
AN EXPERIMENTAL STUDY OF MONOLITHIC SCHEDULER
ARCHITECTURE IN CLOUD COMPUTING SYSTEMS

BY

GOURAV KHANEJA

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Adviser:

Professor Roy H. Campbell

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158301962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Scheduling in large scale computing clusters is critical to job performance and

resource utilization. As the cluster size grows to thousands of machines and

scheduling needs become complex and varied, scheduling in cloud-scale clus-

ters presents unique challenges. To encourage the development of innovative

schedulers, there is a need for an experimental framework to analyze schedul-

ing performance over large clusters, using relatively modest resources. In this

thesis, we present an experimental scheduler testbed to study job scheduling

in emulated cloud-scale clusters. We show that the performance of the sched-

uler in an emulated cluster models closely the same in a real cluster of the

same size. We use the testbed to evaluate the monolithic scheduler architec-

ture, a popular scheduling architecture, in a 6000 node emulated cluster over

realistic workload. We conclude that scheduling algorithms should embrace

randomness in order to beat resource contention. We infer that scheduling in

the monolithic architecture is a network I/O intensive process. We calculate

the optimal value of design parameters for the monolithic architecture for

Google workload.

Hadoop YARN is a popular open-source cluster management framework

which can be seen as an implementation of the monolithic scheduler archi-

tecture. We evaluate the three default scheduling policies in Hadoop YARN:

Capacity, Fair and Fifo, over realistic workload. Based on our experiments,

we observe that Fifo scheduling results in unbalanced load across cluster ma-

chines and is not suitable for enterprise clusters. We study the trade-offs

exploited by Capacity and Fair scheduler: while the Fair scheduler offers

less scheduling delay by avoiding head-of-the-line blocking problem, it may

drop applications in case the load increases. On the other hand, the Capac-

ity scheduler does not drop any application but errs on the side of higher

scheduling delay.

ii

ACKNOWLEDGMENTS

I would like to thank my adviser, Professor Roy H. Campbell for his invalu-

able guidance which has made this study possible. I would like to thank him

for providing me the freedom to shape the direction of research projects and

giving me the opportunity to be a part of Systems Research Group (SRG).

It had been a wonderful learning experience and have taught me a great deal

about academic research.

I would like to thank Faraz Faghri and Read Sprabery for their key in-

puts in the design of experimental testbed. I am also thankful to Shadi

Abdollahian, Mayank Pundir, John Bellessa and all the members of Systems

Research Group for the vibrant research environment. I would like to thank

Professor Cristina Abad and Professor Brighten Godfrey for insightful and

thoughtful discussions. I would like to thank Sreevatsan Raman from Cask

Data Inc for giving me the opportunity to work on Hadoop YARN.

My masters study has been financially supported by University of Illinois

at Urbana-Champaign, Systems Research Group and Intel Corporation, for

which I am truly thankful. SRG has provided us with more than enough

computing resources for carrying out vital experiments which make up the

core of this study.

Finally, I would like to thank my parents and my brothers for their love,

support and encouragement.

iii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER 1 INTRODUCTION . 1
1.1 Technical Contributions . 4
1.2 Thesis Outline . 5

CHAPTER 2 CLUSTER SCHEDULER ARCHITECTURES 6
2.1 Background . 6
2.2 Overview of Scheduler Architectures 6
2.3 Monolithic Scheduler Architecture 8

CHAPTER 3 SCHEDULER TESTBED: DESIGN AND IMPLE-
MENTATION . 11
3.1 Workload Generator and Google Traces 11
3.2 Scheduler . 16
3.3 Cluster Emulator . 17

CHAPTER 4 EVALUATION OF MONOLITHIC SCHEDULER
ARCHITECTURE . 20
4.1 Monolithic Scheduler: Design and Implementation 21
4.2 Heartbeat Interval . 23
4.3 Path Limit . 26
4.4 Scheduling Constraints . 26
4.5 Scheduling Algorithm . 29
4.6 Components of Scheduling Delay 30
4.7 Verification of Cluster Emulation 34

CHAPTER 5 EVALUATION OF HADOOP YARN SCHEDULERS . 39
5.1 Overview of Hadoop YARN Architecture 39
5.2 Experimental Set-up . 42
5.3 Experimental Results . 43

iv

CHAPTER 6 RELATED WORK . 62
6.1 Cluster Schedulers . 62
6.2 Analysis of Scheduling Workload 66

CHAPTER 7 CONCLUSION . 68
7.1 Future Work . 69

REFERENCES . 71

v

LIST OF TABLES

3.1 Scale of scheduling workload in Google traces. 13
3.2 Attributes of jobs in Google traces. 13
3.3 Attributes of tasks in Google traces. 14

4.1 Variation of failure rate with heartbeat interval. 23
4.2 Failure rate for different scheduling algorithms. 30

vi

LIST OF FIGURES

1.1 Cumulative distribution of number of tasks in jobs in Google

traces. 2
1.2 Cumulative distribution of task durations in Google traces. 3

2.1 Overview of scheduler architectures. Popular implementation

of each architecture is mentioned in parenthesis. 7
2.2 Design of Monolithic Scheduler Architecture. 10

3.1 Architecture of Scheduler Testbed. Orange/ dashed box repre-

sents process, while solid/ Blue box represents machine. 12
3.2 Cumulative distribution of number of scheduling attempts of

tasks in Google traces. 15
3.3 Memory usage and cpu load of Cluster Emulator to emulate

6000 nodes during a four hour experiment. The machine con-

sists of 32 logical cores and 90 GB of memory. The Emulator

collects cluster resource utilization data every second and stores

it in memory, which results in constantly increasing memory

usage. 19

4.1 Scheduler cpu load for different heartbeat intervals. 24
4.2 Cumulative distribution of job-wise scheduling delay for differ-

ent heartbeat intervals. 25
4.3 Cumulative distribution of job-wise scheduling delay for differ-

ent path limits. No limit means that there is no maximum

bound on the number of requests that can be served concur-

rently. 27
4.4 Cluster cpu utilization for different path limit values. No limit

means that there is no maximum bound on the number of re-

quests that can be served concurrently. 28
4.5 Effect of scheduling constraints on scheduler cpu load. 29
4.6 Cluster cpu utilization for different scheduling algorithms. 31
4.7 Relationship between job and task delay distribution for Google

workload for our implementation of monolithic scheduler. 32
4.8 Distribution of network and scheduler delay that make up the

total task delay. 33

vii

4.9 Job delay distribution for emulated and real clusters of small

and large size. 35
4.10 Task delay distribution for emulated and real clusters of small

and large size. 36
4.11 Variation of scheduler cpu load with time for real and emulated

clusters of small and large size. 37
4.12 Variation of number of failed requests (cumulative) with time

for emulated and real clusters of small and large size. 38

5.1 Hadoop YARN Architecture. 40
5.2 Cumulative distribution of AM delay for Capacity, Fair and

Fifo Scheduler. This is a job-wise delay distribution. 44
5.3 Cumulative distribution of total Scheduling delay for Capacity,

Fair and Fifo Scheduler. This is a job-wise delay distribution. . . . 45
5.4 Cumulative distribution of Allocation delay for Capacity, Fair

and Fifo Scheduler. This is a task-wise delay distribution. 46
5.5 Cumulative distribution of Task-Start delay for Capacity, Fair

and Fifo Scheduler. This is a task-wise delay distribution. 47
5.6 Variation of standard deviation of cpu usage across nodes with

time, for YARN schedulers. 48
5.7 Variation of total cpu utilization of cluster with time, for YARN

schedulers. 49
5.8 Variation of number of running applications with time, for

YARN schedulers. 50
5.9 Variation of number of healthy nodes in the cluster with time,

for YARN schedulers. 51
5.10 Variation of cumulative number of failed applications with time,

for YARN schedulers. 52
5.11 Variation of scheduling delay with trace speed for Capacity scheduler. 55
5.12 Variation of scheduling delay with trace speed for Fifo scheduler. . 56
5.13 Effect of trace speed on scheduling delay for Fair scheduler. 57
5.14 Effect of trace speed on application failures for Fair scheduler. . . 58
5.15 Effect of task duration on cluster cpu utilization for Fair scheduler. 59
5.16 Effect of task duration on running application count for Fair

scheduler. 60
5.17 Effect of task duration on node failures for Fifo scheduler. 61

viii

CHAPTER 1

INTRODUCTION

Building and maintaining large clusters of commodity machines is an ex-

pensive and power consuming task, which is why it is important to utilize

them well. To increase the utilization, such clusters are shared between a

wide variety of computing applications, including but not limited to batch

data analytics frameworks like MapReduce [1], graph processing frameworks

like Pregel [2], real-time streaming frameworks like Storm [3], web requests

frameworks and a wide variety of data-stores like Spanner [4], Dremel [5],

Cassandra [6] and HBase [7]. In May 2011, Google released a 29 days long

cluster trace from one of their sizable multi-tenant cluster, consisting of

12,583 machines [8]. Charles Reiss et al. [9] analyzed the trace and con-

cluded that the most notable workload characteristic is the heterogeneity of

jobs in terms of number of tasks in the jobs (Figure 1.1), run-time duration

of constituting tasks (Figure 1.2), cpu & memory requirements, hardware &

kernel constraints and inter-arrival period between jobs. Figure 1.1 shows

the cumulative distribution of the number of tasks in jobs. While 75% of

the jobs have only one task, a small number of jobs contains the majority

of the tasks, giving rise to a long tail. Figure 1.2 shows the distribution of

the running duration of all tasks. The duration of the longest task is almost

four order of magnitude larger than that of the shortest task. Apart from

heterogeneity in workload, cluster machine configurations are also dynamic

and heterogeneous in nature.

Such a heterogeneity in workload (combined with heterogeneity in clus-

ter machines) significantly reduces the effectiveness of slot and core based

scheduling. Besides, majority of the jobs contain a small of number of short

duration tasks which require quick scheduling decisions. Figure 1.2 shows

that more than 50% of tasks completes within 16 minutes. On one hand,

there are interactive query based jobs which are latency sensitive, while on

the other hand, there are complex jobs with thousands of tasks with specific

1

Figure 1.1: Cumulative distribution of number of tasks in jobs in Google traces.

2

Figure 1.2: Cumulative distribution of task durations in Google traces.

3

scheduling needs. Apart from fast scheduling decisions, schedulers need to

enforce global policies, respect job priorities and ensure fairness.

To tackle the unique scheduling problem in cloud computing, research com-

munity has proposed a variety of radically different scheduler architectures

and provided their implementations. A brief survey of popular scheduling

architectures is presented in Chapter 6. Some popular scheduler implemen-

tations from different architectures include Mesos [10], Yet Another Resource

Negotiator (YARN) [11], Omega (Google) [12], Sparrow [13] and Apollo (Mi-

crosoft) [14]. To evaluate existing architectures with different design param-

eters and encourage the development of innovative scheduling architectures,

there is a need to compare scheduling design and algorithms in a way that is

not tied to a specific implementation. In this thesis, we are trying to fill that

gap and present an open source experimental testbed for scheduler evalua-

tion under realistic workload based on Google traces. We used the testbed

to evaluate monolithic scheduler architecture [15], a popular scheduler archi-

tecture. We also evaluated scheduling policies in Hadoop YARN, a popular

implementation of monolithic scheduler architecture.

1.1 Technical Contributions

We briefly describe the contributions of this study as follows.

• We build an experimental testbed for evaluating scheduler architectures

under varying realistic workloads (Chapter 3). The testbed replays

traces from Google clusters to generate workload for experiments. It

consists of a software based Cluster Emulator to emulate large scale

clusters using relatively modest resources. We verify that the perfor-

mance of scheduler in an emulated cluster is a strong indicative of the

same in a real cluster of the same size. We also provide an abstract

implementation of scheduling components, which can be used to im-

plement different scheduler architectures.

• Using the testbed, we thoroughly study the performance of the mono-

lithic scheduler architecture [15] (Chapter 4) on a 6000 node emulated

cluster with workload generated by replaying Google traces. We study

4

the effect of heartbeat interval and scheduling constraints on schedul-

ing delay and cluster resources utilization. We analyze the performance

impact of different scheduling algorithms. We also study the impact

of different concurrency levels in scheduler to handle job requests. We

present a component-wise analysis of scheduling delay.

• We evaluated the default scheduling policies in Hadoop YARN, a pop-

ular open source implementation of the monolithic architecture. We

evaluated the three YARN schedulers: Capacity, Fair and Fifo on a 22

node real cluster over workload generated by replaying Google traces.

Since YARN contains a per-node daemon called Node Manager (NM),

we evaluated YARN on a real cluster instead of using cluster emula-

tion. We use the Workload Generator from the testbed to create YARN

clients.

1.2 Thesis Outline

The rest of the thesis is organized as follows: In Chapter 2, we provide an

overview of scheduler architectures, followed by a brief description of mono-

lithic architecture. In Chapter 3, we describe the design and architecture of

experimental testbed, along with a brief description of Google cluster traces.

In Chapter 4, we present a thorough experimental evaluation of monolithic

architecture. In Chapter 5, we present a thorough experimental evaluation of

the three schedulers in Hadoop YARN: Capacity, Fair and Fifo. We describe

the related work in Chapter 6. We conclude in Chapter 7.

5

CHAPTER 2

CLUSTER SCHEDULER
ARCHITECTURES

In this chapter, we provide an overview of popular cluster scheduler archi-

tectures in cloud computing literature. We then briefly describe the design

of monolithic scheduler architecture which is the focus of this study.

2.1 Background

Scheduling workload [8] [15] consists of a series of jobs, which consists of one

or more tasks, each of which can run as a (possibly multi-threaded) process

on a machine. To schedule a job, one needs to map each task, in a job, to a

machine which has enough resources (cpu cores and memory) available to run

that task. Apart from resource requirements, tasks may specify constraints

to run on machines with specific properties, such as machines with GPUs

or machines with specific kernel versions. Jobs are annotated with priorities

and user-names. It may be desirable to share cluster resources fairly between

different users. Besides, a scheduler may preempt low priority tasks in order

to provide resources for high priority tasks.

A scheduling agent is a program which receives job requests and maps

tasks to machines. A scheduling agent generally maintains a data structure,

called cluster state, which represents the resources available in the cluster.

Cluster state needs to be periodically synchronized with the actual available

resources. A scheduler architecture may consists of one or more scheduling

agent(s).

2.2 Overview of Scheduler Architectures

In his PhD thesis, Konwinski [15] provides a taxonomy of scheduler architec-

tures. Figure 2.1 gives a schematic overview of different scheduler architec-

6

Figure 2.1: Overview of scheduler architectures. Popular implementation of each
architecture is mentioned in parenthesis.

tures. Broadly speaking, cluster scheduler architectures can be classified as

single-agent or multi-agent. A single-agent architecture runs a single instance

of scheduling agent which has an exclusive access to all the machines in the

cluster. The single scheduling agent handles all the job requests, possibly

using thread level parallelism. It is easy to implement inter-job constraints

and enforce global policies with such a design. Single-agent architecture is

also referred to as monolithic scheduler architecture or simply monolithic ar-

chitecture. Schedulers implementing monolithic architecture are referred to

as monolithic schedulers.

A multi-agent architecture consists of two or more scheduling agents which

share the cluster machines. The job requests can be divided between the

agents through specific policies. For example, a simple round robin policy

may be used for load balancing or division of requests may be carried out

according to the job type. Although such an architecture is scalable over

multiple machines, it needs to address the problem of synchronization of

7

cluster state between multiple agents. In this section, we will introduce three

multi-agent architectures: partitioned state, shared state and decentralized.

In a partitioned state architecture, cluster resources are partitioned be-

tween scheduling agents according to job demands and global policies. Such

a partitioning eliminates interference between agents at the cost of poten-

tial decrease in cluster utilization. It is divided into two subtypes: static

and dynamic. As the name suggests, in static partitioning, the partitions do

not change. In dynamic partitioning, a central component is responsible to

dynamically calculate the resource partitions between agents based on their

requirements. Mesos [10] is an Apache project which is based on the principle

of dynamic cluster partitioning.

Unlike partitioned state architecture, in a shared state architecture, all

cluster resources are available to all scheduling agents. A resilient central

copy of cluster state is maintained to avoid interference between agents. In

order to claim a resource, an agent needs to update the central cluster state

in an atomic transaction. In case of conflict where two agents are trying to

claim the same resource, one of the transaction will fail. If an agent encoun-

ters a failed transaction, it re-calculates it’s requirements and tries again.

The performance of such an architecture depends on the conflict / interfer-

ence rate between scheduling agents, which in turn depends on the workload.

Schwarzkopf et al. [12] have conducted experiments on shared state architec-

ture and observed the conflict rate to be low for Google scheduling workload.

In decentralized architecture, all scheduling agents have access to the entire

cluster and work independently of each other. Each cluster machine consists

of multiple slots with specific resources. Each slot in a machine maintains a

queue of tasks that want to use the slot resources, which are executed in FIFO

order. Scheduling agents may query cluster machines for the length of their

task queues in order to make intelligent scheduling decisions. Ousterhout

et al. [13] present an implementation of decentralized architecture, called

Sparrow.

2.3 Monolithic Scheduler Architecture

Monolithic schedulers belong to single-agent class of architecture classifica-

tion, where a single scheduling agent handles all the requests. Figure 2.2

8

describes the design of monolithic schedulers. The single scheduling agent

maintains long lived TCP connection to each cluster machine, which are used

to receive periodic heartbeats. The heartbeat may contain resource usage

and health status of the machine. It is used to keep the in-memory cluster

state up-to-date. The heartbeat interval is critical to the performance of the

scheduler. In Section 4.2, we evaluate how the performance of monolithic

schedulers changes with the heartbeat interval ?

A monolithic scheduler receives job requests and may execute them either

in a FIFO manner (single-path monolithic scheduler) or may use thread-

level parallelism (multi-path monolithic scheduler). A FIFO execution of

requests may suffer from head-of-the-line blocking problem, where a compli-

cated scheduling decision delays the execution of simpler scheduling requests.

We evaluate the performance difference between single-path and multi-path

schedulers in Section 4.3.

A scheduler may implement preemption of low priority tasks in case suffi-

cient resources are not available for a high priority job. It should also ensure

fairness of resource allocation between users.

9

Figure 2.2: Design of Monolithic Scheduler Architecture.

10

CHAPTER 3

SCHEDULER TESTBED: DESIGN AND
IMPLEMENTATION

We have developed an experimental testbed to facilitate performance testing

of different scheduler architectures over large emulated clusters with diverse

workloads. We used the testbed to analyze how different design parameters

affect the performance of monolithic schedulers ? The testbed can be divided

into three components:

• A Workload Generator to generate job requests to be scheduled on

cluster nodes.

• An abstract implementation of scheduler modules, which can be inher-

ited by a specific scheduler implementation, which is to be tested.

• A Cluster Emulator to emulate large clusters (consisting of thousands

of machines) with significantly fewer resources.

Figure 3.1 shows the architecture of the testbed with monolithic scheduler

implementation. The testbed is written in Java and spans about 7000 lines

of code. The source code is open for comments and contributions [16] [17].

In the rest of this chapter, we would describe each component and their

interactions with each other.

3.1 Workload Generator and Google Traces

The main task of Workload Generator is to generate job requests for schedul-

ing agent(s) by replaying a user-specified trace, with a given speed for a

given time. Different traces and request generation models can be plugged

into Workload Generator. For precise simulation of job inter-arrival periods,

the entire trace is read in to the memory before starting the experiment.

Each job request runs as a thread (orange/dashed box in Figure 3.1) and

11

Figure 3.1: Architecture of Scheduler Testbed. Orange/ dashed box represents
process, while solid/ Blue box represents machine.

12

Table 3.1: Scale of scheduling workload in Google traces.

Trace duration 29 days
Cluster size 12,583 nodes
Number of unique jobs 672,074
Number of unique task 25,424,731
Number of tasks with at least one scheduling constraint 1,405,572
Number of unique constraints 17

logs scheduler response, scheduling decisions, task and job delays. All job

threads share a single buffered file writer for writing logs, which is protected

by locks for thread safety.

For the experiments in this report, we are using scheduling workload from

Google cluster traces, published in May 2011 [8]. Charles Reiss et al. [9]

thoroughly analyzed the trace and observed heterogeneity of workload as the

most notable characteristic. Table 3.1 shows some important statistics about

the scale of trace. The trace consists of jobs, which contains one or more

tasks. Each task in a job has cpu and memory requirements and is tagged

with a submission, scheduled and finish timestamp. Some of the tasks specify

scheduling constraints, which restrict the set of machines the task can run

on. For example, task t1 should only run on machines with GPUs, or task

t2 should run on machines with kernel version greater than 2.6.1. Table 3.2

and Table 3.3 summarize characteristics of jobs and tasks in Google traces

respectively. The trace also describes the configuration of machines in the

cluster in an anonymized form. Note that this is a simplified description

of trace format, suitable for further discussion in this report. For a detailed

description, reader is recommended to the technical report describing Google

traces by Reiss et al. [8].

Table 3.2: Attributes of jobs in Google traces.

Field Description
timestamp Timestamp of the event
job id unique Job identifier
event type enum{submit, schedule, finish}

To keep the analysis and characterization tractable, we have made three

simplifying assumptions as follows.

• According to the trace, the machines in the cluster are added, removed

13

Table 3.3: Attributes of tasks in Google traces.

Field Description
timestamp Timestamp of the event
job id parent Job identifier
index Task index within the job
event type enum{submit, schedule, finish}
cpu Resource request for CPU cores
memory Resource request for Memory in MB
constraints A set of scheduling constraints.

and updated (in terms of hardware configuration or kernel versions)

over the time. Although there are 8966 addition, 10556 removal and

7380 update events, the number of machines in the cluster remains

fairly constant. For all the experiments in this report, we assume that

the cluster consists of a constant set of 6000 heterogeneous machines

for the entire duration of the trace. We plan to address this assumption

in future experiments.

• A task may fail and need to be rescheduled. Thus, a task may be

scheduled more than once. Figure 3.2 shows the variation of schedul-

ing attempts of tasks. Although 90% of the tasks have one scheduling

attempt, a long tail results in significantly large number of re-scheduling

requests. Although such a distribution affects the scheduler workload

and performance, we will ignore re-scheduling requests in the first ver-

sion of Workload Generator so as to keep the analysis tractable. We

plan to address this assumption in the future.

• Actual resource usage of tasks differ significantly from the amount re-

quested and varies over time. However, since these variations do not

directly affect the performance of the scheduler, we will not consider

actual resource usage of tasks.

In order to model and characterize the workload, we identified a minimal

set of dimensions which define jobs and tasks. We analyzed the traces and

removed the following dimensions.

• For more than 99.8% of jobs, all constituting tasks request the same

cpu and memory resources. Furthermore, only 0.4% of tasks change

14

Figure 3.2: Cumulative distribution of number of scheduling attempts of tasks
in Google traces.

15

their cpu and memory requirements during their lifetime. Therefore,

we can safely represent resource requirements of all tasks in a job by a

couple of values for cpu and memory.

• For 99% of the jobs, all constituting tasks arrive within 600 microsec-

onds of each other. For 99.9% of the jobs, the interval becomes 3

milliseconds. Since this interval is negligible as compared to average

job’s inter-arrival period, we can safely represent arrival time of all

tasks in a job with a single value.

Tasks in a job do not share the same run-time duration and therefore can-

not be represented by a single value. In summary, a job can be represented by

five attributes: (1) arrival time (2) cpu requirement (3) memory requirement

(4) per task run-time duration (5) per task scheduling constraints.

3.2 Scheduler

The second component (middle one in Figure 3.1) is the scheduler implemen-

tation to be analyzed. The component can be changed to evaluate different

architectures and design aspects. We have provided abstract implementation

of some of the basic scheduling modules as follows, which can be inherited

by different scheduler implementations.

• Cluster state: This module maintains in-memory data structures repre-

senting the current state (resource availability) of nodes in the cluster.

These data structures are optimized to support fast scheduling deci-

sions.

• Node server: This module is responsible for periodically collecting re-

source usage values from cluster nodes and updating cluster state. Cur-

rent implementation of node server maintains TCP connection to each

node in the cluster, through which it receives periodic heartbeat mes-

sages containing resource availability.

• Job server: This component is responsible for receiving job requests

and making scheduling decisions for all tasks in a job. It needs a

16

pluggable scheduling algorithm to calculate the schedule by using in-

formation from cluster state. The scheduling algorithm is provided by

a specific scheduler implementation.

In this report, we present results from experiments on monolithic scheduler

architecture. We describe our implementation of monolithic scheduler in

Section 4.1. In future, we will use the testbed to study other architectures.

3.3 Cluster Emulator

In order to evaluate schedulers on large scale clusters with tens of thousands

of machines, we needed a way to emulate large number of machines from

the point of view of scheduling agents, with fewer resources. The goal of

emulation is to ensure that the performance of scheduling agent(s) in an

emulated cluster strongly represents the same in a real cluster of the same

size.

Cluster Emulator spawns multiple processes, each of which emulates a

single cluster machine. We refer to such a process as node process. In Fig-

ure 3.1, orange/dashed box in Cluster Emulator machine, represents a node

process. Each node process is assigned logical cpu and memory values (cor-

responding to cluster machines). A node process maintains a long-lived TCP

connection with the scheduling agents(s) and sends periodic heartbeats, con-

sisting of health reports and latest resource utilization/availability values. It

maintains a list of tasks which are currently ’running’ on the corresponding

cluster machine. It receives scheduling decisions from agents and add tasks

to the list if enough resources are available. Addition of a task to this list

in the node process corresponds to the start of the execution of task on the

corresponding cluster machine. When a task completes it’s execution (ac-

cording to run-time duration), node process removes the task from the list

and releases the resources. The run-time duration of the tasks are extracted

from traces. The list is kept sorted according to end timestamp of tasks for

efficient implementation.

Each node process consists of four executing threads. Unix kernel imposes

a maximum limit on the number of threads. On Linux kernel version 3.5.0-

43-generic (used in our experiments), this limit is 32,317 which corresponds

17

to a maximum of 8000 node processes per machine. In this paper, we em-

ulated 6000 nodes using one machine consisting of 32 logical cores and 128

GB of memory. The emulator processes ran with a heap space of 90 GB.

Figure 3.3 shows the cpu load and memory usage of the machine used for

emulation. Note that cpu load is defined as the number of threads waiting

for cpu, averaged over one minute. Since the threads in node processes are

not cpu intensive, the cpu load of the emulation of 6000 nodes remains well

below 15 for the entire duration of the experiment. Thus, 32 core machine

used in experiments handles the emulation very well. Cluster Emulator col-

lects resource utilization statistics of each node every second. It keeps the

data in memory and aggregates it to get per-second cluster-wide resource

utilization statistics, after the experiment has ended. This is why memory

usage of Cluster Emulator constantly increases as the experiment continues.

A memory of 90 GB is sufficient for a four hour experiment. In Section

4.7, we verify the validity of emulation by comparing scheduler performance

metrics collected from real and emulated clusters of the same size.

18

Figure 3.3: Memory usage and cpu load of Cluster Emulator to emulate 6000
nodes during a four hour experiment. The machine consists of 32 logical cores
and 90 GB of memory. The Emulator collects cluster resource utilization data
every second and stores it in memory, which results in constantly increasing
memory usage.

19

CHAPTER 4

EVALUATION OF MONOLITHIC
SCHEDULER ARCHITECTURE

We used the testbed (described in Chapter 3) to thoroughly evaluate mono-

lithic scheduler architecture. We used one machine for each component:

Workload Generator, monolithic scheduler and Cluster Emulator. We used

Dell 320 machines, with four quad core processors, giving a total of 32 log-

ical cores after enabling hyper-threading. Each machine consists of 128GB

RAM, 64GB SSD, 512GB of storage and are connected to each other with

1 gigabit per second Ethernet. The machines run Ubuntu distribution with

kernel version 3.5.0-43-generic.

For all experiments, we replayed workload from Google traces for a dura-

tion of 1 hour (3600 seconds), unless otherwise stated. To facilitate shorter

experiment durations while covering a major portion of trace, we replayed

the traces with a speed of 100x for all experiments, unless otherwise stated.

All experiments are carried out with a 6000 nodes emulated cluster, unless

otherwise stated. We verify the validity of cluster emulation in Section 4.7.

Each experiment was ran twice and as expected, the results from the two

runs were highly correlated for all collected metrics. In this chapter, we

report results from the first run of each experiment.

For all experiments, we measured the following metrics:

• Scheduling delay: For each job, we measured the total time taken by

the scheduler to calculate it’s schedule i.e. assign a node to each task,

as perceived by the job client (Workload Generator). We refer to this

delay as scheduling delay of the job.

• Cluster cpu utilization: We define resource utilization of the cluster

as a ratio of the total resources being used to total resources available.

We will only report cluster cpu utilization since it is strongly correlated

with cluster memory utilization.

• Scheduler cpu load: We measure scheduler cpu load every second. We

20

use 1-minute load average (average number of jobs waiting to use cpu

in last 1 minute) of Linux Top command to get cpu load. We will use

the terms scheduler load and scheduler cpu load interchangeably.

• Failure rate: We keep track of the percentage of jobs failed to be sched-

uled on the nodes. We refer to this percentage as failure rate. A job

fails if at least one of it’s constituting task is not scheduled.

4.1 Monolithic Scheduler: Design and Implementation

We implemented the monolithic scheduler architecture in Java. For each ma-

chine in the cluster, scheduler contains a thread (referred to as node thread)

which maintains a TCP connection to the corresponding node. This con-

nection is used to receive heartbeats (containing health report and resource

usage) from the machine. We study the effect of heartbeat interval on sched-

uler performance in Section 4.2. Each node thread keeps the updated re-

source availability values for the corresponding machine, which is protected

by locks for thread safety. The set of all node threads makes up the cluster

state (Section 3.2).

Scheduler listens on a given port for job requests in a thread called job

server (Section 3.2). For each received request, job server spawns another

thread called request handler, which serves the request by assigning a node to

each of it’s task. The job server maintains a thread pool of request handler

threads. We study the effect of the size of this thread pool in Section 4.3. A

request handler uses a scheduling algorithm to calculate a schedule for the job

(assignment of a node to each task). We use a default scheduling algorithm

shown in Algorithm 1 for all experiments, unless otherwise stated. We study

the effect of scheduling algorithm in Section 4.5.

The scheduling decisions are sent to the machines through TCP connec-

tions of corresponding node threads. The machines may accept or reject

the scheduling decisions, depending on the resources available. A stale or

inconsistent cluster state may result in rejection of scheduling decisions. Re-

quest handler re-runs scheduling algorithm for tasks which got rejected by

machines. In our implementation, a maximum of 1000 attempts are made

to assign tasks to machines, after which request handler gives up and marks

21

Procedure: To calculate per task schedule
input : A job j consisting of n tasks, each of which requires cpu

cores, memory GB of memory to run. A task, t may
specify a set of scheduling constraints, constraintst,
where 1 ≤ t ≤ n

output : A map from tasks to cluster nodes, schedule
Initialize schedule = an empty map
for each task t in job j do

tries = 0
schedule.put(t, null)
while + + tries < MAX TRIES do

select a random node node, from cluster state
node.acquire lock()
if node.availableCPU >= cpu &&
node.availableMemory >= memory && node satisfies
constraintst then

node.availableCPU− = cpu
node.availableMemory− = memory
schedule.put(t, node)
node.release lock()
break

end
node.release lock()

end

end
return schedule

Algorithm 1: Default Scheduling Algorithm

22

Table 4.1: Variation of failure rate with heartbeat interval.

Heartbeat Interval % failed jobs % failed tasks
100 ms 5.23 4.75
5 s 8.86 5.41
50 s 13.54 7.45
500 s 15.35 8.33

the request as failed.

4.2 Heartbeat Interval

As stated in the above section, nodes in the cluster send periodic heartbeat

messages to scheduler which consists of resource (cpu and memory) availabil-

ity at the node. The heartbeats are used to update the in-memory cluster

state at the scheduler, which is used to make scheduling decisions. Longer

heartbeat interval results in stale / inconsistent cluster state, which leads

to bad scheduling decisions. On the other hand, shorter heartbeat inter-

vals increase the network traffic and scheduler load. We experimented with

different heartbeat intervals to study their trade-offs.

Table 4.1 shows the percentage of jobs and tasks which suffered bad schedul-

ing decisions for different heartbeat intervals. As expected, higher heartbeat

intervals resulted in higher percentage of failed jobs. Note that a job fails if

at least one of its constituting task fails. Figure 4.1 shows the scheduler cpu

load over the course of experiment for different heartbeat intervals. A heart-

beat interval of 100ms exerts significantly more load than that of 5 and 50

seconds, which are almost equivalent in terms of scheduler cpu load. Figure

4.2 shows the effect of heartbeat interval on scheduling delay of jobs. Lower

heartbeat interval of 100 ms suffers higher scheduling delay as compared to

it’s counterparts due to the increase in scheduler cpu load. Cluster utilization

(not shown here) remains approximately the same for all heartbeat intervals.

We conclude that a heartbeat interval of 5 seconds exploits the trade-off

between failure rate, scheduler cpu load and scheduling delay, very well for

Google cluster workload.

In the rest of this chapter, we use a heartbeat interval of 5 seconds.

23

Figure 4.1: Scheduler cpu load for different heartbeat intervals.

24

Figure 4.2: Cumulative distribution of job-wise scheduling delay for different
heartbeat intervals.

25

4.3 Path Limit

The job server (Figure 3.1) receives job requests and calculates schedule

according to the scheduling algorithm (Algorithm 1). On one extreme, it

could serve requests in the order they arrive. On other hand, requests can

be served concurrently. In the latter case, requests do not suffer from head-

of-the-line blocking problem where a complex job request increases the delay

for awaiting requests. The maximum number of job requests which can

be concurrently served is referred to as path limit. We study the effect of

path limit on scheduling delay and cluster utilization. Figure 4.3 compares

scheduling delay for four different path limits. It shows that a path limit

of three behaves poorly in terms of scheduling delay as compared to higher

values. Results are particularly interesting for single-path scheduler with path

limit of 1. About 45% of jobs were served with a very small delay. These jobs

would have been the ones with very few number of tasks and have happened

to arrive when scheduler was idle. However, rest of the jobs suffered head-

of-the-line blocking problem resulting in high scheduling delay. Figure 4.4

shows that cluster utilization is low for single-path scheduler as compared to

concurrent schedulers. Cluster utilization remains approximately the same

as path limit goes from three to being unbounded. We conclude that a path

limit of 100 is suitable of Google workload because it behaves almost like a

job server with no upper bound on the number of concurrent job requests in

terms of scheduler delay, while modestly increasing the cpu load (not shown

here).

In the rest of this chapter, we configure our implementation of monolithic

scheduler with a path limit of 100.

4.4 Scheduling Constraints

Apart from cpu and memory requirements, some tasks may specify additional

scheduling constraints. For example, a task may need a machine with specific

kernel version or a machine with GPU. These constraints may increase the

complexity of scheduling algorithms. We studied the effect scheduling con-

straints on scheduler load (Figure 4.5). The scheduler load remains almost

the same except for two spikes in case of scheduling constraints. Since only

26

Figure 4.3: Cumulative distribution of job-wise scheduling delay for different
path limits. No limit means that there is no maximum bound on the number of
requests that can be served concurrently.

27

Figure 4.4: Cluster cpu utilization for different path limit values. No limit
means that there is no maximum bound on the number of requests that can be
served concurrently.

28

Figure 4.5: Effect of scheduling constraints on scheduler cpu load.

5% of tasks specify at least one constraint, their effect on scheduler load is

not significant.

4.5 Scheduling Algorithm

Given a job, a scheduling algorithm calculates it’s schedule by assigning a

node from cluster state to each task in the job. It may also give up and return

null in case no such node is found. We experimented with three scheduling

algorithms:

• Random: Scheduler selects a node at random from cluster state. If

the node has enough resources available to run the given task, node is

returned. Otherwise, it returns null.

• Ten Tries: This algorithm is like Random, except it tries ten random

nodes before giving up. This algorithm is outlined in Algorithm 1

29

Table 4.2: Failure rate for different scheduling algorithms.

Algorithm % failed jobs
Random 18.60
Ten Tries 5.23
Check All 11.14

• Check All: As a preprocessing step, a total ordering is specified on

the cluster nodes. Given a task, scheduler iterates though the nodes

starting at a random position. At every step of the iteration, it checks

if enough resources are available on the current node to run the task,

in which case the node is returned. If no such node is found, it gives

up and returns null.

Table 4.2 shows the failure rate of each algorithm. As expected, Ten Tries

performs significantly better than Random. However, it also performs better

than Check All. This is because Ten Tries is more random in nature as

compared to Check All and is able to beat the contention due to concurrent

job requests. Figure 4.6 shows that Ten Tries and Check All have better

cluster utilization than Random.

4.6 Components of Scheduling Delay

As stated before, a job contains one or more tasks. Since the distribution of

number of tasks in jobs is highly skewed (Figure 1.1), the job and task delay

distributions take up distinctly different shapes. Figure 4.7 compares the job

and task delay distribution for our implementation of monolithic scheduler.

Although 90% of jobs experienced a scheduling delay of less than 100 ms,

only 20% tasks were able to run with a scheduling delay of 100 ms or less.

Although start and end point of both the distributions is the same, they take

up distinctly different shapes.

We divide the task-wise scheduling delay into two components: scheduler

processing time and network delay. Figure 4.8 shows the distribution of

these two components that make up the total task scheduling delay. Note

that network delay includes the transmission delay as well time as the time

spent in kernel network stack, making it the application level network delay.

30

Figure 4.6: Cluster cpu utilization for different scheduling algorithms.

31

Figure 4.7: Relationship between job and task delay distribution for Google
workload for our implementation of monolithic scheduler.

32

Figure 4.8: Distribution of network and scheduler delay that make up the total
task delay.

33

Although the average RTT time between all machines involved in the exper-

iment is less than 1 ms, observed application level network time is almost

always greater than 10 ms. This shows that the majority of the network

time is contributed by the kernel network stack. Moreover, the plot shows

that network delay is almost always greater than scheduler processing time.

This suggests that scheduling in monolithic architecture is a network I/O

intensive task.

4.7 Verification of Cluster Emulation

In order to verify that the behaviour of scheduler in an emulated cluster is

strongly correlated to the same in a real cluster, we conducted similar exper-

iments as the experiments on emulated cluster described above, by running

our implementation of monolithic scheduler in a real cluster of 38 nodes.

Each of the 38 node in the real cluster consists of 2 quad-core Xeon E5620

2.4GHZ CPUs, which gives a total of 16 logical cores after enabling hyper-

threading. Each node contains 64GB RAM, 512GB SSD, 4+.5 TB disk and

are connected to each other with 1 gigabit per second Ethernet. All machines

run Ubuntu 14.04.1 LTS with kernel version 3.13.0-34-generic.

We then compare all the metrics collected from experiments on real cluster

against the metrics collected from experiments running on emulated cluster of

size 38. Figure 4.9 and Figure 4.10 show the similarity of job and task delay

distribution respectively for real and emulated clusters. This verifies that

emulated clusters consisting of tens of nodes strongly represent the behaviour

of real clusters of the same size.

We used the above result to verify emulation of clusters consisting of thou-

sands of nodes. We emulated a 38 node cluster on each of the 38 node in the

real cluster, thus, resulting in a cluster of size 1444 (38x38). We refer to it as

a hybrid cluster, given that it is a real cluster of emulated clusters. Since 38

node emulation has been verified, we assume that this hybrid cluster approx-

imately represents a real cluster of size 1444. We ran our implementation

of monolithic scheduler on this hybrid cluster and compared the results to

the results collected from an emulated cluster of size 1444. Figure 4.9 and

Figure 4.10 also show the similarity of job and task delay distribution re-

spectively for these hybrid and emulated clusters of size 1444. Although the

34

Figure 4.9: Job delay distribution for emulated and real clusters of small and
large size.

35

Figure 4.10: Task delay distribution for emulated and real clusters of small and
large size.

36

Figure 4.11: Variation of scheduler cpu load with time for real and emulated
clusters of small and large size.

results from cluster of different sizes (38 and 1444 nodes) differ, the results

from real and emulated clusters of the same size show striking similarities.

This verifies that emulated clusters consisting of thousands of nodes strongly

represent the behaviour of real clusters of the same size. Due to the lack of a

real cluster of thousands of nodes, we took the recursive approach of ’hybrid’

clusters to verify the emulation of bigger clusters.

Figure 4.11 compares the cpu load of scheduler for real and emulated clus-

ters of small and large sizes, which remains approximately the same for all

cases, except for a couple of spikes in case of emulated clusters. Figure 4.12

shows the cumulative number of failed requests for real and emulated clusters

of different sizes. Although number of failures increases for larger clusters,

the results remain approximately the same for real and emulated clusters of

the same size.

37

Figure 4.12: Variation of number of failed requests (cumulative) with time for
emulated and real clusters of small and large size.

38

CHAPTER 5

EVALUATION OF HADOOP YARN
SCHEDULERS

Hadoop YARN [11] is one of the most popular cluster management frame-

work, which is available as an open source project under Apache License

2.0. Cloudera [18] and Hortonworks [19] are two of the major firms provid-

ing support and services for Hadoop YARN. Major open source distributed

computation frameworks such as Spark [20] and Storm [3] provide support

for running on clusters managed by Hadoop YARN. Yahoo! is one of the

prominent user of Hadoop YARN [11].

Job scheduling is one of the major task in cluster management. The latest

version of Hadoop YARN contains three pluggable schedulers namely, Capac-

ity scheduler [21], Fair scheduler [22] and Fifo scheduler [23]. We evaluated

all three schedulers under workload generated by replaying Google traces.

We measured various components of scheduler delay and cluster resource

usage. The rest of this chapter is organized as follows: In Section 5.1, we

briefly describe the design and architecture of Hadoop YARN, followed by

a discussion on the experimental set up in Section 5.2. In Section 5.3, we

present and discuss the experimental results. For the rest of this chapter, we

would use YARN and Hadoop YARN interchangeably.

5.1 Overview of Hadoop YARN Architecture

Figure 5.1 represents the interaction between different components in YARN.

Hadoop YARN consists of a cluster-wide component called Resource Manager

(RM), which runs as a daemon on a dedicated machine. RM tracks cluster

resource usage and node liveness. Such a tracking is made possible with the

help of per-node daemon, called Node Manager (NM). A NM daemon runs

on each machine in the cluster and sends periodic heartbeats to RM, mainly

consisting of resource usage and health status of the node.

39

Figure 5.1: Hadoop YARN Architecture.

40

RM accepts applications via a public submission protocol. The submission

contains required resources and commands to run a per-application process

called Application Master (AM), which itself runs on one of the cluster node.

AM sends periodic heartbeats to RM to ensure liveness, which consists of

resource requests to run tasks. RM responds to a resource request by granting

’container’ lease, which is a logical bundle of resources (cpu and memory) on

a particular node. AM can use the container to run a task with the help of

NM running on the node on which the container is granted.

AM logic could be as simple as running a set of tasks by requesting con-

tainers from RM. However, AM could contain more complex logic to run a

DAG of jobs where the execution of tasks depend on each other. Although

RM provides task monitoring interfaces, the responsibility of tracking task

execution and fault tolerance is delegated to AM.

5.1.1 YARN Schedulers

A global view of cluster state enables RM to maintain allocation invariants

and arbitrate resource contention between jobs. RM allows for a pluggable

scheduling policy for resource allocation. YARN official release comes with

three default schedulers as follows:

• Fifo scheduler: It maintains a queue of allocation requests and serves

them in the order of submission. It does not offer any allocation in-

variant and it’s primary merit is simplicity.

• Capacity scheduler: It is suitable for multi-tenant clusters, where two

or more organizations share the cluster. The scheduler allows for the

creation of per organization ’queue’ with specific fraction of cluster

resources. The sum of fraction of all queues should be equal to one. It

guarantees that a queue will be provided with its share of resources if

not more. However, a queue can be provided with more resources than

its capacity in case other queues are running low on demand.

• Fair scheduler: It aims to ensure that all running applications, on av-

erage, get an equal share of resources over time. It helps overcome

head-of-the-line blocking problem where short jobs wait a for long job

to be finished. Like Capacity scheduler, it also supports the notion

41

of queues to fairly divide resources between entities in a specified pro-

portion. It also supports flexible scheduling policies within different

queues.

5.2 Experimental Set-up

We thoroughly analyze the performance of YARN schedulers experimentally,

with default settings. We ran experiments on Hadoop YARN version 2.6

[24], which is the latest stable release of Hadoop YARN during the writing

of this report. We conducted all experiments on a cluster of 22 HP Proliant

DL160 G6 nodes. Each node consists of 2 quad-core Xeon E5620 2.4GHZ

CPUs, which gives 16 logical cores after enabling hyperthreading. Each node

contains 64GB RAM, 512GB SSD, 4+.5 TB disk and are connected to each

other with 1 gigabit per second Ethernet. All machines run Ubuntu 14.04.1

LTS with kernel version 3.13.0-34-generic. We used a dedicated Dell 320

machine to run RM. This machine is superior in configuration to cluster

nodes. It contains four quad core processors, giving a total of 32 logical cores

after enabling hyper-threading. It contains 128GB RAM, 64GB SSD and

512GB of storage. It runs Ubuntu distribution with kernel version 3.5.0-43-

generic.

We run one YARN application for each job in Google traces (Section 3.1).

For the rest of this chapter, we would use ’job’ and ’application’ interchange-

ably. We used Workload Generator from our testbed (Section 3.1) for sub-

mitting applications to RM. It runs on a machine with the same configuration

as the one running RM. It replays Google traces and runs one client thread

per job to submit corresponding application to RM. The Application Master

is provided with the number of tasks in the job for which it requests resources

from RM. Each task sleeps for a specified duration (according to the dura-

tion of task in the trace) and terminates. All tasks are run with the same

priority and do not specify any locality / machine constraints. When all the

tasks are complete, AM sends the measured delays to Workload Generator

and terminates. To summarize, we use three components from the traces:

job inter-arrival time, number of tasks in the jobs and duration of each task.

Since the cpu and memory data in the trace is present in anonymized form,

we run each task with 1 vcore and 100 MB of memory.

42

Since our goal is to analyze the performance of schedulers, we disable secu-

rity by disabling Kerberos authentication. Besides, all executables are placed

on all nodes before starting the experiment so as to eliminate delays due to

copying files over network. Thus, the measured delay can be seen as the

scheduling overhead. All schedulers are configured with default settings con-

sisting of only one queue with 100% capacity. All applications are submitted

under a single user name.

5.3 Experimental Results

For all experiments, we replayed workload from Google traces for a duration

of 1 hour (3600 seconds), unless otherwise stated. To facilitate shorter ex-

periment durations while covering a major portion of trace, we replayed the

traces with a speed of 5x for all experiments, unless otherwise stated. We

study the effect of this speed in Section 5.3.1.

With such a setting, each experiment generates 3,654 jobs consisting of

116,291 tasks. In order to run a workload of such magnitude over a relatively

smaller cluster consisting of 22 nodes, we reduced the duration of all tasks

by a factor of 100. This ensures that cluster contains enough resources to

run the arriving tasks and enable us to study the performance of scheduler

with smaller clusters. We study the effect of reduced durations of tasks in

Section 5.3.2.

Each experiment was ran twice and as expected, the results from the two

runs were highly correlated for all collected metrics, for all three schedulers.

In this section, we report the results from the first run of each experiment.

We measured various components of scheduling delay and cluster cpu usage,

as follows.

AM delay refers to the time it took for scheduler to start the Applica-

tion Master for a given job. It represents the difference between time at

which AM started execution and the time at which application was submit-

ted. Figure 5.2 shows the cumulative distribution of AM delay for the three

schedulers. Fair and Fifo scheduler start AM within 1 second for 90% of the

jobs, while Capacity scheduler takes more than 1000 seconds for 40% of the

jobs. Due to the ability of avoiding head-of-the-line blocking problem, Fair

scheduler performs significantly better than Capacity scheduler, resulting in

43

Figure 5.2: Cumulative distribution of AM delay for Capacity, Fair and Fifo
Scheduler. This is a job-wise delay distribution.

44

Figure 5.3: Cumulative distribution of total Scheduling delay for Capacity, Fair
and Fifo Scheduler. This is a job-wise delay distribution.

45

Figure 5.4: Cumulative distribution of Allocation delay for Capacity, Fair and
Fifo Scheduler. This is a task-wise delay distribution.

a performance gap of over two order of magnitudes. Figure 5.3 shows the

cumulative distribution of total scheduling delay of the jobs, which refers to

the sum of AM delay and the delay resulting from interactions between AM

and RM to run all the tasks. Please note that this delay does not include the

running duration of tasks. For Fifo and Capacity scheduler, this distribu-

tion closely resembles the distribution of AM delay. This suggests that AM

delay is the major contributor of scheduling delay for these two schedulers.

However, in case of Fair scheduler, AM-RM interactions give rise to a long

tail in scheduling delay distribution. We speculate that the fair sharing of

resources results in longer running time for complex jobs (containing large

number of tasks). Since a relatively smaller fraction of jobs are complex,

such a scheduling policy gives rise to a longer tail in total scheduling delay.

As shown in Figure 1.1, the number of tasks in a job follows a skewed

distribution i.e. a small number of jobs make up the majority of tasks. Due

to such a relationship, task-wise delay distributions take up distinctly differ-

46

Figure 5.5: Cumulative distribution of Task-Start delay for Capacity, Fair and
Fifo Scheduler. This is a task-wise delay distribution.

47

Figure 5.6: Variation of standard deviation of cpu usage across nodes with time,
for YARN schedulers.

48

Figure 5.7: Variation of total cpu utilization of cluster with time, for YARN
schedulers.

49

Figure 5.8: Variation of number of running applications with time, for YARN
schedulers.

50

Figure 5.9: Variation of number of healthy nodes in the cluster with time, for
YARN schedulers.

51

Figure 5.10: Variation of cumulative number of failed applications with time, for
YARN schedulers.

52

ent shapes than job-wise delay distributions. We define allocation delay of a

task as the time taken for allocating a container to the task on a cluster node

after Application Master has been started. Figure 5.4 shows the distribution

of allocation delay of all tasks. As expected, Fifo scheduler offers similar

allocation delay to all the tasks due to it’s fifo nature of handling resource

requests. However, Capacity and Fair scheduler show a wide variation of

allocation delays because they are more concerned with job-wise allocation.

Fair scheduler offers minimal delay to 10% of the tasks, which allows it to

perform efficiently for 90% of the jobs. Apart from variations in allocation

delay, we also note that Fifo scheduler performs marginally better than it’s

peers. However, this performance gain comes at the cost of making poor allo-

cation decisions. This can be seen in Figure 5.6 which shows the variance of

cpu usage across cluster machines. The figure depicts that container alloca-

tion in Fifo scheduler is severely uneven, resulting in unbalanced load across

cluster machines, while Capacity and Fair scheduler successfully balance the

cpu load among cluster machines.

One of the effects of container allocation decisions is reflected in task-start

delay, which is defined as the time it takes for a task to start execution after

the container has been allocated. Figure 5.5 shows the distribution of task-

start delay for all tasks. Due to the unbalanced allocation in case of Fifo

scheduler, the NM on overloaded machines takes significantly longer time to

start the tasks, as compared to the same in Capacity and Fair scheduler.

Moreover, Fifo scheduling resulted in the failure of four nodes during the

course of experiment, which can be seen in Figure 5.9. Since there were no

hardware failures, we speculate that these nodes became unresponsive due

to the large number of containers allocated on them by Fifo scheduler. As

expected, there is no node failure in case of Capacity and Fair scheduler.

Figure 5.7 shows the total cpu utilization of the cluster, which fluctu-

ates substantially for Fifo scheduler, while remains stable for the other two,

especially Fair scheduler. Moreover, Fifo scheduler overloads the cluster re-

sources, driving cpu utilization to go higher than 1 for a significant periods

of time. On the other side, the other two schedulers do not overload the

cluster.

Figure 5.8 shows the number of running applications in the cluster with

time, which fluctuates substantially for Capacity scheduler, while remains

stable for the other two schedulers. Besides, Capacity and Fair scheduler

53

keeps the applications alive for a longer period of time by making them

wait for resources. On the other hand, Fifo scheduler assign resources to

applications as soon as they arrive without any cap limits.

From the above results, it seems that Fair Scheduler outperforms it’s peers

in terms of delay and allocation decisions. However, Capacity scheduler

beats it’s counterparts in terms of application failures, as shown in Figure

5.10. While Capacity scheduler doesn’t drop any application, 17 out of 3,654

jobs fail in case of Fair scheduler, resulting in a loss of 29,885 tasks out of a

total of 112,732 tasks.

5.3.1 Effect of Trace Speed

To facilitate shorter experiment durations while covering a major portion of

trace, we replayed the traces with a speed of 5x for all experiments discussed

above. We refer to this speed of replaying trace as trace speed. To study the

effect of trace speed on schedulers, we ran three experiments (one for each

scheduler) with a trace speed of 1x for a duration of five times the duration

of above experiments (5 hours), so as to maintain the same workload.

In case of Capacity scheduler, we observe a huge improvement in schedul-

ing delay. Figure 5.11 shows the sensitivity of Capacity scheduler towards

trace speed, in terms of scheduling delay. Unlike Capacity scheduler, Fifo

scheduler shows little improvement in scheduling delay for slower experiment

(Figure 5.12). In case of Fair scheduler, the improvement in performance is

reflected in terms of the number of failed applications. Figure 5.14 shows that

no application failed in the experiment with slow trace speed for Fair sched-

uler. Interestingly, in order to be able to run all applications, Fair scheduler

compromised a little on the scheduling delay, as shown in Figure 5.13.

Apart from job delays, number of running applications decreased substan-

tially for all three schedulers, in case of experiments with slower trace speed.

5.3.2 Effect of Task Duration

Each experiment generates 3,654 jobs consisting of 116,291 tasks. In order to

run a workload of such magnitude over a relatively smaller cluster consisting

of 22 nodes, we reduced the duration of all tasks by a factor of 100 for the

54

Figure 5.11: Variation of scheduling delay with trace speed for Capacity
scheduler.

55

Figure 5.12: Variation of scheduling delay with trace speed for Fifo scheduler.

56

Figure 5.13: Effect of trace speed on scheduling delay for Fair scheduler.

57

Figure 5.14: Effect of trace speed on application failures for Fair scheduler.

58

Figure 5.15: Effect of task duration on cluster cpu utilization for Fair scheduler.

above experiments. This ensures that the cluster contains enough resources

to run the arriving tasks and enable us to study the performance of schedulers

with smaller clusters.

We conducted experiments where the task durations were reduced by 10

instead of 100 to study the effect of task duration on scheduler performance.

As expected, cpu utilization and running application count increased for all

the three schedulers. Figure 5.15 and Figure 5.16 compare the cpu utilization

and running application count respectively, for different durations of tasks

for Fair scheduler. Figures for Capacity and Fifo schedulers are not shown

since they depict similar trends.

However, in case of Fifo Scheduler, as shown in Figure 5.17, the unbalanced

placement of tasks on cluster nodes resulted in 15 node failures, as compared

to 4 in case of shorter tasks. This suggests that Fifo scheduler is unsuitable

for enterprise clusters.

59

Figure 5.16: Effect of task duration on running application count for Fair
scheduler.

60

Figure 5.17: Effect of task duration on node failures for Fifo scheduler.

61

CHAPTER 6

RELATED WORK

In this chapter, we present a brief survey of the research projects on cluster

schedulers. We also briefly discuss the past projects on analysis of cluster

scheduling traces, including the traces from clusters at Google, Facebook and

Cloudera.

6.1 Cluster Schedulers

In his PhD dissertation, Konwinski [15] provides a taxonomy of scheduler

architectures. Broadly speaking, the author classifies scheduler architectures

into single-agent (monolithic) and multi-agent (Figure 2.1). We provide an

overview of the taxonomy in Section 2.2. We extend the classification to

include the decentralized architecture as a type of multi-agent scheduler. In

decentralized architecture, cluster machines maintain a queue of tasks waiting

to be executed. Although scheduling-agents share the cluster machines, they

do not synchronize with each other, but instead query the cluster machines

for the length of the task queues to make intelligent scheduling decisions.

Hadoop YARN [11] can be classified as a monolithic scheduler, where a

single scheduling-agent, called Resource Manager (RM), receives all the task

scheduling requests. However, instead of receiving a job request with all the

tasks, YARN supports more powerful and expressive semantics for receiving

scheduling requests. A job request is issued by a long lived process called

Application Master (AM), which can request and negotiate cluster resources

with the RM. This allows for powerful scheduling semantics (such as resource

hoarding, enforcing an order on task execution) at the expense of scheduling

delay. The paper compares the performance of YARN with older Hadoop

version and provides statistics from 2500 node cluster at Yahoo! Although

YARN provides three pluggable scheduling polices: Capacity, Fair and Fifo

62

schedulers, all results in the paper are reported on the Capacity scheduler.

We evaluate the three schedulers and provide a thorough comparison of their

trade-offs in Chapter 5.

Ousterhout et al. [13] propose Sparrow, a decentralized multi-agent schedul-

ing framework suitable for short-duration jobs, based on random sampling

of worker nodes. When a job arrives to a Sparrow scheduler node, it se-

lects twice the number of worker nodes as there are tasks in the job and

queries them for the length of their task queues. The tasks are sent to the

best nodes (lightly loaded) from this sample. Given the concurrent nature

of job requests, we also observe the benefits of randomness in scheduling

algorithms, as described in Section 4.5. Since Sparrow’s scheduling algo-

rithm relies extensively on random sampling, it works well if there are more

idle workers present in the cluster because the likelihood of querying an idle

machine is high. The performance degrades as cluster load increases (and

simulation results in the paper are consistent with this observation). The

evaluation presented in the paper is restricted to short duration tasks and

the comparison is restricted to only Spark [25] scheduler.

Mesos [10][15] can be classified as a partitioned multi-agent scheduler,

where a centralized module dynamically partitions and distributes cluster

resources between application specific scheduling agents. The distribution of

resources is carried out in terms of resource offers from central module to

scheduling agents, which may be accepted or rejected by the latter. How-

ever, experimental comparison is limited to static partitioning of the cluster.

Schwarzkopf et al. [12] argues that such an architecture may lead to low

cluster utilization due to hard partitioning of resources.

In contrast to partitioned multi-agent scheduler architecture, Schwarzkopf

et al. [12] introduce shared state multi-agent scheduler architecture where

scheduling agents have access to all cluster resources. In order to claim a

resource, an agent needs to update a resilient central copy of cluster state in

an atomic transaction. In case of conflicting transactions when two or more

agents are trying to claim the same resource, only one of the transaction

succeeds. Google Omega is an implementation of shared state architecture.

Although, such an optimistic concurrency control provides the flexibility to

run complex scheduling algorithms for picky tasks, it may result in schedul-

ing delay, contention and starvation in case of high transaction failure rate.

A transaction may contain more than one resource request. In such cases,

63

conflict rate depends on conflict resolution schemes. An atomic (all or noth-

ing) transaction fails if any of the resource request cannot be satisfied. On

the other hand, an incremental transaction allocates all the non-conflicting

requests. Fortunately, conflict rate is low when evaluated on Google traces

with incremental conflict resolution schemes. However, the performance also

depends on how cell state is shared between framework schedulers, which is

unclear from the paper.

Boutin et al. present Apollo [14], cloud-scale scheduler deployed at Mi-

crosoft. Analogous to AM, RM and NM in Hadoop YARN, Apollo contains

per-job, per-cluster and per-node components called Job Manager (JM), Re-

source Monitor (RM) and Process Node (PN) respectively. However, unlike

YARN, scheduling responsibilities are delegated to JM instead of RM, which

makes it a multi-agent scheduler. RM collects heartbeats (advertised load

values) from nodes and provide JM with cluster state. The scheduling algo-

rithm, employed at JM, is a hybrid of previously discussed frameworks and

involves communication between JM and PN. Unlike Omega, Apollo defers

conflict resolution until after tasks are dispatched. Some of the characteris-

tics of the workload on which the system is evaluated are strikingly similar to

those of Google traces used in this report. For instance, task duration distri-

bution of both workloads spans wide range of running times where duration

of long running tasks are almost four order of magnitude larger than that

of short ones. It suggests that Google traces are representative of workload

from large cloud compute clusters across industry.

As already mentioned, the four schedulers discussed above: Mesos, Omega,

Sparrow and Apollo; belong to multi-agent category of scheduling architec-

tures. One of the reason mentioned for taking the multi-agent approach is the

throughput and scheduling delay limitations of single-agent architectures, es-

pecially when scheduling short tasks over large cloud clusters. However, our

implementation of monolithic scheduler, running on a 16 core (hyperthread

enabled) machine with 128 GB of memory, is able to efficiently schedule

workload from Google traces over a 6000 node emulated cluster, while of-

fering a scheduling delay of less than 100 ms for 90% of the jobs. Given

that the minimum task duration in Google workload from May 2011, is 10

seconds, a scheduling delay of 100 ms constitutes an overhead of 1%. Thus,

our evaluation do not support the hypothesis that monolithic scheduler ar-

chitecture suffers from performance limitation for large scale clusters. How-

64

ever, if scheduling workload consists of production latency-sensitive jobs, high

availability becomes an important requirement, where multi-agent architec-

tures have an advantage over centralized design. Besides, as pointed out by

Schwarzkopf et al. [12], the primary reason for Google to shift away from

monolithic architecture is software maintainability. Since scheduling require-

ments evolve over time, it becomes increasingly difficult to add new policies

to a single monolithic scheduler due to the accumulation of code paths.

Heartbeat mechanism is widely used in distributed systems for monitoring,

ensuring fault tolerance and improving availability [26] [27] [28]. In cluster

scheduling, it is used to keep track of cluster resource usage and enforcing

liveness. Hadoop YARN allows users to configure the heartbeat interval,

which is by default set to 1 second. Apollo also involve heartbeat messages

from nodes to Resource Monitor. In Mesos, slaves periodically report re-

source availability to master node. Optimum heartbeat interval depends on

the cluster size and nature of the workload. We used the testbed to study

the variation of scheduling delay with different heartbeat intervals for Google

workload and observed that it has a non-trivial impact on the performance.

Schwarzkopf et al. [12] experimented with two versions of monolithic sched-

uler: single-path (no thread level parallelism) and multi-path. We experi-

mented with a continuous variation of the size of the thread pool serving job

requests in monolithic architecture.

Zaharia et al. [29] introduced delay scheduling in Hadoop Fair Scheduler.

They avoided the approach of killing already running tasks in favor of waiting

for resources to be released voluntarily by tasks, in order to achieve fairness.

Due to the high rate of number of tasks finishing their execution per unit

time in cloud computing workloads, such an approach achieves fairness while

avoiding disadvantages of preemption. To improve data locality, the jobs are

required to wait for a small extra time for a slot to be available on a machine

closer to the data. Quincy [30] can be classified as a monolithic scheduler

which maps the task scheduling problem to a graph data structure. In order

to meet Service Level Agreements (SLA) associated with jobs, Cake [31]

takes a two level scheduler approach where first level schedulers are attached

to each individual resource in the cluster and maintains the associated task

queue. These first level schedulers are maintained by a central second level

scheduler according to job level SLAs. Apart from generic cluster schedulers,

there is a plethora of projects which target application specific schedulers.

65

For instance, Aniello et al. [32] proposes on-line schedulers for Storm, which

migrates tasks between machines to minimize the inter-node communication.

Ousterhout et al. [33] point out the benefits of small duration tasks (tiny

tasks) in cloud computing environments. Although tiny tasks may be benefi-

cial in terms of straggler mitigation and resource sharing, they would require

major changes in existing infrastructures including distributed storage (file)

systems, cluster schedulers, execution as well as programming models. Gh-

odsi et al. [34] study the meaning of fairness of multiple resource types, which

is common in cloud clusters. The authors present and evaluate Dominant

Resource Fairness (DRF) scheme which provides desirable properties such as

strategy-proofness, envy-freeness, sharing incentive and Pareto efficiency in

multi resource types environments.

6.2 Analysis of Scheduling Workload

For all experiments in this paper, we have used the publicly available traces

from a 12K node multi-tenant Google cluster. A number of researchers have

analysed this trace, highlighting the challenges involved in scheduling in cloud

computing systems. Reiss et al. [9] have analyzed the trace and have ob-

served significant heterogeneity in the workload in terms of execution dura-

tion, placement constraints, number of tasks, resource demands and usage.

Apart from being scalable and efficient, the analysis shows the need for flex-

ible resource management for multi-tenant clusters. Liu et al. [35] carried

out similar analysis on Google traces.

Chen et al. [36] present a model for the scheduling workload from Google

traces along various dimensions such as duration, resource requirement and

number of tasks. From empirical observations, authors have characterized

jobs into 9 clusters. However, the model is build on a 75 minute long trace.

In this study, we worked on workload traces from 29-day period. Mishra et

al. [37] also identify workload dimensions in Google traces and qualitatively

break down each identified dimension into small, medium and large category.

However, it is unclear if such a coarse break-up could be used effectively in

sensitivity analysis.

Sharma et al. [38] modeled the task placement constraints in Google clus-

ters and observed that such constraints may increase the scheduling delays

66

by 2 to 6 times. Abad et al. [39] proposed a model based on delayed renewal

processes to generate object access workloads, where an object can be a file,

media sessions etc.

Chen et al. [40] analyze MapReduce workload from six separate business-

critical deployments inside Facebook and at Cloudera customers in e-commerce,

telecommunications, media and retail. The authors observed the MapReduce

workload to be highly bursty, unpredictable and heterogeneous. This is con-

sistent with our analysis of Google workload.

67

CHAPTER 7

CONCLUSION

We developed an experimental testbed to facilitate performance testing of

different scheduler architectures over large emulated clusters with diverse

workloads from industrial traces. In order to evaluate scheduler architec-

tures on large scale clusters with tens of thousands of machines, we devel-

oped the notion of cluster emulation. We verified the emulation by showing

strong correlation between scheduler performance in emulated and real clus-

ters containing thousands of nodes. We hope that such a testbed would allow

research community to study scheduling in large cloud computing systems

using relatively modest compute resources.

We show the usefulness of the testbed by thoroughly evaluating the per-

formance of the monolithic scheduler architecture along various design pa-

rameters, over Google cluster traces. Our implementation of the monolithic

architecture, running on a 16 core (hyperthread enabled) machine with 128

GB of memory, is able to efficiently schedule the workload from Google traces

over a 6000 node emulated cluster, while offering a scheduling delay of less

than 100 ms for 90% of the jobs. Given that the minimum task duration in

Google workload from May 2011, is 10 seconds, a scheduling delay of 100 ms

constitutes an overhead of 1%. Thus, we conclude that monolithic scheduler

architecture could efficiently handle Google workload.

From our experiments, we conclude that scheduling in large cloud com-

puting environment is a network I/O intensive process. The majority of the

scheduling delay in monolithic architecture is contributed by kernel network

stack. We found out that a heartbeat interval of five seconds is suitable for

Google workload because it exploits the trade-off between failure rate and

scheduler cpu load very well. We conclude that a path limit of 100 is enough

for handling concurrent job requests without increasing the scheduling delay

due to head-of-the-line blocking problem. We discovered that the presence of

scheduling constraints in Google workload does not have significant effect on

68

scheduler cpu load. We conclude that randomness in scheduling algorithm is

beneficial to beat the contention due to concurrent job requests.

We thoroughly evaluated the three default schedulers in Hadoop YARN:

Capacity, Fair and Fifo, over workload generated by replaying Google traces.

Based on our experiments, we conclude that the Fifo scheduler is not suitable

for enterprise clusters. It’s naive container placement decisions result in

unbalanced load across cluster nodes which may result in overloaded nodes to

become unresponsive. On the other hand, both Capacity and Fair scheduler

are much more suitable for production clusters and keep the load balanced

across cluster nodes. The two schedulers exploit different trade-offs. While

the Fair scheduler offers less scheduling delay by avoiding head-of-the-line

blocking problem, it may drop applications in case the load increases. On the

other hand, the Capacity scheduler does not drop any application but errs on

the side of higher scheduling delay. Among these two, Fair scheduler performs

better for Google workload at its original rate: it provides a scheduling delay

of less than 10 seconds for 90% of the jobs as compared to 70% in case of

Capacity scheduler. However, this performance gain comes at the cost of

longer tail in delay distribution for complex jobs.

7.1 Future Work

We plan to extend this study along the following dimensions.

• We plan to address a couple of simplifying assumptions we made in the

trace replays (Section 3.1). Firstly, we are ignoring the re-scheduling

events for the failed tasks. Given that the re-scheduling events sig-

nificantly increase the scheduler load (Figure 3.2), we plan to address

this assumption in the next version of testbed. Secondly, the cluster

machines in the testbed are currently static. We plan to include the

machine events from Google traces to add, remove and update cluster

machines during the experiment.

• Apart from monolithic architecture, we plan to implement and evaluate

other scheduler architectures using the testbed. We plan to compare

the performance and trade-offs of different architectures.

69

• Hadoop YARN allows for pluggable scheduling policies and provides

neat interfaces for writing custom schedulers. Using our scheduler

testbed, we are designing and developing a scheduler for YARN op-

timized for minimizing scheduling delay. Being a popular open source

project, YARN is a great way for research community to materialize

their research.

• We are also working on characterization and modeling of scheduling

workload. We are trying to fit the run-time duration of tasks in a job

to well known distributions, so as to represent them with fewer pa-

rameters. We plan to use K-means clustering algorithm to group jobs

into clusters according to their characteristics (cpu, memory, number

of tasks etc). For each cluster of jobs, we would fit the arrival time

of constituting jobs into a Poisson distribution. The Workload Gen-

erator could modify the mean inter-arrival times of different Poisson

distributions (corresponding to different job clusters) to obtain differ-

ent mixtures of workload, as per the configuration specified by the user.

Such a synthetic workload would be useful for ’what-if’ analysis.

70

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in Proceedings of the 6th Conference on Symposium on
Opearting Systems Design & Implementation - Volume 6, ser. OSDI’04.
Berkeley, CA, USA: USENIX Association, 2004. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251254.1251264 pp. 10–10.

[2] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data. ACM, 2010, pp. 135–146.

[3] “Apache storm project,” http://storm.incubator.apache.org/. [Online].
Available: https://storm.incubator.apache.org/

[4] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild et al., “Spanner:
Googles globally distributed database,” ACM Transactions on Com-
puter Systems (TOCS), vol. 31, no. 3, p. 8, 2013.

[5] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis, “Dremel: Interactive analysis of web-scale
datasets,” in Proc. of the 36th Int’l Conf on Very Large Data Bases,
2010. [Online]. Available: http://www.vldb2010.org/accept.htm pp.
330–339.

[6] A. Lakshman and P. Malik, “Cassandra: a decentralized structured stor-
age system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2,
pp. 35–40, 2010.

[7] “Apache hbase project,” http://hbase.apache.org/. [Online]. Available:
http://hbase.apache.org/

[8] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage
traces: format + schema,” Google Inc., Mountain View, CA, USA,
Technical Report, Nov. 2011, revised 2012.03.20. Posted at URL
http://code.google.com/p/googleclusterdata/wiki/TraceVersion2.

71

[9] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A.
Kozuch, “Heterogeneity and dynamicity of clouds at scale: Google
trace analysis,” in Proceedings of the Third ACM Symposium on Cloud
Computing, ser. SoCC ’12. New York, NY, USA: ACM, 2012. [Online].
Available: http://doi.acm.org/10.1145/2391229.2391236 pp. 7:1–7:13.

[10] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center,” in Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation, ser.
NSDI’11. Berkeley, CA, USA: USENIX Association, 2011. [Online].
Available: http://dl.acm.org/citation.cfm?id=1972457.1972488 pp.
295–308.

[11] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache
hadoop yarn: Yet another resource negotiator,” in Proceedings
of the 4th Annual Symposium on Cloud Computing, ser. SOCC
’13. New York, NY, USA: ACM, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2523616.2523633 pp. 5:1–5:16.

[12] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes, “Omega: flexible, scalable schedulers for
large compute clusters,” in SIGOPS European Conference
on Computer Systems (EuroSys), Prague, Czech Repub-
lic, 2013. [Online]. Available: http://eurosys2013.tudos.org/wp-
content/uploads/2013/paper/Schwarzkopf.pdf pp. 351–364.

[13] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow:
Distributed, low latency scheduling,” in Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, ser.
SOSP ’13. New York, NY, USA: ACM, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2517349.2522716 pp. 69–84.

[14] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian,
M. Wu, and L. Zhou, “Apollo: Scalable and coordinated
scheduling for cloud-scale computing,” in 11th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI
14). Broomfield, CO: USENIX Association, Oct. 2014. [On-
line]. Available: https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/boutin pp. 285–300.

72

[15] A. Konwinski, “Multi-agent cluster scheduling for scalability
and flexibility,” Ph.D. dissertation, EECS Department, Uni-
versity of California, Berkeley, Dec 2012. [Online]. Avail-
able: http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-
273.html

[16] “Nebula: Workload generator based on google
trace,” https://github.com/gkhaneja/nebula. [Online]. Available:
https://github.com/gkhaneja/nebula

[17] “Experimental testbed for schedulers,” https://github.com/uiuc-
srg/scheduler. [Online]. Available: https://github.com/uiuc-
srg/scheduler

[18] “Hadoop yarn on cloudera hadoop distribution
(cdh),” http://blog.cloudera.com/blog/2013/11/migrating-
to-mapreduce-2-on-yarn-for-operators/. [Online]. Available:
http://blog.cloudera.com/blog/2013/11/migrating-to-mapreduce-2-
on-yarn-for-operators/

[19] “Hortonworks focus on hadoop yarn,”
http://hortonworks.com/hadoop/yarn/. [Online]. Available:
http://hortonworks.com/hadoop/yarn/

[20] “Apache spark project,” https://spark.apache.org/. [Online]. Available:
https://spark.apache.org/

[21] “Capacity scheduler for hadoop yarn,”
https://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-
yarn-site/CapacityScheduler.html. [Online]. Available:
https://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-yarn-
site/CapacityScheduler.html

[22] “Fair scheduler for hadoop yarn,”
https://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-
yarn-site/FairScheduler.html. [Online]. Available:
https://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-yarn-
site/FairScheduler.html

[23] “Scheduling in hadoop,” http://www.ibm.com/developerworks/library/os-
hadoop-scheduling/. [Online]. Available:
http://www.ibm.com/developerworks/library/os-hadoop-scheduling/

[24] “Hadoop yarn releases,” http://hadoop.apache.org/releases.html. [On-
line]. Available: http://hadoop.apache.org/releases.html

73

[25] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in Proceed-
ings of the 9th USENIX conference on Networked Systems Design and
Implementation. USENIX Association, 2012, pp. 2–2.

[26] F.-f. Li, X.-z. Yu, and G. Wu, “Design and implementation of high
availability distributed system based on multi-level heartbeat protocol,”
in Control, Automation and Systems Engineering, 2009. CASE 2009.
IITA International Conference on. IEEE, 2009, pp. 83–87.

[27] M. Treaster, “A survey of fault-tolerance and fault-recovery techniques
in parallel systems,” arXiv preprint cs/0501002, 2005.

[28] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” Journal of the ACM (JACM), vol. 43, no. 2, pp.
225–267, 1996.

[29] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling,” in Proceedings of
the 5th European Conference on Computer Systems, ser. EuroSys
’10. New York, NY, USA: ACM, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1755913.1755940 pp. 265–278.

[30] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and
A. Goldberg, “Quincy: fair scheduling for distributed computing clus-
ters,” in Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles. ACM, 2009, pp. 261–276.

[31] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and I. Stoica,
“Cake: Enabling high-level slos on shared storage systems,” in
Proceedings of the Third ACM Symposium on Cloud Computing, ser.
SoCC ’12. New York, NY, USA: ACM, 2012. [Online]. Available:
http://doi.acm.org/10.1145/2391229.2391243 pp. 14:1–14:14.

[32] L. Aniello, R. Baldoni, and L. Querzoni, “Adaptive online scheduling
in storm,” in Proceedings of the 7th ACM international conference on
Distributed event-based systems. ACM, 2013, pp. 207–218.

[33] K. Ousterhout, A. Panda, J. Rosen, S. Venkataraman, R. Xin, S. Rat-
nasamy, S. Shenker, and I. Stoica, “The case for tiny tasks in compute
clusters,” in Proceedings of the 14th USENIX conference on Hot Topics
in Operating Systems. USENIX Association, 2013, pp. 14–14.

[34] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple re-
source types.” in NSDI, vol. 11, 2011, pp. 24–24.

74

[35] Z. Liu and S. Cho, “Characterizing machines and workloads on a google
cluster,” in Parallel Processing Workshops (ICPPW), 2012 41st Inter-
national Conference on. IEEE, 2012, pp. 397–403.

[36] Y. Chen, A. S. Ganapathi, R. Griffith, and R. H. Katz, “Analysis and
lessons from a publicly available google cluster trace,” EECS Depart-
ment, University of California, Berkeley, Tech. Rep. UCB/EECS-2010-
95, 2010.

[37] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das, “Towards
characterizing cloud backend workloads: insights from google compute
clusters,” ACM SIGMETRICS Performance Evaluation Review, vol. 37,
no. 4, pp. 34–41, 2010.

[38] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and C. R. Das,
“Modeling and synthesizing task placement constraints in google com-
pute clusters,” in Proceedings of the 2nd ACM Symposium on Cloud
Computing. ACM, 2011, p. 3.

[39] C. L. Abad, M. Yuan, C. X. Cai, Y. Lu, N. Roberts, and R. H. Camp-
bell, “Generating request streams on big data using clustered renewal
processes,” Performance Evaluation, vol. 70, no. 10, pp. 704–719, 2013.

[40] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical processing
in big data systems: A cross-industry study of mapreduce workloads,”
Proc. VLDB Endow., vol. 5, no. 12, pp. 1802–1813, Aug. 2012. [Online].
Available: http://dx.doi.org/10.14778/2367502.2367519

75

