methods solve a regression problem to find controller parameters that would

best reproduce an observed desired trajectory. An alternative approach is to learn

a performance criterion given observations, and use the learned performance criterion

(or cost function) to derive controllers. This approach is often called inverse optimal

control or inverse reinforcement learning [13–32]. In these methods, the goal is to

estimate a cost function, with respect to which observed trajectories are optimal, given

a dynamic model of the system. This learned cost function is then expected to generalize

to novel situations and produce appropriate controllers under circumstances not observed

in training.

In the first part of this thesis, we address prosthetic tuning for flat-ground locomo-

tion. Making the assumption that we can learn impedance controller parameters given

an observation of average locomotion trajectories for flat-ground, we adopt the method

of learning from exemplar trajectories. In our case, however, exemplar trajectories cor-

responding to a particular subject are not available. Thus we make use of invariances

that exist in locomotion to produce subject-specific trajectories [33]. By tracking the

invariant trajectories on a model which uses the amputee’s physical characteristics, i.e.

mass and length information of the individual, we produce exemplar joint trajectories

corresponding to the size of the amputee. Once the amputee-specific trajectories are

generated, we learn impedance controller parameters using a least-squares minimization.

Experiments with two able-bodied human subjects wearing the Vanderbilt prosthetic leg

with an able-bodied adaptor show that our method recovers the same level of perfor-

mance that can be achieved by a clinician but reduces the amount of time required to

choose controller parameters from four hours to four minutes.

To learn controllers for stair ascent, we cannot make the assumption of learning con-
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trollers using an average observation of stair ascent, since stair ascent trajectories vary

according to the stair height. Therefore, we propose to learn a cost function that is

parameterized by the stair height and we adopt the method of inverse optimal control

for stair ascent prosthetic learning. We propose to learn a cost function using sparse ob-

servations of stair ascent locomotion, and we hypothesize that the learned cost function

can then generalize to produce stair ascent trajectories for novel step heights. Motivated

by this application we extend the theory of inverse optimal control, developing a compu-

tationally efficient solution with theoretical guarantees on the quality of the estimated

cost function.

The problem of IOC has been studied in many contexts. The works [28, 34] de-

velop IOC approaches for systems modeled as Markov decision processes. IOC algo-

rithms for non-linear stochastic continuous systems have been developed in the context

of linearly-solvable Markov decision processes [30] and path integrals [31]. Additionally,

IOC approaches for deterministic non-linear continuous-time systems have been pro-

posed in [14]. A solution approach that is often used to solve these IOC problems is to

iteratively solve an optimal control problem followed by minimization of an objective

function that represents the quality of the estimated cost. The need to solve an optimal

control problem introduces a major computational bottleneck for such IOC approaches.

Moreover, the nature of this solution approach makes it difficult to provide theoretical

guarantees on estimating the true cost parameters, i.e. ensuring identifiability of the

IOC problem.

In chapters 3 and 4 of this thesis, we develop an approach to IOC for the class of

deterministic non-linear continuous-time systems. The contribution of this work to the

theoretical framework of IOC is twofold. First, we introduce a new solution approach

to inverse optimal control based on linear least squares in chapter 3. We do so by

minimizing the extent to which first-order necessary conditions of optimality are violated.

Second, we develop a new formulation of inverse optimal control for differentially flat

systems [35,36]. We show that for the class of differentially flat systems, the IOC problem

is “easy” and can be solved efficiently using linear least squares minimization. Moreover,

these contributions allow us to answer questions regarding the identifiability of the cost

function, i.e. estimating the true cost function underlying optimal observations. We

further develop a recursive solution to IOC, which allows for recursively estimating the

cost function given new data.

We learn a model of human locomotion during stair ascent, using the proposed method

of inverse optimal control for differentially flat systems. We incorporate a-priori knowl-

edge about locomotion, by designing features that could model the intersegmental co-
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ordination observed in human locomotion [33] and the principle of proximo-distal gra-

dient [37]. We then learn the cost parameters using sparse observations of stair ascent

trajectories, and show that our model can predict stair ascent trajectories corresponding

to a novel stair height. This locomotion model is in turn used with the impedance pa-

rameter learning framework to learn a prosthetic controller for an able-bodied subject.

We perform experiments with the subject walking with the Vanderbilt prosthetic leg,

to demonstrate the performance of the learned controller. Moreover, using the learned

model of locomotion, we design a different control architecture for controlling the knee,

and show its performance in simulations of a dynamic bipedal model.

In summary, the contributions of this thesis are the following:

• Prosthetic controller learning for flat ground: In (Aghasadeghi et al. 2013 [38])

and (Aghasadeghi et al. 2015 [39]) we develop a method for learning impedance

controller parameters for flat-ground prosthetic walking.

• Approximately optimal inverse optimal control: In (Aghasadeghi and Bretl

2012 [40]) and (Johnson, Aghasadeghi and Bretl 2013 [41]) we develop a com-

putationally efficient solution to inverse optimal control based on the first-order

necessary conditions of optimality.

• Inverse optimal control for differentially flat systems: In (Aghasadeghi and

Bretl 2014 [42]) we develop the theory of inverse optimal control for differentially

flat systems. We show that for this class of systems, the inverse optimal control

problem reduces to a linear least squares solution. We provide theoretical guar-

antees on the identifiability of cost parameters, and develop filtering methods and

recursive solutions for IOC.

• Inverse optimal control for differentially flat systems with application

to stair ascent prosthetic controller learning: In (Aghasadeghi, Hargrove,

Perreault and Bretl 2015 [43]) we develop the theory of inverse optimal control

for differentially flat systems, and we use this theory to model locomotion during

stair ascent. Using this model, we learn prosthetic controllers for stair ascent. We

further develop a height-invariant prosthetic controller architecture, and show its

feasibility in dynamic biped simulations.

The remainder of this thesis proceeds as follows. In chapter 2 we introduce the

impedance parameter learning framework used to automate the process of prosthetic

controller tuning. In chapter 3 we develop an alternative formulation of inverse opti-

mal control based on minimizing the violations of the first-order necessary conditions
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of optimality. We develop the theory of IOC further for differentially flat systems in

chapter 4. We use the proposed method of IOC to model locomotion during stair ascent

in chapter 5 and we conclude with the discussion in chapter 6.
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CHAPTER 2

LEARNING IMPEDANCE CONTROLLER
PARAMETERS FOR LOWER-LIMB

PROSTHESES

2.1 Introduction

Impedance control [44] is an existing strategy for control of lower-limb prostheses [4,

45]. It typically proceeds by breaking a gait cycle into four phases, and by applying a

proportional derivative (PD) feedback policy within each phase [4, 7], as shown below:

u(t) = k(θ(t)− θe) + bθ̇(t). (2.1)

Here u(t) denotes the joint torque and θ(t) and θ̇(t) denote the joint angle and angular

velocity. A challenge in applying this framework is that it requires choosing controller

parameters k, b and θe for each phase. These parameters represent the stiffness, damping

and equilibrium angle. Thus for a four phase control architecture for the knee and ankle,

24 controller parameters must be chosen.

Currently clinicians tune these parameters by trial and error for each patient [4, 8].

In this process, the amputee first walks on the prosthetic device with a pre-defined set

of controller parameters [4]. The clinicians then modify the parameters to match the

kinematics of unimpaired gait [6] and also to address the amputee’s feedback. These

steps are iterated until the device is fully tuned for the individual. This tuning process

takes four hours on average for each individual for the impedance controller we consider

in this work [46]. Moreover, multiple sessions are necessary to tune the device for

different modes of locomotion such as stair ascent/descent and ramp ascent/descent.

In this chapter, we show how to learn impedance controller parameters k, b and θe

from observed exemplar trajectories. Since we do not at first have exemplar joint trajec-

tories that are specific to each individual, we use invariances in locomotion to produce

them from pre-recorded observations of unimpaired human walking. To do so, we utilize

locomotion outputs that have been shown to be invariant across individuals and walking

speeds [33]. By tracking the invariant outputs on a model which uses the amputee’s
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Figure 2.1: Overview of the proposed algorithm.

physical characteristics, i.e. mass and length information of the individual, we produce

exemplar joint trajectories corresponding to the size of the amputee. Once the amputee-

specific trajectories are generated, we estimate impedance controller parameters using

a least-squares minimization. This leads to a computationally-efficient approach that

produces controller parameters for an amputee walking at a desired cadence, while only

using pre-recorded invariant locomotion trajectories and the amputee’s physical charac-

teristics. This approach is shown in the block diagram in Figure 2.1.

Biomechanical system identification is an alternative approach that in principle can be

used to select impedance parameters for lower-limb impedance controllers [47,48]. These

approaches consist of stationary and time-varying impedance identification techniques.

In stationary impedance identification, the joint under study is perturbed multiple times,

and the time-invariant impedance of the joint is estimated, potentially at many points

in a locomotor study [49]. While these stationary identification methods are very well

studied, they can be used to study joint impedances only in steady-state (stationary) con-
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ditions [47, 50]. Time-varying impedance identification (TVID) techniques [51], on the

other hand, continuously perturb the joints and can measure instantaneous impedance

values in dynamic cases, i.e. when the joints are moving. Traditionally, these approaches

were limited by the amount of experimental data that they required. However, recent

work [52] has demonstrated the applicability of these methods to problems with short

data segments as well. Moreover, using TVID for identifying impedance during hu-

man walking requires special equipment. A mechanical system was developed for ankle

impedance estimation in [49, 53] and for knee impedance estimation in [54]. However,

the development of these approaches is still a topic of active research and even if such

systems were to be developed, the experimental cost could limit their use for individuals.

In this chapter, we apply the proposed impedance parameter learning algorithm to find

controller parameters for two individuals. We perform experiments with the individuals

walking on a lower-limb prosthetic device, and demonstrate the results.

The remainder of the chapter is organized as follows. In section 2.2 we discuss the

methods, including the description of the biped model, the impedance controller and our

proposed method of controller parameter learning. We then present both the simulated

and experimental results in section 2.3, followed by a discussion in section 2.4.

2.2 Methods

In this section we describe our proposed framework for learning the parameters of a pros-

thetic impedance controller. We also discuss the dynamic biped model utilized to model

the individual. These methods are applied to learn prosthetic controller parameters for

two unimpaired individuals.

2.2.1 Powered Prosthetic Device

The powered prosthetic device used in this study, shown in Figure 2.2, was designed

and fabricated at Vanderbilt University [55]. This device consists of an active ankle and

knee joint controlled using brushless DC motors. The prosthetic device is equipped with

a shank axial load sensor, encoders at the knee and ankle joints, and a six-axis inertial

measurement unit. We used an able-bodied testing adaptor, seen in Figure 2.2, to test

the prosthetic device with able-bodied individuals. In our experiments, we also used an

electric goniometer to measure the knee angle of the non-prosthetic leg.

In this study, both the knee and ankle joints of the prosthetic device were controlled

8



using impedance control, which will be described later. We focus on learning impedance

controller parameters for the knee, thus the controller parameters for the ankle were

experimentally tuned for each individual.

Figure 2.2: Vanderbilt prosthetic leg with the attached able-bodied adaptor.
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Table 2.1: Table describing the mass (kg) and length (m) properties of the individuals
(S1 and S2) and of the prosthetic (Pr)

* Lcalf Lthigh H mfoot mcalf mthigh mtorso W
S1 0.483 0.483 1.75 1.38 4.43 9.53 64.6 95.3
Pr * * * * * * * 5.44

* Lcalf Lthigh H mfoot mcalf mthigh mtorso W
S2 0.483 0.483 1.96 1.51 4.85 10.4 70.7 104
Pr * * * * * * * 5.44

2.2.2 Experimental Protocol

Two able-bodied male individuals participated in this experiment. Both individuals

provided written informed consent to a protocol approved by the Northwestern Univer-

sity Institutional Review Board. The experiments were conducted in the laboratory of

Center for Bionic Medicine at the Rehabilitation Institute of Chicago (RIC).

To learn controller parameters for each participant, we measured and computed the

physical characteristics of the participants using the approach described in the next

section. The resulting physical characteristics are detailed in Table 2.1. We then learned

impedance controller parameters for both individuals using our proposed method, and

tested the learned controllers in clinical experiments. To do so, the individuals were

fitted to the prosthetic device on their right leg using the able-bodied testing adaptor.

An electric goniometer was also placed on their left knee to measure the knee angle of the

non-prosthetic leg. The knee angle of the prosthetic leg was measured using the encoder

build in the prosthetic. The individuals were asked to walk between parallel bars and

on a treadmill device for a duration of five minutes using the learned controllers. The

individuals were instructed to walk with their desired cadence. After this experiment,

clinicians experimentally modified the prosthetic controller parameters, starting with

the learned controller parameters as an initial guess. Note that this method of tuning

differs from previous experimental tuning, where clinicians started with a pre-defined

set of controller parameters as an initial guess as opposed to starting from the learned

controller for each individual. The individuals performed the same walking experiment

with the experimentally modified controller parameters.
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Figure 2.3: Five-link biped model considered in this chapter and the joints angles.

2.2.3 Biped Model Corresponding to the Physical Characteristics of
the Amputee

We use a five-link biped to model the individual. We measure the following physical

characteristics of the amputee:

• weight denoted by W

• height denoted by H

• thigh length denoted by Lthigh

• shank length denoted by Lshank.

The thigh and shank measurements will correspond to the sound leg of the individual.

The size and weight of the prosthetic device are also measured and will be incorporated

into the model.

We consider a planar point-feet biped model that has five serial chain links consisting

of one torso, two thighs and two shanks as seen in Figure 2.3. The corresponding lengths

and masses are denoted by Ltorso,mtorso, Lthigh,mthigh, Lshank,mshank.

The configuration space of the biped is defined as Q = S5 with coordinates θ =

(θf , θk1, θh1, θh2, θk2)T . As illustrated in Figure 2.3, θf is the stance foot angle, θk1 is the

stance knee angle, θh1 is the stance hip angle which is measured from the stance thigh

to the torso, θh2 is the swing hip angle which is measured from the torso to the swing

thigh, and θk2 is the swing knee angle. Throughout the chapter, a variable without a

subscript denotes the vector consisting of the variable for all joints.
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To compute the mass and length of all the links of the biped model using the measured

physical characteristics of the amputee, we utilize the mass and length distributions

discussed in [56,57]. In particular we use fractions stating that the mass of the torso is

67.8%, mass of the thigh is 10% and mass of the combined shank and foot is 6.1% of the

total weight. The mass of the shank of the impaired leg will be replaced with the total

mass of the prosthetic device. Additionally all the length links besides the torso length

are measured. The length of the torso is computed based on the length distribution law

stating that the center of mass is located at a height equal to two-thirds of the height of

the human. Also, as the length of the prosthetic device is adjusted to equal the sound

leg, both legs will have the same length in our model.

The equations of motion of the biped modeling the continuous dynamics are given

using the Euler-Lagrange formula

D(θ)θ̈ +H(θ, θ̇) = B(θ)u, (2.2)

where

H(θ, θ̇) = C(θ, θ̇)θ̇ +G(θ).

Here D(θ) is the inertial matrix, C(θ, θ̇) is the Coriolis matrix, G(θ) is the gravitational

vector and B(θ) is the control torque distribution map which equals the identity matrix

since the biped is fully controlled. These matrices are computed with respect to physical

characteristics of the amputee.

We further introduce discrete dynamics to model the impact that happens instanta-

neously when the swing foot hits the ground. This causes an instantaneous change in

the velocities of the biped and also an instantaneous switching of the stance and swing

legs. We use the function ∆ to denote the mapping between (θ, θ̇) just before and just

after the impact. Further details of the impact map can be found in [58,59].

2.2.4 Impedance Control Framework

An existing approach to controlling lower-limb prosthetic [4] devices proceeds by break-

ing the gait into four phases, denoted p = 1, ..., 4 (see Figure 2.4). Each phase begins at

time tp0 and ends at tpf .

These phases consist of

1. P1 from heel strike to mid stance denoted by passing a threshold θf < T ,
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Full knee extensionHeel Strike
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Figure 2.4: Separation of gait into four phases

2. P2 from mid stance to heel lift,

3. P3 from heel lift to full knee extension (i.e. θ̇k2 < 0),

4. P4 from full knee extension to heel strike.

The commanded torque of an impedance controller at the knee joint during a phase

p ∈ {1, 2, 3, 4} can be represented by

upk(t) = kp(θk(t)− θpe) + bpθ̇k(t), (2.3)

where uk(t) denotes the torque command and θk(t) and θ̇k(t) denote the angle and

angular velocity of the knee joint, respectively, during either stance or swing phase. The

impedance parameters for each phase p consist of

1. kp denoting the stiffness,

2. bp denoting the damping,

3. θe denoting the constant equilibrium angle.

These parameters are constant within each phase of the gait. We refer to the vector of

all impedance parameters at the knee joint during phase p as

βp = [kp, θpe , b
p]T . (2.4)
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In this chapter, we will consider having impedance control on one knee joint denoting

the prosthetic knee with a total of 12 parameters to be chosen. The control input at

other joints is described when necessary.

Note that the impacts in the hybrid system occur only during the transitions between

the phases. Therefore, within each phase p, the biped system evolves from time tp0

to tpf according to the following continuous dynamics, governed by the Euler-Lagrange

equations 
D(θ)θ̈ +H(θ, θ̇) = u ∀ t ∈ [tp0, t

p
f ]

(
θ(tp0), θ̇(tp0)

)
= R

(
θ(tp−1

f ), θ̇(tp−1
f )

)
,

(2.5)

where we let p − 1 = 4 if p = 1. The initial condition to the ODE for each phase is

given by the function R, which either models the impact or ensures continuity between

phases and is defined as

R(θ(t), θ̇(t)) =


∆(θ(t), θ̇(t)) if at impact

(θ(t), θ̇(t)) otherwise.

For the prosthetic knee joint, we replace the impedance controller as the input to get



[
D(θ)θ̈ +H(θ, θ̇)

]
k

= uk ∀t ∈ [tp0, t
p
f ]

uk = kp(θk − θpe) + bpθ̇k

(
θ(tp0), θ̇(tp0)

)
= R

(
θ(tp−1

f ), θ̇(tp−1
f )

)
,

(2.6)

where the notation [v]k denotes the row of the vector v corresponding to the knee joint.

2.2.5 Learning Impedance Controller Parameters

We learn impedance controller parameters from exemplar joint trajectories and using

the discussed biped model corresponding to the individual. To produce exemplar joint

trajectories specific to an individual, we make use of locomotion outputs that have

shown to be invariant across individuals [33] and across different walking speeds. By
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Figure 2.5: The chosen invariant locomotion outputs.

tracking these outputs on a biped model that corresponds to the individual, we produce

joint trajectories for the individual, which we denote by θA. To track the invariant

trajectories, we make use of an input/output (I/O) linearization controller [59, 60]. We

make use of the following outputs that are invariant across individuals:

• y1 denoting stance shank angle θs1,

• y2 denoting swing shank angle θs2,

• y3 denoting angle of the stance leg θL1,

• y4 denoting angle of the swing leg θL2,

• y5 denoting the angle of the torso from vertical θtor

The variables corresponding to the chosen invariant trajectories are shown in Figure 2.5.

Due to the invariance of the kinematic trajectories with respect to speed, they can be

scaled in time to provide trajectories for different speeds. We use invariant locomotion

trajectories that were obtained from the unimpaired locomotion data using a high speed

camera motion capture system. Details about these experiments can be found in [59].

Given noisy and sampled observations of the outputs yi we first fit splines to the sam-

ples and subsequently obtain higher order derivatives of the outputs (as needed) using

the spline estimates. We can also use an alternative function fitting approach that is

described in [38].

As discussed in section 2.2.4 the dynamic equations for the prosthetic knee joint

can be described by an implicit ODE (2.6) parameterized by impedance parameters
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βp = [kp, θpe , b
p]T during each phase. After dropping the superscript p for notational

simplicity, this ODE can be written as


Fk(β, θ

A, θ̇A, θ̈A) = 0 ∀ t ∈ [t0, tf ]

(θA(t0), θ̇A(t0)) = (θA0 , θ̇
A
0 ),

(2.7)

where Fk =
[
D(θA)θ̈A +H(θA, θ̇A)

]
k
− uk and uk = k(θAk − θe) + b θ̇Ak .

We consider the problem of estimating unknown impedance parameters βi given the

parameterized ODE (2.7) and the produced joint trajectories θA. Two main estimation

approaches have been developed to address this problem. The first class of methods are

maximum likelihood (ML) estimators [61–64]. While these approaches have satisfactory

theoretical properties, they are faced with some computational bottlenecks. These meth-

ods involve iteratively optimizing an objective function with respect to the parameter

and then approximating the solution of an ODE with the current guess of the parameter.

Approximating the solution of an ODE can be computationally expensive [65,66]. More-

over, due to the nonlinear nature of this optimization, the optimization often converges

to a local solution [66].

Alternatively, another class of estimation approaches have been described in [66–68].

These approaches rely on a non-iterative least-squares approach to minimize the equation

error (residual). We take this approach, with Fk denoting the residual which will be

minimized. To minimize this function, we fit the joint trajectories with splines and

subsequently find higher order derivatives of the joints trajectories. We then proceed to

finding the unknown controller parameters by solving the following optimization:

arg min
β

∫ tf

t0

(
Fk(β, θ

A(t), θ̇A(t), θ̈A
)2
dt. (2.8)

Given the expression

Fk =
[
D(θA)θ̈A +H(θA, θ̇A)

]
k
−
[
k(θAk − θe) + bθ̇Ak

]
we can write the first component solely as a function of the known amputee joint tra-

jectories and derivatives, i.e. V (θA, θ̇A, θ̈A) =
[
D(θA)θ̈A + H(θA, θ̇A)

]
k
. Moreover, by

defining U(θA, θ̇A) = [θAk , 1, θ̇
A
k ] and β̃ = [k,−k × θe, b]T (as opposed to β = [k, θe, b]

T ),
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we can then write the minimization (2.8) as

arg min
β̃

∫ tf

t0

(
V − Uβ̃

)2
dt. (2.9)

Note that from (2.9) it is clear that the minimization is a linear least-squares optimiza-

tion, which can be solved efficiently by the following closed-form expression:

( ∫ tf

t0

UTUdt
)
β̃ =

( ∫ tf

t0

UTV dt
)
. (2.10)

Given the expression (2.10) we can use tools from optimization theory to evaluate the

properties of the solution. In particular, if the expression
( ∫ tf

t0
UTUdt

)
is full rank,

the solution will be unique. Otherwise, the solution is not unique and one can use

insights from physiology of locomotion to choose a solution. In practice, we use stan-

dard Gaussian elimination or LU decomposition techniques to find numerically stable

solutions to this equation. Finally note that while we are estimating the parameters β̃

instead of β, the estimated value of θe can be obtained by −β̃(2)/β̃(1). Thus, by first

obtaining estimates of desired joint trajectories θ̂ for an amputee, and then solving the

optimization (2.9), we learn impedance controller parameters for the subject.

To estimate controller parameters for the Vanderbilt leg, we measured the intrinsic

damping of the device during stance and swing to be 0.05 and 0.08 N ·m ·s respectively.

To account for the intrinsic damping of the prosthetic, we constrained our impedance

estimation to have damping values larger than the intrinsic damping of the device. At

the end we subtracted the intrinsic damping from the estimated damping parameters to

arrive at the learned controller parameters.

2.2.6 Performance Measures

We evaluate the learned prosthetic controller for each subject using several performance

measures. The first measure of performance is the tuning time [46]. For the automated

controller parameter learning, the tuning time consists of the time required to run the

learning software on a PC. For the experimental tuning, the tuning time is measured

from the time the subject walks with the first set of controller parameters until the time

when the clinicians decide that the prosthetic is tuned for that subject.

As another measure of performance, we evaluate a measure of symmetry between the

prosthetic leg and the unimpaired leg [69]. To do so, we compute the coefficient of
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determination (R2) between the prosthetic knee and the unimpaired knee trajectories.

The third measure of performance we consider is similarity to unimpaired walking,

which has been previously used in [4, 70]. We quantify this measure by finding the

coefficient of determination (R2) between the resulting prosthetic knee trajectories, and

average unimpaired trajectories.

Finally, we evaluate the number of falls and amount of necessary support. The number

of falls are counted during the entire experimental session for both learned and exper-

imentally tuned parameters. The amount of support is also evaluated as the necessity

of using the overhead harness in walking experiments.

2.3 Results

The two subjects performed the walking experiments outlined in the methods section at

the Center for Bionic Medicine as seen in Figure 2.6. The resulting learned controller pa-

rameters and experimentally tuned controller parameters for these subjects are detailed

in Tables 2.2 and 2.3.

Figure 2.6: This figure shows the flat ground walking experiment performed at the
Center for Bionic Medicine. In this picture, the subject is walking with the learned
prosthetic controller parameters.
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Table 2.2: Learned (top) and experimentally modified (bottom) controller parameters
for subject 1

Phase k[N·m] b[N·m·s] θe [Degree]
P1 4 0.276 0
P2 0.94 0.05 0.4
P3 0.45 0.01 65
P4 0.33 0.02 0

Phase k[N·m] b[N·m·s] θe [Degree]
P1 4 0.276 0
P2 2 0.05 0.4
P3 0.45 0.01 65
P4 0.25 0.01 0

The learned controller parameters were first used in a dynamic biped simulation to

evaluate the resulting behavior of the controller. The resulting knee angle trajectory for

the learned controller parameters, for subject 1 as an example, is shown in Figure 2.7.

The controllers were next implemented on the prosthetic device, and the subjects

performed the clinical experiments. The prosthetic knee angle trajectories correspond-

ing to the learned controllers and experimentally tuned controllers are shown in Fig-

ures 2.8 and 2.9. It should be noted that the stance knee trajectories obtained from

prosthetic walking in the experiments have a smaller flexion angle compared to the av-

erage unimpaired stance trajectory. This is commonly seen when walking with prosthetic

devices [4,69], and is also seen when walking with the experimentally tuned parameters.

Therefore this is not an artifact of our learned impedance parameters.

The prosthetic controllers were evaluated using the discussed measures of performance.

The tuning time for the learned controller parameters was 5 seconds. The tuning times

for the experimentally modified parameters, starting with the learned ones as an initial

guess, were 2.5 minutes and 4 minutes for subjects 1 and 2 respectively. This is as

opposed to a tuning time of 4 hours when starting from a pre-defined set of controller

parameters.

The measure of symmetry evaluated as the average coefficient of determination (R2)

between the prosthetic knee trajectories and the unimpaired knee trajectories was 0.9

and 0.86 for the learned controllers and 0.85 and 0.82 for the experimentally modified

parameters for the two subjects respectively. The unimpaired knee trajectory for subject

1 is shown in Figure 2.10 as an example.
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Table 2.3: Learned (top) and experimentally modified (bottom) controller parameters
for subject 2

Phase k[N·m] b[N·m·s] θe [Degree]
P1 4 0.26 0
P2 1.4 0.05 4
P3 0.42 0.01 65
P4 0.29 0.02 0

Phase k[N·m] b[N·m·s] θe [Degree]
P1 4 0.26 0
P2 1.4 0.05 4
P3 0.3 0.01 65
P4 0.35 0.02 0
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Figure 2.7: The observed unimpaired averaged knee trajectory is seen in blue, with one
standard deviation shown in gray. The knee trajectory resulting from the learned
impedance parameters for subject 1 is shown in red.
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Figure 2.8: Resulting prosthetic knee trajectories with learned (top) and
experimentally tuned (bottom) parameters for subject 1.
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Figure 2.9: Resulting prosthetic knee trajectories with learned (top) and
experimentally tuned (bottom) parameters for subject 2.
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The similarity to unimpaired walking, also measured as the average R2 between pros-

thetic knee trajectories and the average unimpaired knee trajectory, was 0.74 and 0.7

for the learned controllers and 0.85 and 0.73 for the experimentally modified parameters

for both subjects.

Finally, the number of falls were counted to be zero for all experiments with both the

learned and experimentally modified parameters. Also the amount of necessary support

was determined by the subjects’ ability to walk without any use of the overhead harness

system in all experiments with both sets of controller parameters.

2.4 Discussion

In this chapter, we focused on the problem of choosing subject-specific controller param-

eters for lower-limb prosthetic devices. To address this problem, we proposed a method

of learning impedance controller parameters that relied on pre-recorded observations of

human locomotion and the individual’s physical characteristics. Unlike biomechanical

impedance identification approaches which compute the impedance of the joints us-

ing perturbation experiments, we used a model-based framework for learning controller

parameters. In this approach, we did not estimate the true joint impedance; rather,

we estimated impedance controller parameters that were necessary to replicate the ob-

served kinematics of locomotion. Therefore, our approach is different from biomechanical

impedance characterization. We demonstrated the feasibility of our approach in esti-

mating controller parameters for two unimpaired individuals in less than four minutes as

opposed to approximately four hours that is often needed for clinical tuning. We showed

that these learned parameters performed similarly to clinically tuned parameters.

We formulated the problem of estimating impedance controller parameters as a linear

least-squares minimization. This formulation leads to closed-form solution, which can

be computed efficiently using standard convex optimization techniques. We evaluated

identifiability properties of the impedance parameters, and provided conditions under

which a unique estimate of the impedance controller parameter can be obtained. For

cases where a family of solutions can produce similar kinematic trajectories, i.e. cases

where the estimation does not have a unique solution, we can choose a solution that is

bounded by an understanding of the physiology of locomotion [71].

An important advantage of our approach is that it can be readily scaled to learn pa-

rameters for different individuals and for varying locomotion speeds. This is due to our

design choice in using locomotion outputs that are invariant across individuals and loco-
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motion speeds. Moreover, this framework can be extended to learn controller parameters

for other modes of locomotion such as stair ascent given invariant outputs correspond-

ing to those locomotion modes. Preliminary results of the application of this approach

to stair ascent parameter learning can be found in [42]. Therefore the scalability and

generalizability of our approach make it suitable for use in clinical settings.

Our approach relies on three main assumptions. The first assumption is that the five-

link biped model is sufficient to characterize the dynamics of the individual. The second

assumption is that we can learn controller parameters using a single exemplar joint tra-

jectory, as opposed to a cost criterion for locomotion. The third assumption is that using

invariant locomotion outputs we can produce exemplar trajectories corresponding to a

specific individual. Even with these assumptions, the evaluated performance measures

suggest that the learned controller parameters perform similarly to experimentally tuned

controllers. Moreover, the proposed framework can provide controller parameters in a

much more timely manner, at worst in a few minutes, by using the learned parameters

as an initial guess.

Nonetheless, our proposed approach might be improved by making less restrictive

assumptions. In particular by using a different biped model, such as a seven-link biped

that incorporates feet, we should be able to extend our learning framework to finding

controller parameters for the ankle. Additionally, by using a cost function for locomotion

as opposed to reproducing fixed exemplar trajectories, we should be able to measure

transient conditions such as starting and stopping, rather than just the average steady

state conditions considered in this work. This approach, however, would depend on the

suitability of the selected cost function, which is still a topic of research. Lastly, one

can identify alternative individual-invariant features in locomotion, and use the learned

features to produce exemplar trajectories for each individual and potentially improve

the approach. Learning such features can be possible given large amounts of locomotion

data and the application of feature learning algorithms such as deep neural networks.

However, this too is a topic of future research.
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Figure 2.10: These figures plot the angular trajectory of the unimpaired knee
trajectory of subject 1 when walking with the Vanderbilt prosthetic device. The top
plot shows the unimpaired knee trajectory when the subject was walking with the
device programmed with the learned impedance controller parameters. The bottom
plot shows the unimpaired knee trajectory while the subject was walking with an
experimentally tuned prosthetic device.
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CHAPTER 3

APPROXIMATELY OPTIMAL FORMULATION
OF INVERSE OPTIMAL CONTROL

3.1 Background on Inverse Optimal Control

Inverse optimal control is often used as a solution approach to the broad problem of

learning from demonstration, which is often referred to as imitation learning or appren-

ticeship learning. The problem of learning from demonstration is to derive a control

policy (a mapping from states to actions) from examples, or demonstrations, provided

by a teacher. Demonstrations are typically considered to be sequences of state-action

pairs recorded during the teacher’s demonstration.

There are generally two methods of approach within learning from demonstration.

One approach is to learn a map from states to actions using classification or regression.

Argall et al. provide a survey of the work in this area [72]. The second general approach

is to learn a cost function with respect to which observed input and state trajecto-

ries are (approximately) optimal, i.e. inverse optimal control [13–32]. These methods

have primarily focused on finite-dimensional optimization and stochastic optimal control

problems.

In the context of finite parameter optimization, Keshavarz et al. [17] develop an in-

verse optimization method which learns the value function of a discrete-time stochastic

control system given observations. These ideas were extended to learn a cost function

for a deterministic discrete-time system in Puydupin-Jamin et al. [18], and a hybrid

dynamical system in [40]. Similarly, Terekhov et al. [19, 20] and Park et al. [21] de-

velop an inverse optimization method for deterministic finite-dimensional optimization

problems with additive cost functions and linear constraints. Other recent work formu-

lates an optimization problem which simultaneously learns a cost function and optimal

trajectories [73,74].

A variety of methods have been developed in the context of stochastic optimal control

problems and, in particular, Markov decision processes [13,15,23,26–28,30,31]. Ng and

Russell [23] developed a method for stationary Markov decision processes based on lin-
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ear programming. Abbeel and Ng [15] extend that work by finding a cost function with

respect to which the expert’s cost is less than that of predicted trajectories by a margin.

A further extension simultaneously learns the system dynamics along specific trajecto-

ries of interest [13]. Ramachandran et al. [27] take a Bayesian approach and assume

that actions are distributed proportional to the future expected reward. The method

developed in Ziebart et al. [28] works by computing a probability distribution over all

possible paths which matches features along the observed trajectory. Dvjijotham and

Todorov [30] develop a method of inverse optimal control for linearly-solvable stochas-

tic optimal control problems. Their method takes advantage of the fact that, for the

class of system model they consider, the Hamilton-Jacobi-Bellman equation gives an

explicit formula for the cost function once the value function is known. Aghasadeghi

and Bretl [31] develop a method of inverse optimal control that uses path integrals to

create a probability distribution over all possible paths. The problem is then one of

maximizing the likelihood of observations.

Learning from demonstration methods are applied in three different areas. First,

learning from demonstration has been applied as a method of data-driven automation

[12, 13, 15, 16, 23–26, 28, 30, 75, 76]. Tasks of interest include bipedal walking, navigation

of aircraft, operation of agricultural and construction vehicles. Second, learning from

demonstration methods have been applied to cognitive and neural modeling [14, 19–22,

29, 77–80]. Third, learning from demonstration methods have been applied to system

identification of deformable objects [32], i.e. learning elastic stiffness parameters of

objects such as surgical suture, rope, and hair.

3.2 Inverse Optimal Control: Problem Statement

In the rest of this chapter, we consider the following class of optimal control problems:

minimize
x,u

∫ tf

t0

βTφ[t, x(t), u(t)]dt

subject to ẋ(t) = f [t, x(t), u(t)]

x(0) = xstart

x(tf ) = xgoal

(3.1)

where x(t) ∈ X ⊂ Rn is the state, u(t) ∈ U ⊂ Rm is the input, φ : R×X ×U → Rp are

known basis functions, and β ∈ Rp is an unknown parameter vector to be learned. We
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assume, without loss of generality, that ‖β‖ ≤ 1. We assume that the system equations

ẋ(t) = f [t, x(t), u(t)] (3.2)

are well posed, that is, for every initial condition xstart and every admissible control u(t),

the system ẋ(t) = f [x(t), u(t)] has a unique solution x on t ∈ [0, tf ]. This is satisfied, for

example, when f is continuous in t and u and differentiable (C1) in x, fx is continuous

in t and u, and u is piecewise continuous as a function of t [81, 82]. The objective basis

function φ is assumed to be smooth in x and u. This problem also assumes there are no

input and state constraints. These constraints are often important in practice, and will

be the subject of future work.

The problem of inverse optimal control is to infer the unknown parameters with respect

to which a given trajectory, the observation, is a local extremal solution to problem (3.1).

This observed trajectory is denoted by

(x∗, u∗) = {x∗(t), u∗(t) : t ∈ [0, tf ]} . (3.3)

For convenience, we will often drop the asterisk and refer to an optimal trajectory as

(x, t). We also consider observing multiple trajectories, each local minimum of problem

(3.1) for different boundary conditions. We will refer to a set D of M observations as

D =
{(
x∗(i), u∗(i)

)}
for i = 1, . . . ,M (3.4)

where each trajectory has boundary conditions(
x

(i)
start, x

(i)
goal

)
for i = 1, . . . ,M. (3.5)

An important quantity in the methods discussed in this chapter is the accumulated value

of the unweighted basis functions along a trajectory, which we call the feature vector of

a trajectory µ(x, u), and define by

µ(x, u) =

∫ tf

t0

φ[t, x(t), u(t)]dt. (3.6)

In practice, one would generally have sampled observations of the behavior of the system,

but for the analysis here, we assume we have perfect observations of the continuous-time

system trajectories.

In practice, the solution of (3.1) is typically obtained using a numerical optimal con-
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trol solver such as direct multiple shooting or collocation. In this work, we use the

pseudospectral optimal control package GPOPS [83] to numerically solve the forward

problem in the prior methods which require it.

3.3 Three Prior Methods

In this section we formally describe the three prior methods of inverse optimal control

with which we compare the new method developed in Section 3.4. In their original form,

the method of Abbeel and Ng, and the method of Ratliff et al. were developed in the

context of Markov decision processes. The general structure and theoretical guarantees

of the methods apply with slight modification to the deterministic continuous-time class

of problems we consider in this chapter, specified in Equation (3.1).

3.3.1 Method of Mombaur et al.

The method of Mombaur et al. [14] works by searching for the cost function parameter

β which minimizes the sum-squared error between predicted and observed trajectories.

This method has two main components. In the upper-level, a derivative-free optimization

technique is used to search for the cost function parameter β. In the lower-level, a

numerical optimal control method is used to solve the forward optimal control problem

(3.1) for a candidate value of β. We will now discuss the two levels in detail.

The objective of the upper-level derivative-free optimization is given by

minimize
β

∫ tf

t0

‖[xβ(t);uβ(t)]− [x∗(t);u∗(t)]‖2dt (3.7)

where [x∗(t);u∗(t)] is the vector concatenation of the state and input of the observed

trajectory at time t, and [xβ(t);uβ(t)] is the solution to the forward problem (3.1),

given the parameter vector β. Mombaur et al. [14] discuss high performance derivative-

free algorithms to minimize this upper-level objective. For our baseline analysis in this

chapter, however, we use the Matlab fminsearch implementation of the Nelder-Mead

simplex algorithm. Iterations of the Nelder-Mead algorithm constitute the upper-level

of this method. Upon selecting a new candidate value of β, the lower-level proceeds by

solving (3.1) for the candidate value, generating a predicted trajectory (xβ, uβ). Given

this trajectory, the upper-level objective can be evaluated, and the search for a new

candidate β continues. This method is easily extended for the case where multiple
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trajectories are observed by considering the sum of predicted errors with respect to each

observed trajectory in the upper-level objective.

3.3.2 Method of Abbeel and Ng

The method of Abbeel and Ng [15] was originally developed for infinite-horizon Markov

decision processes with discounted reward. The goal of this method is to find a control

policy which yields a feature vector close to that of the observed trajectory. The method

is initialized by selecting a random cost function parameter vector β(0) and solving the

forward problem (3.1) to obtain an initial predicted trajectory (x(0), u(0)) and associated

feature vector µ(0). On the i-th iteration, solve the following quadratic program:

minimize
β(i),b(i)

‖β(i)‖2

subject to (β(i))Tµ∗ ≤ (β(i))Tµ(j) − b(i)

for j = 0, . . . , i− 1

b(i) > 0

(3.8)

where b(i) is the margin on the i-th iteration, and µ∗ and µ(j) are the feature vectors of the

optimal trajectory and j-th trajectory, respectively (recall the definition given in (3.6)).

If b(i) < ε, then terminate. Otherwise, given the result from the quadratic program,

β(i), solve the forward optimal control problem, Equation (3.1), with β = β(i) to obtain

the predicted trajectory (x(i), u(i)) and associated feature vector µ(i). Set i = i + 1 and

repeat.

As shown in [15], this method terminates after a finite number of iterations (the the-

orems stated and proved in [15] carry over with minor modification to the deterministic

continuous-time case, which we omit for brevity). Upon termination, this algorithm

returns a set of policies Π, and there exists at least one policy in Π that yields a feature

vector differing from the expert’s by no more than ε.

3.3.3 Method of Ratliff et al.

The maximum margin planning method of Ratliff et al. [16] is an inverse optimal control

method that learns a cost function for which the expert policy has lower expected cost

than every alternative policy by a margin that scales with the loss of that policy. As in
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the method of Abbeel and Ng, we begin with the following quadratic program:

minimize
β,b

‖β‖2

subject to βTµ∗ ≤ βTµ(x, u)− b

for all (x, u) ∈ S,

where S is some set of trajectories. However, instead of considering a finite collection of

trajectories, consider all possible trajectories (x, u) s.t. ẋ(t) = f(t, x(t), u(t)). Then the

constraints in the quadratic program are satisfied if

βTµ∗ ≤ min
(x,u)

ẋ=f(x,u)

(
βTµ(x, u)− b

)
.

Also, instead of trying to find the maximum fixed margin b, consider a margin which de-

pends on the trajectory, let b = L(x, u), where L(x, u) denotes a loss function. This loss

function typically specifies the closeness of a trajectory (x, u) to the observed trajectory

(x∗, u∗), i.e. the loss function is zero near the observed trajectory and increases gradu-

ally to 1 away from the observed trajectory. Finally, slack variables ζ are introduced to

allow constraint violations. The problem is now given by

minimize
β,ζ

ζ +
λ

2
‖β‖2

subject to βTµ∗ ≤ min
(x,u)

ẋ=f(x,u)

(
βTµ(x, u)− L(x, u)

)
+ ζ,

(3.9)

where λ ≥ 0 is a constant that trades off between the penalizing constraint violations

and a desire for small weight vectors. Since the slack variables are tight, they can be

pulled into the objective function to obtain:

J(β) = λ‖β‖2 + βTµ∗(i) − min
(x,u)

ẋ=f(x,u)

{
βTµ(x, u)− L(x, u)

}
. (3.10)

This convex program can be solved using subgradient descent. As shown in [16], a

subgradient g(β) of J(β) is given by g(β) = µ∗− µ̂+λβ, where µ̂ represents the solution

to arg minµ
(
βTµ+ L(µ)

)
, i.e. the solution to the forward optimal control problem (3.1)

with cost function augmented by the loss function. The unknown parameter β is then

updated iteratively using subgradient descent β(i+1) = β(i) − αig(β(i)).

Ratliff et al. [16] show that for constant step size α, this method achieves linear
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convergence to some neighborhood of the minimum cost. In addition, they show that

for diminishing step size αj = 1/j, the method will converge to a local minimum at a

sub-linear rate.

3.4 Proposed Method Based on Necessary Conditions for

Optimality

The three methods described in the previous section shared common structure. In par-

ticular, each method solves a forward optimal control problem repeatedly in an inner

loop. They do this in order to compare the observed trajectory (or feature vectors)

with predicted trajectories given a candidate cost function. In this section, we derive

another approach inspired by recent work in inverse convex optimization by Keshavarz

et al. [17]. This approach was developed in collaboration with Miles Johnson in [41].

The key idea in our approach is that we assume that the observations are perfect mea-

surements of the system evolution, and that the expert is only approximately optimal,

where we define what it means to be approximately optimal below. Under this new set

of assumptions, we can immediately say how optimal the agent is by looking at how

well the demonstration trajectory satisfies the necessary conditions of optimality. To do

this, we use the necessary conditions to define a set of residual functions. The inverse

optimal control problem is then solved by minimizing these residual functions over the

unknown parameters. In the remainder of this section, we will describe these different

stages in detail.

3.4.1 Inverse Optimal Control Formulation

Consider a trajectory (x, u) of the system given in Equation (3.2). The minimum prin-

ciple gives us necessary conditions for (x, u) to be a local minimum of Eq. (3.1) [84,85].

The Hamiltonian function for the problem we consider is

H (x, u, p) = βTφ (t, x, u) + pTf (t, x, u) . (3.11)
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For a given β, if (x∗, u∗) is optimal, the necessary conditions for optimal control state

that there exists a costate trajectory p∗ : R→ Rn such that

0 = ṗ∗(t)T +∇xH (x∗(t), u∗(t), p∗(t)) (3.12)

0 = ∇uH (x∗(t), u∗(t), p∗(t)) . (3.13)

We apply these necessary conditions to our problem (3.1) to obtain

0 = ṗ(t)T + βT∇xφ [t, x(t), u(t)] + p(t)T∇xf [t, x(t), u(t)]

0 = βT∇uφ [t, x(t), u(t)] + p(t)T∇uf [t, x(t), u(t)] .

If (x(t), u(t)) is optimal, these conditions will be satisfied. If the trajectory is approx-

imately optimal, these conditions are approximately satisfied. We formalize this by

defining residual functions from these necessary conditions. Our method consists in

minimizing the extent to which observed trajectories violate these necessary conditions,

i.e. minimizing the extent to which the residual functions are not equal to zero (where

we define what it means to be close to zero in Section 3.4.2). Let

z(t) =

[
β

p(t)

]
∈ Rk+n v(t) = ṗ(t) ∈ Rn.

The residual function r[z(t), v(t)] is then defined as

r[z(t), v(t)] =

∇xφ
∣∣∣T
(x,u)

∇xf
∣∣∣T
(x,u)

∇uφ
∣∣∣T
(x,u)

∇uf
∣∣∣T
(x,u)

 z(t) +

[
I

0

]
v(t)

= F (t)z(t) +G(t)v(t),

(3.14)

where we have just rearranged the necessary conditions. The notation (·)
∣∣
(x,u)

is short-

hand for evaluating the particular function along the trajectory given in the observation,

i.e. ∇xφ
∣∣∣
(x,u)
≡ ∇xφ [t, x(t), u(t)].

This formulation can also be extended to handle multiple observations. Consider M

trajectories, which may have different boundary conditions, but have the same fixed final

time tf
{(
x(i), u(i)

)}
i = 1, . . . ,M with each (x(i), u(i)) =

{
x(i)(t), u(i)(t) : t ∈ [0, tf ]

}
.

The development is the same and the unknown parameters z(t) and v(t) are simply

extended to include the unknown costate trajectories of the M observations. The par-
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ticular structure of the residual function is such that the amount of computation grows

linearly with the number of observations, just as it does with the three prior methods

of inverse optimal control. We now describe how our method minimizes these residual

functions over the unknown parameters β, p(t), ṗ(t) in order to best satisfy necessary

conditions for optimality.

3.4.2 Residual Optimization

To solve for the unknown parameters z(t) and v(t) that cause the observed trajectories

to best satisfy necessary conditions for optimal control, we solve the following problem:

minimize
z(t),v(t)

∫ tf

t0

‖r[z(t), v(t)]‖2dt

subject to ż(t) =

[
0

I

]
v(t)

z(0) = z0 (unknown),

(3.15)

where

‖r[z(t), v(t)]‖2 = zTF TFz + vTGTGv + zTF TGv, (3.16)

where the argument t has been dropped for brevity. If z(0) were known, this would be

a standard LQR problem (with cross terms):

min
z(t),v(t)

∫ tf

t0

{
zTQz + vTRv + zTSv

}
dt

subject to ż(t) = Az +Bv

z(0) = z0,

(3.17)

where

A(t) = 0 B(t) =

[
0

I

]
Q(t) = F (t)TF (t) R(t) = G(t)TG(t)

S(t) = F (t)TG(t).
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Solving this LQR problem yields the linear control policy and quadratic value function

v(t) = K(t)z(t) V (z0) = zT0 P (0)z0,

where

K(t) = −(G(t)TG(t))−1
(
G(t)TF (t) +B(t)TP (t)

)
,

and where P (t) represents the solution to the LQR Riccati equation. We complete our

solution for z(t) by solving the following problem

minimize
z0

zT0 P (0)z0.

Without normalization, this quadratic program is satisfied by the trivial solution z0 = 0.

Normalization is performed by using prior knowledge about the problem domain. For

example, when the forward optimal control problem has a quadratic cost function, one

can often assume that one of the weights is equal to 1.

3.5 Simulation Experiments

3.5.1 Evaluating Methods under Noise-free Observations

To evaluate the performance of the three recent inverse optimal control methods de-

scribed in Section 3.3 and the new method introduced in Section 3.4, we perform nu-

merical simulations in which we observe optimal trajectories of three different systems

and learn the objective function for each system. For each system, we collect the opti-

mal trajectories, i.e. noise-free observations, by simulating the system acting under the

optimal control policy for particular boundary conditions and fixed terminal time. We

collect simulations for 50 random boundary conditions. These experiments form a base-

line of comparison, whose results can be used to understand the fundamental behavior

of each method.

3.5.2 Robustness under Cost Perturbation

To evaluate the robustness of the four methods, we perform the following perturbation

to the inverse optimal control problem. Up to this point we have considered the true cost

function to be perfectly modeled by the weighted combination of known basis functions,
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as shown in Equation (3.1). In our perturbation simulations, we assume that the given

cost basis functions are only an approximation to the true cost function. In particular,

we set the true cost function to be

J(u) =

∫ tf

t0

βTφ[t, x(t), u(t)] + dTρ[x(t), u(t)]dt, (3.18)

where ρ : X × U → [0, 1]l are perturbation basis functions and d ∈ Rl are perturbation

weights such that ‖d‖ < ε for some ε > 0. In particular, we model a general perturba-

tion with a linear combination of k-th order multivariate Fourier basis functions. The

multivariate basis functions are defined as

ρi[z(t)] =


1 if i = 0

1 + cos (2πai · z) for odd i

1 + sin (2πai · z) for even i

(3.19)

for i = 1, . . . l, where ai = [a1, . . . , an+m], each aj ∈ [0, . . . , l]. Here z is the concatenation

of the state and input vectors at time t, z(t) = [x(t), u(t)]. A particular set of basis

functions is formed by systematically varying the elements in each ai, and assuming

only one nonzero element of ai for each i.

3.5.3 Three Example Systems

The three systems we use are (a) linear quadratic regulation, (b) regulation of a kine-

matic unicycle, (c) calibration of an elastic rod. We now describe the forward optimal

control problem of each of these systems.

Linear Quadratic Regulation

In our first system, we consider a linear system with quadratic cost

minimize
x,u

∫ tf

t0

xTQx+ uTRu (3.20)

subject to ẋ(t) = Ax(t) +Bu(t),

x(0) = xstart

x(tf ) = Free,
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Table 3.1: Results for perfect observations with known basis functions.

System Error Type Mombaur Abbeel Ratliff New

LQR

computation (s) 280 68 117 4

forward problems 129 28 48 0

parameter error 7.03e-2 1.71e-1 6.99e-1 6.35e-8

feature error 2.30e-3 3.07e-3 1.15e-1 2.81e-9

trajectory error 1.36e-5 1.04e-4 2.64e-2 1.04e-16

Unicycle

computation (s) 448 63 280 2

forward problems 133 20 100 0

parameter error 3.27-2 5.12e-1 5.23e-1 2.54e-5

feature error 3.53e-3 1.69e-2 1.42e-2 1.03e-5

trajectory error 1.55e-5 1.12e-3 4.64e-3 8.09e-10

Elastic
Rod

computation (s) 95 9 15 1

forward problems 71 5 10 0

parameter error 3.38e-2 8.92e-1 9.71e-1 3.96e-5

feature error 6.77e-7 6.24e-3 4.48e-3 4.87e-7

trajectory error 1.94e-5 7.95e-3 8.82e-3 6.14e-6

where states are denoted by x(t) ∈ Rn and control inputs are denoted by u(t) ∈ Rm.

The matrices A and B are assumed time-invariant, with elements drawn from a N(0, 1)

Gaussian distribution for each trial. Matrix A is scaled such that |λmax(A)| < 1, and

controllability of the system is verified manually. The initial state of the system x0 for

each trial is drawn from a N(0, 5), and the final time tf = 10 is fixed for all trials.

Moreover, for each trial we select cost matrices Q and R, with diagonal elements gener-

ated according to the uniform distributions of U [0, 1] and U [ε, 1] respectively, to obtain

nonnegative-definite and positive-definite matrices Q and R.
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Quadratic Regulation of the Kinematic Unicycle

As our second test system, we consider quadratic regulation of the kinematic unicycle

minimize
x,u

∫ tf

t0

xTQx+ uTRu (3.21)

subject to ẋ(t) =

cosx3(t)

sinx3(t)

u(t)

 ,
x(0) = xstart

x(tf ) = free,

where states are denoted by x(t) ∈ R3 (with xi(t) representing the i-th element of the

vector x(t)), and control inputs are denoted by u(t) ∈ R. We generate initial conditions

and cost parameters in a similar manner to the linear quadratic regulation problem.

Calibrating an Elastic Rod

Our third test system considers a thin, flexible wire of fixed length that is held at each end

by a robotic gripper, which we call an elastic rod [86]. Assuming that it is inextensible

and of unit length, we describe the shape of this rod by a continuous map q : [0, 1]→ G,

where G = SE(3). As defined in [86], let Lq denote the left translation map Lq : G→ G.

Let e denote the identity element of G, and let g = TeG and g∗ = T ∗eG. Abbreviating

TeLq(ζ) = qζ as usual for matrix Lie groups, we require this map to satisfy

q̇ = q(u1X1 + u2X2 + u3X3 +X4) (3.22)

for some u : [0, 1] → U , where U = R3 and Xi are the usual basis for g. We refer to

q and u together as (q, u) : [0, 1] → G × U or simply as (q, u). Each end of the rod is

held by a robotic gripper. We ignore the structure of these grippers, and simply assume

that they fix arbitrary q(0) and q(1). We further assume, without loss of generality, that

q(0) = I4×4. Finally, we assume that the rod is elastic in the sense of Kirchhoff [87], so

has total elastic energy
1

2

∫ 1

0

(
β1u

2
1 + β2u

2
2 + β3u

2
3

)
dt

for given constants β1, β2, β3 > 0. For fixed endpoints, the rod will be motionless only if

its shape locally minimizes the total elastic energy. In particular, we say that (q, u) is
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in static equilibrium if it is a local optimum of

minimize
q,u

1

2

∫ 1

0

(
β1u

2
1 + β2u

2
2 + β3u

2
3

)
dt

subject to q̇ = q(u1X1 + u2X2 + u3X3 +X4)

q(0) = e, q(1) = b

(3.23)

for some b ∈ B.

As mentioned in Section 3.1, recent work [32] has tackled a similar problem which

used a different model and a solution method analogous to the method of Mombaur et

al.

3.6 Results and Discussion

3.6.1 Perfect Observations with Known Basis Functions

In this set of experiments, each algorithm was given one perfect observation of an optimal

trajectory and learned the unknown cost function parameters β. After learning the cost

function, predicted trajectories are computed. This allows us to compute other statistics

such as the error in total cost, error in feature vectors, and sum squared error between

observed and predicted trajectories.

Table 3.1 shows results averaged over 50 trials with randomly selected boundary condi-

tions in each trial. In the method of Mombaur, the sum-squared error between predicted

and observed trajectories converges near zero as the number of iterations increases. How-

ever, the inferred cost function parameters are not learned perfectly. Similarly, upon ter-

mination of the methods of Abbeel and Ratliff, the error between predicted and observed

feature vectors is small, but the cost function parameters are not learned perfectly.

The new method developed in this work learns the unknown parameters perfectly

(within the accuracy and precision tolerances of ODE and least squares solvers).

3.6.2 Perfect Observations with Perturbed Cost

In this set of experiments, the true cost function consists of a linear combination of

known basis functions plus a bounded deterministic perturbation (see Section 3.5.2). For

each system, one particular set of boundary conditions was selected, and observations
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Figure 3.1: This figure shows how the sum-squared error between observed and
predicted trajectories vary under perturbations of increasing magnitude. Blue, Green,
Red, and Magenta curves correspond to the methods of Mombaur, Abbeel, Ratliff, and
the new technique developed in this chapter, respectively.

of optimal trajectories are gathered for a range of perturbation magnitudes. Figure 3.1

shows the performance of each method over varying magnitude perturbations. These

results generally show:

• All of the methods learn cost functions which are able to approximate the obser-

vation in terms of feature vector and trajectory errors.

• The performance of the iterative methods remains close to the results obtained

with known basis functions for small perturbations, and then degrades at larger

perturbations.

• The performance of our new method (KKT) continues to improve as the perturba-

tion decreases, reflecting exact recovery of the cost function (to specified numerical

method tolerances).

Note that in the case of the elastic rod, all of the methods, including our new approach,

stop improving as the perturbation magnitude gets small. This trend occurs because

the numerical method for solving the forward optimal control problem terminates be-

fore reaching the observed local minima under our standard convergence and tolerance

parameters, which are fixed for all experiments.

3.7 Conclusion

In this chapter, we presented a new method of inverse optimal control, and compared

the method to existing approaches using a set of canonical example systems. We com-

40



pared our new approach with the following methods: inverse reinforcement learning by

Abbeel and Ng [15], maximum margin planning by Ratliff et al. [88], and inverse optimal

control by Mombaur et al. [14]. These existing solution approaches search for values of

the parameters that minimize the difference between predicted and observed trajectories

(or state-action features). These approaches require solving a forward optimal control

problem at each iteration. The approach presented in this work does not require the

solution of any forward optimal control problem, and instead minimizes residual func-

tions derived from first order necessary conditions for optimality. Our results show that

the proposed method is better able to recover unknown parameters and is less computa-

tionally expensive than the existing methods. While our new method behaved well for

the canonical systems used in this chapter, we acknowledge that there are a variety of

situations in which it is not clear which method would be best.

There are a number of important questions we would like to pursue further. These

include (a) investigating the existence and uniqueness of solutions of inverse optimal

control, and (b) investigating how our method performs under imperfect observations,

in particular sampled and noisy observations. In the next chapter, we show that by

focusing on a class of systems called differentially flat systems, we can address these

questions.
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CHAPTER 4

INVERSE OPTIMAL CONTROL FOR
DIFFERENTIALLY FLAT SYSTEMS

4.1 Introduction

In this chapter, we introduce an approach to inverse optimal control for the class of dif-

ferentially flat systems [35, 36]. For such systems, the deterministic non-linear optimal

control problem can be equivalently written as an unconstrained calculus of variations

problem. We show that this equivalence has five important consequences for the corre-

sponding inverse optimal control problem. First, we demonstrate that the solution of the

inverse optimal control problem becomes “easy”, in fact reducing to finite-dimensional

linear least-squares minimization. Second, we precisely derive conditions for unique es-

timation of the cost parameters given a set of demonstrations and basis functions for

the cost. Third, we show that the problem of IOC for differentially flat systems does

not explicitly depend on the dynamic equations, thus leading to a robust estimation in

the presence of model perturbations. In this sense our algorithm is similar to model-free

IOC algorithms [31, 89]. Fourth, we demonstrate how standard filtering techniques can

be applied to the problem of IOC, to obtain better solutions in the presence of sampled

data and measurement noise. Fifth, a recursive version of the IOC solution can be for-

mulated for differentially flat systems, making this approach suitable for online robot

learning applications.

The remainder of this chapter proceeds as follows. In section 4.2 we reiterate the

problem of inverse optimal control for deterministic nonlinear systems. We then consider

the class of differentially flat systems and introduce the problem of inverse optimal

control for these systems in section 4.3. For this class of systems, and using the IOC

formulation developed in the previous chapter, we introduce a solution approach in

section 4.4. We demonstrate how this method works on an example in section 4.5 and

we conclude the chapter in section 4.6.
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4.2 Inverse Optimal Control Problem Statement

Consider the following deterministic non-linear continuous-time optimal control problem:

min
x,u

∫ tf

t0

β∗Tφ(x, u)dt (4.1)

subject to ẋ = f(x, u),

x(t0) = a,

x(tf ) = b, (4.2)

where x ∈ Rn represents the state of the system, u ∈ Rm represents the inputs, f(x, u) :

Rn+m → Rn represents the system dynamics and t0, tf ∈ R+ represent the initial and

final time. The known basis functions φ(x, u) : Rn×m → Rp together with the cost

parameters β∗ ∈ Rp represent a cost function to be minimized. Note that for simplicity

of presentation, additional state-input constraints on the optimization (4.1) have not

been included.

4.3 Inverse Optimal Control for Differentially Flat Systems

We now introduce the problem of inverse optimal control for the class of differentially

flat systems. We show how by focusing on the class of differentially flat systems, we can

represent the optimal control problem (4.1) as an equivalent unconstrained calculus of

variation problem. Subsequently for this class of systems, we introduce an alternative

formulation of the IOC problem that is based on minimizing the extent to which first-

order necessary conditions of optimality are violated.

A system is differentially flat [35, 36] if all the states x and inputs u can be obtained

from the outputs without integration. More precisely, a system is differentially flat if for

outputs y = h(x, u, ..., u(j)) ∈ Rm there exists functions γx and γu such that

x = γx(y, ẏ, ..., y
(k)) (4.3)

u = γu(y, ẏ, ..., y
(k)) (4.4)

for some finite k-th order time derivative of the outputs denoted by y(k). Note that for

a system to be differentially flat, the number of outputs q should equal the number of

inputs m, i.e. the number of equations by which the ordinary differential equation (ODE)

ẋ = f(x, u) is under-determined. In this thesis, we will use the terms differentially
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flat and flat interchangeably. Some examples of flat systems include fully actuated

Lagrangian systems such as a fully actuated five-link biped, the car with N trailers, and

a kinematic chain [90].

For such systems, the optimal control problem (4.1) is equivalent to the following

calculus of variation problem on the flat outputs as discussed in [91,92]

min
y,...,y(k)

∫ tf

t0

β∗Tφ(γx(y, . . . , y
(k)), γu(y, . . . , y

(k)))dt (4.5)

subject to γx(y(t0), . . . , y(k)(t0)) = a

γx(y(tf ), . . . , y
(k)(tf )) = b.

Now the problem of inverse optimal control for flat systems is to find the unknown pa-

rameters β∗ given the observed flat outputs y and known basis function φ(γx(Y ), γu(Y )).

Here Y = [1, y, ẏ, ..., y(k)]T denotes the outputs and their higher order derivatives (we

have also added the constant 1 to specify that the functions γx and γu can have constant

terms independent of the outputs). Note that since the optimization (4.5) is no longer

constrained by the dynamics, the corresponding IOC problem does not explicitly depend

on the dynamic equations and only requires observations of the flat outputs.

4.4 Proposed Solution for Inverse Optimal Control of

Differentially Flat Systems

Next we describe the formulation of the IOC problem based on the least squares method

introduced in the previous chapter and in our previous work [40,41], for the case where

the system is differentially flat. We proceed by writing the Euler-Lagrange equations cor-

responding to the first order necessary conditions of optimality of (4.5) for an unknown

parameter β as follows:

βT
k∑
`=0

(−1)`
d`

dt`
∂

∂y
(`)
1

φ
(
γx(Y ), γu(Y )

)
= 0,

...

βT
k∑
`=0

(−1)`
d`

dt`
∂

∂y
(`)
m

φ
(
γx(Y ), γu(Y )

)
= 0,
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where y(0) = y and d0

dt0
y = y. We can write the necessary conditions of optimality

succinctly as

βT
k∑
`=0

(−1)`
d`

dt`
Φy(`)

(
γx(Y ), γu(Y )

)
= 0, (4.6)

where Φz(γx(Y ), γu(Y )) denotes the Jacobian of φ(γx(Y ), γu(Y )) with respect to the

vector z, and y(j) = [y
(j)
1 , y

(j)
2 , ..., y

(j)
m ]T denotes the j-th derivative of the vector of outputs

y. We further define the residual function r(β, Y (t)) as

r(β, Y (t)) = βT
k∑
`=0

(−1)`
d`

dt`
Φy(`)

(
γx(Y ), γu(Y )

)
.

To solve for the unknown parameters β, we formulate the IOC problem as minimizing

the extent to which the first order necessary conditions of optimality are violated, i.e.

by minimizing the L2 norm of the residual as follows

β̂ = arg min
β

∫ tf

t0

∣∣∣∣∣∣r(β, Y (t))
∣∣∣∣∣∣2dt (4.7)

subject to β1 = 1.

This IOC formulation can equivalently be seen as a parameter estimation problem for

the ODE equation (4.6) given the observations Y . Different methods of ODE parameter

estimation have been developed using maximum likelihood estimation [65] and least

squares optimization [66]. The optimization (4.7) corresponds to a least squares method

for ODE parameter estimation [66]. Also, note that since this formulation relies on

the first-order necessary conditions of optimality, our approach can also be applied to

observed locally optimal trajectories, similar to [93].

Note that the constraint on the parameter vector β (here on the first element of

the vector β) is required to ensure that we find a non-trivial solution, since otherwise

the all zero solution will minimize the objective. Also note that the optimization (4.5)

has the same solution if we scale the cost by a positive number. Therefore, IOC in

principle can only find β∗ up to a scaling. The inclusion of the constraint thus ensures

the possibility of having a unique solution. The choice of the constraint β1 = 1 requires

domain knowledge. However, the only domain knowledge necessary beforehand is that

β1 6= 0, and the exact value of β1 need not be known, again because cost functions scaled

by a positive number lead to the same solution.
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We should also note that additional constraints on the flat outputs can be added to

optimization (4.5). Constraints that impose additional necessary conditions of optimal-

ity as a function of the unknown cost parameters can be incorporated in the residual

minimization. Otherwise if they are not functions of the cost parameters, they will not

change the IOC optimization.

4.4.1 IOC Solution Reducing to Linear Least Squares

In this section, we derive the least squares solution to optimization (4.7). First we define

AT (Y (t)) = −
[∑k

`=0(−1)` d
`

dt`
Φy(`)

(
γx(Y ), γu(Y )

)]
2:p

, and

bT (Y (t)) =
[∑k

`=0(−1)` d
`

dt`
Φy(`)

(
γx(Y ), γu(Y )

)]
1
. Here the notation

[
X
]

1
denotes the

first row of the matrix X and
[
X
]

2:p
denotes the second through p-th rows of the matrix

X. Furthermore, we write βT = [1, β̃T ]. The optimization (4.7) can equivalently be

written as follows when we replace the constraint β1 = 1 in the objective

β̂ = arg min
β̃

∫ tf

t0

||b(Y (t))− A(Y (t))β̃||2dt. (4.8)

The minimization can be written as

min
β̃

∫ tf

t0

(bT b− 2β̃TAT b+ β̃TATAβ̃)dt.

Differentiating the convex objective with respect to the constant β̃ and equating to zero

yields the equation

(∫ tf

t0

AT (Y (t))A(Y (t)) dt
)
β̂ =

(∫ tf

t0

AT (Y (t))b(Y (t)) dt
)
. (4.9)

Equation (4.9), which is the continuous-time analog to the discrete-time linear least

squares solution, thus solves the IOC problem in closed form. Note that standard

Gaussian elimination or LU decomposition techniques can be used to find numerically

stable solutions to the equation (4.9). Also note that if ATA is not bounded, we can get

a bounded signal by normalization [94]. Thus from now on without loss of generality we

will always assume ATA is bounded.
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4.4.2 Structural Identifiability of Cost Functions and the Null
Lagrangian

The formulation of IOC for differentially flat systems enables us to analyze the iden-

tifiability of the cost parameters. To define identifiability for the IOC problem, let

Y (t|β, a, b) denote the solution to the calculus of variation problem (4.5) given cost pa-

rameters β and boundary conditions equal to a and b. We define the cost parameters to

be identifiable if

Y (t|β′, a, b) ≡ Y (t|β′′, a, b)⇒ β′ = β′′ (4.10)

for some boundary conditions a and b. This is analogous to parameter identification

definitions for dynamic systems and differential equations [95, 96]. The issue of cost

parameter identifiability (4.10) can be decomposed into two parts. In the first part,

we are concerned with whether the true cost parameters can be identified, given the

structure of the cost function (structure of the model) and irrespective of what signal,

i.e. optimal trajectory, we observe. This is often referred to as structural identifiability

in the literature [95]. Once we establish the structural identifiability, we can evaluate

the identifiability of the parameters given observations of optimal trajectories. We will

discuss this part in the next section.

To illustrate the issue of structure identifiability for IOC cost functions, we will discuss

a simple example. Consider the following optimization problem, with unknown cost

parameters β1, β2 and β3:

min
y,ẏ,ÿ

∫ t1

t0

φ(y, ẏ, ÿ) = min
y,ẏ,ÿ

∫ t1

t0

(β1ẏ
2 − β2yÿ + β3y

3)dt.

We write the Euler-Lagrange equations corresponding to this optimization as

φy −
d

dt
φẏ +

d2

dt2
φÿ = β2ÿ + 3β3y

2 − 2β1ÿ + β2ÿ = 2(β2 − β1)ÿ + 3β3y
2 = 0. (4.11)

It is clear from equation (4.11) that the cost parameters in this model are not identifi-

able. In particular, for any set of parameters satisfying β2−β1 = c, where c is a constant,

we get the same observations Y , thus violating the identifiability definition (4.10). Al-

ternatively, the optimization

min
y,ẏ,ÿ

∫ t1

t0

ψ(y, ẏ, ÿ) = min
y,ẏ,ÿ

∫ t1

t0

(β̃1ẏ
2 + β̃2y

3)dt
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has the same Euler-Lagrange equation

ψy −
d

dt
ψẏ +

d2

dt2
ψÿ = −2β̃1ÿ + 3β̃3y

2, (4.12)

if we define β̃3 = β3 and β̃1 = β1 − β2. This model on the other hand is identifiable.

Thus, from the perspective of modeling behavior using a cost function, these two cost

functions can model the same behavior, while the model using ψ as the cost function is

identifiable.

To understand identifiability of cost parameters, we define null Lagrangians [97]. We

say a cost function or a basis function is a null Lagrangian if its corresponding Euler-

Lagrange equation is identically zero. We will denote the Euler-Lagrange operator for

a basis function φi by EL(φi). Now consider the optimal control model (4.5), where

the cost is defined as βTφ, i.e. a weighted linear combination of p basis functions

φi, i = 1, ..., p.

Then we claim that a necessary condition for identifiability of the cost parameters is

that no linear combination of the basis functions is a null Lagrangian. To verify this

claim, assume that without loss of generality, there exists a linear combination of the

first k < p basis functions such that it is null Lagrangian, i.e.

EL(
k∑
i=1

aiφi) ≡ 0⇒ EL(φ1) =
k∑
j=2

−aj
a1

EL(φj),

where not all ai are equal to zero, and without loss of generality we assume that a1 6= 0.

The above equality can be replaced in the equations for the necessary condition of

optimality for the calculus of variation problem to arrive at

p∑
i=1

βiEL(φi) =
k∑
j=2

(βj − β1
aj
a1

)EL(φj) +

p∑
l=k+1

βlEL(φl) = 0. (4.13)

Thus for two sets of parameters β′ = [0, c2, ..., ck, ck+1, ..., cp] and

β′′ = [1, c2+ a2
a1
, ..., ck+ ak

a1
, ck+1, ..., cp], we get the same observations Y since the necessary

conditions of optimality are identical. Thus the model would not identifiable.

In our first example, the linear combination of the first two basis functions shown

as ẏ2 − yÿ was a null Lagrangian, since their corresponding Euler-Lagrange equation is

identically zero.

Different works [97] have derived analytical conditions for verifying null Lagrangians.

However, finding such conditions in the general case is still an open question. Nonetheless
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it is often easy to find null Lagrangians for a particular example of a cost function. We

take this approach in the next chapter, and eliminate the basis functions that lead to

having a null Lagrangian in a locomotion modeling application.

We would like to emphasize that it is the formulation of IOC for differentially flat sys-

tems that allows us to clearly evaluate the structural identifiability of the cost function.

In particular, if we consider the same problem without any consideration for the flatness

of the system, we have

min
x1,x2,u

∫ tf

t0

(β1x
2
2 − β2x1u+ β3x

3
1)dt

subject to

[
ẋ1

ẋ2

]
= f(x, u) =

[
x2

u

]
,

where letting y = x1 leads to the same differentially flat example. Writing the necessary

conditions of optimality for this problem we get

ṗ1(t)− β2u+ 3β2
3x

2
1 = 0

ṗ2(t)− 2β1x2 + p1(t) = 0

− β2x1 + p2(t) = 0.

We see from the necessary conditions that it is not clear whether the problem is

structurally identifiable. This confusion in particular is due to the introduction of the

unknown infinite-dimensional co-states, p1(t) and p2(t), since identifiability of ordinary

differential equations with infinite-dimensional unknown functions is still a topic of active

research.

4.4.3 Identifiability Given Observed Optimal Trajectories

After addressing the structural identifiability problem, we evaluate the identifiability of

the cost parameters given observations of optimal trajectories. To do so, we note that

if the matrix
∫ tf
t0
ATAdt in (4.9) is full rank, a unique estimate β̂ is obtained. Also note

that the true cost parameter β∗ satisfies the necessary conditions of optimality (4.6),

and therefore guarantees the existence of a solution to the optimization (4.8). Therefore

when the matrix
∫ tf
t0
ATAdt is full rank we can conclude that the unique estimate equals

the true cost parameter, i.e. β̂ = β∗ and that the cost parameters are identifiable. In

practice, one can check the condition number of the matrix.
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4.4.4 Solution in the Presence of Noise and Sampled Data

Next, we will discuss two methods for computing an estimate of the cost parameters

when the observed outputs are sampled and noisy. Both methods can lead to consistent

estimation of the cost parameter, and the choice of the method depends on the applica-

tion of interest. The first method will be based on spline-fitting the observed outputs,

and the second method will make use of output filtering.

Solution via Spline-Fitting

Consider observing sampled noisy outputs. We model these observations as z(k) ∈ Rp

where k = 1, ..., N as follows:

z(k) = y(tk) + εk where t0 ≤ t1 ≤ ... ≤ tN ≤ tf (4.14)

and εk ∼ N(0,Σp),Σp > 0.

The problem of finding an estimate of the cost parameter β in (4.6) can be considered as

a parameter estimation problem for ODEs. An approach to parameter estimation using

sampled noisy observations [66] proceeds in two steps:

1. Find a consistent nonparametric estimate of y(t), which we denote by ỹ(t) and its

derivatives ỹ(n)(t) using observations z(k).

2. Use the continuous-time estimates of the outputs to obtain an estimate of the

unknown parameters.

The problem of finding consistent nonparametric estimates has been largely studied

and it is shown that such estimates can be constructed using splines and polynomial re-

gression approaches [98], among others. Moreover, consistent estimates of the derivatives

of y(t) can also be obtained by differentiating ỹ(t) as described in [99].

Using the described two-step approach, it is shown [66] that we can find consistent

estimates of the ODE parameters, which correspond to cost parameters in our work.

Solution via Output Filtering

In solving the IOC problem via optimization (4.8) we make use of higher order deriva-

tives (HOD) of the observed outputs y(t). Since we often only observe y(t) and not
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its derivatives, we have to rely on numerical differentiation methods to estimate these

HODs. This approach was used to do IOC via spline fitting.

In this section we develop an alternative method of IOC based on filtering, which does

not require computing HODs. Note that the matrix A(Y (t)) and vector b(Y (t)) each

have entries that are functions of [y, ẏ, ..., y(r)] up to some finite derivative of order r.

We proceed by filtering the entries of A(Y (t)) and b(Y (t)) using an r-th order stable

filter

1

Λ(s)
=

1

sr + λr−1sr−1 + · · ·+ λ0

. (4.15)

We apply this filter to both sides of the necessary conditions of optimality (4.6) as

follows:

1

Λ(s)
L{b(Y (t))} =

bL(s)

Λ(s)
YL(s)

1

Λ(s)
L{A(Y (t))}β̃ =

AL(s)

Λ(s)
YL(s)β̃

where L represents the Laplace operator, and AL(s) and bL(s) denote matrices of same

size as A(Y (t)) and b(Y (t)) respectively. The entries of AL(s) and bL(s) are polyno-

mial functions of s, and satisfy equations AL(s)YL(s) = L{A(Y (t))} and bL(s)YL(s) =

L{b(Y (t))}. Therefore, using this approach, we can treat every entry of AL(s)
Λ(s)

and bL(s)
Λ(s)

as a filter that is being applied to the observed outputs, and we eliminate the need for

numerical computation of derivatives. Moreover, we can use the well-established the-

ory of signal processing to design filters that can handle different kinds of measurement

noise. By defining the filter outputs

b̃(t) = L−1{bL(s)

Λ(s)
YL(s)}, Ã(t) = L−1{AL(s)

Λ(s)
YL(s)},

we can now write the following IOC optimization, which can be solved as in (4.8):

β̂ = arg min
β̃

∫ tf

t0

||b̃(t)− Ã(t)β̃||2dt. (4.16)

To apply this method to sampled data z(k) which are generated according to (4.14),

with the assumption that ti−ti−1 = ∆t, we make use of the bilinear transformation [100]

s = 2
∆t

z−1
z+1

to convert the continuous-time filter to a discrete-time filter.
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4.4.5 Solution with Multiple Demonstrations

The proposed approach can naturally be extended to learning cost parameters given

multiple demonstrations. Consider having N demonstrations of the outputs denoted by

1Y , ...,NY , each satisfying the calculus of variation problem (4.5) with possibly different

initial conditions, i.e. for n = 1, ..., N,

min
nY

∫ tf

t0

β∗Tφ(nY )dt (4.17)

subject to γx(nY (t0)) = an,

γx(nY (tf )) = bn.

Then these observations nY will satisfy first order necessary conditions analogous to

equation (4.6). We can write all the equations succinctly as

b(1Y )− A(1Y )β̃ = 0,

...

b(NY )− A(NY )β̃ = 0

for b(Y ) and A(Y ) defined as before. We further define b̄N(Y (t)) = [b(1Y )T , ..., b(NY )T ]T

and ĀN(Y (t)) = [A(1Y )T , ..., A(NY )T ]T . Then, analogous to the case with N = 1, the

IOC optimization becomes

β̂ = arg min
β̃

∫ tf

t0

||b̄(Y (t))− Ā(Y (t))β̃||2dt, (4.18)

and the unique estimate is obtained from

β̂ =
(∫ tf

t0

ĀT Ā dt
)−1(∫ tf

t0

ĀT b̄ dt
)
,

given that the matrix
∫ tf
t0
ĀT Ā dt is full rank. Clearly, the discussed approach to output

filtering can also be used in learning from multiple demonstrations.

4.4.6 Recursive Solution

Real-time learning is an important topic in robotics, since robots often encounter new

situations and need to be equipped with the ability to self-improve [101]. In this section,
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we develop a recursive method of IOC for flat systems. This method will allow us to

update the estimate of the cost parameters upon receiving new observations without

resolving the complete IOC problem.

As we described, to solve IOC given data Y (s) from time t0 to t (i.e. t0 ≤ s ≤ t) we

solve the following optimization

β̂(t) = arg min
β̃

∫ t

t0

||b(Y (s))− A(Y (s))β̃||2ds.

To develop a recursive version of the IOC, we propose minimizing the following objective

with respect to β̃

J(β̃) =

∫ t

t0

||b(Y (s))− A(Y (s))β̃||2ds

+
1

2
(β̃ − β0)TQ0(β̃ − β0),

where we have added an extra cost to penalize deviation from some initial guess β0 using

a positive definite matrix Q0 > 0. Note that given multiple demonstrations, we can solve

the recursive IOC for the current demonstration, and use the estimated cost parameter

as an initial guess when given the subsequent demonstration.

The objective J(β̃) is convex in β̃ and we set the gradient to zero to find the following

equation that solves for β̂ up to time t

β̂(t) =
(∫ t

t0

ATAds+Q0

)−1(∫ t

t0

AT bds+Q0β0

)
.

We define the matrix P (t) as

P (t) :=
(∫ t

t0

ATAds+Q0

)−1

.

Note that P (t) is well defined because ATA ≥ 0 and Q0 > 0. To compute the cost

parameter estimate β̂(t) recursively, we obtain an expression for Ṗ as

PP−1 = I ⇒ 0 =
d

dt
(PP−1) = ṖP−1 + PATA

⇒ Ṗ = −PATAP,
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and subsequently obtain a differential equation for β̂ as

˙̂
β = Ṗ

(∫ t

t0

AT bds+Q0β0

)
+ PAT b

= −PATAP
(∫ t

t0

AT bds+Q0β0

)
+ PAT b

= −PATAβ̂ + PAT b.

Thus the recursive IOC solution can be obtained from

˙̂
β = −PATAβ̂ + PAT b (4.19)

Ṗ = −PATAP.

Using theorem 4.3.2 in [94] we can show that the recursive solution β̂(t) converges to

a constant β̄, and if the matrix A(t)T is persistently exciting, the solution converges to

the true cost parameter β∗. We say A(t)T is persistently exciting if for some α0, T0 > 0

we have ∫ t+T0

t

AT (s)A(s)ds ≥ α0T0I,∀t.

4.5 Unicycle Example

In this section, we show how to apply the proposed IOC by considering a unicycle

example. We consider the following optimal control problem:

arg min
x,u,v

∫ tf

t0

β1

2
(x1(t)− x∗1)2 (4.20)

+
β2

2
(x2(t)− x∗2)2 +

β3

2
v2(t)dt,

subject to ẋ(t) =

v(t) cos(x3(t))

v(t) sin(x3(t))

u(t)


x1(0) = a1, x2(0) = a2

x1(1) = b1, x2(1) = b2.
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Here x(t) ∈ R3 denotes the state of the unicycle at time t, and u(t), v(t) ∈ R denote the

control inputs at time t. The unknown cost parameters consist of {β1, β2, β3, x
∗
1, x
∗
2}. A

unicycle is differentially flat [36] with flat outputs y1(t) = x1(t) and y2(t) = x2(t). Thus,

the optimal control problem (4.20) can equivalently be written as

arg min
y1,y2

∫ tf

t0

φU(y1(t), ẏ1(t), y2(t), ẏ2(t))dt = (4.21)

arg min
y1,y2

∫ tf

t0

[β1

2
(y1(t)− x∗1)2 +

β2

2
(y2(t)− x∗2)2

+
β3

2
(ẏ2

1(t) + ẏ2
2(t))

]
dt

subject to y1(0) = a1, y2(0) = a2

y1(1) = b1, y2(1) = b2.

To find the cost parameters, we write the first order necessary conditions of optimality

for (4.21) as

β1y1(t)− β1x
∗
1 − β3ÿ1(t) = 0,

β2y2(t)− β2x
∗
2 − β3ÿ2(t) = 0. (4.22)

We redefine the unknown parameters as β̃1 = β1, β̃2 = β2, β̃4 = −β1x
∗
1 and β̃5 = −β2x

∗
2

and we fix β3 = 1. Now the necessary conditions of optimality are linear in the unknowns

β̃i (although the original objective was nonlinear in the parameters) and we can solve

(∫ 1

0


y1(t) 0

0 y2(t)

1 0

0 1


[
y1(t) 0 1 0

0 y2(t) 0 1

]
dt
)
β̂ =

(∫ 1

0


y1(t) 0

0 y2(t)

1 0

0 1


[
ÿ1(t)

ÿ2(t)

]
dt
)
. (4.23)

Now we consider the case in which we only observe sampled noisy observations z(k)

and demonstrate the use of output filtering. The spline-fitting approach can be applied

in a similar and straight-forward way as well. We proceed by applying the stable third-
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order filter

1

Λ(s)
=

1

(s+ 1)(s+ 2)(s+ 3)

to the Laplace transform of equations (4.22) to get

β̃1
1

Λ(s)
(Y1(s)− y1(t0)) + β̃4

1

sΛ(s)
=

s2

Λ(s)
Y1(s)− s

Λ(s)
y1(t0)− 1

Λ(s)
ẏ1(t0),

β̃2
1

Λ(s)
(Y2(s)− y2(t0)) + β̃5

1

sΛ(s)
=

s2

Λ(s)
Y2(s)− s

Λ(s)
y2(t0)− 1

Λ(s)
ẏ2(t0).

The four filters 1
sΛ(s)

, 1
Λ(s)

, s
Λ(s)

and s2

Λ(s)
are converted to discrete-time filters using the

discussed bilinear transformation. The IOC problem is then solved using the filtered

outputs as described in Section 4.4.4. A Monte Carlo simulation was performed using

300 different boundary conditions and cost parameters that were uniformly randomly

generated. Each experiment was repeated with different noise levels ranging from a

signal-to-noise ratio (SNR) of 0 to 30. Fig. 4.1 shows that as we expect, the estimated

cost parameter approaches its true value.

4.6 Conclusion and Application to Locomotion Modeling

In this chapter we introduced a new formulation of the problem of inverse optimal control

for the case where the system is differentially flat. We showed that IOC for this class

of systems has a number of desirable properties, including an efficient finite-dimensional

linear least squares solution, robustness with respect to model perturbations and noise

in sampled observations.

An important motivation for developing the proposed inverse optimal control algo-

rithm was to learn prosthetic controllers for other modes of locomotion, such as stair

ascent. By applying the proposed IOC method to the outputs of a five-link differen-

tially flat biped, we can produce exemplar locomotion trajectories for stairs and ramps

of different inclinations. These exemplar trajectories can then immediately be used in

the prosthetic learning framework introduced in chapter 2 to find prosthetic controller

parameters for different modes of locomotion. The proposed method of IOC based on
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Figure 4.1: The results of estimating the cost parameters for an optimal control
problem of a unicycle model. The observed trajectories were sampled, and corrupted
by noise. These observations were then used in the IOC model to estimate cost
parameters, and the percent error in estimating these parameters is shown vs. the
SNR of the observed trajectory.
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differential flatness is well-suited for this application. Due to the efficiency and scalabil-

ity of the algorithm, we can learn cost functions composed of a large number of features.

The learned cost function is also expected to work well for novel circumstances, due to

the theoretical guarantees on estimation of unique cost parameters. Furthermore, the

model-free nature of the algorithm is desirable since we often have data corresponding

to multiple subjects, where the physical characteristics of the subjects, such as the mass

of their body segments, are not exactly known. Using the proposed method, we do not

need to model these unknown and complex physical dynamics of the subjects.

In the next chapter, we will describe how, by using sparse observations of stair ascent,

we can learn an IOC model. Subsequently, we demonstrate the power of the model

in predicting locomotion outputs for a novel stair height and verify the predictions by

comparing to motion captured data.
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CHAPTER 5

APPLICATION OF INVERSE OPTIMAL
CONTROL TO PROSTHETIC CONTROLLER

LEARNING DURING STAIR ASCENT

5.1 Introduction

To extend our method of prosthetic controller parameter learning to controllers for

stair ascent, we need exemplar locomotion trajectories corresponding to the stair height

that is observed at test time. To do so, we propose a model of human locomotion for

stair ascent using the inverse optimal control method described in chapter 4. Using this

model we produce exemplar joint trajectories corresponding to a desired stair height and

subsequently learn controller parameters for that stair height. This proposed framework

is demonstrated in Figure 5.1. This framework is used to learn prosthetic controller

parameters for a subject, and experimental results with the Vanderbilt prosthetic leg

are presented in this chapter.

We additionally show that the learned IOC model of locomotion can lead to a height-

invariant controller for a prosthetic knee. Unlike the impedance control framework,

which requires a unique choice of impedance controller parameters for each stair height,

the proposed knee controller can generalize across different stair heights without chang-

ing any of the control parameters. We show the performance of this control strategy in

a dynamic biped simulation and discuss its applicability to prosthetic control.

5.2 Inverse Optimal Control Model of Stair Ascent

To model locomotion using inverse optimal control, we have to make design choices

regarding the dynamic model to be used and the basis functions used in to construct the

cost function. We make use of a five-link fully actuated biped model shown in Fig. 5.2.

Fully actuated mechanical systems are known to be differentially flat [102], thus we

can use the IOC for differentially flat systems. While this is a simple model, we will

demonstrate that through the use of the proposed IOC algorithm, we can learn a model
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Figure 5.1: Prosthetic controller learning for stair ascent at a desired stair height.
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for generating human locomotion trajectories.

The ability to model different behavior using inverse optimal control depends on hav-

ing an appropriate set of basis functions for the cost. While learning basis functions

would be desirable, learning appropriate basis functions still remains an open question.

Furthermore, learning invariant basis functions requires a large number of observations,

which is not available in our case since we are learning a model only using two locomotion

examples.

Therefore in this work we draw inspiration from results in the locomotion literature

to design basis functions. One important result is the existence of synergies between

different body segments during locomotion. In particular, the work of [103] shows the

existence of the law of kinetic covariance between the hip and knee torques. Moreover,

the studies [33,104–106] discuss an intersegmental coordination law that exists in differ-

ent modes of locomotion. This law, which is termed the planar covariation of elevation

angles, describes coordinated kinematic synergies between different segments of a biped,

i.e. the thigh, shank and the foot, and is shown to be invariant across different subjects.

These results suggest the possibility of designing a model to capture the coordination

between the shank and the thigh elevation angles. Motivated by this result, we choose

to work in the coordinate of elevation angles as the flat outputs, and the basis functions

we design will be functions of the elevations angles as well. These angles are shown

in Figure 5.2, where the subscripts T, S and tr denote thigh, shank and torso. More

importantly, we design bases that are functions of both the thigh and the shank, thus

modeling the relationship between these segments.

Another line of work [37] discusses the proximo-distal gradient. This principle suggests

that proximal joints, i.e. joints that are closer to the point of attachment to the body

such as the hip joint, are controlled in a feedforward manner, while distal joints, i.e joints

that are more distant from the attachment point such as the knee and ankle, are more

sensitive to local information such as perturbations from the environment. According to

works such as [107], the modulation of a feedforward controller at the hip, for example

modulation of central pattern generators, leads to producing locomotion for different

modes and speeds. Inspired by these works, we make further design choices on the basis

functions. In particular, we model the cost for stair ascent as having a component that is

independent of the stair height, and a component that is modulated by the stair height.

We assume that the cost component corresponding to the thigh is directly modulated by

the stair height; however, the cost component corresponding to the shank is independent

of the stair height, and the shank angle is implicitly modulated through the thigh.

We learn a cost function φL composed of the summation of the following basis functions
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Figure 5.2: Elevation angles of the 5-link biped.

for both stance and swing phases separately. (We are omitting the stance and swing

subscripts i = 1, 2 for notational simplicity.)

• φ1(αS, αT ) : representing the component of the cost function capturing the rela-

tionship between the shank (αS) and thigh (αT ) elevation angles.

• φ2(αT , h) : representing the component modulated by the stair height h.

• φ3(αtr) : representing the cost for the torso.

Next we describe the different features that the functions φ1, φ2 and φ3 are composed of

weighted by cost parameters βi.

Features Modeling Shank and Thigh Relationship

The cost component φ1 equals the summation of the following features:

• β1(αS − β2)2 : denotes the cost of regulation of the shank angle to a set point.

• β3α̇
2
S : denotes cost on angular velocity of the shank.

• β4α̇
2
T : denotes cost on angular velocity of the thigh.

• β5αSαT + β6αSα
2
T + β7α

2
SαT : denotes monomial basis functions modeling the

relationship between the shank and the thigh.
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• β8 sin(αS) + β9 cos(αS) + β10 sin(αT ) + β11 cos(αT ) + (β12 sin(αS) + β13 sin(αT ))2 +

(β14 cos(αS)+β15 cos(αT ))2 : this feature corresponds to attractors for foot position,

and can be derived by expanding cost on foot position regulation.

Features Modeling the Modulation of the Thigh

The thigh angle has an additional cost component φ2(αT , h) which is a function of the

stair height defined as

• β16(αT − β17(h))2 : denotes the cost of regulation of the thigh angle to a set point.

Features Modeling the Torso

We define the following features for the torso:

• (αtr − β18)2 : cost of regulation of torso to a set point.

• β19α̇
2
tr : denotes cost on angular velocity of the torso.

• β20 sin(αtr) + β21 cos(αtr) : denotes sinusoidal basis functions.

Now, given the discussed locomotion cost φL = φ1 + φ2 + φ3, we consider the calculus

of variation problem

min
αS ,αT ,αtr

∫ tf

t0

(φ1(αS, αT ) + φ2(αT , h) + φ3(αtr))dt. (5.1)

The parameter β15(h) for swing is then varied to generate stair ascent trajectories for

different inclinations. This parameter is independent of h during the stance phase.

We apply the proposed method of IOC via cubic splines to solve for the unknown β

cost parameters. In particular, we show how to solve two IOC problems for minimum

and maximum stair heights, where the two problems share all cost parameters besides

the height dependent cost parameter. We proceed by writing the first order necessary

conditions of optimality for optimization (5.1).
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∂φL
∂αS

− d

dt

∂φL
α̇S

= 0⇒
[
2β1(αS − β2) + β5αT + β6α

2
T + 2β7αSαT + β8 cos(αS)

− β9 sin(αS) + 2β12 cos(αS)(β12 sin(αS) + β13 sin(αT ))

− 2β14 sin(αS)(β14 cos(αS) + β15 cos(αT ))

− 2β3α̈S
]

= 0

∂φL
∂αT

− d

dt

∂φL
α̇T

= 0⇒
[
2β15(αT − β16(h)) + β5αS + 2β6αSαT + β7α

2
S + β10 cos(αT )

− β11 sin(αT ) + 2β13 cos(αT )(β12 sin(αS) + β13 sin(αT ))

− 2β15 sin(αT )(β14 cos(αS) + β15 cos(αT ))

− 2β4α̈T
]

= 0.

The necessary conditions of optimality for the torso can be written in a similar fashion

as well, independent of the shank and thigh angle. The above equations can be further

expanded, collecting common terms together and redefining cost parameters to β̃i to

arrive at the following equations:

∂φL
∂αS

− d

dt

∂φL
α̇S

= 0⇒
[
β̃1 + β̃2αS + β̃4αT + β̃5α

2
T + 2β̃6αSαT + β̃7 cos(αS)

+ β̃8 sin(αS) + β̃9 cos(αS) sin(αT ) + β̃10 cos(αS) sin(αS)

+ β̃11 sin(αS) cos(αT )
]

= β̃16α̈S

∂φL
∂αT

− d

dt

∂φL
α̇T

= 0⇒
[
β̃3αT + β̃4αS + 2β̃5αSαT + β̃6α

2
S + β̃9 cos(αT ) sin(αS)+

+ β̃11 sin(αT ) cos(αS) + β̃12 sin(αT ) cos(αT )

+ β̃13 sin(αT ) + β̃14 cos(αT ) + β̃15(h)
]

= β̃17α̈T .

Given these necessary conditions, we can now define the following vectors for maximum

(denote by a superscript H for High) and minimum (denoted by a superscript L for Low)

stair heights during swing:
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AT =



1 1 0 0

αHS αLS(t) 0 0

0 0 αHT αLT
αHT αLT αHS αLS

(αHT )2 (αLT )2 2αHS α
H
T 2αLSα

L
T

2αHS α
H
T 2αLSα

L
T (αHS )2 (αLS)2

cos(αHS ) cos(αLS) 0 0

sin(αHS ) sin(αLS) 0 0

cos(αHS ) sin(αHT ) cos(αLS) sin(αLT ) cos(αHT ) sin(αHS ) cos(αLT ) sin(αLS)

cos(αHS ) sin(αHS ) cos(αLS) sin(αLS) 0 0

sin(αHS ) cos(αHT ) sin(αLS) cos(αLT ) sin(αHT ) cos(αHS ) sin(αLT ) cos(αLS)

0 0 sin(αHT ) cos(αHT ) sin(αLT ) cos(αLT )

0 0 sin(αHT ) sin(αLT )

0 0 cos(αHT ) cos(αLT )

0 0 1 0

0 0 0 1



,

β̃
T

=
[
β̃1, β̃2, β̃3, β̃4, β̃5, β̃6, β̃7, β̃8, β̃9, β̃10, β̃11, β̃12, β̃13, β̃14, β̃15(hH), β̃15(hL)

]
,

and the following:

b =
[
α̈HS α̈LS α̈HT α̈LT

]T
.

Here we have fixed β̃16 = β̃17 = 1. The unknown parameters can now be solved by the

following equation:

arg min
β̃

∫ tf

t0

||b(t)− A(t)β̃||2dt. (5.2)

Similar equations can be written for the stance phase, with the exception that we will

only have one cost parameter β̃15.
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5.2.1 Results of Predicting Stair Ascent Trajectories Using Proposed
and Existing IOC Approaches

We learn two IOC models for stair ascent locomotion using our proposed approach based

on differential flatness and the method of Mombaur et al. [14]. The observed locomo-

tion trajectories are motion-captured data collected in [108] and correspond to average

joint trajectories of ten unimpaired subjects, climbing stairs at minimum, medium and

maximum heights. We used output trajectories corresponding to the minimum and

maximum stair heights as observations. The two IOC approaches are then applied to

estimate the cost parameters given these two observations. To evaluate the performance

of our estimated cost functions, we evaluate how well we can predict the observed trajec-

tories in terms of R2 and RMSE as seen in Figures 5.3 and 5.4. Moreover, we used the

learned models to predict a novel stair height (medium), and demonstrated the quality

of fit to motion capture data (R2 = 0.97 and RMSE = 1.95 degrees for the proposed

approach and R2 = 0.88 and RMSE = 3.25 degrees for the existing approach ) as seen

in Figures 5.5 and 5.6. To obtain locomotion trajectories corresponding to the new stair

height we varied the cost parameter β15(h), which corresponds to the stair height, and

evaluated the stair height that the generated trajectory accommodates. We can do this

by looking at the height difference between the two feet at the end of the trajectory. We

solved a numerical optimization in MATLAB to find the cost parameter β15(h) corre-

sponding to the desired height. In future work, we can perform a regression with cost

parameter β15(h) as the input and the resulting stair height as the output, and avoid

having to solve this optimization repeatedly.

With this experiment, we would like to highlight some additional differences between

the two IOC solutions. Note that the two IOC solutions were obtained using funda-

mentally different formulations of the estimation problem. The existing solution to

IOC poses the problem as one of minimizing the trajectory error, i.e. minimizing the

difference between the observed trajectories and the ones predicted by the model. In

contrast, our proposed IOC formulation is based on minimizing the extent to which first

order necessary conditions of optimality are violated, i.e. finding cost parameters that

would make the norm of the residual as close as possible to zero. Due to this difference,

the two approaches will often lead to different estimates of cost parameters when using

real-world observations.

In our experiment with stair ascent locomotion data, we verified this difference be-

tween the approaches. First, we observed that the estimates of the cost parameters using

the two approaches were significantly different. This can be due to the difference in for-
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mulations, or due to the non-convex nature of the existing IOC approach. In particular,

while the proposed IOC solution is always unique due to this closed-form expression,

the existing IOC solution is based on a non-convex numerical optimization and can vary

given different choices of initial cost parameters. To further illustrate the difference, we

solved the non-convex optimization using the estimated cost parameters given by the

proposed approach as the initial cost parameters. The final solution again was different

than the closed-form solution given the proposed approach. This observation further

verifies the fact that the two formulations lead to different models.

The question of which formulation is better suited for a task is a difficult one to

answer. In modeling stair ascent locomotion, we found that the formulation based on

minimizing violations of first-order necessary conditions of optimality performs better.

This can be seen from the smaller error metrics obtained by our approach, in terms of

both RMSE and R2. Moreover, we found that the cost parameters estimated using

the existing trajectory error minimization approach led to ODEs that were unstable, as

opposed to stable ODEs that were estimated using our proposed approach.

5.3 Trajectory Generation for Prosthetic Controller Learning

The learned model of stair ascent locomotion can be used in conjunction with the pros-

thetic controller learning framework discussed in chapter 2. We performed a prosthetic

experiment with one male subject, with physical descriptions shown in Table 5.1. The

experiments were held at the Rehabilitation Institute of Chicago using the Vanderbilt

prosthetic device that was earlier discussed in chapter 2.

The staircase used in this experiment can be seen in Figure 5.7. The height of each

stair was measured to be 19 centimeters (cm). We used this desired stair height in our

learned locomotion model to produce desired stair ascent trajectories. The predicted

joint trajectories, and in particular the knee trajectory that is of interest, can be seen

in Figure 5.8.

Using these trajectories and the physical characteristics of the subject, we learned the

impedance controller parameters using our proposed framework. Furthermore, similar

to the walking experiments, we asked clinicians to experimentally tune the impedance

controller parameters, given the learned parameters as an initial guess. The resulting

learned and tuned impedance controller parameters are shown in Table 5.1.
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Table 5.1: Learned (top) and experimentally modified (bottom) controller parameters
for subject 1

Phase k[N·m] b[N·m·s] θe [Degree]
P1 4 0.276 0
P2 0.94 0.05 0.4
P3 0.45 0.01 65
P4 0.33 0.02 0

Phase k[N·m] b[N·m·s] θe [Degree]
P1 4 0.276 0
P2 2 0.05 0.4
P3 0.45 0.01 65
P4 0.25 0.01 0

5.4 Deriving a Height-Invariant Controller

We use the learned model of locomotion to learn a prosthetic knee controller that can

generalize to different stair heights. The main intuition behind this approach is that

since the locomotion model captures synergies between the thigh and the shank, we can

find a controller for the shank (i.e. knee) that is a function of the shank angle and the

thigh angle. Therefore, we can think of the thigh angle as passing information about

the stair height to the shank (i.e. knee), and thus leading to a knee controller that is

not a function of the stair height.

We demonstrate the feasibility of this controller in a dynamic biped simulation. Here

the biped always starts at the same initial position. The biped controller is derived from

the learned IOC model by solving the ordinary differential equations obtained from the

necessary conditions of optimality. Once we have these ODEs, there are multiple ways

of obtaining a controller. First, note that the theory of differential flatness provides a

convenient method of finding a controller. In particular, by solving the differential equa-

tions we obtain the flat outputs, which can then be mapped to appropriate control inputs

given that the system is differentially flat. Alternatively, we can use an input/output

linearization controller to implement the desired trajectories. Proportional-derivative-

integral (PID) controllers can also be used to track the desired trajectory generated

by the differential equations. We use the first method and obtain controllers using the

theory of differential flatness.

Once we obtain a controller using the discussed approach, we modulate the free
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height parameter β15(h) during the swing phase to generate locomotion on different

stair heights. We make use of the impact functions as described in [109] to model colli-

sions with the ground. The resulting simulations over multiple stair heights can be seen

in Figure 5.9.

Due to its properties, this controller is a suitable one for transfemoral prostheses, in

particular because the amputee will modulate his thigh movement according to the stair

height to be climbed. The prosthetic knee controller will then “react” to the modulation

of the thigh, without any programmed knowledge of the stair height. Furthermore, this

is a feasible strategy to be implemented on the Vanderbilt prosthetic leg. This device

is equipped with an inertial measurement unit (IMU) on the shank, which is capable

of providing an estimate for the shank angle. The shank angle estimate together with

the knee angle measurement can be used to estimate the thigh angle. Note that this

is possible because these angles form a triangle. Therefore, it is feasible to have an

estimate of both the thigh angle and the knee (shank) angle, which is all the information

the controller needs.

5.5 Conclusion

We further demonstrated that our approach can learn a model of stair ascent using

sparse data, and generate locomotion trajectories for novel stair heights. Thus, this

model enables the automated tuning of lower-limb prosthetic controllers for different

locomotion modes. The scalability and robustness of this approach, along with its

prediction power even with simple dynamic models, opens the door for many exciting

robotic applications.

69



0 20 40 60 80 100!20

0

20

40

60
Thigh Angle (°) Max Height , R2=0.99, RMSE=2.2°

Phase Time (%)

0 20 40 60 80 100!60

!40

!20

0 Shank Angle (°) Max Height, R2= 0.97, RMSE= 3.2°

Phase Time (%)

0 20 40 60 80 100!20

0

20

40

60
Thigh Angle (°) Min Height, R2= 0.99, RMSE= 0.91°

Phase Time (%)

0 20 40 60 80 100!60

!40

!20

0 Shank Angle (°) Min Height, R2= 0.93, RMSE= 2.4°

Phase Time (%)

Figure 5.3: Proposed Solution - Prediction of stair ascent trajectories for a maximum
and minimum step heights, which were used for IOC learning. Real (solid line) and
predicted (dashed line) stair ascent trajectories. Swing is shown in blue and stance in
red. Quality of predictions is noted by R2 and RMSE on each plot. Data for max and
min stair heights were used in learning, and medium height was a novel prediction by
IOC.
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Figure 5.4: Existing Solution - Prediction of stair ascent trajectories for a maximum
and minimum step heights, which were used for IOC learning. Real (solid line) and
predicted (dashed line) stair ascent trajectories. Swing is shown in blue and stance in
red. Quality of predictions is noted by R2 and RMSE on each plot. Data for max and
min stair heights were used in learning, and medium height was a novel prediction by
IOC.
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Figure 5.5: Proposed Solution - Prediction of novel stair ascent trajectories for a
medium step height. Real (solid line) and predicted (dashed line) stair ascent
trajectories. Swing is shown in blue and stance in red. Quality of predictions is noted
by R2 and RMSE on each plot.
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trajectories. Swing is shown in blue and stance in red. Quality of predictions is noted
by R2 and RMSE on each plot.
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Figure 5.7: Photograph of one subject going up the stair case at the Center for Bionic
Medicine. The length of the stairs were measured to be 19 cm and the proposed
method of controller learning using inverse optimal control was used to control the
prosthetic device seen in this picture.
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Figure 5.8: The knee trajectories corresponding to subject 1 climbing a stair of height
19 cm. The top plot shows the predicted trajectory using inverse optimal control and
the bottom plot shows the resulting prosthetic knee trajectory using the learned
controller parameters.
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Figure 5.9: Dynamic simulation experiments with the learned height-invariant
locomotion controller.
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CHAPTER 6

DISCUSSION AND FUTURE WORK

6.1 Discussion of Prosthetic Controller Learning

In this thesis, we developed model-based controller learning approaches to automate the

process of prosthetic controller tuning. We showed that these methods were capable

of significantly reducing the tuning time, while learning prosthetic controllers with the

same level of performance as the clinically-tuned controllers. To design these controller

learning methods, we made different assumptions:

• We assumed that the five-link biped is a good model of the dynamic of the subject.

• We fixed the structure prosthetic controller to be an impedance controller.

• We assumed that we could find controller parameters by learning from exemplar

trajectories corresponding to unimpaired individuals.

While these assumptions simplified the problem and produced clinically valid results

in experiments, all of these assumptions can be modified to further improve prosthetic

controller learning. In particular, we can consider more complex models, such as a seven-

link biped or 3D bipedal models to better capture the dynamics of human walking.

Moreover, as suggested in the thesis, we can design novel control algorithms using

model-based learning from human data. By learning invariant controllers across loco-

motion modes, e.g., different stair heights or different speeds, we can significantly reduce

the number of parameters that need to be tuned for the prosthetic device. In design-

ing new prosthetic controllers we can also utilize information such as the hip angle.

While current impedance controllers do not use this information, the next generation of

prosthetic controllers can be improved by modeling interactions with the hip joint.

Finally, instead of using exemplar trajectories from unimpaired individuals, observa-

tions of prosthetic locomotion can be used as exemplar trajectories. As we showed, there

are certain features of the prosthetic locomotion, such as the stance maximum angle,
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that are different than unimpaired locomotion even using a clinically tuned controller.

By using prosthetic locomotion as observation, we can learn controller parameters that

are better suited for prosthetic walking. Furthermore, by analyzing the invariant na-

ture of prosthetic walking, we can obtain insights into why prosthetic walking does not

exactly replicate unimpaired walking and potentially improve the control strategies.

6.2 Discussion of Inverse Optimal Control

In the next part of this thesis, we developed techniques for inverse optimal control. We

demonstrated that by utilizing a new formulation of the problem and also properties

of differentially flat systems, we can obtain computationally efficient solutions to the

problem of IOC. Further, we can provide theoretical guarantees on the quality of the

learned solution, thus making this approach very suitable for modeling locomotion and

learning prosthetic controllers.

An important direction of future research is to automate the design of features for

the cost functions. We demonstrated the importance of choosing the right features

in modeling locomotion. In modeling locomotion, we used expert knowledge about

locomotion from the literature to hand-design these features. Therefore, the ability to

learn features is important for having a general purpose modeling tool.

Potentially promising approaches for learning features are artificial neural networks

and deep learning approaches. These non-parametric methods can learn arbitrary high-

level features, although they require large amounts of data. It would thus be extremely

useful to study the incorporation of these non-parametric techniques into IOC methods

and enable automatic feature learning. A connection to learning basis functions (fea-

tures) using graphical models and neural networks can be made through the theory of

optimal control for stochastic systems using path integrals. The works of [110,111] dis-

cuss the connection between the optimal control problem and graphical model inference.

Moreover, in our previous work [31] we have shown that for a class of stochastic dynamic

systems, the problem of inverse optimal control using path integrals can be posed as:

max
β

eβ
Tφ(x∗,u∗)∑

x,u e
βTφ(x,u)

.

This form of a maximum entropy probability distribution is one that can be imple-

mented using graphical models and neural networks. In particular, deep artificial neural

networks can model this distribution and learn useful function representations of the
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function φ(x, u), given enough data. This connection shows a promising direction for

automatically learning features that can then be used for control of dynamic systems.
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