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ABSTRACT

This dissertation studies the stability and robustness of an adaptive control framework for

underactuated Lagrangian systems and robotic networks. In particular, an adaptive control

framework is designed for a manipulator, which operates on an underactuated dynamic plat-

form. The framework promotes the use of a filter in the control input to improve the system

robustness. The characteristics of the controller are represented by two decoupled indica-

tors. First, the adaptive gain determines the rate of adaptation, as well as the deviation

between the adaptive control system and a nonadaptive reference system governing the ideal

response. Second, the filter bandwidth determines the tracking performance, as well as the

system robustness. The ability of the control scheme to tolerate time delay in the control

loop, which is an indicator of robustness, is explored using numerical simulations, estima-

tion of the time-delay margin of an equivalent linear, time-invariant system, and parameter

continuation for Hopf bifurcation analysis.

This dissertation also performs theoretical study of the delay robustness of the control

framework. The analysis shows that the controller has a positive lower bound for the time-

delay margin by exploring a number of properties of delay systems, especially the continuity

of their solutions in the delay, uniformly in time. In particular, if the input delay is below

the lower bound, then the state and control input of the closed-loop system follow those of

a nonadaptive, robust reference system closely. A method for computing the lower bound

for the delay robustness using a Padé approximant is proposed. The results show that

the minimum delay that destabilizes the system, which may also be estimated by forward

simulation, is always larger than the value computed by the proposed method.

The control framework is extended to the synchronization and consensus of networked

manipulators operating on an underactuated dynamic platform in the presence of communi-

cation delays. The theoretical analysis based on input-output maps of functional differential

equations shows that the adaptive control system’s behavior matches closely that of a non-

adaptive reference system. The tracking-synchronization objective is achieved despite the

effects of communication delays and unknown dynamics of the platform. When there is no

desired trajectory common to the networked manipulators, a modified controller drives all
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robots to a consensus configuration. A further modification is proposed that allows for the

control of the constant and time-varying consensus values using a leader-follower scheme.

Simulation results illustrate the performance of the proposed control algorithms.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

1.1 Context

Robotic technology has revolutionized every corner of industry. While robots are widely

used in well structured and static workspaces, for example in assembly and manufactur-

ing tasks, they have also recently been employed in more challenging environments such as

space, underwater, offshore and agriculture applications. In space missions, manipulators

are mounted on a base that is floating freely in space (therefore the term free-floating ma-

nipulators). They serve to perform repair operations, inspection, construction of structures

and scientific experiments. They are also used to orient telescope and communication de-

vices or to collect debris [35]. Ground-based mobile manipulators have a growing range of

applications that include planetary exploration such as the Mars rovers, rescue missions,

deactivation of explosive devices, and removal of hazardous materials [81, 145]. Offshore

and underwater platforms have become new application territories for robotic technology,

especially in rapidly-changing and challenging environments. Example tasks include moving

loads, performing maintenance, assisting with construction, as well as other unmanned tasks

on ships, seaborne platforms, and underwater vehicles [41, 85, 88, 118].

On of the motivating contexts of this dissertation is the application of robotics to agri-

culture. This field has only recently attracted attention as an opportunity for robotic,

autonomous mechanization aiming to improve productivity or to perform unmanned tasks

in challenging environments [14]. Extensive reviews of systems for guidance of autonomous

1Certain parts in this chapter is taken from [101] and [102] with the permission from the publisher.
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agricultural vehicles can be found in the recent literature [17, 21, 144]. Robotic manipu-

lation systems for harvesting various types of fruits and vegetables have been described in

[11, 33, 37, 50, 51],[53]–[58],[65, 123, 125, 149]. Similar principles have been applied for de-

leafing [56], for automating general orchard work [95], and for milking [92, 115]. Autonomous

mobile robots have also been used for agricultural inspection. Robotic inspection systems

are usually composed of cameras or sensors handled by a manipulator operating on a ve-

hicle. For example, mobile robots carrying vision systems that are capable of accurately

discriminating weeds from crops are reviewed in [129]. Other robots use imaging systems or

sensors for detecting plant water stress [66] and calcium deficiency in lettuce [133], as well

as for monitoring water [46] and measuring moisture [52]. Robotic sprayers are usually used

to take actions following the results of inspection. For instance, robots have been designed

to direct nozzles to spray detected weeds [13, 70, 73].

Unlike traditional application territories of robotic technology, such as manufacturing,

production, assembly, and transportation, there are significant technical challenges that pre-

vent robotics from being more pervasive in such an essential industry as agriculture. Among

these, irregularly shaped fields with random obstacles; variable row spacing, orientation, and

size between fields and between crops; and uneven terrain with varying soil conditions pose

barriers to the deployment of robotic technologies. Such operating conditions are a signif-

icant challenge for robotic manipulation, since most current control architectures assume

mounting on stationary platforms, or highly accurate model representations of the robotic

system, including the platform dynamics in the case of mounting on moving vehicles. The

next section reviews the state of the art in control of moving-base manipulators as well as

the outstanding challenges in this area of research.
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1.2 Control of Robots Operating on a Dynamic Platform

Robot manipulators have long been considered as testbeds for research in nonlinear con-

trol theory. Early work on adaptive control of fixed-base manipulators was mostly based on

model-reference adaptive-control architectures [32, 60, 105], the linear-in-parameter property

of dynamic structure [28, 112, 130] and the passivity of rigid robot dynamics [15, 107, 113].

Under relevant assumptions on the robots’ dynamic properties, these control strategies

were demonstrated to estimate certain types of unknown model parameters successfully

and achieve desired performance.

The extension of these classical control schemes to the context of a manipulator installed

on a dynamic platform, however, is challenging and still an ongoing research area. When the

actuators driving certain degrees of freedom of the robotic systems in the aforementioned

scenarios are turned off, the robotic systems become underactuated. In addition, the dy-

namics of the manipulator and the platform are mutually coupled due to conservation of

momentum. This adds tremendous challenges as compared with fixed-based manipulators

[120]. Firstly, the equations of motion for the unactuated degrees of freedom now act as

constraints on the control design. As these are intrinsically nonholonomic, it is not possi-

ble to solve for the underactuated states in terms of the controlled states. Consequently,

model-reduction methods fail to reduce the system’s dimension [111]. Moreover, accord-

ing to Brockett’s theorem [19], it is impossible to asymptotically stabilize a nonholonomic

system to an equilibrium point by a continuous and time-invariant state-feedback control

law, despite its controllability. Secondly, with complicated platform structures, or unknown

terrain geometries in the case of mobile manipulators, or in challenging environments, includ-

ing manipulators operating on ships and offshore platforms in high sea states, the platform

dynamics are usually unmodeled and add large inertial terms and disturbances to the de-

scription of the manipulator dynamics. Example control designs include switching schemes

based on support-vector-machine regression [77], a combination of fuzzy and backstepping

control [150], adaptive control based on estimation of a bounded parameterization of the
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unknown dynamics [78, 146], and adaptive variable structure control [89].

The most popular methods for controlling underactuated moving-base manipulators in-

volve adopting the adaptive-control frameworks for fixed-base manipulators. Recent exam-

ples of control schemes in this category for free-floating space manipulators include [114]

which constructs a dynamically equivalent model for parameterization and control of the

original system dynamics, [137] which assumes passivity and other structure properties to

eliminate the need for measuring the platform acceleration, [3] which proposes an adaptive

controller based on the reaction dynamics between the active and passive parts in the sys-

tem, and [138] which combines a recursive formulation of control torque and the platform’s

reference velocity and acceleration to achieve desirable tracking performance. For mobile

manipulators, work in [23] designs an interaction control scheme, which is composed of an

adaptation algorithm and an input-output linearizing controller. A trajectory and force

tracking control problem is addressed in [30], which presents an adaptive controller based on

a suitably reduced dynamic model to control a model with some unknown inertia parameters.

Work in [91] employs a Frenét-like description to transform the kinematics of nonholonomic

mobile platforms to generic driftless dynamics, which are then stabilized by two control

schemes for the kinematics and dynamics, respectively. In the presence of disturbances, [18]

combines a regressor-based adaptive scheme with an estimator for the disturbance to improve

tracking performance of mobile manipulators. Work in [4] develops an image-based visual

controller for mobile manipulators to track objects in three-dimensional space. The adaptive

laws are designed based on the assumption that the robot dynamics can be parameterized

linearly in terms of the unknown parameters in the model. In the context of marine robotics,

an adaptive controller that assumes passivity in the robot structure and an adaptive-sliding

control scheme are presented in [38] to compensate for model uncertainties. The analysis in

[7, 8] decomposes the system dynamics into control elements of individual bodies to derive a

modular controller for manipulators mounted to an underwater vehicle. The control scheme

in [62] allows underwater vehicle-manipulator systems to track both a prescribed sub-region

4



as well as uncertain tasks.

The existing adaptive-control algorithms reviewed here rely on the linear-in-parameter

property of Lagrangian systems. Specifically, they exploit the dynamic structure and the

passivity of rigid robot dynamics to factor the model description in terms of a regression

matrix and a vector of unknown parameters, and proceed to implement adaptive laws to

estimate these parameters. While the linear-in-parameter property is an acceptable model

parameterization for many fixed-based manipulators, it is not applicable to others, such as

robots with complicated link and/or joint geometries, unknown lengths, or with nonlinear

mass distribution, stiffness, or damping. Furthermore, these controllers require construction

of a well-defined and complicated model regression matrix, which involves correct selection

of the coefficient matrix of the joint velocity from among several options [36]. The use of the

model regression matrix, which must contain no uncertainty, also implies high dependence

of the control algorithms on system modeling.

In moving-base manipulators, the reliance on the linear-in-parameter property may further

undermine system performance. Firstly, accurate modeling of the platform dynamics is much

more challenging than modeling the manipulator. Platforms are often complex structures

with many uncalibrated parameters and uncertainties. In addition, moving-platform robots

often operate in challenging environments such as outer space, underwater, offshore, across

uneven terrains, or on ships operating in high seas [41]–[44], [67, 85]. Even when the ship

stands still, modeling of the ship’s structure is a very difficult task. Capturing the inputs to

the ship’s equation of motion due to the influence of waves, ocean currents, and wind is even

more challenging, if not impossible. The treatment in [41] avoids these problems by assuming

that the oscillations of the ship are known a priori for all time. This assumption is eliminated

in [42, 44] by two intriguing methods for predicting the ship’s motion, including an auto-

regressive predictor and a predictor that superposes a series of sinusoidal waves. However,

these methods require re-calibration of the parameters in the algorithms for different sea

locations. In addition, the prediction accuracy can only be achieved with advanced sensors,
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such as wave cameras and sensors that measure interaction forces on the ship from waves

and wind [44]. Similarly, in the case of mobile manipulators, most adaptive controllers are

formulated with the assumption that the robots are moving across perfectly even terrain.

The aforementioned challenges motivate the first main contribution of this dissertation.

We design an adaptive controller which is independent of system modeling and

can achieve desired tracking for manipulators that operate on an underactu-

ated dynamic platform. The control scheme proposed here is inspired by the work in

[61], which proposed the use of a filter in the control input of a reference model adaptive

controller to improve the robustness of a linear single input system. The architecture decou-

ples the estimation loop from the control loop to facilitate a significant increase in the rate

of estimation and adaptation, without a corresponding loss of robustness.

This work develops a control scheme for an underactuated system consisting of a manip-

ulator mounted on a moving platform with unmodeled dynamics. The proposed controller

employs a fast adaptation scheme while maintaining bounded deviation from a nonadaptive

reference system. In particular, the control design is tolerant of time delays in the control

loop, and maintains clean control channels even in the presence of measurement noise due

to the use of a low-pass filter structure in the control input. Tuning of the filter also allows

for shaping the nominal response and enhancing the delay robustness.

1.3 Delay robustness in robot control systems

Time delay is ubiquitous in many robotic systems, such as mobile robots [26, 128], unmanned

and aerial vehicles [9, 75, 124], networked robots [87, 94, 109], robots in manufacturing

[132, 47], and teleoperated robots [5, 74, 82]. Interestingly, as discussed in [39, 45, 63],

any unmodeled dynamics can be equivalently represented by a delay in the plant input. In

addition, small delays are sometimes injected voluntarily in the control laws to stabilize the

plants, as well as to alleviate the effects of uncertain dynamics [64, 121, 147]. However, in
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most systems, time delay in the control loop induces instability, and is resistant to many

classical controllers [106].

In the presence of time delay, the closed-loop dynamical system is given by a delay dif-

ferential equation (DDE), whose functional state evolves in a infinite dimensional function

space, in contrast to the finite dimensional state of an ordinary differential equation (ODE).

It is not a trivial exercise, and sometimes even impossible, to extend results from the analysis

of ODEs to that of DDEs. In addition, it is well known that the behavior of solutions to

a delay system can be much more complicated than the behavior of solutions to the same

system with zero delay [48]. For example, the solution to a DDE around an equilibrium

can be analyzed by its spectrum of its linearization, which includes an infinite number of

eigenvalues, as compared to a finite number of eigenvalues for an ODE [40].

In linear, time-invariant (LTI) systems, the time-delay margin, a direct indicator of system

robustness [59], can be computed from the linear frequency response. In nonlinear control

systems, however, there is no general method for computing the time-delay margin, and

robustness may be estimated, at best, on a case-by-case basis. In the case of the model-

reference adaptive controller (MRAC) and its modifications, such analysis relies on the use

of Lyapunov-Krasovskii functionals and Padé approximants. For example, in [31, 90, 104],

it is shown that the time-delay margin of an MRAC system decays to zero as the adaptive

gain goes to infinity. In contrast, a guaranteed positive time-delay margin for arbitrary

large adaptive gain for adaptive control scheme proposed in [61] applied to an LTI plant was

established in [20] via appropriately constructed LTI systems. The alternative approach in

[98] proves the guaranteed robustness of a similarly designed control scheme. However, these

studies are both restricted to linear plants.

The focus on delay robustness motivates the second main contribution of this disserta-

tion. We establish a positive lower bound for the time-delay margin, which

is independent of the adaptive gain, for an adaptive control scheme designed

for systems with unknown nonlinearities and constant input-gain matrices.
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Furthermore, the analysis is extended to adaptive control systems with time-

varying and nonlinear input-gain matrices.

1.4 Controlled Cooperation of networked robots

Cooperative control of networked manipulators has attracted much recent attention. The

purpose of controlled synchronization is to achieve certain cooperation among a large group

of robots. As an example, early work in [122] proposed a scheme to synchronize identical

robots to track a shared desired trajectory using a nonlinear observer. This controller requires

all-to-all interconnection of the robots. In addition, the nonlinear observer for estimating

accelerations is formulated using a complete and accurate model of the robots.

An adaptive approach was proposed in [24, 25] for synchronizing Lagrangian systems

using nonlinear estimators based on convergence results in contraction theories, see also

[84, 117, 136]. When the common desired trajectory is unavailable, stability of the controlled

system is achieved only if all systems are identical. In contrast with the previous cases which

produce satisfactory performance with constant time delay, the control scheme in [1, 2] is

able to synchronize a group of manipulators in the presence of time-varying communication

delay. Robot synchronization is also addressed in [83] in the presence of interaction forces

on the mechanical systems from a human operator. Such cooperative control scenarios

were extended to task space in [80] using passivity-based approaches discussed in [22, 131,

148]. Work in [139, 140] studied the synchronization problem with uncertainties in both

system dynamics and the Jacobian matrix. The controller was extended to drive the robots’

angular velocities to their average value in [141], and was designed to account for the case

of communication delay in [142].

The adaptive control algorithms in the cited literature again rely on the linear-in-parameter

property of Lagrangian systems. As stated previously, they parameterize a robot’s dynamic

structure as a product of a well-defined regression matrix and a vector of unknown pa-
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rameters. For fixed-base manipulators, since these assumptions often apply, the unknown

parameters can be estimated by appropriate adaptive laws.

In contrast, when manipulators are mounted on a dynamic platform, the geometry and

mass distribution of the overall robot-and-platform system may be too complicated to ac-

curately construct the regression matrices. In addition, uncertain large variations in the

platform’s inertial properties disturb the control system and are not modulated by the adap-

tive controllers. Examples include significant platform motions driven by unknown environ-

mental factors, such as high sea states and wind and current conditions for manipulators

operating on a ship or an offshore platform.

The absence in the literature of the development of adaptive controllers for networked

moving-base manipulators motivates the third main contribution of this dissertation. We

develop adaptive controllers for synchronization and consensus of a network

of manipulators mounted on a dynamic platform in the presence of communi-

cation delays. The control scheme is independent of any detailed system modeling of the

platform and the manipulators. The proposed controller is shown to have bounded estima-

tion error and to make the networked system track a nonadaptive reference system closely.

The synchronization objective is achieved despite the presence of communication delay, as

well as unmodeled dynamics of the platform. When there is no common desired trajectory,

the joint angles of all robots are driven to a consensus configuration. Moreover, the consensus

values can be controlled via a leader-follower algorithm.

1.5 Timeline of development

A preliminary formulation of an adaptive controller for a robotic manipulator designed by

following the L1 control architecture in [61] was first presented in [99] in August, 2013. No-

tably, in this first paper, the control law included explicit dependence on the mass matrix

and, therefore, knowledge about the plant. In later work, this assumption was removed.
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In particular, in a preliminary technical report [100], posted online in January 2014, we

developed a control scheme, which does not depend explicitly on the plant. Notably, the

theoretical proof of transient performance bounds still assumes known inertia matrix. A

corrected proof was subsequently documented in a journal publication [102], which appeared

online in November 2014. This paper extended the analysis to an arbitrary underactuated

Lagrangian system. In this dissertation, we continue the analysis of an arbitrary under-

actuated Lagrangian system by establishing rigorously the delay robustness of the control

formulation, independently of the adaptive gain, for bounded desired trajectories.

The control formalism was later applied to networks of robots in a conference paper [101],

presented in September, 2014, showing again that stability and transient performance can

be guaranteed with sufficiently large adaptive gain. In this dissertation, we establish the

stability of the closed-loop system in the presence of communication delays, independently

of the delay.

The paper in [12] by a different group of authors, to be presented at ICRA in May, 2015,

has implemented the control scheme in [100] for a parallel kinematic manipulator. The

controller is shown to outperform a proportional-derivative scheme.

1.6 Outline of the dissertation

Chapter 2 develops an adaptive controller for underactuated robotic systems with unmodeled

dynamics. The control scheme is motivated by the applications of manipulators operating

on dynamic platforms. The proposed formulation is tested in different trajectory-tracking

scenarios: (i) a manipulator installed on a ship operating in a high-sea state with uncertain

environmental disturbances and (ii) a mobile manipulator moving across a rough terrain

of unknown geometry. The simulation results illustrate the tracking performance of the

proposed control algorithm, its ability to deal with unmodeled dynamics, and its robustness

to measurement noise and time delay, while maintaining smooth control signals. Other
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than the introduction and conclusion, the content of this chapter is reproduced from the

paper “Adaptive Control of Underactuated Robots with Unmodeled Dynamics,” published

in Robotics and Autonomous Systems [102], and included here with permission from the

publisher.

The ability of the control scheme to tolerate time delay in the control loop, which is an

indicator of robustness, is demonstrated extensively in Chapter 3. An LTI system is estab-

lished in order to derive a conservative lower bound on the critical time delay associated

with a static reference input and in the limit of large estimation gains. In addition, a nu-

merical method is proposed for quantifying the robustness against time delay of the system’s

response to a given static reference input based on techniques of parameter continuation.

The content of this chapter is reproduced from the paper “Marginal stability in L1-adaptive

control of manipulators” [99], published in the Proceedings of the 9th International Con-

ference on Multibody Systems, Nonlinear Dynamics, and Control, 2013, and included with

permission from the publisher.

Chapter 4 studies the delay robustness of the adaptive control framework designed for

a class of nonlinear systems with constant input-gain matrices. The analysis shows that

this controller has a positive lower bound for the time-delay margin. In particular, if the

input delay is below this lower bound, then the state and control input of the adaptive

control system follow those of a nonadaptive, robust reference system closely. The analysis

also suggests a way to compute this lower bound for the delay robustness using a Padé

approximant. The material in this chapter is based on a journal manuscript submitted

for review [103]. The analysis is generalized for a nonlinear system with time-varying and

state-dependent input-gain matrix in Chapter 5. In comparison with Chapter 4, where the

analysis mainly relies on the use of Laplace transforms, the analysis in Chapter 5 is based

on input-output maps and deals with time-varying DDEs.

In Chapters 6 and 7, the control framework is extended to the context of cooperative

control of networked manipulators operating on an underactuated dynamic platform in the
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presence of communication delays. Analogously to the single manipulator case, the theo-

retical analysis based on input-output maps of functional differential equations shows that

the adaptive control system’s behavior matches closely that of a nonadaptive reference sys-

tem. The tracking-synchronization objective is achieved despite the effects of communication

delays and unknown dynamics of the platform. When there is no common desired trajec-

tory, the modified controller drives all robots to a consensus configuration. In addition,

a leader-follower scheme is proposed that allows for the control of the constant and time-

varying consensus values. A special case, where there is no communication delay, of the

work in Chapters 6 and 7 appeared in “Synchronization and Consensus of a Robot Network

on an Underactuated Dynamic Platform” published in the Proceedings of 2014 IEEE/RSJ

Conference of Intelligent Robots and Systems (IROS 2014) [101].
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CHAPTER 2

ADAPTIVE CONTROL OF UNDERACTUATED
ROBOTS WITH UNMODELED DYNAMICS

In this chapter1, we develop a controller for an underactuated system consisting of a ma-

nipulator mounted on a moving platform with unmodeled dynamics. The control scheme,

which is independent of system modeling, promotes the use of a filter in the control input

of a reference model adaptive controller to maintain the control system’s robustness. The

proposed controller employs a fast adaptation scheme while maintaining bounded deviation

from a nonadaptive reference system. In particular, the control design is tolerant of time

delays in the control loop, and maintains clean control channels even in the presence of mea-

surement noise due to the use of a low-pass filter structure in the control input. Tuning of

the filter also allows for shaping the nominal response and enhancing the delay robustness.

The proposed controller is implemented for two example underactuated robotic systems in

two trajectory-tracking contexts: 1) a manipulator mounted on a ship operating in a high-sea

state under uncertain environmental disturbances on the ship dynamics from wind, waves,

and ocean currents; and 2) a mobile manipulator moving across a rough terrain of unknown

geometry. The first task is used to assess the tracking performance when the platform

motions contribute large inertia and nonlinearity to the manipulator dynamics. The second

task demonstrates the proposed controller’s effectiveness when the manipulator dynamics are

mutually coupled with the platform dynamics, whose high-frequency motions are induced by

both the manipulator motions and traversal across a rough terrain via a suspension system.

The control objectives in these two tasks are achieved under both velocity-measurement

1The material in this chapter is taken from [102] with the permission from the publisher. The introduction
and the conclusion are modified to agree with the flow of the dissertation. In addition, here, the models are
put in the simulation sections instead of the appendix as in [102].
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noise and time delay in the control signal.

The remainder of this chapter is organized as follows. A template dynamic model of an

underactuated robotic system is described in Sect. 2.1. The text presents a broad-strokes

description of a popular approach for adaptive control of such systems, including its poten-

tial shortcomings. Section 2.2 presents preliminary results that are used in the analysis in

the following sections. The proposed adaptive control design is introduced and analyzed in

Sect. 2.3. The main results on the transient performance bounds are discussed in Sect. 2.4.

Section 2.5 illustrates the trajectory-tracking performance of the control design in the con-

text of a robot arm mounted on a ship with uncertain dynamics, including in the presence

of actuator delay and measurement noise. Sect. 2.6 considers the implementation of the pro-

posed controller in a mobile manipulator whose platform motions are disturbed by motion

across an uneven and unknown terrain, with the addition of a nonholonomic constraint on

the platform kinematics. A concluding discussion in Sect. 2.7 reviews the advantages of the

proposed design and points to open problems in its characterization.

2.1 Dynamic Model of Underactuated Robotic Systems

Let a superscribed dot denote differentiation with respect to time t. In the absence of

nonholonomic constraints on the system kinematics, the dynamics of a robotic manipulator

mounted on a platform, and with several unactuated degrees of freedom, are governed by

equations of motion of the form [120]

 Maa(q) Mau(q)

MT
au(q) Muu(q)

 q̈ +

 Ca(q, q̇)

Cu(q, q̇)

 q̇ +

 Ga(q)

Gu(q)

 =

 u

0

+

 Daa(t)

Duu(t)

 , (2.1)

where qT =
[
qTa , q

T
u

]
, the n generalized coordinates contained in the column vector qa describe

the actuated degrees of freedom, and the m generalized coordinates contained in the column

vector qu describe the unactuated degrees of freedom of the robotic system. The column
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vectors u, Daa and Duu contain the time-dependent control-input torques and bounded

time-dependent unknown disturbances to the actuated and unactuated degrees of freedom,

respectively. The inertia matrices Maa, Muu and M are all positive-definite, symmetric, and

bounded. The remaining terms include Coriolis and centripetal effects, gravity and other

conservative forces, as well as dissipative and velocity-dependent mechanisms.

A popular adaptive approach (e.g., [137, 3, 18]) for controlling the system described above

is based on the so-called linear-in-parameter property of Lagrangian systems, which here

takes the form Maa(q) Mau(q)

MT
au(q) Muu(q)

 q̈r +

 Ca(q, q̇)

Cu(q, q̇)

 q̇r +

 Ga(q)

Gu(q)

 =

 Ya(q, q̇, q̇r, q̈r)

Yu(q, q̇, q̇r, q̈r)

 a (2.2)

for some vector a of model parameters, and for arbitrary reference trajectories qTr = [qTar, q
T
ur]

of the actuated and unactuated generalized coordinates of the system. In practice, the model

parameters contained in a are assumed to be unknown and, therefore, to be estimated in real-

time by an estimator â. In this case, the regression matrices Ya(q, q̇, q̇r, q̈r) and Yu(q, q̇, q̇r, q̈r)

are assumed to be known functions of the actual and reference dynamics for all time. Given a

defining relationship for the reference trajectory in terms of the actual and desired dynamics,

the control signal is then designed to have the following general form:

u = P.D. + Ya(q, q̇, q̇r, q̈r)â, (2.3)

where P.D. represents proportional-derivative, negative-feedback control terms that are re-

sponsible for repressing disturbances, and designed for specific control tasks and performance

tuning. The time history of the parameter estimate â is governed by adaptive laws, designed

with the tracking error as feedback in order to compensate for the nonlinearity in the model.

For example, [137] considers the task of controlling a free-floating space manipulator in its

task space. Here, the reference trajectory is the output of a reference system whose input
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includes a sliding-variable formulation of the end-effector tracking error. Similarly, the P.D.

term in Eq. (2.3) is taken to be proportional to this sliding variable. Furthermore, the

adaptive law is designed as follows:

˙̂a = −Γ

 Ya(q, q̇, q̇r, q̈r)

Yu(q, q̇, q̇r, q̈r)


T

(q̇ − q̇r) (2.4)

with Γ being an adaptive gain. A similar formulation is employed for estimation of the

Jacobian matrix that relates the system joint space to the corresponding task space.

Two fundamental assumptions are used in the formulation of the adaptive control strategy

described above, namely i) the existence of a factorization of the left-hand side of Eqn. (2.2)

in terms of a product of a matrix and a vector of model parameters and ii) that the matrix is

known and the vector can be estimated. For fixed-base manipulators, these assumptions often

apply, i.e., the unknown model parameters may be collected in a vector and the dynamics

appropriately factored.

When the unknown parameters appear as nonlinear terms, factorization is no longer pos-

sible. Even in cases where factorization is possible in principle, the complexity of the ge-

ometry and mass distribution of the overall manipulator-and-platform system may make it

prohibitively difficult to construct the regression matrices Ya and Yu, especially when the

number of degrees of freedom is large. This is particularly common for moving-base ma-

nipulators, mounted on platforms whose structure may change in time and involve many

uncalibrated parameters. In this case, the design of the controller for the manipulator re-

quires detailed information about the geometry and mass distribution of the platform, which

may not be available or even predictable, as changes to the latter are imposed by other control

loops.

In the absence of certain knowledge of the regression matrices Ya and Yu, uncertainty

associated with large variations in the inertial and geometric properties of the platform enters

the control problem as disturbances that are not accommodated within the adaptive control

16



design. Examples include significant platform motions driven by unknown environmental

factors, such as uneven terrain for ground vehicles, or high sea states and uncertain wind

and current conditions for manipulators based on ships or off-shore platforms, all of which

may vary with location and time. In these cases, disturbance rejection must be handled

by the design of the P.D. terms, typically by using very large numerical values for the

proportional and derivative gains, with likely loss of system robustness.

To address these observations, the control design in this dissertation avoids the linear-

in-parameter factorization entirely. Here, all modeling terms in Eq. (2.1), including Maa,

Mau, Muu, Ca, Cu, Ga, Gu, Daa, and Duu, are considered unknown functions of time. Before

deriving the control scheme, the equations of motion in Eq. (2.1) are converted to a reduced

form to demonstrate the reasoning behind the controller design that follows. Specifically, by

solving for q̈u in the bottom component of Eq. (2.1), we get

q̈u = M−1
uu (q)

(
−MT

au(q)q̈a − Cu(q, q̇)q̇ −Gu(q) +Duu(t)
)
. (2.5)

Substitution in the top component of Eq. (2.1) then yields

Ma(q)q̈a +Na(q, q̇) = u+Da(q, t), (2.6)

where

Ma(q) = Maa(q)−Mau(q)M
−1
uu (q)MT

au(q). (2.7)

Na(q, q̇) = Ca(q, q̇)q̇ +Ga(q)−Mau(q)M
−1
uu (q) (Cu(q, q̇)q̇ +Gu(q)) , (2.8)

Da(q, t) = Daa(t)−Mau(q)M
−1
uu (q)Duu(t). (2.9)

Since ∣∣∣∣∣∣∣
Maa(q) Mau(q)

MT
au(q) Muu(q)

∣∣∣∣∣∣∣ = |Ma(q)| · |Muu(q)| (2.10)
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(see, e.g., [127]), it follows that Ma must be invertible. Moreover, it is trivial to show that

M−1
a is a symmetric positive definite matrix. In addition, there exist bounding constants ml

and mh such that

0 < mlI ≤M−1
a (q) ≤ mhI, for all q ∈ Rm+n (2.11)

As seen in Eq. (2.6), the coefficients governing the dynamics in the actuated degrees of

freedom depend on the time-histories of the unactuated degrees of freedom (and vice versa).

In the analysis below, we assume that qu(t) and q̇u(t) can be bounded a priori for all time.

We revisit this assumption in the concluding section. In the next sections, we design an

adaptive controller that is independent of any detailed knowledge of the system model, and

proceed to demonstrate successful estimation of the unknown model coefficients, as well as

close tracking of the actuated degrees of freedom along the corresponding desired trajectories.

2.2 Preliminaries

2.2.1 An input-output map

For each smooth function v : R → Rn+m, let Φv : R × R → Rn×n be the unique solution to

the initial-value problem

∂

∂t
Φv(t, t

′) = −kM−1
a

(
v(t)

)
Φv(t, t

′), Φv(t
′, t′) = I, (2.12)

where the symmetric matrix Ma is a smooth function of its argument, and

0 < mlI ≤M−1
a (q) ≤ mhI, for all q ∈ Rn+m. (2.13)
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Using the Gronwall lemma, it follows that

tr
(
ΦT
v (t, t′)Φv(t, t

′)
)
≤ ne−2kml(t−t′) (2.14)

and, consequently, that Φv,ij(t, t
′) ≤

√
ne−kml(t−t

′) for i, j = 1, . . . , n, independently of v.

The L1 norm of the linear input-output map

Fv : η 7→ −k
∫ t

0

Φv(t, t
′)η(t′) dt′ (2.15)

is then given by

‖Fv‖L1 , max
1≤i≤n

(
n∑
j=1

sup
t≥t∗,t∗∈R+

∫ t

t∗
k |Φv,ij(t, t

′)| dt′

)
≤ n
√
n

ml

, (2.16)

independently of v.

Let Mv[η] , M−1
a (v)η. Since the matrix M−1

a is bounded, it follows that the composi-

tions Mv ◦ Fv and Fv ◦Mv also have bounded norm, independently of v. Moreover, since

∂Φv(t, t
′)/∂t′ = Φv(t, t

′)kM−1
a (v(t′)), it follows by integration by parts that

Fv[η̇] = −k (Fv ◦Mv + I) [η], (2.17)

provided that η(0) = 0.

2.2.2 Parameterizations and bounds

Let τ > 0 be given, and consider a differentiable function η(t, ζ) : R× Rp → Rn, such that

‖η(t, 0)‖∞ ≤ Z <∞ (2.18)
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and

‖ζ‖∞ ≤ ξ ⇒
∥∥∥∥∂η(t, ζ)

∂t

∥∥∥∥
∞
≤ dηt(ξ) <∞,

∥∥∥∥∂η(t, ζ)

∂ζ

∥∥∥∥
∞
≤ dηζ(ξ) <∞ (2.19)

for arbitrary ξ and t ∈ [0, τ ]. Let ‖ft‖L∞ denote the restriction of the L∞ norm to the interval

[0, t], and suppose that the differentiable functions r(t) and χ(t) satisfy the inequality

‖χt‖L∞ ≤ Q1‖rt‖L∞ +Q2, t ∈ [0, τ ] (2.20)

for some positive constants Q1 and Q2. Let

ρ̄(ρ) , max{ρ+ 1, Q1(ρ+ 1) +Q2}, (2.21)

and define

Lρ ,
ρ̄(ρ)

ρ
dηζ
(
ρ̄(ρ)

)
(2.22)

and ζ(t) ,
(
r(t), χ(t)

)
. Together with (2.20), the bound ‖rτ‖L∞ ≤ ρ <∞ implies that

‖ζt‖L∞ ≤ max{‖rt‖L∞ , ‖χt‖L∞} < ρ̄(ρ) (2.23)

and, using the bounds in (2.18) and (2.19),

‖ηt‖∞ ≤ ‖
(
η(t, ζ(t))− η(t, 0)

)
‖∞ + ‖η(t, 0)‖∞ < ρLρ + Z (2.24)

for t ∈ [0, τ ]. If, in addition, ‖ṙτ‖L∞ ≤ dr <∞, then:

Lemma 2.1. There exist continuous, piecewise-differentiable functions θ(t) ∈ Rn and σ(t) ∈

Rn such that

η
(
t, ζ(t)

)
= θ(t)‖rt‖L∞ + σ(t), t ∈ [0, τ ]. (2.25)
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On this interval, ‖θ(t)‖∞ < Lρ and ‖σ(t)‖∞ < LρQ2 +Z +α for some arbitrary α > 0, and,

within any subinterval of differentiability, ‖θ̇(t)‖∞ < dθ <∞ and ‖σ̇(t)‖∞ < dσ <∞.

Proof. See proof of Lemma A.9.2 in [61].

The conclusions of Lemma 2.1 hold in the special case that χ(t) ,
(
qa(t), qu(t), q̇u(t)

)
,

where the functions qu(t) and q̇u(t) are bounded for all t, and

q̇a − q̇ad + λ(qa − qad) = r (2.26)

for λ > 0 and some bounded function qad(t) with all bounded derivatives. Indeed, in this

case

‖χt‖L∞ ≤ ‖qa,t‖L∞ + max{‖qu,t‖L∞ , ‖q̇u,t‖L∞} ≤ Q1‖rt‖L∞ +Q2, (2.27)

where Q1 = ‖(s+ λ)−1‖L1 = λ−1 and

Q2 = ‖(s+ λ)−1(qa(0)− qad(0))‖L∞ + ‖qad,t‖L∞ + max{‖qu,t‖L∞ , ‖q̇u,t‖L∞}. (2.28)

As a byproduct, it follows that ‖qa,τ‖L∞ and ‖q̇a,τ‖L∞ are both finite.

Suppose, instead, that η(t, ζ) satisfies (2.18) and (2.19), r(t) and χ(t) satisfy (2.20), and

r(t) = A[η(t, ζ(t))] + B[r(0)δ(t)], (2.29)

where ζ(t) ,
(
r(t), χ(t)

)
, and A and B are linear integral operators such that ‖A‖L1 = A <

∞, and ‖B[r(0)δ(t)]‖L∞ = B <∞. Then,

Lemma 2.2. The inequalities ‖r(0)‖∞ < ρ and A(ρLρ+Z)+B < ρ imply that ‖rτ‖L∞ < ρ.

Proof. Suppose that ‖rτ‖L∞ ≥ ρ. Then ‖r(0)‖∞ < ρ implies that there exists a τ̂ ∈ [0, τ ],

such that

‖r(t)‖∞ < ρ, ∀t ∈ [0, τ̂), and ‖rτ̂‖L∞ = ‖r(τ̂)‖∞ = ρ. (2.30)
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Using (2.29) and (2.24) we obtain

‖rτ̂‖L∞ ≤ A‖ητ̂‖L∞ +B < ρ, (2.31)

contradicting the original inequality.

2.2.3 Estimation bounds

Given positive scalars xb and ε, let f : Rn → R be given by

f : x→ ‖x‖
2 − (xb − ε)2

2εxb − ε2
(2.32)

such that f |‖x‖=xb−ε = 0 and f |‖x‖=xb = 1, and define the projection operator [71]:

Proj : (x, y;xb, ε)→

 y − f(x)
(
yT ∇f(x)
‖∇f(x)‖

)
∇f(x)
‖∇f(x)‖ if f(x) > 0 and yT∇f(x) > 0

y otherwise

(2.33)

for x, y ∈ Rn. Then, following [71], for Γ > 0,

ẋ = Γ Proj(x, y;xb, ε) and ‖x(0)‖ ≤ xb ⇒ ‖x(t)‖ ≤ xb, ∀t. (2.34)

Moreover, provided that ‖x∗‖ ≤ xb − ε,

(
x− x∗

)T (
Proj(x, y;xb, ε)− y

)
≤ 0. (2.35)

Now let τ > 0 and ε > 0 be given, and suppose that θ(t) and σ(t) are continuous, piecewise-

differentiable functions that satisfy ‖θ(t)‖∞ < θb − ε < ∞ and ‖σ(t)‖∞ < σb − ε < ∞

for all t ∈ [0, τ ], and, within any subinterval of differentiability, ‖θ̇(t)‖∞ < dθ < ∞ and

‖σ̇(t)‖∞ < dσ < ∞. Let the symmetric, positive-definite matrix P satisfy the Lyapunov

equation A>spP + PAsp = −Q, for some arbitrary symmetric, positive-definite matrix Q and
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Hurwitz matrix Asp. Finally, for some function µ(t), consider the initial-value problems

ṙ = Amr + µ+ θ‖rt‖L∞ + σ, r(0) = r0 (2.36)

and

˙̂r = Amr + µ+ θ̂‖rt‖L∞ + σ̂ + Aspr̃, r̂(0) = r0, (2.37)

˙̂
θ = Γ Proj

(
θ̂,−P r̃‖rt‖L∞ ; θb, ε

)
, θ̂(0) = θ̂0, (2.38)

˙̂σ = Γ Proj
(
σ̂,−P r̃;σb, ε

)
, σ̂(0) = σ̂0, (2.39)

where r̃ , r̂ − r, ‖θ̂0‖ ≤ θb, and ‖σ̂0‖ ≤ σb.

Lemma 2.3. Let λmin(S) and λmax(S) denote the smallest and largest eigenvalue, respec-

tively, of a positive-definite symmetric matrix S. Then,

‖r̃τ‖L∞ ≤
√

νm
λmin(P )Γ

, (2.40)

where

νm , 4(θ2
b + σ2

b ) + 4
λmax(P )

λmin(Q)

(
θbdθ + σbdσ

)
. (2.41)

Proof. Let θ̃ , θ̂ − θ and σ̃ , σ̂ − σ and define the Lyapunov function

V , r̃TP r̃ +
1

Γ
(θ̃T θ̃ + σ̃T σ̃). (2.42)

It follows that

V (0) ≤ 4

Γ

(
θ2
b + σ2

b

)
<
νm
Γ
. (2.43)

We show by contradiction that

V (t) ≤ νm
Γ
, ∀t ∈ [0, τ ]. (2.44)
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To this end, choose τ̂ ∈ (0, τ ] such that θ̇ and σ̇ are continuous on [0, τ̂). Suppose that

V (τ̄) > νm/Γ and V̇ (τ̄) ≥ 0 for some τ̄ < τ̂ . It follows from (2.42) that

‖r̃(τ̄)‖2
∞ >

4

Γλmin(Q)

(
θbdθ + σbdσ

)
. (2.45)

Moreover, by the properties of the projection operators,

V̇ ≤ −r̃TQr̃ +
2

Γ

∣∣θ̃T θ̇ + σ̃T σ̇
∣∣ ≤ −‖r̃‖2

∞ λmin(Q) +
4

Γ

(
θbdθ + σbdσ

)
(2.46)

for all t ∈ [0, τ̂ ], and we arrive at a contradiction by evaluation at t = τ̄ . By continuity,

V (t) ≤ νm/Γ for all t ∈ [0, τ̂ ]. Equation (2.42) then implies that

‖r̃τ̂‖L∞ ≤
√

νm
λmin(P )Γ

. (2.47)

By repeating this analysis for each subsequent interval of continuity of θ̇ and σ̇, we conclude

that (2.47) holds with τ̂ replaced by τ .

Suppose that the function η(t, ζ) satisfies (2.18) and (2.19). Let ζ(t) :=
(
r(t), χ(t)

)
, where

ṙ(t) = Amr(t) + µ(t) + η(t, ζ(t)), r(0) = r0 (2.48)

for some function µ(t). Suppose that r(t) and χ(t) satisfy (2.20), ‖rτ‖L∞ < ρ < ∞, and

‖µτ‖L∞ <∞. In this case, Eq. (2.24) implies ‖ητ‖L∞ <∞. Equation (2.36) and the bounds

on θ, σ, θ̇ and σ̇ then follow from Lemma 2.1 and the conclusions of Lemma 2.3 again apply.

Suppose, in addition, that µ =M[u], where ‖M‖L1 < ∞ and ‖uτ‖L∞ = ub < ∞. Then,

the conclusions of Lemma 2.3 follow also by replacing µ by u in Eqs. (2.36) and (2.37), σ by

σ + (M−I)u in Eq. (2.36), and σb by σb + (‖M‖L1 + 1)ub in Eq. (2.39).
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2.3 Adaptive controller for underactuated robots

Let the desired time histories for the robot’s actuated degrees of freedom be described by the

vector-valued function qad(t) and suppose that this is bounded with bounded derivatives. In

the definition of the auxiliary kinematic variable (cf. the sliding control formulation in [130])

r , q̇a − q̇ad + λ (qa − qad) , (2.49)

the choice λ > 0 ensures that Eq. (2.49) is an exponentially stable system for qa. Indeed, as

long as the controller drives r to a neighborhood of 0, the joint trajectory qa converges to a

neighborhood of qad exponentially fast.

Let Am be a Hurwitz matrix and set µ ,M−1
a (q)u. It follows by substitution of Eqs. (2.6)

and (2.49) into the time derivative of Eq. (2.49) that

ṙ(t) = Amr(t) + µ(t) + η(t, ζ(t)), (2.50)

where ζ , (r, qa, qu, q̇u) and the nonlinearity η(t, ζ(t)) is obtained from

η(t, ζ) ,M−1
a (q)

(
Da(q, t)−Na(q, q̇a, q̇u)

)
− q̈ad(t) + λ(q̇a − q̇ad(t))− Amr (2.51)

with q̇a = r + q̇ad(t)− λ (qa − qad(t)). Here,

η(t, 0) = M−1
a (0)

(
Da(0, t)−Na(0, q̇ad(t) + λqad(t), 0)

)
− q̈ad(t) + λ2qad(t) (2.52)

whose norm is bounded for all t by some constant Z provided that similar expectations are

placed on the disturbances Da(0, t). We similarly restrict attention to disturbances that

guarantee that

‖ζ‖∞ ≤ ξ ⇒
∥∥∥∥∂η(t, ζ)

∂t

∥∥∥∥
∞
≤ dηt(ξ) <∞,

∥∥∥∥∂η(t, ζ)

∂ζ

∥∥∥∥
∞
≤ dηζ(ξ) <∞ (2.53)
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for arbitrary ξ and all t. The objective of the following sections is to establish an adap-

tive control formulation for u that ensures predictable performance bounds for the system

response and the control input.

2.3.1 Nonadaptive reference system

Let k > 0 denote the bandwidth of the first-order low-pass filter k/(s+ k). For an arbitrary

smooth function v : R→ Rm+n, consider the system Rv obtained by appending

µ(t) = M−1
a

(
v(t)

)
u(t) (2.54)

and

u̇(t) = −kµ(t)− kη
(
t, ζ(t)

)
, u(0) = 0 (2.55)

to Eqs. (2.49) and (2.50). Let Φv be the unique solution to the initial-value problem

∂

∂t
Φv(t, t

′) = −kM−1
a

(
v(t)

)
Φv(t, t

′), Φv(t
′, t′) = I, (2.56)

It follows that

u(t) = Fv[η(t, ζ(t))] , −k
∫ t

0

Φv(t, t
′)η(t′, ζ(t′)) dt′ (2.57)

and

µ(t) = Dv[η(t, ζ(t))] ,M−1
a

(
v(t)

)
Fv[η(t, ζ(t))] (2.58)

in terms of the linear input-output maps Fv and Dv. As shown in 2.2.1,

bF , sup
v
‖Fv‖L1 <∞. (2.59)

Now, let I be the identity map and H be the linear input-output map corresponding to
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the transfer function (sI− Am)−1. It follows that

r(t) =
(
H ◦ (I +Dv)

)
[η(t, ζ(t))] +H[r(0)δ(t)], (2.60)

where b1 , supv ‖H ◦ (I +Dv) ‖L1 <∞ and ‖H[r(0)δ(t)]‖L∞ <∞. In the special case that

r(0) = 0, rearranging the terms in Eqs. (2.50) and (2.55) yields

r(s) = (sI− Am)−1 (u(s) + ηu(s)) , (2.61)

where

u(s) = − k

s+ k
ηu(s) (2.62)

and ηu(t) ,
(
M−1

a

(
v(t)

)
− I
)
u(t) + η

(
t, ζ(t)

)
. In this case, it follows that

‖r‖L∞ ≤
∥∥s(sI− Am)−1

∥∥
L1

∥∥∥∥ 1

s+ k

∥∥∥∥
L1

‖ηu‖L∞ ≤
2

k

(
(mh + 1)bF + 1

)
‖η‖L∞ , (2.63)

i.e., that

b1 ≤
2

k

(
(mh + 1)bF + 1

)
. (2.64)

Let Z and Lρref
be defined as in Eqs. (2.18) and (2.22) in 2.2.2, respectively. Since b1 → 0

uniformly in v as k →∞, it follows that there exists a K, such that the stability condition

b1 <
ρref − ‖H[r(0)δ(t)]‖L∞

Lρref
ρref + Z

(2.65)

is satisfied for some ρref > ‖H[r(0)δ(t)]‖L∞ provided that k > K. Then, from the remarks

following Lemma 2.1 and the result of Lemma 2.2 in 2.2.2, we conclude that if ‖r(0)‖∞ < ρref ,

then the bounds ‖r‖L∞ < ρref and ‖u‖L∞ < bF(Lρref
ρref +Z) must hold forRv, independently

of v. In particular, this conclusion must hold for the nonadaptive reference system obtained
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by substituting the actual time histories q(t) for v(t), and we arrive at

Theorem 2.1. Consider the nonadaptive reference system

ṙref(t) = Amrref(t) +M−1
a (q(t))uref(t) + η(t, ζref(t)), rref(0) = r0 (2.66)

u̇ref(t) = −k
(
M−1

a (q(t))uref(t) + η
(
t, ζref(t)

))
, uref(0) = 0 (2.67)

where q = (qa, qu), ζref = (rref , qa,ref , qu, q̇u), q̇a,ref = rref + q̇ad(t) − λ (qa,ref − qad(t)), and

qa,ref(0) = qa(0). For sufficiently large k, there exists a positive scalar ρref , such that

‖rref(0)‖∞ < ρref implies that ‖rref‖L∞ < ρref and ‖uref‖L∞ < bF(Lρref
ρref + Z).

From Eq. (2.60) and (2.64), it follows that

‖r(t)−H[r(0)δ(t)]‖L∞ = O
(
k−1
)

(2.68)

for k →∞. We obtain

Lemma 2.4. The response of Rv converges to eAmtr0 when k →∞.

Lemma 2.4 implies that the response of the nonadaptive reference system will converge to a

neighborhood of 0 exponentially fast. The size of the neighborhood is inversely proportional

to the filter bandwidth k.

2.3.2 Design of the adaptation laws and the state predictor

By Theorem 2.1 and the remarks following Lemma 2.1 in 2.2.2, it follows that, in the

nonadaptive reference system, and provided that ‖rref(0)‖∞ < ρref , the parameterization

η(t, ζref(t)) = θref(t)‖rref,t‖L∞ + σref(t) holds for all t, in terms of a pair of continuous,

piecewise-differentiable and uniformly bounded functions θref and σref . Equivalently,

ṙref = Amrref + uref + θref‖rref,t‖L∞ + σ̄ref (2.69)
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and

u̇ref = −k (uref + θref‖rref,t‖L∞ + σ̄ref) , (2.70)

where

σ̄ref , σref + (M−1
a (q)− I)uref (2.71)

is similarly bounded.

We proceed to consider an adaptive control design for the original dynamics in Eqs. (2.49)

and (2.50) in lieu of Eq. (2.55). Analogous to Eqs. (2.69) and (2.70), consider the state

predictor

˙̂r = Amr + u+ θ̂‖rt‖L∞ + σ̂ + Aspr̃, r̂(0) = r0, (2.72)

and control design

u̇ = −k
(
u+ θ̂‖rt‖L∞ + σ̂

)
, u(0) = 0, (2.73)

where r̃ , r̂−r is the prediction error and Asp is a Hurwitz matrix of loop-shaping parameters

that may be tuned to reject oscillations caused by high-frequency disturbances or noise, as

well as to make r̃ converge to 0 faster. Here, θ̂ and σ̂ model adaptive estimates for θ and σ̄,

governed by the projection-based laws

˙̂
θ = Γ Proj

(
θ̂,−P r̃‖rt‖L∞ ; θb, ε

)
, θ̂(0) = θ̂0, (2.74)

˙̂σ = Γ Proj
(
σ̂,−P r̃;σb, ε

)
, σ̂(0) = σ̂0, (2.75)

in terms of the adaptive gain Γ ∈ R+, and the positive-definite, symmetric matrix P , ob-

tained as the solution to the Lyapunov equation A>spP + PAsp = −I. As defined in 2.2.3,

the projection operator Proj(·, · ; ·, ·), ensures that ‖θ̂(t)‖∞ ≤ θb and ‖σ̂(t)‖∞ ≤ σb provided
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that θ̂0 and σ̂0 satisfy these same bounds.

2.4 Performance bounds

In this section, we prove that the state and control input of the proposed adaptive control

system governed by Eqs. (2.49)-(2.50) and (2.72)-(2.75) follow those of the nonadaptive

reference system Rq closely, provided that the bandwidth k, the adaptive gain Γ, the scalar

λ, and the bounds θb and σb are chosen appropriately. In particular, we prove the following

theorem:

Theorem 2.2. Suppose that ρref > ‖r(0)‖∞ and that ρref and k satisfy the condition (2.65),

and choose λ ≥ 1. Then, for ν � 1, there exist θb, σb, and C > 0, such that

‖r̂ − r‖L∞ ≤ ν, ‖rref − r‖L∞ = O(ν), ‖uref − u‖L∞ = O(ν), (2.76)

provided that Γν2 ≥ C.

Proof. Suppose that ν > 0 is given. Since ‖rref(0)−r(0)‖∞ = 0 < 1 and ‖uref(0)−u(0)‖∞ =

0, it follows by continuity that there exists a τ > 0, τ > 0, such that ‖(rref − r)τ‖L∞ < 1 and

‖(uref − u)τ‖L∞ <∞. Theorem 2.1 implies that

‖rτ‖L∞ < ρref + 1, ‖uτ‖L∞ <∞. (2.77)

By the remarks following Lemma 2.3 in 2.2.3, there exist θb, σb, and C > 0 (independent of

τ), such that

‖r̃τ‖L∞ ≤
√
C/Γ, (2.78)

which does not exceed ν provided that Γν2 ≥ C. It further follows from (2.49) and the
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definition of qa,ref in Theorem 2.1 that

‖(qa,ref − q)τ‖L∞ ≤ Q1‖(rref − r)τ‖L∞ , (2.79)

where Q1 = ‖(s+ λ)−1‖L1 = 1/λ ≤ 1. It follows that

‖(ζref − ζ)τ‖L∞ ≤ ‖(rref − r)τ‖L∞ (2.80)

and, consequently,

‖(ηref − η)τ‖L∞ ≤ dηζ
(
ρ̄ref(ρref)

)
‖(ζref − ζ)τ‖L∞ ≤ Lρref

‖(rref − r)τ‖L∞ . (2.81)

Equations (2.50), (2.66), (2.67), (2.72) and (2.73) imply that

rref − r = H
[
Mq [uref − u] + ηref − η

]
, (2.82)

where

uref − u = Fq
[
ηref − η + Aspr̃ − ˙̃r

]
= Fq[ηref − η] + Fq[Aspr̃] + k (Fq ◦Mq + I) [r̃]. (2.83)

These result in the bounds

‖(rref − r)τ‖L∞ ≤ b1Lρref
‖(rref − r)τ‖L∞ + b2‖r̃τ‖L∞ (2.84)

and

‖(uref − u)τ‖L∞ ≤ bFLρref
‖(rref − r)τ‖L∞ + b3‖r̃τ‖L∞ , (2.85)
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where

b2 , sup
v∈Rm+n

‖H ◦Mv ◦
(
Fv ◦ Asp + k(Fv ◦Mv + I)

)
‖L1 (2.86)

and

b3 , sup
v∈Rm+n

‖Fv ◦ Asp + k(Fv ◦Mv + I)‖L1 (2.87)

are both finite. The stability condition in (2.65) implies that 1 − b1Lρref
> 0. We conclude

that

‖(rref − r)τ‖L∞ ≤
b2

1− b1Lρref

‖r̃τ‖L∞ (2.88)

and

‖(uref − u)τ‖L∞ ≤
(
b2bFLρref

1− b1Lρref

+ b3

)
‖r̃τ‖L∞ . (2.89)

The claim follows by choosing Γ such that the product in (2.88) is strictly less than 1.

2.4.1 Properties of the proposed control formulation

We note that the components of the proposed control scheme in Eqs. (2.49) and (2.72)-(2.75)

do not require any modeling knowledge of the system in Eq. (2.1). The uncertain nonlinear-

ity η in Eq. (2.51) of the robotic system is estimated via the fast adaptation laws (2.74) and

(2.75). The controller then drives the sliding variable r defined in Eq. (2.49) close to zero

so that the actuated degrees of freedom converge toward their desired values. The presence

of the low-pass filters in the adaptive control signal in Eq. (2.73) implies that the proposed

controller aims for only partial compensation of the unknown nonlinearity, in order to main-

tain clean control channels with only low-frequency content. This contradicts traditional

adaptive-control algorithms that are always designed toward perfect compensation of the
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robot nonlinearity.

In traditional adaptive controllers for manipulators, the degree of adaptation, the robust-

ness against time delays and unmodeled dynamics, and the tracking performance are coupled.

The adaptation rate can be significantly boosted by raising the adaptive gain, which in turn

improves the response performance. However, high adaptive gain will induce high-frequency

signals in the control channels. As a result, the adaptive control system becomes very sen-

sitive to uncertainties and time delay, i.e., loses robustness. In contrast, in the proposed

control architecture depicted in Fig. 2.1, the control signal makes use of the estimate for

the unknown nonlinearity to partially compensate for this nonlinearity. A low-pass filter is

integrated in the control signal to block any high-frequency signal off the control channels

and keep them clean and smooth. This filter structure decouples the estimation loop from

the control loop and allows for arbitrarily large values of the adaptive gain (limited only

by available hardware). In fact, as suggested by the rigorous analysis in [61] for a linear,

constant-coefficient, single-input system with an architecture related to that proposed here,

the time-delay margin of the adaptive control system is likely bounded away from 0, ensuring

guaranteed robustness.

Robot Dynamics

State Predictor

Adaptation Laws

Control laws 

with filter

 urd=0 r

r̂

 adaptive controller

_

^
θ ^σ,

Figure 2.1: Block diagram of the proposed control design.

The characteristics of the proposed adaptive controller are represented by two independent

indicators:
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1. The adaptive gain Γ, which determines the rate of adaptation, as well as the deviation

between the adaptive control system and a nonadaptive reference system governing the

ideal response;

2. The filter bandwidth k, which determines the deviation of the ideal response from

an exponential decay to 0, as well as the system’s ability to tolerate input delay

(cf. Sect. 2.5.5).

The objectives of a practical implementation based on the described control design are to

choose the parameter values λ, Am, Asp, Γ, and k in order to achieve desirable performance

bounds on the prediction error r̃, as well as to drive r sufficiently close to zero so that qa

approaches the desired value qad within some desired bound. The adaptive gain Γ and

the loop-shaping gain Asp decide the rate of adaptation. The matrix Am characterizes

proportional-derivative feedback terms for fine-tuning the performance.

2.5 Manipulators operating on ships

2.5.1 Simulation model

We restrict attention in this section to a typical pick-and-place manipulator operating on a

ship in a high sea state, a scenario also investigated in [41, 42, 43, 44]. The system is sketched

in Fig. 2.2, in which w := (w1,w2,w3) is an inertial reference triad (with gravity along the

negative w3-axis) and b := (b1,b2,b3) is a triad rigidly attached to the ship. We restrict

attention to motions of the ship described by (φb, xb, zb), where φb represents the rolling

angle of the ship (i.e., the rotation of w about w3 that yields b), and xb and zb represent the

displacement of the ship’s center of mass Cship relative to the inertial reference frame along

w1 and w3, respectively. These motions are caused by the unknown influence of surface

winds, waves, and ocean currents. Joint A connecting link 1 to the ship has two degrees of

freedom represented by two triads: a := (a1, a2, a3) is obtained by rotating b an angle q3
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about b3 and l(1) =
(
l
(1)
1 , l

(1)
2 , l

(1)
3

)
, attached to link 1, is obtained by rotating a an angle q1

about a1. The position of the joint A of the manipulator is represented by the position vector

rCshipA := dAb1. The triad l(2) =
(
l
(2)
1 , l

(2)
2 , l

(2)
3

)
, attached to link 2, is obtained by rotating

l(1) an angle q2 about l
(1)
1 . The relative joint angles q1, q2, and q3 describe the configuration

of the manipulator links relative to the platform. Points B, C1, C2, and E represent the

joint connecting links 1 and 2, the centers of mass of links 1 and 2, and the location of the

payload at the end-effector, respectively, such that rAB := L1l
(1)
3 , rBE := L2l

(2)
3 .

q3

q1

C1

b1

b2

a3

l2

A

B

q2

C2

a2

a1

w1

w2

w3

φb

zb

xb

E

b3

Cship

(1)

l1
(1)

l3
(1)

l2
(2)

l1
(2)

l3
(2)

Figure 2.2: A pick-and-place manipulator mounted on a ship with uncertain dynamics.

We model the platform as a body with mass mship and moment of inertia about the w2 axis

equal to Jship. A linear spring-mass-damper model is used to describe partially the dynamic

interaction between the sea and the ship with effective stiffness and damping coefficient given
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by Kφ and Cφ for the ship rolling angle φb, by Kx and Cx for the displacement xb, and by

Kz and Cz for the displacement zb. In each case, the reference value equals 0. The masses of

links 1 and 2 and the payload at the end-effector are m1, m2 and me, respectively. The links

are assumed to be homogeneous cylinders with radius equal to one fifth of the corresponding

length.

With this system set-up, the total kinetic energy is

T = 0.5(J1 + J2 + L2
1m̂4 + L2

2m̂5 + 2L1L2m̂2c2)q̇2
1 + 0.5(J2 + L2

2m̂5)q̇2
2 + 0.25

(
J1 + J1p + J2

+ J2p + L2
1m̂4 + L2

2m̂5 − (J1 − J1p + L2
1m̂4)c2

12
+ 2L1L2m̂2c2 − (J2 + J2p − L2

2m̂5)c1222

− 2L1L2m̂2c
2
122

)
q̇2

3 +
(

0.5Jship + L1L2m̂2c1c12 + 0.25c2
1(J1 + 2L2

1m̂4 + J1c32) + 0.25c2
12

(J2 + L2
2m̂2 + J2c32) + 0.5d2

Am̂3c
2
b + 0.5c2

3(J1ps
2
1 + J2ps

2
12) + dAL1c

2
bs1s3m̂1 + dAL2c

2
b

s12s3m̂2 + 0.5s2
3(J1 + J2 + L2

1c
2
bs

2
1m̂4) + 0.5c2

bs1s12s
2
3(2L1L2m̂2 + L2

2m̂5) + s2
b

(
0.5d2

Am̂3

+ dAL1s1s3m̂1 + dAL2s12s3m̂2 + s2
3(0.5L2

1s
2
1m̂4 + L1L2s1s12m̂2 + 0.5L2

2s
2
12m̂5)

))
φ̇2
b+

0.5m̂3(ẋ2
b + ż2

b ) +
(
L1m̂1c1cb + L2m̂2c12cb − (dAm̂3 + L1m̂1s1s3 + L2m̂2s12s3)sb

)
ẋbφ̇b

−
(
cb(dAm̂3 + L1m̂1s1s3 + L2m̂2s12s3) + (L1c1m̂1 + L2m̂2c12)sb

)
żbφ̇b + c3q̇3

(
cb(L1m̂1s1

+ L2m̂2s12)ẋb − (L1m̂1s1 + L2m̂2s12)sbżb +
(
0.5(J1 − J1p + L2

1m̂4)s12 + 0.5(J2 − J2p

+ L2
2m̂5)s1222 + L1L2m̂2s122

)
φ̇b
)

+ q̇1

((
J2 + L2

2m̂5 + L1L2m̂2c2)q̇2 +
(
s1(−L2m̂2cbs2s3

− (L1m̂1 + L2m̂2c2)sb) + c1((L1m̂1 + L2m̂2c2)cbs3 − L2m̂2s2sb)
)
ẋb − (−L1m̂1cbs1

− L2m̂2(c2cbs1 + c1cbs2 + c1c2s3sb − s1s2s3sb)− L1m̂1c1s3sb)żb +
(
dAL1m̂1s1+

dAL2m̂2s12 + (J1 + J2 + L2
1m̂4 + L2

2m̂5)s3 + 2L1L2m̂2c2s3

)
φ̇b

)
+ q̇2

(
L2

(
− m̂2s1

(cbs2s3 + c2sb) + c1(m̂2c2cbs3 − m̂2s2sb)
)
ẋb + L2

(
− m̂2c2(cbs1 + c1s3sb) + s2(−m̂2c1cb

+ m̂2s1s3sb)
)
żb + (dAL2m̂2c1s2 + (J2 + L2

2m̂5)s3 + L2m̂2c2(dAs1 + L1s3))φ̇b

)
. (2.90)
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The total potential energy is

U = g(L1m̂1c1cb + L2m̂2c12cb − dA(m1 +m2 +me)sb + m̂3zb) + 0.5(Kφφ
2
b +Kxx

2
b +Kzz

2
b ).

(2.91)

The corresponding nonconservative generalized forces are

Fq = [u1 +Daa,1, u2 +Daa,2, u3 +Daa,3,−Cφφ̇b +Duu,1,−Cxẋb +Duu,2,−Cz żb +Duu,3].

(2.92)

Here, m̂1 = 0.5m1 + m2 + me, m̂2 = 0.5m2 + me, m̂3 = m1 + m2 + me + mship, m̂4 =

0.25m1 + m2 + me, m̂5 = 0.25m2 + me, cb = cosφb, ci = cos qi, cikj = cos (kqi + qj), and so

on.

The equations of motion are obtained from Lagrange’s equations. The equations of mo-

tion are of the exact form in Eq. (2.1) with the actuated degrees of freedom qa = [q1, q2, q3]

and the unactuated degrees of freedom qu = [φb, xb, zb]. In these equations, the ship’s mass

and moment of inertia matrix, as well as the effective stiffnesses and damping coefficients

along the ship’s degrees of freedom, only appear in the Muu, Cu and Gu components. In this

particular case study, on the one hand, since the mass and size of the ship are significantly

larger than those of the manipulator, the dominance of these terms in the bottom part of

Eq. (2.1) implies that the motions of the manipulator have very little effect on the ship’s

dynamics. On the other hand, the ship’s motions enter the top part of Eq. (2.1) not only

via the components of the mass matrices Maa and Mau, but also through nonlinearity con-

tributions to the acceleration-dependent terms with the same magnitude of influence as the

manipulator’s dynamics.

In the numerical results reported below, and in a set of consistent units (the SI system

is used throughout the dissertation), the link lengths, the masses of the two links, the

payload at the end-effector, and the acceleration of gravity are given by L1 = 0.25; L2 =
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0.2; m1 = 6; m2 = 4; me = 5; g = 9.81. The distance between Cship and A is dA = 3.

The ship’s effective mass and moment of inertia about the w2-axis equal mship = 105 and

Jship = 1.25 × 105. The effective stiffnesses and damping coefficients parameterizing the

dynamic interaction between the sea and the ship are given by Kφ = 107, Kx = 3×105, Kz =

3× 105, Cφ = 108, Cx = 2× 105, and Cz = 2× 105. The disturbances from the environment

are assumed to be given by

Duu(t) =


3× 107 sin(0.5t)

3× 105 sin(0.5t)

−3× 105 cos(0.5t)

 (2.93)

and Daa(t) = 0. A typical ship motion that results from numerical simulation is shown

in Fig. 2.3. The peak-to-peak amplitudes of the ship’s displacement are approximately 2

m in both the horizontal and vertical directions, and 76 degrees in the rolling angle φb.

These motions contribute large unknown time-varying inertias and nonlinearity terms to the

description of the manipulator dynamics.

2.5.2 Control objectives

We begin by illustrating the performance of the control design when the manipulator’s joint

angles are tasked to track desired trajectories given by

• step inputs with q1,d(t) = q2,d(t) = q3,d(t) ≡ α, for values of α ∈ [1, 2], with initial

conditions q0 = q̇0 = (0, 0, 0)T ; and

• sinusoidal inputs with q1,d(t) = q2,d(t) = sin 0.4t and q3,d(t) = cos 0.4t with initial

conditions q0 = (0.5, 0.5, 0.5)T and q̇0 = (0, 0, 0)T .

In the simulations in this chapter, the control parameters and the filters are tuned to the

following control objectives:
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Figure 2.3: Typical oscillations of the ship under prescribed environmental disturbances.

• In the case of the step inputs, achieve a response settling time (the time required for

the response to reach and stay within 2% of the final value) of less than 3 s, with

maximum overshoot less than 5% of the desired values.

• In the case of the sinusoidal inputs, achieve a root-mean-square deviation percentage

(denoted below by RMSD%) of less than 5% under various disturbances, including

time delay and measurement noise. Here, RMSD% is defined as the percentage of

a response’s root-mean-square deviation from its desirable trajectory over the time

history relative to the peak-to-peak amplitude of the desired trajectory.

To achieve these objectives, the parameter λ in Eq. (2.49) is here set to 2, the adaptive gain

Γ is set to 106, and the tracking response characteristics are governed by the design matrix

Am = −diag(30, 20, 15). The filter bandwidth k in (2.73) is set to 10 (Hz). The matrix of
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loop-shaping parameters Asp in Eq. (2.72) is set to 0.1
√

ΓI. In the projection based adaptive

laws in Eqs. (2.74)-(2.75), we set θb = σb = 100, ε = 0.1, and θ̂0 = σ̂0 = 0.

The numerical results below were obtained from a Simulink-based implementation of the

system’s equations of motion and the proposed control scheme. Default Simulink tolerances

and settings were used throughout.

2.5.3 Performance in ideal working conditions

Figs. 2.4 and 2.5 show the manipulator’s response to the proposed control actuation for step

inputs with different values of α and for the sinusoidal input, respectively. As seen in the

bottom panels, for both types of desired trajectories, the control signals are smooth and

clean, in spite of the use of high-rate adaptive estimation to accommodate nonlinearity and

model uncertainty while retaining small prediction errors. For the step input, the maximum

overshoot is 4.1%, and the maximum settling time is 2.76 s. As seen in Fig. 2.4, the system

response scales approximately with the size of the step. This implies predictable responses of

the proposed adaptive control system when the desired values are varied. For the sinusoidal

input in Fig. 2.5, the maximum tracking RMSD% is 3.64%. The system responses quickly

converge to the desired time histories despite the large inertia and nonlinearity added due to

the unmodeled dynamics of the ship. Consistent with the theory discussed in the previous

sections, an increase in the filter bandwidth results in improved tracking performance, i.e.,

reduced tracking RMSD%. However, better tracking is achieved with the trade-off of the

system robustness, i.e., the adaptive control system is less tolerant of time delays in the

control signal.

2.5.4 Control performance with time delay and measurement noise

Next, we consider the performance of the adaptive control system in the presence of velocity

measurement noise, with a time delay of 50 ms in the control signal. To this end, unfiltered,
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Figure 2.4: Performance of the proposed controller under ideal working conditions for
various step inputs.
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Figure 2.5: Performance of the proposed controller under ideal working conditions for
sinusoidal inputs.

uniformly distributed noise in the range [−0.15, 0.15] rad/s and with sample time of 10 ms

was added to the angular velocity measurements. This measurement noise is reflected in
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the right bottom panel in Fig. 2.6, since the velocity measurements appear explicitly in the

definition of r. As seen in this figure, without any further tuning, the proposed adaptive

controller successfully rejects the noise. The control scheme still maintains desirable tracking

performance with the maximum tracking RMSD% of 4.21%, which is very close the previous

case with the time delay in the control signals. This demonstrates the robustness of the

proposed controller to noisy measurements. In addition, the control signals are clean and

implementable because all the high-frequency and noisy contributions are completely filtered

out of the control channel.
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Figure 2.6: Performance of the proposed controller in the presence of 50 ms actuator time
delay and velocity measurement noise in the range [−0.15, 0.15] rad/s and with sample
time of 0.01 s.

2.5.5 Robustness

We proceed to analyze the robustness of the adaptive controller by investigating its per-

formance in the presence of time delays in the control input. It is a well-known property

of control systems that the presence of time delay in the control loop may destabilize the
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systems (see, for example, [106]). Furthermore, as discussed in [45, 63], any unmodeled dy-

namics can be equivalently represented by a delay in the plant input. In LTI systems, the

phase margin or, alternatively, the time-delay margin are reliable indicators of the system

robustness [59]. In nonlinear control systems, since the phase margin is not computable, we

need an alternative method for checking the system’s robustness, i.e., its ability to tolerate

input delay [45, 121]. In this chapter, we define the critical time delay as the maximum

input delay for which the controller is able to maintain bounded performance over a given

time interval, for each choice of system parameters and desired trajectory qd(t). Consistent

with the literature, we use the critical time delay for some representative trajectory as an

indicator of the system robustness.

In order to numerically estimate the critical time delay, we replace u(t) in Eq. (2.1), and

in the definition of µ preceding Eq. (2.50), by u(t−d), and let qd(t) be given by the constant

trajectory (1, 1, 1). For each choice of parameter values, define the critical time delay dcrit

as the largest value of d for which ‖qa(t)‖∞ < 10 for t ∈ [0, 20]. Groups of discrete estimates

of dcrit are shown in Fig. 2.7 for k = 10, 20, 30, and 40 Hz. For purposes of comparison,

the figure includes estimated values of dcrit in the case that Eq. (2.73) is replaced by the

unfiltered form u(t) = −θ̂(t)‖rt‖L∞ − σ̂(t), in which case the control structure is that of

an indirect model-reference controller, popular in adaptive control of nonlinear systems.

The results show that increasing the filter bandwidth deteriorates the system robustness

to delay. For finite bandwidth, the critical time delay remains well above zero across the

entire range of adaptive gains and shows no sign of deteriorating as Γ → ∞. In contrast,

for the case of the traditional model-reference controller, the critical time delay is close to

zero (∼ 10−3) for the entire range of the adaptive gain. This is consistent with the fact

that model-reference controllers have zero robustness margin in the sense of the gap metric

[45, 39], and are therefore expected to exhibit limited robustness to input delay for any given

desired trajectory.
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2.6 Mobile manipulators with suspension systems moving on

rough terrains

The case study in the previous section considers a practical situation of a manipulator

mounted on a ship operating in a high-sea state under uncertain environmental disturbances.

The unactuated dynamics of the ship and the actuated dynamics of the manipulator are

coupled in such a way that the unmodeled ship motions add very large time-varying inertia

and nonlinearity to the description of the manipulator dynamics. However, since the mass

of the manipulator is significantly smaller than that of the ship, its motions have little effect

on those of the ship.

In this section, we consider the context of a mobile manipulator for which the unactuated

and actuated dynamics are strongly coupled. In addition, the platform oscillates with much

higher frequency than in the case of the ship, as the disturbances from a rough terrain

are transmitted to the platform via a suspension. In the control design, we again consider
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the system dynamics as being completely unmodeled. A slight twist is the inclusion of a

nonholonomic constraint on the platform kinematics.

2.6.1 Dynamics of a mobile manipulator

The model of a mobile manipulator of interest is sketched in Fig. 2.8, in which w :=

(w1,w2,w3) is an inertial reference triad and the triad b := (b1,b2,b3) is obtained by

rotating w an angle φh about the vertical axis w3. The position of the platform’s center

of mass B relative to the inertial reference frame is represented by the displacements xv

and yv along w1 and w2, respectively. The triad a := (a1, a2, a3), attached to the plat-

form, is obtained by rotating b an angle φp about b2. The point A represents the joint

connecting link 1 of the manipulator to the platform, such that rBA := LBAa1. The triad

l(1) :=
(
l
(1)
1 , l

(1)
2 , l

(1)
3

)
, attached to link 1, is obtained by rotating a an angle q1 about a2. The

triad l(2) :=
(
l
(2)
1 , l

(2)
2 , l

(2)
3

)
, attached to link 2, is obtained by rotating l(1) an angle q2 about

l
(1)
2 . Points D, C1, C2, and E represent the joint connecting links 1 and 2, the centers of

mass of links 1 and 2, and the location of the payload at the end-effector, respectively, such

that rAD := L1l
(1)
3 , rDE := L2l

(2)
3 .

From this set-up, relative to the platform, the manipulator has two degrees of freedom,

represented by the relative joint angles q1 and q2. The configuration of the platform relative

to the inertial reference frame is described by the position coordinates xv and yv, the heading

angle φh, and the pitching angle φp. The platform is attached to the chassis of a rover via

a suspension system to smooth oscillations of the platform that might be induced by an

uneven terrain. The chassis’ configuration relative to the inertial frame is assumed to be

identical to that of the platform other than in its pitching angle, which is here assumed to

be an explicit function of time that is unknown to the control design. Finally, the motion of

the chassis is constrained in such a way that the velocity of the platform’s center of mass is

perpendicular to the axis of the driving wheels, i.e., parallel to b1.

We assume generalized forces associated with the q1 and q2 degrees of freedom, given by the
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control torques u1 and u2 applied at the joints A and D, respectively. Under the assumption

that the pitching motion of the platform is unactuated, the generalized force corresponding

to φp equals 0. The generalized forces corresponding to the remaining degrees of freedom,

xv, yv, and φh, are assumed to be obtained from a matrix product B(qv)uv. Here, the

control input uv may be parameterized by two independent control signals representing, for

example, the torques applied to the left and right driving wheels, respectively. The resultant

expression for the kinetic potential energy is

T = 0.5(J1 + J2 + L2
2m̂5 + L2

1m̂4 + 2L1L2m̂2c2)q̇2
1 + 0.5(J2 + L2

2m̂5)q̇2
2 + 0.25

(
J1 + J1p + J2

+ J2p + Jh + L2
BAm̂6 + L2

2m̂5 + L2
1m̂4 + (Jh + L2

BAm̂6)cp2 − (J1 − J1p + L2
1m̂4)c12p2+

2L1L2m̂2c2 − (J2 − J2p + 0.25L2
2m2)c1222p2 − (L2

2me + 2L1L2m̂2)c122p2 + 2L1LBAm̂7(s1

+ s1p2) + L2LBAm2(s12 + s12p2)
)
φ̇2
h + 0.5

(
J1 + J2 + Jp + L2

BAm̂6 + L2
2m̂5 + L2

1m̂4+

2L1L2m̂2c2 + 2LBA(L1m̂7s1 + L2m2s12)
)
φ̇2
p + 0.5m̂8(ẋ2

b + ẏ2
b ) + (J2 + L2

2m̂5 + L1L2m̂2

c2)q̇1q̇2 + φ̇p

((
J1 + J2 + L2

2m̂5 + L2
1m̂4 + 2L1L2m̂2c2 + LBA(L1m̂7s1 + 0.5L2m2s12)

)
q̇1

+ (J2 + L2
2m̂5 + L1L2m̂2c2 + 0.5L2LBAm2s12)q̇2

)
+ ch

((
(L1m̂1c1p + L2m̂2c12p − LBA

m̂6sp)φ̇p + (L1m̂1c1p + L2m̂2c12p)q̇1 + L2m̂2c12pq̇2

)
ẋb + (LBAm̂6cp + L1m̂1s1p + L2m̂2

s12p)φ̇hẏb

)
+ sh

(
(−LBAm̂6cp − L1m̂1s1p + L2m̂2s12p)φ̇hẋb + ((L1m̂1c1p + L2m̂2c12p−

LBAm̂6sp)φ̇p + (L1m̂1c1p + L2m̂2c12p)q̇1 + L2m̂2c12pq̇2)ẏb
)
. (2.94)

The total potential energy is

U = 0.5Kpφ
2
p + g(cp(L1m̂1c1 + L2m̂2c12)− 3LBAmesp). (2.95)

46



The corresponding nonconservative generalized forces are

Fq = [u1 +Drr,1, u2 +Drr,2, − Cpφ̇p +Drr,3,
b

2rw
(ur − ul) +Dpp,1,

cosφh
rw

(ur + ul)− sinφh`+Dpp,2,
sinφh
rw

(ur + ul) + cosφh`+Dpp,3]. (2.96)

Here, m̂1 through m̂5 are defined in the same way as before, and m̂6 = m1 + m2, m̂7 =

0.5m1 +m2, m̂8 = m1 +m2 +me +mb. The quantity ` is the Lagrange multiplier associated

with the nonholonomic constraint, ur and ul are the input torques to the right and left

wheels, respectively, rw = 0.1 is the driving wheel’s radius, and b = 0.5 is the width of the

platform.

The equations of motion are obtained from Lagrange’s and take the form

 Mrr(q) Mrv(q)

MT
rv(q) Mvv(q)


 q̈r

q̈v

+

 Nrr(q, q̇)

Nvv(q, q̇)

 =

 ur

B(qv)uv

+

 0

AT (φh)l

+

 Drr

Dpp

 ,
(2.97)

where ur = [u1, u2, 0]T , A(φh) is the coefficient matrix of q̇v in the velocity constraint, and l is

the corresponding Lagrange multiplier. It follows that the system has six geometric degrees

of freedom and five dynamic degrees of freedom. In the control design below, the unactuated

pitching angle φp is assumed to be a bounded function of time.

A popular reduction method is employed to convert the lower part of Eq. (2.97) for the

rover’s locomotion to equations in independent coordinates (see, e.g., [18]). Let s denote

the speed of the rover in the direction of motion and consider the vector v , [s, φ̇h]
T . The

allowable motions of the rover may then be described by the relationship

q̇v = S(φh)v, (2.98)

where S(φh) is a full-rank matrix, whose columns are a smooth basis for the null space of
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Figure 2.8: A mobile manipulator mounted on a platform suspended from a chassis moving
across an uneven terrain.

A(φh). Since ST (φh)S(φh) is invertible by construction, it follows that

v =
(
ST (φh)S(φh)

)−1

ST (φh)q̇v. (2.99)

Substitution into the equations of motion and multiplication of the bottom part with ST (φh)

then yields

 Mrr(q) Mrv(q)S(φh)

ST (φh)M
T
rv(q) ST (φh)Mvv(q)S(φh)


 q̈r

v̇

 +

 Nrr(q, q̇)

ST (φh)Nvv(q, q̇)


=

 ur

ūv

+

 Drr

ST (φh)Dpp

 ,(2.100)

where the components of ūv , ST (φh)B(qa)uv correspond to independent control inputs for

the speed and rate of change of heading of the rover.

From a state-space representation point of view, the description of the kinematics in
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terms of 12 states (six position coordinates and six velocity coordinates) in Eq. (2.97) with

one nonholonomic velocity constraint A(φh)q̇v = 0 has been reduced to a system of three

second-order differential equations and five first-order equations in eleven states (six position

coordinates and five velocity coordinates). To accommodate a control design analogous to

that in Sect. 3, we first rearrange Eq. (2.100) to yield (cf. [30])


Maa(q) Mas(q) Mau(q)

MT
as(q) Mss(q) Msu(q)

MT
au(q) MT

su(q) Muu(q)



q̈a

ṡ

q̈u

+


Na(q, q̇)

Ns(q, q̇)

Nu(q, q̇)

 =


ua

us

0

+


Daa

Dss

Duu

 , (2.101)

where qa , [q1, q2, φh] and qu = φp. Now let

r ,

 ra

rs

 =

 q̇a − q̇ad + λ(qa − qad)

s− sd

 . (2.102)

Elimination of q̈u using the bottom part of Eq. (2.101), and noting the absence of explicit

dependence of the equations of motion on xv and yv, then again yields

ṙ = Amr +M−1
a u+ η, r(0) = r0, (2.103)

for some functions Ma and η(t, ζ), where ζT , [rT , χT ] and χ ,
[
qTa , q

T
u , q̇

T
u

]
. Here, it follows

that

‖χt‖L∞ ≤ max{‖qa,t‖L∞ , ‖qu,t‖L∞ , ‖q̇u,t‖L∞}. (2.104)

The definition of r in Eq. (2.102) implies

‖qa,t‖L∞ ≤
∥∥(sI + λ)−1

∥∥
L1
‖ra,t‖L∞ +

∥∥qad(s) + (sI + λ)−1
(
qa(0)− qad(0)

)∥∥
L∞

. (2.105)

Now, from Eqs. (2.104) and (2.105) together with the observations that ‖ra,t‖L∞ ≤ ‖rt‖L∞
and the assumption that the unactuated degree of freedom is bounded, it follows that there
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exist positive numbers Q1 and Q2 such that

‖χt‖L∞ ≤ Q1‖rt‖L∞ +Q2, (2.106)

which is the same inequality as in Eq. (2.20) in 2.2.2.

The remainder of the control design now proceeds as in Sect. 3, bearing in mind the

implications of the modified sliding formulation in Eq. (2.102). In particular, the adaptive

controller estimates and compensates for the nonlinearity η to drive r to a neighborhood of

zero, such that qa and s converge to the vicinities of the corresponding desired trajectories

qad and sd. The latter does not, however, guarantee convergence in the position of the rover,

since this is not part of the feedback control design.

2.6.2 Numerical results

In the numerical results reported below, the link lengths and the masses of the two ma-

nipulator links and the payload are L1 = 0.25, L2 = 0.2, m1 = 6, m2 = 5, and me = 5,

respectively. The mass mp of the platform equals 20 and the moments of inertia about a1,

a2 and a3 are 0.75, 1.75 and 2.5, respectively. The distance between B and A is LBA = 0.1.

The effective stiffness and damping of the suspension system is Kp = 50 and Cp = 1, respec-

tively. In addition, Daa(t) = 0 and Dss(t) = 0, and the disturbance to the platform, due to

disturbances to the pitch of the chassis from traversal across rough terrain and transmitted

via the suspension system, is assumed to be given by Duu(t) = 3 sin(5t) + 3 sin(3t). As a

result, the pitching angle of the platform will have the typical motion given in Fig. 2.9.

The proposed control scheme is implemented for the system dynamics in Eqs. (2.99)-

(2.100), without assuming any detailed knowledge of the system model, in order to track a

desired trajectory given by the time histories q1d(t) = sin(0.4t), q2d(t) = cos(0.4t), φhd(t) =

sin(0.5t) + cos(0.3t), sd = 0.5t, in the presence of velocity measurement noise in the range

[−0.15, 0.15] and a time delay of 50 ms in the control signal. The control architecture is
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Figure 2.9: Typical pitch angle of the platform during operation.

parameterized by Am = diag(20, 10, 15, 5) and the same values of λ, Γ, and k as before. The

4× 4 matrix Asp is set to 0.1
√

ΓI. With this choice the tracking RMSD% is less than 5% for

all relevant degrees of freedom.

The results are shown in Fig. 2.10. The level of measurement noise is reflected by the

right bottom panel for the prediction error, which is computed directly using the noisy

measured velocity. Despite the time delay and measurement noise, the adaptive control

signals remain smooth because high-frequency signals are blocked by the low-pass filter.

Here, the high-frequency oscillations in the platform pitching angle, induced by the rough

terrain, are evident in the control channels. However, the control objective is still met with

the RMSD% for the manipulator’s two joints, as well as for the steering angle and the speed

of the rover being 4.47%, 4.87%, 3.02% and 2.08%, respectively. It is remarked that this

performance is achieved not only in the presence of measurement noise, but also with a delay

of 50 ms in the control signal.

2.7 Conclusion

Traditional control architectures employ the linear-in-parameter property of Lagrangian sys-

tems to obtain the factorization in Eq. (2.2) in terms of a model regression matrix and a
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Figure 2.10: Performance of the proposed controller in the presence of 50 ms actuator time
delay and velocity measurement noise in the range [−0.15, 0.15] rad/s and with sample
time of 0.01 s.

vector of unknown parameters, which is to be estimated by relevant adaptive laws, of which

Eq. (2.4) is an example. The construction of the regression matrices in Eq. (2.2) requires

information about the structure/geometry of the platform such as the position of the plat-

form’s center of mass, the platform’s moment of inertia, the location of the manipulator

relative to the platform center of mass, and so on. If the other dynamic factors, for example

the movements of humans or equipment in the platform, is integrated in the equations of

motion, then the modeling process to construct such regression matrices may not be feasible.

In contrast, this chapter has described a robust adaptive controller, inspired by the frame-

work proposed in [61] with a low-pass filter in the control input, for an underactuated system

of a robot installed on a (moving) platform. The controller does not require the construction

of regression matrices, while the dynamics of the entire system are unmodeled. As evidenced

by fundamental theoretical results on the existence of computable performance bounds, this

framework successfully separates the adaptation loop from the control loop, thereby allowing
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for arbitrary increases in the adaptation rate (bounded only by hardware constraints) with-

out sacrificing the system’s robustness, and allows for a predictable transient response with

smooth and implementable control signals. With the introduction of a variable transfor-

mation, inspired by earlier work in [130], and an innovative control design, the formulation

is able to compensate for the nonlinearity and uncertainties in the dynamic model without

assuming any knowledge of the system modeling.

A limitation of the theoretical analysis in this chapter is that it is restricted to systems

where the unactuated degrees of freedom are assumed to be bounded a priori despite being

influenced by the actuated degrees of freedom of the system. Examples include mobile

manipulators where their platforms are significantly more massive than the manipulators,

although satisfactory performance may also result in systems where the two are more strongly

coupled as seen in the rover’s simulation.

Numerical simulations were used to illustrate the control paradigm in trajectory tracking

tasks imposed on two scenarios: (1) a robot arm mounted on a ship operating in a high-sea

state, and (2) a mobile manipulator moving across a rough terrain. In the first context, the

ship has three unactuated degrees of freedom, which are disturbed by unknown environmental

factors, e.g., wind, waves, and ocean currents. In the context of the mobile manipulator

operating on a rough terrain, the disturbances from the unmodeled geometry of the terrain

are transmitted to the platform via the suspension system of the rover. In contrast to

traditional adaptive controllers, for which the lack of knowledge about the ship dynamics

and rover motion violates basic assumptions of the control design, the proposed controller

is independent of the system modeling, and therefore especially useful for systems with

unmodeled dynamics. The results demonstrate desirable tracking performance and clean

and smooth control signals with different types of disturbances, including measurement noise

and unknown time delay.

The successful design of the proposed control architecture relies upon a key parameteri-

zation of the nonlinear contribution to the robot equations of motion in terms of two time-
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varying parameters with the L∞ norm of the sliding state as a regressor. The controller

further employs projection operators in the adaptive laws to impose bounds on the param-

eter estimates, and uses a low-pass filter in the control signal to keep the control-signal

frequencies below the available control-system bandwidth. In this case, Theorem 2.2 implies

close agreement between the system response and the control signal, on the one hand, and

the corresponding time histories for a suitably formulated nonadaptive reference system, on

the other hand, provided that the adaptive gain is chosen sufficiently large. Any deviation

between the system response and the desired trajectory observed in the numerical results

may be traced to the need to maintain a finite filter bandwidth, in order to guarantee ro-

bustness. This is the design trade-off between performance and robustness of the proposed

control architecture.

The control scheme proposed in this chapter for underactuated robotic systems is relatively

simple with the state predictor in Eq. (2.72), the adaptive control signal in Eq. (2.73), and the

adaptation laws in Eqs. (2.74) and (2.75). In addition, the control formulation is independent

of system modeling. Hence, the same control structure can be used for any Lagrangian

system, including serial manipulators or parallel robots, while current adaptive controllers for

manipulators require reconstruction of the regression matrix for each application, or accurate

estimation of the system model. Furthermore, though the control scheme is demonstrated

for a robot mounted on a ship and a mobile manipulator, it can be directly implemented for

free-floating space manipulators whose dynamics have the exact form in Eq. (2.1), as well

as any fixed-base manipulators whose equations of motion are simpler than those considered

here.

We finally comment on the observations made regarding the critical time delay during the

two trajectory-tracking tasks considered above. The simulation results show that increasing

the filter bandwidth deteriorates the system robustness to delay. For finite bandwidth, the

critical time delay remains well above zero across the entire range of adaptive gains and

shows no sign of deteriorating as the adaptive gain is increased to a large value. This agrees
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with the analysis in [61] for the case of a linear, constant-coefficient, single-input system, in

which the basic control architecture supports the formulation of theoretical lower bounds on

the time delay margin, through the use of a suitably formulated equivalent LTI system. The

issue of delay robustness in the proposed control framework is further studied in Chapters 3,

4 and 5.
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CHAPTER 3

MARGINAL STABILITY IN AN ADAPTIVE
CONTROL SCHEME FOR MANIPULATORS

In Chapter 2, an adaptive controller for general Lagrangian systems that enables fast adapta-

tion without compromising robustness was designed. The proposed adaptive control system

decoupled the estimation loop from the control loop through the introduction of a low-pass

filter in the control input. Design of the filter structure also allowed for shaping the nominal

response and, as further explored in this chapter, enhancing the time-delay margin.

This chapter1 provides further analysis of the robustness of the L1 control framework

presented in Chapter 2 for a simplified system model via the study of the critical time delay

at which stability is lost for a given static reference input. The effects of time delay in the

L1 control system with static reference inputs are next demonstrated using direct numerical

simulations. This analysis provides an opportunity to illustrate approaches to suppress

delay-induced instability that are uniquely supported by the control architecture designed

in Chapter 2, for example, by redesigning the filter structure to remove high-frequency

oscillations and introducing time delay in the state predictor. In addition, inspired by the

results in [20], a MIMO LTI system is constructed to derive a conservative lower bound of

the critical time delay of the controller of interest with a static reference input. Finally,

we propose a method for computing the critical time delay of nonlinear control systems by

monitoring the roots of the characteristic equation associated with a linearization of the

delay system about a given equilibrium. This formulation lends itself to the application of

methods of numerical continuation [34] in order to compute the dependence of the critical

time delay on control parameters, such as the adaptive gain or filter bandwidth.

1The material in this chapter is taken from [99] with the permission from the publisher. The introduction
and the conclusion are modified to agree with the flow of the dissertation.
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3.1 Delay-induced instability

The objective of this section is to demonstrate the L1 control system’s responses to different

values of the time delay in the control input u. The dynamics of an fixed-base n-link robotic

manipulator, described by a matrix q of joint angles, are governed by equations of motion

of the form

M
(
q
)
q̈ + Vm

(
q, q̇
)
q̇ +G

(
q
)

+ F
(
q̇
)

+D = uT (3.1)

where uT and D denote time-dependent input torques and bounded unknown disturbances,

respectively. With the variable transformation

r = q̇ + Λq (3.2)

and the decomposition of the input torque

uT = M(q)(Amr + u) (3.3)

(the dependence on M(q) may be removed without loss of generality), Eqn. (3.1) may be

transformed to the following form

ṙ(t) = Amr(t) + u(t)− f
(
t, ζ(t)

)
, r(0) = r0 (3.4)

where ζT =
[
rT , qT

]
, f
(
t, ζ(t)

)
lumps all nonlinearities and unknown disturbances, and

Am denotes a Hurwitz matrix introduced to shape the system’s transient response. The L1

control scheme for this system, which is designed in Chapter 2, consists of the state estimator

in (2.72), the control input in (2.73), and the adaptation laws in (2.74) and (2.75). Next,

we define different terminologies for the system ability to tolerate time delay in the control

input.
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Let the time-delay margin of a nonlinear control system be defined as an upper bound

on the actuator time delay, beyond which there exists at least one reference input that

yields unbounded growth in the linearization about the corresponding desired trajectory.

An objective of this study is to generalize techniques from the analysis of the time-delay

margin for SISO L1 control systems [61] to that of MIMO systems applicable to typical

robotic devices.

A more restrictive notion of robustness is the study of the critical time delay associated

with unbounded growth for a given reference input, or class of reference inputs. As an

example, results demonstrating the robustness of an L1 controller for manipulators operating

on a dynamic platform to actuator time delay for specific oscillatory reference inputs were

provided in Chapter 2. As the discussion in the present chapter is restricted to the study

of the critical time delay associated with a static reference input, we include in this section

results from a numerical study of the corresponding system dynamics.

Consider the controlled motion of a typical pick-and-place manipulator two degrees of

freedom at the shoulder and a single-degree-of-freedom revolute joint at the elbow for a

given static reference input. The manipulator is operating on a static platform. Suppose

that the link lengths, the masses of the three links, the payload at the end-effector, and the

acceleration of gravity are given by L1 = 1, L2 = 0.8, L3 = 0.2, m1 = 10, m2 = 10, m3 = 5,

me = 5, and g = 9.81 in a consistent set of units. With qd =

(
1 1 1

)T
, Λ = diag(3, 3, 1),

Γ = 106, Am = diag(−3,−4,−3), Ksp = diag(100, 100, 100), and C(s) consisting of identical

first-order filters with bandwidth of 20, numerical experiments reveal unbounded local growth

and sustained finite-amplitude oscillations about the reference configuration for an actuator

time delay of approximately 0.07.

Below this critical time delay, the system performance is found to exhibit initial transient

oscillations with a decaying envelope, with amplitude and decay time scale growing with the

actuator time delay. As an example, numerical results demonstrate sustained satisfactory

performance for an actuator time delay of 0.05 relative to the nominal case of no time delay.
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For an actuator time delay of 0.06, the tracking performance of the L1 control remains

desirable as illustrated in Fig. 3.1, with some initial transient oscillations in the prediction

error and the control input. As the time delay is increased to 0.068, the decay rate of

oscillations induced by the initial conditions on the state response and control inputs is

significantly slower than for lower time delays, as shown in Fig. 3.2. The effects of time delay

are particularly pronounced in the control channels and in the prediction error, which exhibit

significantly larger amplitudes of oscillation than in Fig. 3.1. Here, larger prediction errors

cause larger oscillations in the adaptive estimates obtained from Eqns. (2.74) and (2.75) and,

consequently, a larger amplitude of the control input u(t) according to Eqn. (2.73).

This observation suggests a way to suppress the instability induced by time delay by

incorporating knowledge of the delay in the predictor or filter design, so as to eliminate

significant deviations between the predicted and actual response. As an example, Fig. 3.3

shows the system behavior in the presence of a time delay in the control term in the equation

governing the state predictor (2.72), identical in value to that imposed at the plant input. The

oscillations caused by the time delay in Fig. 3.2 are largely removed. Using this methodology,

it is possible to boost the critical time delay from 0.07 in the absence of state-predictor delay

to a maximum of 0.43.

Similar performance improvements below the critical time delay may be obtained by suit-

able tuning of the filters C(s). The oscillations in Fig. 3.2 can be largely eliminated by

tuning the bandwidth ω of the first-order filter C(s), or by selecting a higher-order filter. To

illustrate this, we keep the delay of 0.068 in the plant control input (the delay in the state pre-

dictor is set to zero) and decrease the filters’ bandwidth to 10. The result obtained is virtually

identical to Fig. 3.3. The critical time delay with this filter bandwidth is 0.119. Alternatively,

we may replace the first order filter by the second-order filter (13s+ 2)/(s2 + 13s+ 2), which

has a lower bandwidth compared to the initial filter, to obtain essentially the same result as

in Fig. 3.3. The critical time delay with this second-order filter is 0.098. In both cases, the

lower bandwidth eliminates most of the high-frequency components of the control input and
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Figure 3.1: Performance of the L1 controller with actuator time delay of 60 ms.
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Figure 3.2: Performance of the L1 controller with actuator time delay of 68 ms.
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nearly recovers the system performance under the ideal conditions of no time delay.

3.2 Estimating a lower bound for the critical time delay via LTIs

In this section, we derive a lower bound on the critical time delay that the L1 control system

can accommodate with a static reference input rd. Under the assumption that the robot

function f is not explicitly dependent on time, we first linearize the manipulator dynamics

in (3.4) about the corresponding steady state configuration to obtain

ṙ = Amr + u− (L1r + L2q + L3), r(0) = r0 (3.5)

where r and q are related by (3.2), and the Jacobian matrices:

L1 =
∂f

∂r
(ζd), L2 =

∂f

∂q
(ζd), L3 = f(ζd) (3.6)

Inspired by the analysis in [20], we next consider the multi-input-multi-output, linear time-

invariant system given by

q̇l = rl − Λql, ql(0) = q0 (3.7)

and

ṙl = Amrl + uld − η, rl(0) = r0 (3.8)

where η(t) , L1rl(t) + L2ql(t) + L3, uld , ul(t− τ), ũl(s) , uld(s)− ul(s), and

ul(s) = C(s)
(
η(s)− Amrd − ũl(s)− χl(s)

)
(3.9)

Here, the control input ul is the output of a linear equation, while the control input of the

original L1 system is the output of a nonlinear equation. Moreover, the exogenous signal

χl(t) is a vector instead of a scalar signal as in [20].

For the corresponding formulation of an LTI system for a SISO system, it was proved in
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Figure 3.3: Performance of the L1 controller with actuator time delay of 68 ms together
with the introduction of a delay of 68 ms in the state predictor.
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[20] that

- For large enough adaptive gain and for τ < τm there exists a bounded exogenous signal

χl(t) such that rl(t) = r(t) and ul(t) = u(t);

- For arbitrary bounded χl(t), if τ < τm then the rl(t), ul(t) and ũl are bounded, and

hence so are r(t) and u(t).

These observations imply that the time-delay margin of the LTI system provides a strict

lower bound for the time-delay margin of the L1 control system. In the absence of a proof

for the MIMO case, we proceed to analyze the latter with the conjecture that a similar

correspondence may be established there.

Without loss of generality, we consider the case of zero initial conditions. From (3.7) and

(3.8), we have

rl(s) = H̄(s)
(
uld(s)− L3s

−1
)

(3.10)

where

H̄(s) ,
(
sI− Am + L̄(s)

)−1
(3.11)

and

L̄(s) , L1 + L2(sI + Λ)−1 (3.12)

Substituting (3.10) and the definition of ũl in (3.9) now yields

ul(s) =
(
I− C(s)

)−1(
χr(s)− χf (s)

)
(3.13)

where

χr(s) , C(s)
(
kgrd(s)− χl(s)

)
(3.14)

χf (s) , C(s)
(
1− L̄(s)H̄(s)

)
(uld − L3) (3.15)
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Figure 3.4: Block diagram of the LTI system used to derive a lower bound on the critical
time-delay for the L1 control system for a static reference input.

whose block diagram is illustrated in Fig. 3.4. This system has the following matrix of loop

transfer functions:

Lo =
(
I− C(s)

)−1
C(s)

(
1− L̄(s)H̄(s)

)
(3.16)

Since, in the analysis in [20] of a SISO system, the loop transfer function corresponding

to Lo is scalar, the phase margin may be obtained by traditional means, including Nyquist

or Bode plots. For the case of a matrix-valued loop transfer function, we rely on the method

described in Chapter 5 of [72] to estimate the phase margin φm and the gain crossover

frequency ωgc. Here, the estimate of the phase margin is obtained from

φm = 2 sin−1

(
βσ
2

)
(3.17)

where βσ = min
ω
σmin (I + L−1

o (jω)) and σmin(A) denotes the smallest singular value of the

matrix A. Similarly, the gain-crossover frequency ωgc is the frequency at which σmax

(
Lo(jω)

)
crosses 0 dB, where σmax(A) denotes the largest singular value of the matrix A. The estimated
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time-delay margin of the LTI system is now given by

τm =
φm
ωgc

(3.18)

As discussed in [72], the estimate of the time-delay margin computed by this method is very

conservative. As long as the time delay in the control input is less than τm, the linear, time-

invariant system is guaranteed to be stable. As suggested previously, we conjecture that τm

also provides a lower bound for the critical time delay of the original L1 system.

To illustrate this analysis, consider again the three-degree-of-freedom manipulator and the

corresponding L1 control system considered in the previous section with qd =

(
1 1 1

)T
and rd =

(
3 3 1

)T
. From the graphs of the singular values of Lo(jω) in the top panel

of Fig. 3.5, we obtain the gain-crossover frequency of 22 rad/s. Similarly, the graphs of the

singular values of I + L−1
o (jω) in the middle panel of Fig. 3.5 gives βσ = −1.28 dB and,

consequently, φm = 0.892 rad. Equation (3.18) then yields an estimate of the time-delay

margin τm = 0.041 s, which we assume to provide a conservative lower bound of the critical

time delay of the L1 control system. The results of repeating this procedure with different

values of the filter bandwidth are shown in the bottom panel of Fig. 3.5 together with the

critical time delay of the adaptive control system estimated by numerical simulation. As

seen in the figure, the critical time delay of the adaptive system is always above that of the

LTI system, consistent with the conjecture.

3.3 Parameter Continuation

As suggested in previous sections, the critical time delay of a nonlinear control system is

defined as that value of the actuator time delay beyond which unbounded growth is expected

for some reference input in the linearization around the reference trajectory. In the analysis

of the L1 system that lead to the numerical results shown in the bottom panel of Fig. 3.5,
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the critical time delay was found by increasing the actuator time delay until the response

exhibits sustained, finite-amplitude oscillations.

In this section, we consider an alternative way of finding the critical time delay for static

reference inputs by monitoring the roots of the corresponding characteristic equation ob-

tained by linearization around the desired state. In this case, the appearance of sustained,

finite-amplitude oscillations is associated with a supercritical Hopf bifurcation, in which the

two complex conjugate roots with largest real part cross the imaginary axis, rendering the

equilibrium state linearly unstable.

To demonstrate the concept, we first consider the following scalar system, in which a time

delay τ is introduced in the control signal before its application to the plant:

ẋ(t) = ax(t) + b
(
u(t− τ) + θx(t)

)
(3.19)

The control objective is now to make x(t) to follow the desired trajectory xd(t). We proceed

by constructing an L1 controller, of similar structure to those considered in the previous

sections of this chapter. Specifically, let

u(t) = −kmx(t) + uad(t) (3.20)

so as to yield

ẋ(t) = ax(t)− kmx(t− τ) + b
(
uad(t− τ) + θx(t)

)
(3.21)

With a− bkm = am the following state predictor is now used to estimate the system state

˙̂x(t) = amx̂(t) + b
(
θ̂(t)x(t) + uad(t)

)
(3.22)
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Here, the adaptive estimate θ̂ of the unknown parameter θ is governed by

˙̂
θ(t) = −Γx(t)b

(
x̂(t)− x(t)

)
(3.23)

Finally, let

uad(s) = C(s)
(
− η̂(s) + kgxd(s)

)
(3.24)

where η̂(s) is the Laplace transform of η̂(t) , θ̂(t)x(t) and C(s) is a first-order filter with

bandwidth is ω. In the time domain, Eqns. (3.19)-(3.24) can be written in the following

short form

ż = h
(
t, z(t), z(t− τ)

)
. (3.25)

where z ,

(
x x̂ θ̂ uad

)T
.

Suppose, for example, that a = 1, b = 1, am = −1, bm = 1, θ = 0.1, p = 1, kg = 1, and

xd(t) = 1. Then, the linearization of the governing differential equations about the steady

state zss =

(
1 1 0.1 0.9

)T
yields the delay-differential equation

ż(t) = Az(t) + Aτz(t− τ) (3.26)

where

A =



1.1 0 0 0

0.1 −1 1 1

Γ −Γ 0 0

−0.1ω 0 −ω −ω


, and Aτ =



−2 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0


(3.27)

The corresponding characteristic equation in the unknown roots λ is then given by

det [L(zss,Γ, τ, ω, λ)] = 0 (3.28)
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where L(zss,Γ, τ, ω, λ) = λI− A− Aτe−λτ .

For τ 6= 0, although Eqn. (3.28) has an infinite number of complex roots, the number of

roots in any right half plane can be shown to be finite. A subset of the system’s spectrum

in the complex plane for (Γ, τ, ω) = (800, 0.4, 10) is illustrated by Fig. 3.6. A pair of roots

at 1.7± i3.8 establishes the possibility of unbounded growth in the linearized equations. As

τ is decreased, this pair of roots shifts to the left and is found to cross the imaginary axis

for τ ≈ 0.08 corresponding to a Hopf bifurcation.

Using the matlab-based continuation toolbox dde-biftool, we may use the Hopf bifur-

cation point for Γ = 800 and ω = 10 as an initial guess for computing the implicitly defined

solution manifold of the system of equations

 h(zss, zss) = 0

det [L(zss,Γ, ω, τ, jΩ)] = 0.
(3.29)

corresponding to the existence of an equilibrium state zss with a root of the corresponding

characteristic equation at jΩ. By separating the characteristic equation into real and imagi-

nary parts, this corresponds to 6 equations in 8 unknowns (zss,Γ, ω, τ,Ω). It follows that the

solution manifold is two-dimensional and may be locally parameterized by some combination

of two of these unknowns. Sample one-dimensional submanifolds of the solution manifold for

different fixed values of the filter bandwidth ω obtained using dde-biftool are represented

by the graphs in Fig. 3.7. In each case, the linear stability of the equilibrium state at zss

switches between stable and unstable as the corresponding solution curve is crossed, with

zss being stable for sufficiently small time delays τ .

For large values of the adaptive gain Γ, the critical time delay appears to plateau at a fixed

value providing a guaranteed stability margin for static reference inputs at high adaptation

rates (this is expected from the general theory for SISO systems for arbitrary reference

inputs). For small values of Γ, the solution manifolds fall off sharply initially. For ω = 10

and 15, two folds are found along the solution manifold providing for an interval of time
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Figure 3.6: Roots of (3.28) in the complex plane obtained using the Matlab-based toolbox
dde-biftool [34]: Top panel: (Γ, τ, ω) = (800, 0.05, 10), when the system is stable with all
eigenvalues on the left-half complex plane; Middle panel: (Γ, τ, ω) = (800, 0.08, 10), when
Hopf bifurcation occurs, and two rightmost eigenvalues cross the imaginary axis; Bottom
panel: (Γ, τ, ω) = (800, 0.4, 10), when the rightmost eigenvalues lie on the right-half
complex plane, and the system is unstable.
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delays for which stable behavior is observed above the first critical time delay.
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Figure 3.7: The curve of critical time delay versus adaptive gain for ω = 5, 10, and 15. The
points A through D along the vertical line segment at Γ = 800 are further explored in
Fig. 3.8.

Consider, in particular, the sequence of time histories of the system response obtained

through numerical simulation and shown in Fig. 3.8. Here, the delay τ is increased from

zero along the vertical line Γ = 800 in the parameter plane in Fig. 3.7 for ω = 10. In each

case, the initial condition is chosen close to the desired steady-state value of 1. At point A,

below the curve of critical time delays, the system’s response appears stable. In contrast,

at point B, the parameters have crossed the curve of critical time delays and the response

exhibits oscillations that grow in amplitude away from the desired response. At point C,

the parameters have again crossed the curve of critical time delays and the initial transient

oscillations decay quickly. Finally, at point D, sustained, finite-amplitude oscillations are
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again observed in the system response.

We finally comment on the applicability of this method to a simplified version of the L1

controller considered in the beginning of this chapter. Specifically, consider the nonlinear

control system given by

q̇(t) = r(t)− Λq(t), q(0) = q0 (3.30)

ṙ(t) = Amr(t) + u(t− τ)− η(t), r(0) = r0 (3.31)

˙̂r(t) = Amr̂(t) + u(t)− η̂(t), r̂(0) = r0 (3.32)

u(s) = C(s) (η̂(s)− Amrd(s)) (3.33)

where

η(t) = L1r(t)− L2q(t) + L3 (3.34)

η̂(t) = L̂1r(t) + L̂2q(t) + L̂3 (3.35)

and

˙̂
L1(t) = Γr(t)r̃T (t)P, L̂1(0) = L10 (3.36)

˙̂
L2(t) = Γq(t)r̃T (t)P, L̂2(0) = L20 (3.37)

˙̂
L3(t) = ΓP r̃(t), L̂3(0) = L30 (3.38)

For a static reference input rd, there exists a hyperplane of equilibrium states of the sys-

tem of differential equations given by (3.30)-(3.33) and (3.36)-(3.38). It follows that the

corresponding characteristic equation has one or several roots at 0 thus yielding a singular

continuation problem for the computation of the curve of critical time delays. This singu-

larity must be removed before the parameter continuation approach may be applied to the

robot manipulator, for example, by modifying the adaptive laws in (3.36), (3.37) and (3.38)
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to select desired target values for a subset of the adaptive estimates.

3.4 Conclusion

This chapter presents a numerical study of the robustness to actuator time delay of the L1

adaptive control architecture for robot manipulators presented in Chapter 2. As supported

by the numerical analysis, the L1 control formulation provides for lower bounds on the critical

time delay for given static reference inputs with instability associated with a flutter (Hopf)

bifurcation in the control system response.

Several remarks are in order to put the preliminary contribution of this chapter into

perspective. Although tuning of the filter structure and the introduction of time delays

in the equation governing the state predictor were both shown to suppress the instability

associated with actuator time delays, such modifications may degrade other performance

characteristics, e.g., bounds on the r(t) − rd(t). Furthermore, neither simulation nor pa-

rameter continuation may be used to arrive at rigorous estimates of the time-delay margin,

since these techniques are at best restricted to particular classes of reference inputs. Such

observations, notwithstanding, critical time delays computed, for example, using numerical

continuation may provide useful design criteria in practical control applications.

The analysis in this chapter shows initial steps toward a complete theory for the delay

robustness of the adaptive control framework studied in this dissertation. In the next chapter,

we take one step further and present theoretical analysis that rigorously proves that there

exists a lower bound for the time delay margin of a class of nonlinear systems.
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Figure 3.8: System responses for the points A, B, C, and D in the parameter plane Γ− τ in
Fig. 3.7.
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CHAPTER 4

DELAY ROBUSTNESS OF ADAPTIVE
CONTROLLERS: CONSTANT INPUT-GAIN

MATRICES

Time delay is an integral part of most robotic systems. In many systems, time delay in

the control loop induces instability, and is resistant to many classical controllers [106]. In

the presence of time delay, the closed-loop dynamical system is given by a delay differential

equation (DDE), whose functional state evolves in a infinite dimensional function space.

Many results from ODE theory do not apply to DDEs. In addition, it is well known that the

behavior of solutions to a delay system can be much more complicated than the behavior

of solutions to the same system with zero delay [48]. In nonlinear delay systems, there is

no general method for computing the time-delay margin. In this chapter, we establish a

positive lower bound for the time-delay margin, which is independent of the adaptive gain,

for an adaptive control algorithm formulated for systems with unknown nonlinearities and

constant input-gain matrices.

This chapter is organized as follows. Section 4.1 describes the system of interest and

discusses how different types of systems can be converted to the presented form. Assump-

tions regarding the system are also stated here. In Section 4.2, we construct a nonadaptive

reference system, and investigate its continuous dependence on the input delay. In addi-

tion, using continuity arguments, we establish a delay-dependent stability condition, which

is associated with the existence of a positive lower bound for its time-delay margin of the

reference system. Section 4.3 discusses the design of the adaptive controller and establishes

transient performance bounds when the input delay is below the lower bound. The effect of

the input delay on the system response is demonstrated in Section 4.4 through simulation.

In Section 4.5, we estimate the lower bound for the time-delay margin using the method of
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Padé approximants. Section 4.6 gives concluding remarks.

4.1 The open-loop plant

Let the state and output of a dynamical system be represented by the vectors r(t) ∈ Rn

and y(t) ∈ Rm, respectively, where n ≥ m, and assume that the system dynamics may be

described in state-space form by the equations

ṙ(t) = A(t)r(t) +B
(
ωu(t− ε) + η0

(
t, r(t)

))
, (4.1)

y(t) = Dr(t), (4.2)

and r(0) = r0, where ε ≥ 0 denotes a time delay in the control input u(t) ∈ Rm. Suppose that

A : R 7→ Rn×n is an unknown, bounded, and smooth matrix function of time, B ∈ Rn×m

and D ∈ Rm×n are known constant matrices, ω ∈ Rm×m is an unknown constant input-

gain matrix, and η0(t, r) is a nonlinearity that includes time-varying disturbances. The

objective of the control design is to construct a closed-loop system that drives y(t) to a

desired trajectory yd(t), with suitable performance characteristics. To this end, consider the

following definition.

Definition 4.1. Given bd > 0 and bic > 0, the closed-loop system is said to admit a transient

performance bound if there exists a ρ, such that

‖yd‖L∞ ≤ bd and ‖r0‖∞ ≤ bic ⇒ ‖r‖L∞ ≤ ρ. (4.3)

If the closed-loop system admits a transient performance bound when ε = 0, then its time-

delay margin is the maximum input delay that the system can tolerate without violating

(4.3).

The analysis in this chapter establishes the existence of a positive lower bound on the
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time-delay margin of the closed-loop system obtained from a suitably constructed adaptive

control scheme, as long as the adaptive gain is sufficiently large.

Equations of the form (4.1)-(4.2) arise in the study of aerial vehicles [49], manipula-

tors linearized about a quasi-static trajectory with nonlinear disturbances [93], cable-driven

manipulators [108], and mobile agents [134]. A version of these equations with time and

state-dependent coefficient matrix ω is obtained for Lagrangian systems, e.g., using a sliding

variable formulation as in [102], or by expressing the equations of motion in first-order form

(see [97] and [76]). In all of these cases, ω is positive-definite.

We make the following assumptions:

Assumption 4.1. The matrix B has full rank, i.e., the contribution of the control input to

ṙ equals zero only if u = 0. It follows that B>B is nonsingular.

Assumption 4.2. The input-gain matrix ω is positive definite.

Assumption 4.3. The matrices A(t), B, and the Hurwitz matrix Am are matched, i.e., the

columns of the difference A(t)− Am are in the column span of B.

When Assumption 4.3 is satisfied, it may be possible to achieve certain given control

objectives by tuning Am through the addition of linear combinations of the columns of B.

Taking this assumption into account, equation (4.1) can be transformed to

ṙ(t) = Amr(t) +B
(
ωu(t− ε) + η

(
t, r(t)

))
(4.4)

for some η
(
t, r(t)

)
.

Assumption 4.4. For each δ > 0, the partial derivatives of η(t, r) are piecewise continuous

and uniformly bounded on the cylinder {t ≥ 0, ‖r‖∞ ≤ δ}. In particular, let dηr(δ) denote

the bound on ∂η(t, r)/∂r. In addition, assume that ‖η(t, 0)‖ ≤ Z, where Z is some positive

constant.
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4.2 Nonadaptive reference system

In this section, we analyze a nonadaptive reference system that represents the ideal behavior

for the adaptive control system. The analysis establishes a stability condition for the refer-

ence system, and shows the existence of a positive lower bound for its time-delay margin,

which quantifies the delay robustness.

Specifically, let k > 0 be a given scalar, and consider the closed-loop nonadaptive, delay-

differential, reference system obtained by appending

u̇(t) = −kωu(t− ε)− kη
(
t, r(t)

)
− kKdyd(t), (4.5)

with Kd , (DA−1
m B)−1 and u(t) = 0, ∀t ∈ [−ε, 0], to (4.2) and (4.4). We proceed to

investigate the continuity of solutions of (4.5) with respect to t and ε.

4.2.1 Continuous dependence on input delay

Consider the following linear DDE

Ḟ (t; ε) = −kωF (t− ε; ε)− kIδ(t), (4.6)

with F (t, ε) = 0, ∀t ∈ [−ε, 0], obtained from (4.5) by substituting the Dirac impulse δ(t) in

lieu of the input excitation η
(
t, r(t)

)
+Kdyd(t).

Lemma 4.1. The DDE in (4.6) has no finite escape time.

Proof. Assume that (4.6) has a finite escape time. In particular, suppose that

∥∥F (t; ε)
∥∥ <∞, ∀t ∈ [0, te) (4.7)
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and

lim
t→te
‖F (t; ε)‖ =∞. (4.8)

It follows from (4.6) that

∥∥F (te; ε)
∥∥ ≤ ∥∥∥∥−kω ∫ te

0

F (λ− ε; ε)dλ
∥∥∥∥+ k ≤ k‖ω‖

∫ te−ε

0

∥∥F (λ; ε)
∥∥dλ+ k <∞, (4.9)

since (4.7) implies that
∥∥F (t; ε)

∥∥ is bounded for t ∈ [0, te − ε]. Since F (t; ε) is a continuous

function in t (see Section 2.2 of [48], p. 37), we have arrived at a contradiction.

Lemma 4.2. For every T > 0, F (t; ε) is a continuous function of ε ≥ 0, uniformly in

t ∈ [0, T ].

Proof. Consider an arbitrary convergent sequence εm, such that

lim
m→∞

εm = ε̄, (4.10)

for some given ε̄ > 0. For nonzero ε ≈ ε̄, let F̃ (τ, ε) := F (ετ ; ε) be defined for τ ∈ [0, T̃ ], for

some T̃ > T/ε̄. It follows that

˙̃F (τ ; ε) = −εkωF̃ (τ − 1; ε)− εkδ(ετ), (4.11)

with F̃ (τ ; ε) = 0, ∀τ ∈ [−1, 0]. Integrating both sides of (4.11) leads to

F̃ (τ ; ε) = −εkω
∫ τ

0

F̃ (λ− 1; ε)dλ− kI. (4.12)
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It follows from (4.12) that ‖F̃ (τ ; εm)− F̃ (τ ; ε̄)‖ is bounded by

k‖ω‖
∫ τ

0

∥∥∥εmF̃ (λ− 1; εm)− ε̄F̃ (λ− 1; ε̄)
∥∥∥ dλ

≤ k‖ω‖εm
∫ τ

0

‖F̃ (λ− 1; εm)− F̃ (λ− 1; ε̄)‖dλ+ k‖ω‖
∫ τ

0

∥∥∥(εm − ε̄)F̃ (λ− 1; ε̄)
∥∥∥ dλ. (4.13)

By a change of variables, and use of the initial condition, it follows that ‖F̃ (τ ; εm)− F̃ (τ ; ε̄)‖

is bounded by

k‖ω‖εm
∫ τ

0

‖F̃ (λ; εm)− F̃ (λ; ε̄)‖dλ+R(εm, ε̄), (4.14)

where

R(εm, ε̄) , |εm − ε̄|k‖ω‖
∫ T̃

0

∥∥∥F̃ (λ− 1; ε̄)
∥∥∥ dλ. (4.15)

Since F̃ (τ ; ε̄) is bounded by Lemma 4.1,

lim
m→∞

R(εm, ε̄) = 0. (4.16)

By the Gronwall lemma,

sup
τ∈[0,T̃ ]

‖F̃ (τ ; εm)− F̃ (τ ; ε̄)‖ ≤ R(εm, ε̄)e
kεm‖ω‖T̃

⇒ lim
m→∞

sup
τ∈[0,T̃ ]

‖F̃ (τ ; εm)− F̃ (τ ; ε̄)‖ = 0 (4.17)

Finally,

‖F (t; εm)− F (t; ε̄)‖ ≤
∥∥∥∥F̃ ( t

εm
; εm

)
− F̃

(
t

εm
; ε̄

)∥∥∥∥+

∥∥∥∥F (t ε̄εm ; ε̄

)
− F (t; ε̄)

∥∥∥∥ . (4.18)

By the uniform continuity, for fixed ε, of F (t; ε) in t on the compact interval [0, T ], it follows
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that

lim
m→∞

sup
t∈[0,T ]

‖F (t; εm)− F (t; ε̄)‖ = 0, (4.19)

i.e., that F (t; ε) is continuous in ε for ε > 0, uniformly in t on [0, T ].

Suppose, instead, that ε̄ = 0.

Then,

‖F (t; εm)− F (t; 0)‖ ≤ k‖ω‖
∫ t

0

‖F (λ; εm)− F (λ; 0)‖dλ

+ k‖ω‖
∫ t

0

‖F (λ− εm; εm)− F (λ; εm)‖dλ. (4.20)

Again, applying the Gronwall lemma gives

‖F (t;εm)− F (t; 0)‖ ≤ k‖ω‖ek‖ω‖t
∫ t

0

‖F (λ− εm; εm)− F (λ; εm)‖dλ. (4.21)

It follows from (4.6) that

F (t− ε; ε) = −kω
∫ t−ε

0

F (λ− ε; ε)dλ− kI = −kω
∫ t−2ε

−ε
F (λ; ε)dλ− kI

= −kω
∫ t

0

F (λ; ε)dλ+ kω

∫ t

t−2ε

F (λ; ε)dλ− kI. (4.22)

It follows from [48] (p. 16) that there exist positive constants β1 and β2, independent of

ε, such that

‖F (t; ε)‖ ≤ β1eβ2t ≤ β1eβ2T (4.23)

as t ∈ [−ε, T ]. Hence,

kω

∫ t

t−2ε

F (λ; ε)dλ ≤ k‖ω‖β1eβ2T2ε , R1(ε). (4.24)
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Note here that lim
m→∞

R1(εm) = 0. From (4.6) and (4.22) we obtain

‖F (t− εm; εm)− F (t; εm)‖ ≤ R1(εm) + k‖ω‖
∫ t

0

‖F (λ; εm)− F (λ− εm; εm)‖ dλ. (4.25)

It follows from the Gronwall lemma that

lim
m→∞

sup
t∈[−ε,T ]

‖F (t− εm; εm)− F (t; εm)‖ ≤ ek‖ω‖T lim
m→∞

R1(εm) = 0. (4.26)

Thus from (4.21) and (4.26), we arrive at the continuity of F (t; ε) in ε at ε = 0, uniformly

in t on [0, T ].

Lemma 4.3. F (t; ε) is a continuous function of ε, for ε sufficiently small, uniformly in

t ∈ [0,∞).

Proof. It follows from (4.6) that, when the delay ε = 0, the equation is exponentially stable

as kω is positive definite. Therefore, there is an interval [0, εus) for the delay, on which (4.6)

is exponentially stable. In fact, following [48] (p. 182), there exist positive scalars C and

α(εs), independent of the delay ε, such that

‖F (t; ε)‖ ≤ ce−α(εs)t, ∀ε ∈ [0, εs], and t ∈ [0,∞) (4.27)

for any εs < εus.

For such an εs, consider a convergent sequence εm with lim
m→∞

εm = ε̄, where ε̄ ∈ [0, εs).

Then, for 0 < δ � 2c, and with Tl , 1
α(εs)

ln(2c
δ

), we have

sup
t∈[Tl,∞)

‖F (t; εm)− F (t; ε̄)‖ ≤ 2ce−α(εs)Tl = δ (4.28)

for sufficiently large m. Further, by the previous lemma,

sup
t∈[0,Tl]

‖F (t; εm)− F (t; ε̄)‖ ≤ δ (4.29)
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for sufficiently large m. It follows from (4.28) and (4.29) that there exists an integer M , such

that m ≥M implies

sup
t∈[0,∞)

‖F (t; εm)− F (t; ε̄)‖ ≤ δ. (4.30)

Thus, F (t; ε) is continuous in ε on [0, εus), uniformly in t on [0,∞).

Lemma 4.4. Let Φ(t; ε) denote the solution to

Φ̇(t, ε) = AmΦ(t, ε) +BωF (t− ε, ε) +Bδ(t) (4.31)

with Φ(0, ε) = 0, and F (t− ε, ε) is the solution to (4.6). Then, Φ(t; ε) is continuous in ε on

[0, εus), uniformly in t on [0,∞).

Proof. Given εs < εus, consider a convergent sequence εm with lim
m→∞

εm = ε̄, where ε̄ ∈ [0, εs).

Consider an arbitrary δ ∈ [0, 1). By applying the variation-of-constants formula to (4.31), it

follows that ‖Φ(t; εm)− Φ(t; ε̄)‖ is bounded by

‖B‖‖ω‖
∫ t

0

‖F (λ− εm, εm)− F (λ− ε̄, ε̄)‖dλ, (4.32)

since ‖eAm(t−λ)‖ ≤ 1 for λ ∈ [0, t] and t ∈ [0,∞) and Am Hurwitz. Let Th , − 1
α(εs)

ln δ. For

sufficiently large m, it follows by continuity and from the previous lemmas that ‖Φ(t; εm)−

Φ(t; ε̄)‖ is bounded, for all t ∈ [0,∞), by

‖B‖‖ω‖
(∫ Th

0

δ

Th
dλ+

∫ ∞
Th

2ce−α(εs)λdλ

)
= ‖B‖‖ω‖

(
1 +

2c

α(εs)

)
δ. (4.33)

Since the right-hand side of this inequality is proportional to δ, we conclude that Φ(t; ε) is

continuous in ε on [0, εus), uniformly in t on [0,∞).

With minimal modifications to the proof, we arrive at the following lemma.
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Lemma 4.5. Let Ψ(t; ε) be the solution to

Ψ̇(t, ε) = AmΨ(t, ε) +BωF (t− ε, ε)Kd (4.34)

with Ψ(0, ε) = 0, and F (t− ε, ε) is the solution to (4.6), and some constant matrix Kd. The

function Ψ(t; ε) is continuous in ε on [0, εus), uniformly in t on [0,∞).

4.2.2 A stability condition

Since ω is constant, (4.5) implies that

u(s) = F (s; ε)
(
η(s) +Kdyd(s)

)
, (4.35)

where

F (s; ε) , −k
(
sI + kωe−εs

)−1
(4.36)

is the Laplace transform of the solution F (t; ε) to (4.6), and η(s) and yd(s) are the Laplace

transforms of η(t, r(t)) and yd(t), respectively.

Let

‖P (s)‖L1 , max
i=1,...,n

n∑
j=1

∫ ∞
0

|Pij(t)|dt, (4.37)

denote the L1-norm of the transfer function P (s), in terms of the components Pij(t) of the

corresponding impulse response matrix. It follows from Lemma 4.3 that

g(ε) , ‖F (s; ε)‖L1 (4.38)

is continuous in ε ∈ [0, εus). Since kω is positive definite, g(0) is finite. By continuity, g is
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bounded on [0, εus). On this interval,

‖u‖L∞ ≤ g(ε)
(
‖η‖L∞ +Kd‖yd‖L∞

)
. (4.39)

Similarly, it follows from (4.4) and (4.35) that

r(s) = Φ(s; ε)η(s) + Ψ(s; ε)yd(s) + (sI− Am)−1r0, (4.40)

where H(s) , (sI− Am)−1B, and

Φ(s; ε) , H(s)
(
I + ωe−εsF (s; ε)

)
, (4.41)

Ψ(s; ε) , H(s)ωe−εsF (s; ε)Kd, (4.42)

are the Laplace transforms of the solutions Φ(t; ε) and Ψ(t; ε) to (4.31) and (4.34), respec-

tively. It follows from Lemma 4.4 that

f(ε) , ‖Φ(s; ε)‖L1 (4.43)

is continuous on [0, εus).

We proceed to show that f(0) < ∞. To this end, consider the special case that ε = 0,

r0 = 0 and yd(t) = 0. Let ηu , ωu− u+ η, such that

‖ηu‖L∞ ≤
(
(‖ω‖+ 1)g(0) + 1

)
‖η‖L∞ . (4.44)

Rearranging the terms in (4.4) yields

r(s) = H(s)
(
u(s) + ηu(s)

)
, (4.45)
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where, by (4.5),

u(s) = − k

s+ k
ηu(s). (4.46)

It follows that

‖r‖L∞ ≤
∥∥s(sI− Am)−1

∥∥
L1
‖B‖

∥∥∥∥ 1

s+ k

∥∥∥∥
L1

‖ηu‖L∞

≤ 2

k
‖B‖

(
(‖ω‖+ 1)g(0) + 1

)
‖η‖L∞ . (4.47)

From (4.40) it follows that

f(0) ≤ 2

k
‖B‖

(
(‖ω‖+ 1)g(0) + 1

)
. (4.48)

Consider next the delay-dependent norms

ρd(ε) , ‖Ψ(s; ε)‖L1 (4.49)

and

ρic , ‖(sI− Am)−1‖L1 , (4.50)

which represent the effects of the desired trajectory yd and the initial condition r0 on the

solution to (4.40). Here, ρd(0) and ρic are both finite, since Φ(s; 0) = H(s)F (s; 0) is a stable

transfer function and Am is Hurwitz. Moreover, by Lemma 4.5, ρd(ε) is continuous on [0, εus).

Lemma 4.6. Given bd > 0 and bic > 0, there exists a k, a ρref , and an εl, such that

f(ε) ≤ ρref − ρd(ε)bd − ρicbic

Lρref
ρref + Z

, ∀ε ∈ [0, εl], (4.51)

where

Lρref
,
ρref + 1

ρref

dηr(ρref + 1). (4.52)

Proof. Choose ρref > ρicbic + ρd(0)bd. Then, since f(0)→ 0 as k →∞, it follows that there
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exists a K, such that k > K implies that

f(0) <
ρref − ρd(0)bd − ρicbic

Lρref
ρref + Z

. (4.53)

For such a k, the claim now follows by the continuity of f(ε) and ρd(ε), where εl equals the

smallest value of ε that results in equality in (4.51).

In Section 4.2.4 below, we show that if, in addition, ρref > bic, then the closed-loop reference

system admits a transient performance bound for any ε < εl. Furthermore, in Section 4.3.2,

we show that, for sufficiently large adaptive gains, the state and control input of the closed-

loop adaptive control system follow those of the reference system closely. This implies that

εl is a lower bound for the time-delay margin of the closed-loop adaptive control system.

4.2.3 The upper bound of εl

The quantity εus was defined earlier as the smallest positive value of ε for which F (s; ε) has

a pole on the imaginary axis. It follows from the definition of f(ε) in (4.43) that

f(ε) =
∥∥s(sI− Am)−1BF (t; ε)/k

∥∥
L1
, (4.54)

where s(sI− Am)−1B is a stable transfer function for Am Hurwitz. It follows that f(εus) is

infinite, i.e., that εl < εus.

We now seek the delay value at which the rightmost eigenvalues of F (s; ε) cross the imag-

inary axis. When ω ∈ R, Let s = jα, where j is the imaginary unit. Applying Euler’s

formula to the denominator of F (s; ε) yields

s+ kωe−εs = kω cos(εα) + j(α− kω sin(εα)). (4.55)

By setting the real part of (4.55) to zero we get α∗ =
nπ+π

2

ε∗
, where n ∈ Z. Taking this into
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account, we set the imaginary part of (4.55) to zero to arrive at

ε∗ =
nπ + π

2

kω sin(nπ + π
2
)

(4.56)

When ω ∈ Rm×m, since ω is positive definite, it can be diagonalized as follows:

ω = UΛU−1

where U ∈ Rm×m is an orthogonal matrix, with U−1 = U>, and Λ ∈ Rm×m is a diagonal

matrix, given in the following form

Λ = diag[λii], i = 1, ...,m

where λ11, λ22, ...λmm are the eigenvalues of matrix ω, and they are all positive. Then,

sI + ke−εsω = U(sI + ke−εsΛ)U−1 (4.57)

F (s; ε) is then given by the inverse of (4.57),

F (s; ε) = −kUdiag
[ 1

s+ ke−εsλii

]
U−1, i = 1, ...,m (4.58)

The analysis in this case again follows the scalar case to obtain (4.56), in which ω is now

replaced by λii.

Consider the above two cases for ω, and from (4.56), we can get the following expression

εus =
π

2kλm
, (4.59)

where λm is the maximum eigenvalue of ω.

From the above analysis, εus is always inversely proportional to the filter bandwidth k.
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Since εus is the upper bound for εl, εl must lie in the envelope formed by εus, which decreases

as k increases.

4.2.4 Transient performance of the reference system

In this section, we show that the closed-loop reference system may be designed to admit a

transient performance bound even for nonzero input delay.

Theorem 4.1. Denote the solution to the nonadaptive reference system formed by (4.2),

(4.4) and (4.5) by
(
rref(t), uref(t), yref(t)

)
. Then, given bd > 0 and bic > 0, there exists a k,

such that

‖yd‖L∞ ≤ bd and ‖r0‖∞ ≤ bic ⇒ ‖rref‖L∞ ≤ ρref (4.60)

for some ρref and for all ε smaller than the corresponding εl. In addition, ‖uref‖L∞ <∞.

Proof. Choose ρref > max (bic, ρicbic + ρd(0)bd). Suppose there exists a T > 0, such that

the truncated norm ‖rref,T‖L∞ on the interval [0, T ] is greater than or equal to ρref . Since

rref(0) = r0, there exists a T̂ ∈ [0, T ], such that

‖rref(t)‖∞ < ρref , ∀t ∈ [0, T̂ ), (4.61)

and

‖rref(T̂ )‖∞ = ρref . (4.62)

Let ηref(t) , η
(
t, rref(t)

)
. It follows from Appendix B of [102] and Assumption 4.4 that

‖ηref,T̂‖L∞ < ρrefLρref
+ Z. (4.63)
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Together with (4.4), (4.5) and (4.51), this leads to

‖rref,T̂‖L∞ < ρref , (4.64)

and we have arrived at a contradiction. The boundedness of uref follows, as in [102], imme-

diately from (4.39) and the bound on ηref in (4.63), which holds for all time.

Remark 4.1. Suppose that yd(t) is constant. Then, since

lim
s→0

DsΨ(s; ε)yd(s) = DA−1
m BKdyd = yd (4.65)

and

lim
s→0

s(sI− Am)−1r0 = 0, (4.66)

it follows that, for large t

‖y(t)− yd‖∞ ≤ Df(ε)‖η‖L∞ < Df(ε)(ρrefLρref
+ Z). (4.67)

Since f(0) = O(k−1), it follows that

‖y(t)− yd‖∞ = O(k−1) (4.68)

when ε = 0. No such conclusion follows for ε 6= 0.

4.3 An adaptive control scheme and its transient performance

In this section, we first design the adaptive controller for the system of interest, along the

line of the general framework of adaptive control proposed in [61]. We then prove guaranteed

bounds on the estimation error and on the deviations between the state and control input

of the proposed adaptive control system and those of the nonadaptive reference system.
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4.3.1 Control design

Let the control input u(t) be the solution to the differential equation

u̇(t) = −k
(
u(t) + θ̂(t)‖rt‖L∞ + σ̂(t) +Kdyd(t)

)
, (4.69)

where u(0) = 0, and the functions θ̂ and σ̂ are governed by the projection-based adaptive

laws (cf. [71])

˙̂
θ(t) = Γ Proj

(
θ̂(t),−B>P r̃(t)‖rt‖L∞ ; θb, ν

)
, (4.70)

˙̂σ(t) = Γ Proj
(
σ̂(t),−B>P r̃(t);σb, ν

)
, (4.71)

with θ̂(0) = θ̂0 and σ̂(0) = σ̂0, in terms of the estimation error r̃ , r̂ − r, where

˙̂r(t) = Amr(t) + Aspr̃(t) +B
(
u(t) + θ̂(t)‖rt‖L∞ + σ̂(t)

)
(4.72)

and r̂(0) = r0. Here, the positive scalar k corresponds to the bandwidth of the first-order low-

pass filter k/(s+ k). Moreover, Asp is a Hurwitz matrix, which may be tuned to reduce any

noise in the state predictor r̂. The projection operators Proj(·, ·; ·, ·) are here implemented in

terms of the bounds θb and σb, the tolerance ν, and the positive-definite matrix P , obtained

as the solution to the Lyapunov equation A>spP + PAsp = −I. The implementation ensures

that ‖θ̂(t)‖∞ ≤ θb and ‖σ̂(t)‖∞ ≤ σb provided that θ̂0 and σ̂0 satisfy these same bounds.

Finally, Γ > 0 is the adaptive gain.

4.3.2 Transient performance of the adaptive system

In this section, we analyze the transient performance of the proposed adaptive closed-loop

control system. The theorem below states that if ε < εl, and the bandwidth k, the adaptive

gain Γ, and the bounds θb and σb are chosen appropriately, then the state and control input
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of the adaptive closed-loop control system governed by (4.4) and (4.69)-(4.72) follow those

of the reference system closely. In particular,

Theorem 4.2. Suppose bd and bic are given, and ρref and k are chosen as in Section 4.2.2

and assume that ε is less than the corresponding εl. Then, there exists a C > 0, such that,

for ψ � 1, ‖r̃‖L∞ ≤ ψ and

‖rref − r‖L∞ , ‖uref − u‖L∞ (4.73)

are bounded from above by brψ and buψ for some positive constants br and bu, provided that

Γψ2 ≥ C.

Since εl is a positive, lower bound for the time-delay margin of the nonadaptive reference

system, it is also a positive, lower bound for the time-delay margin of the adaptive closed-loop

control system, which guarantees that ‖r‖L∞ ≤ ρref + brψ.

Before proving this theorem, we show that the state predictor tracks the system state with

the estimation error inversely proportional to the square root of the adaptive gain.

Lemma 4.7. Suppose that

‖rτ‖L∞ < ρref + 1, ‖uτ‖L∞ < ρu <∞ (4.74)

for some τ . Then, there exists a C > 0, which is independent of τ , such that the truncated

norm

‖r̃τ‖L∞ ≤
√
C/Γ. (4.75)

Proof. Because of the bound in (4.74), the parameterization

η(t, r(t)) = θ(t)‖rt‖L∞ + σ(t) (4.76)

holds for all t ∈ [0, τ ], in terms of a pair of continuous, piecewise-differentiable and uniformly
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bounded functions θ and σ that satisfy ‖θ(t)‖ < θb, ‖θ̇(t)‖ < dθ, ‖σ(t)‖ < σb, and ‖σ̇(t)‖ < dσ

(see Lemma A.9.2 in [61]), with bounds that are independent of τ . Hence, from (4.4) and

(4.72), we get

˙̃r(t) = Aspr̃(t) +B
(
θ̃(t)‖rt‖L∞ + σ̃(t)

)
, (4.77)

and r̃(0) = 0, where θ̃ , θ̂ − θ, σ̃ , σ̂ − σ̄, and

σ̄(t) = σ(t) + ωu(t− ε)− u(t). (4.78)

By the assumption on u and the bound on σ, ‖σ̄(t)‖ ≤ σ̄b, with σ̄b independent of τ .

Moreover,

˙̄σ(t) = σ̇(t) + ωu̇(t− ε)− u̇(t). (4.79)

By the assumptions on r(t) and u(t), (4.4) and (4.69)-(4.71), imply that ṙ and u̇ are bounded

by constants independent of τ . Hence, ‖ ˙̄σ(t)‖∞ ≤ dσ̄, with dσ̄ independent of τ .

Consider the Lyapunov function candidate

V (t) = r̃>(t)P r̃(t) +
1

Γ
(θ̃>(t)θ̃(t) + σ̃>(t)σ̃(t)). (4.80)

By the properties of the projection operators,

V̇ (t) ≤ −r̃>(t)r̃(t) +
2

Γ

∣∣θ̃>(t)θ̇(t) + σ̃>(t) ˙̄σ(t)
∣∣ ≤ −‖r̃‖2

2 +
4

Γ

(
θbdθ + σbdσ̄

)
. (4.81)

We have

V (0) ≤ 4

Γ

(
θ2
b + σ2

b

)
<
νm
Γ
, (4.82)
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where νm , 4(θ2
b + σ2

b ) + 4λmax(P )
(
θbdθ + σbdσ̄

)
. We now show by contradiction that

V (t) ≤ νm
Γ
, ∀t ∈ [0, τ ]. (4.83)

To this end, choose τ̂ ∈ (0, τ ] such that θ̇ and σ̇ are continuous on [0, τ̂). Suppose that

V (τ̄) > νm/Γ and V̇ (τ̄) ≥ 0 for some τ̄ < τ̂ . It follows that

νm
Γ
< V (τ̄) ≤ ‖r̃(τ̄)‖2

2λmax(P ) +
4

Γ

(
θ2
b + σ̄2

b

)
.

Hence,

‖r̃(τ̄)‖2
2 >

4

Γ

(
θbdθ + σbdσ̄

)
. (4.84)

By substituting (4.84) in (4.81) we have V̇ (τ̄) < 0, which contradicts the assumption that

V̇ (τ̄) ≥ 0. Thus, V (t) ≤ νm
Γ

for all t ∈ [0, τ̂). Since V (t) is a continuous function, V (t) ≤ νm
Γ

for all t ∈ [0, τ̂ ]. Consequently,

‖r̃τ̂‖L∞ ≤
√

νm
λmin(P )Γ

. (4.85)

By repeating this analysis for each subsequent interval of continuity of θ̇ and σ̇, we conclude

that (4.85) holds with τ̂ replaced by τ , and the claim follows.

Lemma 4.8. Let η̃(t) , θ̃(t)‖rt‖L∞+ σ̃(t). When ε ≤ εl, there exists a constant b0 such that

‖F (s; ε)η̃(s)‖L∞ ≤ b0‖r̃‖L∞ . (4.86)

Proof. From (4.77) we have

B> ˙̃r = B>Aspr̃ +B>Bη̃ (4.87)
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and, consequently,

η̃(s) = B∗(sI− Asp)r̃(s) (4.88)

where the pseudoinverse B∗ = (B>B)−1B>, since B>B is nonsingular by Assumption 4.1.

Moreover, from (4.6), it follows that

sF (s; ε) = −k
(
I + ωe−εsF (s; ε)

)
(4.89)

Since ‖F (s; ε)‖L1 is bounded for ε ≤ εl, it follows that the norm ‖sF (s; ε)‖L1 is bounded.

Thus,

‖F (s; ε)η̃(s)‖L∞ ≤ ‖sF (s; ε)B∗r̃(s)‖L∞ + ‖F (s; ε)B∗Aspr̃(s)‖L∞ (4.90)

and the claim follows.

We proceed to prove Theorem 4.2.

Proof. Since

‖rref(0)− r(0)‖∞ = 0 < 1, ‖uref(0)− u(0)‖∞ = 0, (4.91)

it follows by continuity that there exists a τ > 0, such that ‖(rref − r)τ‖L∞ < 1 and ‖(uref −

u)τ‖L∞ <∞. Theorem 4.1 then leads to (4.74). It follows that

‖r̃τ‖L∞ ≤
√
C/Γ. (4.92)

for some C > 0, which is independent of τ .

Next, it follows from (4.69) and (4.76) that

u̇(t) = −k
(
ωu(t− ε) + η(t, r(t)) + η̃(t) +Kdyd(t)

)
(4.93)
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and, consequently,

u(s) = F (s; ε)
(
η(s) + η̃(s) +Kdyd(s)

)
. (4.94)

It follows from (4.36) and (4.94) that

uref(s)− u(s) = F (s; ε)
(
ηref(s)− η(s)− η̃(s)

)
. (4.95)

It further follows from Assumption 4.4 and (4.52) that

‖(ηref − η)τ‖L∞ ≤ Lρref
‖(rref − r)τ‖L∞ (4.96)

and, using Lemma 4.8,

‖(uref − u)τ‖L∞ ≤ g(ε)Lρref
‖(rref − r)τ‖L∞ + b0‖r̃τ‖L∞ . (4.97)

From (4.4) we now obtain

rref(s)− r(s) = H(s)
(
ωe−εs(uref(s)− u(s)) + ηref(s)− η(s)

)
. (4.98)

Together with (4.95)-(4.96) and Lemma 4.8, this results in the bound

‖(rref − r)τ‖L∞ ≤ f(ε)Lρref
‖(rref − r)τ‖L∞ + b2‖r̃τ‖L∞ , (4.99)

where b2 , b0‖H(s)ωe−εs‖L1 , which is finite for ε ∈ [0, εl).

When ε ∈ [0, εl), the stability condition in (4.51) holds and implies that 1− f(ε)Lρref
> 0.

Thus, from (4.97) and (4.99), we conclude that

‖(rref − r)τ‖L∞ ≤
b2

1− f(ε)Lρref

‖r̃τ‖L∞ (4.100)
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and

‖(uref − u)τ‖L∞ ≤
(

g(ε)b2Lρref

1− f(ε)Lρref

+ b0

)
‖r̃τ‖L∞ . (4.101)

The claim then follows by choosing ψ and Γ such that the right-hand side of (4.100) is

strictly less than 1 and
√
C/Γ < ψ.

In the next two sections, we will demonstrate the destabilizing effect of input delay. In

addition, we use Padé approximants to estimate the lower bound εl for the time delay margin

by monitoring the stability condition in (4.51) when the delay is being gradually increased.

4.4 Numerical analysis

To illustrate the effect of the input delay, as well as the delay robustness of the closed-loop

system, we consider the system in (4.4) with

A(t) =


sin(t) 0 0

0 cos(t) 0

0 0 cos(2t)

 , B = I, ω =


1.8 0.3 0.5

0.3 0.6 0.2

0.5 0.2 1.2

 ,

r0 =


0

0

0

 , D = I, η(t, r) =


r>r + sin(r1)r1r2 + r3

r2
3 + r1r2 + 1− e−3t

r3
2 + 0.1r3 cos(2t)

 (4.102)

The control parameters are set to: θb = σb = 100, ν = 0.1, Γ = 105, Asp = −0.1
√

Γ,

Am = −2I, and the desired trajectory is yd = (1 1 1)>. A low-pass filter with a bandwidth

of 10 is used in the control input. When increasing the input delay from zero, numerical

experiments reveal that the tracking objective is achieved with smooth control input, even

though high adaptation rate is used. Fig. 4.1 shows a typical satisfactory performance when

the input delay ε ∈ [0, 0.04]. When the delay is slightly greater than 0.04, the system

response and input start exhibiting initial transient oscillations with a decaying envelope,
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with amplitude and decay time scale growing with the input time delay. Local growth

to a sustained finite-amplitude oscillation about the desired trajectory is observed for an

input delay of approximately 0.065, as depicted in Fig. 4.2. For input delay greater than

approximately 0.07, the response appears to escape to infinity in finite time.
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Figure 4.1: Desirable tracking performance of the designed adaptive control system for the
input delay ε = 0.04 with smooth control input despite the fast adaptation.

4.5 Quantifying the lower bound for the time-delay margin

For a given bd > 0 and bic > 0, the theoretical analysis shows the existence of a bandwidth

k, such that the adaptive closed-loop control system admits a transient performance bound
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Figure 4.2: Typical unstable response and control input when the input delay is 0.065 and
above.

for some ρref when ε is less than the corresponding εl, which is positive for some range of

values of ρref . This implies that the supremum of εl over this range of values is a guaranteed

lower bound for the time delay margin of the adaptive closed-loop control system.

This section proposes a method for estimating εl, using the delay-dependent stability

condition (4.51) and Padé approximants. For convenience, we gather the delay-dependent

terms in (4.51) and let h(ε, ρref) , f(ε) + ρd(ε)bd
Lρref

ρref+Z
. Then the delay-dependent stability
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condition (4.51) becomes

h(ε, ρref) ≤
ρref − ρicbic

Lρref
ρref + Z

, hl(ρref), ∀ε ∈ [0, εl], (4.103)

where hl(ρref) is a function of ρref and is independent of the delay ε. Furthermore, we

approximate the transfer function e−εs in the definition of f(ε) and ρd(ε) by its (n, n) Padé

approximant [135], so that the L1 norms and, consequently, h(ε, ρref) may be evaluated in

terms of the poles of rational transfer functions.

In the following subsections, we consider separately examples of the cases where the range

of applicable values of ρref is unbounded and finite, respectively.

4.5.1 Unbounded range

Consider the system (4.4) with

A(t) =

 0 1

sin(t) cos(t)

 , Am =

 0 1

−1 −1.4

 ,

B =

 0

1

 , ω = 1.2, D =

(
1 0

)
, (4.104)

and

η(t, r) = (0.5− 0.8e−0.3t) cos(2r1) + cos(πt) sin(r1 + r2). (4.105)

In this case, Assumption 4.4 is satisfied with dηr(δ) = 2, for all δ. It follows that Lρref
=

2(ρref + 1)/ρref and, consequently, that h(ε, ρref) and hl(ρref) decrease and increase, respec-

tively, for increasing values of ρref , and converge on f(ε) and 0.5 when ρref →∞. Thus, the

supremum of εl should be evaluated over an unbounded range of values of ρref .

In the absence of a method for locating such a supremum, we rely on the following heuristic:
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since the gap between the h(ε, ρref) and hl(ρref) increases to a maximum of f(ε) − 0.5 with

increasing values of ρref , let the supremum be approximated by the value of εl for some

large ρref . For example, let bd = 10 and bic = 5 and choose ρref = 1000, for which the

stability condition is satisfied at ε = 0 for k greater than approximately 2.25. in Fig. 4.3, the

horizontal line corresponds to the value of hl(ρref) and each of the curves represent h(ε, ρref)

for different integer values of k in the range 5, . . . , 110. As seen from the numerical results,

the higher the filter bandwidth, the faster the variation of the h(ε, ρref) curve.

The blue curve in Fig. 4.4 is an interpolation of the estimated values of εl as a function of

bandwidth k, extracted from the data in Fig. 4.3. The green curve is the upper bound for εl

given in (4.59). The time-delay margin of the system of interest is also estimated by forward

simulation, in which r0 = ( 0.5 −1 )> and the same control parameters as in the previous

section are used. For each value of the filter bandwidth, the input delay is increased from zero

until the system response blows up beyond ρref = 1000. In Fig. 4.4, the delay value when this

happens is represented by a red square for a unit-step desired trajectory, and by a blue circle

for a sinusoidal desired trajectory with unit amplitude, for each value of the bandwidth. As

seen in the figure, these estimates are virtually identical. Moreover, the lower bound given

by the estimated supremum of εl, as well as its upper bound εus, are tight estimates of the

actual time delay margin. Finally, we note that higher filter bandwidth deteriorates the

system’s ability to tolerate input delay. This is consistent with the observation that, when

k →∞, the proposed adaptive closed-loop control scheme becomes an MRAC, for which it

is well-known that the time-delay margin decreases to zero at high adaptation rate.

4.5.2 Finite range

Consider, next, the following nonlinearity

η(t, r) = 0.3r1 sin(0.1r1) + 0.5r2 cos(2t). (4.106)
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Figure 4.3: The intersection of h(ε, ρref) with respect to ε and the horizontal dashed line
indicates the value of the lower bound εl for the time-delay margin.

In this case, the function dηr(δ) is bounded from below by 0.03δ + 0.5. This implies that

hl(ρref) converges to 0 as ρref → ∞ and, therefore, that the supremum of εl should be

evaluated over a finite range of values of ρref .

We again rely on a heuristic for estimating this supremum. Specifically, let ρref equal the

maximizer for the difference hl(ρref) − h(0, ρref). For example, with bd = 5 and bic = 2, we

find ρref ≈ 22. The estimated corresponding εl is shown over a range of bandwidths k in

Fig. 4.5. The figure also includes a graph of the upper bound εus, obtained from (4.59),

as well as the time delay margin estimated by forward simulation with the initial condition

r0 = ( −2 2 )> and different desired trajectories rd(t) of identical norm. The figure confirms

that ρref = 22 gives a bound on the time delay margin that is tighter than that obtained

using other values in some range.
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Figure 4.4: Comparison between the time-delay margins computed by the proposed
analysis and the margins estimated by forward simulation of the DDE for two different
desired trajectories rd(t) with identical norm. The squares and circles represent the time
delay margin for unit step and sinusoidal desired trajectories, respectively obtained from
forward simulations.

4.6 Conclusions

This chapter proves the existence of a positive lower bound for the delay robustness of

a proposed adaptive controller for a class of systems with unknown nonlinearities. The

analysis uses continuity arguments, and the existence of transient performance bounds in

the case of zero delay, to prove the delay robustness of a nonadaptive reference system. It

proceeds to show that adaptation with sufficiently large gain can ensure close tracking of the

ideal response of the reference system by the response of the adaptive closed-loop system,

without negatively affecting the delay robustness. Finally, the analysis suggests a way to

numerically estimate the lower bound for the time-delay margin using Padé approximants.

In this chapter, we assumed that the input gain matrix ω was constant. It is of interest to
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delay margin for yd = 5, yd = 5 sin(t) and yd = 5(1− e−0.2t) sin(2t), respectively

generalize the analysis to the context with time and state dependent input gain, as appears

in most models of Lagrangian systems. Chapter 5 will resolve this more general problem.

Time delays come in different flavors. Here, we studied the input delay robustness, i.e. the

system’s ability to tolerate delay in the control input. In the case of a network of manipulators

(cf. [101]), it is also interesting to consider transient performance bounds in the presence of

communication delays. In Chapters 6 and 7, we will develop a delay-independent stability

condition applicable to a control design for networked manipulators operating on a dynamic

platform by following the framework presented in dissertation.
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CHAPTER 5

DELAY ROBUSTNESS OF ADAPTIVE
CONTROLLERS: TIME-VARYING, NONLINEAR

INPUT-GAIN MATRICES

The last chapter established the existence of a lower bound for the time delay margin of a

nonlinear system in which the input-gain matrix was constant. In this chapter, we study the

delay robustness of a more general class of nonlinear control systems with time-varying and

state-dependent input-gain matrices. The control structure belongs to the general framework

presented in Chapter 2, which is composed of a state predictor for estimating the system

dynamics, and a projection-based adaptation scheme that enables the control input to com-

pensate for the nonlinearities. As before, a low-pass filter is used to allow for fast adaptation

while maintaining a smooth control input. The analysis establishes a positive lower bound

for the time-delay margin of this controller. In particular, if the input delay is below the

lower bound then the state and control input of the adaptive control system follow those of

a nonadaptive, robust reference system closely.

The chapter is organized as follows. Section 5.1 presents the nonlinear system of interest,

which has a time-varying and state-dependent input-gain matrix. This model represents a

wide range of Lagrangian systems. In Section 5.2, we investigate the continuous dependence

of the fundamental solution matrix of the DDE of interest with respect to the delay. Chap-

ter 5.3 establishes the reference system and defines input-output maps of DDEs as well as

their norms. This section also shows the uniform stability of the closed-loop reference system

when the input delay is below certain value. In Section 5.4, we review the adaptive control

scheme presented in Chapter 2 that uses a low-pass filter in the control input to maintain

the system robustness. Moreover, this section shows that the transient performance of the

adaptive control system is guaranteed as long as the delay is less than the lower bound.
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Section 5.5 presents concluding remarks of the chapter.

5.1 Nonlinear system

Consider the following nonlinear system:

ẋ(t) = Amx(t) +Bm

(
Ω
(
t, x(t)

)
u(t− ε) + η

(
t, x(t)

))
, (5.1)

h(t) = Dx(t), (5.2)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control input, ε is the input delay,

h(t) ∈ Rm is the output, Ω
(
t, x(t)

)
∈ Rm×m is a time-varying and state-dependent input-

gain matrix, η(t, x(t)) ∈ Rm is an unknown nonlinearity, Am ∈ Rn×n is a Hurwitz matrix,

Bm ∈ Rn×m and D ∈ Rm×n are known constant matrices. The control objective is to design

u(t) such that the output h(t) tracks a desired trajectory hd(t) when the input delay ε is less

than certain time delay margin despite the unknown nonlinearity η
(
t, x(t)

)
and the unknown

input gain Ω
(
t, x(t)

)
.

We make the following assumptions:

Assumption 5.1. The matrix Bm has full rank, i.e., the contribution of the control input

to ṙ equals zero only if u = 0. It follows that B>mBm is nonsingular.

Assumption 5.2. The input-gain matrix Ω
(
t, x
)

is positive definite and bounded uniformly

in t and x, i.e. 0 < ωlI ≤ Ω
(
t, x
)

and ‖Ω
(
t, x
)
‖ ≤ ωh, where ωl and ωh are finite positive

numbers, for all t and x. In addition the partial derivatives of Ω
(
t, x
)

are bounded in t and

x.

Assumption 5.3. There exists a constant Z > 0 such that ‖η(t, 0)‖∞ ≤ Z for all t ≥ 0. In

addition,

‖x‖∞ ≤ ξ ⇒
∥∥∥∥∂η(t, x)

∂x

∥∥∥∥
∞
≤ dηx(ξ) <∞ (5.3)
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and the partial derivative of η with respect to t is similarly bounded by a function of ξ for all

t ≥ 0.

5.2 Some properties of a DDE

Consider a DDE of the form

ż(t) = A(t)z(t) +B(t)z(t− ε) + y(t), z(t) = z0 ∀t ∈ [−ε, 0], (5.4)

where ε is a time delay, the matrices A(t) and B(t) are continuous in time and bounded, i.e.

there exist a and b such that sup
t∈[0,∞)

‖A(t)‖∞ = a and sup
t∈[0,∞)

‖B(t)‖∞ = b. Denote by Φ the

fundamental solution matrix of the above DDE that satisfies

∂

∂t
Φ(t, t0; ε) = A(t)Φ(t, t0; ε) +B(t)Φ(t− ε, t0; ε), ∀(t, t0) ∈ [t0,∞)× [0,∞)

Φ(t, t; ε) = I, ∀t ∈ [0,∞), (5.5)

Φ(t, t0; ε) = 0, ∀(t, t0) ∈ [t0 − ε, t0]× [0,∞).

The purpose of this section to explore the continuity of the fundamental solution matrix

Φ(t, t0; ε) in the delay ε. First, we show that Φ(t, t0; ε) has no finite escape time by the

following lemma.

Lemma 5.1. The solution to (5.5) has no finite escape time.

Proof. Assume that this statement is not true. Let te > t0 be the smallest finite escape time

of Φ(t, t0; ε), i.e.

‖Φ(t, t0; ε)‖ <∞ ∀t ∈ [t0, te), and lim
t→te
‖Φ(t, t0; ε)‖ =∞. (5.6)
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Integrating both sides of (5.5) with t ∈ [t0, te) leads to

Φ(t, t0; ε) = I +

∫ t

t0

(
A(s)Φ(s, t0; ε) +B(s)Φ(s− ε, t0; ε)

)
ds. (5.7)

It follows that

∥∥Φ(t, t0; ε)
∥∥ ≤ 1 + a

∫ t

t0

‖Φ(s, t0; ε)‖ ds+ b

∫ t

t0

‖Φ(s− ε, t0; ε)‖ ds. (5.8)

Applying the Gronwall lemma yields

∥∥Φ(t, t0; ε)
∥∥ ≤ ea(t−t0)

(
1 + b

∫ t

t0

∥∥Φ(s− ε, t0; ε)
∥∥ds
)

= ea(t−t0)
(

1 + b

∫ t−ε

t0

∥∥Φ(s, t0; ε)
∥∥ds
)
,

(5.9)

where the last equality is obtained using a suitable change of variable and the fact that

Φ(s, t0; ε) = 0 ∀s ∈ [t0− ε, t0]. Hence, lim
t→te

∥∥Φ(t, t0; ε)
∥∥ <∞ due to the fact that

∥∥Φ(s, t0; ε)
∥∥

is bounded for s ∈ [t0, te − ε] according to the inequality in (5.6). This contradicts the

equality in (5.6). The claim then follows.

Lemma 5.2. The solution to (5.5) has the following exponential estimate

‖Φ(t, t0; ε)‖ ≤ e(a+b)(t−t0). (5.10)

Proof. Since the solution to (5.5) does not escape to infinity in finite time, from (5.8) we get

‖Φ(t, t0; ε)‖ ≤ 1 + (a+ b)

∫ t

t0

‖Φ(s, t0; ε)‖ ds, ∀t ∈ [t0,∞). (5.11)

Applying the Gronwall lemma to this leads to (5.10).

Lemma 5.3. Suppose there exists a positive definite matrix P such that all eigenvalues of

A>(t)P + B>(t)P + PA(t) + PB(t) lie in the left-half complex plane for all t. Then (5.5)

is exponentially stable, and the exponential estimate is independent of the delay ε, when ε is
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small enough. In particular, there exist c1 > 0 and c2 < 0 such that

‖Φ(t, t0; ε)‖ ≤ c1ec2t.

Proof. Inspired by the analysis in [48], pp. 126–136, we will employ the Razumikhin theo-

rem to show the claim. In general, Lyapunov-Razumikhin functions often result in delay-

independent stability conditions. Our intention here is to obtain a delay-dependent condition

to establish a critical delay, below which (5.5) is uniformly asymptotically stable. There-

fore, we consider the following transformation of the homogeneous equation of (5.4). The

Leibniz-Newton formula provides

z(t)− z(t− ε) =

∫ t

t−ε
ż(s)ds

⇒ z(t− ε) = z(t)−
∫ t

t−ε
ż(s)ds = z(t)−

∫ t

t−ε

(
A(s)z(s) +B(s)z(s− ε)

)
ds

⇒ ż(t) = A(t)z(t) +B(t)z(t)−B(t)

∫ t

t−ε

(
A(s)z(s) +B(s)z(s− ε)

)
ds. (5.12)

Consider the Lyapunov-Razumikhin function candidate V (z) = z>Pz. We have

V̇ (z(t)) = ż>(t)Pz(t) + z>(t)P ż(t)

=
(
z>(t)A>(t) + z>(t)B>(t)−

∫ t

t−ε

(
z>(s)A>(s) + z>(s− ε)B>(s)

)
dsB>(t)

)
Pz(t)

+ z>(t)P
(
A(t)z(t) +B(t)z(t)−B(t)

∫ t

t−ε

(
A(s)z(s) +B(s)z(s− ε)

)
ds
)

≤ z>(t)
(
A>(t)P +B>(t)P + PA(t) + PB(t)

)
z(t)

+ 2b‖P‖∞‖z(t)‖
∫ t

t−ε

(
a‖z(s)‖+ b‖z(s− ε)‖

)
ds

≤ λsup‖z(t)‖2 + 2b‖P‖∞‖z(t)‖
∫ t

t−ε

(
a‖z(s)‖+ b‖z(s− ε)‖

)
ds, (5.13)

where λsup = sup
t∈[0,∞)

λmax

(
A>(t)P +B>(t)P + PA(t) + PB(t)

)
, with λmax(·) being the max-

imum eigenvalue of a matrix.
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Now, if V (z(t− t′)) < pV (z(t)) for all t′ ∈ [0, ε], where p > 1 is a constant, then

‖z(t− t′)‖ ≤ ‖z(t)‖

√
p
λmin(P )

λmax(P )
, (5.14)

for all t′ ∈ [0, ε]. Replacing t by t− ε leads to

‖z(t− t′ − ε)‖ ≤ ‖z(t− ε)‖

√
p
λmin(P )

λmax(P )
, (5.15)

which implies

‖z(s− ε)‖ ≤ ‖z(t− ε)‖

√
p
λmin(P )

λmax(P )
≤ ‖z(t)‖p λmin(P )

λmax(P )
, ∀s ∈ [t− ε, t]. (5.16)

This and (5.13) lead to

V̇ (z(t)) ≤ λsup‖z(t)‖2 + 2b‖P‖∞

(
a

√
p
λmin(P )

λmax(P )
+ bp

λmin(P )

λmax(P )

)
‖z(t)‖2

∫ t

t−ε
ds

=

(
λsup + 2εb‖P‖∞

(
a

√
p
λmin(P )

λmax(P )
+ bp

λmin(P )

λmax(P )

))
︸ ︷︷ ︸

−λ∆(ε)

‖z(t)‖2. (5.17)

Since all eigenvalues of A>(t)P +B>(t)P + PA(t) + PB(t) lie on the left-half plane, λsup is

negative. Therefore, with

εus ,
−λsup

2b‖P‖∞
(
a
√
p λmin(P )
λmax(P )

+ bp λmin(P )
λmax(P )

) > 0,

if ε ≤ εas for an arbitrary εas < εus, then the unforced equation of (5.4) is uniformly asymp-

totically stable according to the Razumikhin theorem (see [48], p. 127). This means for
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every bounding constant zb, there exists a tb such that

‖z(t− ε)‖ ≤ zb, ∀t ≥ t0 + tb. (5.18)

Notably, from the proof of the Razumikhin theorem in [48], pp. 127-129, tb depends on the

delay via the relationship

tb = c0/λ∆, (5.19)

for some delay-independent constant c0. According to (5.17), λ∆(ε) ≥ λ∆(εas). Therefore,

we obtain

tb ≤ c0/λ
−1
∆ (εas) , t̄b, (5.20)

for all ε ≤ εas. This also implies that (5.18) is true for all t ≥ t0 + t̄b, and hence

‖z(t)‖ ≤ zb, ∀t ≥ t0 + t̄b. (5.21)

From the definition of the Lyapunov-Razumikhin function, since P is a symmetric matrix,

we have

‖z(t)‖2λmin(P ) ≤ V
(
z(t)

)
≤ ‖z(t)‖2λmax(P ). (5.22)

It then follows from this, (5.13), (5.18) and (5.21) that

V̇
(
z(t)

)
≤ λsup

λmax(P )
V
(
z(t)

)
+ 2b‖P‖∞‖z(t)‖

∫ t

t−ε

(
a‖z(s)‖+ b‖z(s− ε)‖

)
ds

≤ λsup

λmax(P )
V
(
z(t)

)
+ 2b‖P‖∞z2

b

(
a+ b

) ∫ t

t−ε
ds

≤ λsup

λmax(P )
V
(
z(t)

)
+ 2b‖P‖∞z2

b

(
a+ b

)
εas, ∀t ≥ t0 + t̄b. (5.23)
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Applying Gronwall lemma to (5.23) leads to

‖z(t)‖2λmin(P ) ≤ V
(
z(t)

)
≤ e

λsup
λmax(P )

(t−t0−t̄b)2b‖P‖∞z2
b

(
a+ b

)
εas, ∀t ≥ t0 + t̄b, (5.24)

where all the constants are independent of ε. The claim then follows since the solution to (5.5)

is constructed with columns being the linearly independent solutions to the homogeneous

equation of (5.4).

Lemma 5.4. For every T > 0, Φ(t, t0; ε) is a continuous function of ε ≥ 0, uniformly in

t ∈ [t0, T ], with t0 ≤ T .

Proof. Consider an arbitrary convergent sequence εm, such that

lim
m→∞

εm = ε̄, (5.25)

for some given ε̄ > 0. For nonzero ε ≈ ε̄, let Φ̃(τ, τ0; ε) , Φ(ετ, ετ0; ε) be defined for τ ∈ [t0, τ̄ ],

for some τ̄ > T/ε̄. It follows that

∂

∂τ
Φ̃(τ, τ0; ε) = εA(ετ)Φ̃(τ, τ0; ε) + εB(ετ)Φ̃(τ − 1, τ0; ε), ∀(τ, τ0) ∈ [τ0,∞)× [0,∞) (5.26)

Φ̃(τ, τ ; ε) = I, ∀τ ∈ [0,∞),

Φ̃(τ, τ0; ε) = 0, ∀(τ, τ0) ∈ [τ0 − 1, τ0]× [0,∞).

Integrating both sides of (5.26) leads to

Φ̃(τ, τ0; ε) = I +

∫ τ

τ0

εA(ετ)Φ̃(s, τ0; ε)ds+

∫ τ

τ0

εB(ετ)Φ̃(s− 1, τ0; ε)ds. (5.27)

Since ‖Φ̃(s, τ0; εm)− Φ̃(s, τ0; ε̄)‖ = 0, ∀s ∈ [τ0 − 1, τ0], we have

∫ τ

τ0

‖Φ̃(s− 1, τ0; εm)− Φ̃(s− 1, τ0; ε̄)‖ds ≤
∫ τ

τ0

‖Φ̃(s, τ0; εm)− Φ̃(s, τ0; ε̄)‖ds. (5.28)
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Taking this into account, it follows from (5.27) that

‖Φ̃(τ, τ0; εm)− Φ̃(τ, τ0; ε̄)‖ ≤
∫ τ

τ0

∥∥εmA(εmτ)Φ̃(s, τ0; εm)− ε̄A(ε̄τ)Φ̃(s, τ0; ε̄)
∥∥ds

+

∫ τ

τ0

∥∥∥εmB(εms)Φ̃(s− 1, τ0; εm)− ε̄B(ε̄s)Φ̃(s− 1, τ0; ε̄)
∥∥∥ ds

≤
∫ τ

τ0

‖εmA(εms)‖ ‖Φ̃(s, τ0; εm)− Φ̃(s, τ0; ε̄)‖ds+

∫ τ

τ0

‖εmA(εms)− ε̄A(ε̄s)‖
∥∥∥Φ̃(s, τ0; ε̄)

∥∥∥ ds

+

∫ τ

τ0

‖εmB(εms)‖ ‖Φ̃(s− 1, τ0; εm)− Φ̃(s− 1, τ0; ε̄)‖ds

+

∫ τ

τ0

‖εmB(εms)− ε̄B(ε̄s)‖
∥∥∥Φ̃(s− 1, τ0; ε̄)

∥∥∥ ds

≤ εm(a+ b)

∫ τ

τ0

‖Φ̃(s, τ0; εm)− Φ̃(s, τ0; ε̄)‖ds+R(τ, τ0; εm, ε̄), (5.29)

where

R(τ, τ0; εm, ε̄) ,∫ τ

τ0

‖εmA(εms)− ε̄A(ε̄s)‖
∥∥∥Φ̃(s, τ0; ε̄)

∥∥∥ ds+

∫ τ

τ0

‖εmB(εms)− ε̄B(ε̄s)‖
∥∥∥Φ̃(s− 1, τ0; ε̄)

∥∥∥ ds

(5.30)

≤ e(a+b)(τ̄−τ0)

∫ τ

τ0

(
‖εmA(εms)− ε̄A(ε̄s)‖+ e−(a+b) ‖εmB(εms)− ε̄B(ε̄s)‖

)
ds, (5.31)

where the inequality is obtained using (5.10). The continuity of A(t) and B(t) in t in a finite

interval implies that for every δ1, there exists M such that if m > M then

‖εmA(εms)− ε̄A(ε̄s)‖+ e−(a+b) ‖εmB(εms)− ε̄B(ε̄s)‖ ≤ δ1. (5.32)

Substitution of (5.32) into (5.31) yields

sup
τ∈[τ0,τ̄ ]

R(τ, τ0; εm, ε̄) ≤ e(a+b)(τ̄−τ0)

∫ τ̄

τ0

δ1ds = e(a+b)(τ̄−τ0) (τ̄ − τ0) δ1. (5.33)
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Applying the Gronwall lemma to (5.29) leads to

sup
τ∈[τ0,τ̄ ]

‖Φ̃(τ, τ0; εm)− Φ̃(τ, τ0; ε̄)‖ ≤ sup
t∈[τ0,τ̄ ]

R(τ, τ0; εm, ε̄)e
εm(a+b)(τ−τ0)

≤ e(a+b)(τ̄−τ0) (τ̄ − τ0) δ1eεm(a+b)(τ̄−τ0) , δ2. (5.34)

In summary, we have shown that for every δ2 there exists M such that m > M implies (5.34).

Finally,

‖Φ(t, t0; εm)− Φ(t, t0; ε̄)‖ ≤
∥∥∥∥Φ̃

(
t

εm
,
t0
εm

; εm

)
− Φ̃

(
t

εm
,
t0
εm

; ε̄

)∥∥∥∥
+

∥∥∥∥Φ

(
t
ε̄

εm
, t0

ε̄

εm
; ε̄

)
− Φ(t, t0; ε̄)

∥∥∥∥ . (5.35)

By the uniform continuity, for fixed ε, of Φ(t, t0; ε) in t and t0 on the compact interval [t0, T ],

it follows that

lim
m→∞

sup
t∈[0,T ]

‖Φ(t, to; εm)− Φ(t, t0; ε̄)‖ = 0, (5.36)

i.e., that Φ(t, t0; ε) is continuous in ε for ε > 0, uniformly in t on [t0, T ].

Suppose, instead, that ε̄ = 0.

Then from (5.7), we have

‖Φ(t, t0; εm)− Φ(t, t0; 0)‖

≤
∫ t

t0

∥∥A(s)
(
Φ(s, t0; εm)− Φ(s, t0; 0)

)∥∥ ds+

∫ t

t0

∥∥B(s)
(
Φ(s− εm, t0; εm)− Φ(s, t0; 0)

)∥∥ ds

≤
∫ t

t0

a ‖Φ(s, t0; εm)− Φ(s, t0; 0)‖ ds

+

∫ t

t0

b
(
‖Φ(s− εm, t0; εm)− Φ(s, t0; εm)‖+ ‖Φ(s, t0; εm)− Φ(s, t0; 0)‖

)
ds

≤
∫ t

t0

(
b‖Φ(s− εm, t0; εm)− Φ(s, t0; εm)‖+ (a+ b)‖Φ(s, t0; εm)− Φ(s, t0; 0)‖

)
ds. (5.37)
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Again, applying the Gronwall lemma gives

‖Φ(t, t0; εm)− Φ(t, t0; 0)‖ ≤ be(a+b)(t−t0)

∫ t

t0

‖Φ(s− εm, t0; εm)− Φ(s, t0; εm)‖ds. (5.38)

We now show that the norm on the right-hand side of (5.38) converges to zero as m goes to

infinity.

It follows from (5.7) that

Φ(t− ε, t0; ε) = I +

∫ t−ε

t0

(
A(s)Φ(s, t0; ε) +B(s)Φ(s− ε, t0; ε)

)
ds

= I +

∫ t−ε

t0

A(s)Φ(s, t0; ε)ds+

∫ t−2ε

t0−ε
B(s+ ε)Φ(s, t0; ε)

)
ds

= I +

∫ t−ε

t0

A(s)Φ(s, t0; ε)ds+

∫ t

t0

B(s+ ε)Φ(s, t0; ε)ds

−
∫ t

t−2ε

B(s+ ε)Φ(s, t0; ε)ds. (5.39)

Consequently,

Φ(t, t0; εm)− Φ(t− εm, t0; εm) =

∫ t

t0

(
A(s)Φ(s, t0; εm) +B(s)Φ(s− εm, t0; εm)

)
ds

−
∫ t−εm

t0

A(s)Φ(s, t0; εm)ds−
∫ t

t0

B(s+ εm)Φ(s, t0; εm)ds

+

∫ t

t−2εm

B(s+ εm)Φ(s, t0; εm)ds

=

∫ t

t0

(
B(s)Φ(s− εm, t0; εm)−B(s+ εm)Φ(s, t0; εm)

)
ds

+

∫ t

t−εm
A(s)Φ(s, t0; εm)ds+

∫ t

t−2εm

B(s+ εm)Φ(s, t0; εm)ds

=

∫ t

t0

(
B(s)Φ(s− εm, t0; εm)−B(s+ εm)Φ(s− εm, t0; εm)

)
ds

+

∫ t

t0

(
B(s+ εm)Φ(s− εm, t0; εm)−B(s+ εm)Φ(s, t0; εm)

)
ds

+

∫ t

t−εm
A(s)Φ(s, t0; εm)ds+

∫ t

t−2εm

B(s+ εm)Φ(s, t0; εm)ds. (5.40)
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By applying the norm triangle inequality, we get

‖Φ(s− εm, t0; εm)− Φ(s, t0; εm)‖ =

∫ t

t0

∥∥B(s+ εm)
∥∥∥∥Φ(s− εm, t0; εm)− Φ(s, t0; εm)

∥∥ds

+

∫ t

t0

∥∥B(s)−B(s+ εm)
∥∥∥∥Φ(s− εm, t0; εm)

∥∥ds︸ ︷︷ ︸
R1(t,t0;εm)

+

∫ t

t−εm
‖A(s)Φ(s, t0; εm)‖ds+

∫ t

t−2εm

‖B(s+ εm)Φ(s, t0; εm)‖ds︸ ︷︷ ︸
R2(t,t0;εm)

. (5.41)

Notice the similarity between R1 and R in (5.30). By applying the same analysis for

obtaining (5.33), we have

lim
m→∞

sup
t∈[t0,T ]

R1(t, t0; εm) = 0. (5.42)

As for R2(t, t0; εm), using (5.10) we have

R2(t, t0; εm) ≤ a

∫ t

t−εm
e(a+b)(s−t0)ds+ b

∫ t

t−2εm

e(a+b)(s−t0)ds

≤ e(a+b)(T−t0)
(
a

∫ t

t−εm
ds+ b

∫ t

t−2εm

ds
)

= e(a+b)(T−t0)(a+ 2b)εm , R̄2(εm),

(5.43)

where the inequalities are obtained using (5.10) and the fact the t ∈ [t0, T ]. Note here that

lim
m→∞

R̄2(εm) = 0.

Taking (5.42) into account, we use the Gronwall lemma on (5.41) to arrive at

lim
m→∞

sup
t∈[t0,T ]

‖Φ(s− εm, t0; εm)− Φ(s, t0; εm)‖

≤ eb(T−t0)
(

lim
m→∞

R̄2(εm) + lim
m→∞

sup
t∈[t0,T ]

R1(t, t0; εm)
)

= 0. (5.44)

It follows from (5.44) that for every δ there exists M such that m > M implies sup
t∈[t0,T ]

‖Φ(s−
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εm, t0; εm)− Φ(s, t0; εm)‖ ≤ δ. Substitution of this into supremum of (5.38) yields

sup
t∈[t0,T ]

‖Φ(t, t0; εm)− Φ(t, t0; 0)‖ ≤ be(a+b)(T−t0)

∫ T

t0

δds = be(a+b)(T−t0)(T − t0)δ, (5.45)

which can be made arbitrarily small with small enough δ. Thus, Φ(t, t0; ε) is continuous at

ε = 0, independently of t ∈ [t0, T ].

Lemma 5.5. Suppose there exists a positive definite matrix P such that all eigenvalues of

A>(t)P + B>(t)P + PA(t) + PB(t) lie in the left-half complex plane for all t. When ε is

small enough, the solution Φ(t, t0; ε) to (5.5) is continuous in ε, uniformly in t ∈ [t0,∞).

Proof. It follows from Lemma 5.3 that there is an interval [0, εas] for the delay ε, on which

there exist c1 > 0 and c2 < 0 such that the solution to (5.5)

‖Φ(t, t0; ε)‖ ≤ c1ec2t. (5.46)

Consequently, there is a class KL function β such that (see Lemma 4.5 in [68], pp. 150 )

Consider a convergent sequence εm ≤ εas with lim
m→∞

εm = ε̄, where ε̄ ≤ εs. It follows from

(5.46) that with Tl = ln(δ/2c1)
c2

> 0, where δ << 2c1, we have the bound

sup
t∈[Tl,∞)

‖Φ(t, t0; εm)− Φ(t, t0; ε̄)‖ ≤ δ. (5.47)

Further, the analysis on a finite interval implies

sup
t∈[0,Tl]

‖Φ(t, t0; εm)− Φ(t, t0; ε̄)‖ ≤ δ (5.48)

for sufficiently large m. It follows from (5.47) and (5.48) that for every δ > 0, there exists

an integer M , such that m ≥M implies

sup
t∈[0,∞)

‖Φ(t, t0; εm)− Φ(t, t0; ε̄)‖ ≤ δ. (5.49)
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Thus, Φ(t, t0; ε) is continuous in ε on [0, εas], uniformly in t on [0,∞).

5.3 A reference system, input-output maps and their properties

5.3.1 Definition of input-output maps

We first consider the following nonadaptive reference system

ẋr(t) = Amxr(t) +Bm

(
Ω
(
t, x(t)

)
ur(t− ε) + ηr(t)

)
, xr(t) = x0 ∀t ∈ [−ε, 0], (5.50)

u̇r(t) = −kΩ
(
t, x(t)

)
ur(t− ε)− kηr(t)− kKdhd(t), ur(t) = 0 ∀t ∈ [−ε, 0], (5.51)

hr(t) = Dxr(t), (5.52)

where, xr ∈ Rn and ur(t) ∈ Rm are the state and the control input, ηr(t) , η(t, xr(t)), k is

a control parameter, and Kd ,
(
DA−1

m Bm

)−1
. The nonadaptive reference system represents

the ideal dynamics for the system of interest in (5.1) and (5.2) when the nonlinearity and

the input delay value are known to its controller, as seen in (5.51). So implementation of

this system in reality is not practical. Nonetheless, we will design an adaptive control system

that behaves almost identically to this ideal system for sufficiently small delay.

Remark 5.1. Note that x(t), which appears in Ω
(
t, x(t)

)
, is the state of the actual system

in (5.1), but an exogenous signal in the reference system.

Next, we write this reference system in the form of (5.4)

 ẋr(t)

u̇r(t)

 =

 Am 0

0 0


︸ ︷︷ ︸

A(t)

 xr(t)

ur(t)

+

 0 BmΩ
(
t, x(t)

)
0 −kΩ

(
t, x(t)

)


︸ ︷︷ ︸
B(t)

 xr(t− ε)

ur(t− ε)



+

 ηr(t)

−kηr(t)− kKdhd(t)

 . (5.53)
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Denote by Φ : [−ε,∞)×[0,∞)→ R(m+n)×(m+n) the fundamental solution matrix of the above

DDE. Let Φ(t, t0; ε) =

 Φ11(t, t0; ε) ∈ Rn×n Φ12(t, t0; ε) ∈ Rn×m

Φ21(t, t0; ε) ∈ Rm×n Φ22(t, t0; ε) ∈ Rm×m

, which is governed by

(5.5), in particular:

∂

∂t
Φ11(t, t0; ε) = AmΦ11(t, t0; ε) +BmΩ

(
t, x(t)

)
Φ21(t− ε, t0; ε), ∀(t, t0) ∈ [t0,∞)× [0,∞)

(5.54)

∂

∂t
Φ12(t, t0; ε) = AmΦ12(t, t0; ε) +BmΩ

(
t, x(t)

)
Φ22(t− ε, t0; ε), ∀(t, t0) ∈ [t0,∞)× [0,∞)

(5.55)

∂

∂t
Φ21(t, t0; ε) = −kΩ

(
t, x(t)

)
Φ21(t− ε, t0; ε), ∀(t, t0) ∈ [t0,∞)× [0,∞) (5.56)

∂

∂t
Φ22(t, t0; ε) = −kΩ

(
t, x(t)

)
Φ22(t− ε, t0; ε), ∀(t, t0) ∈ [t0,∞)× [0,∞) (5.57)

Φ(t, t; ε) = I, ∀t ∈ [0,∞),

Φ(t, t0; ε) = 0, ∀(t, t0) ∈ [t0 − ε, t0]× [0,∞).

Notice that since Φ21(t, t0; ε) = 0 ∀t ≤ t0, it follows from (5.56) that Φ21(t, t0; ε) = 0 ∀(t, t0) ∈

[t0 − ε,∞)× [0,∞).

Lemma 5.6. It is possible to design Am and k independently such that all eigenvalues of

A>(t)P+B>(t)P+PA(t)+PB(t) lie in the left-half complex plane, for some positive definite

matrix P .

Proof. Let the Hurwitz matrix Am = aA0, where a > 0 is a scaling factor and A0 is a Hurwitz

matrix. Consider

P =

 P0 0

0 Im

 , (5.58)

where P0 is the unique solution of the Lyapunov equation A>0 P + PA0 = −In. In addition,
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since Ω
(
t, x(t)

)
is a symmetric matrix, there exists a orthogonal matrix U(t) such that

U>(t)Ω
(
t, x(t)

)
U(t) = DΩ(t)

where DΩ(t) is a diagonal matrix. We have

 I 0

0 U>(t)

(A>(t)P +B>(t)P + PA(t) + PB(t)
) I 0

0 U(t)


=

 I 0

0 U>(t)


 A>mP0 + P0Am P0BmΩ

(
t, x(t)

)
Ω
(
t, x(t)

)
B>mP0 −2kΩ

(
t, x(t)

)

 I 0

0 U(t)


=

 −aIn P0BmΩ
(
t, x(t)

)
U(t)

U>(t)Ω
(
t, x(t)

)
B>mP0 −2kU>(t)Ω

(
t, x(t)

)
U(t)


=

 −aIn P0BmΩ
(
t, x(t)

)
U(t)

U>(t)Ω
(
t, x(t)

)
B>mP0 −2kDΩ(t)

 . (5.59)

Note here that though P0 depends on A0, it is independent of a. Hence, the off-diagonal

terms in (5.59) are independent of a and k. As stated in [16], the Gershgorin circle theorem

implies that every eigenvalue of a matrix lies within at least one of the Gershgorin discs. A

Gershgorin disc is defined as a closed disc centered at a diagonal element of the matrix with

the radius as the sum of the absolute values of the other elements in the corresponding row.

Therefore, in (5.59), when a and k are increased, the Gershgorin discs of this matrix move

to the left in the complex plane. Thus by independently designing a and k large enough, the

eigenvalues of A>(t)P +B>(t)P + PA(t) + PB(t) can be made strictly negative.

Taking the result in Lemma 5.6 into account, according to Lemma 5.5, it is possible to

chose k and Am such that there exists a positive upper bound εas for the delay such that Φ

and its components are continuous in ε ∈ [0, εas), uniformly in t ∈ [0,∞).

In terms of the fundamental solution matrix, the solution to (5.53) can be written in the
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following variation-of-constant form (cf. [143, 151, 6])

 xr(t)

ur(t)

 =

 xic(t)

uic(t)

+

∫ t

t0

 Φ11(t, t′; ε) Φ12(t, t′; ε)

Φ21(t, t′; ε) Φ22(t, t′; ε)


 ηr(t)

−kηr(t)− kKdhd(t)

 dt′

(5.60) xic(t)

uic(t)

 =
(

Φ(t, 0; ε) +

∫ ε

t0

Φ(t, t′; ε)B(t′)dt′
) x0

0

 (5.61)

Equivalently,

xr(t) = xic(t, x0) +

∫ t

0

(
Φ11(t, t′; ε)− kΦ12(t, t′; ε)

)
ηr(t

′)dt′ − k
∫ t

0

Φ12(t, t′; ε)Kdhd(t
′)dt′

(5.62)

ur(t) = −k
∫ t

0

Φ22(t, t′; ε)
(
ηr(t

′) +Kdhd(t
′)
)
dt′ (5.63)

where xic(t) = Φ11(t, t′; ε)x0. We now define linear input-output maps for the delay system

in (5.50) and (5.51) in terms of the fundamental solution matrix as follows

F ε : y →
∫ t

0

(
Φ11(t, t′; ε)− kΦ12(t, t′; ε)

)
y(t′)dt′ (5.64)

Dε : y → −k
∫ t

0

Φ12(t, t′; ε)Kdy(t′)dt′ (5.65)

Gε : y → −k
∫ t

0

Φ22(t, t′; ε)y(t′)dt′. (5.66)

Furthermore, define the multiplicative mapM : y(t)→ Ω
(
t, x(t)

)
y(t) and the delay map E ε :

y(t)→ y(t−ε). In addition, let I be the identity map and H be the linear input-output map

corresponding to the transfer function (sI− Am)−1Bm. The variation-of-constant formulas
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in (5.62) and (5.63) can be written in terms of these maps:

xr = xic + F ε[ηr] +Dε[hd] (5.67)

ur = Gε[ηr +Kdhd]. (5.68)

In the following series of remarks, we derive expressions that relate the defined maps.

Remark 5.2. It follows from Eq. (5.50) and (5.68) that

xr(t) = xic +
(
H ◦M ◦ E ε ◦ Gε +H

)[
ηr(t)

]
+
(
H ◦M ◦ E ε ◦ Gε

)
[Kdhd]. (5.69)

Hence,

F ε[y] =
(
H ◦M ◦ E ε ◦ Gε +H

)
[y] (5.70)

Dε[y] =
(
H ◦M ◦ E ε ◦ Gε

)
[Kdy]. (5.71)

Remark 5.3. We rearrange Eq. (5.51) as follows

u̇r = −kΩ
(
t, x(t)

)
ur + kΩ

(
t, x(t)

)
ur − kΩ

(
t, x(t)

)
ur(t− ε)− k(ηr +Kdhd). (5.72)

Applying the input-output map definition in Eqs. (5.57) and (5.66) with zero delay to Eq. (5.72)

leads to

ur = G0
[
−M[ur] +M◦ E ε[ur] + ηr +Kdhd

]
. (5.73)

Solving for ur in Eq. (5.73), we get

ur =
(
(I + G0 ◦M− G0 ◦M ◦ E ε)−1 ◦ G0

)
[ηr +Kdhd]. (5.74)
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Thus, comparing (5.68) and (5.74) leads to

Gε[·] ,
(
(I + G0 ◦M− G0 ◦M ◦ E ε)−1 ◦ G0

)
[·]. (5.75)

Note that when ε = 0, the map F ε becomes F0.

Remark 5.4. Since ∂Φ22(t, t′; 0)/∂t′ = Φ22(t, t′; 0)kΩ(t′, x(t′)), it follows from (5.57), (5.66)

and integration by parts that

G0[ẏ] = −k
∫ t

0

Φ22(t, t′; 0)
dy(t′)

dt′
dt′ = −kΦ22(t, t; 0)y(t) + k

∫ t

0

∂Φ22(t, t′; 0)

∂t′
y(t′) dt′

= −ky + k

∫ t

0

Φ22(t, t′; 0)kΩ(t′, x(t′))y(t′) dt′ = −k
(
I + G0 ◦M

)
[y], (5.76)

provided that y(0) = 0.

Remark 5.5. With the map G0
v being invertible, by applying the results in (5.75) and (5.76)

we get

Gε[ẏ] = Gε ◦
(
G0
)−1 ◦ G0[ẏ] = −kGε ◦

(
G0
)−1 ◦ (I + G0 ◦M)[y]

= −kGε ◦
(
G0
)−1 ◦ (I + G0 ◦M− G0 ◦M ◦ E ε)[y]− kGε ◦M ◦ E ε[y].

Hence,

Gε[ẏ] = −k(I + Gε ◦M ◦ E ε)[y]. (5.77)

5.3.2 Norm of an input-output map

The L1 norm of the map Gε is then given by

‖Gε‖L1 , max
1≤i≤n

(
n∑
j=1

sup
t≥t∗,t∗∈R+

∫ t

t∗
k
∣∣Φij

22(t, t′; ε)
∣∣ dt′

)
, (5.78)
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where Φij
22(t, t′; ε) denotes the components of Φ22(t, t′; ε). The L1 norm of other input-output

maps is defined in the same way.

It follows from the continuity of Φ(t, t′; ε) in ε ∈ [0, εas), uniformly in t ∈ [0,∞), that

f(ε) = ‖F ε‖L1 (5.79)

d(ε) = ‖Dε‖L1 (5.80)

g(ε) = ‖Gε‖L1 (5.81)

are continuous in ε. Now, by applying the Gronwall lemma to (5.57), we get that Φ22(t, t′; 0)

decays to zero exponentially fast, since −kΩ
(
t, x(t)

)
is uniformly negative definite. Conse-

quently, the map G0 is exponentially stable and the value g(0) is finite. Hence, by continuity,

there exists an εu such that g(ε) is finite for all ε ∈ [0, εu). In addition, it follows from (5.55)

that when Φ22(t, t′; 0) is decaying, Φ12(t, t′; 0) converges to zero exponentially fast. Thus,

d(ε) is also finite for all ε ∈ [0, εu).

5.3.3 A delay-dependent sufficient stability condition

In the special case that the delay ε = 0 and r(0) = 0, rearranging the terms in Eqs. (5.50)

and (5.51) yields

xr(s) = (sI− Am)−1Bm (ur(s) + ηu(s)) , (5.82)

where

ur(s) = − k

s+ k
ηu(s) (5.83)

and ηu(t) , Ω
(
t, x(t)

)
ur(t)− ur(t) + ηr(t), whose norm is

‖ηu‖L∞ ≤ (ωh + 1)‖G0‖L1 ‖ηr‖L∞ + ‖ηr‖L∞ ≤
(
(ωh + 1)g(0) + 1

)
‖ηr‖L∞ . (5.84)
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In this case, it follows that

‖xr‖L∞ ≤
∥∥s(sI− Am)−1

∥∥
L1
‖Bm‖

∥∥∥∥ 1

s+ k

∥∥∥∥
L1

‖ηu‖L∞ ≤
2

k
‖Bm‖

(
(ωh + 1)g(0) + 1

)
‖ηr‖L∞ .

(5.85)

This and (5.67) with zero delay, zero initial condition and zero desired trajectory lead to

f(0) = ‖F0‖L1 ≤
2

k
‖Bm‖

(
(ωh + 1)g(0) + 1

)
. (5.86)

Define

ρic , sup
t
‖Φ11(t, t′, 0)‖. (5.87)

Then,

Lemma 5.7. Given bd > 0 and bic > 0, there exists a k, a ρr, and an εl, such that

f(ε) ≤ ρr − d(ε)bd − ρicbic

Lρrρr + Z
, ∀ε ∈ [0, εl], (5.88)

where

Lρr ,
ρr + 1

ρr
dηx(ρr + 1). (5.89)

Proof. Choose ρr > ρicbic + d(0)bd. Then, since f(0) → 0 as k → ∞, it follows that there

exists a K, such that k > K implies that

f(0) <
ρr − d(0)bd − ρicbic

Lρrρr + Z
. (5.90)

For such a k, the claim now follows by the continuity of f(ε) and d(ε), where εl equals the

smallest value of ε that results in equality in (5.88).
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Theorem 5.1. Given bd > 0 and bic > 0, there exists a bandwidth k, such that

‖hd‖L∞ ≤ bd and ‖r0‖∞ ≤ bic ⇒ ‖xr‖L∞ ≤ ρr (5.91)

for some ρr and for all ε smaller than the corresponding εl. In addition, ‖ur‖L∞ <∞.

Proof. Choose ρr > max (bic, ρicbic + d(0)bd). Suppose that ‖xr‖L∞ ≥ ρr. Then ‖r0‖∞ < ρr

implies that there exists a τ , such that

‖xr‖∞ < ρr, ∀t ∈ [0, τ), and ‖xr,τ‖L∞ = ‖xr(τ)‖∞ = ρr. (5.92)

It follows from Assumption 5.3 and (5.89) that

‖ηr‖L∞ ≤ ‖η(t, xr(t))− η(t, 0)‖L∞ + ‖η(t, 0)‖L∞

≤ ‖xr‖L∞dηx(ρ̄) + Z < Lρrρr + Z, ∀t ∈ [0, τ ]. (5.93)

Using (5.67), (5.88) and (5.93) we obtain

‖xr,τ‖L∞ ≤ ‖F ε‖L1‖ηr,τ‖L∞ + ‖Dε‖L1‖hd‖L∞ + ‖xic‖L∞

≤ f(ε)(Lρrρr + Z) + d(ε)bd + ρicbic < ρr, (5.94)

contradicting the equality in (5.92). Thus ‖xr‖L∞ < ρr. The claim that ‖ur‖L∞ < ∞

immediately follows by applying this result to (5.68).

5.4 Adaptive control system design and transient performance

In this section, we first design an adaptive controller that decouples adaptation from the

control loop, allowing for fast adaptation without deteriorating the system robustness, which

is indicated by the time delay margin. In addition, we show that the state and the control
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input of the proposed adaptive control system follow those of this nonadaptive reference

system closely given that the input delay ε ≤ εl. This implies that εl is a lower bound for

the time delay margin of the proposed adaptive control system.

5.4.1 Design of the adaptation laws and the state predictor

By Theorem 5.1, it follows that, in the nonadaptive reference system, and provided that

‖xr(0)‖∞ < ρr, the parameterization

η(t, xr(t)) = θr(t)‖xr,t‖L∞ + σr(t) (5.95)

holds for all t, in terms of a pair of continuous, piecewise-differentiable and uniformly

bounded functions θr and σr (see Lemma A.9.2 in [61]). Equivalently,

ẋr = Amxr +Bm

(
ur + θr‖xr,t‖L∞ + σ̄r

)
(5.96)

and

u̇r(t) = −k
(
ur(t) + θr(t)‖xr,t‖L∞ + σ̄r(t) +Kdhd(t)

)
, (5.97)

where σ̄r(t) , σr(t) + Ω
(
x(t)

)
ur(t− ε)− ur(t) is similarly bounded.

We proceed to consider an adaptive control design for the original dynamics in Eq. (5.1).

Analogous to Eqs. (5.96) and (5.97), consider the state predictor

˙̂x(t) = Amx(t) + Aspx̃(t) +Bm

(
u(t) + θ̂(t)‖xt‖L∞ + σ̂(t)

)
, x̂(0) = r0, (5.98)

and control design

u̇(t) = −k
(
u(t) + θ̂(t)‖xt‖L∞ + σ̂(t) +Kdhd(t)

)
, u(0) = 0, (5.99)

where x̃ , x̂ − x is the prediction error, k > 0 is the bandwidth of the first-order low-pass

128



filter k/(s+ k), and Asp is a Hurwitz matrix of loop-shaping parameters that may be tuned

to reject oscillations caused by high-frequency disturbances or noise, as well as to make x̃

converge to 0 faster. Here, θ̂ and σ̂ model adaptive estimates governed by the projection-

based laws [71]

˙̂
θ = Γ Proj

(
θ̂,−B>mPx̃‖xt‖L∞ ; θb, ν

)
, θ̂(0) = θ̂0, (5.100)

˙̂σ = Γ Proj
(
σ̂,−B>mPx̃;σb, ν

)
, σ̂(0) = σ̂0, (5.101)

in terms of the adaptive gain Γ ∈ R+, and the positive-definite, symmetric matrix P , obtained

as the solution to the Lyapunov equation A>spP + PAsp = −Q, for some arbitrary positive-

definite, symmetric matrix Q. As defined in Chapter 2, the projection operator Proj(·, ·; ·, ·),

ensures that ‖θ̂(t)‖∞ ≤ θb and ‖σ̂(t)‖∞ ≤ σb provided that θ̂0 and σ̂0 satisfy these same

bounds.

5.4.2 Performance bounds

In this section we prove that the state and control input of the proposed control system

governed by Eqs. (5.1) and (5.98)-(5.101) follow those of the reference system in (5.50),

(5.51) and (5.52) closely, provided that the bandwidth k, the adaptive gain Γ, the scalar λ,

and the bounds θb and σb are chosen appropriately. In particular, we prove the following

theorem:

Theorem 5.2. Suppose bd and bic are given, and ρr and k are chosen as in Section 5.3.3

and assume that ε is less than the corresponding εl. Then, there exists a C > 0, such that,

for ψ � 1,

‖x̂− x‖L∞ ≤ ψ, ‖xr − x‖L∞ = O(ψ), ‖ur − u‖L∞ = O(ψ), (5.102)

provided that Γψ2 ≥ C, for all hd and r0 satisfying ‖hd‖L∞ ≤ bd and ‖r0‖∞ ≤ bic.
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Remark 5.6. This theorem implies that εl > 0 is the lower bound for the time-delay margin

of the proposed adaptive control system.

Proof. Equations (5.1) and (5.50) imply that

xr − x = (H ◦M ◦ E ε)[ur − u] +H[ηr − η]. (5.103)

It follows from Eq. (5.99) that

u̇ = −k
(
u+ η̂ +Kdhd

)
= −k

(
Ω
(
t, x(t)

)
u(t− ε) + η̂ − η − Ω

(
t, x(t)

)
u(t− ε) + u︸ ︷︷ ︸

η̃

+η +Kdhd

)
= −k

(
Ω
(
t, x(t)

)
u(t− ε) + η̃ + η +Kdhd

)
, (5.104)

where η̂ , θ̂‖rt‖L∞ + σ̂. The difference between (5.1) and (5.98) implies

˙̃x = Aspx̃+Bmη̃, x̂(0) = 0. (5.105)

Since Bm has rank m, i.e B>mBm is invertible, we have

η̃ = B†m( ˙̃x− Aspx̃), x̂(0) = 0. (5.106)

where B†m = (B>mBm)−1B>m is the pseudoinverse of Bm. According to the definition of the

input-output map in (5.66) and the relationship in (5.106), the relationship in Eq. (5.104)

can be written as

u = Gε
[
η +Kdhd +B†m ˙̃x−B†mAspx̃

]
. (5.107)
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Therefore, it follows from (5.68), (5.77) and (5.107) that

ur−u = Gε
[
ηr − η +B†mAspr̃ −B†m ˙̃x

]
= Gε[ηr− η] +Gε[B†mAspx̃] + k(I +Gε ◦M◦E ε)[B†mr̃].

(5.108)

Now, suppose that ψ > 0 is given. Since ‖xr(0)−x(0)‖∞ = 0 < 1 and ‖ur(0)−u(0)‖∞ = 0,

it follows by continuity that there exists a exists a τ > 0, such that ‖(xr − x)τ‖L∞ < 1 and

‖(ur − u)τ‖L∞ <∞. Theorem 5.1 implies that

‖xτ‖L∞ < ρr + 1 = ρ̄, ‖uτ‖L∞ <∞. (5.109)

It follows from (5.3) and (5.109) that

‖(ηr − η)τ‖L∞ ≤ dηx
(
ρ̄
)
‖(xr − x)τ‖L∞ ≤ Lρr‖(xr − x)τ‖L∞ . (5.110)

Equations (5.103), (5.108) and (5.110) result in the bounds

‖(xr − x)τ‖L∞ ≤ f(ε)Lρr‖(xr − x)τ‖L∞ + b2‖x̃τ‖L∞ (5.111)

and

‖(ur − uτ‖L∞ ≤ g(ε)Lρr‖(xr − x)τ‖L∞ + b3‖x̃τ‖L∞ , (5.112)

where

b2 , ‖H ◦M ◦ E ε ◦
(
Gε ◦ B†m ◦ Asp + k(I + Gε ◦M ◦ E ε) ◦ B†m

)
‖L1 (5.113)

and

b3 , ‖Gε ◦ B†m ◦ Asp + k(I + Gε ◦M ◦ E ε) ◦ B†m‖L1 (5.114)

are both finite for all ε ∈ [0, εl]. Here, Asp and B†m denote the input-output maps of the
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constant matrices Asp and B†m, respectively. In this interval of input delay, the stability

condition in (5.88) holds and implies that 1 − f(ε)Lρr > 0. Thus, from Eq. (5.111) and

(5.112), we conclude that

‖(xr − x)τ‖L∞ ≤
b2

1− f(ε)Lρr
‖x̃τ‖L∞ (5.115)

and

‖(ur − u)τ‖L∞ ≤
(

b2g(ε)Lρr
1− f(ε)Lρr

+ b3

)
‖x̃τ‖L∞ . (5.116)

Next, we analyze the norm of the estimation error, ‖x̃τ‖L∞ , using a standard Lyapunov

method. Because of these bounds on x and u, we have the parameterization for η similarly

to (5.95), i.e.

η(t, x(t)) = θ(t)‖xt‖L∞ + σ(t), ∀t ∈ [0, τ ], (5.117)

where θ(t) and σ(t) are bounded by θb and σb, respectively. Let θ̃ , θ̂ − θ and σ̃ , σ̂ − σ̄.

Note that σ̄ = σ + Ω
(
t, x(t)

)
u(t − ε) − u is bounded by some constant σ̄b because all the

terms in its expression are bounded. Moreover,

˙̄σ = σ̇ + Ω̇
(
t, x(t)

)
u(t− ε) + Ω

(
t, x(t)

)
u̇(t− ε)− u̇. (5.118)

Since x(t) and u(t) is bounded as in (5.109), taking into account (5.1) and (5.99), we have ẋ,

Ω̇ and hence u̇ are bounded. Hence, ˙̄σ is bounded, meaning there exists a bounding constant

dσ̄ such that ‖ ˙̄σ‖∞ ≤ dσ̄.

Consider the Lyapunov function candidate V = x̃TPx̃+Γ−1(θ̃T θ̃+σ̃T σ̃). By the properties

of the projection operators,

V̇ ≤ −x̃TQx̃+
2

Γ

∣∣θ̃T θ̇ + σ̃T ˙̄σ
∣∣ ≤ −‖x̃‖2

∞ λmin(Q) +
4

Γ

(
θbdθ + σbdσ̄

)
. (5.119)
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We have

V (0) ≤ 4

Γ

(
θ2
b + σ2

b

)
<
νm
Γ
, (5.120)

where νm , 4(θ2
b + σ2

b ) + 4λmax(P )
λmin(Q)

(
θbdθ + σbdσ̄

)
. We now show by contradiction that

V (t) ≤ νm
Γ
, ∀t ∈ [0, τ ]. (5.121)

To this end, choose τ̂ ∈ (0, τ ] such that θ̇ and σ̇ are continuous on [0, τ̂). Suppose that

V (τ̄) > νm/Γ and V̇ (τ̄) ≥ 0 for some τ̄ < τ̂ . It follows that

νm
Γ
< V (τ̄) ≤ ‖x̃(τ̄)‖2

∞λmax(P ) +
4

Γ

(
θ2
b + σ̄2

b

)
. (5.122)

Hence,

‖x̃(τ̄)‖2
∞ >

4

Γλmin(Q)

(
θbdθ + σbdσ̄

)
. (5.123)

By substituting (5.123) in (5.119) we have V̇ (τ̄) < 0, which contradicts the statement that

V̇ (τ̄) ≥ 0. Thus, V (t) ≤ νm
Γ

for all t ∈ [0, τ̂). Since V (t) is a continuous function, V (t) ≤ νm
Γ

for all t ∈ [0, τ̂ ]. Consequently,

‖x̃τ̂‖L∞ ≤
√

νm
λmin(P )Γ

. (5.124)

By repeating this analysis for each subsequent interval of continuity of θ̇ and σ̇, we conclude

that (5.124) holds with τ̂ replaced by τ . In other words, there exists C > 0 (independent of

τ), such that

‖x̃τ‖L∞ ≤
√
C/Γ, (5.125)

which does not exceed ψ provided that Γψ2 ≥ C. The claim of this theorem follows by

choosing ψ and Γ such that the product in the right side of (5.115) is strictly less than 1.
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5.5 Summary

This chapter documents theoretical analysis showing the existence of a lower bound for the

time delay margin of a class of nonlinear control systems. The plant model considered in

this chapter is a generalization of the model in Chapter 4, and represents a wide range of

Lagrangian systems with nonlinear and time-varying input gains. The control scheme is

designed by following the framework presented in Chapter 2. Various properties of linear

time-varying DDEs are established in this chapter:

• They do not have finite escape time.

• Their solution is bounded within an exponential envelop which may grow in time but

is independent of the delay.

• If their coefficient matrices satisfy a certain condition, the DDEs are uniformly asymp-

totically stable when the delay is small enough.

• Their solution is continuous in the delay, uniformly in time in a finite interval, for any

delay value.

• Their solution is continuous in the delay, uniformly in time in an infinite interval, for

small enough delay.

These properties lead to the existence of a lower bound for the time delay of the nonadaptive

reference system via a continuity argument for the delay stability condition. The chapter

then shows that is the delay is below this lower bound, then the dynamics of the adaptive

control system and the reference system are almost identical if the adaptive gain is large

enough. The result implies that the two systems have the same lower bound for their time

delay margin.
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CHAPTER 6

TRACKING SYNCHRONIZATION

This chapter presents the analysis of synchronization of networked manipulators operat-

ing on an underactuated dynamic platform in the presence of communication delays. The

proposed formulation does not require detailed information about the system model. The

theoretical analysis based on input-output maps of functional differential equations shows

that the adaptive control system’s behavior matches closely that of a nonadaptive reference

system. The tracking-synchronization objective is achieved despite the effect of communi-

cation delays, and the unknown dynamics of the platform. Simulation results illustrate the

performance of the proposed control algorithms.

The chapter is organized as follows. Section 6.1 discusses background on network system

and properties of different associated graphs. Section 6.2 presents the model of multiple ma-

nipulators operating on a dynamic platform. In Section 6.3, we analyze a scheme for perfect

cancelation when the entire model is fully known. In contrast, Section 6.4 proposes an adap-

tive control algorithm for each manipulator to achieve tracking synchronization despite the

unmodelled dynamics, unknown platform motion, and communication delay in the network.

In Sections 6.5 and 6.6, we design a collective reference system, and establish its stability via

the analysis of certain input-output maps that account for the delays. Section 6.7 shows that

the collective state and control input of the proposed adaptive control system follow those

of the nonadaptive reference system closely to achieve tracking synchronization. Section 6.8

closes the chapter with concluding remarks.
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6.1 Network systems

Consider a network of N manipulators with the same numbers of degrees of freedom, and

assume that this is represented by a simple, unsigned, directed graph that describes the

communication topology associated with the network. Let Si denote the set of manipulators

that send their measured joint angles and angular velocities to the ith manipulator (i /∈ Si

). Let D be the degree matrix of the network, which is diagonal with the in-degree of the

vertices, |Si| in the ith diagonal element. In addition, denote by Ad the adjacency matrix of

the network such that the (i, j)-th element is 1 if j ∈ Si, and 0 otherwise. Finally, denote

by L = D − Ad the graph Laplacian of the manipulator network. The graph is said to be

strongly connected if there is a directed path connecting any two nodes. In this case, then

rank(L) = N−1, i.e., the Laplacian matrix always has a zero eigenvalue. The corresponding

eigenvector is a column of ones. Moreover, all nonzero eigenvalues of L have positive real

part [119].

Communication delays are inherent in networked systems due to the physical distance

between nodes and the properties of the transmitters and receivers. In this chapter, we

assume an identical and constant communication delay T along each edge in the network.

This assumption is reasonable in practice because one can always select the transmitters and

set buffers to achieve this [29].

6.2 Dynamic Model of a robot network operating on a dynamic

platform

Suppose the network of manipulators is operating on a common dynamic platform, such as a

ship or a ground-based vehicle. Let qa,i contain the n actuated generalized coordinates of each

manipulator, qp contain the m generalized coordinates of the platform, and ui contain the

input torques to the ith manipulator. When the argument t is omitted, the corresponding

time dependent function is evaluated at time t. The dynamics of the individual robotic
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manipulators are coupled through the dynamicas of the platform and governed by equations

of motion of the form

Mai(qi)q̈a,i +Mpi(qi)q̈p +Nai(qi, q̇i) = ui +Dai, i = 1, ..., N, (6.1)

where q>i , [q>a,i, q
>
p ], q> , [q>a,1, ..., q

>
a,N , q

>
p ] and the column vector Dai contains bounded

time-dependent unknown disturbances to the ith manipulator. The inertia matrices Mai and

Mpi are all symmetric, positive-definite, and bounded. The remaining terms include Coriolis

and centripetal effects, gravity and other conservative forces, as well as dissipative and

velocity-dependent contributions to the dynamics of each manipulator. Similar to Chapter 2,

we here assume that qp(t), q̇p(t) and q̈p(t) can be bounded a priori for all time.

For the ith manipulator, we introduce the kinematic variable

ri = (q̇a,i − q̇d) + (qa,i − qd), (6.2)

where qd is the desired trajectory for the manipulators’ joint angles. It follows from (6.1)

and (6.2) that we may write

ṙi = ωi(qi)ui + η
(0)
i , ri(0) = r0,i, (6.3)

where ωi(qi) ,M−1
ai (qi) is positive-definite and bounded, i.e., there exists positive constants

ωl and ωh such that

ωlI ≤ ω(q), and ‖ω(q)‖∞ ≤ ωh, (6.4)

with ω(q) , diag[ωi(qi)]. The nonlinearity function η
(0)
i : R × R2n+3m → Rn captures the

detailed, but unknown, nonlinear model of the manipulator dynamics, as well as the uncertain

contributions that result from the moving platform. Specifically, let the arguments of η
(0)
i
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be decomposed as (t, ζi), where

ζ>i ,
[
r>i , χ

>
i

]
, and χ>i , [q>a,i, q

>
p , q̇

>
p , q̈

>
p ]. (6.5)

Here, η
(0)
i is bounded at zero configuration (see [102]), i.e., there exists a constant Zi > 0,

such that

‖η(0)
i (t, 0)‖∞ ≤ Zi, ∀t ≥ 0. (6.6)

We define the ideal dynamics by rewriting the equation (6.3) in the form

ṙi = Am,iri + ωi(qi)ui + ηi, ri(0) = r0,i, (6.7)

where Am,i is a Hurwitz matrix to be chosen appropriately, and ηi = η
(0)
i −Am,iri. It follows

that

‖ηi(t, 0)‖∞ ≤ Zi, ∀t ≥ 0. (6.8)

Moreover, we restrict attention to disturbances that guarantee that (cf. Appendix B of

[102]):

‖ζi‖∞ ≤ δi ⇒
∥∥∥∥∂ηi(t, ζi)∂ζi

∥∥∥∥
∞
≤ di(δi) (6.9)

and such that the partial derivative of ηi with respect to t is similarly uniformly bounded.

Note that the bound di(δi) depends on the choice of Am,i.
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6.3 Perfect cancellation

The control objective in this chapter is to synchronize the motion of each manipulator with

that of the other manipulators in the network while tracking a desired trajectory:

qi → qj → qd, for i, j = 1, ..., N. (6.10)

Ideally, if ηi and ωi(q) are known, we can compensate for the nonlinearity in (6.7) using

ui = ω−1
i (qi)

(
usynci − ηi

)
, (6.11)

where usynci remains to be designed. The general equation of motion (6.7) then becomes

ṙi = Am,iri + usynci , ri(0) = r0,i. (6.12)

Consider the following synchronization control input

usynci (t) =
∑
j∈Si

(
rj(t− T )− ri(t)

)
, (6.13)

where r(t) receives the value of the constant vector r0, which contains the initial conditions

of the manipulators’ states, for all t ∈ [−T, 0], and T is the communication delay. The

collective synchronization control input becomes

usync(t) = (Ad ⊗ In)r(t− T )− (D ⊗ In)r(t), (6.14)

where ⊗ denotes the Kronecker product, the column vector usync collects all usynci for i =

1, ..., N , and r> , [r>1 , r
>
2 , ..., r

>
N ]. Substituting (6.14) into (6.12) then leads to the following
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collective dynamics of the robot network

ṙ(t) = (Am −D ⊗ In)r(t) + (Ad ⊗ In)r(t− T ). (6.15)

Let Am = aA0, where a is a positive scaling factor, and A0 is a Hurwitz matrix. It is

well known that there exists a positive definite matrix P0 such that A>0 P0 + P0A0 = −I.

The matrix P0 depends on A0, but not on a. Consider the Lyapunov function candidate

V (r) = r>P0r. Let b1 = ‖P0(D ⊗ In)‖∞ and b2 = ‖P0(Ad ⊗ In)‖∞. We have

V̇ (r(t)) = r>(t)P0ṙ(t) + ṙ>(t)P0r(t)

= r>(t)
(
A>mP0 + P0Am

)
r(t)− 2r>(t)P0(D ⊗ In)r(t) + 2r>(t)P0(Ad ⊗ In)r(t− T )

≤ −a‖r(t)‖2 + 2b1‖r(t)‖2 + 2b2‖r(t)‖‖r(t− T )‖. (6.16)

Now, if V (r(t− t′)) < pV (r(t)) for all t′ ∈ [0, T ], where p > 1 is a constant, then

‖r(t− T )‖ ≤ ‖r(t)‖

√
p
λmin(P0)

λmax(P0)
. (6.17)

Substitution of (6.17) in (6.16) yields

V̇ (r(t)) ≤

(
−a+ 2b1 + 2b2

√
p
λmin(P0)

λmax(P0)

)
‖r(t)‖2. (6.18)

Since we can design a such that a > 2b1 + 2b2

√
p λmin(P0)
λmax(P0)

, i.e. V̇ (r(t)) < 0. Therefore,

given Am satisfies this delay-independent condition, (6.15) is uniformly asymptotically stable

according to the Razumikhin theorem (see [48], pp. 127). In addition, because of the form

of the Lyapunov function used here, r = 0 is a global attractor. Hence, ri → rj → 0,

i.e. qi → qj → qd. Thus, in this case, the control objective for tracking synchronization is

achieved independent of the delay.

Remark 6.1. The Razumikhin theorem says that for uniform asymptotic stability, the con-
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dition V̇ (r(t)) < 0 is not required for all time. The negativity of V̇ (r(t)) is needed only when

V (r(t− t′)) < pV (r(t)) for all t′ ∈ [0, T ]. In situations where V (r(t− t′)) ≥ pV (r(t)), since

p > 1, we have V (r(t − t′)) > V (r(t)) for all t′ ∈ [0, T ]. Hence, in such cases, V (r(t)) is

already decaying to zero.

6.4 Adaptive control scheme

We proceed to consider the case when it is not possible to achieve perfect cancellation. To

this end, let the control input be composed of an adaptive part, which seeks to compensate

for the nonlinearity of each manipulator, and a synchronization part, such that

ui = uadi + usynci . (6.19)

Specifically, we design the control input uadi based on the adaptive control framework in

Chapter 2 for a single moving-base manipulator, i.e., as the output to the linear filter

u̇adi = −k(uadi + η̂i), u
ad
i (0) = 0, (6.20)

where η̂i(s) is evolving dynamically and remains to be designed. The adaptive control input

seeks partial compensation of the nonlinearity by allowing only low-frequency signals in the

control channels so as to maintain robustness.

Let the estimate η̂i take the form of two time-varying functions with the measurable

‖ri,t‖L∞ as a regressor:

η̂i(t) , θ̂i(t)‖ri,t‖L∞ + σ̂i(t), (6.21)
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where the adaptive estimates θ̂i(t) and σ̂i(t) are governed by the projection-based laws

˙̂
θi = Γ Proj

(
θ̂i,−P r̃i‖ri,t‖L∞ ; θb,i, ε

)
, θ̂i(0) = θ̂i,0, (6.22)

˙̂σi = Γ Proj
(
σ̂i,−Pir̃i;σb,i, ε

)
, σ̂i(0) = σ̂i,0. (6.23)

Here, ε is the projection tolerance, θ̂i(t) and σ̂i(t) are bounded by θb,i and σb,i, which are set

by the adaptive laws, and Γ is the adaptive gain, which is the same for all manipulators. The

feedback in these adaptation laws is described in terms of the prediction error r̃i , r̂i − ri,

where the state predictor r̂i is governed by the system

˙̂ri = Am,iri + ui + η̂i + Al,ir̃, r̂i(0) = r0,i (6.24)

and Al,i is a Hurwitz matrix of loop-shaping parameters that may be tuned to reject oscil-

lations caused by high-frequency disturbances or noise, as well as to make r̃ converge to 0

faster. The overall control framework is illustrated by the block diagram in Fig. 6.1.

Observer

Adaptation

Control 

law

_

Robot ith 

dynamics

Sliding 

variable

Desired 

trajectory

Feedback

Feedback

Cooperation

Measurements 

from neighbors

+

+
+Low-pass 

Filter

Disturbances

Platform 

dynamics

Figure 6.1: The block diagram for the cooperative control framework.
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6.5 Nonadaptive reference system

Let Fq be the map from y to z in

ż = −k
(
ω(q)z + y

)
, z(0) = 0, (6.25)

where k > 0. Here, the subscript q implies the dependence on the trajectory q. Since ω(q)

is a uniform positive definite matrix, it is shown in Section 2.2 that

bF , sup
q
‖Fq‖L1 <∞. (6.26)

Let I be the identity map, and Mq : y → ω(q)y. We construct a nonadaptive, collective

reference system:

q̇a,ref = −qa,ref + rref + qd + q̇d, qa,ref(0) = q0 (6.27)

ṙref = Amrref + ω(q)uref + ηref , rref(t) = r0 ∀t ∈ [−T, 0] (6.28)

uref = Fq[ηref ] +
(
Fq ◦ (Mq − I) + I

)
[usyncref ], uref(0) = 0 (6.29)

usyncref (t) = (Ad ⊗ In)rref(t− T )− (D ⊗ In)rref(t), (6.30)

where q> ,
[
q>a,1, ..., q

>
a,N , q

>
p

]
. The function ηref denotes η(t, ζref(t)), with the variables

ζref> ,
[
rref>, χref>

]
, and χref> ,

[
qref>a , q>p , q̇

>
p , q̈

>
p

]
. (6.31)

This nonadaptive reference system represents the ideal dynamics for the robot network

when the nonlinearity of each manipulator is known to its controller, as seen in (6.29), as

opposed to being estimated by the adaptive scheme presented in the last section. Note here

that usyncref in (6.30) is analogous to usync in (6.14). Furthermore, when k → ∞, we have

Fq[y] = −ω−1(q)y. In this limit, the reference system recovers the exact form of (6.15).
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6.5.1 The variation-of-constants formula for DDEs

Consider the following delay differential equation

ẋ(t) = A(t)x(t) +B(t)x(t− T ) + y(t), x(t) = x0, ∀t ∈ [−T, 0], (6.32)

where A(t) and B(t) are continuous matrix functions, and their norms are bounded. Let Φ

be the fundamental solution of the following DDE

∂

∂t
Φ(t, t′) = A(t)Φ(t, t′) +B(t)Φ(t− T, t′), ∀(t, t′) ∈ [t′,∞)× [0,∞),

Φ(t, t) = I, ∀t ∈ [0,∞),

Φ(t, t′) = 0, ∀(t, t′) ∈ [t′ − T, t′)× [0,∞).

(6.33)

Then, the solution to the DDE in (6.32) for t ≥ 0 can be written in the following form (cf.

[143, 151, 6])

x(t) = x̄(t, x0) +

∫ t

0

Φ(t, t′)y(t′)dt′ (6.34)

x̄(t, x0) =
(

Φ(t, 0) +

∫ T

0

Φ(t, t′)B(t′)dt′
)
x0. (6.35)

Consider the decomposition x> = [x>1 x>2 ] and y> = [y>1 y>2 ], where the components are

column vectors with the same size, and similarly

Φ =

 Φ11 Φ12

Φ21 Φ22

 , A =

 A11 A12

A21 A22

 , and B =

 B11 B12

B21 B22

 , (6.36)

where each block is a square matrix with the same size. In the special case that y2 = 0 and
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x2(0) = 0,

x1(t) = x̄1(t, x0) +

∫ t

0

Φ11(t, t′)y1(t′)dt′, (6.37)

x̄1(t, x0) =
(

Φ11(t, 0) +

∫ T

0

(
Φ11(t, t′)B11(t′) + Φ12(t, t′)B21(t′)

)
dt′
)
x1(0). (6.38)

6.5.2 The norm and the stability of an input-output map

Consider the following system

ż = Amz + ω(q)
(
Fq ◦ (Mq − I) + I

)
[zsync] + y, (6.39)

where z(t) = z0, ∀t ∈ [−T, 0], and

zsync(t) = (Ad ⊗ In)z(t− T )− (D ⊗ In)z(t). (6.40)

If v , Fq ◦ (Mq − I)[zsync], the DDE in (6.39) can be written as

ż = Amz + ω(q)zsync + ω(q)v + y,

v̇ = −k
(
ω(q)v +

(
ω(q)− INn

)
zsync

)
,

(6.41)

where v(0) = 0. Substituting zsync in (6.41) leads to

 ż

v̇

 =

 Am − ω(q)(D ⊗ In) ω(q)

k
(
ω(q)− INn

)
(D ⊗ In) −kω(q)


︸ ︷︷ ︸

A(t)

 z

v


︸ ︷︷ ︸

x

+

 ω(q)(Ad ⊗ In) 0

−k
(
ω(q)− INn

)
(Ad ⊗ In) 0


︸ ︷︷ ︸

B(t)

 z(t− T )

v(t− T )

+

 y

0

 . (6.42)
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This equation has the form of (6.32). The solution z can be written in terms of the fun-

damental solution’s components and the input y as shown in (6.37) and (6.38). Based on

these, we define the linear map Hq from y to z in (6.39) as

Hq : y →
∫ t

0

Φ11(t, t′)y(t′)dt′. (6.43)

The variation-of-constant formula (6.37) is now written as

z(t) = z̄(t, x0) +Hq[y]. (6.44)

In addition, the L1 norm of Hq is then given by

‖Hq‖L1 , max
1≤i≤n

(
n∑
j=1

sup
t≥0

∫ t

0

∣∣Φij
11(t, t′)

∣∣ dt′

)
, (6.45)

where Φij
11(t, t′) represent the entries of the matrix Φ11(t, t′).

6.5.3 Exponential stability of Hq using a Lyapunov-Razumikhin function

By the way that Hq is defined as an input-output map of a time-varying delay differential

equation in the previous section, it is possible that the delay T , when large enough, may

destabilize Hq. Nonetheless, in the following lemma, we show that if the control parameters

Am and k are designed to satisfy a certain delay-independent condition, the exponential

stability of Hq is guaranteed.

Lemma 6.1. It is possible to design Am independently of k such that ‖Hq‖L1 is finite,

independently of the communication delay T .

Proof. The map Hq maps y to z in (6.39). The corresponding homogeneous equation is given
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by

ż = Amz(t) + ω(q)
(
Fq ◦ (Mq − I) + I

)[
(Ad ⊗ In)z(t− T )− (D ⊗ In)z(t)

]
,

= Amz(t) +A
[
z(t)

]
+ B

[
z(t− T )

]
, (6.46)

where

A
[
z(t)

]
, −ω(q)

(
Fq ◦ (Mq − I) + I

)[
(D ⊗ In)z(t)

]
(6.47)

B
[
z(t− T )

]
, ω(q)

(
Fq ◦ (Mq − I) + I

)[
(Ad ⊗ In)z(t− T )

]
. (6.48)

According to (2.16), we have

‖Fq‖L1 ≤
Nn
√
Nn

ωl
, ∀q, (6.49)

where ωl is a positive constant such that ωlI ≤ ω(q) for all q. It follows that

‖A‖L1 ≤ ωh

(Nn√Nn
ωl

(ωh + 1) + 1
)
‖(D ⊗ In)‖∞ (6.50)

‖B‖L1 ≤ ωh

(Nn√Nn
ωl

(ωh + 1) + 1
)
‖(Ad ⊗ In‖∞. (6.51)

As before, let Am = aA0, where a is a positive scaling factor, and A0 is a Hurwitz matrix

which achieve some control coupling among the degrees of freedom of the manipulators.

There exists a positive definite matrix P0 such that A>0 P0 +P0A0 = −I. Though P0 depends

on A0, it is independent of a. It follows from (6.50) and (6.51) that there are constants c1

and c2 independent of k such that ‖P0‖∞‖A‖L1 ≤ c1 and ‖P0‖∞‖B‖L1 ≤ c2. Consider the
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Lyapunov-Razumikhin function candidate V (z) = z>P0z. We have

V̇ (z(t)) = z>(t)P0ż(t) + ż>(t)P0z(t)

= z>(t)
(
A>mP0 + P0Am

)
z(t)− 2z>(t)P0A

[
z(t)

]
+ 2z>(t)P0B

[
z(t− T )

]
≤ −a‖z(t)‖2

L∞ + 2c1‖z(t)‖2
L∞ + 2c2‖z(t)‖L∞‖z(t− T )‖L∞ . (6.52)

Now, if V (z(t− t′)) < pV (z(t)) for all t′ ∈ [0, T ], where p > 1 is a constant, then

‖z(t− T )‖L∞ ≤ ‖z(t)‖L∞

√
p
λmax(P0)

λmin(P0)
. (6.53)

Substitution of (6.17) in (6.52) yields

V̇ (z(t)) ≤

(
−a+ 2c1 + 2c2

√
p
λmax(P0)

λmin(P0)

)
‖z(t)‖2

L∞ . (6.54)

We can design a independent of k such that

a > 2c1 + 2c2

√
p
λmax(P0)

λmin(P0)
, i.e. V̇ (z(t)) < 0. (6.55)

Therefore, given a, and hence Am, that satisfies this delay-independent condition, (6.46) is

globally uniformly asymptotically stable according to the Razumikhin theorem (see [48], pp.

127). This means for every bounding constant zb, there exists a tb such that

‖z(t− T )‖ ≤ zb, ∀t ≥ tb. (6.56)

This also implies that

‖z(t)‖ ≤ zb, ∀t ≥ tb. (6.57)
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From the definition of the Lyapunov-Razumikhin function, we have

‖z(t)‖2λmin(P0) ≤ V
(
z(t)

)
≤ ‖z(t)‖2λmax(P0). (6.58)

It then follows from this and (6.52) that

V̇
(
z(t)

)
≤ −a

V
(
z(t)

)
λmax(P0)

+ 2c1‖z(t)‖2 + 2c2‖z(t)‖‖z(t− T )‖. (6.59)

Using (6.56) and (6.57), and then applying Gronwall lemma to (6.59) and lead to

‖z(t)‖2λmin(P0) ≤ V
(
z(t)

)
≤ e

− a
λmax(P0)

(t−tb)2z2
b (c1 + c2), ∀t ≥ tb. (6.60)

Hence, the homogeneous equation (6.46) is exponentially stable. Thus, the norm ‖Hq‖L1 is

finite.

Lemma 6.2. Suppose we have chosen Am such that ‖Hq‖L1 is finite. Let Hs
q : y → Hq[ẏ].

Then the norm ‖Hs
q‖L1 is also finite.

Proof. Let z = Hq[ẏ]. With the linear and stable maps A and B defined in (6.50) and (6.51),

whose L1 norms are bounded, the definition of the map Hq together with (6.39) lead to

ż(t) = Amr(t) +A[z(t)] + B[z(t− T )] + ẏ(t) (6.61)

⇒ ż(t)− ẏ(t) = Amr(t) +A[z(t)− y(t)] + B
[
z(t− T )− y(t− T )

]
+A[y] + B[y(t− T )]

(6.62)

⇒ z(t) = Hq ◦ A[y(t)] +Hq ◦ B[y(t− T )] + y =
(
Hq ◦ A+Hq ◦ B ◦ E + I

)
[y],

(6.63)

where E : y → y(t−T ) denotes the delay map. Hence, we getHs
q[·] =

(
Hq◦A+Hq◦B◦E+I

)
[·],

in which the norm of each term is finite. Thus, the norm ‖Hs
q‖L1 is also finite.
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6.5.4 Exponential stability of the map Hq using a Lyapunov-Krasovskii
functional

This section presents an alternative method for stability analysis of the map Hq using a

Lyapunov-Krasovskii functional. This method leads to delay-dependent conditions for Am

and k in the form of a linear matrix inequality.

Lemma 6.3. Given a time delay T , it is possible to design Am and k such that the fun-

damental solution Φ of the DDE in (6.42) decays exponentially, and hence the map Hq is

exponentially stable.

Proof. Let Am and P0 be defined as in the previous section. Suppose P and Q are a positive

definite block diagonal matrices of the form

P =

 P0 0

0 INn

 and Q =

 eaTk2INn 0

0 INn

 , (6.64)

such that P is independent of a. The time derivative of the Lyapunov functional

V (x) = x>Px+

∫ t

t−T
e−a(t−t′)x>(t′)Qx(t′)dt′ (6.65)

along the solution of the homogeneous equation of (6.42) is

V̇ + aV =
(
Ax+Bx(t− T )

)>
Px+ x>P

(
Ax+Bx(t− T )

)
+ x>Qx− e−aTx>(t− T )Qx(t− T ) + ax>x

= x>(A>P + PA+Q+ aI2Nn)x+ x>(t− T )B>Px+ x>PBx(t− T )

− e−aTx>(t− T )Qx(t− T )

=
[
x> x>(t− T )

]  A>P + PA+Q+ aI2Nn PB

B>P −e−aTQ


 x

x(t− T )

 . (6.66)
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From here it is obvious that

V̇ + aV < 0⇐

 A>P + PA+Q+ aI2Nn PB

B>P −e−aTQ

 < 0. (6.67)

As −e−aTQ < 0, it follows from Schur Complement Lemma (see Proposition 3.1 in [40]) that

(6.67) is equivalent to

A>P + PA+Q+ aI2Nn + eaTBQ−1B> < 0. (6.68)

Again according to Schur Complement Lemma and by substituting Q given in (6.64), the

condition in (6.68) is equivalent to the following two conditions

2A22 + (1 + a)INn +
1

k2
B21B

>
21 < 0 (6.69)

and

A>11P0 + P0A11 + (eaTk2 + a)INn +
1

k2
B11B

>
11 −

(
A12 + A>21 +

1

k2
B11B

T
21

)
×
(

2A22 + (1 + a)INn +
1

k2
B21B

>
21

)−1(
A21 + A>12 +

1

k2
B21B

>
11

)
< 0. (6.70)

Next, we analyze these two stability conditions:

• Since k2 is cancelled out in 1
k2B21B

>
21, the condition (6.69) can be satisfied by controlling

k such that A22 is sufficiently negative definite.

• Given such a value of k, all terms in (6.70) are independent of Am, except for

A>11P0 + P0A11 = −aINn + (D ⊗ In)ω(q)P0 + P0ω(q)(D ⊗ In).

Hence, (6.70) can be satisfied with a that is large enough.
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Thus, by controlling the values of a and k, it is possible to satisfy (6.67). From the definition

of the Lyapunov function in (6.65), we have ‖x‖2
2 ≤ V (x). Applying the Gronwall lemma to

(6.67) yields

‖x‖2
2 ≤ V (x) < V (x(0))e−at. (6.71)

This leads to the exponential stability of the unforced system of (6.42). Consequently, Φ,

and hence Φ11, converges to zero exponentially fast. Thus, the map Hq is exponentially

stable and ‖Hq‖L1 is finite.

Remark 6.2. The Lyapunov-Krasovskii functional in (6.65) in this section yields alternative

conditions for exponential stability of the DDE of interest. However, the condition in (6.70)

depends on the communication delay T . In addition, when k is increased, the maximum

eigenvalue of Am that satisfies (6.70) also increases. As will be seen in later sections, this

may lead to a possible conflict with a suitably formulated stability condition. In such cases,

the stability of the proposed control scheme is not guaranteed. Nonetheless, within certain

restriction, it is possible to redesign the controller to remove the conflict. The modification

will be discussed in Section 6.8.

6.6 The stability condition and the bound on the collective

reference system

Define a linear map Dq[·] ,Mq ◦ Fq[·]. By substituting (6.29) in (6.28), we obtain

ṙref = Amrref + ω(q)
(
Fq ◦ (Mq − I) + I

)
[usyncref ] + (Dq + I)[ηref ], (6.72)

which has the form of (6.39). As defined in (6.43), Hq is the input-output map from

(Dq + I)[ηref ] to rref in (6.72), with usyncref given in (6.30). Suppose Am satisfy certain delay-

independent stability condition (6.55), such that the map Hq is exponentially stable. We
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can now write (6.72) in terms of the map Hq as follows (cf. (6.44))

rref = Hq ◦ (Dq + I)[ηref ] + r̄(t, r0), (6.73)

where r̄(t, r0), defined in (6.38), is exponentially decaying.

Let uηref = Fq[ηref ], i.e.,

u̇ηref = −k
(
ω(q)uηref + ηref

)
, uηref(0) = 0. (6.74)

Define Hs
q : y → Hq[ẏ]. In the special case where r0 = 0, it follows from (6.73) and (6.74)

that

‖rref‖L∞ =
1

k
‖Hq[u̇

η
ref ]‖L∞ ≤

1

k
‖Hs

q‖L1 ‖u
η
ref‖L∞ . (6.75)

Since the map Hq is exponentially stable, it follows from Lemma 6.2 that Hs
q is input-to-

state stable and ‖Hs
q‖L1 is finite. Now let ηu ,

(
ω(q)− INn

)
uηref + ηref . Writing (6.74) in the

Laplace domain leads to

‖uηref‖L∞ =

∥∥∥∥ k

s+ k
ηu(s)

∥∥∥∥
L∞
≤ ‖ηu‖L∞ . (6.76)

From (6.75), (6.76) and the definition of uηref and ηu, we obtain

‖rref‖L∞ ≤
1

k
‖Hs

q‖L1

(
(ωh + 1)bF + 1

)
‖ηref‖L∞ . (6.77)

Let

b1 , sup
q

∥∥Hq ◦
(
Dq + I

)∥∥
L1
. (6.78)
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It follows from (6.73) and (6.77) that

b1 ≤
1

k
‖Hs

q‖L1

(
(ωh + 1)bF + 1

)
. (6.79)

Since b1 → 0 as k →∞, it follows that there exists a K, such that the stability condition

b1 <
ρref − ρic

ρrefL+ Z
(6.80)

is satisfied for some ρref > ρic provided that k > K. Here, ρic , ‖r̄(t, r0)‖L∞ is bounded

since r̄(t, r0) is an exponentially decaying function,

L ,
ρ̄

ρref

max
i
{di(ρ̄)}, and Z , max

i
{Zi}, (6.81)

where di(·) is defined in (6.9), Zi is the bound on ‖ηi(t, 0)‖∞, and

ρ̄ , ρref + 1 + q̄. (6.82)

Here, q̄ is a constant that satisfies

‖ζref‖L∞ ≤ ‖rref‖L∞ + q̄, (6.83)

which depends on the a priori bounds on qp, q̇p and q̈p. Its existence is verified below.

Lemma 6.4. Suppose that qp, q̇p and q̈p are bounded trajectories. Then there exists q̄ such

that

‖ζ‖L∞ ≤ ‖r‖L∞ + q̄, (6.84)

where ζ> = [r>, χ>], r> = [r>1 , ..., r
>
N ], χ> = [qa, q

>
p , q̇

>
p , q̈

>
p ], and q>a = [q>a,1, ..., q

>
a,N ].
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Proof. The collective form of (6.2) is

r = (q̇a − 1N ⊗ q̇d) + (qa − 1N ⊗ qd)

⇒ qa(s) = (s+ 1)−1
(
r(s) + 1N ⊗

(
q̇d(s) + qd(s)

)
+ qa(0)

)
(6.85)

⇒ ‖qa‖L∞ ≤ ‖r‖L∞ +
∥∥∥(1N ⊗

(
q̇d(s) + qd(s)

)
+ qa(0)

)∥∥∥
L∞︸ ︷︷ ︸

Q̄

. (6.86)

It follows that

‖χ‖L∞ ≤ ‖qa‖L∞ + max{‖qu‖L∞ , ‖q̇u‖L∞ , ‖q̈u‖L∞}

≤ ‖r‖L∞ + Q̄+ max{‖qp‖L∞ , ‖q̇p‖L∞ , ‖q̈p‖L∞}︸ ︷︷ ︸
q̄

. (6.87)

Hence,

‖ζ‖L∞ ≤ max{‖r‖L∞ , ‖χ‖L∞} ≤ max{‖r‖L∞ , ‖r‖L∞ + q̄} = ‖r‖L∞ + q̄. (6.88)

Note here that the same inequality relationship in (6.84) applies to ‖ζ‖L∞ and ‖rref‖L∞ .

Remark 6.3. In the stability condition (6.80), larger ‖Am‖∞ leads to a larger L, which

requires a larger k such that (6.80) is satisfied. As discussed in Section 6.5.3, which presents

a method that employs a Lyapunov-Razumikhin function, the delay-independent exponential

stability condition in (6.55) for the map Hq depends only on Am. Therefore, for a given Am,

if k is large enough, both conditions (6.80) and (6.55) are guaranteed to be satisfied.

In contrast, in the stability condition (6.70) obtained via a Lyapunov-Krasovskii functional,

a larger k required a larger ‖Am‖∞ such that the linear-matrix inequality (6.67) is satisfied.

Hence for a given Am, it is possible that all values of k that are large enough to satisfy

(6.80) do not satisfy (6.70). In such cases, the stability of the adaptive control system is not

guaranteed. Nonetheless, in a later section in this chapter, we will show that it is possible

to avoid this conflict between the stability conditions by removing the dependence of η, and
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hence L, on Am, albeit by restricting Am,i to the form aI.

Bounds on the state, rref , and control input, uref , of the reference system are claimed by

the following theorem.

Theorem 6.1. Suppose k and Am satisfy the stability conditions in (6.55) and (6.80) for

some ρref > ρic. Then ‖rref‖L∞ < ρref and ‖uref‖L∞ < ∞, independently of the communica-

tion delay T .

Proof. Suppose that ‖rref‖L∞ ≥ ρref . Then ‖r0‖∞ < ρref implies that there exists a τ , such

that

‖rref‖∞ < ρref , ∀t ∈ [0, τ), and ‖rref,τ‖L∞ = ‖rref(τ)‖∞ = ρref . (6.89)

Therefore,

‖ζref,τ‖L∞ ≤ ρref + q̄ < ρref + 1 + q̄ = ρ̄. (6.90)

Now, the property of ηi in (6.9) implies

‖ηref,i‖L∞ ≤ ‖
(
ηi(t, ζref,i(t))− ηi(t, 0)

)
‖L∞ + ‖ηi(t, 0)‖L∞ ≤ ‖ζref,i‖L∞di(ρ̄) + Zi

⇒ ‖ηref‖L∞ ≤ max
i
{‖ζref,i‖L∞di(ρ̄) + Zi} ≤ ‖ζref‖L∞ max

i
{di(ρ̄)}+ Z. (6.91)

This together with (6.81) lead to

‖ηref,τ‖L∞ ≤ ρ̄max
i
{di(ρ̄)}+ Z = ρrefL+ Z. (6.92)

Using (6.73), (6.80) and (6.92) we obtain

‖rref,τ‖L∞ ≤ ‖Hq ◦ (Dq + I)‖L1‖ητ‖L∞ + ‖r̄(t, r0)‖L∞ ≤ b1(ρrefL+ Z) + ρic < ρref , (6.93)

contradicting the equality in (6.89). Thus ‖rref‖L∞ < ρref . The claim that ‖uref‖L∞ < ∞
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immediately follows by applying this result to (6.29).

From (6.73) and (6.79), it follows that

‖rref(t)− r̄(t, r0)‖L∞ = O
(
k−1
)
. (6.94)

We obtain the following lemma

Lemma 6.5. The response of the collective reference system, rref , converges to r̄(t, r0) when

k →∞.

It follows from (6.38) that if Φ converges to zero exponentially fast then lim
t→∞

r̄(t, r0) =

0. Hence, Lemma 6.5 implies that the response of the nonadaptive reference system will

converge to a neighborhood of 0 exponentially fast. The size of the neighborhood is inversely

proportional to the filter bandwidth k.

6.7 Transient performance bounds

The following theorem shows that the collective state and control input of the proposed

control system governed by (6.7), (6.13), (6.19), (6.20), (6.21), (6.22), (6.23) and (6.24) follow

those of the nonadaptive reference system in (6.28)-(6.30) closely. This and Theorem 6.1

imply the stability of the proposed adaptive control system.

Theorem 6.2. Under the assumptions on k and Am from Theorem 6.1, for ν � 1, there

exist θb, σb and C > 0, such that ‖r̃‖L∞ ≤ ν, and the norms ‖rref − r‖L∞ and ‖uref − u‖L∞

are both O(ν), independently of the communication delay T , provided that Γν2 ≥ C.

Proof. Suppose that ν > 0 is given. Let ρu,ref be the global bound on uref which is finite

according to Theorem 6.1. Since

‖rref(0)− r(0)‖∞ = 0 < 1 and ‖uref(0)− u(0)‖∞ = 0 < 1, (6.95)
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it follows by continuity that there exists a τ > 0, such that ‖(rref − r)τ‖L∞ < 1 and ‖(uref −

u)τ‖L∞ < 1. Theorem 6.1 implies that

‖rτ‖L∞ < ρref + 1, ‖uτ‖L∞ < ρu,ref + 1. (6.96)

It follows from Lemma A.9.2 in [61] that there are continuous, piecewise-differentiable

functions θi(t) ∈ Rn and σi(t) ∈ Rn such that

ηi
(
t, ζi(t)

)
= θi(t)‖ri,t‖L∞ + σi(t), t ∈ [0, τ ]. (6.97)

On this interval, ‖θi(t)‖∞ < θb,i and ‖σi(t)‖∞ < σb,i, and, within any subinterval of differ-

entiability, ‖θ̇i(t)‖∞ < dθ,i <∞ and ‖σ̇i(t)‖∞ < dσ,i <∞. From (6.7), (6.24) and (6.97) we

have the estimation error

˙̃ri = Al,ir̃i + η̃i = Al,ir̃i + θ̃i‖ri,t‖L∞ + σ̃i, (6.98)

where η̃i , η̂i − ηi −
(
ωi(qi)− In

)
ui and σ̃i , σ̂i − σ̄i = σ̂i − σi −

(
ωi(qi)− In

)
ui.

Consider the following Lyapunov function candidate

V =
N∑
i=1

[
r̃>i Pir̃i +

1

Γ

(
θ̃>i θ̃i + σ̃>i σ̃i

)]
. (6.99)

We first find the time derivative of the above function using (6.22), (6.23) and (6.98):

V̇ =
N∑
i=1

[
˙̃r>i Pir̃i + r̃>i Pi ˙̃ri +

2

Γ
(θ̃>i

˙̃θi + σ̃>i ˙̃σi)
]

=
N∑
i=1

[
(Al,ir̃i + θ̃i‖ri‖L∞ + σ̃i)

>Pir̃i + r̃>i Pi(Al,ir̃i + θ̃i‖ri‖L∞ + σ̃i) +
2

Γ
(θ̃>i

˙̃θi + σ̃>i ˙̃σi)
]

= −r̃>Qr̃ +
N∑
i=1

[
2θ̃>i ‖ri‖L∞Pir̃i +

2

Γ
θ̃>i

˙̃θi + 2σ̃>i Pir̃i +
2

Γ
σ̃>i ˙̃σi

]
. (6.100)
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From the properties the projection operator, we have

2θ̃>i ‖ri,τ‖L∞Pir̃i +
2

Γ
θ̃>i

˙̂
θi = 2θ̃>i Pir̃i‖ri‖L∞ +

2

Γ
θ̃>i ΓProj(θ̂i,−Pir̃i‖ri‖L∞ ; θb, ε)

= 2θ̃>i
(
Pir̃i‖ri‖L∞ + Proj(θ̂i,−Pir̃i‖ri‖L∞ ; θb, ε)

)
≤ 0, (6.101)

2σ̃>i Pir̃i +
2

Γ
σ̃>i

˙̂σi = 2σ̃>i Pir̃i +
2

Γ
σ̃>i ΓProj(σ̂i,−Pir̃i;σb, ε)

= 2σ̃>i
(
Pir̃i + Proj(σ̂i,−Pir̃i;σb, ε)

)
≤ 0. (6.102)

Therefore,

V̇ ≤ −r̃>Qr̃ +
2

Γ

N∑
i=1

∣∣θ̃>i θ̇i + σ̃>i ˙̄σi
∣∣. (6.103)

Note that σ̄i = σi +
(
ωi(qi)− In

)
ui is bounded by some constant σ̄b because all the terms in

its expression are bounded. Moreover,

˙̄σi = σ̇i +
(
ωi(qi)− In

)
u̇+ ω̇(q)u. (6.104)

Since r(t) and u(t) is bounded as in (6.96), taking into account (6.2), (6.7), (6.19), (6.13)

and (6.20), we have ṙ, ω̇ and hence u̇ are bounded. Hence, ˙̄σ is bounded, meaning there

exists a bounding constant dσ̄ such that ‖ ˙̄σ‖∞ ≤ dσ̄. Note here that σ̄b and dσ̄ are dependent

on ρref and ρu,ref , but independent of τ .

We have

V (0) ≤ 4

Γ

N∑
i=1

(θ2
b,i + σ̄2

b,i) <
νm
Γ
, (6.105)

where νm , 4
N∑
i=1

(
θ2
b,i + σ̄2

b,i

)
+ 4λmax(P )

λmin(Q)

N∑
i=1

(θb,idθ,i + σ̄b,idσ̄,i). We now show by contradiction
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that

V (t) ≤ νm
Γ
, ∀t ∈ [0, τ ]. (6.106)

To this end, choose t1 ∈ [0, τ ] such that both θ̇(t) and σ̇(t) are continuous in [0, t1). It follows

from (6.103) that

V̇ ≤ −‖r̃‖2
∞λmin(Q) +

4

Γ

N∑
i=1

(
θb,idθ,i + σ̄b,idσ̄,i

)
, (6.107)

for all t ∈ [0, t1). Taking (6.105) into account, if (6.106) does not hold for all t ∈ [0, t1),

then there exists a t̄ ∈ [0, t1) such that V (t̄) > νm
Γ

and V̇ is a non-decreasing function, i.e.

V̇ (t̄) ≥ 0. It follows from (6.99) that

νm
Γ
< V (t̄) ≤ ‖r̃(t̄)‖2

∞λmax(P ) +
4

Γ

N∑
i=1

(
θ2
b,i + σ̄2

b,i

)
.

This means

4

Γ

N∑
i=1

(
θ2
b,i + σ̄2

b,i

)
+

4

Γ

λmax(P )

λmin(Q)

N∑
i=1

(θb,idθ,i + σ̄b,idσ̄,i) < ‖r̃(t̄)‖2
∞λmax(P ) +

4

Γ

N∑
i=1

(
θ2
b,i + σ̄2

b,i

)
.

(6.108)

Hence,

‖r̃(t̄)‖2
∞ >

4

Γλmin(Q)

N∑
i=1

(
θb,idθ,i + σ̄b,idσ̄,i

)
. (6.109)

By substituting (6.109) in (6.107) we have V̇ (t̄) < 0, which contradicts the statement that

V̇ (t̄) ≥ 0. Thus, V (t) ≤ νm
Γ

for all t ∈ [0, t1). Since V (t) is a continuous function, V (t) ≤ νm
Γ
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for all t ∈ [0, t1]. This together with (6.99) imply

‖r̃τ‖L∞ ≤
√

νm
λmin(P )Γ

, ∀t ∈ [0, t1]. (6.110)

By repeating this process with the next time instants at which a discontinuity of either θ̇(t)

or σ̇(t) occurs, we obtain the conclusion that the inequality in (6.110) holds for all t ∈ [0, τ ].

Thus, there exists a C > 0 (independent of τ), such that

‖r̃τ‖L∞ ≤
√
C/Γ, (6.111)

which does not exceed ν provided that Γν2 ≥ C.

Let ζ> ,
[
r>, χ>

]
, and χ> ,

[
q>a , q

>
p , q̇

>
p

]
. From the definition of ζref and ζ, we have

‖(ζref − ζ)τ‖L∞ ≤ max{‖rref − r‖L∞ , ‖χref − χ‖L∞}

≤ max{‖rref − r‖L∞ , ‖qa,ref − qa‖L∞} ≤ ‖(rref − r)τ‖L∞ (6.112)

where the last inequality comes from the fact that qa,ref(s)−qa(s) = (s+1)−1
(
rref(s)−r(s)

)
,

which follows from (6.85).

Similar to (6.91), equations (6.9), (6.81), (6.82) and (6.112) lead to

‖(ηref − η)τ‖L∞ ≤ max
i

{
di(ρ̄)

}
‖(ζref − ζ)τ‖L∞ ≤ max

i

{
di(ρ̄)

}
‖(rref − r)τ‖L∞

< L‖(rref − r)τ‖L∞ . (6.113)
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It follows from (6.20), (6.24) and (6.74) that

u̇ηref − u̇
ad = −k

(
ω(q)uηref + ηref − uad − η̂

)
= −k

(
ω(q)(uηref − u

ad) + ω(q)uad − uad + η − η̂ + ηref − η
)

= −k
(
ω(q)(uηref − u

ad) + ω(q)u− u+ η − η̂︸ ︷︷ ︸
−η̃

+ηref − η − ω(q)usync + usync
)

= −k
(
ω(q)(uηref − u

ad)− η̃ + ηref − η − ω(q)usync + usync
)
. (6.114)

Taking into account the definition of the input-output map Fq and the estimation error

equation in (6.98), we obtain

uηref − u
ad = Fq

[
ηref − η

]
−Fq

[
˙̃r − Alr̃

]
−Fq

[
ω(q)usync − usync

]
= Fq[ηref − η] +

(
Fq ◦ Al + k(Fq ◦Mq + I)

)
[r̃]−Fq ◦ (Mq − I)[usync]. (6.115)

The difference between (6.19) and (6.29) gives:

uref − u = (uηref − u
ad) +

(
Fq ◦ (Mq − I) + I

)
[usyncref ]− usync

= Fq[ηref − η] +
(
Fq ◦ Al + k(Fq ◦Mq + I)

)
[r̃]

+
(
Fq ◦ (Mq − I) + I

)
[usyncref − u

sync]. (6.116)

Equations (6.7), (6.28) and (6.116) then imply that

ṙref − ṙ = Am(rref − r) + ω(q)(uref − u) + ηref − η

= Am(rref − r) + ω(q)
(
Fq ◦ (Mq − I) + I

)
[usyncref − u

sync]

+ (Dq + I)[ηref − η] +
(
Dq ◦ Al + k(Dq + I) ◦Mq

)
[r̃]. (6.117)
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This and the definitions of usync in (6.14), usyncref in (6.30), and the map Hq in (6.72) lead to

rref − r = Hq ◦ (Dq + I)[ηref − η] +Hq ◦
(
Dq ◦ Al + k(Dq + I) ◦Mq

)
[r̃]. (6.118)

Hence, taking into account (6.113), we obtain

‖rref − r‖L∞

≤ ‖Hq ◦ (Dq + I)‖L1‖ηref − η‖L∞ + ‖Hq ◦
(
Dq ◦ Al + k(Dq + I) ◦Mq

)
‖L1‖r̃‖L∞

≤ b1L‖rref − r‖L∞ + b2‖r̃‖L∞ , (6.119)

where b2 , ‖Hq ◦
(
Dq ◦ Al + k(Dq + I) ◦Mq

)
‖L1 . It follows from the stability condition in

(6.80) that b1L < 1. Hence, solving for ‖rref − r‖L∞ in (6.119) results in

‖rref − r‖L∞ ≤
b2

1− b1L
ν. (6.120)

Similarly, the expression in (6.116) yields

‖uref − u‖L∞ ≤ b3‖rref − r‖L∞ + b4‖r̃‖L∞ ≤
( b2b3

1− b1L
+ b4

)
ν (6.121)

with b3 = bFL+ ‖
(
Fq ◦ (Mq−I) + I

)
‖L1

(
‖Ad⊗ In‖+ ‖D⊗ In‖

)
and b4 = ‖Fq ◦Al + k(Fq ◦

Mq +I)‖L1 . The claim follows by choosing ν and Γ such that the right-hand side of (6.120)

is strictly less than 1.

Here, the bound on r̃ implies that the size of the estimation error can be made arbitrarily

small by increasing the adaptive gain. The bounds on rref−r and uref−u indicate that at high

adaptive gain, the proposed control network and its control signals behave almost identically

to the nonadaptive reference system and its control signal, respectively. In addition, the

control inputs only contain low-frequency signals, since all high-frequency components that

may be induced by the high adaptive gains are blocked by the low-pass filters. Thus, the use

163



of high values of the adaptive gains significantly improves adaptation, while guaranteeing

bounded deviation from a nonadaptive reference system. Furthermore, since rref converges

to a neighborhood of zero, so does r. The size of the neighborhood is inversely proportional

to the filter bandwidth k. Consequently, the joint angles of the manipulators synchronize

while tracking the common desired trajectories.

6.8 Alternate controller design

As discussed in Remark 6.3 at the end of Section 6.6, the use of a Lyapunov-Krasovskii

functional results in a condition for Am and k in (6.70) for exponential stability of the

map Hq. However, (6.70) and (6.80) are mutually exclusive, i.e., no combination k and Am

satisfies both conditions. This can be traced back to the dependence of η on Am.

In this section, we discuss an alternative design of the control input such that Am,iri is

actively generated by the control input, as opposed to Am,iri being part of ηi. Substitution

of the first equation in (6.1) into the time derivative of (6.2) yields

ṙi = M−1
ai (qi)︸ ︷︷ ︸
ωi(qi)

ui +M−1
ai (qi)

(
−Mpi(qi)q̈p −Nai(qi, q̇i) +Dai

)
− q̈d + ri + q̇d − qa,i + qd − q̇d︸ ︷︷ ︸

ηi

,

(6.122)

where ηi no longer depends on Am,i. Consider the control input

ui = Am,iri + uadi + usynci . (6.123)

It is obvious that Am,iri is now actively generated by the control input ui of each robot. The

other control components remain unchanged.
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The reference system is then re-designed to reflect this change as follows

ṙref = ω(q)uref + ηref , rref(t) = r0 ∀t ∈ [−T, 0] (6.124)

uref = Amrref + Fq[ηref ] +
(
Fq ◦ (Mq − I) + I

)
[usyncref ], uref(0) = 0 (6.125)

where q̇a,ref and usyncref (t) are governed by (6.27) and (6.30). Substitution of (6.125) into

(6.124) yields

ṙref = Aω(q)z + ω(q)
(
Fq ◦ (Mq − I) + I

)
[usyncref ] + (Dq + I)[ηref ], (6.126)

where Aω(q) , ω(q)Am. Notice that if we replace Aω(q) by Am in (6.126) then (6.126) has the

same form as (6.39) with y = (Dq+I)[ηref ]. The map Hq is then defined by (6.43), where Φ11

is the corresponding component of the fundamental solution matrix of the equation obtained

by replacing Am by Aω(q) in (6.42). By using the Lyapunov-Krasovskii functional in (6.65),

with P = I and the same Q, and performing the same analysis that follows, we arrive at

the two stability conditions in (6.69) and (6.70). The inequality in (6.69) implies the same

condition on k as before. The difference is that in (6.70),

A>11 + A11 = A>ω (q) + Aω(q) + (D ⊗ In)ω(q) + ω(q)(D ⊗ In).

The challenge now is how to make A>ω (q)+Aω(q) sufficiently negative definite to satisfy (6.70)

by changing Am. Note that the sum of a Hurwitz matrix and its transpose may have positive

eigenvalues. With the choice of Am = diag[ai ⊗ In], the matrix Aω(q) , ω(q)diag[ai ⊗ In] is

symmetric, i.e.

A>ω (q) + Aω(q) = 2ω(q)diag[ai ⊗ In]. (6.127)

In this case, by designing ai more negative, we make A>ω (q) + Aω(q) more negative definite,

165



and eventually satisfy (6.70). Since there is no other stability condition that involve both

Am and k, there is no potential conflict in this design. The rest of the analysis follows

accordingly.

The main limitation of this controller design is that Am = diag[ai ⊗ In]. This means all

degrees of freedom of the ith manipulator have the same base-line feedback ai.

6.9 Simulation results

We restrict attention in this section to a team of four typical pick-and-place manipulators

operating on a ship in a high sea state, sketched in Fig. 6.2. Each manipulator has a 2-DOF

shoulder joint at Ai and a 1-DOF elbow joint at Bi. Let dA,i be the displacement of Ai

relative to the ship’s center of mass along the w1-direction. The physical parameters and

initial conditions are listed in Table 6.1. The links’ moment of inertia matrices are computed

based on their assumed cylindrical geometry and homogeneous mass distribution.

Table 6.1: Physical parameters and initial conditions

i m1,2 l1,2 q>0 dA
1 11, 6, 5.5 0.60, 0.50 [2 -0.2 -2] -3
2 12, 8, 5 0.55, 0.55 [-2 -0.7 2] 5
3 9, 7.5, 6 0.65, 0.40 [0.4 2 -0.6] 6
4 10, 7, 6.5 0.50, 0.45 [-1 -2 0.9] -4

The ship motions are assumed to be described by the rolling angle φp and the displacements

xp and zp of its center of mass relative to the inertial reference frame along w1 and w3,

respectively. These motions are unactuated and driven by the unknown influence of surface

winds, waves, and ocean currents, here assumed to equal

D>pp(t) =
[
2.5× 107 sin(0.5t) 3× 105 sin(0.5t) − 3× 105 cos(0.5t)

]
.

The mass and moment of inertia about the w2 axis of the platform are modeled as mship =
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q1

q2
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zp
xp

Platform

dA1

dA2

dA4

dA3

Figure 6.2: A team of 3-DOF manipulators with different configurations mounted on a
dynamic platform with uncertain dynamics.

0.9× 105 and Iship = 1.2× 105, respectively. We use a linear spring-mass-damper to describe

the dynamic interaction between the sea and the ship with effective stiffness and damping

coefficient for the corresponding degrees of freedom given by Kφ = 107 and Cφ = 108,

Kx = 3.2 × 105, Cx = 1.8 × 105, Kz = 2.8 × 105 and Cz = 2.2 × 105. A typical ship

motion can be found in Figure 2.3. The peak-to-peak amplitudes of the ship’s displacement

are approximately 2 (m) in both the horizontal and vertical directions, and 63 degrees in

the rolling angle φp. These motions contribute large unknown time-varying inertias and

nonlinearity to the manipulator dynamics.

1 2

34
Figure 6.3: A connected graph topology
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The network communication topology is depicted in Fig. 6.3(a), which is a simple con-

nected directed graph. To explore the control scheme’s robustness to time delay, a com-

munication delay of 1 s is introduced in every communication path. The desired trajectory

is set to q>d (t) = [sin 1.2t sin 0.8t cos t]. The adaptive gain Γ is set to 105 and λ = 1

for all robots. The tracking response characteristics are governed by the design matrices

Am,i = −diag(15, 20, 10). The filter bandwidth is set to 20 (Hz).

Figure 6.4 shows the manipulators’ response to the proposed control actuation. As seen

in the bottom panel, the control signals are smooth and clean, in spite of the communication

delay, as well as the use of high-rate adaptive estimation to accommodate nonlinearity and

model uncertainty while retaining small prediction errors. The system responses quickly

converge to synchronized trajectories despite the delays and the large inertia and nonlinearity

added due to the unmodeled dynamics of the platform. Additional simulation shows that an

increase in the filter bandwidth results in improved synchronization performance. However,

better tracking is achieved with a trade-off in the system robustness. This is consistent with

the theory discussed in this chapter.

6.10 Summary

We have designed an adaptive control scheme for tracking synchronization of a manipulator

network operating on a platform, whose dynamics are influenced by environmental factors.

The controller is composed of an adaptive part, which is designed along the framework

presented in Chapter 2, and a synchronization part. The Razumikhin theorem is used to

show the delay-independent stability of the proposed network controller in the presence of

communication delays. The Lyapunov-Krasovskii functional offers an alternative analysis

method. However, this approach leads to a potential conflict among the stability conditions.

A modification to the controller for eliminating this conflict is also presented and discussed.

Simulation results demonstrate that the manipulators’ joint angles synchronize while tracking
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a common desired trajectory despite starting from different initial conditions.
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Figure 6.4: Synchronization performance of the proposed controller with a communication
delay of 1 s.
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CHAPTER 7

CONSENSUS

In this chapter, we propose modifications to the control scheme for tracking synchronization

in Chapter 6 to solve a consensus problem for manipulators mounted on a dynamic platform.

When there is no desired trajectory, the sliding variable in (6.2) is defined without qd. The

proposed controller in Chapter 6 then drives the manipulators’ joint angles to zero. This is

the case of zero consensus for identical robots studied in [25]. In this chapter, we redefine

the sliding variable to allow the control framework from Chapter 6 to solve a non-trivial

consensus problem for non-identical manipulators operating on a dynamic platform which

has unmodeled dynamics and unknown environmental disturbances.

Specifically, redefine the kinematic variable as follows:

ri(t) = q̇a,i(t)−
∑
j∈Si

(
qa,j(t− T )− qa,i(t)

)
. (7.1)

One of the control objectives is to drive ri to 0, in which case equation (7.1) becomes a

consensus algorithm. As before, the equations of motion are given in (6.7), with identical

assumptions on ηi, and with ζ>i ,
[
r>i , χ

>
i

]
and

χ>i (t) = [q>a,i(t), ..., q
>
a,j(t− T ), ..., q̇>a,j(t− T ), ..., q>p (t), q̇>p (t), q̈>p (t)], j ∈ Si. (7.2)

Next, let the control input ui = uadi . The rest of the control components remain identical to

(6.20), (6.21) and (6.24), where θ̂i(t) and σ̂i(t) are also governed by the identical projection-

based laws in (6.22) and (6.23).
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7.1 Nonadaptive reference system

Consider the nonadaptive collective reference system

ṙref = Amrref + ω(q)uref + η(t, ζref), rref(0) = r0 (7.3)

u̇ref = −k
(
ω(q)uref + η

(
t, ζref

))
, uref(0) = 0, (7.4)

where ζ>ref = [r>ref , χ
>
ref ] with χ>ref(t) = [q>a,ref(t), q

>
a,ref(t−T ), q̇>a,ref(t−T ), q>p (t), q̇>p (t), q̈>p (t)]. In

addition,

rref(t) = q̇a,ref(t) + (D ⊗ In)qa,ref − (Ad ⊗ In)qa,ref(t− T ) (7.5)

and qa,ref(t) = qa(0), ∀t ∈ [−T, 0].

The homogeneous equation of (7.5)

q̇a,ref(t) + (D ⊗ In)qa,ref(t)− (Ad ⊗ In)qa,ref(t− T ) = 0, (7.6)

where D and Ad denote the degree matrix and the adjacency matrix of the network topology,

respectively, has been studied extensively in the literature. In particular, a delay-dependent

stability condition based on a linear matrix inequality is derived in [126]. In addition,

the consensus of (7.5) can be reached independently of the delay for a strongly connected

graph [86, 96, 10], and even for unbounded time-varying delays under certain conditions

[79]. Consequently, assuming a strongly connected network, asymptotic stability of the

homogeneous system (7.6) to a consensus state is guaranteed. Therefore, it follows from

Proposition 2.5 of [116] that the nonhomogeneous linear DDE (7.5) is input-to-state stable.

Hence, there exists Q1 and Q2, where Q2 = 0 when qa,ref(0) = 0, such that (cf. (6.34))

‖qa,ref‖L∞ ≤ Q1‖rref‖L∞ +Q2. (7.7)
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As in Chapter 6, we assume that qp, q̇p and q̈p are a priori bounded trajectories. It follows

from the definition of χref and (7.7) that

‖χref‖L∞ ≤ max{‖qa,ref‖L∞ , ‖qa,ref(t− T )‖L∞ , ‖q̇a,ref(t− T )‖L∞ , ‖qp‖L∞ , ‖q̇p‖L∞ , ‖q̈p‖L∞}

≤ ‖qa,ref‖L∞ + ‖q̇a,ref‖L∞ + max{‖qp‖L∞ , ‖q̇p‖L∞ , ‖q̈p‖L∞}

≤
(
Q1‖rref‖L∞ +Q2

)
+ max{‖qp‖L∞ , ‖q̇p‖L∞ , ‖q̈p‖L∞}

+ ‖rref‖L∞ +
(
‖D ⊗ In‖+ ‖Ad ⊗ In‖

)(
Q1‖rref‖L∞ +Q2

)
=
(
Q1 + 1 +

(
‖D ⊗ In‖+ ‖Ad ⊗ In‖

)
Q1

)
︸ ︷︷ ︸

R1

‖rref‖L∞

+
(
1 + ‖D ⊗ In‖+ ‖Ad ⊗ In‖

)
Q2 + max{‖qp‖L∞ , ‖q̇p‖L∞ , ‖q̈p‖L∞}︸ ︷︷ ︸

R2

= R1‖rref‖L∞ +R2. (7.8)

Hence, we get

‖ζref‖L∞ ≤ max{‖rref‖L∞ , ‖χref‖L∞} ≤ max{‖rref‖L∞ , R1‖rref‖L∞ +R2}. (7.9)

Let I be the identity map and H be the linear input-output map corresponding to the

transfer function (sINn − Am)−1. It follows that

rref(t) =
(
H ◦ (I +Dq)

)
[η(t, ζref(t))] +H[r(0)δ(t)], (7.10)

where b1 , supq ‖H ◦ (I +Dq) ‖L1 < ∞ and ρic , ‖H[r(0)δ(t)]‖L∞ < ∞. By replacing Hq

by H in the analysis in Section 6.6, it follows that b1 → 0 uniformly in q as k →∞. Hence,

there exists a K, such that the stability condition

b1 <
ρref − ρic

Lρref
ρref + Z

(7.11)

173



is satisfied for some ρref > ρic provided that k > K. Here, Z , max
i
{Zi}, and

L ,
ρ̄

ρref

max
i
{di(ρ̄)}max{1, R1}, with ρ̄ , max{ρref + 1, R1(ρref + 1) +R2}. (7.12)

Unlike the analysis for tracking synchronization, here, the term max{1, R1} appears in (7.12)

because R1 might be any positive number which is not known.

Theorem 7.1. Suppose k satisfies the stability condition (7.11) for some ρref > ρic. Then,

‖rref(0)‖∞ < ρref implies that ‖rref‖L∞ < ρref and ‖uref‖L∞ <∞.

Proof. Suppose that ‖rref‖L∞ ≥ ρref . Then ‖r0‖∞ < ρref implies that there exists a τ , such

that

‖rref‖∞ < ρref , ∀t ∈ [0, τ), and ‖rref,τ‖L∞ = ‖rref(τ)‖∞ = ρref . (7.13)

This, (7.9) and (7.12) lead to

‖ζref,τ‖L∞ ≤ max{ρref , R1ρref +R2} < max{ρref + 1, R1(ρref + 1) +R2} = ρ̄. (7.14)

Consequently, it follows from (2.19) and (7.12) that (similar to (6.91))

‖ηref,τ‖L∞ ≤ max
i
{ρ̄di(ρ̄) + Zi} ≤ ρrefL+ Z. (7.15)

Using (7.10), (7.11) and (7.15) we obtain

‖rref,τ‖L∞ ≤ ‖H ◦ (Dq + I)‖L1‖ητ‖L∞ + ‖H[r0δ(t)]‖L∞ ≤ b1(ρrefL+ Z) + ρic < ρref , (7.16)

contradicting the equality in (7.13). Thus ‖rref‖L∞ < ρref . The claim that ‖uref‖L∞ < ∞

immediately follows by applying this result to (7.4).
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7.2 Transient performance bounds

The following theorem shows that the collective state and control input of the proposed

consensus control system follow those of the nonadaptive reference system closely. This and

Theorem 7.1 indicate the stability of the proposed control system.

Theorem 7.2. Suppose that the condition in (7.11) is satisfied. Then, for ν � 1, there

exist θb, σb and C > 0, such that if Γν2 ≥ C, it follows that ‖r̃‖L∞ ≤ ν, and the norms

‖rref − r‖L∞ and ‖uref − u‖L∞ are both O(ν).�

Proof. Suppose that ν > 0 is given. Since ‖rref(0)−r(0)‖∞ = 0 < 1 and ‖uref(0)−u(0)‖∞ =

0, it follows by continuity that there exists a τ > 0, τ > 0, such that ‖(rref − r)τ‖L∞ < 1 and

‖(uref − u)τ‖L∞ <∞. Theorem 7.1 implies that

‖rτ‖L∞ < ρref + 1, ‖uτ‖L∞ <∞. (7.17)

First, it follows from the Lyapunov analysis in Theorem 6.2 that there exists a C > 0

(independent of τ), such that

‖r̃τ‖L∞ ≤
√
C/Γ, (7.18)

which does not exceed ν provided that Γν2 ≥ C.

It follows from (7.5) that

rref − r =
(
q̇a,ref − q̇a

)
+ (D ⊗ In)(qa,ref − qa)− (Ad ⊗ In)

(
qa,ref(t− T )− qa(t− T )

)
. (7.19)

By the same arguments that lead to (7.7), we get

‖(qa,ref − qa)τ‖L∞ ≤ Q1‖(rref − r)τ‖L∞ . (7.20)
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Here, Q2 = 0 because qa,ref(0)− qa(0) = 0. This and the definitions

χ>ref(t) =
[
q>a,ref(t), q

>
a,ref(t− T ), q̇>a,ref(t− T ), q>p (t), q̇>p (t), q̈>p (t)

]
(7.21)

χ>(t) =
[
q>a (t), q>a (t− T ), q̇>a (t− T ), q>p (t), q̇>p (t), q̈>p (t)

]
(7.22)

imply

‖(χref − χ)τ‖L∞ ≤ max{‖(qa,ref − qa)τ‖L∞ , ‖
(
qa,ref(t− T )− qa(t− T )

)
τ
‖L∞ ,

‖
(
q̇a,ref(t− T )− q̇a(t− T )

)
τ
‖L∞}

≤ ‖(qa,ref − qa)τ‖L∞ + ‖(q̇a,ref − q̇a)τ‖L∞

≤ (Q1 + 1)‖(rref − r)τ‖L∞ +
(
‖D ⊗ In‖+ ‖Ad ⊗ In‖

)
Q1‖(rref − r)τ‖L∞

=
(
Q1 + 1 +

(
‖D ⊗ In‖+ ‖Ad ⊗ In‖

)
Q1

)
︸ ︷︷ ︸

R1

‖(rref − r)τ‖L∞

= R1‖(rref − r)τ‖L∞ . (7.23)

Hence, the definitions of ζ>ref = [r>ref , χ
>
ref ] and ζ> = [r>, χ>] lead to

‖(ζref − ζ)τ‖L∞ ≤ max{1, R1}‖(rref − r)τ‖L∞ . (7.24)

The inequalities in (2.19) and (7.24) lead to

‖(ηref − η)τ‖L∞ ≤ max
i

{
di(ρ̄)

}
max{1, R1}‖(rref − r)τ‖L∞ < L‖(rref − r)τ‖L∞ . (7.25)

Equations (6.7), (6.20), (6.24), (7.3) and (7.4) imply that

ṙref − ṙ = Am(rref − r) + ω(q)(uref − u) + ηref − η, (7.26)
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where

uref − u = Fq[ηref − η] +
(
Fq ◦ Al + k(Fq ◦Mq + I)

)
[r̃], (7.27)

which can be obtain by following the analysis in (6.116). By substituting (7.27) into (7.26),

we get

ṙref − ṙ = Am(rref − r) + (Dq + I)[ηref − η] +
(
Dq ◦ Al + k(Dq + I) ◦Mq

)
[r̃] (7.28)

⇔ rref − r = H ◦ (Dq + I)[ηref − η] +H ◦
(
Dq ◦ Al + k(Dq + I) ◦Mq

)
[r̃]. (7.29)

Hence, taking into account (7.25), we obtain

‖(rref − r)τ‖L∞

≤ ‖H ◦ (Dq + I)‖L1‖(ηref − η)τ‖L∞ + ‖H ◦
(
Dq ◦ Al + k(Dq + I) ◦Mq

)
‖L1‖r̃τ‖L∞

≤ b1L‖(rref − r)τ‖L∞ + b2‖r̃τ‖L∞ , (7.30)

where b2 , ‖H ◦
(
Dq ◦ Al + k(Dq + I) ◦Mq

)
‖L1 . It follows from the stability condition in

(7.11) that 1− b1L > 0. Hence, solving for ‖(rref − r)τ‖L∞ in (7.30) results in

‖(rref − r)τ‖L∞ ≤
b2

1− b1L
ν. (7.31)

Similarly, the expression in (7.27) yields

‖(uref − u)τ‖L∞ ≤ b3‖(rref − r)τ‖L∞ + b4‖r̃τ‖L∞ ≤
( b2b3

1− b1L
+ b4

)
ν, (7.32)

with b3 = bFL and b4 = ‖Fq ◦Al + k(Fq ◦Mq + I)‖L1 . The claim follows by choosing ν and

Γ such that the right-hand side of (7.31) is strictly less than 1.
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From (6.7) and (7.1) we obtain

q̇a,i =
∑
j∈Si

(
qa,j(t− T )− qa,i

)
+ bi, (7.33)

where the bias bi(t) is obtained from

bi(s) = (sIn − Am,i)−1

(
η̄i(s)−

k

s+ k
η̂ + ri,0

)
, (7.34)

where η̄i(t) = ω
(
q(t)

)
u(t)− u(t) + η(t).

Since the state and the control input are bounded according to Theorem 2, the bias term

bi is always bounded. Moreover, its size can be controlled by the value of the filter bandwidth

k. In particular, we have k
s+k
→ 1 when k → ∞. Hence, in this case, it follows from (7.34)

that bi → 0 as t → ∞ since η̂ → η̄ due to the action of the fast adaptation. Consequently,

in the absence of the delay T , (7.33) will become the standard consensus algorithm. In this

case, let l be a left eigenvector of the Laplacian L corresponding to the zero eigenvalue. Also

denote by αk ∈ Rn the consensus value to which the k-th joints of all manipulators converge.

It follows from (7.33) that q̇k = −Lqk, where qk is the column vector containing the k-th

joint angles of all robots. Also, let qk0 be the initial condition of qk. By following the analysis

in [110], the formula for the consensus value of the k-th joints of all manipulators can be

derived as: αk =
(
l>qk0

) / (
l>1N

)
.

In order to maintain a smooth control signal and system robustness, we employ small values

for the filter bandwidth k in (6.20). As a result, the biases bi are non-zero but bounded, and

their size is controllable by changing k. In addition, it follows from [110] that these biases

do not affect the stability analysis of (7.33). In this case, however, the consensus value is

biased from the average value mentioned in the last paragraph due to the presence of the

bias term bk. In the presence of the delay T , the consensus algorithm results in a collective

DDE whose homogeneous equation is given in (7.6). As analyzed in the discussion below

this equation, the delay-independent stability of (7.33) in the presence of the bias term is
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established given the strong connectivity of the network.

7.3 Leader-follower consensus

In the absence of a leader, the control scheme in the last section drives the robots’ angles

to their respective consensus values. These values depend on the initial conditions, the

communication delays and the bias terms, therefore are very difficult to predict. In this

section, we design an algorithm that allows for controlling the consensus value, as well as

driving the consensus of the robots in a time-varying manner in the presence of a leader.

Suppose that in the network, only the N th robot knows the assigned tasks or the desired

trajectories. The rest have to follow the leader in a consensus manner. To achieve this, we

modify the consensus variable of the leader as follows

rN = q̇a,N −
∑
j∈SN

(
qa,j(t− T )− qa,N

)
− c
(
qd − qa,N

)
, (7.35)

where c is the leader’s tracking gain, which decides how fast the leader’s joint angles converge

to the desired trajectories. The kinematic variables in (7.1) for the other robots, as well as

the control components for all robots, remain unchanged.

In terms of the robots’ joint angles, the consensus algorithm becomes


q̇a,i =

∑
j∈Si

(
qa,j(t− T )− qa,i

)
+ bi, i = 1, ..., N − 1

q̇a,N =
∑
j∈SN

(
qa,j(t− T )− qa,N

)
+ c
(
qd − qa,N

)
+ bN

(7.36)

where the bias terms bi are bounded and their size is inversely proportional to the filter

bandwidth k as discussed in the last section. It follows from the analysis in [86] that qa,i → qd

when qd is constant. The numerical experiments in the next section will illustrate that when

qd varies with time, the robots will follow the leader closely despite the communication

delays. However, there is a lag between their motions and those of the leader due to the
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delays as well as the nature of the consensus algorithm.

7.4 Numerical Results

1 2

34
(a) (b)

1 2

34

Figure 7.1: Network topology: (a) An unbalanced and strongly connected graph; (b) An
unbalanced and strongly connected graph with node 4 as the leader.

In the case when a common desired trajectory is not available, the consensus controller

is implemented for a strongly connected and unbalanced network as shown in Fig. 7.1(a).

The identical control parameters and delays as in the case of synchronization are used here.

The left eigenvector of the zero eigenvalue of the corresponding Laplacian matrix equals

l> = [0.209 0.417 0.626 0.626]. The system response is shown in Fig. 7.2. Despite the delays

and the unknown dynamics of the platform, the controller successfully compensates for the

nonlinearities and uncertainties and drives the manipulators to a consensus configuration,

α> = [0.1503 − 0.2134 − 0.0892]. When the filter bandwidth of uadi in (6.20) is increased,

this consensus configuration gets closer to the values computed by αk =
(
l>qk0

) / (
l>1N

)
, i.e.

[0.3222 − 0.4222 − 0.1778]. The deviation between these two sets of values stems from the

bias bk. In theory, the bias bk does not converge to a constant. Nonetheless, the size of the

neighborhood in which it varies is so small that it appears in Fig. 7.2 that the joint angles

approximately approach a constant value.

In the case of leader-follower consensus, the network topology is given in Fig. 7.1(b).

Robot 4 is the leader, who knows the desired trajectory. The other three manipulators,

who do not have access to the information about the desired trajectory, are tasked to follow
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robot 4 in a consensus manner using the formulation proposed in Section 7.3. All control

parameters remain unchanged. Figure 7.3 illustrates the result when the desired trajectory

is constant, in particular qd = [1 1.2 1.5], with a communication delay of 1 s. We can see

here that the joint angles of the robots follow those of the leader, which converge to the

respective desired values. These values no longer depend on the initial conditions and the

delays, but are controlled by qd. Figure 7.4 illustrates the result when the consensus values

vary in time, in particular q>d (t) = [sin 0.2t sin 0.2t cos 0.2t]. The communication delay is

set to 0.5 s. The data shows that the followers’ angles closely track the motions of the leader,

though there is a phase gap and tracking error between the leader and the other robots. This

observation may be traced to the presence of the delay, and the fact that the followers have

no knowledge of the desired trajectory, and have to observe the leader to figure out how to

move.

Other numerical experiments also show that when either the desired trajectory varies

faster or the delay is increased, the phase lag and the tracking error get larger. An intriguing

observation is that the motions of robot 1 and robot 2 converge without any lag and tracking

error between them despite the initial mismatch. This phenomenon is accounted for by the

nature of the connection between these: they have full access to the motion measurements

of each other. Furthermore, when all the followers receive the leader’s motion data, the lag

among the followers’ motions vanishes and they converge to each other.

7.5 Summary

Consensus of manipulators has been studied in the literature only for the case of fixed-

base robots (except for the preliminary version of the work in Chapters 6 and 7 in [101]).

This chapter has proposed a robust adaptive controller that allows a team of manipulators

mounted on an underactuated dynamic platform operating in a challenging environment to

reach a consensus configuration in the absence of a common desired trajectory. The control
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scheme was formulated without assuming detailed knowledge about the system model. This

framework ensures a predictable transient response with smooth and implementable control

signals, while maintaining the system robustness to communication delay. In addition, con-

stant as well as time varying consensus configurations of the manipulators are reached in

the presence of communication delay and the unmodeled platform dynamics disturbed by

unknown environmental factors. The theoretical analysis in this chapter considers the per-

formance of the control design. The numerical results demonstrate the successful application

of a partial parameterization of the nonlinearity that extends the adaptive control of a single

manipulator in Chapter 2 to the cooperative control of a team of manipulators on a moving

platform. Similar to Chapter 2, the theoretical analysis in Chapters 6 and 7 is restricted to

systems where the unactuated motions of the platform are assumed to be a priori bounded

despite being influenced by the manipulators’ dynamics.
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Figure 7.2: All robots converge to a consensus configuration with a communication delay of
1 s when a common desired trajectory is not available.
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Figure 7.3: The robots converge to consensus values controlled by qd using the
leader-follower scheme with a communication delay of 1 s .
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Figure 7.4: The followers’motions track the leader’s motions which converge to
time-varying consensus values controlled by qd with a communication delay of 0.5 s.
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CHAPTER 8

CONCLUSION

This dissertation has studied the stability and robustness of an adaptive control framework

for underactuated Lagrangian systems and robotic networks. Chapter 2 presented an adap-

tive control framework for a manipulator, operating on an underactuated platform whose

dynamics are influenced by environmental factors, for examples a ship in high sea state, an

offshore platform, or a ground-based vehicle moving across a rough terrain. Inspired by the

L1 control paradigm [61], the framework uses a filter in the control input of a model reference

adaptive controller to improve the system robustness. In the analysis, the characteristics of

the controller were represented by two decoupled indicators. First, the adaptive gain deter-

mined the rate of adaptation, as well as the deviation between the system output and an

ideal response. Second, the filter bandwidth determined the deviation of the ideal response

from an exponential decay to 0, as well as the system’s ability to tolerate input delay.

The sensitivity of the control scheme to time delays in the control loop, which is an indica-

tor of robustness, was studied using computational tools in Chapter 3. In particular, an LTI

system was proposed in order to derive a conservative lower bound on the critical time delay

for a static reference input in the limit of large estimation gains. In addition, a numerical

method based on techniques of parameter continuation was proposed for quantifying the

robustness against time delay of the system’s performance for a given static reference input.

Specifically, the method tracked the critical time delay at which local stability is lost in a

Hopf bifurcation.

In a further study of the framework presented in Chapter 2, theoretical analysis was used

in Chapters 4 and 5 to investigate the delay robustness of adaptive controllers designed for
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a class of systems with unknown nonlinearities. Specifically, the nonlinear systems were as-

sumed to have constant input-gain matrices in Chapter 4, while the input-gain matrices were

time-varying and state-dependent in Chapter 5. The analysis showed that the controllers

have positive lower bounds for their time-delay margin. In particular, if the input delay is

below a critical value, the state and control input of the adaptive control system follow those

of a nonadaptive, robust reference system closely. The analysis in Chapter 4 also suggested

a way to compute this lower bound for the delay robustness using a Padé approximant.

The control framework was extended to the context of cooperative control of multiple

robots in Chapters 6 and 7. In particular, these chapters presented the analysis of the

synchronization and consensus problems of networked manipulators operating on an under-

actuated dynamic platform in the presence of communication delays. The proposed for-

mulation does not require detailed information about the system model. The theoretical

analysis based on input-output maps of functional differential equations showed that the

adaptive control system’s behavior matches closely that of a nonadaptive reference system.

The tracking-synchronization objective was achieved despite the effect of communication

delays, and the unknown dynamics of the platform. When there was no common desired

trajectory, the modified controller drove all robots to a consensus configuration. In addi-

tion, a leader-follower scheme was proposed that allows for the control of the constant and

time-varying consensus values.

The theoretical analysis presented in Chapters 2, 6 and 7 is restricted to systems where the

platform’s unactuated degrees of freedom and their first and second derivatives are bounded

a priori. These a priori bounds result in the bounds on the actuated system state and control

input derived in the respective chapters. In an actual mechanism, however, the response of

the unactuated degrees of freedom clearly depends on the actuated system state and control

input. In general, the resultant time-varying functions may not satisfy the a priori bounds.

Nonetheless, in practice, it may be possible to overcome this problem by purposely designing

the platform, e.g., its inertia, stiffness and damping properties such that the unactuated
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degrees of freedom are robust to the actuated dynamics. Clearly, this is expected of a

platform whose passive properties dominate any coupling from the manipulators. This issue

will be further addressed in future work.

The control framework used throughout this dissertation was designed to control moving-

base manipulators in joint-space. It is of interest to extend the framework to control moving-

base manipulators in task-space, for example by defining the sliding variable r in terms of the

cartesian coordinates of the end-effector and their derivatives. In the context of networked

manipulators, solving task-space control problems allows for performing cooperative task for

manipulators on a common platform even when they have different number of degrees of

freedom or different kinematic structure. Task-space control also suggests opportunities for

research in cooperative networks of human operators interacting with robotic manipulators

on different mobile platforms.

To do this, the Jacobian matrix that relates joint-space coordinates to task-space config-

urations would need to be taken into account, but the resultant differential equation for r

would include an input gain matrix that might not be symmetric or positive definite. This

poses a challenge because the successful performance of the control framework designed in

this dissertation assumes a positive definite input gain. In addition, an adaptive law would

likely be needed to estimate the uncertain Jacobian matrix of each manipulator. Moreover,

control in task-space would require measurements of the motion of the platform as well as

the motion of the end-effector, which is usually inferred from the output of a visual sensor

such as a camera. This raises another research question: How does camera space fit into the

control framework to provide useful information?

Finally, we note that the heuristic approach in Chapter 4 underestimates the time-delay

margin. A less conservative estimate might be attainable using numerical optimization, e.g.,

methods of parameter continuation. Moreover, since there is no a priori reason to expect

transient performance bounds for all delays below the linear instability threshold εus, it is

intriguing to note the close agreement between εus and the time-delay margin estimated
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from forward simulation. In addition, though the existence of a theoretical lower bound for

the time delay margin of a class of nonlinear systems with time and state dependent input

gain is addressed in Chapter 5, a method for quantifying this lower bound remains to be

investigated.
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