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Abstract

In this thesis, we tackle two main themes: sufficient conditions for the existence of particular subgraphs in

a graph, and variations on graph saturation.

Determining whether a graph contains a certain subgraph is a computationally difficult problem; as such,

sufficient conditions for the existence of a given subgraph are prized. In Chapter 2, we offer a significant

refinement of the Corrádi-Hajnal Theorem, which gives sufficient conditions for the existence of a given

number of disjoint cycles in a graph. Further, our refined theorem leads to an answer for a question posed

by G. Dirac in 1963 regarding the existence of disjoint cycles in graphs with a certain connectivity. This

answer comprises Chapter 3.

In Chapter 4 we prove a result about equitable coloring: that is, a proper coloring whose color classes

all have the same size. Our equitable-coloring result confirms a partial case of a generalized version of

the much-studied Chen-Lih-Wu conjecture on equitable coloring. In addition, the equitable-coloring result

is equivalent to a statement about the existence of disjoint cycles, contributing to our refinement of the

Corrádi-Hajnal Theorem.

In Chapters 5 and 6, we move to the topic of graph saturation, which is related to the Turán problem.

One imagines a set of n vertices, to which edges are added one-by-one so that a forbidden subgraph never

appears. At some point, no more edges can be added. The Turán problem asks the maximum number of

edges in such a graph; the saturation number, on the other hand, asks the minimum number of edges. Two

variations of this parameter are studied.

In Chapter 5, we study the saturation of Ramsey-minimal families. Ramsey theory deals with partitioning

the edges of graphs so that each partition avoids the particular forbidden subgraph assigned to it. Our

motivation for studying these families is that they provide a convincing edge-colored (Ramsey) version of

graph saturation. We develop a method, called iterated recoloring, for using results from graph saturation to

understand this Ramsey version of saturation. As a proof of concept, we use iterated recoloring to determine

the saturation number of the Ramsey-minimal families of matchings and describe the assiociated extremal

graphs.
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An induced version of graph saturation was suggested by Martin and Smith. [36] In order to offer a

parameter that is defined for all forbidden graphs, Martin and Smith consider generalized graphs, called

trigraphs. Of particular interest is the case when the induced-saturated trigraphs in question are equivalent

to graphs. In Chapter 6, we show that a surprisingly large number of families fall into this case. Further,

we define and investigate another parameter that is a version of induced saturation that is closer in spirit to

the original version of graph saturation, but that is not defined for all forbidden subgraphs.
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Chapter 1

Overview

1.1 Definitions

Most of the notation and vocabulary in this thesis is in standard use. However, here we present a few

definitions and notations that might not be familiar to the casual graph theorist.

1.1.1 Types of Graphs

Definition 1.1.1. By multigraph, we denote a graph that allows multiple edges and loops.

Definition 1.1.2. We denote the complement of G by G; that is, for a graph G = (V,E), G =
(
V,
(
V
2

)
− E

)
.

Definition 1.1.3. The star with three leaves, K1,3, is called the claw. The paw is the 4-vertex graph

obtained by adding an edge to a claw, which we will denote K+
1,3. (See Figure 1.1.)

Figure 1.1: K+
1,3

Definition 1.1.4. The graph formed by adding a chord in C2k between two vertices of distance two is

written Ĉ2k. We denote by C ′2k the graph obtained by adding a pendant edge to C2k.

1.1.2 Graph Parameters

Definition 1.1.5. The number of vertices in a graph G is denoted |G|; the number of edges is ‖E‖.

The number of edges with one endpoint in vertex set S and one endpoint in vertex set T is given by

‖S, T‖, where perhaps S ∩ T 6= ∅. Edges with both endpoints in S ∩ T are each counted only once.
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Definition 1.1.6. The minimum degree of a graph G is denoted δ(G). The minimum degree sum of

nonadjacent vertices, also called the Ore condition, is given by σ2(G) := min{d(x) + d(y) : xy ∈ E(G)}. The

maximum degree sum of adjacent vertices in G is θ(G).

The independence number of G is denoted α(G). The largest size of a matching in G is α′(G). The

chromatic number of G is χ(G).

Definition 1.1.7. Given a family of graphs F , a graph G is F-saturated if no element of F is a subgraph

of G, but for any edge e in G, some element of F is a subgraph of G+ e. If F = {F}, then we say that G is

F -saturated.

The minimum number of edges over all n-verted graphs that are F -saturated is the saturation number of

F , written sat(n, F ).

1.1.3 Other Definitions

Definition 1.1.8. A vertex of degree 0 or 1 is called a bud.

We say a set S of vertices dominates a graph G if every vertex of G− S is adjacent to some vertex in S,

and we call S a dominating set; if S = {v}, we say v is a dominating vertex. We say a vertex u dominates

S if u is adjacent to every vertex in S.

Definition 1.1.9. An equitable k-coloring of a graph G is a proper coloring of G with at most k colors in

which any two color classes differ in size by at most one.

Definition 1.1.10. When we call cycles disjoint, we mean they share no vertices.

Definition 1.1.11. Given graphs G and H, we denote the join by G ∨H; that is, we obtain G ∨H from

the disjoint union of G and H by adding an edge between every vertex in G and every vertex in H.

Definition 1.1.12. Given graphs G and H, we denote the Cartesian product by G�H. The graph G�H

has vertex set V (G) × V (H) := {(g, h) : g ∈ V (G), h ∈ V (H)} and edge set E = {(g1, h1)(g2, h1) : g1g2 ∈

E(G)} ∪ {(g1, h1)(g1, h2) : h1h2 ∈ E(H)}.

Definition 1.1.13. Given a graph G and forbidden subgraphs H1, . . . ,Hk, we say G forces (H1, . . . ,Hk),

written G → (H1, . . . ,Hk), if given every k-edge-coloring of G there exists some i ∈ [k] such that a copy of

Hi appears as a subgraph of G with all its edge assigned color i.

Definition 1.1.14. For a graph G and a set S of vertices in G, G[S] is the sugraph of G induced by the

vertices in S. For S = {v1, . . . , vk}, we will sometimes write G[v1, . . . , vk].
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1.2 Disjoint Cycles, Chapter 2

In general, problems in extremal combinatorics seek to maximize or minimize a given graph parameter over a

particular class of graphs. One celebrated theorem in extremal combinatorics is the Corrádi-Hajnal Theorem,

[10] which gives the maximal allowable minimum degree over graphs with no k vertex-disjoint cycles.

Theorem 1.2.1 (Corrádi-Hajnal Theorem [10]). Let k ∈ Z+. Every graph G with (i) |G| ≥ 3k and (ii)

δ(G) ≥ 2k contains k disjoint cycles.

The Corrádi-Hajnal Theorem is a tidy generalization of the fact that forests have minimum degree at most

one. Notice the condition n ≥ 3k is clearly necessary. The Corrádi-Hajnal Theorem is also a convenient

theorem computationally. While checking for the existence of k disjoint cycles is computationally quite

difficult, the minimum degree of a graph can be determined quickly.

Although the Corrádi-Hajnal theorem is sharp, it was refined by Enomoto and Wang ([13], [39]). They

considered as a sufficient condition the minimum degree sum of nonadjacent vertices, rather than the min-

imum degree of the graph. The effect of this modified condition is that small-degree vertices are allowed,

provided they form a clique and their nonneighbors compensate by having higher degree.

Theorem 1.2.2 (Enomoto [13], Wang [39]). Let k ∈ Z+. Every graph G with |G| ≥ 3k and σ2(G) ≥ 4k− 1

contains k disjoint cycles.

Both the Corrádi-Hajnal Theorem and Enomoto and Wang’s theorem are sharp, as shown by Exam-

ples 1.2.4 and 1.2.5.

Definition 1.2.3. Let Yh,t = Kh ∨ (Kt ∪ Kt) (Figure 1.2(a)), where V (Kh) = X0 and the cliques have

vertex sets X1 and X2. In other words, V (Yh,t) = X0 ∪X1 ∪X2 with |X0| = h and |X1| = |X2| = t, and a

pair xy is an edge in Yh,t precisely when {x, y} ⊆ X1, or {x, y} ⊆ X2, or |{x, y} ∩X0| = 1.

Example 1.2.4. For odd k, let G1 = Yk,k (see Figure 1.2(b)). Then |G1| = 3k, δ(G1) = 2k − 1, and

σ2(G1) = 4k − 2. However, G1 has no k disjoint cycles: any collection of k disjoint cycles would be a

partition of V (G) into triangles. In order to accomplish this, every vertex from the independent set Kk

shares a triangle with two vertices from either copy of Kk; when k is odd, this is impossible.

Example 1.2.5. For any n ≥ 3k, let G2 = K2k−1∨Kn−2k+1 (see Figure 1.2(c)). In other words, G2 contains

an independent set A of size n− 2k + 1, and E(G2) = {uv : {u, v} 6⊆ A}. Then |G2| ≥ 3k, δ(G2) = 2k − 1,

and σ2(G) = 4k − 2, but G2 has no k disjoint cycles: any cycle contains at least two vertices of V (G2)−A,

but |V (G2)−A| = 2k − 1.
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X2

X0

X1

(a) Yh,t, with h = 3 and t = 4.

k

k

k

(b) G1 = Yk,k, with k = 5

2k − 1

(c) G2, with k = 4

Figure 1.2

Chapter 2 consists of joint work with Henry Kierstead and Alexandr Kostochka, based on [29]. Our main

result is that, for sufficiently large k, G1 and G2 are the only types of sharpness examples of Enomoto and

Wang’s theorem. More precisely:

Theorem 1.2.6. Let k ∈ Z+ with k ≥ 4. Every graph G with

(H1) |G| ≥ 3k + 1,

(H2) σ2(G) ≥ 4k − 3, and

(H3) α(G) ≤ |G| − 2k

contains k disjoint cycles. Furthermore, for fixed k there is a polynomial time algorithm that either produces

k disjoint cycles or demonstrates that one of the hypotheses fails.

Each condition (H1)–(H3) is sharp. Note every graph G with α(G) ≥ |G| − 2k+ 1 contains at most k− 1

disjoint cycles, because every cycle uses at least two vertices outside of an independent set.

For k ∈ [3] we characterize those graphs G that satistfy (H1)–(H3) but do not contain k disjoint cycles.

We use a theorem of Lovász, and develop several other examples.

Theorem 1.2.7 (Lovász [33]). Let G be a multigraph with δ(G) ≥ 3 and no two disjoint cycles. Then G is

one of the following: (1) K5, (2) W ∗s , (3) K3,|G|−3 together with a multigraph on the vertices of the (first)

3-class, and (4) a forest F and a vertex x with possibly some loops at x and some edges linking x to F .

Example 1.2.8. Let k = 3 and Y1 be the graph obtained by twice subdividing one of the edges wz ofK8, i.e.,

replacing wz by the path wxyz. Then |Y1| = 10 = 3k+1, σ2(Y1) = 9 = 4k−3, and α(Y1) = 2 ≤ |Y1|−2k.

However, Y1 does not contain k = 3 disjoint cycles, since each cycle would need to contain three vertices of

the original K8 (see Figure 1.3(a)).
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(a) Y1

u v

(b) Y2

Figure 1.3

Example 1.2.9. Let k = 3. Let Q be obtained from K4,4 by replacing a vertex v and its incident edges

vw, vx, vy, vz by new vertices u, u′ and edges uu′, uw, ux, u′y, u′z; so d(u) = 3 = d(u′) and contracting

uu′ in Q yields K4,4. Now set Y2 := K1 ∨ Q. Then |Y2| = 10 = 3k + 1, σ2(Y2) = 9 = 4k − 3, and

α(Y2) = 4 ≤ |Y2| − 2k. However, Y2 does not contain k = 3 disjoint cycles, since each 3-cycle contains the

only vertex of K1 (see Figure 1.3(b)).

Theorem 1.2.10. Let k ∈ Z+. Let G be a graph with

(H1) |G| ≥ 3k + 1,

(H2) σ2(G) ≥ 4k − 3, and

(H3) α(G) ≤ |G| − 2k.

If k = 1, G contains k disjoint cycles unless G is a forest with at most one isolate.

If k = 3, G contains k disjoint cycles unless G ∈ {Y1,Y2}.

If k = 2, G contains k disjoint cycles unless G is one of the following (see Figure 1.4):

(a) K5 +K2;

(b) K5 with a pendant edge, possibly subdivided;

(c) K5 with one edge subdivided and then a leaf added adjacent to the degree-2 vertex;

(d) a graph of type (1–3) from Theorem 1.2.7 with no multiple edge, and possibly one edge subdivided once

or twice, and if |G| = 6− i with i ≥ 1 then some edge is subdivided at least i times;

(e) a graph G of type (2) or (3) from Theorem 1.2.7 with one edge of multiplicity two, and one of its

parallel parts is subdivided once or twice—twice if |G| = 4.

Our proof of Theorem 1.2.6 is inductive. We suppose by way of contradiction that k is the smallest

integer greater than 3 so that the theorem fails, and for this k we choose an edge-maximal counterexample

5



u v

k k

Figure 1.4

G. By edge maximality, G contains a collection of (k − 1) disjoint cycles. We choose a particular set C of

(k − 1) cycles in G with extremal properties. For example, we choose C to have the minimum total number

of vertices over all collections of (k − 1) disjoint cycles. These extremal properties force G to have a very

particular structure, and eventually the requirements on the structure of G lead to a contradiction.

Following the proof of the Corrádi-Hajnal Theorem, Dirac [11] asked:

Question 1.2.11 (Dirac’s Question). Which (2k− 1)-connected multigraphs do not have k disjoint cycles?

Notice that any 2k-connected simple graph has minimum degree at least 2k; so by the Corrádi-Hajnal

Theorem, a 2k-connected simple graph has k disjoint cycles if and only if it has at least 3k vertices.

In [11], Dirac answered his own question when k = 2 by describing all 3-connected multigraphs on at

least 4 vertices in which every two cycles intersect. Indeed, the only simple 3-connected graphs with no two

disjoint cycles are wheels. In Theorem 1.2.7, we saw that Lovász [33] fully described all multigraphs with

minimum degree at least 3 in which every two cycles intersect. An easy corollary of this theorem describes

all multigraphs (regardless of mnimum degree) in which every two cycles intersect.

In Chapter 2, we prove a result that yields a full answer to Dirac’s question in the case of simple graphs.

Indeed, we prove a more general result: we consider graphs with minimum degree at least 2k−1. Our result

is here:

Theorem 1.2.12. Let k ≥ 2. Every graph G with (i) |G| ≥ 3k and (ii) δ(G) ≥ 2k − 1 contains k disjoint

cycles if and only if

(H3) α(G) ≤ |G| − 2k, and

(H4) if k is odd and |G| = 3k, then G 6= Yk,k and if k = 2 then G is not a wheel.

For fixed k, the conditions of Theorem 2.1.3 can be tested in polynomial time.
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1.2.1 Disjoint Cycles in Multigraphs, Chapter 3

Chapter 3 is joint work with Henry Kierstead and Alexandr Kostochka, and is based on [30]. We heavily

use the above theorem to obtain a characterization of (2k−1)-connected multigraphs that contain k disjoint

cycles, answering Question 1.2.11 in full. Before we state this result, we need some specialized notation.

For every multigraph G, let V1 = V1(G) be the set of vertices in G incident to loops (as in Figure 1.5(b)).

Let G̃ denote the underlying simple graph of G, i.e. the simple graph on V (G) such that two vertices are

adjacent in G if and only if they are adjacent in G̃. Let F = F (G) be the simple graph formed by the

multiple edges in G− V1; that is, if G′ is the subgraph of G− V1 induced by its multiple edges, then G = G̃′

(as in Figure 1.5(c)). We will call the edges of F (G) the strong edges of G, and define α′ = α′(F ) to be the

size of a maximum matching in F . A set S = {v0, . . . , vs} of vertices in a graph H is a superstar with center

v0 in H if NH(vi) = {v0} for each 1 ≤ i ≤ s and H − S has a perfect matching.

v1 v2

f1

f2

f3

f4

(a) A multigraph G

v1 v2

(b) V1(G) = {v1, v2}

f1

f2

f3

f4

(c) F (G), with α′(F ) = 2

Figure 1.5: Example to Illustrate Notation

For v ∈ V , we define s(v) = |N(v)| to be the simple degree of v, and we say that S(G) = min{s(v) : v ∈ V }

is the minimum simple degree of G. We define Dk to be the family of multigraphs G with S(G) ≥ 2k − 1.

By the definition of Dk, α(G) ≤ n − 2k + 1 for every n-vertex G ∈ Dk; so we call G ∈ Dk extremal if

α(G) = n− 2k + 1. A big set in an extremal G ∈ Dk is an independent set of size α(G).

The following is an easy extension of Theorem 2.1.1 to multigraphs.

Theorem 1.2.13. For k ∈ Z+, let G be a multigraph with S(G) ≥ 2k, and set F = F (G) and α′ = α′(F ).

Then G has no k disjoint cycles if and only if

|V (G)| − |V1(G)| − 2α′ < 3(k − |V1| − α′), (1.1)

i.e., |V (G)|+ 2|V1|+ α′ < 3k.

Theorem 1.2.13 yields the following.

Corollary 1.2.14. Let G be a multigraph with S(G) ≥ 2k − 1 for some integer k ≥ 2, and set F = F (G)

and α′ = α′(F ). Suppose G contains at least one loop. Then G has no k disjoint cycles if and only if
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|V (G)|+ 2|V1|+ α′ < 3k.

So, in the case of a multigraph G with at least one loop, the answer to 1.2.11 is very similar to the

Corrádi-Hajnal Theorem: G contains the desired number of disjoint cycles as long as it has the number of

vertices that are trivially necessary.

If a multigraph G has no loop, there are more varieties of graphs G that have S(G) ≥ 2k − 1 but

no k disjoint cycles. A characterization of these graphs is the main result of Chapter 3 (given below as

Theorem 1.2.15) and a complete answer to Question 1.2.11. It is worth noting that every graph in the

Theorem 1.2.15 contains an element of Theorem 1.2.12: a subgraph Yh,t, a large independent set, or a wheel.

Theorem 1.2.15. Let k ≥ 2 and n ≥ k be integers. Let G be an n-vertex multigraph in Dk with no loops.

Set F = F (G), α′ = α′(F ), and k′ = k− α′. Then G does not contain k disjoint cycles if and only if one of

the following holds: (see Figure 3.2)

(a) n+ α′ < 3k;

(b) |F | = 2α′ (i.e., F has a perfect matching) and either

(i) k′ is odd and G− F = Yk′,k′ , or

(ii) k′ = 2 < k and G− F is a wheel with 5 spokes;

(c) G is extremal and either

(i) some big set is not incident to any strong edge, or

(ii) for some two distinct big sets Ij and Ij′ , all strong edges intersecting Ij ∪Ij′ have a common vertex

outside of Ij ∪ Ij′ ;

(d) n = 2α′ + 3k′, k′ is odd, and F has a superstar S = {v0, . . . , vs} with center v0 such that either

(i) G− (F − S + v0) = Yk′+1,k′ , or

(ii) s = 2, v1v2 ∈ E(G), G − F = Yk′−1,k′ and G has no edges between {v1, v2} and the set X0 in

G− F ;

(e) k = 2 and G is a wheel, where some spokes could be strong edges;

(f) k′ = 2, |F | = 2α′ + 1 = n− 5, and G− F = C5.

If a multigraph G has at least one loop, Corollary 3.2.2 tells us precisely when G has k disjoint cyces.

To prove Theorem 1.2.15, we may therefore assume that G has no loops. A multigraph G with no loops

has at most α′(F ) “short” cycles–that is, cycles with fewer than 3 vertices. If we know some cycles that are

contained in a collection C of disjoint cycles, then we can investigate which other cycles might be in C by
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deleting the edges of the known cycles. If we delete the edges of all the short cycles used, the remainder of

the cycles are simple cycles, so we can look at a simple subgraph of G and apply the Corrádi Hajnal theorem.

These ideas form the backbone of the proof of Theorem 1.2.15.

1.2.2 Equitable Coloring, Chapter 4

Theorems 1.2.6 and 1.2.10 characterize graphs G with at least 3k+1 vertices and σ2(G) ≥ 4k−3 that do not

contain k disjoint cycles. However, missing from Chapter 2 is a characterization of graphs G with precisely

3k vertices and σ2(G) ≥ 4k − 3 that do not contain k disjoint cycles. To achieve this characterization, we

looked to a dual problem, equitable coloring, in Chapter 4. Chapter 4 is joint work with Henry Kierstead,

Alexandr Kostochka, and Theodore Molla, and is based on [27].

If |G| = 3k, then G has an equitable k-coloring if and only if G contains k disjoint cycles (all triangles),

because each color class has size three. In Chapter 4, we characterize graphs on 3k vertices with d(x)+d(y) ≥

2k + 1 for every xy ∈ E(G) that do not have an equitable k-coloring. This is equivalent to characterizing

graphs G on 3k vertices with σ2(G) ≥ 4k − 3 and no k disjoint cycles.

Example 1.2.16. We define a graph G0 with vertex set X ∪ Y ∪Z with X = {x1, x2, x3}, Y = {y1, y2, y3},

and Z = {z1, z2, z3}. We let G[Z] = K3 and G[X ∪ Y ] = K3,3 − x3y3, and add edges x3z1, x3z2, and y3z3.

(See Figure 1.6.)

G0 is 3-colorable, d(x3) = 4, and d(v) = 3 for every v ∈ V (G) − x3. However, G0 has no equitable

3-coloring. Any proper coloring of Z uses all three colors, and any equitable coloring of X ∪Y puts the same

color on x3 and y3, so this color cannot be used on Z. Therefore any proper coloring of G0 is not equitable.

x1 x2 x3

y1 y2 y3

w1

w2

w3

Figure 1.6: G0

Theorem 1.2.17 (Main Result of Chapter 4). Let G be a k-colorable graph on 3k vertices with d(x)+d(y) ≥

2k + 1 for every xy ∈ E(G). Then one of the following holds:

(i) G = K1,2k +Kk−1 (see Figure 1.7(a));

(ii) G ⊇ Kc,2k−c +Kk for some odd c (see Figure 1.7(b));

(iii) G = G0 and k = 3 (see Figure 1.6).
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K1,2k Kk−1

(a) Yk, k = 5

2k − c

c

Kk

(b) Zc,k, k = 5, c = 3

Figure 1.7: Theorem 1.2.17

We note that if G is not k-colorable, then it is not equitably k-colorable. Therefore Theorem 1.2.17

completely characterizes graphs G on 3k vertices with d(x) + d(y) ≥ 2k + 1 for every xy ∈ E(G) that have

no equitable k-coloring. In particular, translating Theorem 1.2.17 the language of disjoint cycles results in

the following.

Theorem 1.2.18. Let G be a graph on 3k vertices with σ2(G) ≥ 4k− 3. If G has no k disjoint cycles, then

one of the following holds:

(i) G = K2k ∨K1,k−1,

(ii) G ⊆ (Kc +K2k−c) ∨Kk for some odd c,

(iii) G = G0 and k = 3, or

(iv) G is not k-colorable.

Together, Theorems 1.2.6, 1.2.10, and 1.2.18 completely characterize all graphs G on at least 3k vertices

with σ2(G) ≥ 4k − 3 that have no k disjoint cycles. Interestingly, the case |G| = 3k includes more types of

graphs without k disjoint cycles than the case |G| > 3k.

Theorem 1.2.17 also proves a special case of an Ore-type version of the Chen-Lih-Wu Conjecture, which

is an equitable-coloring version of Brooks’s Theorem, discussed below.

The Hajnal-Szemerédi Theorem [18] tells us that, as in proper coloring, any graph G can be equitably

colored using ∆(G) + 1 colors. Brooks’s Theorem states that every graph G can be properly colored using

∆(G) colors unless ω(G) = ∆(G)+1 or ∆(G) = 2 and G contains an odd cycle. The Chen-Lih-Wu conjecture

[6] attempts to likewise characterize when a graph G cannot be equitably colored using only ∆(G) colors.

Conjecture 1.2.19 (Chen-Lih-Wu [6]). Let G be a connected graph with χ(G),∆(G) ≤ k. Then G is

equitably k-colorable unless k is odd and G = Kk,k.

The Chen-Lih-Wu conjecture was generalized using an Ore-type condition by Kierstead and Kostochka

in [22]:
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Conjecture 1.2.20 (Ore-type version of Chen-Lih-Wu Conjecture [22]). Let G be a connected graph with

χ(G) ≤ k and d(x) + d(y) ≤ 2k + 1 for every xy ∈ E(G). Then G is equitably k-colorable unless k is odd

and Kk,k ⊆ G.

Our Theorem 1.2.17 settles Conjecture 1.2.20 in the case |G| = 3k. The conjecture is true in this case,

except when k = 3: the conjecture must be expanded to include the graph G0. Thorem 1.2.17 also strengthens

a result of Kierstead and Kostochka [22] in the case |G| = 3k.

Theorem 1.2.21 ([22]). Let G be a graph with θ(G) ≤ 2k − 1. Then G has an equitable k-coloring.

Our Theorem 1.2.17 characterizes the sharpness examples for Theorem 1.2.21 when |G| = 3k.

Our proof of Theorem 1.2.17 proceeds by contradiction. Suppose G is a counterexample to the theorem,

with k minimal, and further let G be edge-minimal. That is, if we delete any edge of G, it admits an equitable

k-coloring. We show that G can be colored so that all but two classes have size 3, one “small” class has

size 2, and one “large” class has size 4. Note that, if any vertex in the large class has no neighbors in the

small class, we can simply move that vertex to the small class, creating an equitable coloring. We expand

this idea: suppose there exists a vertex v0 in the large class with no neighbors in a class V1; there exists a

vertex v1 ∈ V1 with no neighbors in a class V2; and there exists a vertex v2 ∈ V2 with no neighbors in the

small class. Then we move v0 to V1, move v1 to V2, and move v2 to the small class, obtaining an equitable

k-coloring. (See Figure 1.8.) We choose a coloring with certain extremal properties, and make use of this

daisy-chaining of movable vertices to show that G must have a particular structure. These structural results

eventually lead to a contradiction.

V2 V1
v0

v1v2

→

V ′2 V ′1

v2 v0v1

Figure 1.8: Moving Vertices to Obtain an Equitable Coloring

1.2.3 Graph Saturation: Background1

The field of extremal combinatorics is considered to have begun in earnest with Turán’s Theorem [38], which

answers the following question: given a graph G on n vertices that contains no complete k-vertex subgraph,

1Much of this discussion of important results in graph saturation is due to [15], Section 1.
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what is the maxium attainable number of edges of G? Erdős, Hajnal, and Moon [14] elaborated on this idea.

If G is a graph with no Kk subgraph attaining the maximum number of edges, then adding any edge to G

creates a Kk subgraph. They then asked, over all n-vertex graphs G that avoid a forbidden subgraph, but

have the property that adding any edge creates that forbidden subgraphs, what is the minimum nuber of

edges in G? This number is the saturation number of the forbidden graph.

Definition 1.2.22. Given any forbidden graph H, and any natural number n, the saturation number

sat(n,H) is defined as:

sat(n,H) = min{||G|| : H 6⊆ G and ∀e ∈ G,H ⊆ G+ e}

In [14], Erdős, Hajnal, and Moon determine sat(n,Kt) for all n ≥ t ≥ 2, and describe the graphs achieving

the minimum number of edges.

Theorem 1.2.23 ([14]). For every pair of integers n and k, with 2 ≤ t ≤ n,

sat(n,Kt) =

(
n

2

)
−
(
n− (t− 2)

2

)

and the only n-vertex, Kt-saturated graph achieving this number of vertices is Kt−2 ∨Kn−(t−2).

Bollobás used set pairs to generalize Theorem 1.2.23 to hypergraphs in [3]. In [4] (pp. 1269-1270), he

simplified this idea to give a compact proof of the numerical portion of Theorem 1.2.23 using his well-known

inequality, below.

Lemma 1.2.24 ([4]). Given a finite index set I, let {{Ai, Bi} : i ∈ I} be a collection of finite sets such that

Ai ∩Bj = ∅ if and only if i = j. For i ∈ I, set ai = |Ai| and bi = |Bi|. Then

∑
i∈I

(
ai + bi
ai

)−1
≤ 1.

Proof of the numerical portion of Theorem 1.2.23, [4]. Suppose a graph G is Kt-saturated. Let {Ai : i ∈

I} = E(G). By the definition of saturation, for every i ∈ I, there exists a set Ci of t vertices such that

Ai ⊆ Ci and Ai is the only nonedge in G[Ci]. Define Bi = V (G)−Ci. If Ai ∩Bj = ∅ for some i, j ∈ I, then

Ai, Aj ⊆ Cj , so i = j. It is clear that Ai ∩Bi = ∅ for all i ∈ I. So, by Lemma 1.2.24,

∑
i∈I

(
2 + (n− t)

2

)−1
≤ 1

and so ‖G‖ =
(
n
2

)
− |I| ≥

(
n
2

)
−
(
n−(t−2)

2

)
.
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The above proof only uses the special case of Lemma 1.2.24 where all Ai resp. Bi have the same size.

Lovász ([34], p. 83) used tensor calculus to prove generalizations to matroids and projective spaces of

this version of Bollobás’s inequality, demonstrating that linear algebraic methods are useful for studying

saturation number. We present here a simplified version of Lovász’s proof of Lemma 1.2.24 in the case that,

for all i ∈ I, ai = a and bi = b. This proof is taken from [1], pp. 94-95.

Proof of Lemma 1.2.24, in the case ai = a and bi = b for all i ∈ I. Let V = (∪i∈IAi) ∪ (∪i∈IBi). We will

assign a vector to each u ∈ V , and use these vectors to define a polynomial fBi for every i ∈ I. The dimension

of the space of homogeneous polynomials of degree b in a+ 1 variables is
(
b+(a+1)−1

b

)
=
(
a+b
a

)
. (This is easily

seen by noting that a basis of such a space is the collection of polynomials {xe00 x
e1
1 · · ·xeaa : e0+ · · ·+ea = b}.)

So, if our vectors and polynomials are defined in such a way that for every i ∈ I, fBi is homogeneous of

degree b with a+ 1 variables, and the set {fBi
: i ∈ I} is linearly independent, then |I| ≤

(
a+b
a

)
, as desired.

To each u ∈ V , assign a vector v(u) = (v0(u), . . . , va(u)) ∈ Ra+1 so that the vectors of elements of V

are in general position; that is, every collection of a + 1 vectors is linearly independent. For i ∈ I, define a

polynomial

fBi(x) = fBi(x0, . . . , xa) =
∏
u∈Bi

(v0(u)x0 + · · ·+ va(u)xa) =
∏
u∈Bi

v(u) · x.

It is clear that fBi
is a homogeneous polynomial of degree b in a + 1 variables. So, it remains only to

show that {fBi
: i ∈ I} is linearly independent. For every j ∈ I, the vectors of Aj form a space of dimension

a; choose a nonzero vector aj ∈ Ra+1 orthogonal to this space. Note fBi(aj) = 0 if and only if v(u) · aj = 0

for some u ∈ Bi. Since the vectors of V are in general position, v(u) · aj = 0 if and only if u ∈ Aj ; so,

fBi
(aj) = 0 if and only if i 6= j. Now, if there exists constants α1, . . . , α|I| so that

∑
i∈I αifBi

(x) ≡ 0, then

for every j ∈ I, 0 =
∑
i∈I αifBi(aj) = αjfBj (aj), and fBj (aj) 6= 0, so αj = 0. Thus {fBi : i ∈ I} is linearly

independent, as desired.

1.2.4 Saturation of Ramsey-Minimal Families, Chapter 5

Many variations of graph saturation have been studied. Chapter 5 is joint work with Michael Ferrara and

Jaehoon Kim, based on [16]. In Chapter 5, we study a parameter that generalizes saturation to include

multiple forbidden graphs, tied to different colors. We do this by using the idea of “forcing” from Ramsey

theory, as in Definition 1.1.13.

Definition 1.2.25. Given forbidden subgraphs (H1, . . . ,Hk), the Ramsey-minimal family of (H1 . . . , Hk) is

defined as the family of graphs G with the properties G → (H1, . . . ,Hk), and for any e ∈ E(G), G − e 6→

(H1, . . . ,Hk). We denote the Ramsey minimal family by Rmin(H1, . . . ,Hk).
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It is readily shown that a graph saturated with respect to Rmin(H1, . . . ,Hk) can be described by the

equivalent definition below.

Definition 1.2.26. Given forbidden graphs H1, . . . ,Hk, and any natural number n, an n-vertex graph G is

saturated with respect to Rmin(H1, . . . ,Hk) if G 6→ (H1, . . . ,Hk), but for any e ∈ G, G+ e→ (H1, . . . ,Hk).

That is, for the saturation number of a Ramsey minimal family, we want the minimum number of edges in

an n-vertex graph G such that (i) there exists a k-edge-coloring of G such that no forbidden subgraph appears

monochromatically in its assigned color, and (ii) G is edge-maximal with this property. This parameter is

variously referred to in literature as the saturation number of Ramsey-minimal families [16], [7]; edge-colored

saturation number [19]; and co-criticality [17], [37]. Definition 1.2.26 makes the motivation for studying this

parameter clear: it is a Ramsey-type variation of graph saturation.

In Chapter 5, we introduce a technique we developed called iterated recoloring, which works as follows.

Suppose a graph G is saturated with respect to forbidden subgraphs Rmin(H1, . . . ,Hk). By definition, there

exists a coloring φ of G such that no Hi appears with all edges assigned color i. We choose a color, say red.

One by one, we examine each edge of φ that is not colored red, and consider changing it to red. If changing

the edge to red does not result in a monochromatic red copy of the corresponding Hi, then we change that

edge to red. At the end of this process, we have a coloring φi that we call red-heavy. If we change any non-red

edge in φi to red, we create a monochromatic red Hi. Now, create an uncolored graph G[i] by deleting every

edge from G that is not colored red in φi. Our key observation is that G[i] is Hi-saturated.

By manipulating φ in this way for each color, we are able to conclude that the subgraphsG[1], G[2], . . . , G[k]

are saturated with respect to H1, . . . ,Hk, respectively. This allows us to use results from saturation to gain

information about various subgraphs of G. As a proof of concept, we use iterated recoloring, and a result of

Mader [35] about graphs that are matching-saturated, to determine the saturation number of the Ramsey

minimal family of any collection of matchings, for all n sufficiently large. We also characterize those graphs

that are saturated with respect to a family of matchings and achieve the minimum number of edges.

Theorem 1.2.27 (Main Result of Chapter 5). If m1, . . . ,mk ≥ 1 and n > 3(m1 + . . .+mk − k), then

sat(n,Rmin(m1K2, . . . ,mkK2)) = 3(m1 + . . .+mk − k).

If mi ≥ 3 for some i, then the unique saturated graphs of minimum size consist solely of vertex-disjoint

triangles and independent vertices. If mi ≤ 2 for every i, then the graphs achieving equality are unions of

edge-disjoint triangles and independent vertices.

There is an important relationship between the saturation number of a Ramsey-minimal family and
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its Ramsey number. Suppose a collection of forbidden subgraphs H1, . . . ,Hk has Ramsey number R. By

definition of R, for any n < R the edges of Kn can be colored with k colors avoiding all forbidden subgraphs.

It is vacuously true that, for any edge e ∈ E(Kn), Kn + e → (H1, . . . ,Hk). Therefore, whenever n < R,

sat(n,Rmin(H1, . . . ,Hk)) =
(
n
2

)
. The Ramsey number for matchings is given by Cockayne and Lorimer in

[9]:

Theorem 1.2.28 (Ramsey Number of Matchings [9]). Given m1 ≥ · · · ≥ mk ≥ 1, the Ramsey number

r(m1K2, . . . ,mkK2) is given by

m1 + 1 +

k∑
i=1

(mi − 1).

Our Theorem 1.2.27 determines the saturation number of Rmin(m1K1, . . . ,mkK2) when n > 3
∑k
i=1mi.

So, ifm1 = max{mi : i ∈ [k]}, then the only values of n for which the saturation number ofRmin(m1K1, . . . ,mkK2)

is not known are
(
m1 + 1 +

∑k
i=1(mi − 1)

)
≤ n ≤ 3

∑k
i=1(mi − 1).

1.2.5 Induced Saturation, Chapter 6

Chapter 6 is the result of joint work with Sarah Behrens, Catherine Erbes, Michael Santana, and Derrek

Yager, and is largely based on [2]. In Chapter 6, we consider an induced version of graph saturation. Recall

that, if a graph G is H-saturated for some forbidden subgraph H, then G contains no H-subgraph, but

adding any edge creates an H-subgraph. However, this H-subgraph may not be induced. It is possible that

a graph G contains no induced H-subgraph, but adding any edge creates an induced H-subgraph; it is likewise

possible that G contains no induced H-subgraph, but deleting any edge creates an induced H-subgraph. One

possible way to create an induced version of graph saturation is to say that G is H-induced-saturated if G

does not contain any induced copy of H, but adding or deleting any edge from G creates an induced copy of

H. This is a special case of the definition given by Martin and Smith [36] for induced saturation; however,

the actual definition is more broad, because our suggested definition is undefined for many values of H.

Definition 1.2.29. A trigraph T is a quadruple (V (T ), EB(T ), EW (T ), EG(T )), where V (T ) is the vertex

set and the other three elements partition
(
V (T )

2

)
into a set EB(T ) of black edges, a set EW (T ) of white

edges, and a set EG(T ) of gray edges. These can be thought of as edges, non-edges, and potential edges,

respectively.

A realization of T is a graph G = (V (G), E(G)) with V (G) = V (T ) and E(G) = EB(T ) ∪ S for some

subset S of EG(T ).

Definition 1.2.30 (Martin-Smith [36]). A trigraph T is H-induced-saturated if no realization of T contains

H as an induced subgraph, but H occurs as an induced subgraph of some realization whenever any black or

15



white edge of T is changed to gray.

The induced saturation number indsat(n,H) of a forbidden graph H is the minimum size of EG(T ) over

all n-vertex trigraphs that are H induced saturated.

In the special case that an H-induced-saturated trigraph T exists with no gray edges, the unique rep-

resentation G of T has the properties that G does not contain H as an induced subgraph, but adding or

deleting any edge of G creates an induced copy of H. In this case, we say the graph G is H-induced saturated.

If H ∈ {Kk−e,Kk − e}, then an H-induced-saturated n-vertex graph G exists for all sufficiently large n.

Trivially, this G is a complete graph, or a graph with no edges. However, it is not immediately obvious that

any non-trivial examples exist where a forbidden subgraph H has an H-induced-saturated graph. Indeed,

before our work, no other such forbidden graphs were known. In [2], we show that a number of graphs have

this property: induced-saturation number zero for all sufficiently large n. This motivated the study of a

new parameter, indsat∗(n,H), that minimizes the number of edges in an n-vertex graph that is H induced

saturated.

Although the motivation for studying indsat∗(n,H) was born of the families of graphs with induced-

saturation number 0, to formally define indsat∗(n,H) there is no need to restrict ourselves to these families.

Definition 1.2.31. Suppose H is a forbidden induced subgraph and n is an integer. Then

indsat∗(n,H) := min{|EB(T )| : T is an n-vertex, H-induced-saturated trigraph with |EG(T )| = indsat(n,H)}.

By simply constructing a graph (not trigraph) that is H-induced-saturated for a given H, we can show

indsat(n,H) = 0. In Chapter 6, we provide constructions that show the paw, any matching, and a variety of

cycles have induced saturation number 0 for all sufficiently large n. Also by construction, we provide upper

bounds on indsat∗(n,H) for the graphs mentioned. A variety of parameters, for example minimum degree,

provide lower bounds for indsat∗(n,H).

We completely characterize all paw-induced-saturated graphs for all n ≥ 7. This, in turn, gives us an

exact value of indsat∗(n,K+
1,3) for all n ≥ 7. Interestingly, indsat∗(n,K+

1,3) is not monotone in n. This is

reminiscent of graph saturation, which is also not necessarily monotone in n for a given forbidden subgraph.

We show that indsat(n,C4) = 0 for all sufficiently large n by using graphs that generalize the icosahedron.

Another construction involving an icosahedron shows that indsat(n, kK2) = 0 for any k ≥ 2 and for all n

sufficiently large. Further, for a fixed k, indsat∗(n, kK2) is bounded above by a constant.

A construction involving the dodecahedron shows, for a restricted range of n, indsat(n,C8) = 0. It

remains an open quesiton whether there exists k ≥ 2 such that indsat(n,C2k) = 0 for all sufficiently large
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n. This question is made even more compelling by our results regarding odd cycles, and two variations on

even cycles. We show indsat(n,C2k−1) = 0 for all k ≥ 3 and for all n sufficiently large. The construction

used–the product of cliques–gives a graph that is also induced saturated for Ĉ2k and C ′2k. Our constructions

for odd cycles are not induced-saturated for even cycles, and vice-versa.

17



Chapter 2

Disjoint Cycles

The following results are joint work with Henry Kierstead and Alexandr Kostochka; this chapter is based on

[29].

2.1 Introduction

In 1963, Corrádi and Hajnal proved a conjecture of Erdős by showing the following:

Theorem 2.1.1 (Corrádi-Hajnal Theorem [10]). Let k ∈ Z+. Every graph G with (i) |G| ≥ 3k and (ii)

δ(G) ≥ 2k contains k disjoint cycles.

Clearly, hypothesis (i) in the theorem is sharp. Hypothesis (ii) also is sharp. Indeed, if a graph G has

k disjoint cycles, then α(G) ≤ |G| − 2k, since every cycle contains at least two vertices of G − I for any

independent set I. Thus H := Kk+1 ∨ K2k−1 satisfies (i) and has δ(H) = 2k − 1, but does not have k

disjoint cycles, because α(H) = k + 1 > |H| − 2k. There are several works refining Theorem 2.1.1. Dirac

and Erdős [12] showed that if a graph G has many more vertices of degree at least 2k than vertices of degree

at most 2k − 2, then G has k disjoint cycles. Dirac [11] asked:

Question 2.1.2. Which (2k − 1)-connected graphs1 do not have k disjoint cycles?

He also resolved his question for k = 2 by describing all 3-connected multigraphs on at least 4 vertices

in which every two cycles intersect. It turns out that the only simple 3-connected graphs with this property

are wheels. Lovász [33] fully described all multigraphs in which every two cycles intersect.

The following result in this chapter yields a full answer to Dirac’s question for simple graphs.

Theorem 2.1.3. Let k ≥ 2. Every graph G with (i) |G| ≥ 3k and (ii) δ(G) ≥ 2k − 1 contains k disjoint

cycles if and only if

(H3) α(G) ≤ |G| − 2k, and

(H4) if k is odd and |G| = 3k, then G 6= 2Kk ∨Kk and if k = 2 then G is not a wheel.

1Dirac used the word graphs, but in [11] this appears to mean multigraphs.
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For fixed k, the conditions of Theorem 2.1.3 can be tested in polynomial time.

It is likely that Dirac intended his question to refer to multigraphs; indeed, his result for k = 2 is for

multigraphs. On the other hand, the above-mentioned paper [12] by Dirac and Erdős is about simple graphs.

In Chapter 3, we will heavily use the results of this chapter to obtain a characterization of (2k−1)-connected

multigraphs that contain k disjoint cycles, answering Question 2.1.2 in full.

Enomoto [13] and Wang [39] generalized the Corrádi-Hajnal Theorem in terms of the minimum Ore-degree

σ2(G) := min{d(x) + d(y) : xy 6∈ E(G)}:

Theorem 2.1.4 ([13],[39]). Let k ∈ Z+. Every graph G with (i) |G| ≥ 3k and

(E2) σ2(G) ≥ 4k − 1

contains k disjoint cycles.

Again H := Kk+1 ∨K2k−1 shows that hypothesis (E2) of Theorem 2.1.4 is sharp. What happens if we

relax (E2) to (H2): σ2(G) ≥ 4k − 3, but again add hypothesis (H3)? Here are two interesting examples.

Example 2.1.5. Let k = 3 and Y1 be the graph obtained by twice subdividing one of the edges wz ofK8, i.e.,

replacing wz by the path wxyz. Then |Y1| = 10 = 3k+1, σ2(Y1) = 9 = 4k−3, and α(Y1) = 2 ≤ |Y1|−2k.

However, Y1 does not contain k = 3 disjoint cycles, since each cycle would need to contain three vertices of

the original K8 (see Figure 2.1(a)).

(a) Y1

u v

(b) Y2

Figure 2.1

Example 2.1.6. Let k = 3. Let Q be obtained from K4,4 by replacing a vertex v and its incident edges

vw, vx, vy, vz by new vertices u, u′ and edges uu′, uw, ux, u′y, u′z; so d(u) = 3 = d(u′) and contracting

uu′ in Q yields K4,4. Now set Y2 := K1 ∨ Q. Then |Y2| = 10 = 3k + 1, σ2(Y2) = 9 = 4k − 3, and

α(Y2) = 4 ≤ |Y2| − 2k. However, Y2 does not contain k = 3 disjoint cycles, since each 3-cycle contains the

only vertex of K1 (see Figure 2.1(b)).

Our main result is:
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Theorem 2.1.7. Let k ∈ Z+ with k ≥ 3. Every graph G with

(H1) |G| ≥ 3k + 1,

(H2) σ2(Gk) ≥ 4k − 3, and

(H3) α(G) ≤ |G| − 2k

contains k disjoint cycles, unless k = 3 and G ∈ {Y1,Y2}. Furthermore, for fixed k there is a polynomial

time algorithm that either produces k disjoint cycles or demonstrates that one of the hypotheses fails.

Theorem 2.1.7 is proved in Section 2. In Section 3 we discuss the case k = 2. In Section 4 we discuss

connections to equitable colorings and derive Theorem 2.1.3 from Theorem 2.1.7 and known results.

Now we discuss examples demonstrating the sharpness of hypothesis (H2) that σ(G) ≥ 4k−3, and finally

we review our notation.

Example 2.1.8. Let k ≥ 3, Q = K3 and Gk := K2k−2 ∨ (K2k−3 + Q). Then |Gk| = 4k − 2 ≥ 3k + 1,

δ(Gk) = 2k − 2 and α(Gk) = |Gk| − 2k. If Gk contained k disjoint cycles, then at least 4k − |Gk| = 2

would be 3-cycles; this is impossible, since any 3-cycle in Gk contains an edge of Q. This construction

can be extended. Let k = r + t, where k + 3 ≤ 2r ≤ 2k, Q′ = K2t, and put H = Gr ∨ Q′. Then

|H| = 4r− 2 + 2t = 2k + 2r− 2 ≥ 3k + 1, δ(H) = 2r− 2 + 2t = 2k − 2 and α(H) = 2r− 2 = |H| − 2k. If H

contained k disjoint cycles, then at least 4k − |H| = 2t + 2 would be 3-cycles; this is impossible, since any

3-cycle in H contains an edge of Q or a vertex of Q′.

There are several special examples for small k. The constructions of Y1 and Y2 can be extended to

k = 4 at the cost of lowering σ2 to 4k − 4. Below is another small family of special examples. The blow-up

of G by H is denoted by G[H]; that is, V (G[H]) = V (G)× V (H) and (x, y)(x′, y′) ∈ E(G[H]) if and only if

xx′ ∈ E(G), or x = x′ and yy′ ∈ E(H).

Example 2.1.9. For k = 4, G := C5[K3] satisfies |G| = 15 ≥ 3k+1, δ(G) = 2k−2 and α(G) = 6 < |G|−2k.

Since girth(G) = 4, G has at most |G|4 < k disjoint cycles. This example can be extended to k = 5, 6 as

follows. Let I = K2k−8 and H = G∨I. Then |G| = 2k+7 ≥ 3k+1, δ = 2k−2 and α(G) = 6 < |G|−2k = 7.

If H has k disjoint cycles then each of the at least k−(2k−8) = 8−k cycles that do not meet I use 4 vertices

of G, and the other cycles use at least 2 vertices of G. So 15 = |G| ≥ 2k + 2(8− k) = 16, a contradiction.

Notation. A bud is a vertex with degree 0 or 1. A vertex is high if it has degree at least 2k − 1, and low

otherwise. For vertex subsets A,B of a graph G = (V,E), let

‖A,B‖ :=
∑
u∈A
|{uv ∈ E(G) : v ∈ B}|.
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Note A and B need not be disjoint. For example, ‖V, V ‖ = 2‖G‖ = 2|E|. We will abuse this notation

to a certain extent. If A is a subgraph of G, we write ‖A,B‖ for ‖V (A), B‖, and if A is a set of disjoint

subgraphs, we write ‖A, B‖ for
∥∥⋃

H∈A V (H), B
∥∥. Similarly, for u ∈ V (G), we write ‖u,B‖ for ‖{u}, B‖.

Formally, an edge e = uv is the set {u, v}; we often write ‖e,A‖ for ‖{u, v}, A‖.

If T is a tree or a directed cycle and u, v ∈ V (T ) we write uTv for the unique subpath of T with endpoints

u and v. We also extend this: if w /∈ T , but has exactly one neighbor u ∈ T , we write wTv for w(T+w+wu)v.

Finally, if w has exactly two neighbors u, v ∈ T , we may write wTw for the cycle wuTvw.

2.2 Proof of Theorem 2.1.7

Suppose G = (V,E) is an edge-maximal counterexample to Theorem 2.1.7. That is, for some k ≥ 3, (H1)–

(H3) hold, and G does not contain k disjoint cycles, but adding any edge e ∈ E(G) to G results in a graph

with k disjoint cycles. The edge e will be in precisely one of these cycles, so G contains k− 1 disjoint cycles,

and at least three additional vertices. Choose a set C of disjoint cycles in G so that:

(O1) |C| is maximized;

(O2) subject to (O1),
∑
C∈C |C| is minimized;

(O3) subject to (O1) and (O2), the length of a longest path P in R := G−
⋃
C is maximized;

(O4) subject to (O1), (O2), and (O3), ‖R‖ is maximized.

Call such a C an optimal set. We prove in Subsection 2.2.1 that R is a path, and in Subsection 2.2.2 that

|R| = 3. We develop the structure of C in Subsection 2.2.3. Finally, in Subsection 2.2.4, these results are

used to prove Theorem 2.1.7.

Our arguments will have the following form. We will make a series of claims about our optimal set C, and

then show that if any part of a claim fails, then we could have improved C by replacing a sequence C1, . . . , Ct ∈

C of at most three cycles by another sequence of cycles C ′1, . . . , C
′
t′ . Naturally, this modification may also

change R or P . We will express the contradiction by writing “C ′1, . . . , C
′
t, R
′, P ′ beats C1, . . . , Ct, R, P ,” and

may drop R′ and R or P ′ and P if they are not involved in the optimality criteria.

This proof implies a polynomial time algorithm. We start by adding enough extra edges—at most 3k—to

obtain from G a graph with a set C of k disjoint cycles. Then we remove the extra edges in C one at a time.

After removing an extra edge, we calculate a new collection C′. This is accomplished by checking the series

of claims, each in polynomial time. If a claim fails, we calculate a better collection (again in polynomial

time) and restart the check, or discover an independent set of size greater than |G| − 2k. As there can be
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at most n4 improvements, corresponding to adjusting the four parameters (O1)–(O4), this process ends in

polynomial time.

We now make some simple observations. Recall that |C| = k−1 and R is acyclic. By (O2) and our initial

remarks, |R| ≥ 3. Let a1 and a2 be the endpoints of P . (Possibly, R is an independent set, and a1 = a2.)

Claim 2.2.1. For all w,w′ ∈ V (R) and C ∈ C, if ‖w,C‖ ≥ 2 then 3 ≤ |C| ≤ 6 − ‖w,C‖. In particular,

(a) ‖w,C‖ ≤ 3, (b) if ‖w,C‖ = 3 then |C| = 3, and (c) if |C| = 4 then the two neighbors of w in C are

nonadjacent.

Proof. Let
−→
C be a cyclic orientation of C. For distinct u, v ∈ N(w) ∩ C, the cycles wu

−→
Cvw and wu

←−
Cvw

have length at least |C| by (O2). Thus 2 ‖C‖ ≤ ‖wu
−→
Cvw‖+ ‖wu

←−
Cvw‖ = ‖C‖+ 4. So |C| ≤ 4. Similarly, if

‖w,C‖ ≥ 3 then 3‖C‖ ≤ ‖C‖+ 6, and so |C| = 3.

Claim 2.2.2. If xy ∈ E(R) and C ∈ C with |C| ≥ 4 then N(x) ∩N(y) ∩ C = ∅.

2.2.1 R is a path

Suppose R is not a path. Let L be the set of buds in R; then |L| ≥ 3.

Claim 2.2.3. For all C ∈ C, distinct x, y, z ∈ V (C), i ∈ [2], and u ∈ V (R− P ):

(a) {ux, uy, aiz} * E;

(b) ‖{u, ai}, C‖ ≤ 4;

(c) {aix, aiy, a3−iz, zu} * E ;

(d) if ‖{a1, a2}, C‖ ≥ 5 then ‖u,C‖ = 0;

(e) ‖{u, ai}, R‖ ≥ 1; in particular ‖ai, R‖ = 1 and |P | ≥ 2;

(f) 4− ‖u,R‖ ≤ ‖{u, ai}, C‖ and ‖{u, ai}, D‖ = 4 for at least |C| − ‖u,R‖ cycles D ∈ C.

Proof. (a) Else ux(C − z)yu, Paiz beats C,P by (O3) (see Figure 2.2(a)).

(b) Else |C| = 3 by Claim 2.2.1. So there are distinct p, q, r ∈ V (C) with up, uq, air ∈ E, contradicting (a).

(c) Else aix(C − z)yai, (P − ai)a3−izu beats C,P by (O3) (see Figure 2.2(b)).

(d) Suppose ‖{a1, a2}, C‖ ≥ 5 and p ∈ N(u) ∩ C. By Claim 2.2.1, |C| = 3. Pick j ∈ [2] with paj ∈ E,

preferring ‖aj , C‖ = 2. Then V (C)− p ⊆ N(a3−j), contradicting (c).

(e) Since ai is an end of the maximal path P , N(ai) ∩R ⊆ P ; so aiu /∈ E. By (b)

4(k − 1) ≥ ‖{u, ai}, V rR‖ ≥ 4k − 3− ‖{u, ai}, R‖ . (2.1)
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Thus ‖{u, ai}, R‖ ≥ 1. Hence G[R] has an edge, |P | ≥ 2, and ‖ai, P‖ = ‖ai, R‖ = 1.

(f) By (2.1) and (e),‖{u, ai}, V rR‖ ≥ 4|C| − ‖u,R‖. Using (b), this implies the second assertion, and

‖{u, ai}, C‖+ 4(|C| − 1) ≥ 4|C| − ‖u,R‖ implies the first assertion.

y
x z

aiu

(a)

y
z x

aia3−iu

(b)

Figure 2.2: Claim 2.2.3

Claim 2.2.4. |P | ≥ 3. In particular, a1a2 6∈ E(G).

Proof. Suppose |P | ≤ 2. Then ‖u,R‖ ≤ 1. As |L| ≥ 3, there is a bud c ∈ L r {a1, a2}. By Claim 2.2.3(f),

there exists C = z1 . . . ztz1 ∈ C such that ‖{c, a1}, C‖ = 4 and ‖{c, a2}, C‖ ≥ 3.

If ‖c, C‖ = 3 then a1c contradicts Claim 2.2.3(a). If ‖c, C‖ = 1 then ‖{a1, a2}, C‖ = 5, contradicting

Claim 2.2.3(d). Therefore, we assume ‖c, C‖ = 2 = ‖a1, C‖ and ‖a2, C‖ ≥ 1. By Claim 2.2.3(a), N(a1) ∪

N(a2) = N(c). So there exists zi ∈ N(a1) ∩ N(a2) and zj ∈ N(c) − zi. Then a1a2zia1, czjzj±1 beats C,P

by (O3).

Claim 2.2.5. Let c ∈ L− a1 − a2, C ∈ C, and i ∈ [2].

(a) ‖a1, C‖ = 3 if and only if ‖c, C‖ = 0, and if and only if ‖a2, C‖ = 3.

(b) There is at most one cycle D ∈ C with ‖ai, D‖ = 3.

(c) For every C ∈ C, ‖ai, C‖ ≥ 1 and ‖c, C‖ ≤ 2.

(d) If ‖{ai, c}, C‖ = 4 then ‖ai, C‖ = 2 = ‖c, C‖ .

Proof. (a) If ‖c, C‖ = 0 then by Claims 2.2.1 and 2.2.3(f), ‖ai, C‖ = 3. If ‖ai, C‖ ≥ 3 then by Claim 2.2.3(b),

‖c, C‖ ≤ 1. By Claim 2.2.3(f), ‖a3−i, C‖ ≥ 2, and by Claim 2.2.3(d), ‖c, C‖ = 0.

(b) As c ∈ L, ‖c,R‖ ≤ 1. Thus Claim 2.2.3(f) implies ‖c,D‖ = 0 for at most one cycle D ∈ C.

(c) Suppose ‖c, C‖ = 3. By Claim 2.2.3(a), ‖{a1, a2}, C‖ = 0. By Claims 2.2.4 and 2.2.3(d):

4k − 3 ≤ ‖{a1, a2}, R ∪ C ∪ (V −R− C)‖ ≤ 2 + 0 + 4(k − 2) = 4k − 6,
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a contradiction. So ‖c, C‖ ≤ 2. Thus by Claim 2.2.3(f), ‖ai, C‖ ≥ 1.

(d) Now (d) follows from (a).

Claim 2.2.6. R has no isolated vertices.

Proof. Suppose c ∈ L is isolated. Fix C ∈ C. By Claim 2.2.3(f), ‖{c, a1}, C‖ = 4. By Claim 2.2.5(d),

‖a1, C‖ = 2 = ‖c, C‖; so d(c) = 2(k − 1). By Claim 2.2.3(a), N(a1) ∩C = N(c) ∩C. Let w ∈ V (C) rN(c).

Then d(w) ≥ 4k− 3− d(c) = 2k− 1 = 2|C|+ 1. So, either ‖w,R‖ ≥ 1 or |N(w)∩D| = 3 for some D ∈ C. In

the first case, c(C − w)c beats C by (O4). In the second case, by 2.2.5(c) there exists some x ∈ N(a1) ∩D.

So c(C − w)c, w(D − x)w beats C,D by (O3).

Claim 2.2.7. L is an independent set.

Proof. Suppose c1c2 ∈ E(L). By Claim 2.2.4, c1, c2 /∈ P . By Claim 2.2.3(f) and using k ≥ 3, there is C ∈ C

with ‖{a1, c1}, C‖ = 4 and ‖{a1, c2}, C‖, ‖{a2, c1}, C‖ ≥ 3. By Claim 2.2.5(d), ‖a1, C‖ = 2 = ‖c1, C‖;

so ‖a2, C‖, ‖c2, C‖ ≥ 1. By Claim 2.2.3(a), N(a1) ∩ C,N(a2) ∩ C ⊆ N(c1) ∩ C. So there are distinct

x, y ∈ N(c1) ∩ C with xa1, xa2, ya1 ∈ E. If xc2 ∈ E then c1c2xc1, ya1Pa2 beats C,P by (O3). Else

a1Pa2xa1, c1(C − x)c2c1 beats C,P by (O1).

Claim 2.2.8. If |L| ≥ 3 then for some D ∈ C, ‖l, C‖ = 2 for every C ∈ C −D and every l ∈ L.

Proof. Suppose some D1, D2 ∈ C and l1, l2 ∈ L satisfy D1 6= D2 and ‖l1, D1‖ 6= 2 6= ‖l2, D2‖.

CASE 1: lj /∈ {a1, a2} for some j ∈ [2]. Say j = 1. For i ∈ [2]: ‖{ai, l1}, D1‖ 6= 4 by Claim 2.2.5(d);

‖{ai, l1}, D2‖ = 4 by Claim 2.2.3(f); ‖ai, D2‖ = 2 by Claim 2.2.5(d). So l2 /∈ {a1, a2}. By Claim 2.2.7,

l1l2 6∈ E(G). So Claim 2.2.5(c) yields the contradiction:

4k − 3 ≤ ‖{l1, l2}, R ∪D1 ∪D2 ∪ (V −R−D1 −D2)‖ ≤ 2 + 3 + 3 + 4(k − 3) = 4k − 4.

CASE 2: {l1, l2} ⊆ {a1, a2}. Let c ∈ L− l1 − l2. As above, ‖{l1, c}, D1‖ 6= 4, and so ‖c,D2‖ = 2 = ‖l1, D2‖.

This implies l1 6= l2. By Claim 2.2.5(a,c), ‖l2, D2‖ = 1. Thus ‖{l2, c}, D1‖ = 4; so ‖c,D1‖ = 2, and

‖l1, D1‖ = 1. With Claim 2.2.4, this yields the contradiction:

4k − 3 ≤ ‖{l1, l2}, R ∪D1 ∪D2 ∪ (V −R−D1 −D2)‖ ≤ 2 + 3 + 3 + 4(k − 3) = 4k − 4.

Claim 2.2.9. R is a subdivided star (possibly a path).
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Proof. Suppose not. Then we claim R has distinct leaves c1, d1, c2, d2 ∈ L such that c1Rd1 and c2Rd2 are

disjoint paths. Indeed, if R is disconnected then each component has two distinct leaves by Claim 2.2.6.

Else R is a tree. As R is not a subdivided star, it has distinct vertices s1 and s2 with degree at least three.

Deleting the edges and interior vertices of s1Rs2 yields disjoint trees containing all leaves of R. Let Ti be

the tree containing si, and pick ci, di ∈ Ti.

By Claim 2.2.8, using k ≥ 3, there is a cycle C ∈ C such that ‖l, C‖ = 2 for all l ∈ L. By Claim 2.2.3(a),

N(a1)∩C = N(l)∩C = N(a2)∩C =: {w1, w3} for l ∈ L− a1− a2. Then replacing C in C with w1c1Rd1w1

and w3c2Rd2w3 yields k disjoint cycles.

Claim 2.2.10. R is a path or a star.

r

p

a2

d

a1

(a)

r

p

a2

d

a1
w

(b)

r

p

l1

l2

a1
w

(c)

r

p

l1

l2

a1
w

(d)

Figure 2.3: Claim 2.2.10

Proof. By Claim 2.2.9, R is a subdivided star. If R is neither a path nor a star then there are vertices r, p, d

with ‖r,R‖ ≥ 3, ‖p,R‖ = 2, d ∈ L− a1 − a2 and (say) pa1 ∈ E. Then a2Rd is disjoint from pa1 (see Figure

2.3(a)). By Claim 2.2.5(c), d(d) ≤ 1 + 2(k − 1) = 2k − 1. So

‖p, V −R‖ ≥ 4k − 3− ‖p,R‖ − d(d) ≥ 4k − 5− (2k − 1) = 2k − 4 ≥ 2. (2.2)

In each of the following cases, R ∪ C has two disjoint cycles, contradicting (O1).

CASE 1: ‖p, C‖ = 3 for some C ∈ C. Then |C| = 3. By Claim 2.2.5(a), if ‖d,C‖ = 0 then ‖a1, C‖ =

3 = ‖a2, C‖. Then for w ∈ C, wa1pw and a2(C − w)a2 are disjoint cycles (see Figure 2.3(b)). Else by

Claim 2.2.5(c), ‖d,C‖, ‖a2, C‖ ∈ {1, 2}. By Claim 2.2.3(f), ‖{d, a2}, C‖ ≥ 3, so there are l1, l2 ∈ {a2, d}

with ‖l1, C‖ ≥ 1 and ‖l2, C‖ = 2; say w ∈ N(l1) ∩ C. If l2w ∈ E then wl1Rl2w and p(C − w)p are disjoint

cycles (see Figure 2.3(c)); else l1wpRl1 and l2(C − w)l2 are disjoint cycles (see Figure 2.3(d)).

CASE 2: There are distinct C1, C2 ∈ C with ‖p, C1‖ , ‖p, C2‖ ≥ 1. By Claim 2.2.8, for some i ∈ [2] and all

c ∈ L, ‖c, Ci‖ = 2. Let w ∈ N(p) ∩ Ci. If wa1 ∈ E then D := wpa1w is a cycle and G[(Ci − w) ∪ a2Rd]

contains cycle disjoint from D. Else, if w ∈ N(a2) ∪N(d), say w ∈ N(c), then a1(Ci −w)a1 and cwpRc are
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disjoint cycles. Else, by Claim 2.2.1 there exist vertices u ∈ N(a2)∩N(d)∩Ci and v ∈ N(a1)∩Ci−u. Then

ua2Rdu and a1v(Ci − u)wpa1 are disjoint cycles.

CASE 3: Otherwise. Then using (2.2), ‖p, V −R‖ = 2 = ‖p, C‖ for some C ∈ C. In this case, k = 3 and

d(p) = 4. By (H2), d(a2), d(d) ≥ 5. Say C = {C,D}. By Claim 2.2.3(b), ‖{a2, d}, D‖ ≤ 4. So

‖{a2, d}, C‖ = ‖{a2, d}, (V −R−D)‖ ≥ 10− 2− 4 = 4.

By Claim 2.2.5(c, d), ‖a2, C‖ = ‖d,C‖ = 2 and ‖a1, C‖ ≥ 1. Say w ∈ N(a1) ∩ C. If wp ∈ E then

dRa2(C−w)d contains a cycle disjoint from wa1pw. Else, by Claim 2.2.3(a) there exists x ∈ N(a2)∩N(d)∩C.

If x 6= w then xa2Rdx and wa1p(C − x)w are disjoint cycles. Else x = w, and xa2Rdx and p(C − w)p are

disjoint cycles.

Lemma 2.2.11. R is a path.

Proof. Suppose R is not a path. Then it is a star with root r and at least three leaves, any of which can play

the role of ai or a leaf in L − a1 − a2. Thus Claim 2.2.5(c) implies ‖l, C‖ ∈ {1, 2} for all l ∈ L and C ∈ C.

By Claim 2.2.8 there is D ∈ C such that for all l ∈ L and C ∈ C −D, ‖l, C‖ = 2. By Claim 2.2.3(f) there is

l ∈ L such that for all c ∈ L− l, ‖c,D‖ = 2. Fix distinct leaves l′, l′′ ∈ L− l.

Let Z = N(l′)−R and A = V r (Z ∪ {r}). By the first paragraph, every C ∈ C satisfies |Z ∩C| = 2. So

|A| = |G| − 2k + 1. For a contradiction, we show that A is independent.

Note A ∩R = L, so by Claim 2.2.7, A ∩R is independent. By Claim 2.2.3(a),

for all c ∈ L and for all C ∈ C, N(c) ∩ C ⊆ Z. (2.3)

So ‖L,A‖ = 0. By Claim 2.2.1(c), for all C ∈ C, C ∩ A is independent. Suppose, for a contradiction, A is

not independent. Then there exist distinct C1, C2 ∈ C, v1 ∈ A∩C1, and v2 ∈ A∩C2 with v1v2 ∈ E. Subject

to this choose C2 with ‖v1, C2‖ maximum. Let Z ∩ C1 = {x1, x2} and Z ∩ C2 = {y1, y2}.

CASE 1: ‖v1, C2‖ ≥ 2. Choose i ∈ [2] so that ‖v1, C2 − yi‖ ≥ 2. Then define C∗1 := v1(C2 − yi)v1,

C∗2 := l′x1(C1 − v1)x2l
′, and P ∗ := yil

′′rl (see Figure 2.4(a)). By (3.4), P ∗ is a path and C∗2 is a cycle. So

C∗1 , C
∗
2 , P

∗ beats C1, C2, P by (O3).

CASE 2: ‖v1, C2‖ ≤ 1. Then for all C ∈ C, ‖v1, C‖ ≤ 2 and ‖v1, C2‖ = 1; so ‖v1, C‖ = ‖v1, C2 ∪ (C −C2)‖ ≤

1 + 2(k − 2) = 2k − 3. By (3.4) ‖v1, L‖ = 0 and d(l) ≤ 2k − 1. So by (H2), ‖v1, r‖ = ‖v1, R‖ =

(4k − 3) − ‖v1, C‖ − d(l) ≤ (4k − 3) − (2k − 3) − (2k − 1) = 1, and v1r ∈ E. Let C∗1 := l′x1(C1 − v1)x2l
′,

C∗2 := l′′y1(C2−v2)y2l
′′, and P ∗ := v2v1rl (see Figure 2.4(b)). Then C∗1 , C

∗
2 , P

∗ beats C1, C2, P by (O3).
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Figure 2.4: Claim 2.2.10

2.2.2 |R| = 3

By Lemma 2.2.11, R is a path, and by Claim 2.2.4, |R| ≥ 3. Next we prove |R| = 3. First, we prove a claim

that will also be useful in later sections.

Claim 2.2.12. Let C be a cycle, P = v1v2 . . . vs be a path, and 1 < i < s. At most one of the following two

statements holds.

(1) (a) ‖x, v1Pvi−1‖ ≥ 1 for all x ∈ C or (b) ‖x, v1Pvi−1‖ ≥ 2 for two x ∈ C;

(2) (c) ‖y, viPvs‖ ≥ 2 for some y ∈ C or (d) N(vi) ∩ C 6= ∅ and ‖vi+1Pvs, C‖ ≥ 2.

Proof. Suppose (1) and (2) hold. If (c) holds then the disjoint graphs G[viPvs + y] and G[v1Pvi−1 ∪C − y]

contain cycles. Else (d) holds, but (c) fails; say z ∈ N(vi) ∩ C and z /∈ N(vi+1Pvs). If (a) holds then

G[v1Pvi + z] and G[vi+1Pvs ∪C − z] contain cycles. If (b) holds then G[v1Pvi−1 +w] and G[viPvs ∪C −w]

contain cycles, where ‖w, v1Pvi−1‖ ≥ 2.

Suppose, for a contradiction, |R| ≥ 4. Say R = a1a
′
1a
′′
1 . . . a

′′
2a
′
2a2. It is possible that a′′1 ∈ {a′′2 , a′2}, etc.

Set ei := aia
′
i = {ai, a′i} and F := e1 ∪ e2.

Claim 2.2.13. If C ∈ C, h ∈ [2] and ‖eh, C‖ ≥ ‖e3−h, C‖ then ‖C,F‖ ≤ 7; if ‖C,F‖ = 7 then

|C| = 3, ‖ah, C‖ = 2, ‖a′h, C‖ = 3, ‖a′′hRa3−h, C‖ = 2, and N(ah) ∩ C = N(e3−h) ∩ C.

Proof. We will repeatedly use Claim 2.2.12 to obtain a contradiction to (O1) by showing that G[C ∪ R]

contains two disjoint cycles. Suppose ‖C,F‖ ≥ 7 and say h = 1. Then ‖e1, C‖ ≥ 4. So there is x ∈ e1 with

‖x,C‖ ≥ 2. Thus |C| ≤ 4 by Claim 2.2.1, and if |C| = 4 then no vertex in C has two adjacent neighbors in

F . So (1) holds with v1 = a1 and vi = a′2, even when |C| = 4.
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If ‖e1, C‖ = 4, as is the case when |C| = 4, then ‖e2, C‖ ≥ 3. If |C| = 4 there is a cycle D := yza′2a2y for

some y, z ∈ C. As (a) holds, G[a1Ra
′′
2 ∪ C − y − z] contains another disjoint cycle. So |C| = 3. As (c) must

fail with vi = a′2, (a) and (c) hold for vi = a′1 and v1 = a2, a contradiction. So ‖e1, C‖ ≥ 5. If ‖a1, C‖ = 3

then (a) and (c) hold with v1 = a1 and vi = a′1. So ‖a1, C‖ = 2, ‖a′1, C‖ = 3 and ‖a′′1Ra2, C‖ ≥ 2. If there

is b ∈ P − e1 and c ∈ N(b) ∩ V (C) r N(a1) then G[a′1Ra2 + c] and G[a1(C − c)a1] both contain cycles.

So for every b ∈ R − e1, N(b) ∩ C ⊆ N(a1). Then if ‖a′′1Ra2, C‖ ≥ 3, (c) holds for v1 = a1 and v1 = a′′1 ,

contradicting that (1) holds. So ‖a′′1Ra2, C‖ = ‖e1, C‖ = 2 and N(a1) = N(e2).

Lemma 2.2.14. |R| = 3 and m := max{|C| : C ∈ C} = 4.

Proof. Let t = |{C ∈ C : ‖F,C‖ ≤ 6}| and r = |{C ∈ C : |C| ≥ 5}|. It suffices to show r = 0 and |R| = 3:

then m ≤ 4, and |V (C)| = |G| − |R| ≥ 3(k − 1) + 1 implies some C ∈ C has length 4. Choose R so that:

(P1) R has as few low vertices as possible, and subject to this

(P2) R has a low end if possible.

Let C ∈ C. By Claim 2.2.13, ‖F,C‖ ≤ 7. By Claim 2.2.1, if |C| ≥ 5 then ‖a,C‖ ≤ 1 for all a ∈ F ; so

‖F,C‖ ≤ 4. Thus r ≤ t. Hence

2(4k − 3) ≤ ‖F, (V rR) ∪R‖ ≤ 7(k − 1)− t− 2r + 6 ≤ 7k − t− 2r − 1. (2.4)

So 5− k ≥ t+ 2r ≥ 3r ≥ 0. Since k ≥ 3, this yields 3r ≤ t+ 2r ≤ 2, so r = 0 and t ≤ 2, with t = 2 only if

k = 3.

CASE 1: k − t ≥ 3. That is, there exist distinct cycles C1, C2 ∈ C with ‖F,Ci‖ ≥ 7. In this case, t ≤ 1:

if k = 3 then C = {C1, C2} and t = 0; if k > 3 then t < 2. For both i ∈ [2], Claim 2.2.13 yields ‖F,Ci‖ = 7,

|Ci| = 3, and there is xi ∈ V (Ci) with ‖xi, R‖ = 1 and ‖y,R‖ = 3 for both y ∈ V (Ci − xi). Moreover,

there is a unique index j = β(i) ∈ [2] with
∥∥a′j , Ci∥∥ = 3. For j ∈ [2], put Ij := {i ∈ [2] : β(i) = j}; that

is, Ij = {i ∈ [2] : ‖a′j , Ci‖ = 3}. Then V (Ci) − xi = N(aβ(i)) ∩ Ci = N(e3−β(i)) ∩ Ci. As xiaβ(i) /∈ E,

one of xi, aβ(i) is high. As we can switch xi and aβ(i) (by replacing Ci with aβ(i)(Ci − xi)aβ(i) and R with

R− aβ(i) + xi), we may assume aβ(i) is high.

Suppose Ij 6= ∅ for both j ∈ [2]; say ‖a′1, C1‖ = ‖a′2, C2‖ = 3. Then for all B ∈ C and j ∈ [2], aj is high,

and either ‖aj , B‖ ≤ 2 or ‖F,B‖ ≤ 6. So since t ≤ 1,

2k − 1 ≤ d(aj) = ‖aj , B ∪ F‖+ ‖aj , C −B‖ ≤ ‖aj , B‖+ 1 + 2(k − 2) + t ≤ 2k − 2 + ‖aj , B‖.

Thus N(aj) ∩ B 6= ∅ for all B ∈ C. Let yj ∈ N(a3−j) ∩ Cj . Then using Claim 2.2.13, yj ∈ N(aj), and

a′1(C1 − y1)a′1, a
′
2(C2 − y2)a′2, a1y1a2y2a1 beats C1, C2 by (O1).
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Otherwise, say I1 = ∅. If B ∈ C with ‖F,B‖ ≤ 6 then ‖e1, B‖+ 2‖a2, B‖ ≤ ‖F,B‖+ ‖a2, B‖ ≤ 9. Thus,

using Claim 2.2.13,

2(4k − 3) ≤ d(a1) + d(a′1) + 2d(a2) = 5 + ‖e1, C‖+ 2‖a2, C‖ ≤ 5 + 6(k − 1− t) + 9t

⇒ 2k ≤ 5 + 3t.

Since k − t ≥ 3 (by the case), we see 3(k − t) + (5 + 3t) ≥ 3(3) + 2k and so k ≥ 4. Since t ≤ 1, in fact

k = 4 and t = 1, and equality holds throughout: say B is the unique cycle in C with ‖F,B‖ ≤ 6. Then

‖a2, B‖ = ‖e1, B‖ = 3. Using Claim 2.2.13, d(a1) +d(a′1) = ‖e1, R‖+ ‖e1, C −B‖+ ‖e1, B‖ = 3 + 4 + 3 = 10,

and d(a1), d(a2) ≥ (4k − 3) − d(a2) = 13 − (1 + 4 + 3) = 5, so d(a1) = d(a2) = 5. Note a1 and a2 share no

neighbors: they share none in R because R is a path, they share none in C − B by Claim 2.2.13, and they

share no neighbor b ∈ B lest a1a
′
1ba1 and a2(B − b)a2 beat B by (O1). Thus every vertex in V − e1 is high.

Since ‖e1, B‖ = 3, first suppose ‖a1, B‖ ≥ 2, say B − b ⊆ N(a1). Then a1(B − b)a1, a′1a
′
2a1b beat B,R

by (P1) (see Figure 2.5(a)). Now suppose ‖a′1, B‖ ≥ 2, this time with B − b ⊆ N(a′1). Since d(a1) = 5

and ‖a1, R ∪ B‖ ≤ 2, there exists c ∈ C ∈ C − B with a1c ∈ E(G). Now c ∈ N(a2) by Claim 2.2.13, so

a′1(B − b)a′1, a′2(C − c)a′2, and a1ca2b beat B,C, and R by (P1) (see Figure 2.5(b)).

a1 a′1 a′2
a2

b

(a)

a1 a′1 a′2
a2

b

c

(b)

Figure 2.5: Lemma 2.2.14, Case 1

CASE 2: k − t ≤ 2. That is, ‖F,C‖ ≤ 6 for all but at most one C ∈ C. Then, since 5− k ≥ t, k = 3 and

‖F, V ‖ ≤ 19. Say C = {C,D}, so ‖F,C ∪D‖ ≥ 2(4k − 3)− ‖F,R‖ = 2(4 · 3− 3)− 6 = 12. By Claim 2.2.13,

‖F,C‖, ‖F,D‖ ≤ 7. So ‖F,C‖, ‖F,D‖ ≥ 5. If |R| ≥ 5, then for the (at most two) low vertices in R, we

can choose distinct vertices in R not adjacent to them. So ‖R, V − R‖ ≥ 5|R| − 2 − ‖R,R‖ = 3|R|. Thus

we may assume ‖R,C‖ ≥ d3|R|/2e ≥ |R| + 3 ≥ 8. Let w′ ∈ C be such that q = ‖w′, R‖ = max{‖w,R‖ :

w ∈ C}. Let N(w′) ∩ R = {vi1 , . . . , viq} with i1 < . . . < iq. Suppose q ≥ 4. If ‖v1Rvi2 , C − w′‖ ≥ 2 or

‖vi2+1Rvs, C − w′‖ ≥ 2, then G[C ∪ R] has two disjoint cycles. Otherwise, ‖R,C − w′‖ ≤ 2, contradicting
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‖R,C‖ ≥ |R| + 3. Similarly, if q = 3, then ‖v1Rvi2−1, C − w′‖ ≤ 1 and ‖vi2+1Rvs, C − w′‖ ≤ 1 yielding

‖vi2 , C‖ = ‖R,C‖ − ‖(R − vi2), C − w′‖ − ‖R − vi2 , w
′‖ ≥ (|R| + 3) − 2 − (3 − 1) ≥ 4, a contradiction

to Claim 2.2.1(a). So q ≤ 2 and hence |R| + 3 ≤ ‖R,C‖ ≤ 2|C|. It follows that |R| = 5, |C| = 4 and

‖w,R‖ = 2 for each w ∈ C. This in turn yields that G[C ∪ R] has no triangles and ‖vi, C‖ ≤ 2 for

each i ∈ [5]. By Claim 2.2.13, ‖F,C‖ ≤ 6, so ‖v3, C‖ = 2. Thus we may assume that for some w ∈ C,

N(w) ∩ R = {v1, v3}. Then ‖e2, C‖ = ‖e2, C − w‖ ≤ 1, lest there exist a cycle disjoint from wv1v2v3w in

G[C ∪R]. So, ‖e1, C‖ ≥ 8− 1− 2 = 5, a contradiction to Claim 2.2.1(b). This yields |R| ≤ 4.

Claim 2.2.15. Either a1 or a2 is low.

Proof. Suppose a1 and a2 are high. Then since ‖R, V ‖ ≤ 19, we may assume a′1 is low. Suppose there is

c ∈ C with ca2 ∈ E and ‖a1, C − c‖ ≥ 2. If a′1c ∈ E, then R ∪ C contains two disjoint cycles; so a′1c /∈ E

and hence c is high. Thus either a1(C − c)a1 is shorter than C or the pair a1(C − c)a1, ca2a
′
2a
′
1 beats

C,R by (P2). Thus if ca2 ∈ E then ‖a1, C − c‖ ≤ 1. As a2 is high, ‖a2, C‖ ≥ 1 and hence ‖a1, C‖ =

‖a1, C r N(a2)‖ + ‖a1, N(a2)‖ ≤ 2. Similarly, ‖a1, D‖ ≤ 2. Since a1 is high, ‖a1, C‖ = ‖a1, D‖ = 2, and

d(a1) = 5. Hence

N(a2) ∩ C ⊆ N(a1) ∩ C and N(a2) ∩D ⊆ N(a1) ∩D. (2.5)

As a2 is high, d(a2) = 5 and in (2.5) equalities hold. Also d(a′1) = 4 ≤ d(a′2).

If there are c ∈ C and i ∈ [2] with cai, ca
′
i ∈ E then by (O2), |C| = 3. Also ca′iaic, a

′
3−ia3−i(C − c)

beats C,R by either (P1) or (P2). (Recall N(a1) ∩ C = N(a2) ∩ C and neighbors of a2 in C are high.) So

N(ai)∩N(a′i) = ∅. Thus the set N(a1)−R = N(a2)−R contains no low vertices. Also, if ‖a′1, C‖ ≥ 1 then

|C| = 3: else C has the form c1c2c3c4c1, where a1c1, a1c3 ∈ E, and so a1a
′
1c1c2a1, c3c4a2a

′
2 beats C,R by

either (P1) or (P2). Thus |C| = 3 and a′1c ∈ E for some c ∈ V (C)−N(a1). If ‖a′2, C‖ ≥ 1, we have disjoint

cycles ca′1a
′
2c, a1(C − c)a1 and D. Then ‖a′1, C‖ = 0, so d(a′1) ≤ 2 + |D rN(a1)| ≤ 4. Now a′1 and a′2 are

symmetric, and we have proved that ‖a′1, C‖+‖a′2, C‖ ≤ 1. Similarly, ‖a′1, D‖+‖a′2, D‖ ≤ 1, a contradiction

to d(a′1), d(a′2) ≥ 4.

By Claim 2.2.15, we can choose notation so that a1 is low.

Claim 2.2.16. If a′1 is low then each v ∈ V r e1 is high.

Proof. Suppose v ∈ V − e1 is low. Since a1 is low, all vertices in R− e1 are high, so v ∈ C for some C ∈ C.

Then C ′ := ve1v is a cycle and so by (O2), |C| = 3. Since a2 is high, ‖a2, C‖ ≥ 1. As v is low, va2 /∈ E.

Since a′1 is low, it is adjacent to the low vertex v, and ‖a′1, C − v‖ ≤ 1. So C ′, a′2a2(C − v) beats C,R by

(P1).
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Claim 2.2.17. If |C| = 3 and ‖e1, C‖, ‖e2, C‖ ≥ 3, then either

(a) ‖c, e1‖ = 1 = ‖c, e2‖ for all c ∈ V (C) or

(b) a′1 is high and there is c ∈ V (C) with ‖c,R‖ = 4 and C − c has a low vertex.

Proof. If (a) fails then ‖c, ei‖ = 2 for some i ∈ [2] and c ∈ C. If ‖e3−i, C − c‖ ≥ 2 then there is a cycle

C ′ ⊆ C ∪ e3−i − c, and R ∪ C contains disjoint cycles ceic and C ′. Else,

‖c,R‖ = ‖c, ei‖+ (‖C, e3−i‖ − ‖C − c, e3−i‖) ≥ 2 + (3− 1) = 4 = |R|.

If C − c has no low vertices then ce1c, e2(C − c) beats C,R by (P1). So C − c contains a low c′. If a′1 is low

then c′a′1a1c
′ and ca2a

′
2c are disjoint cycles. So (b) holds.

CASE 2.1: |D| = 4. By (O2), G[R ∪ D] does not contain a 3-cycle. So 5 ≤ d(a2) ≤ 3 + ‖a2, C‖ ≤ 6.

Thus d(a1), d(a′1) ≥ 3.

Suppose ‖e1, D‖ ≥ 3. Pick v ∈ N(a1) ∩D with minimum degree, and v′ ∈ N(a′1) ∩D. Since N(a1) ∩D

and N(a′1) ∩ D are nonempty, disjoint and independent, vv′ ∈ E. Say D = vv′ww′v. As D = K2,2

and low vertices are adjacent, D′ := a1a
′
1v
′va1 is a 4-cycle and v is the only possible low vertex in D.

Note a1w /∈ E: else a1ww
′va1, v′a′1a

′
2a2 beats D,R by (P1). As ‖e1, D‖ ≥ 3, a′1w

′ ∈ E. Also note

‖e2, ww′‖ = 0: else G[a2, a
′
2, w, w

′] contains a 4-path R′, and D′, R′ beats D,R by (P1). Similarly, replacing

D′ by D′′ := a1a
′
1w
′va1 yields ‖e2, v′‖ = 0. So ‖e1 ∪ e2, D‖ ≤ 3 + 1 = 4, a contradiction. Thus

‖e1, D‖ ≤ 2 and so ‖R,D‖ ≤ 6. (2.6)

Suppose d(a′1) = 3. Then ‖a′1, D‖ ≤ 1. So there is uv ∈ E(D) with ‖a′1, uv‖ = 0. Thus d(u), d(v), d(a2) ≥

6, and ‖a2, C‖ = 3. So |C| = 3, |G| = 11, and there is w ∈ N(u)∩N(v). If w ∈ C put C ′ = a2(C−w)a2; else

C ′ = C. In both cases, |C ′| = |C| and |wuvw| = 3 < |D|, so C ′, wuvw beats C,D by (O2). Thus d(a′1) ≥ 4.

If d(a1) = 3 then d(a2), d(a′2) ≥ 9− 3 = 6, and ‖a2, C‖ ≥ 3. By (2.6),

‖R,C‖ ≥ 3 + 4 + 6 + 6− ‖R,R‖ − ‖R,D‖ ≥ 19− 6− 6 = 7,

contradicting Claim 2.2.13. So d(a1) = 4 ≤ d(a′1) and by (2.6), ‖e1, C‖ ≥ 3. Thus (2.6) fails for C in place

of D; so |C| = 3. As ‖a2, C‖ ≥ 2 and ‖a′2, C‖ ≥ 1, Claim 2.2.17 implies either (a) or (b) of Claim 2.2.17

holds. If (a) holds then (a) and (d) of Claim 2.2.12 both hold, and so G[C ∪R] has two disjoint cycles. Else,

Claim 2.2.17 gives a′1 is high and there is c ∈ C with ‖c,R‖ = 4. As a′1 is high, ‖R,C‖ ≥ 7. So ‖c,R‖ = 4

contradicts Lemma 2.2.13.
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CASE 2.2: |C| = |D| = 3 and ‖R, V ‖ = 18. Then d(a1) + d(a′2) = 9 = d(a′1) + d(a2), a1 and a′1 are low,

and by Claim 2.2.16 all other vertices are high. Moreover, d(a′1) ≤ d(a1), since

18 = ‖R, V ‖ = d(a′1)− d(a1) + 2d(a1) + d(a′2) + d(a2) ≥ d(a′1)− d(a1) + 9 + 9.

Suppose d(a′1) = 2. Then d(v) ≥ 7 for all v ∈ V −a1a′1a′2. In particular, C∪D ⊆ N(a2). If d(a1) = 2 then

d(a′2) ≥ 7, and G = Y1. Else ‖a1, C ∪D‖ ≥ 2. If there is c ∈ C with V (C)− c ⊆ N(a1), then a1(C − c)a1,

a′1a
′
2a2c beats C,R by (P1). Else d(a1) = 3, d(a′2) = 6, and there are c ∈ C and d ∈ D with c, d ∈ N(a1). If

ca′2 ∈ E then C ∪ R contains disjoint cycles a1ca
′
2a
′
1a1 and a2(C − c)a2, so assume not. Similarly, assume

da′2 /∈ E. Since d(d) ≥ 7 and a′1, a
′
2 6∈ N(d), cd ∈ E(G). Then there are three disjoint cycles a′2(C − c)a′2,

a2(D − d)a2, and a1cda1. So d(a′1) ≥ 3.

Suppose d(a′1) = 3. Say a′1v ∈ E for some v ∈ D. As d(a2) ≥ 6, ‖a2, D‖ ≥ 2. So e2 + D − v contains a

4-path R′. Thus a1v /∈ E: else ve1v,R
′ beats D,R by (P1). Also ‖a1, D − v‖ ≤ 1: else a1(D− v)a1, va

′
1a
′
2a2

beats D,R by (P1). So ‖a1, D‖ ≤ 1.

Suppose ‖a1, C‖ ≥ 2. Pick c ∈ C with C − c ⊆ N(a1). Then (*) a2c /∈ E: else a1(C − c)a1, a′1a
′
2a2c

beats C,R by (P1). So ‖a2, C‖ = 2 and ‖a2, D‖ = 3. Also a1c /∈ E: else picking a different c violates (*).

As a′1c /∈ E, ‖c,D‖ = 3 and a′2c ∈ E(G). So a1(C − c)a1, a2(D − v)a2 and cva′1a
′
2c are disjoint cycles.

Otherwise, ‖a1, C‖ ≤ 1 and d(a1) ≤ 3. Then d(a1) = 3 since d(a1) ≥ d(a′1).

Now d(a′2) = 6. Say D = vbb′v and a1b ∈ E. As b′a′1 /∈ E, d(b′) ≥ 9 − 3 = 6. Since ‖e2, V ‖ = 12, a2

and a′2 have three common neighbors. If one is b′ then D′ := a1a
′
1vba1, b′e2b′, and C are disjoint cycles; else

‖b′, C‖ = 3 and there is c′ ∈ C with ‖c′, e2‖ = 2. Then D′, c′e2c′ and b′(C − c′)b′ are disjoint cycles. So

d(a′1) = 4.

Since a1 is low and d(a1) ≥ d(a′1), d(a1) = d(a′1) = 4 and ‖{a1, a′1}, C ∪ D‖ = 5, so we may assume

‖e1, C‖ ≥ 3. If ‖e2, C‖ ≥ 3, then because a′1 is low, Claim 2.2.17(a) holds. So V (C) ⊆ N(e1) and there is

x ∈ e1 = xy with ‖x,C‖ ≥ 2. First suppose ‖x,C‖ = 3. As x is low, x = a1. Pick c ∈ N(a2) ∩ C, which

exists because ‖a2, C ∪D‖ ≥ 4. Then a1(C − c)a1, a′1a
′
2a2c beats C,R by (P1). Now suppose ‖x,C‖ = 2.

Let c ∈ C rN(x). Then x(C − c)x, yce2 beats C,R by (P1).

CASE 2.3: |C| = |D| = 3 and ‖R, V ‖ = 19. Say ‖C,R‖ = 7 and ‖D,R‖ = 6.

CASE 2.3.1: a′1 is low. Then ‖a′1, C ∪ D‖ ≤ 4 − ‖a′1, R‖ = 2, so by Claim 2.2.13 ‖e2, C‖ = 5 with

‖a2, C‖ = 2. Then 5 ≤ d(a2) ≤ 6.

If d(a2) = 5 then d(a1) = d(a′1) = 4 and d(a′2) = 6. So ‖a2, D‖ = 2 and ‖a′2, D‖ = 1. Say D = b1b2b3b1,

where a2b2, a2b3 ∈ E. As a′1 is low, (a) of Claim 2.2.17 holds. So ‖b1, a1a′1a′2‖ = 2, and there is a cycle

D′ ⊆ G[b1a1a
′
1a
′
2]. Then a2(D − b1)a2 and D′ are disjoint.
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If d(a2) = 6 then ‖a2, D‖ = 3. Let c1 ∈ C − N(a2). By Claim 2.2.13, ‖c1, R‖ = 1, so c1 is high, and

‖c1, D‖ ≥ 2. If ‖a′2, D‖ ≥ 1, then (a) and (d) hold in Claim 2.2.12 for v1 = a2 and vi = a′2, so G[D ∪ c1a′2a2]

has two disjoint cycles, and c2e1c3c2 contains a third. So assume ‖a′2, D‖ = 0, and so d(a′2) = 5. Thus

d(a1) = d(a′1) = 4. Again, ‖e1, D‖ = 3 = ‖a2, D‖. So there are x ∈ e1 and b ∈ V (D) with D− b ⊆ N(x). As

a′1 is low and has two neighbors in R, if ‖x,D‖ = 3 then x = a1. Anyway, using Claim 2.2.17, G[R+ b− x]

contains a 4-path R′, and x(D − b)x, R′ beats D,R by (P1).

CASE 2.3.2: a′1 is high. Since 19 = ‖R, V ‖ ≥ d(a1) + d(a′1) + 2(9− d(a1)) ≥ 23− d(a1), we get d(a1) = 4

and d(a′1) = d(a′2) = d(a2) = 5. Choose notation so that C = c1c2c3c1, D = b1b2b3b1, and ‖c1, R‖ = 1. By

Claim 2.2.13, there is i ∈ [2] with ‖ai, C‖ = 2, ‖a′i, C‖ = 3, and aic1 /∈ E. If i = 1 then every low vertex is

in N(a1) − a′1 ⊆ D ∪ C ′, where C ′ = a1c2c3a1. So C ′, c1a′1a
′
2a2 beats C,R by (P1). Thus let i = 2. Now

‖a2, C‖ = 2 = ‖a2, D‖.

Say a2b2, a2b3 ∈ E. Also ‖a′2, D‖ = 0 and ‖e1, D‖ = 4. So ‖bj , e1‖ = 2 for some j ∈ [3]. If j = 1 then

b1e1b1 and a2b2b3a2 are disjoint cycles. Else, say j = 2. By inspection, all low vertices are contained in

{a1, b1, b3}. If b1 and b3 are high then b2e1b2, b1b3e2 beats D,R by (P1). Else there is a 3-cycle D′ ⊆ G[D+a1]

that contains every low vertex of G. Pick D′ with b1 ∈ D′ if possible. If b2 /∈ D′ then D′ and b2a
′
1a
′
2a2b2 are

disjoint cycles. If b3 /∈ D′ then D′, b3a2a′2a
′
1 beats D,R by (P1). Else b1 /∈ D′, a1b1 /∈ E, and b1 is high. If

b1a
′
1 ∈ E then D′, b1a′1a

′
2a2 beats D,R by (P1). Else, ‖b1, C‖ = 3. So D′, b1c1c2b1, and c3e2c3 are disjoint

cycles.

2.2.3 Key Lemma

Now |R| = 3; say R = a1a
′a2. By Lemma 2.2.14 the maximum length of a cycle in C is 4. Fix C =

w1 . . . w4w1 ∈ C.

Lemma 2.2.18. If D ∈ C with ‖R,D‖ ≥ 7 then |D| = 3, ‖R,D‖ = 7 and G[R ∪D] = K6 −K3.

Proof. Since ‖R,D‖ ≥ 7, there exists a ∈ R with ‖a,D‖ ≥ 3. So |D| = 3 by Claim 2.2.1. If ‖ai, D‖ = 3

for any i ∈ [2], then (a) and (c) in Claim 2.2.12 hold, violating (O1). Then ‖a1, D‖ = ‖a2, D‖ = 2 and

‖a′, D‖ = 3. If G[R ∪ D] 6= K6 − K3 then N(a1) ∩ D 6= N(a2) ∩ D. Then there is w ∈ N(a1) ∩ D with

‖a2, D − w‖ = 2. Then wa1a
′w and a2(D − w)a2 are disjoint cycles.

Lemma 2.2.19 (Key Lemma). Let D ∈ C with D = z1 . . . ztz1. If ‖C,D‖ ≥ 8 then ‖C,D‖ = 8 and

W := G[C ∪D] ∈ {K4,4, K1 ∨K3,3, K3 ∨ (K1 +K3)}.

Proof. First suppose |D| = 4. Suppose
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(*) W contains two disjoint cycles T and C ′ with |T | = 3.

Then C′ := C −C −D + T +C ′ is at least as good as C. So by Lemma 2.2.14, |C ′| ≤ 4. Thus C′ beats C by

(O2).

CASE 1: ∆(W ) = 6. By symmetry, assume dW (w4) = 6. Then ‖{zi, zi+1}, C − w4‖ ≥ 2 for some i ∈ {1, 3}.

So (*) holds with T = w4z4−iz5−iw4.

CASE 2: ∆(W ) = 5. Say z1, z2, z3 ∈ N(w1). Then ‖{zi, z4}, C − w1‖ ≥ 2 for some i ∈ {1, 3}. So (*) holds

with T = w1z4−iz2w1.

CASE 3: ∆(W ) = 4. Then W is regular. If W has a triangle then (*) holds. Else, say w1z1, w1z3 ∈ E.

Then z1, z3 6∈ N(w2) ∪N(w4), so z2, z4 ∈ N(w2) ∪N(w4), and z1, z3 ∈ N(w3).

Now, suppose |D| = 3.

CASE 1: dW (zh) = 6 for some h ∈ [3]. Say h = 3. If wi, wi+1 ∈ N(zj) for some i ∈ [4] and j ∈ [2], then

z3wi+2wi+3z3, zjwiwi+1zj beats C,D by (O2). Else for all j ∈ [2], ‖zj , C‖ = 2, and the neighbors of zj in

C are nonadjacent. If wi ∈ N(z1)∩N(z2)∩C, then z3wi+1wi+2z3, z1z2wiz1 are preferable to C,D by (O2).

Wence W = K1 ∨K3,3.

CASE 2: dW (zh) ≤ 5 for every h ∈ [3]. Say d(z1) = 5 = d(z2), d(z3) = 4, and w1, w2, w3 ∈ N(z1). If

N(z1)∩C 6= N(z2)∩C then W−z3 contains two disjoint cycles, preferable to C,D by (O2); if wi ∈ N(z3) for

some i ∈ {1, 3} then W −w4 contains two disjoint cycles. So N(z3) = {w2, w4}, and so W = K3∨(K1 +K3),

where V (K1) = {w4}, w2z1z2w2 = K3, and V (K3) = {w1, w3, z3}.

Claim 2.2.20. For D ∈ C, if ‖{w1, w3}, D‖ ≥ 5 then ‖C,D‖ ≤ 6. If also |D| = 3 then ‖{w2, w4}, D‖ = 0.

Proof. Assume not. Let D = z1 . . . ztz1. Then ‖{w1, w3}, D‖ ≥ 5 and ‖C,D‖ ≥ 7. Say ‖w1, D‖ ≥ ‖w3, D‖,

{z1, z2, z3} ⊆ N(w1), and zl ∈ N(w3).

Suppose ‖w1, D‖ = 4. Then |D| = 4. If ‖zh, C‖ ≥ 3 for some h ∈ [4] then there is a cycle B ⊆

G[w2, w3, w4, zh]; so B, w1zh+1zh+2w1 beats C,D by (O2). Else there are j ∈ {l − 1, l + 1} and i ∈ {2, 3, 4}

with ziwj ∈ E. Then zlzj [wiw3]zl, w1(D − zl − zj)w1 beats C,D by (O2), where [wiw3] = w3 if i = 3.

Else, ‖w1, D‖ = 3. By assumption, there is i ∈ {2, 4} with ‖wi, D‖ ≥ 1. If |D| = 3, applying Claim 2.2.12

with P := w1wiw3 and cycle D yields two disjoint cycles in (D ∪C)−w6−i, contradicting (O2). So suppose

|D| = 4. Because w1z1z2w1 and w1z2z3w1 are triangles, there do not exist cycles in G[{wi, w3, z3, z4}] or

G[{wi, w3, z1, z4}] by (O2). Then ‖{wi, w3}, {z3, z4}‖, ‖{wi, w3}, {z1, z4}‖ ≤ 1. Since ‖{wi, w3}, D‖ ≥ 3,

one has a neighbor in z2. If both are adjacent to z2, then wiw3z2wi, w1z1z4z3w1 beat C,D by (O2). Then

‖{wi, w3}, z2‖ = 1 = ‖{wi, w3}, z1‖ = ‖{wi, w3}, z3‖. Let zm be the neighbor of wi. Then wiw1zmwi,

w3(D − zm)w3 beat C,D by (O2).
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Suppose |D| = 3 and ‖{w1, w3}, D‖ ≥ 5. If ‖{w2, w4}, D‖ ≥ 1, then C ∪D contains two triangles, and

these are preferable to C,D by (O2).

For v ∈ N(C), set type(v) = i ∈ [2] if N(v) ∩ C ⊆ {wi, wi+2}. Call v light if ‖v, C‖ = 1; else v is heavy.

For D = z1 . . . ztz1 ∈ C, put H := H(D) := G[R ∪D].

Claim 2.2.21. If ‖{a1, a2}, D‖ ≥ 5 then there exists i ∈ [2] such that

(a) ‖C,H‖ ≤ 12 and ‖{wi, wi+2}, H‖ ≤ 4;

(b) ‖C,H‖ = 12;

(c) N(wi) ∩H = N(wi+2) ∩H = {a1, a2} and N(w3−i) ∩H = N(w5−i) ∩H = V (D) ∪ {a′}.

Proof. By Claim 2.2.1, |D| = 3. Choose notation so that ‖a1, D‖ = 3 and z2, z3 ∈ N(a2).

(a) Using that {w1, w3} and {w2, w4} are independent and Lemma 2.2.19:

‖C,H‖ = ‖C, V − (V −H)‖ ≥ 2(4k − 3)− 8(k − 2) = 10. (2.7)

Let v ∈ V (H). As K4 ⊆ H, H−v contains a 3-cycle. If C+v contains another 3-cycle then these 3-cycles beat

C,D by (O2). So type(v) is defined for all v ∈ N(C) ∩H, and ‖C,H‖ ≤ 12. If only five vertices of H have

neighbors in C then there is i ∈ [2] such that at most two vertices in H have type i. So ‖{wi, wi+2}, H‖ ≤ 4.

Else every vertex in H has a neighbor in C. By (2.7), H has at least four heavy vertices.

Let H ′ be the spanning subgraph of H with xy ∈ E(H ′) iff xy ∈ E(H) and H−{x, y} contains a 3-cycle.

If xy ∈ E(H ′) then N(x)∩N(y)∩C = ∅ by (O2). So if x and y have the same type they are both light. By

inspection, H ′ ⊇ z1a1a′a2z2 + a2z3.

Let type(a2) = i. If a2 is heavy then its neighbors a′, z2, z3 have type 3− i. Either z1, a1 are both light

or they have different types. Anyway, ‖{wi, wi+2}, H‖ ≤ 4. Else a2 is light. Then because there are at least

four heavy vertices in H, at least one of z1, a1 is heavy and so they have different types. Also any type-i

vertex in a′, z2, z3 is light, but at most one vertex of a, z2, z3 is light because there are at most two light

vertices in H. So ‖{wi, wi+2}, H‖ ≤ 4.

(b) By (a), there is i with ‖{wi, wi+2}, H‖ ≤ 4; thus

‖{wi, wi+2}, V −H‖ ≥ (4k − 3)− 4 = 4(k − 2) + 1.

So ‖{wi, wi+2}, D′‖ ≥ 5 for some D′ ∈ C − C −D. By (a), Claim 2.2.20, and Lemma 2.2.19,

12 ≥ ‖C,H‖ = ‖C, V −D′ − (V −H −D′)‖ ≥ 2(4k − 3)− 6− 8(k − 3) = 12.
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(c) By (b), ‖C,H‖ = 12, so each vertex in H is heavy. Thus type(v) is the unique proper 2-coloring of

H ′, and (c) follows.

Lemma 2.2.22. There exists C∗ ∈ C such that 3 ≤ ‖{a1, a2}, C∗‖ ≤ 4 and ‖{a1, a2}, D‖ = 4 for all

D ∈ C − C∗. If ‖{a1, a2}, C∗‖ = 3 then one of a1, a2 is low.

Proof. Suppose ‖{a1, a2}, D‖ ≥ 5 for some D ∈ C; set H := H(D). Using Claim 2.2.21, choose notation so

that ‖{w1, w3}, H‖ ≤ 4. Now

‖{w1, w3}, V −H‖ ≥ 4k − 3− 4 = 4(k − 2) + 1.

Thus there is a cycle B ∈ C −D with ‖{w1, w3}, B‖ ≥ 5; say ‖{w1, B}‖ = 3. By Claim 2.2.20, ‖C,B‖ ≤ 6.

Note by Claim 2.2.21, if |B| = 4 then for an edge z1z2 ∈ N(w1), w1z1z2w1 and w2w3a2a
′w2 beat B,C by

(O2). So |B| = 3. Using Claim 2.2.21(b) and Lemma 2.2.19,

2(4k − 3) ≤ ‖C, V ‖ = ‖C,H ∪B ∪ (V −H −B)‖ ≤ 12 + 6 + 8(k − 3) = 2(4k − 3).

So ‖C,D′‖ = 8 for all D′ ∈ C − C − D. By Lemma 2.2.19, ‖{w1, w3}, D′‖ = ‖{w2, w4}, D′‖ = 4. By

Claim 2.2.21(c) and Claim 2.2.20,

4k − 3 ≤ ‖{w2, w4}, H ∪B ∪ (V −H −B)‖ ≤ 8 + 1 + 4(k − 3) = 4k − 3,

and so ‖{w2, w4}, B‖ = 1. Say ‖w2, B‖ = 1. Since |B| = 3, by Claim 2.2.12, G[B ∪C −w4] has two disjoint

cycles that are preferable to C,B by (O2). This contradiction implies ‖{a1, a2}, D‖ ≤ 4 for all D ∈ C. Since

‖{a1, a2}, V ‖ ≥ 4k − 3 and ‖{a1, a2}, R‖ = 2, ‖{a1, a2}, D‖ ≥ 3, and equality holds for at most one D ∈ C,

and only if one of a1 and a2 is low.

2.2.4 Completion of the proof of Theorem 2.1.7.

For an optimal C, let Ci := {D ∈ C : |D| = i} and ti := |Ci|. For C ∈ C4, let QC := QC(C) := G[R(C) ∪ C].

A 3-path R′ is D-useful if R′ = R(C′) for an optimal set C′ with D ⊆ C′; we write D-useful for {D}-useful.

Lemma 2.2.23. Let C be an optimal set and C ∈ C4. Then Q = QC ∈ {K3,4,K3,4 − e}.

Proof. Since C is optimal, Q does not contain a 3-cycle. So for all v ∈ V (C), N(v) ∩ R is independent

and ‖a1, C‖ , ‖a2, C‖ ≤ 2. By Lemma 2.2.22, ‖{a1, a2}, C‖ ≥ 3. Say a1w1, a1w3 ∈ E and ‖a2, C‖ ≥ 1. So

type(a1) and type(a2) are defined.
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Claim 2.2.24. type(a1) = type(a2).

Proof. Suppose not. Then ‖wi, R‖ ≤ 1 for all i ∈ [4]. Say a2w2 ∈ E. If wiaj ∈ E and ‖a3−j , C‖ = 2, let

Ri = wiaja
′ and Ci = a3−j(C − wi)a3−j (see Figure 2.6). Then Ri is (C − C + Ci)-useful. Let λ(X) be the

number of low vertices in X ⊆ V . As Q does not contain a 3-cycle, λ(R) + λ(C) ≤ 2. We claim:

∀D ∈ C − C, ‖a′, D‖ ≤ 2. (2.8)

Fix D ∈ C − C, and suppose ‖a′, D‖ ≥ 3. By Claim 2.2.1, |D| = 3. Since

‖C,D‖ = ‖C, C‖ − ‖C, C −D‖

≥ 4(2k − 1)− λ(C)− ‖C,R‖ − 8(k − 2)

= 12− ‖C,R‖ − λ(C) ≥ 6 + λ(R), (2.9)

‖wi, D‖ ≥ 2 for some i ∈ [4]. If Ri is defined, Ri is {Ci, D}-useful. By Lemma 2.2.22, ‖{wi, a′}, D‖ ≤ 4. As

‖wi, D‖ ≥ 2, ‖a′, D‖ ≤ 2, proving (2.8). Then Ri is not defined, so a2 is low with N(a2) ∩ C = {w2} and

‖w2, D‖ ≤ 1. Then by (2.9), ‖C−w2, D‖ ≥ 6. Note G[a′+D] = K4, so for any z ∈ D, D−z+a′ is a triangle,

so by (O2) the neighbors of z in C are independent. Then ‖C − w2, D‖ = 6 with N(z) ∩ C = {w1, w3} for

every z ∈ D. Then ‖w2, D‖ = 1, say zw2 ∈ E(G), and now w2w3zw2, w1(D − z)w1 beat C,D by (O2).

w1

w2 w3

w4

a1 a2

R1

C1

Figure 2.6: Claim 2.2.24

If ‖a′, C‖ ≥ 1 then a′w4 ∈ E and N(a2) ∩ C = {w2}. So R2 is C2-useful, type(a′) 6= type(w2) with

respect to C2, and the middle vertex a2 of R2 has no neighbors in C2. So we may assume ‖a′, C‖ = 0. Then

a′ is low:

d(a′) = ‖a′, C ∪R‖+ ‖a′, C − C‖ ≤ 0 + 2 + 2(k − 2) = 2k − 2. (2.10)
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Thus all vertices of C are high. Using Lemma 2.2.19, this yields:

4 ≥ ‖C,R‖ = ‖C, V − (V −R)‖ ≥ 4(2k − 1)− 8(k − 1) = 4. (2.11)

As this calculation is tight, d(w) = 2k − 1 for every w ∈ C. Thus d(a′) ≥ 2k − 2. So (2.10) is tight. Hence

‖a′, D‖ = 2 for all D ∈ C − C.

Pick D = z1 . . . ztz1 ∈ C − C with ‖{a1, a2}, D‖ maximum. By Lemma 2.2.22, 3 ≤ ‖{a1, a2}, D‖ ≤ 4.

Say ‖ai, D‖ ≥ 2. By (2.11), ‖C,D‖ = 8. By Lemma 2.2.19,

W := G[C ∪D] ∈ {K4,4, K3 ∨ (K3 +K1), K1 ∨K3,3}.

CASE 1: W = K4,4. Then ‖D,R‖ ≥ 5 > |D| = 4, so ‖z,R‖ ≥ 2 for some z ∈ V (D). Let w ∈ N(z) ∩ C.

Either w and z have a comon neighbor in {a1, a2} or z has two consecutive neighbors in R. Regardless,

G[R+w+ z] contains a 3-cycle D′ and G[W −w− z] contains a 4-cycle C ′. Thus C ′, D′ beats C,D by (O2).

CASE 2: W = K3 ∨ (K3 +K1). As ‖{a′, ai}, D‖ ≥ 4 > |D|, there is z ∈ V (D) with D′ := za′aiz ⊆ G. Also

W − z contains a 3-cycle C ′. So C ′, D′ beats C,D by (O2).

CASE 3: W = K1 ∨K3,3. Some v ∈ V (D) satisfies ‖v,W‖ = 6. There is no w ∈ W − v such that w has

two adjacent neighbors in R: else a and v would be contained in disjoint 3-cycles, contradicting the choice

of C,D. So ‖w,R‖ ≤ 1 for all w ∈ W − v, because type(a1) 6= type(a2). Similarly, no z ∈ D − v has two

adjacent neighbors in R. Thus

2 + 3 ≤ ‖a′, D‖+ ‖{a1, a2}, D‖ = ‖R,D‖ = ‖R,D − v‖+ ‖R, v‖ ≤ 2 + 3.

So ‖{a1, a2}, D‖ = 3, R ⊆ N(v), and N(ai) ∩K3,3 is independent. By Lemma 2.2.22 and the maximality of

‖{a1, a2}, D‖ = 3, k = 3. Thus G = Y2, a contradiction.

Returning to the proof of Lemma 2.2.23, we have type(a1) = type(a2). Using Lemma 2.2.22, choose

notation so that a1w1, a1w3, a2w1 ∈ E. Then Q has bipartition {X,Y } with X := {a′, w1, w3} and Y :=

{a1, a2, w2, w4}. The only possible nonedges between X and Y are a′w2, a′w4 and a2w3. Let C ′ := w1Rw1.

Then R′ := w2w3w4 is C ′-useful. By Lemma 2.2.22, ‖{w2, w4}, C ′‖ ≥ 3. Already w2, w4 ∈ N(w1); so

because Q has no C3, (say) a′w2 ∈ E. Now, let C ′′ := a1a
′w2w3a1. Then R′′ := a2w1w4 is C ′′-useful; so

‖{a2, w4}, C ′′‖ ≥ 3. Again, Q contains no C3, so a′w4 or a2w3 is an edge of G. Thus Q ∈ {K3,4,K3,4−e}.

Proof of Theorem 2.1.7. Using Lemma 2.2.23, one of two cases holds:

(C1) For some optimal set C and C ′ ∈ C4, QC′ = K3,4 − x0y0;
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(C2) for all optimal sets C and C ∈ C4, G[R ∪ C] = K3,4.

Fix an optimal set C and C ′ ∈ C4, where R = y0x
′y with d(y0) ≤ d(y), such that in (C1), QC′ = K3,4−x0y0.

By Lemmas 2.2.22 and 2.2.23, for all C ∈ C4, 1 ≤ ‖y0, C‖ ≤ ‖y, C‖ ≤ 2 and ‖y0, C‖ = 1 only in Case (C1)

when C = C ′. Put H := R ∪
⋃
C4, S = S(C) := N(y) ∩H, and T = T (C) := V (H) r S. As ‖y,R‖ = 1 and

‖y, C‖ = 2 for each C ∈ C4, |S| = 1 + 2t4 = |T | − 1.

Claim 2.2.25. H is an S, T -bigraph. In case (C1), H = K2t4+1,2t4+2−x0y0; else H = K2t4+1,2t4+2.

Proof. By Lemma 2.2.23, ‖x′, S‖ = ‖y, T‖ = ‖y0, T‖ = 0.

By Lemmas 2.2.22 and 2.2.23, ‖y0, S‖ = |S| − 1 in (C1) and ‖y0, S‖ = |S| otherwise. We claim that for

every t ∈ T − y0, ‖t, S‖ = |S|. This clearly holds for y, so take t ∈ H −{y, y0}. Then t ∈ C for some C ∈ C4.

Let R∗ := tx′y0 and C∗ := y(C − t)y. (Note R∗ is a path and C∗ is a cycle by Lemma 2.2.23 and the choice

of y0.) Since R∗ is C∗-useful, by Lemmas 2.2.22 and 2.2.23, and by choice of y0, ‖t, S‖ = ‖y, S‖ = |S|. Then

in (C1), H ⊇ K2t4+1,2t4+2−x0y0 and x0y0 6∈ E(H); else H ⊇ K2t4+1,2t4+2.

Now we easily see that if any edge exists inside S or T , then C3 + (t4 − 1)C4 ⊆ H, and these cycles beat

C4 by (O2).

By Claim 2.2.25 all pairs of vertices of T are the ends of a C3-useful path. Now we use Lemma 2.2.22 to

show that they have essentially the same degree to each cycle in C3.

Claim 2.2.26. If v ∈ T and D ∈ C3 then 1 ≤ ‖v,D‖ ≤ 2; if ‖v,D‖ = 1 then v is low and for all C ∈ C3−D,

‖v, C‖ = 2.

Proof. By Claim 2.2.25, H + x0y0 is a complete bipartite graph. Let y1, y2 ∈ T − v and u ∈ S − x0. Then

R′ = y1uv, R′′ = y2uv, and R′′′ = y1uy2 are C3-useful. By Lemma 2.2.22,

3 ≤ ‖{v, y1}, D‖ , ‖{v, y2}, D‖ , ‖{y1, y2}, D‖ ≤ 4.

Say ‖y1, D‖ ≤ 2 ≤ ‖y2, D‖. Thus

1 ≤ ‖{v, y1}, D‖ − ‖y1, D‖ = ‖v,D‖ = ‖{v, y2}, D‖ − ‖y2, D‖ ≤ 2.

Suppose ‖v,D‖ = 1. By Claim 2.2.25 and Lemma 2.2.22, for any v′ ∈ T − v,

4k − 3 ≤ ‖{v, v′}, H ∪ (C3 −D) ∪D‖ ≤ 2(2t4 + 1) + 4(t3 − 1) + 3 = 4k − 3.

Thus for all C ∈ C3 −D0, ‖{v, v′}, C‖ = 4, and so ‖v, C‖ = 2. Hence v is low.
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Next we show that all vertices in T have essentially the same neighborhood in each C ∈ C3.

Claim 2.2.27. Let z ∈ D ∈ C3 and v, w ∈ T with w high.

1. If zv ∈ E and zw /∈ E then T − w ⊆ N(z).

2. N(v) ∩D ⊆ N(w) ∩D.

Proof. (1) Since w is high, Claim 2.2.26 implies ‖w,D‖ = 2. Since zw /∈ E, D′ := w(D−z)w is a 3-cycle. Let

u ∈ S−x0. Then zvu = R(C′) for some optimal set C′ with C3−D+D′ ⊆ C′. By Claim 2.2.25, T (C′) = S+z

and S(C′) = T −w. If (C2) holds, then T −w = S(C′) ⊆ N(z), as desired. Suppose (C1) holds, so there are

x0 ∈ S and y0 ∈ T with x0y0 /∈ E. By Claims 2.2.25 and 2.2.26, d(y0) ≤ (|S|−1)+2(t3) = 2k−2, so y0 is low.

Since w is high, y0 ∈ T−w. But now apply Claims 2.2.25 and 2.2.26 to T (C′): d(x0) ≤ |S(C′)|−1+2t3 = 2k−2,

and x0 is low. As x0y0 /∈ E, this is a contradiction. So T − w = S(C′) ⊆ N(z).

(2) Suppose there exists z ∈ N(v) ∩ D r N(w). By (1), T − w ⊆ N(z). Let w′ ∈ T − w be high. By

Claim 2.2.26, ‖w′, D‖ = 2. So there exists z′ ∈ N(w) ∩D rN(w′) and z 6= z′. By (1), T − w′ ⊆ N(z′). As

|T | ≥ 4 and at least three of its vertices are high, there exists a high w′′ ∈ T −w−w′. Since w′′z, w′′z′ ∈ E,

there exists z′′ ∈ N(w) ∩DrN(w′′) with {z, z′, z′′} = V (D). By (1), T −w′′ ⊆ N(z′′). Since |T | ≥ 4 there

exists x ∈ T r {w,w′, w′′}. So ‖x,D‖ = 3, contradicting Claim 2.2.26.

Let y1, y2 ∈ T − y0 and let x ∈ S with x = x0 if x0y0 6∈ E. By Claim 2.2.25, y1xy2 is a path, and

G − {y1, y2, x} contains an optimal set C′. Recall y0 was chosen in T with minimum degree, so y1 and y2

are high and by Claim 2.2.26 ‖yi, D‖ = 2 for each i ∈ [2] and each D ∈ C3. Let N = N(y1) ∩
⋃
C3 and

M =
⋃
C3 r N (see Figure 2.7). By Claim 2.2.25, T is independent. By Claim 2.2.27, for every y ∈ T ,

N(y) ∩
⋃
C3 ⊆ N , so E(M,T ) = ∅. Since y2 6= y0, also N(y2) ∩

⋃
C3 = N .

y1
y2

T

x S

N

M

Figure 2.7
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Claim 2.2.28. M is independent.

Proof. First, we show (*) ‖z, S‖ > t4 for all z ∈ M . If not then there exists z ∈ D ∈ C3 with ‖z, S‖ ≤ t4.

Since ‖M,T‖ = ‖T, T‖ = 0,

‖{y1, z}, C3‖ ≥ 4k − 3− ‖{z, y1}, S‖ ≥ 4(t4 + t3 + 1)− 3− (2t4 + 1 + t4) = t4 + 4t3 > 4t3.

So there is D′ = z′z′1z
′
2z
′ ∈ C3 with ‖{z, y1}, D′‖ ≥ 5 and z′ ∈ M . As ‖y1, D‖ = 2, ‖z,D′‖ = 3. Since

D∗ := zz′z′2z is a cycle, xy2z
′
1 is D∗-useful. As ‖z′1, D∗‖ = 3, this contradicts Claim 2.2.26, proving (*).

Suppose zz′ ∈ E(M); say z ∈ D ∈ C3 and z′ ∈ D′ ∈ C3. By (*) there is u ∈ N(z) ∩N(z′) ∩ S. So zz′uz,

y1(D − z)y1 and y2(D′ − z′)y2 are disjoint cycles, contrary to (O1).

By Claims 2.2.25 and 2.2.28, M and T are independent; as remarked above E(M,T ) = ∅. So M ∪ T is

independent. This contradicts (H3), since

|G| − 2k + 1 = 3t3 + 4t4 + 3− 2(t3 + t4 + 1) + 1 = t3 + 2t4 + 2 = |M ∪ T | ≤ α(G).

The proof of Theorem 2.1.7 is now complete.

2.3 The case k = 2

Lovász [33] observed that any (simple or multi-) graph can be transformed into a multigraph with minimum

degree at least 3, without affecting the maximum number of disjoint cycles in the graph, by using a sequence

of operations of the following three types: (i) deleting a bud; (ii) suppressing a vertex v of degree 2 that

has two neighbors x and y, i.e., deleting v and adding a new (possibly parallel) edge between x and y; and

(iii) increasing the multiplicity of a loop or edge with multiplicity 2. Here loops and two parallel edges are

considered cycles, so forests have neither. Also Ks and Ks,t denote simple graphs. Let W ∗s denote a wheel

on s vertices whose spokes, but not outer cycle edges, may be multiple. The following theorem characterizes

those multigraphs that do not have two disjoint cycles.

Theorem 2.3.1 (Lovász [33]). Let G be a multigraph with δ(G) ≥ 3 and no two disjoint cycles. Then G is

one of the following: (1) K5, (2) W ∗s , (3) K3,|G|−3 together with a multigraph on the vertices of the (first)

3-class, and (4) a forest F and a vertex x with possibly some loops at x and some edges linking x to F .

Let G be the class of simple graphs G with |G| ≥ 6 and σ2(G) ≥ 5 that do not have two disjoint cycles.

Fix G ∈ G. A vertex in G is low if its degree is at most 2. The low vertices form a clique Q of size at most
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2—if |Q| = 3, then Q is a component-cycle, and G − Q has another cycle. By Lovász’s observation, G can

be reduced to a graph H of type (1–4). Reversing this reduction, G can be obtained from H by adding buds

and subdividing edges. Let Q′ := V (G) r V (H). It follows that Q ⊆ Q′. If Q′ 6= Q, then Q consists of a

single leaf in G with a neighbor of degree 3, so G is obtained from H by subdividing an edge and adding

a leaf to the degree-2 vertex. If Q′ = Q, then Q is a component of G, or G = H + Q + e for some edge

e ∈ E(H,Q), or at least one vertex of Q subdivides an edge e ∈ E(H). In the last case, when |Q| = 2, e is

subdivided twice by Q. As G is simple, H has at most one multiple edge, and its multiplicity is at most 2.

In case (4), because δ(H) ≥ 3, either F has at least two buds, each linked to x by multiple edges, or

F has one bud linked to x by an edge of multiplicity at least 3. So this case cannot arise from G. Also,

δ(H) = 3, unless H = K5, in which case δ(H) = 4. So Q is not an isolated vertex, lest deleting Q leave H

with δ(H) ≥ 5 > 4; and if Q has a vertex of degree 1 then H = K5. Else all vertices of Q have degree 2, and

Q consists of the subdivision vertices of one edge of H. So we have the following lemma.

Lemma 2.3.2. Let G be a graph with |G| ≥ 6 and σ2(G) ≥ 5 that does not have two disjoint cycles. Then

G is one of the following (see Figure 2.8):

(a) K5 +K2;

(b) K5 with a pendant edge, possibly subdivided;

(c) K5 with one edge subdivided and then a leaf added adjacent to the degree-2 vertex;

(d) a graph H of type (1–3) with no multiple edge, and possibly one edge subdivided once or twice, and if

|H| = 6− i with i ≥ 1 then some edge is subdivided at least i times;

(e) a graph H of type (2) or (3) with one edge of multiplicity two, and one of its parallel parts is subdivided

once or twice—twice if |H| = 4.

2.4 Connections to Equitable Coloring

A proper vertex coloring of a graph G is equitable if any two color classes differ in size by at most one. In

1970 Hajnal and Szemerédi proved:

Theorem 2.4.1 ([18]). Every graph G with ∆(G) + 1 ≤ k has an equitable k-coloring.

For a shorter proof of Theorem 2.4.1, see [31]; for an O(k|G|2)-time algorithm see [28].

Motivated by Brooks’ Theorem, it is natural to ask which graphs G with ∆(G) = k have equitable

k-colorings. Certainly such graphs are k-colorable. Also, if k is odd then Kk,k has no equitable k-coloring.
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Figure 2.8: Theorem 2.3.2

Chen, Lih, and Wu [6] conjectured (in a different form) that these are the only obstructions to an equitable

version of Brooks’ Theorem:

Conjecture 2.4.2 ([6]). If G is a graph with χ(G),∆(G) ≤ k and no equitable k-coloring then k is odd and

Kk,k ⊆ G.

In [6], Chen, Lih, and Wu proved Conjecture 2.4.2 holds for k = 3. By a simple trick, it suffices to prove

the conjecture for graphs G with |G| = ks. Combining the results of the two papers [25] and [26], we have:

Theorem 2.4.3. Suppose G is a graph with |G| = ks. If χ(G),∆(G) ≤ k and G has no equitable k-coloring,

then k is odd and Kk,k ⊆ G or both k ≥ 5 [25] and s ≥ 5 [26].

A graph G is k-equitable if |G| = ks, χ(G) ≤ k and every proper k-coloring of G has s vertices in each

color class. The following strengthening of Conjecture 2.4.2, if true, provides a characterization of graphs G

with χ(G),∆(G) ≤ k that have an equitable k-coloring.

Conjecture 2.4.4 ([24]). Every graph G with χ(G),∆(G) ≤ k has an no equitable k-coloring if and only if

k is odd and G = H +Kk,k for some k-equitable graph H.

The next theorem collects results from [24]. Together with Theorem 2.4.3 it yields Corollary 2.4.6.

Theorem 2.4.5 ([24]). Conjecture 2.4.2 is equivalent to Conjecture 2.4.4. Indeed, for any k0 and n0,

Conjecture 2.4.2 holds for k ≤ k0 and |G| ≤ n0 if and only if Conjecture 2.4.4 holds for k ≤ k0 and |G| ≤ n0.

Corollary 2.4.6. A graph G with |G| = 3k and χ(G),∆(G) ≤ k has no equitable k-coloring if and only if

k is odd and G = Kk,k +Kk.

We are now ready to complete our answer to Dirac’s question for simple graphs.
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Proof of Theorem 2.1.3. Assume k ≥ 2 and δ(G) ≥ 2k− 1. It is apparent that if any of (i), (H3), or (H4) in

Theorem 2.1.3 fail, then G does not have k disjoint cycles. Now suppose G satisfies (i), (H3), and (H4). If

k = 2 then |G| ≥ 6 and δ(G) ≥ 3. Thus G has no subdivided edge, and only (d) of Lemma 2.3.2 is possible.

By (i), G 6= K5; by (H4), G is not a wheel; and by (H3), G is not type (3) of Theorem 3.2.5. So G has

2 disjoint cycles. Finally, suppose k ≥ 3. Since G satisfies (ii), G /∈ {Y1,Y2} and G satisfies (H2). So, if

|G| ≥ 3k+ 1 then G has k disjoint cycles by Theorem 2.1.7. Otherwise, |G| = 3k and G has k disjoint cycles

if and only if its vertices can be partitioned into disjoint K3’s. This is equivalent to G having an equitable

k-coloring. By (ii), ∆(G) ≤ k, and by (H3), ω(G) ≤ k. So by Brooks’ Theorem, χ(G) ≤ k. By (H4) and

Corollary 2.4.6, G has an equitable k-coloring.

Next we turn to Ore-type results on equitable coloring. To complement Theorem 2.1.7, we need a

theorem that characterizes when a graph G with |G| = 3k that satisfies (H2) and (H3) has k disjoint cycles,

or equivalently, when its complement G has an equitable coloring. The complementary version of σ2(G) is

the maximum Ore-degree θ(H) := maxxy∈E(H)(d(x) + d(y)). So θ(G) = 2|G| − σ2(G) − 2, and if |G| = 3k

and σ2(G) ≥ 4k − 3 then θ(G) ≤ 2k + 1. Also, if G satisfies (H3) then ω(G) ≤ k. This would correspond to

an Ore-Brooks-type theorem on equitable coloring.

Several papers, including [22, 23, 32], address equitable colorings of graphs G with θ(G) bounded from

above. For instance, the following is a natural Ore-type version of Theorem 2.4.1.

Theorem 2.4.7 ([22]). Every graph G with θ(G) ≤ 2k − 1 has an equitable k-coloring.

Even for ordinary coloring, an Ore-Brooks-type theorem requires forbidding some extra subgraphs when

θ is 3 or 4. It was observed in [23] that for k = 3, 4 there are graphs for which θ(G) ≤ 2k+ 1 and ω(G) ≤ k,

but χ(G) ≥ k + 1. The following theorem was proved for k ≥ 6 in [23] and then for k ≥ 5 in [32].

Theorem 2.4.8. Let k ≥ 5. If ω(G) ≤ k and θ(G) ≤ 2k + 1, then χ(G) ≤ k.
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Chapter 3

Disjoint Cycles in Multigraphs

The following results are joint work with Henry Kierstead and Alexandr Kostochka; this chapter is based on

[30].

3.1 Introduction

As mentioned in Chapter 2, after the proof of the Corrádi-Hajnal Theorem, Dirac [11] described the 3-

connected multigraphs not containing two disjoint cycles and asked the more general question:

Question 2.1.2. Which (2k − 1)-connected graphs1 do not have k disjoint cycles?

In Chapter 2, we characterized simple graphs G with minimum degree δ(G) ≥ 2k−1 that do not contain

k disjoint cycles. We use this result to answer Dirac’s question in full.

Below is the definition of the graph Yh,t, used heavily in this chapter. Yh,t is a generalized version of

2Kk ∨ Kk, used in Theorem 2.1.3. For easier reference, we repeat below Theorem 2.1.3, our result from

Chapter 2 characterizing graphs with minimum degree 2k − 1 and no k disjoint cycles.

Example 3.1.1. Let Yh,t = Kh ∨ (Kt ∪Kt) (Figure 3.1), where V (Kh) = X0 and the cliques have vertex

sets X1 and X2. In other words, V (Yh,t) = X0 ∪X1 ∪X2 with |X0| = h and |X1| = |X2| = t, and a pair xy

is an edge in Yh,t iff {x, y} ⊆ X1, or {x, y} ⊆ X2, or |{x, y} ∩X0| = 1.

Theorem 2.1.3. Let k ≥ 2. Every graph G with (i) |G| ≥ 3k and (ii) δ(G) ≥ 2k − 1 contains k disjoint

cycles if and only if

(H3) α(G) ≤ |G| − 2k, and

(H4) if k is odd and |G| = 3k, then G 6= 2Kk ∨Kk and if k = 2 then G is not a wheel.

Question 2.1.2 asks about graph that are (2k − 1)-connected. We consider the broader class Dk of

multigraphs in which each vertex has at least 2k − 1 distinct neighbors. We describe several classes of

1Dirac used the word graphs, but in [11] this appears to mean multigraphs.
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X2

X0

X1

Figure 3.1: Yh,t, shown with h = 3 and t = 4.

multigraphs that do not have k disjoint cycles for simple reasons, and prove that if a multigraph in Dk

has no k disjoint cycles, then it belongs to one of these classes. This characterization is our main result,

Theorem 3.2.6.

Every (2k − 1)-connected multigraph is in Dk, so this provides a complete answer to Question 2.1.2.

Determining whether a multigraph is in Dk, and determining whether a multigraph is (2k − 1)-connected,

can be accomplished in polynomial time.

In the next section, we introduce notation, discuss existing results to be used later on, and state our

main result, Theorem 3.2.6. In the last two sections, we prove Theorem 3.2.6.

3.2 Preliminaries and statement of the main result

3.2.1 Notation

For every multigraph G, let V1 = V1(G) be the set of vertices in G incident to loops. Let G̃ denote the

underlying simple graph of G, i.e. the simple graph on V (G) such that two vertices are adjacent in G if

and only if they are adjacent in G̃. Let F = F (G) be the simple graph formed by the multiple edges in

G− V1; that is, if G′ is the subgraph of G− V1 induced by its multiple edges, then G = G̃′. We will call the

edges of F (G) the strong edges of G, and define α′ = α′(F ) to be the size of a maximum matching in F . A

set S = {v0, . . . , vs} of vertices in a graph H is a superstar with center v0 in H if NH(vi) = {v0} for each

1 ≤ i ≤ s and H − S has a perfect matching.

For v ∈ V , we define s(v) = |N(v)| to be the simple degree of v, and we say that S(G) = min{s(v) : v ∈ V }

is the minimum simple degree of G. We define Dk to be the family of multigraphs G with S(G) ≥ 2k − 1.

By the definition of Dk, α(G) ≤ n − 2k + 1 for every n-vertex G ∈ Dk; so we call G ∈ Dk extremal if
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α(G) = n− 2k + 1. A big set in an extremal G ∈ Dk is an independent set of size α(G). If I is a big set in

an extremal G ∈ Dk, then since s(v) ≥ 2k − 1, each v ∈ I is adjacent to each w ∈ V (G)− I. Thus

every two big sets in any extremal G are disjoint. (3.1)

3.2.2 Preliminaries and main result

Since every cycle in a simple graph has at least 3 vertices, the condition |G| ≥ 3k is necessary in the Corrádi-

Hajnal Theorem, Theorem 2.1.1. However, it is not necessary for multigraphs, since loops and multiple edges

form cycles with fewer than three vertices. Theorem 2.1.1 can easily be extended to multigraphs, although

the statement is no longer as simple:

Theorem 3.2.1 (Multigraph Corrádi-Hajnal). For k ∈ Z+, let G be a multigraph with S(G) ≥ 2k, and set

F = F (G) and α′ = α′(F ). Then G has no k disjoint cycles if and only if

|V (G)| − |V1(G)| − 2α′ < 3(k − |V1| − α′), (3.2)

i.e., |V (G)|+ 2|V1|+ α′ < 3k.

Proof. If (3.2) holds, then G does not have enough vertices to contain k disjoint cycles. If (3.2) fails, then

we choose |V1| cycles of length one and α′ cycles of length two from V1 ∪ V (F ). By Theorem 2.1.1, the

remaining (simple) graph contains k − |V1| − α′ disjoint cycles.

Theorem 3.2.1 yields the following.

Corollary 3.2.2. Let G be a multigraph with S(G) ≥ 2k − 1 for some integer k ≥ 2, and set F = F (G)

and α′ = α′(F ). Suppose G contains at least one loop. Then G has no k disjoint cycles if and only if

|V (G)|+ 2|V1|+ α′ < 3k.

Instead of the (2k− 1)-connected multigraphs of Question 2.1.2, we consider the wider family Dk. Since

acyclic graphs are exactly forests, Theorem 2.1.3 can be restated as follows:

Theorem 3.2.3. For k ∈ Z+, let G be a simple graph in Dk. Then G has no k disjoint cycles if and only

if one of the following holds:

(α) |G| ≤ 3k − 1;

(β) k = 1 and G is a forest with no isolated vertices;

(γ) k = 2 and G is a wheel;
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(δ) α(G) = n− 2k + 1; or

(ε) k > 1 is odd and G = Yk,k.

Dirac [11] described all multigraphs in D2 that do not have two disjoint cycles:

Theorem 3.2.4 ([11]). Let G be a 3-connected multigraph. Then G has no two disjoint cycles if and only

if one of the following holds:

(A) G̃ = K4 and the strong edges in G form either a star (possibly empty) or a 3-cycle;

(B) G = K5;

(C) G̃ = K5 − e and the strong edges in G are not incident to the ends of e;

(D) G̃ is a wheel, where some spokes could be strong edges; or

(E) G is obtained from K3,|G|−3 by adding non-loop edges between the vertices of the (first) 3-class.

Going further, Lovász [33] described all multigraphs with no two disjoint cycles. He observed that it

suffices to describe such multigraphs with minimum (ordinary) degree at least 3, and proved the following:

Theorem 3.2.5 ([33]). Let G be a multigraph with δ(G) ≥ 3. Then G has no two disjoint cycles if and only

if G is one of the following:

(1) K5;

(2) A wheel, where some spokes could be strong edges;

(3) K3,|G|−3 together with a loopless multigraph on the vertices of the (first) 3-class; or

(4) a forest F and vertex x with possibly some loops at x and some edges linking x to F .

By Corollary 3.2.2, in order to describe the multigraphs in Dk not containing k disjoint cycles, it is

enough to describe such multigraphs with no loops. Our main result is the following:

Theorem 3.2.6. Let k ≥ 2 and n ≥ k be integers. Let G be an n-vertex multigraph in Dk with no loops.

Set F = F (G), α′ = α′(F ), and k′ = k− α′. Then G does not contain k disjoint cycles if and only if one of

the following holds: (see Figure 3.2)

(a) n+ α′ < 3k;

(b) |F | = 2α′ (i.e., F has a perfect matching) and either

(i) k′ is odd and G− F = Yk′,k′ , or

(ii) k′ = 2 < k and G− F is a wheel with 5 spokes;

48



(c) G is extremal and either

(i) some big set is not incident to any strong edge, or

(ii) for some two distinct big sets Ij and Ij′ , all strong edges intersecting Ij ∪Ij′ have a common vertex

outside of Ij ∪ Ij′ ;

(d) n = 2α′ + 3k′, k′ is odd, and F has a superstar S = {v0, . . . , vs} with center v0 such that either

(i) G− (F − S + v0) = Yk′+1,k′ , or

(ii) s = 2, v1v2 ∈ E(G), G − F = Yk′−1,k′ and G has no edges between {v1, v2} and the set X0 in

G− F ;

(e) k = 2 and G is a wheel, where some spokes could be strong edges;

(f) k′ = 2, |F | = 2α′ + 1 = n− 5, and G− F = C5.

(a): α′ = 1, k = 2 (b)(i): α′ = 2, k = 5 (b)(ii): α′ = 2, k = 4

Ij Ij′

(c)(ii)

v0

v1 v2

(d)(i): α′ = 2, k = 5

v0

v1 v2

(d)(ii): α′ = 2, k = 5

(e): α′ = 1, k = 2 (f): α′ = 2, k = 4

Figure 3.2: Examples of Subgraphs of Multigraphs Listed in Theorem 3.2.6

The six infinite classes of multigraphs described in Theorem 3.2.6 are exactly the family of multigraphs

in Dk with no k disjoint cycles. So, the (2k− 1)-connected multigraphs with no k disjoint cycles are exactly

49



the (2k − 1)-connected multigraphs that are in one of these classes. For any multigraph G, we can check

in polynomial time whether G ∈ Dk and whether G is (2k − 1)-connected. If G ∈ Dk, we can check in

polynomial time whether any of the conditions (a)–(f) hold for G. Note that to determine the extremality of

G we need only check whether G has an independent set of size n−2k+1. Such a set will be the complement

of N(v) for some vertex v with s(v) = 2k − 1; so all big sets can be found in polynomial time.

Note if G is (2k − 1)-connected, and (b)(i), (d)(i), or d(ii) holds, then k′ ≤ 1.

3.3 Proof of sufficiency in Theorem 3.2.6

Suppose G has a set C of k disjoint cycles. Our task is to show that each of (a)–(f) fails. Theorem 3.2.5,

case (2) implies (e) fails. Let M ⊆ C be the set of strong edges (2-cycles) in C, h = |M |, and W = V (M).

Now h ≤ α′; so n ≥ 2h + 3(k − h) ≥ 3k − α′. Thus (a) fails. If n = 3k − α′ as in cases (b), (d) and (f),

then h = α′ and G′ = G −W is a simple graph of minimum degree at least 2k′ − 1 with 3k′ vertices and

k′ cycles. By Theorem 2.1.3 all of (i)–(iii) hold for G′. In case (b), G′ = G − F ; so (ii) and (iii) imply

(b)(i) and (b)(ii) fail. In case (f), G′ = G − (F − v) = v ∨ C5 for some vertex v ∈ F . So (iii) implies (f)

fails. In case (d), M consists of a strong perfect matching in F − S together with a strong edge v0v ∈ S. If

G− (F −S + v0) = Yk′+1,k′ then either α(G′) = k′+ 1 or G′ = Yk′,k′ , contradicting (i) or (ii). So(d)(i) fails.

Similarly, in case (d)(ii), G′ ⊆ Yk′,k′ , another contradiction.

In case (c), G is extremal. Every big set I satisfies |V (G)− I| < 2k. So some cycle CI ∈ C has at most

one vertex in V (G)−I. Since I is independent, CI has at most one vertex in I. Thus CI is a strong edge and

(c)(i) fails. Let J be another big set; then I ∩ J = ∅. As cycles in C are disjoint, CI = CJ or CI ∩ CJ = ∅.

Regardless, CI ∩ CJ ⊆ I ∪ J . So (c)(ii) fails.

3.4 Proof of necessity in Theorem 3.2.6

Suppose G does not have k disjoint cycles. Our goal is to show that one of (a)–(f) holds. If k = 2 then one

of the cases (1)–(4) of Theorem 3.2.5 holds. If (1) holds then α′ = 0, and so (a) holds. Case (2) is (e). Case

(3) yields (c)(i), where the partite set of size n−3 is the big set. As G ∈ Dk, it has no vertex l with s(l) < 3.

So (4) fails, because each leaf l of the forest satisfies s(l) ≤ 2. Thus below we assume

k ≥ 3. (3.3)

Choose a maximum strong matching M ⊆ F with α(G − W ) minimum, where W = V (M). Then
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|M | = α′, G′ := G−W is simple, and δ(G′) ≥ 2k−1−2α′ = 2k′−1. So G′ ∈ Dk′ . Let n′ := |V (G′)| = n−2α′.

Since G′ has no k′ disjoint cycles, Theorem 3.2.3 implies one of the following: (α) |G′| ≤ 3k′ − 1; (β) k′ = 1

and G′ is a forest with no isolated vertices; (γ) k′ = 2 and G′ is a wheel; (δ) α(G′) = n′−2k′+1 = n−2k+1;

or (ε) k′ > 1 is odd and G′ = Yk′,k′ . If (α) holds then so does (a). So suppose n′ ≥ 3k′. In the following we

may obtain a contradiction by showing G has k disjoint cycles.

Case 1: (β) holds. By (3.3), there are strong edges yz, y′z′ ∈ M . As S(G) ≥ 2k − 1, each vertex

v ∈ V (G′) is adjacent to all but dG′(v)− 1 vertices of W .

Case 1.1: G′ contains a path on four vertices, or G′ contains at least two components. Let P = x1 . . . xt

be a maximum path in G′. Then x1 is a leaf in G′, and either dG′(x2) = 2 or x2 is adjacent to a leaf

l 6= x1. So vx1x2v or vx1x2lv is a cycle for all but at most one vertex v ∈ W . If t ≥ 4, let s1 = xt and

s2 = xt−1. Otherwise, G′ is disconnected and every component is a star; in a component not containing P ,

let s1 be a leaf and let s2 be its neighbor. As before, for all but at most one vertex v′ ∈ W , either v′s1s2v′

is a cycle or v′s1s2l′v′ is a cycle for some leaf l′. Thus G[(V rW ) ∪ {u, v}] contains two disjoint cycles for

some uv ∈ {yz, y′z′}. These cycles and the α′ − 1 strong edges of M − uv yield k disjoint cycles in G, a

contradiction.

Case 1.2: G′ is a star with center x0 and leaf set X = {x1, x2, . . . , xt}. Since n′ ≥ 3k′, t ≥ 2 and X is a

big set in G. If (c)(i) fails then some vertex in X, say x1, is incident to a strong edge, say x1y. If t ≥ 3, then

G has k disjoint cycles: |M −yz+yx1| strong edges and zx2x0x3z. Else t = 2. Then n = 3α′+ 3k′ = 2k+ 1,

as in (d); and each vertex of G is adjacent to all but at most one other vertices. If x0z ∈ E(G) then again G

has k disjoint cycles: |M − yz + yx1| strong edges and zx0x2z, a contradiction. So N(x0) = V (G)− z − x0,

and G[{x0, x1, x2, z}] = C4 = Y2,1. Also y is the only possible strong neighbor of x1 or x2: if u ∈ {x1, x2},

y′z′ ∈ M with y′ 6= y (maybe y′ = z) and uy′ ∈ E(F ), using the same argument as above, if z′x0 ∈ E(G)

then G has k disjoint cycles consisting of |M − y′z′ + y′u| strong edges and G[G′ − u+ z′], a contradiction.

Then x0z
′ 6∈ E(G), so z′ = z, and y′ = y. Thus S = NF (y)∩{z, x0, x1, x2}+y is a superstar. So(d)(i) holds.

Case 2: (γ) holds. Then k′ = 2 and G′ is a wheel with center x0 and rim x1x2 . . . xtx1. By (3.3), there

exists yz ∈M . Since (a) fails, t ≥ 5. For i ∈ [t],

s(xi) ≥ 2k − 1 = 2α′ + 3 = 2α′ + |N(xi) ∩G′|,

so xi is adjacent to every vertex in W . If t ≥ 6, then G′ has k disjoint cycles: |M − yz| strong edges,

yx1x2y, zx3x4z and x0x5x6x0. Thus t = 5. If no vertex of G′ is incident to a strong edge, then (b)(ii) holds.

Therefore, we assume y has a strong edge to G′. The other endpoint of the strong edge could be in the

outer cycle, or could be x0. If some vertex in the outer cycle, say x1, has a strong edge to y, then we have
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k disjoint cycles: |M − yz + yx1| strong edges, zx2x3z and x0x4x5x0. The last possibility is that x0 has a

strong edge to y, and (f) holds.

Case 3: (ε) holds. Then k′ > 1 is odd, G′ = Yk′,k′ and n = 2α′ + 3k′. Let X0 = {x1, . . . , xk′},

X1 = {x′1, . . . , x′k′}, and X2 = {x′′1 , . . . , x′′k′} be the sets from the definition of Yk′,k′ . Observe

Ks+t ∨ (K2s ∪K2t) contains s+ t disjoint triangles. (3.4)

By degree conditions, each x′ ∈ X1 ∪X2 is adjacent to each v ∈ W and each x ∈ X0 is adjacent to all but

at most one y ∈W . If (b)(i) fails then some strong edge uy is incident with a vertex u ∈ V (G′). If possible,

pick u ∈ X1 ∪X2. By symmetry we may assume u /∈ X2. Let yz be the edge of M incident to y. Set v0 = y

and {v1, . . . , vs} = V (F ∩G′) + z. We will prove that {v0, . . . , vs} is a superstar, and use this to show that

(d)(i) or (d)(ii) holds. Let G∗ = G− (W − z), and observe that Yk′+1,k′ is a spanning subgraph of G∗ with

equality if X0 + z is independent.

Suppose xz ∈ E(G) for some x ∈ X0 − u. Then G has k disjoint cycles: |M − yz + yu| strong edges,

zxx′′1z, and k′−1 disjoint cycles in G∗−{x, x′′1 , u}, obtained by applying (3.4) directly if u ∈ X1, or by using

T := x′1x
′
2x
′
3x
′
1 and applying (3.4) to G∗ − {x, x′′1 , u} − T if u ∈ X0. This contradiction implies zu is the

only possible edge in G[X0 + z]. Thus if y has two strong neighbors in X0 then X0 + z is independent, and

G∗ = Kk′+1,k′ . Also by degree conditions, every x ∈ X0 − u is adjacent to every w ∈W − z. So if y′z′ ∈M

with y′ 6= y and u′ ∈ V (G′), then u′y′ /∈ E(F ): else x ∈ X0 − u − u′ satisfies xz′ ∈ E(G) and xz′ /∈ E(G).

So {v0, . . . , vs} is a superstar. If X0 + z is independent then (d)(i) holds; else (d)(ii) holds.

Case 4: (δ) holds. Then α(G′) = n′ − 2k′ + 1 > n′/3, since n′ ≥ 3k′. So G′ is extremal. Let J be a big

set in G′. Then |J | = n′− 2k′+ 1 = n− 2k+ 1. So G is extremal and J is a big set in G. Also each x ∈ J is

adjacent to every y ∈ V (G)− J . If (c)(i) fails then some x ∈ J has a strong neighbor y. Let yz be the edge

in M containing y. In F , consider the maximum matching M ′ = M − yz + xy, and set G′′ = G − V (M ′).

By the choice of M , G′′ contains a big set J ′, and J ′ is big in G. Since x /∈ J ′, (3.1) implies J ′ ∩ J = ∅

(possibly, z ∈ J ′). If (c)(ii) fails then there is a strong edge vw such that v ∈ J ∪ J ′ and w 6= y. Moreover,

by the symmetry between J and J ′, we may assume v ∈ J ′. Let uw be the edge in M containing w. Since

M is maximum, u 6= z. Let M ′′ = M ′ − uw + vw. Again by the case, G − V (M ′′) contains a big set J ′′.

Since x, v 6∈ J ′′, J ′′ is disjoint from J ∪ J ′. So n′ ≥ 3|J | > n′, a contradiction.
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Chapter 4

Equitable Coloring

The following results are joint work with Henry Kierstead, Alexandr Kostochka, and Theodore Molla; this

chapter is based on [27].

In this chapter, we prove that under certain conditions a graph is guaranteed to have an equitable coloring.

This result confirms a partial case of a generalized version of the Chen-Lih-Wu conjecture on equitable

coloring. In addition, our result is equivalent to a statement about disjoint cycles, and so completes the work

of Theorem 2.1.7 of characterizing graphs G with σ2(G) ≥ 4k − 3 that have no k disjoint cycles.

4.1 Introduction

It is a trivial result that a graph with maximum degree ∆ can be properly colored using at most ∆+1 colors.

Brooks’ Theorem [5] famously characterizes those graphs with maximum degree ∆ that can be colored using

only ∆ colors. The Chen-Lih-Wi Conjecture [6] attempts to extend Brooks’ Theorem to equitable colorings.

Conjecture 4.1.1 (Chen-Lih-Wu Conjecture). Every k-colorable graph G with ∆(G) ≤ k is k-equitably-

colorable unless k is odd and G contains Kk,k.

Kierstead and Kostochka proposed an Ore-type version of the Chen-Lih-Wu conjecture in [22]:

Conjecture 4.1.2 ([22]). Let k ≥ 3. If θ(G) ≤ 2k + 1, then G is equitably k-colorable unless G contains

Kk+1 or Km,2k−m for some odd m.

In the same paper, Kierstead and Kostochka proved the following result, which will be of use to us:

Theorem 4.1.3 ([22]). Every graph G with θ(G) < 2k has an equitable k-coloring.

Kierstead and Kostochka have also proved results on equitable coloring in [25] and [21] which are equiv-

alent to the following theorem:

Theorem 4.1.4 ([25], [21]). Let G be a graph with |G| = ks and χ(G),∆(G) ≤ k that has no equitable

k-coloring. If either s ≤ 4 or k ≤ 4 then k is odd, Kk,k ⊆ G, and G−Kk,k is k-equitable. In particular, if

s = 3 then G = Kk,k +Kk.
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In this chapter, we prove an Ore-type version of Theorem 4.1.4 for the case s ≤ 3. This settles the partial

case of Conjecture 4.1.2 when |G| ≤ 3k. (Indeed, in the case k = 3 and |G| = 9, in order for the conjecture

to be true it must be modified to include one more graph.)

First we dispense with the easy cases s ≤ 2. If s = 1 then G has k vertices and trivially has an equitable

k-coloring. The next theorem completes the case s = 2. Notice that if c ∈ [k] is odd, then Kc,2k−c has no

equitable k-coloring.

Theorem 4.1.5. Let G be a graph satisfying |G| = 2k, (H1) χ(G) ≤ k and (H2) θ(G) ≤ 2k + 1. If G has

no equitable k-coloring then G = Kc,2k−c for some odd c ∈ [k].

Proof. By (H1), G has a k-coloring. If k = 1 it is equitable, and if k = 2 it can be made equitable unless

G = K1,3. So suppose k ≥ 3, and G has no equitable 2-coloring. Then G has no 2-factor. By Tutte’s

Theorem, there is a set T ⊆ V (G) with |T | = t such that G− T has t+ 2i odd components, where i ∈ Z+.

If t = 0, then K2i ⊆ G, so i = 1 and Kc,2k−c ⊆ G for some odd c ∈ [k].

For a contradiction, it suffices to prove that if t > 0 then (H1) or (H2) fails. If t ≥ k − 1 then χ(G) ≥

ω(G) ≥ t+ 2 ≥ k+ 1. Otherwise t ∈ [k− 2]. Let X and Y be the two smallest components of G− T , x ∈ X

and y ∈ Y . Then |X ∪ Y | ≤ b2(2k − t)/(t+ 2)c. So

θ(G) ≥ d(x) + d(y) ≥ 2(2k − t)− |X ∪ Y | ≥ 4k − 2t−
⌊

4k − 2t

t+ 2

⌋
(4.1)

≥ f(t) := 4k − 2t+ 2− 4k + 4

t+ 2
(4.2)

If k = 3, then t = 1 and |X| = 1 = |Y | by parity; then θ(G) ≥ 10− 2 = 8 > 2 · 3 + 1. So assume k ≥ 4.

Now f(1) = 8k/3 − 4/3 > 2k + 1, so assume t > 1. If k = 4, then t = 2 and |X| = 1 = |Y | by parity; so

θ(G) ≥ 10 > 2 · 4 + 1. Then k > 4, so f(k− 2) = 2k+ 2− 4/k > 2k+ 1. Finally, for fixed k, f(t) is concave,

since

d2

dt2
f(t) = −8

k + 1

(t+ 2)3
< 0

So θ(G) ≥ f(t) ≥ min{f(1), f(k − 2)} > 2k + 1.

Next we consider some examples for the case s = 3. Let K(X) denote the complete graph with vertex

set X, and K(X,Y ) denote the X,Y -partite graph.

Example 4.1.6. Let Q := K({x1, x2, x3}, {y1, y2, y3}), K = K({w1, w2, w3}), and

X = Q− x3y3 +K + x3w1 + x3w2 + y3w3. (4.3)
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(See Figure 4.1.) Then |X| = 9 = 3 · 3, χ(X) = 3, and θ(X) = 2 · 3 + 1, but X has no equitable 3-coloring:

Any 3-coloring f gives distinct colors to K and satisfies f(x3) = f(w3) 6= f(y3). So if f is an equitable

3-coloring of X then it is also an equitable 2-coloring of Q, a contradiction. Also

X ' Q− x3y3 − x3y2 +K + x3w1 + x3w2 + y3w3 + y2w3. (4.4)

x1 x2 x3

y1 y2 y3

w1

w2

w3

Figure 4.1: X, Example 4.1.6

Example 4.1.7. Let k ≥ 2, and Y = Yk = K1,2k +Kk−1. (See Figure 4.2(a).) Then |Y| = 3k, χ(Y) ≤ k,

and θ(Y) = 2k + 1, but Y has no equitable k-coloring: for any k-coloring the class of the vertex r with

d(r) = 2k contains at most r and one vertex from Kk−1.

Example 4.1.8. For k ≥ 2 and odd c ≤ k, let V = B1 ∪B2 = C1 ∪ C2 ∪B2, where C1, C2, B2 are disjoint,

|C1| = c, |C2| = 2k− c, and |B2| = k. Set Zc = Zc,k = Q+K, where Q = K(C1, C2) and K = K(B2). (See

Figure 4.2(b).) Then |Zc| = 3k, χ(Zc) = k, and θ(Zc) = 2k, but Zc has no equitable k-coloring. Indeed,

each class of an equitable coloring of Zc must contain one vertex of K and two vertices from the same part

of Q. As c is odd, this is impossible.

K1,2k Kk−1

(a) Yk, k = 5

2k − c

c

Kk

(b) Zc,k, k = 5, c = 3

Figure 4.2: Examples 4.1.7 and 4.1.8.

Theorem 4.1.9. Let G be a graph with (H1) χ(G) ≤ k, (H2) θ(G) ≤ 2k + 1, and (H3) |G| = 3k. If G has

no equitable k-coloring then G ∈ {X,Yk} or Zc,k ⊆ G for some odd c.

Notation. For a graph G = (V,E) and sets X,Y ⊆ V , let E(X) := EG(X) = E(G[X]) and let

E(X,Y ) := EG(X,Y ) be the set of edges with one end in X and one end in Y . A k-coloring of G is a
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partition V of V into k independent sets. We may express this partition as a function f : V → [k], where

f−1(i) ∈ V for each i ∈ [k].

4.2 Setup and preliminaries

Suppose G = (V,E) is a counterexample to Theorem 4.1.9 with k minimum, and subject to this ‖G‖

minimum. So G satisfies (H1–H3), G /∈ {X,Y}, Zc * G for any odd c, and

G has no equitable k-coloring, but G− e has an equitable k-coloring for all e ∈ E. (4.5)

By minimality of k,

Theorem 4.1.9 holds for all k′ ∈ [1, . . . , k − 1]. (4.6)

Call a vertex v high if d(v) ≥ k + 1, and low otherwise. For a subset W of V (G), let H(W ) denote the

set of high vertices in W and L(W ) = W rH(W ) denote the set of low vertices. An edge is high if it has a

high end. By (H2), H(V ) is independent; so a high edge also has a low vertex.

Lemma 4.2.1. k < ∆(G) ≤ 2k − 2. In particular, k ≥ 3.

Proof. By Theorem 4.1.4, if ∆(G) ≤ k then k is odd and Zk ⊆ G, a contradiction. Suppose d(v) = d :=

∆(G) ≥ 2k − 1 for some v ∈ V . As every neighbor of v has positive degree, (H2) implies d ≤ 2k. Let

X = N(v) and Y = V (G)rN [v]. If Y is a clique then G contains Y or Z1; else choose distinct nonadjacent

vertices y1, y2 ∈ Y with ‖{y1, y2}, X‖ maximum. Let V1 = {v, y1, y2} be one color class.

If d = 2k then X is independent and ‖X,Y ‖ = 0. Since G−{v, y1, y2} ⊆ Kk−3 +K2k, it has an equitable

(k − 1)-coloring. Thus G has an equitable k-coloring, contradicting (4.5). So d = 2k − 1. If k = 2 then X is

independent by (H1), contradicting (4.5). Thus k ≥ 3.

By (H2), each x ∈ X has at most one neighbor in V − v. So M := E(X) is a matching, the vertices of

Y are not adjacent to vertices saturated by M , and ‖X,Y ‖ ≤ d− 2t, where t = |M |. Say M = {ei : i ∈ [t]}.

Order the vertices in Y − y1 − y2 so that ‖y3, X‖ ≥ . . . ≥ ‖yk, X‖.

Note that ‖y3, X‖ ≤ k, and if equality holds then d(y3) = d: If not then ‖y3, Y ‖ ≤ d− (k + 1) = k − 2;

so there is y ∈ Y − y3 with yy3 /∈ E. Thus ‖{y1, y2}, X‖ ≥ ‖{y3, y}, X‖ ≥ k, so ‖X,Y ‖ ≥ 2k > d, a

contradiction. Thus |X r N(y3)| ≥ k − 1 ≥ 2. Then there exist distinct nonadjacent vertices x1, x2 ∈

X rN(y3): if not, X rN(y3) = K2, ‖y3, X‖ = k, d(y3) = d, and V rN [y3] = K3 = Kk, so Z1 ⊆ G.

Using that M is a matching, choose x1 and x2 to be in distinct edges of M if possible; that is, label X

and M so that for each j ≤ max{2, t}, xj ∈ ej .
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Let V2 = {x1, x2, y3} be the second color class. Put X3 = X r {x1, x2}. If k = 3 then X3 is independent,

and we are done. So assume k ≥ 4.

We recursively construct color classes Vi = {yi+1, x2i−3, x2i−2} for i ∈ {3, . . . , k − 1}. Suppose we

have chosen V1, . . . , Vi−1, and set Xi := N(v) r {x1, . . . , x2i−4}. By our choice of labels in Y r {y1, y2},

‖yi+1, X‖ ≤
⌊
‖Y,X‖
i−1

⌋
≤
⌊
2k−2t−1
i−1

⌋
. Also |Xi| = 2(k − i) + 3, so

|Xi −N(yi+1)| ≥ |Xi| − ‖yi+1, X‖ ≥ 2(k − i) + 3−
⌊

2k − 2t− 1

i− 1

⌋
=

⌈
3 + 2(k − i)

(
1− 1

i− 1

)
− 2i− 2t− 1

i− 1

⌉
(*)

≥
⌈

3 + (k − i)− 2i− 1

i− 1

⌉
≥
⌈

3 + 1− 5

2

⌉
= 2.

Note that if |Xi−N(yi+1)| = 2, the starred line shows i > t. Now we select distinct, nonadacent x2i−3, x2i−2

in XirN(yi+1). If we can choose x2i−3 ∈ ei, we do so. More precisely: using that V (M) ⊆ XrN(yi), if i ≤ t

and ei ∩Xi 6= ∅, we choose x2i−3 ∈ ei; then, since |Xi−N(yi+1)| ≥ 3, we select x2i−2 ∈ Xir (ei ∪N(yi+1)).

Suppose i > t, or ei ∩ Xi = ∅. If |Xi r N(yi+1)| = 2, since i > t and by our choice of V1, . . . , Vi−1, the

two vertices of Xi rN(yi+1) are nonadjacent. Otherwise, since M is a matching, we let x2i−3, x2i−2 be any

two distinct, nonadjacent vertices in Xi r N(yi+1). Finally, let Vk := Xk−1 be the last color class. Since

|M | ≤ k − 1, Vk is independent.

Lemma 4.2.2. ω(G) ≤ k − 1.

Proof. Suppose K is a k-clique in G, and set H = G −K. As Zc * G for any odd c, Kc,2k−c * H for any

odd c. By (H2),

‖xy,H‖ ≤ 3 for all x, y ∈ K. (4.7)

By Theorem 4.1.5, H has an equitable k-coloring f .

First suppose (i) K * N(U) for all classes U of f and (ii) no vertex x ∈ K has neighbors in all classes of

f . Extend f to an equitable k-coloring f ′ of G by first greedily adding vertices of K into distinct classes of

f starting with the vertex x with ‖x,H‖ maximum. By (ii) and (4.7) the process will not get stuck before

the last vertex z ∈ K. If z cannot be greedily added to the last remaining class W , (4.7) implies W is the

only class z is adjacent to. By (i) there is y ∈ K rN(W ). Move y to W and z to the former class of y to

finish. As this contradicts (4.5), (i) or (ii) fails.

If k ≥ 4 then (4.7) implies (ii). Suppose k = 3 and (ii) fails because x ∈ K has a neighbor zi in each

class Zi of f . As G[N [x]] = Z5 * G, there is y ∈ Y := V − N [x] with Y ′ := Y − y + x independent. Set

G′ = G − Y ′. By (H2), dG′(w) ≤ 1 for all w ∈ N(x). Also dG′(y) ≤ 2. Thus by Theorem 4.1.3, G′ has an
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equitable 2-coloring, contradicting 4.5. So (ii) holds and (i) fails.

Say K ⊆ N(Z) for some class Z = {z, z′} of f . Put H+ = H + zz′. Then dH+(z) ≤ dG(z) and

dH+(z′) ≤ dG(z′). So θ(H+) ≤ 2k + 1. Suppose H+ has no equitable k-coloring. By Theorem 4.1.5,

Q := Kc,2k−c ⊆ H+ for some odd c ≤ k, and zz′ ∈ E(Q). Say dQ(z′) = c. Note each vertex of {z, z′} has a

neighbor in K because χ(G) ≤ k. Then there exist x ∈ K and y ∈ V (H) with xz, yz′ ∈ E. As ∆(G) ≤ 2k−2

and G 6= X, k ≥ 4. By (H2)

4k + 2 ≥ θ(xz) + θ(yz′) ≥ ‖Z,K‖+ k + (2k − c− 1) + (2k − 1) ≥ 6k − 2− c.

So 2k − 4 ≤ c ≤ k. As c is odd and k ≥ 4, this is a contradiction. Thus H+ has an equitable k-coloring f ′.

Since (i) fails, there is a class Y of f ′ such that K ⊆ N(Y ). As zz′ ∈ E(H+), Y 6= Z. As ‖K,H+‖ ≤ k+1,

and χ(G) ≤ k, there are vertices u ∈ K and z′′ ∈ V (H) with (say) Y = {z, z′′}, N(z) ∩ K = K − u,

uz′, uz′′ ∈ E, and N(K) = {z, z′, z′′}. If H∗ := H+ + zz′′ has an equitable coloring then it satisfies (i), and

we are done. Otherwise, Q := Kc,2k−c ⊆ H∗ for some odd c ≤ k, with zz′′ ∈ E(Q). By Lemma 4.2.1, 3 ≤ c.

If k = 3 then G = X by (4.4). Else, for w ∈ NQ(z) r {z′, z′′},

2k + 1 ≥ θ(zw) ≥ ‖z,K‖+ θH∗(wz)− 2 ≥ k − 1 + 2k − 2 = (2k + 1) + (k − 4),

so k = 4 and z′, z′′ are in one part Q′ of Q. Since d(u) = k + 1, d(z′), d(z′′) ≤ k, so |Q′| = 5. But now for

x ∈ V (K)− u, d(z) + d(u) ≥ 6 + 4 = 2k + 2, a contradiction.

Lemma 4.2.3. k ≥ 4.

Proof. For a contradiction, suppose k ≤ 3. By Lemma 4.2.1, k = 3 and ∆(G) = 4. Let d(v) = 4, N = N(v),

G′ = G−N [v], and V (G′) = N ′. By Lemma 4.2.2,

ω(G) ≤ 2. (i)

So N is independent and, since |G′| = 4, G′ is bipartite. Thus (H2) implies

‖x,N ′‖ ≤ 2 for all x ∈ N (ii)

and ‖N,N ′‖ ≤ 8.

Suppose dG′(w) = 3 for some w ∈ N ′. Then ‖w,N‖ ≤ 1 because ∆(G) = 4, and N(w) ∩N(w′) = ∅ for

all w′ ∈ N ′−w by (i) Because ‖N,N ′‖ ≤ 8, ‖w′, N‖ ≤ 2 for some w′ ∈ N ′−w. Choose x1, x2 ∈ N rN(w′),
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including the neighbor of w if it exists. Then {{w′, x1, x2}, N −x1−x2 +w,N ′−w−w′+ v} is an equitable

3-coloring of G.

Otherwise ∆(G′) ≤ 2, so N ′ has an equitable 2-coloring.

If Y is a class of an equitable 2-coloring of N ′ then N(x) ∩ Y 6= ∅ for all x ∈ N : (iii)

else {(N ′ r Y ) + v, Y + x,N − x} is an equitable 3-coloring of G. Let N ′ = {y1, y2, y3, y4} and x ∈ N .

As N ′ has an equitable 2-coloring g, (ii) and (iii) imply ‖x,N ′‖ = 2. Say N(x) = {y1, y2}. By (iii),

y3y4 ∈ E. By (i), y1y2 /∈ E and N(y3) ∩ N(y4) = ∅. If ‖y3, N‖ , ‖y4, N‖ ≤ 2, then because they share

no neighbrs there exist disjoint 2-sets X1, X2 ⊆ N with N(y3) ∩ N ⊆ X1 and N(y4) ∩ N ⊆ X2. So

{{v, y1, y2}, X1 + y4, X2 + y3} is an equitable 3-coloring of G. Thus (say) N(y3) ∩ N = N − x. Say

g(y1) = g(y3). By (i) and (iii), N(y2) = N . By (H2), y2y3 /∈ E. By (ii) ‖y1, N‖ = 1 and ‖y4, N‖ = 0. Let

x′ ∈ N − x. Then {{v, y2, y3}, {x, x′, y4}, N − x− x′ + y1}} is an equitable 3-coloring of G.

4.3 Nearly equitable colorings

A coloring of G is nearly equitable if one color class has size 2, one color class has size 4, and all other color

classes have size 3.

Proposition 4.3.1. G admits a nearly-equitable k-coloring.

Proof. Suppose not. By Lemma 4.2.1, ∆(G) ≥ k + 1. Let xy ∈ E with d(x) ≥ d(y). By (4.5), G − xy has

an equitable k-coloring f with f(x) = f(y). Let C be the set of color classes of f , and X = {x, y, z} ∈ C.

Choose xy and f so that d(z) is minimum. If x (or y) has no neighbor in some class W ∈ C−X then moving

it to W yields a nearly equitable k-coloring; so assume not. As y is low, d(y) = k, and ∆(G) = d(x) = k+ 1.

Furthermore,

y has exactly one neighbor in every class, (i)

and

x has exactly two neighbors in one class, and exactly one neighbor in every other class. (ii)

For W ∈ C − X let GW := G[W ∪ X]. If GW is bipartite, then its parts form an equitable or nearly

equitable 2-coloring unless GW = K1,4. However, ∆(GW ) ≤ 3, so GW 6= K1,4; thus if GW is bipartite, it

has an equitable or nearly equitable coloring. If GW has an equitable or nearly equitable coloring, then G

has an equitable or nearly equitable k-coloring. Thus GW contains an odd cycle CW with xy ∈ C. Let

C1 = {W ∈ C −X : |CW | = 3} and C2 = C −X r C2. For W ∈ C1 let CW = xvW yx. If vW is movable to
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some class U then moving y to W and vW to U yields a nearly equitable k-coloring. As vw ∈ N(x), it is

low. Thus vw has two neighbors in X and one neighbor in each class of C −X −W . In particular,

vwz /∈ E. (iii)

For W ∈ C2 let CW = xxW zyW yx, where xW , yW ∈ W . Then GW − z is bipartite. So z is not movable.

Thus,

if |C2| 6= 0, then |C1|+ 2|C2| ≤ d(z) ≤ k + 1. (iv)

So |C1| ≤ 1.

If there are distinct W,W ′ ∈ C1 with vW vW ′ /∈ E then, using (ii), choose notation so that ‖x,W‖ = 1.

By (i) and (iii), moving x to W , y to W ′, and both vW and vW ′ to X yields an equitable k-coloring. So

Q := {vW : W ∈ C1} ∪ {x, y} is a clique. By Lemma 4.2.2, |Q| ≤ k − 1. So |C2| ≥ 2; by (iv) d(z) = k + 1.

Consider distinct W,W ′ ∈ C2. Using (ii) choose notation so that ‖x,W‖ = 1. Switching x and xW yields an

equitable k-coloring of G − zxW , with color class {z, xW , y}. As d(y) < d(z), this contradicts the choice of

f .

Fix a nearly equitable k-coloring f := {V1, . . . , Vk}, where V − = V1 and V + = Vk. As our proof

progresses we will put more and more stringent conditions on f.

Construct an auxiliary digraphH := H(G, f) as follows. The vertices ofH are the color classes V1, . . . , Vk.

A directed edge V ′V ′′ belongs to E(H) if some vertex x ∈ V ′ has no neighbors in V ′′. In this case we say that

x is movable to V ′′ and that x witnesses the edge V ′V ′′. A vertex v ∈ Vi is movable if it is movable to some

accessible class; otherwise it is unmovable. Let M = M(f) be the set of movable vertices and M = M(f) be

the set of unmovable vertices. Call a color class Vi of f accessible if V − is reachable from Vi in the digraph

H. By definition, V − is accessible. Let A := A(f) denote the family of accessible classes, B denote the

family of inaccessible classes, A :=
⋃
A, and B :=

⋃
B = V − A. If Vk ∈ A then switching witnesses along

a path from V + to V − yields an equitable r-coloring; so V + ∈ B. Let a := |A| and b := |B| = ks− a. Then

|A| = as− 1 and |B| = bs+ 1.

An in-tree is a digraph T with a root r ∈ V (T ) such that every v ∈ V (T ) has a unique vr-walk. So the

undirected graph underlying T is acyclic. A vertex v ∈ T is a leaf if d−(v) = 0. Fix a spanning in-tree

F ⊆ H[A] with the most leaves possible. Write WF for the unique W,V −-path in F ,and let wx be the

witness for its first edge. Let D ⊆ H[A] be the spanning graph with UW ∈ E(D) if and only if UW ∈ E(H)

and U /∈WF .

A class Z ∈ A is terminal if there is a UV −-path in H− Z for every U ∈ A− Z. For example, any leaf
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of F is terminal. Class V − is terminal if and only if a = 1. Let A′ = A′(f) be the set of terminal classes,

A′ :=
⋃
A′ and a′ := |A′|.

4.4 Normal colorings

A nearly equitable k-coloring is normal if

among nearly equitable k-colorings a is maximum, (C1)

and

there are at least two in-leaves whenever a ≥ 3. (C2)

Lemma 4.4.1. There exists a normal coloring.

Proof. Suppose f is a nearly equitable k-coloring with a maximum. If a ≤ 2, (C2) is vacuously true, so we

may suppose a ≥ 3. If F has at least two leaves then we are done; else F is a dipath with leaf Z and last

edge UV − witnessed by w. As a ≥ 3, U 6= Z. Shifting w to V − yields a normal k-coloring with in-leaves

V − + w and Z.

Fix a normal coloring f . A vertex y ∈ B is good if G[B − y] has an equitable b-coloring; else y is bad. A

major goal of this section is to show that every vertex in B is good.

Lemma 4.4.2. a = a(f) ≥ 2.

Proof. Assume a = 1 for all nearly equitable k-colorings of G, and choose one with

d(x1) + d(x2) minimal, (*)

where V − = {x1, x2}. Say d(x1) ≤ d(x2). By Lemma 4.2.1, d(x2) ≤ 2k − 2. As N(V −) = V − V −,

d(x1) + d(x2) ≥ 3k − 2 + |N(x1) ∩N(x2)|.

Case 1: N(x1) ∩N(x2) = ∅. If ‖x1, V −‖ = ‖x2, V −‖ = 2, then coloring x1 resp. x2 with its non-neighbors

in V + yields an equitable k-coloring. Therefore we suppose ‖x, V +‖ ≥ 3 for some x ∈ V −. Pick Y ∈ B with

‖x, Y ‖ minimum. If ‖x, Y ‖ = 0 then moving x to Y and v ∈ N(x) ∩ V + to V − yields a nearly equitable

k-coloring with a ≥ 2: any vertex N(x) ∩ V + − v is movable to the new small class V − − x+ v. Else, since

d(x) ≤ 2k − 2 = 2b, ‖x, Y ‖ = 1 and d(x) ≥ k + 1. Switching x with y ∈ N(x) ∩ Y yields a nearly equitable

coloring, contradicting (*) since d(y) ≤ (2k + 1)− d(x) ≤ k.
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Case 2: N(x1) ∩N(x2) 6= ∅. Then d(x1) ≥ k + 1 and d(x2) ≥ k + 2. Put G′ = G[B]. Then χ(G′) ≤ b. By

(H2), ∆(G′) ≤ 2k+1−d(x1)−1 ≤ b. If S ⊆ V with |S| = 2k then there is v ∈ N(x2)∩S, and dG′(v) ≤ b−1.

So Kb,b * G′. Pick w ∈ N(x2) r N(x1). Theorem 4.1.4 implies G′ − w has an equitable b-coloring Y. As

‖x2, B − w‖ < 2b, some class Y ∈ Y satisfies ‖x2, Y ‖ ≤ 1. Move w to V − − x2 and x2 to Y ; if x2 has a

neighbor v ∈ Y then move v to a class X in which it has no neighbors; X exists as d(v) ≤ k− 1. This yields

an equitable k-coloring, or a nearly equitable k-coloring, contradicting (4.5) or (*) since d(w) < d(x2).

An edge xy with x ∈ X ∈ A and y ∈ B is solo if ‖y,X‖ = 1; else it is nonsolo. If xy is solo then x and

y are solo neighbors of each other of x. For x ∈ A and y ∈ B let Sx denote the set of solo neighbors of x in

B and Sy denote the set of solo neighbors of y in A.

Lemma 4.4.3. Let z ∈ Z ∈ A, y ∈ Sz, and g be an equitable b-coloring G[B − y]. Then

0. if P is a W,V −-path in H− Z and w witnesses WW ′ ∈ E(P) then ‖z,W − w‖ ≥ 1.

If (a) the nonsolo neighbors of y are unmovable (as when ‖y,A‖ = a) or (b) Z ∈ A′ then

1. z is unmovable;

2. If (c) ‖z,A‖ ≤ a− 1, then z has no movable neighbor w ∈W ∈ A.

Proof. (0) If not, shift witnesses along P, move z to W , and move y to Z to obtain an equitable a-coloring

h of A+ y. Then g ∪ h contradicts (4.5).

(1) Suppose (a) or (b) holds and z is movable to U ∈ A. Pick U and a U, V −-path P in H. By (0),

Z ∈ P; in particular, there is no Z, V − path in H where z is the witness to the first edge. Then (b) fails, so

(a) holds; say x witnesses XZ ∈ P. By (0) applied to x, x is not a solo neighbor of y; by (a) applied to x, x

is not a neighbor of y at all. We move z to U , then shift witnesses along P, noting that the witness from Z

is not z; then we move y to Z − z + x. The coloring obtained in this way is proper, contradicting (4.5).

(2) Suppose (a) or (b) holds; further suppose (c) holds and wz ∈ E with w movable to U ∈ A. Note by

(1) and (c), z has precisely one neighbor in every class of A− Z. Pick a U, V −-path P in H so that Z /∈ P

if (b) holds. Choose w,W,U,P so that |P| minimum. For every vertex w′ that is the witness of an edge of

P, zw′ 6∈ E(G), because otherwise w′ is preferable to w by minimality. As above, if x witnesses XZ ∈ P,

then (0) implies x is not a solo neighbor of y; since Z ∈ P, (b) fails for Z, so (a) holds, and xy /∈ E. Since

‖z,W‖ = 1 and z is unmovable (hence not a witness to any edge of P), switching witnesses on P, and moving

w to U , z to W and y to Z yields an equitable a-coloring h of A+ y. Then g ∪ h contradicts (4.5).

Lemma 4.4.4. Every color class in A contains at most one unmovable vertex.
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Proof. Suppose Z ∈ A has two unmovable vertices z1 and z2. If Z 6= V − then let Z = {z1, z2, z3}. Let

B0 = B+z1+z2 and A0 = A−z1−z2. Since z3 (if it exists) is the witness for the first edge ZZ ′ of P0 := ZF ,

shifting witnesses on P0 yields an equitable (a− 1)-coloring f0 of G[A0]. Thus G′ := G[B0] has no equitable

(b+ 1)-coloring, but g := f |B0 is a nearly equitable (b+ 1)-coloring. As each v ∈ B0 is unmovable,

(a) d(v) ≥ a− 1 + dG′(v) + ‖v, z3‖ , and (b) θ(G′) ≤ 2b+ 3. (4.8)

By Lemma 4.4.2, b+ 1 < a+ b = k. As G′ has no equitable (b+ 1)-coloring, our choice of k minimum in the

setup implies G′ ∈ {X,Yb+1} or G′ ⊇ Zb+1,c for some odd c. Now consider several cases, always assuming

all previous cases fail for all choices of Z.

Case 0: G′ = X. Use the notation of (4.3). By (4.8), θ(w1w2) ≥ 2k + ‖{w1, w2}, z3‖. By (H2), (say)

w1z3 /∈ E. Also, by (4.8)(a), θ(x3yi) ≥ 2k + 1 + ‖wi, z3‖ for i ∈ [2]. By (H2), y1z3, y2z3 /∈ E. So

f ′ := f |(A− Z) ∪ {{w1,y1, z3}, {w2, y2, y3}, {x1, x2, x3, w3}}

is a nearly equitable k-coloring with y2 movable to {w1, y1, z3} ∈ A(f ′), contradicting (C1).

Case 1: G′ = K1,2b+2 + Kb. Let K = Kb and r ∈ B0 with dG′(r) = 2b + 2. Then dG′(w) = b − 1 for

all w ∈ K. As r is not contained in an independent 3-set, r ∈ Z − z3. By (4.8), d(r) ≥ a + 2b + 1 and

d(v) ≥ a for every v ∈ NG′(r). By (H2), these bounds are sharp. Let y ∈ N(r) ∩ B. Then ‖y,A‖ = a, and

so ‖y,B0 − r‖ = 0. Thus ry is solo. Also r is good. Let u ∈ N(r)∩A. Lemma 4.4.3(2) implies all neighbors

of r are unmovable. So ‖u,B0‖ ≤ 2, and witnesses of edges of P0 are not adjacent to r. Switch u and r in

f0 to obtain a new (a − 1)-equitable coloring of G[A0]. Finally, as ‖u,B0 − r‖ ≤ 1, ∆(G′ − r + u) ≤ b. By

Theorem 4.1.3, G′ − r + u has an equitable (b+ 1)-coloring, contradicting (4.5).

Case 2: G′ ⊇ Kc,2b+2−c + Kb+1 for some odd c ∈ [b + 1]. Use the notation of Example 4.1.8, but with

V = B0 = B1 ∪ B2, and c ∈ [2b + 1]. As the clique B2 has one vertex in every class of g, assume z2 ∈ B2.

Then z1 ∈ B1. Say z1 ∈ C1. Since c is odd, V + rB2 ⊆ C2.

Case 2.1: c ≥ 3. Then C1 − z1 6= ∅. Let y1 ∈ C1 − z1 and y2, y
′
2 ∈ V + rB2 ⊆ C2

d(y1) ≥ ‖y1, A ∪ (B1 − z1) ∪ (B2 − z2)‖ ≥ a+ |C2|+ ‖y1, B2 − z2‖ ;

d(y2), d(y′2) ≥ ‖y2, (Ar Z) ∪B1 ∪ (B2 + z3)‖ ≥ a− 1 + |C1|+ ‖y2, B2 + z3‖ ; and

d(z1) ≥ ‖z1, (Ar Z) ∪B1 ∪B2‖ ≥ a− 1 + |C2|+ ‖z1, B2 ∪ C1‖ .

So θ(y1y2) = 2k + 1, ‖y1, C1 +B2 − z2‖ = ‖{y2, y′2}, B2 + z3‖ = 0 and ‖y2, A‖ = a. Also θ(z1y2) ≥ 2k and
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‖z1, B2 ∪ C1‖ ≤ 1. Let Y = {y1, y′1, w} be the class in B containing y1, with y′1 ∈ C1 and w ∈ B2. Note

‖y′1, C1 +B2 − z2‖ = ‖y1, C1 +B2 − z2‖ = 0. Let w′ ∈ V +∩B2. Move y2 to Z−z1, z1 to Y , and if z1w ∈ E

then switch w and w′. This yields a new nearly equitable k-coloring f1. SinceA(f0)−Z = A(f1)−(Z−z1+y2),

and z3 witnesses Z ∈ A(f0), still Z − z1 + y2 ∈ A(f1). Since y′2 is movable to A − a1 + y2, it follows

a(f0) < a(f1), contradicting (C1).

Case 2.2: c = 1. Then C1 = {z1} and |C2| = 2b+1. So (i) d(z1) ≥ a+2b, (ii) d(y) ≤ a+1 for all y ∈ N(z1).

For any y ∈ B2, d(y) ≥ k − 1, so by (H2): (iii) d(y) ≤ k + 2 for all y ∈ B2. Because Case 1 does not hold,

‖z1, B‖ = 2b+ 1. We now prove the following:

Subclaim 4.4.4.1. If some y ∈ Y ∈ B is bad then b = 2, d(z1) = a+2b, Y 6= V +, and the unique u ∈ B2∩Y

is high and satisfies ‖u,B‖ ≥ 3. In particular, there are at most two bad vertices.

Proof of Claim 4.4.4.1. Suppose Gy := G[B−y] = G′−{z1, z2, y} has no equitable b-coloring. Then y /∈ V +;

so Y 6= V + and b ≥ 2. By (ii, iii), ∆(Gy) ≤ ∆(G[B]) ≤ b + 2, and dGy
(y′) ≤ 1 for all y′ ∈ C2. Recall

θ(G[B]) ≤ 2b+ 1, so θ(Gy) ≤ 2b+ 1. By choice of k minimum in the setup, Gy ∈ {X,Yk}, or Zc,k ⊆ Gy for

some odd c. Since dGy
(y′) ≤ 1 for all y′ ∈ C2, this implies ∆(Gy) ≥ 2b or there are at least b + 1 vertices

v ∈ B − y with dGy
(v) ≥ b − 1. So b = 2, dGy(y′) = 1 for some y′ ∈ C2, and there is u ∈ B2 − y such that

‖u,Gy‖ ≥ 3. As θ(y′z1) ≤ 2k+ 1, (i) implies d(z1) = a+ 2b. As |Y − y| = 2, u ∈ Y ∩B2, so both vertices of

Y − u are in C2. Since b = 2, B = {Y, V +}. Then u is not bad, since ∆(G[B − u]) ≤ 2. So if any vertex v is

bad, v ∈ Y − u.

Case 2.2.0: Every X ∈ A has a unmovable vertex vX with ‖vX , B‖ ≥ 2b + 1. By Lemma 4.4.2, a ≥ 2.

For all T ∈ A − V − let T = {uT , vT , wT }, where wT witnesses the edge of F leaving T . Since d(vT ) ≥

(a− 1) + 2b+ 1 = k+ b, the set D = {vT : T ∈ A} is independent. Let v = vV − and V − = {v, v′}. Since vT

is unmovable and D is independent, vT v
′ ∈ E. Hence D − v ⊆ N(v′); so v′ is unmovable. Use V − for Z, so

v = z1 and v′ = z2. Then

k − 1 ≤ ‖v′, A‖+ b ≤ d(v′) ≤ 2k + 1− d(v) ≤ k − b+ 1, (4.9)

so b ∈ {1, 2}. It follows that we can choose a leaf X of F so that ‖v′, X‖ = 1: If F has only one leaf X then

by (C2) a = 2, by Lemma 4.2.3 b = 2, and ‖v′, X‖ = 1 because equality holds in (4.9). Otherwise, F has

two leaves T and X and (say) ‖v′, X‖ = 1. Switch v′ and vX to obtain Z ′ = {v, vX}, X ′ = {v′, uX , wX},

and a new nearly equitable k-coloring f ′. For all T ∈ A −X − Z, vT witnesses that TZ ′ ∈ H(f ′), and wX

witnesses an edge of H(f ′). So f is normal. Since both vertices in Z ′ are high, all vertices in B are low, so

Claim 4.4.4.1 implies every vertex in B is good.
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If a = 2 then by Lemma 4.2.3, b = 2. Also ‖v′, B‖ = 2 and E(A) = {v′vX , vuX}. Moving wX to

Z ′ in f ′ shows that B ⊆ N(v′) ∪ N(uX): otherwise, we move a vertex y ∈ B to {v′, ux}, and equitably

color B − y, since y is good. Then d(ux) + d(v) ≥ 2(1 + |B r N(v′)|) = 12, contradicting θ(vuX) ≤ 9. So

a ≥ 3 and by (C2) there is a leaf T 6= X. As vT is movable to Z ′, ‖B, T‖ ≥ 3b + 1 + ‖vT , B‖ ≥ 5b + 2.

If ‖v′, T‖ = 1 then by symmetry ‖B,X‖ ≥ 5b + 2. Else ‖v′, T‖ = 2 because wX is moveable to V −.

Then ‖v′, B‖ = d(v′) − a ≤ (k − b + 1) − a = 1. Considering the coloring f ′, and using (4.9), ‖B,X‖ ≥

3b + 1 + ‖vX , B‖ − ‖v′, B‖ ≥ (3b + 1) + (2b + 1) − 1 ≥ 4b + 2. Regardless, ‖B, T ∪X‖ > 9b + 3. So there

exists y ∈ B with ‖y,A‖ ≥ 4 +a−2 = a+ 2. As f ′ is a nearly equitable coloring of A, and y is good, yz ∈ E

for some z ∈ Z ′, and this gives the contradiction θ(yz) ≥ k + b+ a+ 2 = 2k + 2.

Case 2.2.1: ‖y,A‖ = a for all y ∈ C2. First suppose (*) for every X ∈ A and y ∈ C2 the unique x ∈ Sy ∩X

is unmovable. If X ∈ A has a unique unmovable vertex vX then ‖vX , B‖ ≥ 2b+1. Else X has two unmovable

vertices. Using X for Z, yields some unmovable vX with ‖vX , B‖ ≥ 2b+ 1. Regardless, Case 2.2.0 holds. So

(*) fails.

Pick X ∈ A and y ∈ C2 with x3 ∈ Sy ∩X movable, and |XF| maximum. By Lemma 4.4.3(1), y is bad.

By Claim 4.4.4.1, B has the form {U, V +}, where U = {u, y, y′}, w,w′ ∈ V + ∩ C2, u ∈ B2, ‖u, V +‖ ≥ 3, u

high, and all vertices in V + are good. Since ‖y′, B‖ ≤ 1 we can label so w′y′ /∈ E. By Lemma 4.4.3(1), each

v ∈ C2 ∩ V + is adjacent to an unmovable xv ∈ X. If xw 6= xw′ then X is a candidate for Z, and so y has an

unmovable neighbor, a contradiction. So, since ‖C2 ∩V +‖ = 3, d(xw) ≥ (a− 1) + 3 + ‖xw, u‖ = k+ ‖xw, u‖.

By (H2), uxw /∈ E. If xwy
′ ∈ E, switch xw and y′. Since the sole neighbor of y in X is x3, and the sole

neighbor of y′ and w′ in X is xw, this yields a nearly equitable k-coloring f ′ with w′ movable to X−xw +y′.

By maximality of |XF|, y′ is not adjacent to any witness of an edge TX ∈ F . So a(f ′) > a(f), contradicting

(C1). If xwy
′ 6∈ E, then move xw to U and w to X − xw. This yields a nearly equitable k-coloring f ′′ with

w′ movable to X − xw + w. Again, by maximality of |XF|, w is not adjacent to any witness of an edge

TX ∈ F , so a(f ′′) > a(f), contradicting (C1).

Case 2.2.2: ‖w,A‖ = a for some w ∈ C2. If possible, choose w to be good. By θ(z1w) ≤ 2k + 1 and not

Case 2.2.1, there exists a vertex in C2 with degree at least a + 1, so ‖z1, A‖ = a − 1. If w is bad, then by

Claim 4.4.4.1, b = 2 and there exists a good y ∈ C2 ∩ V + with ‖y,B‖ ≥ 1. As θ(z1y) ≤ 2k + 1, ‖y,A‖ ≤ a.

But then we would have chosen y instead of w, so w is good. As z1 ∈ Sw, wz2 /∈ E.

By Lemma 4.4.3, the unique wX ∈ N(w) ∩X is unmovable for every X ∈ A, and z1 has an unmovable

neighbor zX in every X ∈ A− Z. If X ∈ A has two unmovable vertices, then by Case 2.2, one of them has

2b+ 1 neighbors in B. By not Case 2.2.0, there is X ∈ A with a unique unmovable vertex vX = zX = wX .

By (H2), d(vX), d(w) ≤ a + 1. If y ∈ N(z2) ∩ C2 is good then ‖y,A‖ = a + 1 by (H2) and yvX ∈ E by

Lemma 4.4.3(1).
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Consider f0, the equitable k-coloring of G[A0] defined in the beginning of this proof, obtained by shifting

witnesses along ZF starting with z3. As unmovable vertices remained in their color classes, vX still is the

unique neighbor of z1 and w in the new X. Replacing vX with z1 in f0 yields an equitable (a− 1)-coloring

f1 of G[A0 + z1 − vX ]. Suppose vXz2 /∈ E. Since d(vX) = a + 1 and vX is unmovable, ‖vX , B‖ ≤ 2.

Since |V + ∩ C2| = 3, we can choose y ∈ (V + ∩ C2) r N(vX). As y is good, yz2 /∈ E, and there is an

equitable b-coloring g of B − y. Then f1 ∪ g + {vX , z2, y} is an equitable k-coloring, contradicting (4.5).

Otherwise, vXz2 ∈ E. Then ‖vX , B − w‖ = 0. As w is good there is an equitable b-coloring g of B −w. Let

y ∈ V +rN [w], and g′ be the result of replacing y with vX in g. As vXy /∈ E, yz2 /∈ E. So f1∪g′+{z2, w, y}

contradicts (4.5).

Case 2.2.3: There does not exist y ∈ C2 such that ‖y,A‖ = a. That is, ‖y,A‖ = a+ 1 for all y ∈ C2.

For each y ∈ C2 there is T ∈ A with N(y) ∩ (A− T ) ⊆ Sy. (i)

Also

‖z1, A‖ = a− 1, (ii)

‖z1, B‖ = 2b+ 1, (iii)

‖C2, B‖ = 0, (iv)

and

every vertex in B is good. (v)

Let X ∈ A′ − Z. As z1 is unmovable, (ii) implies it has a unique neighbor vX ∈ X, and

d(vX) ≤ a+ 1. (vi)

Suppose x ∈ X and y, y′ ∈ Sx ∩C2 are distinct, and note yy′ /∈ E. By Lemma 4.4.3(1), x is unmovable. By

symmetry in B, we may assume y, y′ ∈ V +. If x is low then ‖x,B‖ ≤ b+ 1, and so switching x with y and

y′, and switching witnesses on a X,V −-path in F contradicts (4.5). So

if x ∈ X is low it has at most one solo neighbor in C2. (vii)

Suppose A = {V −, X}. By Lemma 4.2.3, b ≥ 2. Assume V − = {z1, z2}, as otherwise moving z3 to

V − yields this. By (vi), ‖vX , B0 − z1‖ ≤ 2 ≤ b. Using this and (iv), G[B0 − z1 + vX ] has an equitable

(b+ 1)-coloring, and by (ii), X − vX + z1 is independent, contracting (4.5). So a ≥ 3, and F has two leaves.
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An unmovable vertex x ∈ A is big if ‖x,B‖ ≥ 2b+ 1, and small if ‖x,B‖ ≤ 2b. By Case 2.2,

no class has two small vertices. (viii)

Suppose z1 and z2 are big. Then |N(z1) ∩ N(z2) ∩ C2| ≥ b + 1. Let y1, y2 ∈ N(z1) ∩ N(z2) ∩ C2. Each

x ∈ X ∩N({y, y′}) is solo by (i). By Lemma 4.4.3 each v ∈ NA[x] is unmovable; so x ∈ N({z1, z2}). As z1

and z2 are high, x is low. By (vii) |Sx ∩C2| ≤ 1 < b+ 1. So X has a low solo vertex x′ 6= x. Lemma 4.4.3(1)

implies x and x′ are unmovable. So ‖x,B‖ , ‖x′, B‖ ≤ b + 1. Thus x and x′ are small, contradicting (viii).

So

no class has two big vertices. (ix)

For a class U ∈ A let S(U) := {v ∈ C2 : ‖v, U‖ = 1}. Over all color classes in A with two unmovable

vertices, pick Z, with S(Z) 6= ∅ if possible; subject to this, choose Z to be a leaf if possible; and subject

to these, choose |S(Z)| maximum. Suppose S(Z) = ∅ or Z is not a leaf. By (i) there is a leaf X with

S(X) ≥ 1
2 |C2| ≥ b + 1. By (vi) and (vii), |SvX ∩ C2| ≤ 1. So there is a solo vertex x ∈ X − vX . By

Lemma 4.4.3(1), the solo vertices in X are unmovable. Because we did not choose X for Z, both v ∈ X − x

are movable. So Sx = S(X). Say vX is movable to W ∈ A.

As X is a leaf, X /∈ P := WF . If Z ∈ P, let u witness UZ ∈ P. Consider any y ∈ C2. By (i),

y ∈ Sx ∪ Sz1 . Suppose y ∈ Sz1 . If uy /∈ E or u is undefined then moving y to Z − z1, z1 to X − vX , vX

to W , and shifting witnesses along P contradicts (4.5). So uy ∈ E. By Lemma 4.4.3(1), uy is not solo. By

(i), y ∈ Sx. Thus C2 ⊆ Sx. So x is big. By (H2), xz1 /∈ E. Now X ∈ A′, y ∈ Sx for some y ∈ C2, and

‖x,A‖ ≤ a − 1, so Lemma 4.4.3(2) implies xz2 ∈ E. By (H2), d(z2) ≤ a + 1, and so ‖z2, C2‖ ≤ 2 − b ≤ 1.

Let V + = {y0, y1, y2, y∗}, where y∗ ∈ B2 and N(z2) ∩ V + ⊆ {y0, y∗}. Shifting vertices starting with z3 on

ZF , and recoloring X,Z − z3, V + as X − x+ y0, {z2, y1, y2}, {z1, x, y∗} contradicts (4.5). So S(Z) 6= ∅ and

Z is a leaf.

Let X = {vX , x2, x3} 6= Z be a leaf, where x3 witnesses an edge of F . Put H = G[X ∪Z ∪V +]. By (4.5),

if some v ∈ V (H) is movable to A−X − Z then H − v has no equitable 3-coloring. (x)

By (ix), z2 is small, so |C2rN(z2)| ≥ b+1 ≥ 2. Using (iv), choose V + = {y1, y2, y3, y∗} so that y∗ ∈ B2 and

y1, y2 ∈ C2 rN(z2). By (ii) and Lemma 4.4.3(2), vX is unmovable. Now ‖vX , B ∪ {z2, z3}‖ ≤ d(vX)− (a−

1) ≤ 2. As z3 witnesses an edge of F , (x) implies {{x2, x3, z1}, {z2, y1, y2}, {y3, y∗, vX}} is not a coloring of

H − z3. So ‖vX , {y3, y∗}‖ ≥ 1 and vXyi /∈ E for some i ∈ [2]. Also {{x2, x3, z1}, {z2, vX , yi}, V + − yi} is not

a coloring. So vXz2 ∈ E, vXz3 /∈ E and ‖vX , B‖ = 1. In particular, vXy1, vXy2 /∈ E.
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Suppose x2 is unmovable. By (viii), x2 is big. So C2 ⊆ Sx2 , ‖x2, A‖ = a− 1, and by Lemma 4.4.3(2) x2

has an unmovable neighbor in Z. By (H2), x2z1 /∈ E and so x2z2 ∈ E. For each color class T 6∈ {V +, Z},

‖y∗z2, T‖ ≥ 2 and each y ∈ V + satisfies ‖yz1, T‖ ≥ 2. Let Q = z1vXz2x2. Note Q induces P4. By

inspection, dH(z1) = 4 = dH(x2), dH(z2) = 3 = dH(vX), and ‖V +, {x3, z3}‖ ≤ 5. Say dH(z3) ≤ dH(x3).

Let H ′ = H − x3. Then ∆(H ′) ≤ 4, θ(H ′) ≤ 7, χ(H ′) ≤ 3, and dH′(z3) ≤ 2. Since H ′ contains an

induced P4, and dH′(z3) ≤ 2, by (4.6), H ′ has a nearly equitable 3-coloring. An analogous argument works if

dH′(x3) ≤ dH′(z3). So x2 is movable. By Lemma 4.4.3(1), for j ∈ {1, 2}, ‖yj , X‖ = 2, so {x2, x3} ⊆ N(yj).

Also yjz3 /∈ E by Case 2.2.3. Let i ∈ {2, 3}. By (x), {{vX , z3, y1}, {z1, z2, xi}, V + − y1} is not a coloring of

H − x5−i. So xiz2 ∈ E.

Now suppose vXy
∗ ∈ E. Then by (vi), vXy3 6∈ E. Because vX is the only unmovable vertex in X,

then y3x2, y3x3 ∈ E by Lemma 4.4.3(1). By Case 2.2.3, {z2, z3, y3} is an independent set. For i ∈ {2, 3},

consider {{z2, z3, y3}, {xi, z1, y∗}, {vX , y1, y2}}. Since x5−i is moveable, (x) implies this is not a proper

coloring, so by (ii) and (iii), y∗xi ∈ E. But now d(y∗) + d(z2) ≥ (a + 2 + b − 1) + (a + 1 + b) = 2k + 2,

contradicting (H2). Therefore vXy
∗ 6∈ E, and so vXy3 ∈ E. Now by Lemma 4.4.3(1), y∗x2, y∗x3 ∈ E. Then

d(y∗) + d(z2) ≥ (a + 1 + b − 1) + (a + 1 + b) = 2k + 1; so equality holds, and in particular z2y3 6∈ E. Now

{{z2, y2, y3}, {vX , y1, y∗}, {z1, x2, x3}} is a proper coloring of H − z3, contradicting (x).

If T ∈ A and T ∩M 6= ∅, let T = {uT ,mT , wT }, where uT ∈M .

Lemma 4.4.5. Every y ∈ B is good.

Proof. Suppose not. Say G0 := G[B − y0] has no equitable b-coloring. Then b ≥ 2. Also |B − y0| = 3b,

χ(G[B]) ≤ b, and, as every y ∈ B is unmovable, θ(G[B]) ≤ 2b + 1. So (4.6) implies G0 ∈ {X,Yb} or

Zc,b ⊆ G0 for some odd c. If y, y′ ∈ V (G0) with ‖yy′, B‖ = 2b+ 1 then define yy′, y and y′ to be B-heavy.

If ‖y,B‖ > b then y is B-high. If y is B-heavy then ‖y,A‖ = a, and so y has a solo neighbor v in every

class X ∈ A. If y is good then Lemmas 4.4.3(1) and 4.4.4 imply v is the unique unmovable vertex uX ∈ X.

Observe that

if b+ 2 vertices are good and B-heavy then none of them is B-high, (4.10)

since if y is a counterexample then θ(uXy) ≥ 2a− 1 + 2b+ 3 = 2k + 2, contradicting (H2).

Consider several cases, always assuming previous cases fail for all bad y0 ∈ B.

Case 1: G0 = X. Then ∆(G[B]) = 4. Using the notation (4.3), x3 is B-high and all five v ∈ N [x3] are

B-heavy. By (4.10), there is a bad v ∈ N [x3]. Since y0 is not adjacent to any B-heavy vertex, ‖y0, B‖ ≤ 4;

however, neighbors of y0 in B are high, so ‖y0, B‖ ≤ 3.

Suppose ‖y0, B‖ = 3. Since the neighbors of y0 are high, N(y0) is independent; thus N(y0) = {x1, x2, w3}.
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The B-high vertices x1, x2, x3, w3 are good and B-heavy; by inspection, w1 is B-heavy and good. This

contradicts (4.10). Then ‖y0, B‖ ≤ 2. Since ∆(G[B − v]) = 3, using (4.6), Z3,3 = G[B − v] and ‖y0, B‖ = 2.

By considering degrees, NB(y0) ⊆ NB(v); since the B-neghbors of y0 are adjacent, y3 ∈ N(y0). But this

contradicts v ∈ N [x3].

Case 2: G0 = Yb. Let y be the vertex with degree 2b. Then the color class of y is {y, y0, w}, where

w ∈ Kb−1. So V + ⊆ N(y). Since ‖N [y], B − y‖ = 0, the vertices of N(y) all good; by inspection, also y is

good. But the vertices of N [y] are B-heavy and y is B-high, contradicting (4.10).

Case 3: G0 ⊇ Zc,b, for some odd c ≤ b. Recall M = {v ∈ A : v is movable} and M = ArM , and use the

notation of Example 4.1.8 with V = B − y0.

Case 3.1: a = 2. Then x ∈ A is movable if and only if it has no neighbors in A. Thus an unmovable

vertex has an unmovable neighbor. By Lemma 4.4.4, |M | ≥ 3. So ‖A‖ ≤ 1, and {S,Ar S} is an equitable

coloring for any 2-set S ⊆ A with |S ∩M |, |(A − S) ∩M | ≤ 1. Thus (C1) implies every w ∈ B satisfies

‖w,M‖ ≥ 3 or
∥∥w,M∥∥ ≥ 2. Let e ∈ E(Q). Then θ(e) ≥ 2b + ‖e,A‖. By (H2), e has an end w0 with

‖w0, A‖ = 2; say N(w0) ∩ A = {u1, u2}. So u1u2 ∈ E and u1, u2 ∈ M . Set R = {w ∈ B : ‖w,M‖ ≥ 3}

and P = {w ∈ B :
∥∥w,M∥∥ ≥ 2}. As θ(u1u2) ≤ 2k + 1, |P | ≤ b + 1. Let v ∈ M . Then 2b ≤ |R| ≤ d(v).

Thus there is y2 ∈ R ∩ B1. Then d(y2) ≥ 3 + c. Since 2b + 3 + c ≤ θ(vy2) ≤ 2k + 1 and c is odd, c = 1,

and y2 ∈ C2. Let C1 = {y1}. Then y1 ∈ P , and d(y1) ≥ 2b + 1. By Lemma 4.2.2, there is w∗ ∈ R ∩ B2.

As d(w∗) ≥ b + 2, (H2) implies |R| ≤ d(v) ≤ b + 3. So |P | ≥ 2b − 2 and d(u1) ≥ 2b − 1. By (H2),

4b ≤ θ(u1y1) ≤ 2k + 1. Thus b = 2, and by Lemma 4.2.2 P is independent. By (H2), N(C2) = M + y1

and d(v) ≤ 5. If there is y ∈ P ∩ R then |R| ≥ 5 and d(y) ≥ 5, contradicting θ(vy) ≤ 9. Else y∗ui /∈ E

for some i ∈ [2]. If |P | = 3 then {{ui, y∗, y2}, C2 − y2 + u3−i,M, P} contradicts (4.5). Else |R| = 5, and

{{ui, y∗, y2},M − v + u3−i, P + v,R− y∗ − y2} contradicts (4.5).

Case 3.2: There is a bad y1 ∈ B1. Say G[B − y1] ⊇ Q′ + K ′ := K(C ′1, C
′
2) + K(B′2). Set B0 = B1 + y0.

Then each v ∈ V + is good, V + rB2 ⊆ Ci and V + rB′2 ⊆ C ′i′ for some i, i′ ∈ [2]. By (C2) and a ≥ 3, there

are distinct Z1, Z2 ∈ A′. For distinct v1, v2 ∈ B2,

2k + 1 ≥ θ(v1v2) ≥ 2(a− 2) + ‖v1v2, Z1 ∪ Z2‖+ 2(b− 1) ≥ 2k − 6 + ‖v1v2, Z1 ∪ Z2‖ .

So there exists Z∗ = {z, z∗, z′} ∈ {Z1, Z2} and v∗ ∈ {v1, v2} such that z∗, z′ ∈ M and z∗v∗ /∈ E. Shifting

witnesses on Z∗F , starting with z′, yields an equitable (a− 1)-coloring A∗ of A− z − z∗.

Case 3.2.1: b = 2. Say B = {Y, V +}. Then Q = K1,3, C2 = V + rB2, and C1 = {y1}. So Y = {y0, y1, y2},

where y2 ∈ B2. Since Case 2 fails, ∆(G[B]) ≤ 3. We note here by inspection, using Lemma 4.2.2,
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(*) if a graph H with α(H) ≥ 4, |H| = 6, and ∆(H) ≤ 3 is not equitably 2-colorable, then K1,3 +K1 ⊆ H.

Since y1 is bad, it follows that every vertex of V + has a neighbor in {y0, y2}, and ‖y∗, V +‖ = 3 for some

y∗ ∈ {y0, y2}. So y1 and y∗ are high. Thus each v ∈ V + ∩ N({y, y∗}) satisfies ‖v,B‖ ≤ 2. If there ex-

ists v ∈ B − N({y, y∗}), then ‖v,B‖ = 1 because ‖v,B‖ = ‖v, Y − {y1, y∗}‖ ≤ 1. So V + has the form

{v1, v2, v3, v′}, where {v1, v2, v3} = C2, 1 ≤ ‖v′, B‖ ≤ 2, and ‖vi, B‖ = 2 for i ∈ [3]. Thus ‖vi, A‖ = a. As

vi is good, z ∈
⋂
i∈[3]NA(vi) = M . So d(z) ≥ a + 2 + ‖z, {y1, y∗}‖, and {z, y1, y∗} is independent because

y1 and y∗ are high. Also U := V + + z∗ − v′ is independent, ‖v′, U‖ ≤ 1, and ‖y′, U‖ ≤ 2. So using (*),

U + v′ + y′ has an equitable 2-coloring B∗. So A∗ ∪ B∗ + {z, y1, y2} contradicts (4.5).

Case 3.2.2: B2 = B′2 and b ≥ 3. Then V (Q ∩ Q′) = B0 − y0 − y1. As Q and Q′ are connected, so is

Q ∪ Q′. If O ⊆ Q ∪ Q′ is an odd cycle then y0 ∈ O, and O − y0 := v1 . . . y2r ⊆ Q. So v1v2r ∈ E and

θ(v1v2r) = 2a+ 2b+ 2, contradicting (H2). Thus Q∪Q′ is bipartite. Since it has bad vertices, it is complete.

So θQ∪Q′(e) = 2b + 1 for every e ∈ E(B0), and every w ∈ B0 satisfies ‖w,A‖ = a and ‖w,B2‖ = 0. Let

{D1, D2} be the unique 2-coloring of Q ∪ Q′, where |D1| is odd. Consider any w1 ∈ D1. Then w1 is good,

so y0, y1 ∈ D2. By Lemmas 4.4.3 and 4.4.4, N(w1) ∩ A = M . Let z ∈ Z∗ ∩M . Then D1 ⊆ N(z), and

θ(zw1) ≥ 2a− 1 + 2b+ 1 + ‖z,D2‖. Thus ‖z,D2‖ ≤ 1. If ‖z,D2‖ = 0 then (*) |D2 rN(z)| ≥ 2. Else there

is w2 ∈ N(z) ∩D2. Then θ(zw2) ≥ 2a − 1 + 2|D1|. So |D1| ≤ b + 1, |D2| ≥ b ≥ 3, and again (*) holds. So

there are distinct y′, y′′ ∈ D2 r N(z). Let B∗ = B0 + z∗ − y′ − y′′. Then D1 + z∗ and D2 − y′ − y′′ are

even independent sets, and N(B∗) ∩ B2 = N(z∗) ∩ B2 6= B2. So B∗ has an equitable b-coloring B∗. Thus

A∗ ∪ B∗ + {z, y′, y′′} contradicts (4.5).

Case 3.2.3: B2 6= B′2 and b ≥ 3. Let w ∈ B2 ∩B′1. As |B2| ≥ 3 and ‖w,B′2‖ ≤ 1, there is w′ ∈ B2 ∩B′1−w.

As ‖ww′, B′2‖ ≤ 1, B2 ⊆ B′1. Thus b = 3. Now there are i ∈ [2] and distinct w′, w′′ ∈ C ′i ∩ B2. Then

θ(w′w′′) ≥ 2(a+1+|C ′3−i|), and |C ′3−i| = 1. Say C ′1 = {w}. Similarly, C1 = {v}, where B′2 = {v, v′, v′′} ⊆ B1.

(See Figure 4.3.) So all vertices of B−{y0, y1} are B-heavy and good, and w is B-high, contradicting (4.10).

w v

y0 w′ w′′ v′ v′′ y1

B2 B1

(a) B − y0 = B1 ∪B2

w v

y0 w′ w′′ v′ v′′ y1

B′1 B′2

(b) B − y1 = B′
1 ∪B′

2

Figure 4.3: G[B] in Case 3.2.2, perhaps missing the edge y0y1

Case 3.3: Every y ∈ B1 is good. There is i ∈ [2] with ‖w,A‖ = a for all w ∈ Ci and ‖w,A‖ ≤ a + 1
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for all w ∈ C3−i. We set |Ci| = c, for some odd c ∈ [2b − 1]. By Lemma 4.4.3(1) and Lemma 4.4.4,

Ci ⊆ N(x) for all x ∈ M and |Sz| ≥ |C3−i|/2 for some z ∈ M with z ∈ Z ∈ A′. Suppose |Ci| ≥ |C3−i|.

Let z′ ∈ M − z with z′ ∈ Z ′ ∈ A′ and w ∈ Ci. As b ≥ 2 and c is odd, 2b − c ≥ 3. If C3−i ⊆ N(z′)

then θ(z′w) ≥ a − 1 + 2b + a + 2b − c ≥ 2k + 2, contradicting (H2). So there is y′ ∈ C3−i r N(z′). By

Lemma 4.4.3(1), ‖y′, Z ′‖ = 2 and y′z ∈ E. Now

θ(zy′) ≥ a− 1 + |Ci|+ |C3−i|/2 + a+ 1 + |Ci| ≥ 2k + |Ci| − |C3−i|/2 > 2k + 1,

another contradiction. So |Ci| < |C3−i|. Say i = 1. For y ∈ C1,

2k + 1 ≥ θ(zy) ≥ a− 1 + |C1|+ |C2|/2 + a+ |C2| ≥ 2k − 1 + |C2|/2.

So |C2| = 3, |C1| = 1, and b = 2. Let B = {W,V +} and C1 = {w}. Then C2 = V + rB2 and d(w) ≥ a+ 3.

Also d(z) ≥ a−1 + |C1|+ |C2|/2. As wz ∈ E, d(z) = a+ 2 and d(w) = a+ 3. So z has exactly two neighbors

v1, v2 ∈ V +, and v1, v2 ∈ Sz by the choice of z. Switching witnesses on ZF , and switching z with v1 and v2

yields an equitable k-coloring.

Lemma 4.4.6. Every solo x ∈ X ∈ A′ satisfies ‖x,B‖ ≤ 2b.

Proof. Suppose ‖x,B‖ ≥ 2b + 1, and let y ∈ Sx. Since θ(xy) ≤ 2k + 1, Lemmas 4.4.3 and 4.4.5 imply

a+2b ≤ d(x) ≤ a+2b+1. First suppose d(x) = a+2b+1. Consider any w ∈ N(x)∩B. Then θ(xw) ≤ 2k+1

implies ‖w,A‖ = a. Thus Sw = N(w)∩A = M. So for unmovableuZ ∈ Z ∈ A, d(uZ) ≥ a−1+‖x,B‖ ≥ k+1.

Thus the set {uZ : U ∈ A} is independent. By Lemma 4.4.4, the unique vertex v ∈ V − − uV − is movable;

say v is movable to U ∈ A. Since uU is not movable to V −, it is adjacent to uV − , a contradiction.

So d(x) = a+ 2b, ‖x,A‖ = a− 1 and ‖w,A‖ ≤ a+ 1 for every w ∈ N(x) ∩B. As X ∈ A′, Lemmas 4.4.3

and 4.4.5 imply N [x] ∩ A = M . Some W ∈ B satisfies ‖x,W‖ ≥ 3; set W ′ = N(x) ∩W . Each w ∈ W ′ has

at most one neighbor in {x1, x2} := X − x. Thus ‖xi,W ′ − w′‖ = 0, for some i ∈ [2] and w′ ∈W ′. Say xi is

movable to U ∈ A, and xU ∈ N(x) ∩ U . Then

‖xU , B ∪ {x1, x2}‖ ≤ 2k + 1− d(x)− ‖xU , A−X + x‖ ≤ a+ 1− a− 1 ≤ 2. (4.11)

If xUx3−i /∈ E then switch x and xU . As N [x] ∩ A = M , this yields a new normal k-coloring f ′ with

X ′ := X − x + xU ∈ A′(f ′). By (4.11), some w ∈ W ′ is not adjacent to xU . By Lemmas 4.4.3 and 4.4.5,

‖w,X ′‖ ≥ 2, a contradiction.

Else xUx3−i ∈ E. By (4.11), ‖xU ,W‖ ≤ 1. So there is w ∈ W with {w, xU , xi} independent. Shift
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witnesses, starting with x3−i, on an X,V −-path in H. This does not affect neighbors of x since they are

unmovable. Now switch x with xU , move w to X − x− x3−i + xU , and equitably b-color B −w. This yields

an equitable k-coloring of G.

Theorem 4.4.7. If x ∈ X ∈ A′, y1 ∈ Sx, y2 ∈ N(x) ∩B − y1 and ‖y2, X‖ ≤ 2 then y1y2 ∈ E.

Proof. If not, pick a counterexample y ∈ Sx, y′ ∈ N(x) ∩B −N [y] with ‖y′, X‖ ≤ 2 and ‖y,B‖ maximum.

By Lemmas 4.4.3 and 4.4.5, x is unmovable; so ‖x,A−X‖ ≥ a−1. Put A∗ = A−x+y, X∗ = X−x+y and

B∗ = B−y. By Lemma 4.4.5, G[B∗] has an equitable b-coloring B∗; say y′ ∈ Y ∈ B∗. Then A∗ := A−X+X∗

is an equitable a-coloring of A∗. By Lemma 4.4.6, ‖x,B‖ ≤ 2b. So ‖x,W‖ ≤ 1 for some W ∈ B∗; consider

any such W .

Since x is unmovable and X ∈ A′, if B+ is a b-equitable coloring of B∗ + x then f+ := A∗ ∪ B+ is a

normal k-coloring with X∗ ∈ A(f+). As y is unmovable in f and yy′ /∈ E, ‖y′, X∗‖ ≥ 2, a contradiction.

So B∗ + x has no equitable b-coloring. Thus x has a neighbor in every class of B∗ − W . In particular,

N(x) ∩W = {w}. Then ‖w,A−X + x‖ ≥ a, and w (like x) has a neighbor in every class of B∗ −W .

For x0 ∈ X − x, G[A−X + x0] has an equitable (a− 1)-coloring obtained by shifting witnesses, starting

with x0, on an X,V −-path in H. If G[B∗ + x − u] has an equitable b-coloring, where u ∈ B∗, then (4.5)

implies X∗ + u − x0 is not independent. Thus w is not movable to X∗, and ‖w, Y − y′‖ , ‖x, Y − y′‖ ≥ 1,

where y′ ∈ Y ∈ B∗. So d(w) ≥ ‖w,A − X + x‖ + ‖w,B∗‖ + ‖w,X∗‖ ≥ k and d(x) ≥ k + 1. By (H2),

d(x) = k + 1, d(w) = k, ‖x,B‖ = b+ 2, ‖x,A‖ = a− 1, and ‖w,X∗‖ = 1. So wy ∈ E, w ∈ Sx, ‖w,A‖ = a,

‖w,B‖ = b, and ‖w, Y ‖ = 1. Thus wy′ /∈ E.

As θ(xy) ≤ 2k + 1, ‖y,B‖ ≤ b. So any w′ ∈ S := N(x) ∩ B r Y can play the role of y. By maximality,

‖w′, B‖ = b and ‖w′, A‖ = a for all w′ ∈ S. By Lemmas 4.4.3, 4.4.4 and 4.4.5, N(w′) ∩ A = M for each

w′ ∈ S, and N(x) ∩ A = M − x. Let uZ ∈ Z ∩M for Z ∈ A. By Lemma 4.2.2, ω(G) < k. Since S is a

clique, there are distinct Z,Z ′ ∈ A −X with uZuZ′ /∈ E. First, we note ‖uZ , Z‖ ≥ 2 by Lemmas 4.4.3(0),

4.4.4, and 4.4.5. Since uZx ∈ E, by (H2) d(uZ) ≤ k, so ‖uZ , A‖ = a and ‖uZ , B‖ = b = |S|. In particular,

uZy
′ 6∈ E. Then switching x and uZ yields a normal k-coloring in which y′ has a movable, solo, terminal

neighbor, a contradiction.

4.5 Optimal colorings

A normal k-coloring f of G is optimal if

(C3) among normal k-colorings, |H(B)| is minimum, and

(C4) subject to (C3), a′ is maximum.
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Let f be optimal.

Lemma 4.5.1. If y ∈ H(B) then Sy ∩A′ = ∅.

Proof. Suppose y ∈ H(B), X ∈ A′ and x ∈ Sy ∩ X. By Lemmas 4.4.3 and 4.4.5, x is unmovable and

G[B − y] has an equitable b-coloring B∗. Thus if G[B + x− y] has an equitable b-coloring then putting y in

X − x yields a normal k-coloring with fewer high vertices in B, contradicting (C3). Thus ‖x, Y ‖ ≥ 1 for all

Y ∈ B∗. Because xy ∈ E and y is high, k ≤ d(x); but by the above, d(x) ≥ (a− 1) + b+ 1, so indeed x has

precisely one neighbor in every class of B∗. Further, N [x] ∩ A = M and d(y) = k + 1. Suppose there exists

y′ ∈ N(x) ∩B − y in class Y ′ ∈ B∗ that is moveable to class Y ′′ ∈ B∗. Then we move y′ to Y ′′ and move x

to Y ′− y′; this is an equitable b-coloring of G[B+ x− y], a contradiction. Therefore each y′ ∈ N(x)∩B− y

satisfies ‖y′, B − y‖ ≥ b− 1.

Let W = B ∩ N(x) ∩ N(y) and W ′ = B ∩ N(x) r N [y]. Let w ∈ W ; then w is low. So ‖w,A‖ = a

and ‖w,B‖ = b. Thus W + y ⊆ Sx, and Sw = N [w] ∩ A = M . By Lemma 4.4.7, Sx is a clique. As G[B]

is b-colorable, |W | ≤ b − 1, and so |W ′| ≥ 1. Consider any w′ ∈ W ′. As w′y /∈ E, Lemma 4.4.7 implies

X ⊆ N(w′). So d(w′) ≥ (b − 1) + 3 + (a − 1) = k + 1. Let X = {x, x′, x′′}. Every u ∈ B r N(x) + w′ is

adjacent to x′ by Lemmas 4.4.3(1) and 4.4.4. Thus 2k + 1 ≥ θ(x′w′) ≥ 2b + 1 + k + 1. So a > b; as k ≥ 4,

a ≥ 3. Thus there is Z ∈ A′ −X. Then uZ ∈ Sw
′
. So W ∪W ′ ⊆ SuZ

is a b-clique. As w′ is high, |W ′| = 1.

Also Z, uZ , w
′ can play the role of X,x, y. Thus there is a high w′′ with ‖w′′,W‖ = b− 1 and ‖w′′, Z‖ = 3.

Indeed: we can choose w′′ = y. So N [uZ ] ∩A = M .

Choose T ∈ Ar {X,Z}. By Lemma 4.4.3(1), W ⊆ N(uT ). As uTx ∈ E,

k + 1 ≥ d(uT ) ≥ a− 3 + |W |+ ‖uT , X + y‖+ ‖uT , Z + w′‖ .

So ‖uT , X + y‖+‖uT , Z + w′‖ ≤ 5. Say ‖uT , X + y‖ ≤ 2. Then there is x′ ∈ X−x with ‖uT , X − x− x′‖ =

0. Suppose uT y /∈ E. Let x′ be moveable to U ∈ A′ −X; move x′ to U , and switch witnesses along a UV −

path in A − X; moving uT and y to X − x − x′, and moving x to T − uT contradicts (4.5). So uT y ∈ E

and ‖uT , X + y‖ ≥ 2. As y is high, d(uT ) ≤ k. So ‖uT , Z + w′‖ ≤ 2. By an analogous argument uTw
′ ∈ E.

Now w′, y ∈ SuT
, but w′y 6∈ E(G), contradicting Lemma 4.4.7.

For X ∈ A, let T (X) be set of U ∈ A−X such that every U, V −-path in H contains X. Then T (X) = ∅

if and only if X ∈ A′, and if X ′ ∈ T (X) then T (X ′) ( T (X). So T (X) contains a terminal class for every

nonterminal class X. Choose X0 ∈ ArA′ such that |T (X0)| is minimum, and set A′′ = T (X0). As usual,

set A′′ :=
⋃
A′′, and a′′ := |A′′|. Note if a′ = a− 1, then X0 = V − and A′′ = A′. Note further (X0) ⊆ A′:
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otherwise, there is some X ∈ T (X0) rA′ that is preferable to X0. So ∅ ( A′′ ⊆ A′ and 1 ≤ a′′ ≤ a′. Also

∀w ∈ A′′, ‖w,A‖ ≥ a− a′′ − 1. (4.12)

Proposition 4.5.2. If a′′ = a′, then a = a′ + 1.

Proof. Argue by contraposition. If a′ ≤ a− 2 then X0 6= V − and A′′ = T (X0) ⊆ A′. Let P be a minimum

X0, V
−-path in H, and let its last edge be UV −. If there exists W 6= U such that WV − ∈ E(H), then

W /∈ V (P) by minimality. So T (W ) ∩ T (X0) = ∅ and T (W ) contains a terminal class. So a′′ < a′. Else

A′ ⊆ T (U) = A − V − − U . Shifting a witness w of UV − to V − yields a normal k-coloring f ′ with small

class U − w, A(f) = A(f ′) and A′(f ′) = A′(f) + (V − + w), preserving (C3) and contradicting (C4).

4.6 Almost all color classes in A are terminal

A vertex y ∈ B is petite if d(y) ≤ a + a′ − 1 or if d(y) = a + a′ and either y has 3 neighbors in a terminal

class or at least two neighbors in a nonterminal class of A. For a subset C of B, let L′(C) denote the set of

the petite vertices in C and H ′(C) = C − L′(C). By Lemma 4.5.1,

L′(B) ⊆ L(B). (4.13)

Lemma 4.6.1. If b ≤ a′ − 1 then |L(B)| ≤ b + 1. Moreover, if |L(B)| = b + 1, then b = a′ − 1, G[L(B)]

is the disjoint union of cliques, and d(y) = k for every y ∈ L(B). Even moreover, if |L(B)| = b + 1 and

a′ = a− 1, then b ≤ 2.

Proof. Suppose L = L(B) and |L| ≥ b + 1. Let I be an inclusion maximal independent subset of L of size

at least 2. Since G[B] is b-colorable, such I exists. The total number of solo neighbors in A′ of vertices in I

is at least

∑
y∈I

(a′ − b+ ‖y,B‖) ≥ |I|(a′ − b) + |L| − |I| = |I|(a′ − b− 1) + |L| ≥ (|I| − 1)(a′ − b− 1) + (a′ − b− 1 + |L|).

But A′ has at most a′ unmovable vertices. Since no vertex in A′ is a solo neighbor of two non-adjacent

vertices, we conclude

(|I| − 1)(a′ − b− 1)− b− 1 + |L| ≤ 0.

It follows that |L| = b + 1 and a′ = b + 1. Moreover in order to have the total number of solo neighbors in

A′ of vertices in L exactly
∑
y∈I(a

′ − b + ‖y,B‖), we need that for every y ∈ I, d(y) = k, N(y) ∩ B ⊆ L
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and that for all distinct y, y′ ∈ I, N(y) ∩ N(y′) ∩ B = ∅. If some y ∈ L is adjacent to all other vertices in

L, then two its non-adjacent neighbors y′ and y′′ both have y in their neighborhoods, a contradiction to the

previous sentence. So each y ∈ L is in an inclusion maximal independent subset Iy of L of size at least 2.

Thus ‖L,B−L‖ = 0 and each component of G[L] is a complete graph. This proves the first two statements

of the lemma.

Suppose a′ = a− 1. Let C1 and C2 be the vertex sets of a smallest and a second smallest components of

G[L], respectively. Let x ∈ X ∈ A′ be a solo neighbor of some y1 ∈ C1 and X = {x, x′, x′′}. By Lemma 4.4.7,

each y ∈ B − C1 is adjacent to both, x′ and x′′. So if |C1| ≤ b− 2, then d(x′) ≥ 2b+ 3. On the other hand,

since for every y ∈ H(B), 2a − 1 ≤ d(y), we have d(x′) ≤ 2k + 1 − d(y) ≤ 2b + 2, a contradiction. But for

b ≥ 4, we have b b+1
2 c ≤ b− 2. So, b ≤ 3. If b = 3 and |C1| ≥ b− 1, then |C1| = |C2| = 2. Let z ∈ Z ∈ A′ be

a solo neighbor of some y2 ∈ C2 and Z = {z, z′, z′′}. Since y1y2 /∈ E(G), Z 6= X. Repeating the argument in

this paragraph we get d(x′) = d(z′) = 2b + 2 and ‖{x′, x′′}, A‖ = ‖{z′, z′′}, A‖ = 0. Then switching x with

z, we increase A, since the class of y1 is in the new A.

Lemma 4.6.2. |L′(B)| ≤ a′.

Proof. Suppose L′ = L′(B) and |L′| ≥ a′ + 1. Similarly to the proof of Lemma 4.6.1, let I be an inclusion

maximal independent subset of L′. We claim that

each y ∈ L′(B) has at least 1 + ‖y,B‖ solo neighbors in A′. (4.14)

Indeed, if d(y) ≤ a+ a′ − 1, then ‖y,A‖ = d(y)− ‖y,B‖ and the number of classes in A′ with at least two

neighbors of y is at most

‖y,A‖ − a ≤ (a+ a′ − 1)− ‖y,B‖ − a = a′ − 1− ‖y,B‖.

So the remaining a′ − (a′ − 1 − ‖y,B‖) classes in A′ have solo neighbors of y. If d(y) = a + a′ and a class

X ∈ A′ has 3 neighbors of y, then ‖y,A′−X‖ ≤ (a+a′)−‖y,B‖−(a−a′)−3 = 2(a′−1)−1−‖y,B‖. So again

at least 1+‖y,B‖ classes in A′−X have solo neighbors of y. Finally, if d(y) = a+a′ and a class X ′ ∈ A−A′

has at least 2 neighbors of y, then ‖y,A′‖ ≤ (a + a′) − ‖y,B‖ − (a − a′ + 1) − 3 = 2(a′ − 1) − 1 − ‖y,B‖.

This proves (4.14).

By (4.14), the total number of solo neighbors in A′ of vertices in I is at least

∑
y∈I

(1 + ‖y,B‖) ≥ |L′| ≥ a′ + 1.
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But A′ has at most a′ unmovable vertices.

Recall that for a class X ∈ A, T (X) is the set of classes in A−X from which there are no paths to V −

in digraph H − X. If T (X) 6= ∅ (i.e., X is not terminal), let T ′(X) be a smallest nonempty subset D of

T (X) with no outneighbors in A−D −X. By definition, if T (X) 6= ∅, then T ′(X) 6= ∅.

Suppose a′ < a − 1. Choose X ′0 ∈ A r A′ such that |T ′(X0)| is minimum, and set A′′′ = T ′(X ′0). As

usual, set A′′′ :=
⋃
A′′′, and a′′′ := |A′′′|. Since X ′0 is nonterminal, a′′′ > 0. Also, for all w ∈ W ∈ A′′′,

‖w,A‖ ≥ a− a′′′ − 1.

Lemma 4.6.3. For every z ∈ A′′′,

(a) ‖z,B‖ ≤ max{b, 2b+ 2 + a′′′ − a′}; and

(b) if ||z,A|| ≥ a− a′′′, then ||z,B|| ≤ max{b, 2b+ 1 + a′′′ − a′}; and

(c) if every vertex in N(z) ∩B is petite, then ||z,B|| ≤ max{b, 2b+ 1 + a′′′ − a′}.

Proof. Let z ∈ Z ∈ A′′′ and B1 = N(z) ∩B. Suppose the lemma does not hold for z. Then ‖z,B‖ ≥ b+ 1,

in particular, B1 6= ∅. Also, either:

‖z,B‖ ≥ 2b+ 3 + a′′′ − a′ (4.15)

(in which case, d(z) ≥ (2b+ 3 + a′′′ − a′) + (a− a′′′ − 1) = 2k − a− a′ + 2); or

‖z,A‖ ≥ a− a′′′ and ‖z,B‖ ≥ 2b+ 2 + a′′′ − a′ (4.16)

(in which case, d(z) ≥ (2b+ 2 + a′′′ − a′) + (a− a′′′) = 2k − a− a′ + 2, again); or

every vertex in B is petite and d(z) ≥ (2b+ 2 + a′′′ − a′) + (a− a′′′ − 1) = 2k − a− a′ + 1. (4.17)

If there exists any y0 ∈ B1 that is not petite, then (4.15) or (4.16) holds, so for every y ∈ B1 d(y) ≤

2k + 1− d(z) ≤ a+ a′ − 1. Then y0 is petite, a contradiction. So every y ∈ B1 is petite. For every y ∈ B1,

d(y) ≤ 2k + 1− d(z) ≤ a+ a′. Let I be a largest independent subset of B1.

Case 1: a′ ≤ b+1. If (4.15) or (4.16) holds, each y ∈ I ⊆ B1 has at least ‖y,B‖+a+a′−d(y) ≥ 1+‖y,B‖

solo neighbors in A′. If (4.17) holds, then (again) each y ∈ I ⊆ B1 has at least ‖y,B‖+ a+ a′ − d(y) + 1 ≥

1 + ‖y,B‖ solo neighbors in A′.

Then the total number of solo neighbors of vertices in I is at least

∑
y∈I

(1 + ‖y,B‖) ≥ |I|+ (|B1| − |I|) = |B1| ≥ 2b+ 2 + a′′′ − a′ ≥ 2(a′ − 1) + 2 + a′′′ − a′ > a′.
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SinceA′ has at most a′ solo vertices, some distinct vertices in I share solo neighbors, contradicting Lemma 4.4.7.

Case 2: a′ ≥ b+ 2. Since each petite vertex has a solo neighbor in A′, and every vertex in B1 is petite,

by Lemma 4.5.1, all vertices in B1 are low. So by Lemma 4.6.1, |B1| ≤ b.

Lemma 4.6.4. a′ ≤ a′′′ + 1.

Proof. Suppose a′ ≥ a′′′ + 2 and let Z = {z, z′, z′′} ∈ A′′′. Consider the discharging from B to Z such that

each y ∈ B gives to each neighbor in Z the value 1/‖y, Z‖. If z ∈ Z has no solo neighbors in B, then by

Lemma 4.6.3(a),

ch(z) ≤ ‖z,B‖
2

≤ max

{
b

2
,

2b+ 2 + a′′′ − a′

2

}
≤ b.

So, since the total charge on Z is 3b+ 1, Z contains a solo vertex, say z′′, and ch(z′′) ≥ b+ 1. For i = 1, 2, 3,

let z′′ have exactly ci 1/i-neighbors in B. We have b+ 1 ≤ ch(z′′) = c1 + c2/2 + c3/3.

Case 1: c2 = 0. Then each w ∈ B − Sz′′ is adjacent to both z and z′. So by Lemma 4.6.3(a),

|Sz′′ | ≥ |B| − ‖z,B‖ ≥ 3b+ 1− 2b = b+ 1, a contradiction to Lemma 4.4.7.

Case 2: c2 ≥ 1. Then either z or z′ has at least 3b+ 1− c1− c2 + 1 neighbors in B. By Lemma 4.6.3(a),

this is at most 2b. So, c1 + c2 ≥ b + 2. On the other hand, by Lemma 4.4.7, each y ∈ Sz′′ has at least

c1 + c2 − 1 neighbors in B. Then for such y we have d(y) ≥ a + (b + 2) − 1 = k + 1, a contradiction to

Lemma 4.5.1.

Lemma 4.6.5. If a′ = a′′′ + 1, then G has an optimal coloring f ′ (possibly, f ′ = f) such that

(i) a′(f ′) = a(f ′)− 1, or

(ii) a′′(f ′) = 1 and a′(f ′) = 2.

Proof. Let X ∈ A − A′ have the minimum nonempty T (X). By the minimality of T (X), T (X) ⊆ A′ and

for each vertex U ∈ T (X) there is a U,X-path in H[T (X) +X]. If a = a′− 1, then (i) holds. Let a′ 6= a− 1.

Then X 6= V −. By Proposition 4.5.2, since a′ 6= a− 1, T (X) 6= A′. Since a′ − 1 = a′′′ ≤ a′′, there is exactly

one Z ∈ A′ − T (X).

Let H′ = H− B −A′ −X. We first prove that

for every W ∈ V (H′), V − is reachable from W in H′. (4.18)

Indeed, suppose V − is not reachable in H′ from W = {w,w′, w′′} ∈ V (H′), and let W have the smallest

T (W ) among the vertices with this property. Since W /∈ A′, T (W ) 6= ∅. By the minimality of T (W ), it is

contained in A′ = T (X) +Z. If Z ∈ T (W ), then by the definition of W , W ∈ T (X), a contradiction to the
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minimality of T (X). So Z /∈ T (W ), and thus there is U ∈ T (X) ∩ T (W ). Since W /∈ T (X) and T (Z) = ∅,

H[A] contains a W,Z-path avoiding X. So if there would be a U,W -path avoiding X, then U /∈ T (X).

Therefore, each U,W -path goes through X and so there is a U,X-path avoiding W . Then, since U ∈ T (W ),

also X ∈ T (W ). Then by the definition of W , W ∈ T (Z), contradicting Z ∈ A′. This proves (4.18).

Let F ′ be a rooted-at-V − spanning in-tree of H′ with most leaves. Let L denote the set of leaves in F ′.

Since X /∈ T (X) and T (Z) = ∅, each of X and Z has an outneighbor, O(X) and O(Z), respectively, in

V (F ′). Since V (F ′) ⊂ A−A′, L ⊆ {O(X), O(Z)}.

Case 1: |L| = 2. Then O(Z) ∈ L and is the only outneighbor of Z in H[A], since otherwise O(Z) ∈ A′.

Thus we may assume that T ′(O(Z)) = {Z}. So a′′′ = 1 and hence a′ = 2 and |T (X)| = 1. In particular,

a′′ = 1, i.e. (ii) holds. If the first common vertex on an X,V −-path and a Z, V −-path is U 6= V −, then let

U ′ be the penultimate vertex on a U, V −-path in H. In this case, we move a witness u of U ′V − ∈ E(H) to

V −. This way, we obtain a new coloring with more terminal classes in H[A].

Case 2: |L| = 1. Let L = {W}. Then F ′ is a W,V −-path. If W = V −, then A = {V −, Z,X} ∪ T (X).

In this case, if Z has no outneighbors apart from V −, then T ′(V −) = {Z} and so a′′′ = 1. This implies

|T (X)| = 1, and (ii) holds. If Z has an outneighbor Z ′ ∈ A−V −, then we move a witness x of XV − ∈ E(H)

to V − and get a new coloring f ′. In f ′, the class V − + x is terminal, because of Z ′. If Z ′ /∈ T (X) in f or

is terminal in f ′, then a′(f ′) > a′(f), a contradiction. Suppose Z ′ ∈ T (X) and is not terminal in f ′. Then

the only class blocked by Z ′ is Z and so a′′(f ′) = 1. Thus (ii) holds.

Now suppose W 6= V −. Let W ′ be the penultimate vertex on a W,V −-path in H − Z − X. If each

of X and Z has an outneighbor in A − V −, then moving a witness of W ′V − ∈ E(H) to V − yields a new

coloring with more terminal classes in H[A]. So exactly one of Z and X has V − as the unique outneighbor

in A− T (X), and the other has W as the unique outneighbor in A− T (X).

Case 2.1: O(Z) = W . Then Z has no outneighbors in A −W , since otherwise W would be terminal.

So T (W ) = {Z}; thus a′′ = 1 and (ii) holds.

Case 2.2: O(Z) = V −. Then we practically repeat the argument of the first paragraph of Case 2.

Lemma 4.6.6. If a′′ = 1, a′ = 2, and A′ = {W,Z} then H[A] has a W,V −-path P = W,X1, . . . , Xs, V
−

and a Z, V −-path P ′ = Z,U1, . . . , Ut, V
− such that V (P)∪V (P ′) = A and V (P)∩V (P ′) = {V −}. Moreover,

each of W,Z has exactly one outneighbor in H[A].

Proof. Since a′′ = 1, there is W ∈ A′ = {W,Z} and X1 ∈ A such that T (X1)∩A′ = {W}. We may choose X1

with this property and the smallest |T (X1)|. Then simply T (X1) = {W}. Since Z /∈ T (X1), X1 6= V −. Then

X1 is the only outneighbor of W in A. Since Z ∈ A′, H has a shortest W,V −-path P = W,X1, . . . , Xs = V −

avoiding Z. Since Z /∈ T (X1), H has a shortest Z, V −-path P ′ = Z,U1, . . . , Ut = V − avoiding X1. We can
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choose such a shortest path with the most common edges with P. If C = A − (V (P) ∪ V (P ′)) 6= ∅, then

H[A] has a spanning in-tree with root V − with a leaf in C. But any such leaf is in A′, a contradiction. Thus

V (P) ∪ V (P ′) = A.

Suppose that for some i and j, Xi = Uj 6= V −. Then by the choice of P ′, Xi+1 = Uj+1 and so on.

Then moving a witness from Xs−1 to Xs = V −, we obtain a coloring with more terminal classes. Thus

V (P) ∩ V (P ′) = {V −}.

To prove the ”Moreover” part, observe that if U1 6= V − and Z has an outneighbor Z ′ ∈ A − U1, then

U1 ∈ A′, a contradiction.

Lemma 4.6.7. a′ = a− 1.

Proof. By Lemmas 4.6.4, and 4.6.5, if a′ < a − 1, then we may assume that a′′ = 1 and a′ = 2. Then by

Lemma 4.6.6, there are X1 ∈ A − A′ − V −, U1 ∈ A − A′ − X and W,Z ∈ A′ such that T (X1) = {W}

and U1 is the only outneighbor of Z in H[A]. In particular, if U1 6= V −, then T (U1) = {Z}. Also, there

are chordless paths P = W,X1, . . . , Xs, V
− and a P ′ = Z,U1, . . . , Ut, V

− such that V (P) ∪ V (P ′) = A and

V (P) ∩ V (P ′) = {V −}. Observe that we can choose A′′′ = {W} or A′′′ = {Z}, so Lemma 4.6.3 applies to

both W and Z. Let W = {w,w′, w′′}, Z = {z, z′, z′′}, U1 ⊆ {u, u′, u′′} and X1 = {x, x′, x′′} with x′′ being

a witness of X1X2 ∈ E(F). Also if U1 = V −, then u′′ does not exist, otherwise, let u′′ be a witness of

U1U2 ∈ E(F).

Suppose first that X1 ∪ W − x′′ is independent. Then each y ∈ B has at least four neighbors in

X1 ∪W − x′′, since otherwise we can color equitably X1 ∪W − x′′ + y with two colors, B − y with b colors,

and A − X1 − W + x′′ with a − 2 colors. So ‖B,X1 ∪ W − x′′‖ ≥ 4(3b + 1) > 5(2b + 1) and there is

s ∈ W ∪X1 − x′′ with ‖s,B‖ ≥ 2b + 2. If s ∈ W or could be swapped with a vertex in W , then we get a

contradiction with Lemma 4.6.3(a). Otherwise, the only reason that we cannot swap it with a vertex in W

is that each vertex in W is adjacent to x′′. But each vertex in W adjacent to a vertex in X1 is unmovable

by the definition of T (X1), and W cannot have 3 unmovable vertices. If U1 6= V −, then the same argument

shows that U1 ∪ Z − u′′ is not independent. Suppose now that U1 = V − and V − ∪ Z is independent.

Then as above, each y ∈ B has at least four neighbors in V − ∪ Z and ‖B, V − ∪ Z‖ ≥ 4(3b + 1). Since

‖V −, B‖ ≤ |V −| · |B| = 6b+2, ‖B,Z‖ ≥ 6b+2, so there exists z ∈ Z with ‖z,B‖ ≥ 2b+1 = 2b+2+a′′′−a′.

Then by Lemma 4.6.3(c), there exists some non-petite neighbor of z in B. Since every vertex in B has two

neighbors in V − or three in Z, then the non-petite neighbor y of z in B has d(y) > a+ a′ = a+ 2. But now

d(z) + d(y) > 2b+ 1 + a− 2 + a+ 2 = 2k + 1, contradicting the degree conditions of G. Thus

neither of X1 ∪W − x′′ and U1 ∪ Z − u′′ is independent. (4.19)

79



Since each vertex in W (respectively, Z) with a neighbor in X1 (respectively, U1) is unmovable, by (4.19)

we may assume using Lemma 4.4.4 that the unique such vertex in W is w and in Z is z. Also by (4.19) we

may assume that wx, zu ∈ E(G). Then by Lemma 4.6.3(b),

each of w and z has at most 2b neighbors in B. (4.20)

Since WZ,ZW /∈ E(H), if ‖W,Z‖ ≤ 3, then ‖W,Z‖ = 3 and these edges form a matching. Then by

symmetry, we may assume N(z′) ∩W = {w′} and N(w′) ∩ Z = {z′}. In this case, we switch w′ with z′.

Since Z and W are terminal, we can still reach V − from every class in A− Z −W in the new coloring f∗.

Moreover, X1 and U1 are outneighbors of W ∗ = W − w′ + z′ and so X1 is a new terminal class in f∗, a

contradiction to the maximality of A′. Thus,

‖W,Z‖ ≥ 4. (4.21)

Case 1: Vertex w is not solo. By Lemma 4.6.3(a) and (4.20), ‖w,B‖ = 2b and ‖w′, B‖ = ‖w′′, B‖ =

2b + 1. Then by Lemma 4.6.3(b), each of w′, w′′ has exactly one neighbor in each class in A −W − X1.

By Lemma 4.6.3(c), there exists y ∈ B ∩ N(w′) that is not petite. Since ‖y,W‖ = 2 and W ∈ A′,

d(y) ≥ a+ a′ + 1 = a+ 3. Now d(w′) + d(y) ≥ (2b+ 1 + a− 2) + (a+ 3) = 2k + 2, contradicting the degree

conditions of G.

The proof of the case when z is not solo is exactly the same (with the switched roles of W and Z).

Case 2: Both w and z are solo. By the case, B1(w) 6= ∅ and B1(z) 6= ∅. Since each y′ ∈ B0(w) ∪B3(w)

is adjacent to both w′ and w′′, using Lemma 4.6.3(a), b0(w)+ b3(w) ≤ ‖B,w′‖ ≤ 2b+1. So, b1(w)+ b2(w) ≥

|B| − (2b+ 1) = b. Similarly, b1(z) + b2(z) ≥ b.

Case 2.1: b1(w) + b2(w) ≥ b+ 1. Let y ∈ b1(w). Since each y′ ∈ b1(w) ∪ b2(w)− y is adjacent to y (by

Lemma 4.4.7), d(y) + d(w) ≥ (b1(w) + b2(w) − 1 + a) + (b1(w) + b2(w) + b3(w) + a − 1) ≥ 2k + 2(b1(w) +

b2(w)− 1− b). So, b1(w) + b2(w) ≤ b+ 1, and by the case, b1(w) + b2(w) = b+ 1. Since G[B] is b-colorable,

there are y1, y2 ∈ b1(w) ∪ b2(w) with y1y2 /∈ E(G). Then by Lemma 4.4.7, y1, y2 ∈ b2(w) and b+ 1 ≥ 3. In

particular, each of y1, y2 has a neighbor in W −w and ‖{w′, w′′}, B‖ ≥ 2(b0(w)+b3(w))+ |b2(w)| ≥ 2(2b)+2.

Then by Lemma 4.6.3(a), b2(w) = {y1, y2}, the neighbors of y1 and y2 in W are distinct, and each of w′, w′′

has exactly a− 2 neighbors in A. So by (4.21), ‖w,Z‖ ≥ 2 and d(w) ≥ (a− 1 + 1) + b + 1 = k + 1. Hence

‖y1, A‖ ≤ 2k + 1− d(w)− ‖y1, B‖ ≤ k − ‖y1, B‖. Since b2(w) = {y1, y2}, ‖y1, b1(w) ∪ b2(w)‖ = b− 1. Thus

‖y1, A‖ ≤ k − (b − 1) = a + 1. Since ‖y1,W‖ = 2, y1 has a solo neighbor in Z. Similarly, y2 has a solo

neighbor in Z, a contradiction to Lemma 4.4.7.
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The proof of the case b1(z) + b2(z) ≥ b + 1 is exactly the same. So, since b1(w) + b2(w) ≥ b and

b1(z) + b2(z) ≥ b, the last subcase is:

Case 2.2: b1(w) + b2(w) = b and b1(z) + b2(z) = b. Then b0(w) + b3(w) = b0(z) + b3(z) = 2b + 1;

so Lemma 4.6.3(a) and (b) applied to the vertices of W − w′ and Z − z yields b2(w) = b2(z) = 0 and

‖s,A‖ = a − 2 for all s ∈ {w′, w′′, z′, z′′}. In particular, ‖s,W ∪ Z‖ = 1 for all s ∈ {w′, w′′, z′, z′′}. If say,

z′w′ ∈ E(G), then as in the proof of (4.21), switching w′ with z′ leads to a coloring with more terminal

classes, a contradiction. Thus, {wz′, wz′′, zw′, zw′′} ⊂ E(G). Now, if wz ∈ E(G), then since both are

immovable, and by the case: d(w) + d(z) ≥ 2(a + 1 + b) = 2k + 2, contradicting the degree conditions of

G. So wz 6∈ E(G). If there is y ∈ B − N(w) − N(z), then we transform f into an equitable k-coloring as

follows: take an equitable b-coloring of B − y, add classes {y, z, w}, {w′, z′, z′′}, recolor the witnesses along

P (starting from w′′) and keep the obtained classes in A−W − Z. Thus B ⊂ N(w) ∪N(z). In particular,

since b1(w) + b2(w) = b1(z) + b2(z) = b < |B|/2, there exists y ∈ B3(w) ∪ B3(z); say y ∈ B3(z) (the other

case is the same). Now ‖y,A‖ ≥ a+2, so d(y)+d(w′) ≥ (a+2)+(a−2+2b+1) = 2k+1. Since yw′ ∈ E(G),

by the degree conditions of G, y has precisely one neighbor in every class of A−W and y is isolated in B.

Since y has only one neighor in Z, y is a solo neighbor of z, but since b1(z) = b > 0 the isolation of y in B

violates Lemma 4.4.7.

4.7 F is a star

In this section we will prove the following lemma:

Lemma 4.7.1. If there exist an optimal coloring f such that a(f) = a′(f) + 1, then there exists an optimal

coloring f such that F(f ′) is a star.

We begin with a simple lemma.

Lemma 4.7.2. If F is not a star and a′ = a−1, then a ≥ 4 and there exist two classes Z ∈ A′ and W ∈ A′

such that ZV − and WV − are both edges in F .

Proof. If F is not star, there exists X ∈ A′ such that XV − is not an edge in F . Since a′ = a − 1, there

exists Z ∈ A′ such that ZV − is an edge in F . Because Z is in A′, there exists an X,V −-path X . . .WV −

in F that avoids Z. Since a′ = a− 1, W ∈ A′ − Z − Z and a′ ≥ 3.

The following lemma is crucial to the proof of Lemma 4.7.1. We make the following definitions which are

used throughout the rest of the paper. For every x ∈ A, let B0(x) denote the set of nonneighbors of x in B,

and for i = 1, 2, 3, let Bi(x) denote the set of neighbors of x in B that have exactly i neighbors in the class

of X. For i = 0, 1, 2, 3, let bi(x) = |Bi(x)|.

81



Lemma 4.7.3. Assume that a′(f) = a(f) − 1 for some optimal coloring f and there does not exists an

optimal coloring f ′ for which F(f ′) is a star. For every X ∈ A′, if ‖u,A‖ ≥ 1 for every u ∈ X, then X has

a solo vertex. Furthermore, if x is the solo vertex in X, then b1(x) + b2(x) ∈ {b, b+ 1} and ‖x′, A‖ = 1 for

every x′ ∈ X − x.

Proof. First assume that X does not have a solo vertex. We then have that ‖X,B‖ ≥ 6b + 2. If we let

‖x′′, B‖ ≥ ‖x′, B‖ ≥ ‖x,B‖, then ‖x′′, B‖ ≥ 2b + 1 and d(x′′) ≥ 2b + 2. Since |L′(B)| ≤ b + 1 < 2b + 1, we

also have that x′′ is adjacent to a vertex y ∈ H ′(B). So,

‖x′′, B‖ ≤ 2a+ 2b+ 1− d(y)− ‖x′′, A‖ ≤ 2b+ 1

and ‖x′′, B‖ = 2b+ 1 and ‖x′′, A‖ = 1. Similar logic gives that ‖x′, B‖ = 2b+ 1 and ‖x′, A‖ = 1.

We now have that ‖x,B‖ ≥ 2b. Suppose x is movable. Then moving x to a class U ∈ A and switching

witnesses along a U, V − in F that avoids X gives a nearly equitable coloring with small class {x′, x′′} and

‖{x′, x′′}, A‖ = 2 < 3. This contradicts the fact that there are no optimal coloring in which F is a star.

Therefore, x is not movable. If x is adjacent to a vertex y ∈ H ′(B), then d(x) + d(y) ≥ a− 1 + 2b+ 2a− 1 ≥

a + 2a + 2b − 2. Since, by Lemma 4.7.1, a ≥ 4, this is a contradiction. So 2b ≤ ‖x,B‖ ≤ |L′(B)| ≤ b + 1,

which implies b = 1 and N(x) ∩ B = L′(B) ⊆ L(B) which further implies |L(B)| ≥ 2. Let y and y′ be

distinct vertices in L(B). Since they are low, d(y), d(y′) ≤ a+ b ≤ a+ 1. Since they both have two neighbors

in X, they both have a solo neighbor in every class of A′ −X. Since y and y′ are not adjacent (they are in

the same color class) and a′ ≥ 3, this is a contradiction.

So we can assume there exists a solo vertex x ∈ X. Let {x′, x′′} = X − x and u ∈ {x′, x′′}. If

‖u,B‖ ≥ 2b + 1, then u is adjacent to a vertex in y ∈ H ′(B). So, since ‖u,A‖ ≥ 1 and d(y) ≥ 2a − 1,

we have that d(y) = 2a − 1, ‖u,B‖ = 2b + 1 and ‖u,A‖ = 1. This implies that if ‖{x′, x′′}, B‖ ≥ 4b + 2,

then ‖x′, A‖ = ‖x′′, A‖ = 1 and ‖{x′, x′′}, B‖ ≤ 4b + 2. Therefore, we know that b1(x) + b2(x) ≥ b, since

B0(x) ∪B3(x) ⊆ N(u) ∩B. Furthermore, if b1(x) + b2(x) = b, then we have the desired conclusion. Hence,

we can assume b1(x) + b2(x) ≥ b+ 1.

There exists y ∈ B1(x), because x is solo. By Lemma 4.5.1, y is low, so it has at most b neighbors in B.

Since, by Lemmas 4.4.7 and 2.2.22, y is adjacent to every vertex in B1(x)∪B2(x), b1(x) + b2(x) = b+ 1. We

have that ‖{x′, x′′}, B0(x)∪B3(x)‖ = 2(3b+1− (b+1)) = 4b. Note that B1(x)∪B2(x) is not a (b+1)-clique

since G[B] is b-colorable, so there exist distinct y′, y′′ ∈ B1(x)∪B2(x) that are not adjacent. By Lemmas 4.4.7

and 2.2.22, this implies {y′, y′′} ⊆ B2(x). By the definition of B2(x), y′ and y′′ have a neighbor in {x′, x′′},

so ‖{x′, x′′}, B‖ ≥ 4b+ 2 which, from a previous argument, gives us the desired conclusion.
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Let {x, x′, x′′} ∈ X ∈ A′ such that XV − is not in F and there does not exist an optimal coloring f ′ for

which F(f ′) is a star. Since every vertex in X is adjacent to a vertex in V −, we can apply Lemma 4.7.2, so

we can label such that x is a solo vertex, ‖x,B‖ ≥ b and x′ and x′′ both have exactly one neighbor in V −

and no neighbors in A′.

We make the following two claims.

Claim 1. For every Z ∈ A′, ‖x, Z‖ ≤ 2.

Proof. Suppose ‖x, Z‖ = 3 for some Z ∈ A′. By Lemma 4.7.2, we can assume that there exists z ∈ Z such

that z is solo, ‖z,B‖ ≥ b and that for any u ∈ Z − z, N(u) ∩ A = {x}. Since ‖x,B‖ ≥ b, ‖x,A‖ ≥ a + 1

and x is adjacent to z we have that d(z) ≤ a + b. Since ‖z,B‖ ≥ b, we have that ‖z,A‖ ≤ a. This implies

that ‖z, U‖ ≤ 2 for every U ∈ A′. If we let {z′, z′′} = Z − z, then we can move z′′ to V −. Now {z, z′} is

the small class of a nearly equitable coloring. In this new coloring, the classes V − + z′′ and {x, x′, x′′} are

clearly movable to {z, z′}. Furthermore, any class U ∈ A′ −Z −X is still a class of the new coloring, and it

is movable to {z, z′} since the only neighbor of z′ in A is x and z has at most two neighbors in U .

Claim 2. For every u ∈ A′ −X, if x is not adjacent to u, then u is not movable to V −.

Proof. Suppose there exists a vertex z′ ∈ A′−X such that z′ ∈ Z ∈ A′ is not adjacent to x and z′ is movable

to V −. Form a new nearly equitable coloring by moving z′ to V − and x′′ to Z − z′. Note that {x, x′} is

the small class in this coloring and that z′, and hence V − + z′, is movable to {x, x′}. Clearly Z − z′ + x′′ is

movable to {x, x′}. Every U ∈ A′ − Z −X is a color class of the new coloring and, since ‖x′, U‖ = 0 and

‖x, U‖ ≤ 2, U is movable to {x, x′}. This implies that the new coloring is a star.

By Lemma 4.7.1, there exist distinct Z,W ∈ A′ −X such that ZV − and WV − are both edges in E(F).

By Claim 2, every vertex in both Z ∪ W has a neighbor in A: either x or a vertex in V −. Therefore,

by Lemma 4.7.2, there exists z ∈ Z and w ∈ W that are both solo and such that ‖z,B‖, ‖w,B‖ ≥ b.

Furthermore, the vertices in Z ∪W − z−w have exactly one neighbor in V −+x and no neighbors in A′−x.

Note that since both z and w are solo, and hence unmovable, they both have neighbors in X. The only

neighbors of {x′, x′′} in A are in V −, so x is adjacent to both w and z. Furthermore, there exists w′ ∈W −w

and z′ ∈ Z − z that witness the WV − and ZV − edges, respectively. Claim 2 then implies x is adjacent to

both w′ and z′. This with the fact that x is solo and unmovable, implies that ‖x,A‖ ≥ a + 1. Recall that

‖x,B‖, ‖w,B‖, ‖z,B‖ ≥ b, so ‖w,A‖, ‖z,A‖ ≤ 2a+ 2b+ 1− (a+ 1) + 2b = a. Therefore, both w and z have

at most 2 neighbors in any class of A. Let {z′′} = Z − z − z′. Note that the only neighbor of z′′ in A is

either x or a vertex in V −. Moving z′ to V −, then creates a coloring f ′ with small class {z, z′′}. We have

that z′, x′ and x′′ are movable to to {z, z′′}. This implies that the classes V − + z′ and X are both movable
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to {z, z′′}. We also have that for any class U ∈ A′ −X − Z, z′ has no neighbors in A′ −X ⊇ U and z has

at most 2 neighbors in U . This implies that U is movable to {z, z′′} and F(f ′) is a star.

Because F attains the maximum number of leaves over all spanning rooted in-trees of H rooted at V −,

F is a star.

4.8 a′ ≥ b + 1

Lemma 4.8.1. If b ≤ a′ − 1 = a− 2, then each class X ∈ A′ has a neighbor in V −.

Proof: Suppose V − = {v, v′}, X = {x, x′, x′′} ∈ A′ and V − ∪X is independent. Then each y ∈ B has

at least 4 neighbors in V − ∪X, so some w ∈ V − ∪X has at least
⌈
4(3b+1)

5

⌉
≥ 2b + 2 neighbors in B. By

Lemma 4.6.1, at least one, say y0, of these neighbors is in H(B). Then y0 has at least 2(a− 2) neighbors in

A−X − V −. Thus d(v) + d(y0) ≥ (2b+ 2) + 2(a− 2) + 4 = 2k + 2, a contradiction.

Lemma 4.8.2. If b ≤ a′ − 1 = a− 2, then for each class X ∈ A′, ||X,A|| ≥ a− 1 = a′.

Proof: Suppose ||X,A|| ≤ a − 2. Since we know that ||X,V −|| ≥ 1, there is Z ∈ A′ −X s.t. X ∪ Z is

independent. If each y ∈ B has at least 5 neighbors in X ∪ Z, then there is x ∈ X ∪ Z with

||x,B|| ≥
⌈

5(3b+ 1)

6

⌉
= 2b+

⌈
3b+ 5

6

⌉
≥ 2b+ 2.

Then d(y) ≤ 2a − 1 for each y ∈ B and so each high vertex has exactly two neighbors in each class of A′;

thus it cannot have more than 4 neighbors in X ∪ Z.

Thus there is y ∈ B with ||y,X ∪ Z|| ≤ 4. Let x, z ∈ X ∪ Z −N(y). If there is v ∈ X ∪ Z − z − x that

is movable to a class U outside of X ∪ Z, then we move it to U , then (if U 6= V −) move a witness from

U to V −, and create color classes {y, x, z} and X ∪ Z − x − z − v. Thus, there are no such v, and each

u ∈ X ∪ Z − z − x has neighbors in each of a− 2 classes of A′ −X − Z. But each of X and Z has a vertex

movable to V −. So, x and z are in distinct classes and so ||X,A|| ≥ 2(a− 2) ≥ a− 1, as claimed.

Lemma 4.8.3. If b ≤ a′ − 1 = a− 2, then ||y, V −|| = 1 for each y ∈ H(B).

Proof: Suppose V − = {v, v′} and some y ∈ H(B) is adjacent to both, v and v′. Then ||V −, B|| ≥ 3b+2.

So by Lemma 4.8.1, d(v) + d(v′) ≥ (3b + 2) + (a − 1) ≥ 4b + 3. So we may assume d(v) ≥ 2b + 2. But

d(y) ≥ 2a and so d(y) + d(v) ≥ 2k + 2.

Lemma 4.8.4. If b ≤ a′ − 1 = a− 2, then ||y,X|| = 2 for each X ∈ A′ and y ∈ H(B).
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Proof: Let X = {x, x′, x′′} ∈ A′ and y ∈ H(B). By Lemma 4.5.1, ||y,X|| ≥ 2. Suppose ||y,X|| = 3.

Then d(y) ≥ 2a and so

d(x), d(x′), d(x′′) ≤ 2b+ 1. (4.22)

If X does not have a solo vertex, then, since ||y,X|| = 3, ||X,B|| ≥ 2|B| + 1 = 6b + 3. So by (4.22),

||X,A|| = d(x) + d(x′) + d(x′′)− ||X,B|| ≤ 3(2b+ 1)− (6b+ 3) = 0, a contradiction to Lemma 4.8.2. Thus

we may assume that x is solo (and so unmovable).

Since ||x,A|| ≥ a− 1||, by (4.22), ||x,B|| ≤ (2b+ 1)− (a− 1). So |B −N(x)| ≥ a− 1 + b. Since each of

x′, x′′ is adjacent to each vertex in (B −N(x)) + 1, this and (4.22) yield

2b+ 1 ≥ d(x′) ≥ (a− 1 + b) + 1 = a′ + b+ 1

and thus a′ ≤ b, a contradiction.

Lemma 4.8.5. If b ≤ a′ − 1 = a− 2, then each class X ∈ A′ contains an unmovable vertex wX .

Proof: Suppose that X = {x, x′, x′′} ∈ A′ has no unmovable vertices. Then it has no solo vertices and

||X,B|| ≥ 6b+2. Rename the vertices in X so that ||x,B|| ≤ ||x′, B|| ≤ ||x′′, B||. Then ||{x′, x′′}, B|| ≥ 4b+2

and ||x′′, B|| ≥ 2b+ 1.

CASE 1: ||{x′, x′′}, A|| ≤ 2. Since x is movable, move it to a class U with no conflict, and if U 6= V −,

then move a witness from U to V −. By the case, every new class has a vertex movable to X ′ = X − x. By

Lemma 4.8.1 for the new coloring and again by the case, a ≤ 3. Since 1 ≤ b ≤ a− 2, we conclude that b = 1,

a = 3 and ||{x′, x′′}, A|| = 2. In particular, |B| = 4. Since ||{x′, x′′}, B|| ≥ 4b + 2 = 6, there are y, y′ ∈ B

adjacent to both x′, x′′. By Lemma 4.8.3, y, y′ ∈ L(B). Then each of y and y′ has a solo neighbor in the

other class of A′, a contradiction to Lemma 4.4.7.

CASE 2: ||{x′, x′′}, A|| ≥ 3. Then d(x′) + d(x′′) ≥ 4b+ 2 + 3 and so d(w) ≥ 2b+ 3 for some w ∈ {x′, x′′}.

If w has a neighbor y ∈ H(B), then d(w) + d(y) ≥ 2b + 3 + 2a − 1 = 2k + 2, a contradiction. Thus

by Lemma 4.6.1, ||w,B|| ≤ |L(B)| ≤ b + 1. Since ||x′′, B|| ≥ 2b + 1, w = x′ and ||x′′, B|| ≤ 2b + 2. So

||x′, B|| ≥ 4b+2−||x′′, B|| ≥ 2b. Again by Lemma 4.6.1, 2b ≤ b+1 and thus b = 1, a′ = 2, ||x′′, B|| = 2b+2 = 4

and N(x′) ∩ B = L(B). As at the end of Case 1, then each of the two vertices in L(B) has a solo neighbor

in the other class of A′, a contradiction.

Lemma 4.8.6. If b ≤ a′ − 1 = a− 2, then for each unmovable x ∈ X ∈ A′,

||x,B|| ≥ b− 1. If in addition, x is a high vertex, then ||x,B|| ≤ b.

Proof: Let x be unmovable in X = {x, x′, x′′} ∈ A′ and Y = B ∩N(x). If |Y | ≤ b− 2, then ||B − Y || ≥
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2b + 3 and each y ∈ B − Y is adjacent to both x′ and x′′. By Lemma 4.6.1, there is y′ ∈ (B − Y ) ∩H(B).

Then d(y′) + d(x′) ≥ (2a− 1) + (2b+ 3) = 2k + 2, a contradiction. So |Y | ≥ b− 1.

Suppose now that |Y | ≥ b+1 and d(x) ≥ k+1. For every y ∈ Y , d(y) ≤ 2k+1−d(x) ≤ k. So Y ⊆ L(B).

By Lemma 4.6.1, |L(B)| ≤ b + 1. Thus |Y | = b + 1, and again by Lemma 4.6.1, a′ = b + 1 and G[L(B)] is

the disjoint union of some cliques C1, . . . , Cs. Since G[B] is b-colorable, s ≥ 2. If x is not a solo vertex, then

G has at most a′ − 1 solo vertices in A′. In this case, repeating the proof of Lemma 4.6.1, instead of (4.6)

we get (|I| − 1)(a′ − b− 1)− b− 1 + |L(B)| ≤ −1 and thus |L(B)| ≤ b, a contradiction to above.

So suppose x is a solo neighbor of some y1 ∈ C1. Then by Lemmas 4.4.7 and 2.2.22 each y2 ∈ C2 is

adjacent to both x′ and x′′. It follows that y2 has at least a′ − b + ||y,B|| + 1 solo neighbors in A′, and

repeating the proof of Lemma 4.6.1, we derive that there are more than a′ solo vertices in A′.

Lemma 4.8.7. If b ≤ a′ − 1 = a− 2, then each unmovable high vertex x ∈ X ∈ A′ is adjacent to all other

unmovable vertices in A′. In particular, A′ contains at most one high unmovable vertex.

Proof: Suppose x is the unmovable vertex in X = {x, x′, x′′} ∈ A′, z is the unmovable vertex in

Z = {z, z′, z′′} ∈ A′, Z 6= X, xz /∈ E(G) and d(x) ≥ k + 1. Let Y = B ∩ N(x) and Y ′ = B − Y . Then

each y ∈ Y ′ is adjacent to both, x′ and x′′. Since z is unmovable and zx /∈ E(G), we may assume that

x′z ∈ E(G). By Lemma 4.8.6, b− 1 ≤ |Y | ≤ b.

CASE 1: |Y | = b − 1. By Lemma 4.6.1, Y ′ contains a high vertex y′. Then d(y′) + d(x′) ≥ (2a − 1) +

|Y ′|+ 1 = 2a− 1 + 2b+ 3 = 2k + 2, a contradiction.

CASE 2: |Y | = b. If z is low, then ||z,B|| ≤ k− (a− 1) = b+ 1. Otherwise, by Lemma 4.8.6, ||z,B|| ≤ b.

In any case, there is y′′ ∈ Y ′ − N(z). Suppose first that x′′ is movable to V −. Then we try to move x′′

to V −, color equitably B − y′′, create color classes {y′′, x, z} and {x′, z′, z′′}. The problem occurs only if

x′ is adjacent to {z′, z′′}, but in this case d(x′) ≥ |Y ′| + 2 = 2b + 3, and again for any y′ ∈ Y ′ ∩ H(B),

d(x′) +d(y′) ≥ 2k+ 2. So we may assume ||x′′, V −|| ≥ 1. But then x′ is the witness of XV − ∈ E(H) and we

can repeat our attempt of recoloring with the switched roles of x′ and x′′. This fails only if x′′ is adjacent

to {z′, z′′}, and in this case d(x′′) ≥ |Y ′|+ 2 = 2b+ 3. So we again get a contradiction.

4.9 b = 1

This section is devoted to the case b = 1. A helpful situation in this case is that

∀y ∈ L(B), at most one X ∈ A′ has no solo neighbors of y; if such X exists, ||y,X|| = 2. (4.23)

We handle the case in three steps.
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Lemma 4.9.1. If b = 1 then for each y ∈ L(B), ||y, V −|| = 1.

Proof: Suppose y ∈ L(B) and V − ⊂ N(y). Then by (4.13), each X ∈ A′ contains a solo (unmovable)

neighbor wX of y. This implies that y is the only low vertex in B, since otherwise the other low vertex in

B would share a solo neighbor in A′ with y. This also yields that for each y′ ∈ H(B) = B − y and each

X ∈ A′, N(y′) ∩X = X − wX .

CASE 1: Some v ∈ V − is adjacent to all vertices in B. Since d(v) ≤ 2k + 1 − (2a − 1) = 4, N(v) = B.

Let {v′} = V − − v. Then v′ must be adjacent to each unmovable vertex in A′. Let W = {wX : X ∈

mathcalA′} ∪ {v′, y}. Then by above, G[W ] = Kk and G−W contains K3,2k−3 with partite sets B − y and

A−W (the latter contains v and two vertices in each X ∈ mathcalA′). This contradicts the choice of G.

CASE 2: Each of v, v′ ∈ V − has a neighbor in B − y. Then d(v) + d(v′) ≤ 2(2k + 1 − (2a − 1)) = 8.

Since ||V −, B|| = 5, ||V −, A′|| ≤ 3. So there is X ∈ A′ with ||X,V −|| ≤ 1. Since wX has a neighbor in V −,

we may assume that E(G[X ∪ V −]) = {wXv′}. By the case, there is y′ ∈ B − y not adjacent to v′. Let the

color classes of the new coloring be {y′, wX , v′}, X − wX + v, B − y′, and the classes in A′ −X. This is an

equitable coloring, a contradiction.

Lemma 4.9.2. If b = 1 then each class X ∈ A′ has a solo vertex.

Proof: Suppose x is the unmovable vertex in X = {x, x′, x′′} ∈ A′ and x is not solo. Then by (4.23)

and Lemma 4.8.4, ||X,B|| = 8.

CASE 1: ||x,B|| = 0. Then ||x′, B|| = ||x′′, B|| = 4 and so ||x′, A|| = ||x′′, A|| = 0. Let V − = {v.v′}. By

Lemmas 4.9.1 and 4.8.3, each y ∈ B has exactly one neighbor in V −. So we may assume that |N(v)∩B| ≤ 2

and y, y′ ∈ B −N(v). Let the color classes of the new coloring be {y, y′, v}, X − x+ v′, B − y′ − y + x, and

the classes in A′ −X. This is an equitable coloring, a contradiction.

CASE 2: ||x,B|| ≥ 1. We may assume that ||x′, B|| ≤ ||x′′, B||, so that x and x′′ have a common neighbor

in B. Since x′ is movable, we move it into a class Z ∈ A −X and if Z 6= V −, then we move a witness uZ

of ZV − into V −. If in the new coloring every color class in the new A has a vertex movable to X − x′ then

we get a contradiction either with Lemma 4.9.1 or with Lemma 4.8.3. So there exists a class W of the new

coloring f ′ in which every vertex has a neighbor in {x, x′′}. Moreover, W is not the new class of x′.

CASE 2.1: ||x′′, B|| ≤ 3. This yields ||x,B|| ≥ 8− 2||x′′, B|| ≥ 2. If B contained two low vertices y and

y′, then by (4.23), y and y′ would have a common solo neighbor in each other class in A′, a contradiction. So

|L(B)| ≤ 1. Thus x has a neighbor in H(B) and so d(x) ≤ 4. But d(x) ≥ a−1+||x,B|| ≥ 2+2. It follows that

a = 3, ||x,B|| = 2 and ||x′′, B|| = 3. Also then ||{x, x′′}, A|| ≤ d(x) + d(x′′)− ||{x, x′′}, B|| ≥ 4 + 4− 5 = 3.

But we already have 3 neighbors of {x, x′′} in W . So the third class in the new A has no neighbors of x.

However, originally every class in A had a neighbor of x and every class in A′ had an unmovable neighbor
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of x. This is a contradiction.

CASE 2.2: ||x′′, B|| = 4. Then every w ∈ W is adjacent to x, so ||x,A|| ≥ (a − 1) + 2 = k. It follows

that d(x) ≥ k + 1 and so N(x) ∩ H(B) = ∅. By the case, this means that |L(B)| = 1. Let L(B) = {y}.

Then N(x′) ∩B = H(B). Since d(y) = a+ 1, d(x) is exactly k + 1, and x has exactly one neighbor in each

class in A −W . By Lemma 4.9.1, W is not obtained from V − by adding a vertex. So, W was already a

color class in f , let W = {w,w′, w′′} with unmovable w. By (4.23), w is the solo neighbor of y in W . Then

N(w′) ∩ B = N(w′′) ∩ B = B − y and d(w′) ≤ 4 and d(w′′) ≤ 4. Since xw′, xw′′ ∈ E(G), x′ is adjacent

neither to w′ nor to w′′. Thus if x′w /∈ E(G), then we can choose W as the class Z at the beginning of the

case and obtain another class with many neighbors of x, a contradiction. So, x′w ∈ E(G). As a neighbor of

x, w is a low vertex, and so ||w, V −|| = 1 (w has a neighbor in each class of A−W plus an extra neighbor in

X plus y). Let V − = {v, v′} with wv′ ∈ E(G). If v has a nonneighbor y′ ∈ H(B), then we create new color

classes {w, v, y′}, B − y′, W − w + v′ and use the old classes in A′ −W . So H(B) ⊆ N(v). If yv′ /∈ E(G),

then we take some y′ ∈ H(B) and create new color classes {y, v′, y′}, B− y′− y+w, W −w+ v and use the

old classes in A′−W . So yv′ ∈ E(G). If xv′ /∈ E(G) then similarly we take some y′ ∈ H(B) and create new

color classes {x, v′, y′}, B − y′, X − x+ v and use the old classes in A′ −W . Thus G[{y, x, w, v′}] = K4 and

G[(X ∪W ∪B ∪ V −)− {y, x, w, v′}] contains K3,5 with one of partite sets H(B). Therefore, if a = 3, then

we have a contradiction to the choice of G. So, let a ≥ 4 and U = {u, u′, u′′} be the third class in A′ with

unmovable u. By the degree conditions on x, x′ and x′′, the only edge in G[X ∪ U ] is xu. In particular, u is

low. Then switching u with x we again get Case 2.2, but now the unmovable vertex is low, a contradiction

to above.

Lemma 4.9.3. b 6= 1.

Proof: Suppose b = 1. Since k ≥ 4, a ≥ 3. If a′ = 1, then a′′ = a′ and by Proposition 4.5.2,

a′ = a−1 ≥ 2, a contradiction. So a′ ≥ 2 and by Lemma 4.7.1 F is a star. Then by Lemma 4.9.2, L(B) 6= ∅.

Let y ∈ L(B). If d(y) = k, then by Lemma 4.9.1 there is a class X = {x, x′x′′} ∈ A′ with ||y,X|| = 2. By

Lemma 4.9.2, some x ∈ X is the solo neighbor for some y′ ∈ B. Then y′ ∈ L(B) and since B is independent,

N(x′) ∩ B = N(x′′) ∩ B = B − y′. By (4.23), a′ = 2, and we may assume that the other class in A′ is

W = {w,w′, w′′} with wy ∈ E(G) and N(w′) ∩ B = N(w′′) ∩ B = B − y. If x has no neighbors in W − w

and w has no neighbors in X − x, then swapping x with w yields a coloring in which y has no neighbors in

W −w+x. By symmetry, we may assume that wx′ ∈ E(G). Let V − = {v, v′} and B−y−y′ = {y′′, y′′′}. We

construct an equitable 4-coloring as follows. Two classes will be {y, x, y′′} and {y′, w, y′′′}. In the remaining

6-vertex subgraph G′ of G, w′ is isolated, the degrees of x′, x′′ and w′′ do not exceed 1, and the vertices v

and v′ are not adjacent to each other. This means that at least one component of G′ is an isolated vertex
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and the other are stars with at most 3 rays. Each such 6 forest has an equitable 2-coloring.

Thus d(y) = a. Then each neighbor of y is solo and by (4.23), L(B) = {y}. By Lemma 4.4.3, all neighbors

of y are unmovable. For every X ∈ A, let uX denote the unmovable vertex in X. Then by Lemmas 4.4.7

and 2.2.22, for every X ∈ A′,

N(uX) ∩B = {y}, and for each x ∈ X − uX , N(x) ∩B = B − y. (4.24)

Let V − = {v, v′} with v′ = uV − . If X ∈ A′ and uX is low, then switching y with uX again creates an

appropriate coloring. So,

for every low unmovable u ∈ A′, d(u) = a and u is adjacent to v′ in V −. (4.25)

If there is y′ ∈ B − y = H(B) with y′v /∈ E(G), then y′v′ ∈ E(G) and so d(v′) ≤ 4. But ||v′, A|| ≥ a− 1

and N(v′)∩B ⊇ {y, y′}. It follows that a−1 = 2 and N(v′)∩B = {y, y′}. Then we can replace color classes

B and V − with {y, y′, v} and B + v′ − y − y′. Thus N(v) ⊇ B − y, and

G[V (G)−N(y)− y] contains K3,2k−3 with partite sets B − y and A−N(y). (4.26)

By Lemma 4.8.7, at most one solo neighbor of y in A′ is high. Suppose that if such neighbor exists, then

it is w ∈W ∈ A′.

CASE 1: All solo neighbors of y in A′ are low or wy′ ∈ E(G). In this case, by (4.24), (4.25), (4.26), and

Lemma 4.8.7, G[N(y) + y] = Kk and G[V (G)−N(y)− y] contains K3,2k−3, a contradiction to its choice.

CASE 2: There is a high neighbor w ∈ W ∈ A′ of y, and wv′ /∈ E(G). Then wv ∈ E(G) and so

N(v) = B − y + w. We choose any y′ ∈ B − y and replace the color classes B,W and V − with the classes

B − y′, {w, v′, y′} and W − w + v.

4.10 a′ > b > 1

In this section, we assume that a′ > b. By Lemma 4.9.3, b > 1.

Lemma 4.10.1. |L(B)| ≤ b.

Proof: Suppose |L(B)| ≥ b+ 1. Then by Lemma 4.6.1, b = 2, a = 4, |L(B)| = 3, G[L(B)] is the disjoint

union of at least two cliques and each class in A′ has a solo vertex. Then L(B) contains a vertex y isolated

in G[L(B)]. Let L(B) = {y, y′, y′′}. Let X = {x, x′x′′} ∈ A′ contain a solo neighbor x of y. Then each
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y′ ∈ B − y is adjacent to x′ and x′′ and so ||x′, B|| = ||x′′, B|| = 6. It follows from degree conditions that

N(x′) = N(x′′) = B − y and all vertices in H(B) are isolated in G[B]. (4.27)

In particular, the only possible edge in G[B] is y′y′′. Let W = {w,w′w′′} ∈ A′ contain a solo neighbor w of y′.

Then N(w)∩B ⊆ {y′, y′′} and each of w′ and w′′ is adjacent to all vertices in B−y′−y′′ and thus has at most

one neighbor in A. We construct an equitable k-coloring of G as follows. Let H(B) = {u1, . . . , u4}. The three

classes involving vertices of B are {x, y′, u1}, {w, y, u2} and {y′′, u3, u4}. One more class is Z ∈ A′−X−W .

In the subgraph G′ induced by the remaining 6 vertices V −∪{w′, w′′, x′, x′′}, vertices x′ and x′′ are isolated,

vertices w′ and w′′ have degree at most 1, and the vertices v and v′ of V − are not adjacent to each other.

Every such forest on six vertices is equitably 2-colorable.

Lemma 4.10.2. Each class X ∈ A′ has a solo vertex.

Proof: Suppose x is the unmovable vertex in X = {x, x′, x′′} ∈ A′ and x is not solo. Then ||X,B|| ≥

6b+ 2. Let Y = N(x) ∩B.

CASE 1: |Y | ≤ b− 1. Then some of x′, x′′, say x′, is adjacent to at least d |B−Y |2 e ≥ 2b+ 3 vertices in B.

By Lemma 4.6.1, x′ has a high neighbor y in B, a contradiction to d(x′)+d(y) ≥ (2b+3)+(2a−1) = 2k+2.

CASE 2: |Y | ≥ b + 1. Then by Lemma 4.10.1, x has a high neighbor y in B, and so d(x) ≤ 2b + 2. It

follows that

||x,A|| ≤ 2b+ 2− |Y | ≤ b+ 1 ≤ a− 1. (4.28)

Since x is unmovable, ||x,A|| ≥ a−1 ≥ b+1. So |Y | = b+1 and a = b+2. Since ||{x′, x′′}, B|| ≥ 6b+2−|Y | =

5b+ 1, if say x′ has no high neighbors in B, then by Lemma 4.10.1, x′′ has at least 5b+ 1− b > b neighbors

in B and thus by the same lemma, d(x′′) ≤ 2b + 2. But then ||x′, B|| ≥ 5b + 1 − (2b + 2) = 3b − 1 > b, a

contradiction. Thus each of x′ and x′′ has a high neighbor in B, hence d(x′) ≤ 2b + 2 and d(x′′) ≤ 2b + 2.

It follows that ||{x′, x′′}, A|| ≤ 2(2b+ 2)− 5b− 1 = 3− b ≤ 1.

Let x′ be the other neighbor of y in X. If ||x′′, V −|| = 0, then move x′′ into V −. If every class in A′−X

has a vertex movable to X − x′′, then we get a new optimal coloring in which y has two neighbors in the

small class, a contradiction. Thus there is W ∈ A′−X in which every vertex has a neighbor in X −x′′. But

only one can be adjacent to x′ and, since x is unmovable, by (4.28) only one can be adjacent to x. Hence

x′′ has a neighbor V −. Then x′ has no neighbors in A. In this case, move x′′ to some class Z (since x′′ is

movable) and move a witness of ZV − ∈ E(H) into V −. Then either in some W ∈ A′ − X each vertex is

adjacent to x or both vertices in V − are adjacent to x. Each of the possibilities contradicts (4.28).

CASE 3: |Y | = b and x has a high neighbor y in B. Then we essentially repeat the argument of Case 2
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with two changes: On the one hand, instead of (4.28), x may have two neighbors in a class W ∈ A′ −X; on

the other hand, since ||{x′, x′′}, B|| ≥ 5b + 2 ≥ 2(2b + 2), neither of x′ and x′′ has neighbors in A. So, we

simply move x′′ into V − and get that in some W ∈ A′ −X each vertex is adjacent to x.

CASE 4: |Y | = b and Y ⊆ L(B). Then by Lemma 4.10.1, Y = L(B). As in Case 3, since ||{x′, x′′}, B|| ≥

2|B| − b ≥ 5b+ 2, in order to have d(x′) ≤ 2b+ 2 and d(x′′) ≤ 2b+ 2, we need b = 2 and ||{x′, x′′}, A|| = 0.

Moreover, since X has no solo vertices, the number of solo vertices in A is at most a′ − 1. So, repeating the

argument of Lemma 4.6.1, we obtain that each vertex in L(B) has no neighbors in H(B) and exactly one

neighbor in V −. Also, since d(x′) = 2b + 2 each y ∈ H(B) has exactly 2a − 1 neighbors, and so H(B) is

independent. Let L(B) = {y, y′} and H(B) = {y1, . . . , y5}. Then the only possible edge in G[B] is yy′. Since

each w ∈ B has exactly one neighbor in V −, we may assume that v′ ∈ V − has at most 3 neighbors in B and

v ∈ V − has at least 4 such neighbors. If N(v′) ∩ B does not contain L(B), then assuming yv′ /∈ E(G), we

create new color classes {y, v′, y1}, {y′, y2, y3}, {x, y4, y5}, {v, x′, x′′} and keep the color classes in A′−X. If

N(v′)∩B does contain L(B) but contains also some y1 ∈ H(B), then we create new color classes {y, v, y1},

{y′, y2, y3}, {x, y4, y5}, {v′, x′, x′′} and keep the color classes in A′ −X.

So let N(v′)∩B = L(B). If yy′ /∈ E(G), then we create new color classes {y, v, y′}, {y1, y2, y3}, {x, y4, y5},

{v′, x′, x′′} and keep the color classes in A′ −X.

Suppose yy′ ∈ E(G) and let U = {uZ : Z ∈ A′} be the set of unmovable vertices in A′. Then each

neighbor in A′ −X of y or y′ is solo, and thus N(y) ∩ A −X = N(y′) ∩ A −X = U + v′. Let Z ∈ A′ and

z = uZ ∈ U . By Lemmas 4.4.7 and 2.2.22, vertices in H(B) are not adjacent to z and thus N(w)∩Z = Z−z

for each w ∈ H(B). So, N(w) = (A′−x−U) + v for all w ∈ H(B) and N(z)∩B = Y for all z ∈ U +x+ v′.

If v′z /∈ E(G) for some z ∈ U +x, then since z is unmovable, zv ∈ E(G). Thus N(v) = H(B) + z and we

can replace the color classes in B ∪ V − ∪Z (where Z is the class of z) with {v′, z, y1}, {y, y2, y3}, {y′, y4, y5}

and Z − z + v, a contradiction. So v′u ∈ E(G) for each u ∈ U + x. Thus if G[U + x] is a complete graph

then G contains disjoint subgraphs Kk = G[U ∪ Y + x + v′] and K5,2k−5 with H(B) as one of the partite

sets, a contradiction to the choice of G. So, there are z1, z2 ∈ U +x with z1z2 /∈ E(G). Let Zi be the class of

zi for i = 1, 2. Since |N(v)−B| ≤ 1, we may assume that ||v, Z1|| = 0. Then we replace the color classes in

B ∪ V − ∪Z1 ∪Z2 with {z1, z2, y1}, {v′, y2, y3}, {y′, y4, y5}, Z1 − z1 + v and Z2 − z2 + y, a contradiction.

Lemma 4.10.3. For every unmovable x ∈ A′, N(x) ∩B ⊆ L(B).

Proof: Suppose some unmovable x ∈ A′ has a neighbor y ∈ H(B). Let X = {x, x′, x′′} ∈ A′ be the

class of x. By Lemma 4.10.2, x has a solo neighbor y′ ∈ Y = N(x) ∩ B. By Lemma 2.2.22 yy′ ∈ E(G).

Then d(y) ≥ 2a and so d(x) ≤ 2b + 1. Since x is unmovable, |Y | ≤ d(x) − (a − 1) ≤ b. Each w ∈ B − Y is

adjacent to x′ and x′′. By symmetry, we may assume x′y ∈ E(G). Then d(x′) ≥ 1 + |B − Y | ≥ 2b+ 2 and
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so d(x′) + d(y) ≥ 2k + 2, a contradiction.

Lemma 4.10.4. b ≥ a′.

Proof: Suppose b ≤ a′ − 1, and recall H is a star, b ≥ 2 and every X ∈ A′ has a solo vertex uX by

Lemmas 4.7.1, 4.9.3, and 4.10.2. Suppose X = {x, x′, x′′} ∈ A′ and x = uX . Let Y = N(x) ∩ B. By

Lemma 4.10.3, Y ⊆ L(B). By Lemma 4.10.1, |L(B)| ≤ b. Since each w ∈ B − Y is adjacent to both x′ and

x′′ and B − Y contains a high vertex, |B − Y | ≤ d(x′), d(x′′) ≤ 2b+ 2, which yields |Y | ≥ b− 1.

CASE 1: |Y | = b − 1. Then N(x′) = N(x′′) = B − Y and so N(y) ∩ X = {x} for every y ∈ Y . By

Lemma 4.4.7, G[Y ] = K|Y |. Also the vertices in H(B) are isolated in G[B] and x′ and x′′ are isolated in G[A].

Let Z = {z, z′, z′′} ∈ A′ −X. By Lemma 4.10.1, |L(B)− Y | ≤ 1. If L(B)− Y 6= ∅, then let y′ ∈ L(B)− Y ,

otherwise, let y′ be any vertex in B − Y . Let Y = {y1, . . . , yb−1} and B − Y − y′ = {w1, . . . , w2b+1}. The

color classes in our new coloring will be all classes in A′ − X − Z, V − + x′, Z − z + x′′, {x, y′, w2b+1},

{z, w2b−1, w2b} and for every 1 ≤ i ≤ b− 1, the class {yi, w2i−1, w2i}.

CASE 2: |Y | = b for every choice of a solo x ∈ A′. Then by Lemma 4.10.3, Y = L(B) for each choice

of x. Let U be the set of unmovable vertices in A′ and M = A′ − U . Then by the case, N(w) ∩ A′ = M

for every w ∈ H(B). We claim that among the colorings of A there is such that the vertices v and v′ in V −

satisfy

N(v) ⊇ H(B) and v′ is a low unmovable vertex with N(v′) ∩B = Y . (4.29)

Indeed, by Lemma 4.8.7, there is X = {x, x′, x′′} ∈ A′ with low x = uX . By the first paragraph, ||x′, A|| ≤ 1

and ||x′′, A|| ≤ 1. We may assume that x′ is a witness of XV − ∈ E(H). Move x′ to V −. If every class in

A′ −X has a vertex movable to X − x′, then we get a coloring satisfying (4.29), so suppose the contrary:

that there is Z ∈ A′ in which every vertex is adjacent to {x, x′′}. At most one of them is adjacent to x′′ and

since x is low and unmovable,

||x, Z|| ≤ k − ||x,B|| − ||x,A− Z|| ≤ (a+ b)− b− (a− 2) = 2.

So, the only possibility of failure is that ||x′′, Z|| = 1, ||x, Z|| = 2 and ||x,W || = 1 for every W ∈ A−X −Z.

But then instead of x′ we can move x′′ to V −, and by the previous sentence we do not fail this time.

By (4.29), N(w) = M + v for every w ∈ H(B); in particular, G[H(B) ∪M + v] ⊇ K2b+1,2a−1. Since

G is a counter-example, G[U ∪ Y + v′] has two nonadjacent vertices u and u′. Let Y = {y1, . . . , yb} and

B − Y = {w1, . . . , w2b+1}. By the case and (4.29), either {u, u′} ⊆ Y or {u, u′} ∩ Y = ∅.

CASE 2.1: u = yb and u′ = yb−1. Since ||v,A|| ≤ 1, we may choose X = {x, x′, x′′} ∈ A′ with

||v,X|| = 0. The color classes of our new coloring will be all classes in A′−X, {u, u′, w2b+1}, {v′, w2b−1, w2b},
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{x,w2b−3, w2b−2}, {v, x′, x′′} and for every 1 ≤ i ≤ b− 2, the class {yi, w2i−1, w2i}.

CASE 2.2: {u, u′} ⊂ A and v′ /∈ {u, u′}. Then there are X = {x, x′, x′′} ∈ A′ and Z = {z, z′, z′′} ∈ A′

such that u = x = uX and u′ = z = uZ . For a new coloring, we use an equitable b-coloring of B−w1 (which

exists by Lemma 4.4.5), the color classes of A′ − X − Z, the class {x, z, w1} and consider the remaining

set D = {x′, x′′, z′, z′′, v′, v}. By construction, each vertex in D − v′ has at most one neighbor in A, and

by (4.29), ||v′, D|| ≤ 3. Such a forest is equitably 2-colorable, unless v′ is adjacent to three of x′, x′′, z′, z′′ and

v is adjacent to the fourth, say, z′′. In the last case, v′ has at most one neighbor in each class in A′−X−Z,

and the remaining vertices in D have no neighbors in A−X − Z. In this case, we switch v with a movable

vertex r in a class R ∈ A′ −X − Z and color D − v + r equitably with two colors.

CASE 2.3: u = v′ and u′ ∈ X = {x, x′, x′′} ∈ A′. Let u′ = x. Since x is unmovable, xv ∈ E(G) and so

||v,A− x|| = 0. Similarly to Case 2.3, we use an equitable b-coloring of B −w1, the color classes of A′ −X,

and the classes {x, v′, w1} and X − x+ v.

4.11 Preliminaries and small cases for b ≥ a′

By Lemma 4.6.7, a′ = a − 1, and by Lemma 4.7.1 F is a star. We will use some analogues of lemmas in

Sections 4.6 and 4.8, but proofs and some notions will somewhat differ.

Note that the definition of L′ is changed in Section 4.6. An analog of Lemma 4.8.1 is:

Lemma 4.11.1. If b ≥ a′ = a− 1, then each class X ∈ A′ has a neighbor in V −.

Proof: Suppose V − = {v, v′}, X = {x, x′, x′′} ∈ A′ and V − ∪ X is independent. Then each y ∈ B

has at least 4 neighbors in V − ∪ X, so some w ∈ V − ∪ X has at least
⌈
4(3b+1)

5

⌉
≥ 2b + 2 neighbors in

B. By Lemma 4.6.3, at least one, say y0, of these neighbors is in H ′(B). Since ||y0, V − ∪ X|| ≥ 4, either

||y0, X|| = 3 or ||y0, V −|| = 2. Then by the definition of petite vertices, d(y0) ≥ a + a′ + 1 = 2a. Thus

d(v) + d(y0) ≥ (2b+ 2) + 2a = 2k + 2, a contradiction.

An analog of Lemma 4.8.5 is:

Lemma 4.11.2. If b ≥ a′ = a− 1, then each class X ∈ A′ contains an unmovable vertex wX .

Proof: Suppose that X = {x, x′, x′′} ∈ A′ has no unmovable vertices. Then X has no solo vertices and

||X,B|| ≥ 6b+2. Rename the vertices in X so that ||x,B|| ≤ ||x′, B|| ≤ ||x′′, B||. Then ||{x′, x′′}, B|| ≥ 4b+2

and ||x′′, B|| ≥ 2b+ 1. If there is w ∈ {x′, x′′} with d(w) ≥ 2b+ 3, then d(y) ≤ 2k + 1− 2b− 3 = 2a− 2 for

every y ∈ N(w). In particular, each y ∈ B ∩N(w) is petite. So by Lemma 4.11.1, ||w,B|| ≤ a′ ≤ b. Then

by the ordering of x, x′ and x′′, ||w,B|| ≤ a′ ≤ b. Therefore, ||x′′, B|| ≥ 6b+ 2− b− b > |B|, a contradiction.
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So,

d(x′) ≤ 2b+ 2 and d(x′′) ≤ 2b+ 2. (4.30)

If ||{x′, x′′}, A|| ≥ 3, then d(x′) + d(x′′) ≥ 4b + 2 + 3 and so d(w) ≥ 2b + 3 for some w ∈ {x′, x′′}, a

contradiction to (4.30). Thus ||{x′, x′′}, A|| ≤ 2. Since x is movable, move it to a class U with no conflict,

and if U 6= V −, then move a witness from U to V −. By the case, every class in the new coloring f ′ has a

vertex movable to X ′ = X − x. So, f ′ is optimal. By Lemma 4.11.1 for f ′ and again by the case, a ≤ 3. By

Lemma 4.11.1 for the original coloring, a ≥ 3. So a = 3 and ||{x′, x′′}, A|| = 2. Then d(x′)+d(x′′) ≥ 4b+2+2

and by (4.30), d(x′) = d(x′′) = 2b + 2. Since B ⊂ N(x′) ∪N(x′′), d(y) ≤ 2k + 1 − 2b − 2 = 2a − 1 = 5 for

every y ∈ B. Since ||y,X|| ≥ 2, we have ||y,A|| ≥ a + 1 = 4 and thus ||y,B|| ≤ 1 for every y ∈ B. Let

B′ = {y ∈ B : ||y,B|| = 1} and Z = {z, z′, z′′} be the other class in A′. If B′ 6= ∅, then for every y ∈ B′,

||y,A|| = 4 and y has a solo neighbor z in Z. So G[B′] is a complete graph, and therefore |B′| = 2.

CASE 1: B′ = {y, y′}. Then N(z)∩B = B′, since each neighbor y′′ ∈ B−B′ of z either has 3 neighbors

in Z or is adjacent to y and y′ (in both cases, contradicting d(y′′) ≤ 5). But each nonneighbor of z in B is

adjacent to z′ and z′′, making ||z′, B||, ||z′′, B|| ≥ 3b − 1. This is more than a′ = 2, so each of them has a

non-petite neighbor in B; thus d(z′), d(z′′) ≤ 2b+ 2. It follows that b ≤ 3.

Suppose first that b = 3. Then d(z′) = d(z′′) = ||z′, B|| = ||z′′, B|| = 2b + 2 = 8. It follows that z has a

neighbor in {x′, x′′}, and the second neighbor of {x′, x′′} in A is in V −. Since all vertices of X are movable,

we may assume that zx′ ∈ E(G) and x′′v ∈ E(G), where v ∈ V −. If x is movable to Z, then instead of

moving x there, we move x′ to V −. Then Z has no neighbors in X−x′, a contradiction to Lemma 4.11.1 for

the new coloring. Otherwise, x is adjacent to z and by the case, is movable to V −. Then move x′′ to Z and

z′ to V −. In the new coloring, X − x′′ has no neighbors in V − + z′, again a contradiction to Lemma 4.11.1.

Thus b = 2.

Then each of z′, z′′ has at most one neighbor in A. Moreover, if say z′ has a neighbor in A, then

d(z′) ≥ 5 + 1 > k = 5, and so this neighbor is not in {x′, x′′}. So we may assume x′z ∈ E(G). Since z is

unmovable and in the coloring f ′ defined above both size 3 classes have had neighbors in {x′, x′′}, we may

assume x′′v ∈ E(G). Since d(w) ≤ 5 for every w ∈ B, each such w has exactly one neighbor in V − and exactly

two neighbors in X. So ||x,B|| = 4 and there is y0 ∈ B−B′ not adjacent to x. So if xz /∈ E(G), then we color

B− y0 with two colors and add the class {y0, x, z}. In the subgraph G′ of G induced by {x′, x′′, z′, z′′, v, v′},

x′ is isolated, x′′, z′, z′′ have degrees at most 1 and v is not adjacent to v′. Each such 6-vertex forest is

equitably 2-colorable. Thus xz ∈ E(G). Since we already know 5 neighbors of x, it is not adjacent to

{z′, z′′}, because high vertices are not adjacent to each other. So if x′′ has a nonneighbor y0 ∈ B −B′, then

again can do the recoloring with the roles of x and x′′ switched. Therefore, N(x′′) = B − B′ + v. Since
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v is adjacent to the high vertex x′′, there is a nonneighbor y0 of v in B − B′ and, as above, we can color

B − y0 with two colors, add the class {z, v, y0} and color G[X ∪ Z − z + v′] with two colors. So vz ∈ E(G).

We now know 5 neighbors of z and x′ is high. Then v′z /∈ E(G). Again if there is a nonneighbor y0 of v′

in B − B′, then we color B − y0 with two colors and add the classes {z, v′, y0}, {x, x′, v} and {x′′, z′, z′′}.

So N(v′) ⊇ B − B′. Then v′ has no neighbors in A. Also, since each y ∈ B has only one neighbor in V −,

(B −B′)∩N(v) = ∅. Since N(x′)∪N(x′′) ⊃ B, there is y0 ∈ N(x′′)−N(x′) = (B −B′)−N(x′). We color

B − y0 with two colors, and add classes {y0, x′, v}, Z, and X − x′ + v′.

CASE 2: B′ = ∅ and some y0 ∈ B has a solo neighbor z ∈ Z. Since B′ = ∅, N(z) ∩ B = {y0}. Thus

N(z′) ∩ B = N(z′′) ∩ B = B − z. Since z′ and z′′ have non-petite neighbors in B, d(z′) ≤ 2b + 2 and

d(z′′) ≤ 2b+ 2. It follows that b = 2 and z′ and z′′ have no neighbors in A. So, as in Case 1, the set {x′, x′′}

has neighbors in both, Z and V −. Since each of x′ and x′′ is movable, we may assume x′z, x′′v ∈ E(G). If

xz /∈ E(G), then choose a nonneighbor y of x in B − y0, color B − y with 2 colors and add color classes

{x, z, y}, X − x+ v′ and Z − z + v. So xz ∈ E(G) and therefore x has no neighbors in V −. Then choose a

nonneighbor y′ of x′′ in B − y0, color B − y′ with 2 colors and add color classes {x′′, z, y′}, X − x′′ + v′ and

Z − z + v.

CASE 3: B′ = ∅ and no vertex in B has any solo neighbor in A′. Then by the degree restrictions, each

y ∈ B has a solo neighbor in V −. Thus if each of v and v′ has at most |B|−2 neighbors in B = {y1, . . . , y3b+1},

then we can choose y1, y2 not adjacent to v, and y3, y4 not adjacent to v and form an equitable coloring of G as

follows: keep all color classes in A′ and add classes {v, y1, y2}, {v′, y3, y4}, {y5, y6, y7}, . . . , {y3b−1, y3b, y3b+1}.

So we may assume that |B ∩ N(v′)| ≥ 3b. Since B has at least two non-petite vertices, d(v′) ≤ 2b + 2. It

follows that b = 2 and there is y0 ∈ B such that N(v′) = B − y0. Since {x′x′′} has a neighbor in Z, we

may assume that x′ has a neighbor in Z. Then x′ has no neighbor in V − and at most 5 neighbors in B.

In particular, there is y ∈ B − y0 not adjacent to x′. Then we color B − y with two colors and add classes

{y, v, x′}, Z, and X − x′ + v′.

Lemma 4.11.3. a ≥ 3.

Proof: Suppose A = {X,V −}, V − = {v, v′} and X = {x, x′, x′′}. By Lemma 4.11.1, we may assume

that xv ∈ E(G). Since each vertex in X having a neighbor in V − is unmovable, ||{x′, x′′}, V −|| = 0. If

also xv′ ∈ E(G), then moving x′ to V − we obtain an optimal coloring in which the class V − + x′ has two

unmovable vertices, a contradiction. So, the only edge in G[A] is xv. By symmetry, we may assume d(x) ≤ k.

If a vertex y ∈ B has a nonneighbor w ∈ {x, v} and a nonneighbor w′ ∈ A− {x, v}, then we color G[B − y]

equitably with b colors and add classes {y, w,w′} and A−w−w′, a contradiction. Thus B = Y1 ∪ Y2 where

Y1 = B ∩N(x) ∩N(v) and Y2 = B ∩N(x′) ∩N(x′′) ∩N(v′). Since x is low, |Y1| ≤ k − 1 = b + 1. If there
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is y ∈ Y1 ∩ Y2 then d(y) ≥ 5 and |Y2| ≥ |B| − |Y1| + 1 ≥ 2b + 1. So d(y) + d(x′) ≥ 5 + 2b + 1 = 2k + 2, a

contradiction. Thus |Y2| = 3b+ 1− |Y1.

CASE 1: |Y1| ≤ b− 1. Then |Y2| ≥ 2b+ 2. Since |Y2| ≤ d(v′) ≤ (2k + 1)− 3 = 2b+ 2, we conclude that

|Y2| = 2b+ 2 and N(w) = Y2 for each w ∈ {x′, x′′, v′} and N(y) = {x′, x′′, v′} for each y ∈ Y2. Then we color

G as follows: one class is {x′, x′′, v′} and every other class consists of one vertex in B − Y2 + x+ v and two

vertices in Y2.

CASE 2: |Y1| = b. Then |Y2| = 2b+ 1. If G[Y1 + x+ v] is complete, then G is as the theorem claims. So

suppose there are nonadjacent y, y′ ∈ Y1. Since they cannot be both solo neighbors of x and we can permute

v′ with x′ or x′′, some of y, y′ has at least two neighbors in {x′, x′′, v′}. Then for such vertex , say y, and

any its neighbor w ∈ {x′, x′′, v′} we have d(y) + d(w) ≥ 4 + (|Y2|+ 1) = 2k + 2, a contradiction.

CASE 3: |Y1| = b + 1. Then |Y2| = 2b + 1. Since G[B] is b-colorable, there are nonadjacent y, y′ ∈ Y1.

As in Case 2, we may assume that y is adjacent to x′ and x′′. Since Y1 and Y2 are disjoint, yv′ /∈ E(G).

If y′v′ /∈ E(G) then after swapping v′ with x′, y′ will be a solo neighbor of x and y a 1/2-neighbor not

adjacent to y′, a contradiction to Lemma 13 of the main text. Thus y′v′ ∈ E(G). Since b + 1 ≥ 3, there is

y′′ ∈ Y1−y−y′. Since d(y) ≤ 2k+ 1−d(x′) ≤ 2k+ 1−2b−1 = 4, yy′ /∈ E(G) and N(x′) = N(x′′) = Y2 +y.

So y′′ is a solo neighbor of x and, as above, y′′v′ ∈ E(G). Also by Lemma 4.4.7, y′y′′ ∈ E(G) and so

d(y′′) + d(v′) ≥ 4 + |Y2|+ 2 = 2k + 2, a contradiction.

Lemma 4.11.4. If b ≥ a′ = a− 1, then for each unmovable x ∈ X ∈ A′,

b1(x) + b2(x) ≥ b− 1.

Proof: Let x be unmovable in X = {x, x′, x′′} ∈ A′. Since x′ and x′′ have no solo neighbors, each

y ∈ B0(x) ∪ B3(x) is adjacent to x′ and x′′. If b1(x) + b2(x) ≤ b − 2, then b0(x) + b3(x) ≥ 2b + 3. Then

by Lemma 4.6.2, there is y′ ∈ (B0(x) ∪ B3(x)) ∩H ′(B). So d(y′) + d(x′) ≥ (2a − 1) + (2b + 3) = 2k + 2, a

contradiction.

Lemma 4.11.5. If b ≥ a′ = a−1, then no unmovable vertex in A′ is adjacent to all 3 vertices in some color

class in A′.

Proof: Suppose X = {x, x′, x′′} ∈ A′, x is unmovable and N(x) ⊃ Z = {z, z′, z′′} ∈ A′ with unmovable

z.

CASE 1: z is not solo. Then ||B,Z|| ≥ 2|B| and ||z′, B||, ||z′′, B|| ≤ 2b+ 1. So, d(z) ≥ (a− 1) + 2b and

by Lemma 4.11.4, d(x) ≥ (a + 1) + b − 1 = k. Thus 2k + 1 ≥ d(x) + d(z) ≥ k + a − 1 + 2b = 2k + b − 1.

It follows that b = 2, a = 3, k = 5, d(z) = (a − 1 + 2b) = 6, d(x) = 5 and b1(x) + b2(x) = b − 1 = 1. Let

B1(x) ∪B2(x) = {y0}. Let B′ = B − y0. If y0 ∈ B2(x), then each y ∈ B′ is adjacent to x′ and x′′, and also
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y0 is adjacent to one of them. Thus in this case ||x′, B||+ ||x′′, B|| ≥ 6b+ 1 = 13, and some of x′ and x′′ has

at least 7 neighbors in B, a contradiction to Lemma 4.6.3. Therefore, y0 ∈ B1(x). Then again each y ∈ B′

is adjacent to x′ and x′′. Thus each y ∈ B′ has two neighbors in X − x, at least two neighbors in Z, and at

least one neighbor in V −. Since d(y) ≤ 2k + 1− d(x′) ≤ 5, we conclude that d(y) = 5 for every y ∈ B′, and

N(x′) = N(x′′) = B′. In particular, b3(x) = 0 and B is independent. Let v be the vertex in V − adjacent to

z. Then v has at most 5 neighbors in B, since otherwise d(v) ≥ 7. Let y1, y2 be two nonneighbors of v in B

and y3, y4 be two other nonneighbors of x in B (recall that ||x,B|| = 1). The classes of our coloring will be

{y1, y2, v}, {y3, y4, x}, Y − y1 − y2 − y3 − y4, Z, and X − x+ v′.

CASE 2: z is solo and b1(z) + b2(z) ≤ b. Since each y ∈ B0(z) ∪ B3(z) is adjacent to z′ and z′′, by

Lemma 4.6.3(b), b0(z) + b3(z) ≤ 2b + 1. So b1(z) + b2(z) = b and N(z′) = N(z′′) = B0(z) ∪ B3(z) + x.

In particular, B2(z) = ∅ and |B1(z)| = b. Since x is adjacent to vertex z′ of degree 2b + 2, ||x,B|| ≤

(2k + 1)− (2b+ 2)− ||x,A|| ≤ a− 2. So by Lemma 4.11.4, a = b+ 1, b1(x) + b2(x) = b− 1, ||x,A|| = a+ 1

and b3(x) = 0. In particular, x has exactly one neighbor in each class of A − X − Z. Since each of the

2b + 2 vertices in B0(x) is adjacent to x′ and x′′, by Lemma 4.6.3, N(x′) = N(x′′) = B0(x). In particular,

b2(x) = 0. Let y1 ∈ B1(z) − B1(x). Then y1 has two neighbors of degree 2b + 2 in X. Hence, on the one

hand, d(y1) ≤ 2a− 1 = k and on the other hand,

d(y1) ≥ ||y1, B||+ ||y1, A|| ≥ (b− 1) + (a+ 1) = k.

So, d(y1) = k, thus y1 has exactly one neighbor in each class of A−X and no neighbors in B −B1(z). If x

and y1 have a common nonneighbor w in A−X, then we color w, y1 and x with the same color, color B− y1

with b colors, move x′ to the class of w and x′′ to V −. So this is not the case. But by the above, each class

in A −X − Z has at most one neighbor of x and at most one neighbor of y′. It follows that a = 3, b = 2,

and we may assume that vx, v′y1 ∈ E(G). Let y0 be the only neighbor of x in B. If v′ has a nonneighbor

y ∈ B − y0, then as above, we color v′, y0 and x with the same color, color B − y0 with 2 colors, keep Z

and merge X − x with V − − v′. We conclude that N(v′) ⊃ B − y0. Since v′ is adjacent to y1 of degree 5,

N(v′) = B − y0. Every y ∈ B −B1(z)− y0 is adjacent to two vertices in X (of degree 6), two vertices in Z

and to v′. So each such y has no neighbors in B + v. Since for each y1 ∈ B1(z)− y0, the only neighbor of y1

in B is the other vertex in B1(z), G[B] has only one edge, namely, between the two vertices in B1(z). So,

we color y1, x and a vertex y′ ∈ B − B1(z) − y0 with one color, v and two vertices in B − B1(z) − y0 − y′

with the second color, the remaining 3 vertices in B with the third color, keep Z and use X − x+ v′.
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CASE 3: z is solo and b1(z) + b2(z) ≥ b+ 1. Let y0 be a solo neighbor of z. By Lemmas 4.4.7 and 2.2.22,

2k + 1 ≥ d(y) + d(z) ≥ (a+ b1(z) + b2(z)− 1) + (a− 1 + b1(z) + b2(z)) = 2k + 2(b1(z) + b2(z)− (1 + b)).

So b1(z) + b2(z) = b + 1, all neighbors of y0 in B are in B1(z) ∪ B2(z) and ||y0, A|| = a. The last equality

means that every neighbor of y0 in A is its solo neighbor and is unmovable. In particular, x is a solo neighbor

of y0 and B1(x) ⊇ B1(z).

Since G[B] is b-colorable, B1(z)∪B2(z) contains two nonadjacent vertices, say y1 and y2. Since they are

not adjacent, they both are in B2(z), and each of them has a neighbor in Z − z. Apart from this, z′ and

z′′ are both adjacent to every vertex in B′ = B0(z) ∪B3(z). So ||z′, B|| ≥ 2b+ 1 and ||z′′, B|| ≥ 2b+ 1. By

Lemma 4.6.3(b), this yields ||z′, B|| = ||z′′, B|| = 2b + 1 and d(z′) = d(z′′) = 2b + 2. If there would be a

third vertex y3 in B2(z), then the degree of either z′ or z′′ would exceed 2b+ 2. Thus B2(z) = {y1, y2} and

G[B1(z) ∪B2(z)] = Kb+1 − y1y2. In particular, |B1(z)| = b− 1.

As in Case 2, since x is adjacent to z′ of degree 2b+ 2, we get ||x,B|| ≤ a− 2 and thus by Lemma 4.11.4,

a = b+ 1, b1(x) + b2(x) = b− 1, ||x,A|| = a+ 1 and b3(x) = 0. In particular, x has exactly one neighbor in

each class of A−X−Z. Since each of the 2b+ 2 vertices in B0(x) is adjacent to x′ and x′′, by Lemma 4.6.3,

N(x′) = N(x′′) = B0(x). In particular, b2(x) = 0. So B1(x) = B1(z) and y1x, y2x /∈ E(G). It follows that

||y1, X|| = 2 and

d(y1) = ||y1, B||+ ||y1, Z ∪X||+ ||y1, A− Z −X|| ≥ (b− 1) + 4 + (a− 2) = k + 1,

a contradiction to the fact that y1 is adjacent to x′ of degree at least 2b+ 2.

4.12 Super-optimal colorings

A vertex x ∈ A is free if it has no neighbors in A.

An optimal coloring f is super-optimal if

(C5) it has the most free vertices in V − among all optimal colorings, and

(C6) modulo (C5), as many as possible color classes of f contain free vertices.

Lemma 4.12.1. Let f be a super-optimal coloring and b ≥ a′ = a− 1. If X = {x, x′, x′′} ∈ A′ has two free

vertices, x′ and x′′, then

(a) every class in A has a free vertex, and

(b) all unmovable vertices in A are adjacent to each other.
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Proof: Let X = {x, x′, x′′} ∈ A′ have free vertices x′ and x′′. Then x is unmovable. If V − has no free

vertices, then we move x′ to V −. By Lemma 4.11.5, every color class in A′ − X has a vertex movable to

X − x′. This would contradict the super-optimality of f . Similarly, if some Z = {z, z′, z′′} ∈ A′ −X has no

free vertices, then we choose any nonneighbor z ∈ Z of x (which again exists by Lemma 4.11.5) and switch

it with x′. By (C6), the new coloring will contradict the super-optimality of f . This proves (a).

Since x is the only non-free vertex in its class, it is adjacent to each unmovable vertex in A. The

same holds for the unmovable vertex, say v, in V −. By (a), if x is high, then we can switch it with v

and have a super-optimal coloring in which x is low. Suppose there are Z = {z, z′, z′′} ∈ A′ − X and

W = {w,w′, w′′} ∈ A′−X −Z with unmovable z and w such that zw /∈ E(G). By (a), we may assume that

z′′ and w′′ are free. Then, since z and w are unmovable, zw′, z′w ∈ E(G). If w is the only neighbor of z′ in

A, then switching z′ with x′ creates an optimal coloring with no unmovable vertices in W (which contradicts

Lemma 4.11.2). So ||z′, A|| ≥ 2. Similarly, ||w′, A|| ≥ 2. Since (d(w) + d(z′)) + (d(w′) + d(z)) ≤ 2(2k + 1),

by the symmetry between W and Z, we may assume that d(w) + d(w′) ≤ 2k+ 1, and if equality holds, then

d(w) ≤ k. So

||{w,w′}, B|| ≤ 2k + 1− ||{w,w′}, A|| ≤ 2k + 1− (a− 1)− 2 = 2b+ a.

If W has no solo neighbors, then ||w′′, B|| ≥ 2|B| − 2b− a = 2 + 4b− a ≥ 3b+ 1 ≥ 2b+ 3, a contradiction.

Suppose now that y is a solo neighbor of w in B. Let U a class in A to which we can move z′. Since

z′w ∈ E(G), U 6= W . We color B − y with b colors, move y to W , w to Z, z′ to U , and if U 6= V −, then

move a witness from U to V −.

Lemma 4.12.2. Let f be a super-optimal coloring and b ≥ a′ = a− 1. Each X = {x, x′, x′′} ∈ A′ contains

at most one free vertex.

Proof: Let X = {x, x′, x′′} ∈ A′ have free vertices x′ and x′′. Then x is unmovable. By Lemma 4.12.1,

we may assume that V − contains a free vertex v′ and unmovable v adjacent to x. If x is high, then we switch

x with v and further assume x is low. Let Y = N(x)∩B and Y ′ = B − Y . Since Y ′ ⊆ N(x′), |Y ′| ≤ 2b+ 2.

So, since x is low, b− 1 ≤ |Y | ≤ b+ 1.

Since swapping two free vertices does not break super-optimality. So, if some y ∈ Y ′ is not adjacent

to some free w, then swapping w with x′ creates a super-optimal coloring in which y has the movable solo

neighbor x′′ in X − x′ + w, a contradiction. And every vertex in B adjacent to a movable vertex in some

W ∈ A′ has another neighbor in this class. Thus

each y ∈ Y ′ is adjacent to each free w ∈ A and to at least two vertices in each W ∈ A′. (4.31)
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Let F be the set of free vertices in A. By Lemma 4.12.1, |F | ≥ a+ 1.

CASE 1: |Y | = b − 1. Then N(x′) = N(x′′) = Y ′. By this and (4.31), all vertices of Y ′ are isolated

in G[B] and are adjacent in V − only to the vertex v′. Let Y ′ = {y′1, . . . , y′2b+2}. Create a coloring of G as

follows: (i) color B − {y′1, y′2, y′3, y′4} with b − 1 colors putting into each class one vertex from Y and two

vertices from Y ′ −{y′1, y′2, y′3, y′4}, (ii) add classes {y′1, y′2, v} and {x, y′3, y′4}, (iii) move v′ to X − x, (iv) keep

the classes in A−X − V − as they are.

CASE 2: |Y | = b. By (4.31), for each y′ ∈ Y ′, d(y′) ≥ 2a− 1.

CASE 2.1: For each y′ ∈ Y ′, d(y′) = 2a − 1. Then again by (4.31), each y′ ∈ Y ′ has exactly two

neighbors in each class of A′ and is adjacent to v′. In particular, y′ is isolated in G[B] and v has no

neighbors in Y ′. If some y1, y2 ∈ Y are not adjacent, then we create a coloring of G as follows: (i) color

B − {y′1, y′2, y′3, y′4, y′5, y1, y2} with b − 2 colors putting into each class one vertex from Y − y1 − y2 and two

vertices from Y ′ − {y′1, y′2, y′3, y′4, y′5}, (ii) add classes {y′1, y′2, v}, {x, y′3, y′4}, and {y1, y2, y′5}, (iii) move v′ to

X − x, (iv) keep the classes in A−X − V − as they are.

So we may assume G[Y ] = Kb. Suppose now that some y ∈ Y is not adjacent to some unmovable z ∈ A

and to a free w ∈ A. Then we can switch w with a free z′ in the class Z of z, and the remaining movable

vertex z′′ ∈ Z − z− z′ will be the solo neighbor of y in Z − z′+w, a contradiction. Thus either y is adjacent

to all unmovable vertices in A or to all vertices in F . In the latter case, since |F | ≥ a+ 1 and xy ∈ E(G),

2k + 1 ≥ d(y) + d(x′) ≥ (||y, Y ||+ ||y, F ||+ 1) + (2b+ 2) ≥ (b− 1) + (a+ 2) + (2b+ 2) ≥ 2k + 2.

So, denoting by U the set of unmovable vertices, G[Y ∪ U ] = Kk.

If for each y′ ∈ Y ′, N(y′) = A − U , then G contains disjoint Kk (induced by U) and K2b+1,2a−1 (with

partite sets Y ′ and A− U), a contradiction. So there is y′1 ∈ Y ′ and a class Z = {z, z′, z′′} with unmovable

z such that N(y′1) ∩ Z = {z, z′}. Then by (4.31), z′ is free and z′′ is not free. If there is y1 ∈ Y with

z′′y1 /∈ E(G), then we color G as follows: (i) color B−{y′1, y′2, y′3, y1} with b−1 colors putting into each class

one vertex from Y − y1 and two vertices from Y ′ − {y′1, y′2, y′3}, (ii) add classes {y′1, y1, z′′} and {x, y′2, y′3},

(iii) move x′ to Z − z′′ and x′′ to V −, (iv) keep the classes in A−X − V − − Z as they are.

So z′′ is adjacent to all of Y . If z′′x /∈ E(G) then we color B−y′1 with b colors, add color class {y′1, z′′, x},

move x′ to Z−z′′ and x′′ to V − and keep the remaining classes as they are. Similarly, if z′′v /∈ E(G) then we

color B− y′1 with b colors, add color class {y′1, z′′, v}, move v′ to Z − z′′ and keep the remaining classes in A

as they are. Thus N(z′′) ⊇ Y +x+v, and hence ||z′′, Y ′|| ≤ 2b+ 2− b−2 = b. Also d(y) = k for each y ∈ Y ,

and hence d(z) ≤ k+1. So ||z, Y ′|| ≤ k+1−||z, U ∪Y || = 2. Since |Y ′| = 2b+1 > b+2 ≥ ||z′′, Y ′||+ ||z, Y ′||,

there is y′2 not adjacent to both, z and z′′. Then we color B − y′2 with b colors, add color class {y′2, z′′, z},
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move z′ to V − and keep the remaining classes in A as they are.

CASE 2.2: There is y′ ∈ Y ′ with d(y′) ≥ 2a. Then by (4.31),

each free vertex w has degree at most 2b+ 1 and N(w) = Y ′. (4.32)

In particular, every vertex in Y is a solo neighbor of x and thus G[Y ] = Kb. If some y ∈ Y is not adjacent

to some unmovable z ∈ Z ∈ A′, then ||y, Z|| = 2 and y is adjacent to a free vertex in Z, a contradiction.

Similarly, the only possible neighbor of y in V − is the unmovable v. Thus G[Y ∪ U ] = Kk. If G − Y − U

contains a K2b+1,2a−1, then we are done. So there is y′1 ∈ Y ′ and a class Z = {z, z′, z′′} with unmovable z

such that z′′y′1 /∈ E(G). Then by (4.31), N(y′1) ∩ Z = {z, z′}, z′ is free and z′′ is not free. If z′′x /∈ E(G)

then we color B− y′1 with b colors, add color class {y′1, z′′, x}, move x′ to Z − z′′ and x′′ to V − and keep the

remaining classes as they are. So z′′x ∈ E(G). Similarly, if v is a common nonneighbor of z′′ and y′1, then

we color B − y′1 with b colors, add color class {y′1, z′′, v}, move v′ to Z − z′′ and keep the remaining classes

in A as they are. If there is a common nonneighbor y ∈ Y of y′1 and z′′, then, by (4.32), y is a solo neighbor

of z not adjacent to the 1/2-neighbor y′1 of z, a contradiction. Thus Y + v + x ⊂ N(z′′) ∪N(y′) and y′1 has

2a− 1 neighbors outside of Y + v + x. So

||z′′, Y ′|| ≤ 2k + 1− d(y′)− ||z′′, A ∪ Y || ≤ 2k + 1− (2a− 1)− (b+ 2) = b.

Since Y ⊂ N(z′′) ∪ N(y′), d(y1) ≥ k for each y1 ∈ Y . So as in Case 2.1, d(z) ≤ k + 1 and ||z, Y ′|| ≤

k + 1 − ||z, U ∪ Y || = 2. Then there is a common nonneighbor y′2 ∈ Y ′ of z and z′′. Then we color B − y′2

with b colors, add color class {y′2, z′′, z}, move z′ to V − and keep the remaining classes in A as they are.

CASE 3: |Y | = b+ 1. By (4.31), each free vertex w has 2b neighbors in Y ′ and so at most two neighbors

in Y . Since |F | ≥ 4 and |Y | ≥ 3, we can choose x′, x′′ ∈ F so that Y 6⊂ N(x′) ∪ N(x′′). Then Y contains

a solo neighbor y1 of x. Since x is low, ||x,A|| = a − 1 and thus N(x) ∩ A = U − x. If a movable

z′′ ∈ Z = {z, z′, z′′} ∈ A′ with unmovable z is not adjacent to some y′1 ∈ Y ′, then we color B − y′1 with b

colors, add color class {y′1, z′′, x}, move x′ to Z − z′′ and x′′ to V − and keep the remaining classes as they

are. So

each y′ ∈ Y ′ is adjacent to each w ∈ A− U . (4.33)

CASE 3.1: There is y2 ∈ Y adjacent to all free vertices. Then it has at least two neighbors in each class

of A′ and 3 neighbors in X (in particular, y2 6= y1). So for each w ∈ F , d(w)+d(y2) ≥ (2b+1)+2a = 2k+1.

It follows that N(w) = Y ′+ y2 and y2 is isolated in G[B]. Then all vertices in Y − y2 are solo neighbors of x

and G[Y − y2] = Kb. As in Case 2.2, if some y ∈ Y − y2 is not adjacent to some unmovable z ∈ Z ∈ A′, then
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||y, Z|| = 2 and y is adjacent to a free vertex in Z, a contradiction. Similarly, the only possible neighbor of

y in V − is the unmovable v. Thus G[Y ∪ U − y2] = Kk. Now we practically repeat part of the argument

of Case 2.2: in order not to have disjoint Kk and K2b+1,2a−1, there should be y′1 ∈ Y ′ + y2 and a class

Z = {z, z′, z′′} with unmovable z such that z′′y′1 /∈ E(G). Then by (4.31), N(y′1) ∩ Z = {z, z′}, z′ is free

and z′′ is not free. Since z′′x /∈ E(G), we color B − y′1 with b colors, add color class {y′1, z′′, x}, move x′ to

Z − z′′ and x′′ to V − and keep the remaining classes as they are.

CASE 3.2: No y ∈ Y is adjacent to all free vertices and there are y2 ∈ Y and u ∈ U with y2u /∈ E(G). By

the case, there is a free w not adjacent to y2. Then we color B − y2 with b colors, add color class {y2, u, w},

move x to the class of u (since x is adjacent only to U), move x′ to the class of w and x′′ to V − and keep

the remaining classes as they are.

CASE 3.3: No y ∈ Y is adjacent to all free vertices and for every y ∈ Y and every u ∈ U , yu ∈ E(G).

Since G[B] is b-colorable, there are y2, y3 ∈ Y with y2y3 /∈ E(G). Then by Lemmas 4.4.7 and 2.2.22,

||y2, X||+ ||y3, X|| ≥ 4. We claim that

one can choose y2 and y3 above distinct from y1 (possibly shuffling free vertices). (4.34)

Indeed, if (4.34) fails and y3 = y1, then ||y2, X|| = 3, y2 is adjacent to each y ∈ Y − y1 − y2 and each such y

has a neighbor in X−x. Therefore, b ≤ 3 and max{d(x′), d(x′′)} = 2b+2. Thus d(y2)+max{d(x′), d(x′′)} ≥

(a+ 2 + b− 1) + (2b+ 2) = k + 2b+ 3 ≥ 2k + 2, a contradiction. This proves (4.34).

By (4.34), ||y2, X + y1|| + ||y3, X + y1|| ≥ 5. Also ||y2, Z|| + ||y3, Z|| ≥ 4 for every Z ∈ A′. So ||y2, A +

y1||+ ||y3, A+y1|| ≥ 4a−1. Assuming ||y2, A+y1|| ≥ ||y3, A+y1||, we have ||y2, A+y1|| ≥ 2a. In particular,

y2 is adjacent to some w ∈ A− U . By (4.33), ||w,B|| ≥ |Y ′|+ 1 = 2b+ 1. Hence

2k + 1 ≥ d(y2) + d(w) ≥ ||y2, A+ y1||+ ||w,B|| ≥ 2a+ 2b+ 1,

which yields d(y2) = 2a, N(y2) ⊂ A+ y1, d(w) = 2b+ 1 and N(w) = Y ′ + y2. In particular, w is free and y

is adjacent only to free vertices in A− U . So, at least two free vertices are adjacent to y2. Switching them

with x′ and x′′ if needed, we may assume that X ⊂ N(y2) and all vertices in Y − y2 are solo neighbors of x.

Then G[Y − y2] = Kb and each vertex in Y − y2 is low.

Since d(y2) = 2a and U ⊂ N(y2), there are at least a− 1 nonneighbors of y2 in A− U , and by the case

some free w is among them. If A−U contains a not free z′′ ∈ Z = {z, z′, z′′} ∈ A′ with unmovable z, then z′

is free and switching z′ with w we obtain a super-optimal coloring in which y2 is a solo neighbor of z. Since

y3 is low and has k − 1 neighbors in Y ∪ U , it has at most one neighbor in {z, w, z′′}, a contradiction to
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either Lemma 4.4.7 or Lemma 2.2.22. Otherwise, all vertices in A− U are free, and we can rearrange them

so that some Z = {z, z′, z′′} ∈ A′ has a solo neighbor of y2, again a contradiction with y2y3 /∈ E(G).

Corollary 4.12.3. Let f be a super-optimal coloring, b ≥ a′ = a − 1 and F be a star. For each X =

{x, x′, x′′} ∈ A′ with unmovable x, b1(x) + b2(x) ≥ b.

Proof: Suppose there is X = {x, x′, x′′} ∈ A′ with unmovable x and b1(x) + b2(x) ≤ b − 1. Then

b0(x)+b3(x) ≥ 2b+2 and each of x′ and x′′ is adjacent to every vertex in B0(x)∪B3(x). So by Lemma 4.6.3(b),

x′ and x′′ are free, contradicting Lemma 4.12.2.

Corollary 4.12.4. Let f be a super-optimal coloring, b ≥ a′ = a − 1 and F be a star. Then each petite

y ∈ B cannot have at least two neighbors in any X ∈ A′.

Proof: Suppose y0 ∈ B is petite and there is X = {x, x′, x′′} ∈ A′ with unmovable x such that

||y0, X|| ≥ 2. Then also there is Z = {z, z′, z′′} ∈ A′ with unmovable z such that z is the solo neighbor of

y0 in Z. Let Y = B1(z) ∪ B2(z) and Y ′ = B − Y . By Lemmas 4.4.7 and 2.2.22, ||y0, B|| ≥ |Y | − 1. By

Corollary 4.12.3, |Y | ≥ b. So, since ||y0, A|| ≥ a + 1 (because of X), d(y0) ≥ b − 1 + a + 1 ≥ 2a − 1. Then

by the definition of petite vertices, d(y0) = 2a− 1 and y0 has either 3 neighbors in some class of A′ or two

neighbors in V −. In both cases, ||y0, A|| ≥ a+ 2 and so d(y0) ≥ b− 1 + a+ 2 ≥ 2a, a contradiction.

Lemma 4.12.5. Let f be a super-optimal coloring, b ≥ a′ = a − 1 and F be a star. For each X =

{x, x′, x′′} ∈ A′ with unmovable x, ||x′, B|| ≥ 2b+ 1.

Proof: Suppose X = {x, x′, x′′} ∈ A′ with unmovable x and ||x′, B|| ≤ 2b. Let Y = B1(x) ∪ B2(x) and

Y ′ = B − Y . Since each of x′ and x′′ is adjacent to every vertex in B0(x) ∪B3(x), |Y | ≥ b+ 1.

CASE 1: There is y1 ∈ B1(x). Then y1 is low and is adjacent to all vertices in Y − y1. Thus |Y | = b+ 1.

Let y2, y3 be nonadjacent vertices in Y . By Lemmas 4.4.7 and 2.2.22, y2 and y3 are 1/2-neighbors of x. Since

all 2b neighbors of x′ in B are in Y ′, y2x′′, y3x′′ ∈ E(G). In particular, d(x′′) ≥ 2b + 2. Then we know all

neighbors in B of x′ and x′′, so all vertices in Y −y2−y3 are solo neighbors of x, and G[Y −y2−y3] = Kb−1.

Also each of y2 and y3 is adjacent to all vertices in Y − y2 − y3. Since for y ∈ {y1, y2},

||y,A−X|| ≤ 2k + 1− d(x′′)− ||y,B|| − ||y,X|| ≤ 2k + 1− (2b+ 2)− (b− 1)− 2 = 2a− b− 2 ≤ a− 1,

all neighbors of y2 and y3 in A−X are solo, a contradiction to Lemma 4.4.7.

CASE 2: B1(x) = ∅. Then ||B,X|| ≥ 6b + 2, ||x′, B|| ≤ 2b and ||x′′, B|| ≤ 2b + 2. So ||x,B|| ≥ 2b and

d(x) ≥ 2b+ a− 1. Since x is adjacent to a non-petite vertex y ∈ B,

2b+ a− 1 ≤ d(x) ≤ 2k + 1− (2a− 1) = 2b+ 2.
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In order this to be possible, we need a = 3 and all the following equalities: ||B,X|| = 6b+ 2, ||x′, B|| = 2b,

||x′′, B|| = 2b+ 2, ||x,B|| = 2b, d(y) = 2a− 1, and d(x) = 2b+ a− 1. In particular, each y ∈ B has exactly

two neighbors in X and x′′ is free. Also if Z = {z, z′, z′′} ∈ A′ with unmovable z is the other class in A′, then

(since d(y) ≤ 2a−1 = 5 for each y ∈ B), no vertex in B has more than two neighbors in Z. Thus if some y ∈ B

is a solo neighbor of z, then y is adjacent to every vertex in B and d(y) ≥ 3b+a+1. On the other hand, since

y is adjacent to at least one of the vertices x and x′′ of degree 2b+2, d(y) ≤ 2k+1−2b−2 = 2a−1 < 3b+a+1,

a contradiction. Thus B is an independent set of vertices of degree 5 in G. Since each y ∈ B has exactly

two neighbors in X, |N(x)∩N(x′′)∩B| = |N(x′)∩N(x′′)∩B| = b+ 1. Let y1, y2 ∈ N(x)∩N(x′′)∩B and

y3, y4 ∈ N(x′) ∩N(x′′) ∩B. We color B − {y1, y2, y3, y4} with b− 1 colors and add color classes {x′, y1, y2},

{x, y3, y4}, Z, and V − + x′′.

Lemma 4.12.6. Let f be a super-optimal coloring, b ≥ a′ = a − 1 and F be a star. Then each X =

{x, x′, x′′} ∈ A′ with unmovable x contains a free vertex.

Proof: Suppose X = {x, x′, x′′} ∈ A′ with unmovable x, and each of x′ and x′′ has a neighbor in A. Let

Y = B1(x) ∪ B2(x) and Y ′ = B − Y . Since each of x′ and x′′ is adjacent to every vertex in B0(x) ∪ B3(x),

|Y | ≥ b.

CASE 1: B1(x) = ∅. (Repeats Case 2 in Lemma 4.12.5). Then ||B,X|| ≥ 6b + 2, ||x′, B|| ≤ 2b + 1 and

||x′′, B|| ≤ 2b+ 1. So ||x,B|| ≥ 2b and d(x) ≥ 2b+ a− 1. Since x is adjacent to a non-petite vertex y ∈ B,

2b+ a− 1 ≤ d(x) ≤ 2k + 1− (2a− 1) = 2b+ 2.

In order this to be possible, we need a = 3 and all the following equalities: ||B,X|| = 6b + 2, ||x′, B|| =

||x′′, B|| = 2b + 1, ||x,B|| = 2b, d(y) = 2a − 1, and d(x) = 2b + a − 1. In particular, each y ∈ B has

exactly two neighbors in X and ||x′, A|| = ||x′′, A|| = 1. Also if Z = {z, z′, z′′} ∈ A′ with unmovable z is

the other class in A′, then (since d(y) ≤ 2a − 1 = 5 for each y ∈ B), no vertex in B has more than two

neighbors in Z. Thus if some y ∈ B is a solo neighbor of z, then y is adjacent to every vertex in B and

d(y) ≥ 3b+a+1. On the other hand, since y is adjacent to at least one of the vertices x′ and x′′ of degree 2b+2,

d(y) ≤ 2k+1−2b−2 = 2a−1 < 3b+a+1, a contradiction. Thus B is an independent set of vertices of degree

5 in G. Since each y ∈ B has exactly two neighbors in X, |N(x)∩N(x′′)∩B| = |N(x′)∩N(x′′)∩B|−1 = b.

Let y1, y2 ∈ N(x)∩N(x′′)∩B and y3, y4 ∈ N(x′)∩N(x′′)∩B. We color B−{y1, y2, y3, y4} with b−1 colors

and add color classes {x′, y1, y2}, {x, y3, y4}, Z, and V − + x′′.

CASE 2: There is y1 ∈ B1(x) and |Y | ≥ b+ 1. (Repeats Case 1 in Lemma 4.12.5) Then y1 is low and is

adjacent to all vertices in Y −y1. Thus |Y | = b+1. Let y2, y3 be nonadjacent vertices in Y . By Lemmas 4.4.7
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and 2.2.22, y2 and y3 are 1/2-neighbors of x. Since each of x′ and x′′ has at most one neighbor in Y , we may

assume that y2x
′, y3x′′ ∈ E(G). Then we know all neighbors in B of x′ and x′′, so all vertices in Y − y2− y3

are solo neighbors of x, and G[Y − y2 − y3] = Kb−1. Also each of y2 and y3 is adjacent to all vertices in

Y −y2−y3. In particular, d(x′), d(x′′) ≥ 2b+2. Then we know all neighbors in B of x′ and x′′, so all vertices

in Y − y2 − y3 are solo neighbors of x, and G[Y − y2 − y3] = Kb−1. Also each of y2 and y3 is adjacent to all

b− 1 vertices in Y − y2 − y3. Since for y ∈ {y1, y2},

||y,A−X|| ≤ 2k + 1− (2b+ 2)− ||y,B ∪X|| ≤ 2k + 1− (2b+ 2)− (b− 1)− 2 = 2a− b− 2 ≤ a− 1,

all neighbors of y2 and y3 in A−X are solo, a contradiction to Lemma 4.4.7.

CASE 3: There is y1 ∈ B1(x) and |Y | = b. Since each of x′ and x′′ is adjacent to all vertices in Y ′,

all vertices in Y are solo neighbors of x. In particular, G[Y ] = Kb and all vertices in Y are low. Also

d(y′) ≤ 2a− 1 for each y′ ∈ Y ′.

CASE 3.1: b = 2. Let Z = {z, z′, z′′} be the other class in A′. Since by Lemma (4.12.5), each of

x′, x′′, z′, z′′ has at least 2b + 1 = 5 neighbors in B, the set P = {x′, x′′, z′, z′′} is independent. Also, edges

XV − and ZV − have witnesses, so we may assume

x′ and z′ are movable to V −. (4.35)

This means that x′z ∈ E(G). Since x′ is high, d(z) ≤ 5 and ||z,B|| ≤ d(z) − 2 ≤ 3. If some y′ ∈ Y ′ is

adjacent to x, then ||y′, X|| = 3 and ||y′, Z ∪ V −|| ≤ 5− 3 = 2. In this case y′ has a solo neighbor in Z, and

so zy′ ∈ E(G). Thus N(x) ∩ Y ′ ⊆ N(z) and |Y ′ − N(x) − N(z)| = |Y ′ − N(z)| ≥ 5 − 3 > 0. Therefore, if

xz /∈ E(G), then we can choose y′ ∈ Y ′ −N(x) −N(z), color B − y′ with 2 colors, add class {x, z, y′} and

color G[P ∪ V −] with 2 colors (we can do it by (4.35)). So let

xz ∈ E(G). (4.36)

Then ||z,A|| ≥ 3 and so ||z,B|| ≤ d(z)− 3 ≤ 2. Let Q = N(z) ∩ B and Q′ = B −Q. Since each of z′, z′′ is

adjacent to every vertex in Q′, and some of z′, z′′ also has a neighbor in A, |Q| ≥ 2. So N(z) ∩ B = Q and

|Q| = 2. Then each of the vertices in B − Y −Q = Y ′ ∩Q′ has at least 5 neighbors in A (at least two in X,

two in Z, one in V −), and since d(x′) ≥ 6,

each y′ ∈ Y ′1 ∩Q′ is isolated in B, ||y′, X|| = ||y′, Z|| = 2, and ||y′, V −|| = 1. (4.37)
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If Z had no solo neighbors, then ||B,Z−z|| ≥ 2|B|− |N(z)∩B| ≥ 14−2 = 12, and by (4.37), both z′ and z′′

are free, a contradiction. So B1(z) 6= ∅ and thus G[Q] = K2. Furthermore, each q ∈ Q− Y has at least two

neighbors in X, at least two neighbors in Z ∪ V − and one neighbor in Q. This means that q has no other

neighbors and is a solo neighbor of z. This and (4.37) also yield that B3(x) = ∅ and thus Y = N(x) ∩ B.

Thus if Y = {y1, y2} and Q = {q1, q2} (Y and Q may intersect and even coincide), then

the only edges in G[B] are y1y2 and q1q2 (possibly, q1q2 = y1y2). (4.38)

Since z is not adjacent to all vertices in X, we may assume that x′′v ∈ E(G). Then v is low and there is

y′ ∈ Y ′ with vy′ /∈ E(G). So if vx /∈ E(G), then we can color B − y′ with two colors and add classes Z,

{y′, x, v} and X − x + v′. Therefore, xv ∈ E(G) and so ||v, Y ′|| ≤ d(v) − 2 ≤ 3. So if vy1 /∈ E(G), then

by (4.38) there is y′′ ∈ Y ′ −N(v)−N(y1). In this case, let y0 be a vertex in Y ′ − y′′ of maximum degree in

G[B−y1−y′′] and y′0 be a non-neighbor of y0 in Y ′−y′′−y0. Then Y0 = B−{y1, y′′, y0, y′0} is independent,

and we can color G using color classes Y0, {x, y0, y′0}, {y′′, y1, v}, Z, and X − x+ v′. Thus by the symmetry

between y1 and y2, we have

N(v) ⊇ {x, x′′, y1, y2}. (4.39)

If Z contains no free vertices, then the above argument works with the roles of Z and X switched, and

similarly to (4.39), we have that for some w ∈ V −, N(w) ⊇ {z, z′′, q1, q2}. Since v is low and already has 4

neighbors, w = v′, and hence v′ is low. But d(v) + d(v′) ≥ |B|+ |{x, x′′, z, z′′}| = 11, a contradiction. Thus

we may assume that z′ is free.

If v′ also is free, then zv ∈ E(G) and we know all neighbors of v. So the only possible neighbor for z′′ is x

and we know all neighbors of x. By switching z′ with x′′ we obtain our case for Z−z′+x′′ in place of X and

conclude that Q = N(z)∩B = N(v)∩B = Y and that N(z′′)∩B = N(x′′)∩B = Q′. Since N(v)∩B = Y ,

N(v′) ⊇ Y ′. Since we can switch free vertices v′ and z′, N(z′) ⊇ Y ′. Thus G contains G[{Y +x+z+v}] = K5

and the complete bipartite graph with partite sets Y ′ and A− x− z − v, a contradiction.

Thus v′ is not free. If z′′ had no neighbors in V −, then we can move it there and obtain another

coloring with a free vertex z′ in the small class Z − z′′, a contradiction to the super-optimality of f . Thus

||{z, z′′}, V −|| ≥ 2 and d(v) +d(v′) ≥ |B|+ ||v,X||+ ||{z, z′′}, V −|| ≥ 11. Since d(v) ≤ 5, this gives d(v′) ≥ 6

and so v′z′′ /∈ E(G). It follows that vz′′ ∈ E(G) and we know all neighbors of v. Then N(v′) ⊇ Y ′ + z, and

v′y1 /∈ E(G). Then we color B− y1 with two colors and add classes {y1, x′′, v′}, Z− z′′+ v and X −x′′+ z′′.

This proves Case 3.1.
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CASE 3.2: b ≥ 3. We claim that

each y′ ∈ Y ′ has no solo neighbors in A′. (4.40)

Indeed, suppose y′1 ∈ Y ′ has solo neighbor z in Z = {z, z′, z′′} ∈ A′. Since b1(z) + b2(z) ≥ b, y′1 has b − 1

neighbors in B. Since G[B] does not contain Kb+1, there is y1 ∈ Y not adjacent to y′1. Similarly to Case 2,

||y2,W ||+ ||y3,W || ≥ 4 for every W ∈ A′. But the low vertex y1 has more than one neighbor in at most one

class (namely, Z), so d(y′1) ≥ b− 1 + 2a− 2. It follows that b− 1 + 2a− 2 ≤ 2a− 1, i.e., b ≤ 2, which is not

the case. This proves (4.40).

Thus each y′ ∈ Y ′ is isolated in B, has exactly one neighbor in V − and exactly two neighbors in each

Z ∈ A′. Now we can strengthen (4.40):

each y′ ∈ Y ′ is adjacent to all movable vertices in A′. (4.41)

Indeed, suppose y′1 ∈ Y ′ is not adjacent a movable vertex in Z = {z, z′, z′′} ∈ A′ with unmovable z. Since y′1

is isolated in B, z has no solo neighbors in B. By Case 1, Z has a free vertex, say z′′. By Lemma 4.12.2, then

z′ is not free and thus has at most 2b+ 1 neighbors in B. Thus ||z,B|| ≥ 6b+ 2− (2b+ 2)− (2b+ 1) = 2b− 1

and so d(z) ≥ (2b−1)+a−1 = k+ b−2 > k. If z′ has no neighbors in V −, then moving z′ to V − creates an

optimal coloring with a free vertex in the small class. So by the definition of super-optimal colorings, V − has

a free vertex, say v′. Then vz ∈ E(G) and so z is low. Thus switching z with v creates a new super-optimal

coloring but the vertices in B ∩ (N(z)−N(v)) are solo neighbors of movable vertices in Z − z + v. Thus z′

has a neighbor in V − and so no neighbors in X. Also high vertex z is not adjacent to high vertices x′ and

x′′. So the only edge in G[X ∪ Z] is xz. Switching x with z, we get Case 2 of our lemma, which is proved.

This proves (4.41).

This means that for each y′ ∈ Y ′, N(y′)− V − = A′ − U . Since each of w ∈ A′ − U has 2b+ 1 neighbors

in B, no two of them are adjacent to each other, i.e.

A′ − U is independent. (4.42)

So, if Z = {z, z′, z′′} ∈ A′ and W = {w,w′, w′′} ∈ A′ with unmovable z and w and wz /∈ E(G), then take

any y′ ∈ Y ′, color B − y′ with b colors, add class {y′, w, z}, move the witness of ZV − to V − and the last

vertex of Z to W − w and keep the remaining classes unchanged. If Z = {z, z′, z′′} ∈ A′ with unmovable z

and y ∈ Y are such that zy /∈ E(G), then yz′, yz′′ ∈ E(G) and thus z′ and z′′ are free, a contradiction to

107



Lemma 4.12.2. It follows that

G[Y ∪ U − V −] = Kk−1. (4.43)

Suppose N(v′) ⊇ Y ′. Then G[Y ′ ∪ (A′ − U) + v′] ⊇ K2b+1,2a−1. Also v′ is not adjacent to any vertex

in A′ − U . Since each y′ ∈ Y ′ is adjacent to only one vertex in V −, N(v) ∩ Y ′ = ∅. In order G not to

contain a disjoint union of a Kk and a K2b+1,2a−1, by (4.43), v is not adjacent either to some y ∈ Y or to

some unmovable z is a Z = {z, z′, z′′} ∈ A′. In the first case, choose any 3 vertices y′1, y
′
2, y
′
3 ∈ Y ′, we color

B − {y, y′1, y′2, y′3} with b − 1 colors, add classes {y, y′1, v} and {x, y′2, y′3}, move v′ into X − x and keep the

remaining classes in A′. In the second case, choose any vertex y′ ∈ Y ′, color B − y′ with b colors, add class

{y′, z, v}, move v′ into Z − z and keep the remaining classes in A′. So by the symmetry between v and v′

we may assume

there are y′1, y
′
2 ∈ Y ′ with y′1v, y

′
2v
′ /∈ E(G). (4.44)

Suppose now that there is y1 ∈ Y with y1v /∈ E(G). Since ||y′, B|| ≤ 2b+ 2 ≤ 3b− 1 (AGAIN use b ≥ 3),

B contains a nonneighbor y2 of y′ distinct from y′2. Then we color B − {y′1, y′2, y1, y2} with b− 1 colors, add

classes {y1, y′1, v} and {y2, y′2, v′}, and keep A′. Thus each of v, v′ is adjacent to each vertex in Y . So one

of them, say v′ has at least
⌈
|Y |+|B|

2

⌉
= 2b + 1 neighbors in B. Hence v′ has no neighbors in A′ − U . If

vz /∈ E(G) for some unmovable z ∈ Z ∈ A′, then we color B − y′1 with b colors, add class {y′1, z, v}, move v′

into Z − z and keep the remaining classes in A′. So N(v) ⊃ U . Moreover, if for some Z = {z, z′, z′′} ∈ A′,

the only edge in Z ∪ V − is zv, then we color B − y′2 with b colors, add class {y′2, z, v′}, move v into Z − z

and keep the remaining classes in A′. So, ||V −, Z|| ≥ 2 for each Z ∈ A′ and

d(v) + d(v′) ≥ 2(a− 1) + |Y |+ |B| = 2a+ 4b− 1 = 2k + 2b− 1 ≥ 2k + 3.

On the other hand each of v and v′ is adjacent to vertices in Y of degree k, and so d(v) + d(v′) ≤ 2(k + 1),

a contradiction.

4.13 Finishing the proof

Let f be a super-optimal coloring of G. By Lemmas 4.11.2, 4.12.2 and 4.12.6, every Z = {z, z′, z′′} ∈ A′

has one unmovable vertex z, one vertex z′ with exactly one neighbor in A and one free vertex z′′. We will

always use this notation below.

Lemma 4.13.1. Set V − contains a free vertex.

Proof: Suppose V − = {v, v′} and each of v and v′ has a neighbor in A. If for some Z = {z, z′, z′′} ∈ A′,
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z′ has no neighbors in V −, then moving z′ into V − creates (by Lemma 4.11.5) an optimal coloring with a

free vertex, a contradiction to super-optimality of f . Thus for every Z = {z, z′, z′′} ∈ A′, z′ has a neighbor

in V −. In particular,

no vertex in A′ − U has a neighbor in A′ and hence G[U − V −] = Ka−1. (4.45)

Let Z = {z, z′, z′′} ∈ A′. By Lemma 4.11.5, moving z′′ into V − creates another super-optimal coloring f ′.

Then by Lemma 4.11.2, a vertex in V −, say v, is unmovable and by (4.45) it is adjacent to all vertices in

U−v−z. Furthermore, then v′ has only one neighbor in A and this neighbor is in Z−z. Using another class

W ∈ A′ instead of Z, we obtain that also zv ∈ E(G) and that v′ has a neighbor in W , a contradiction.

So below we assume that V − = {v, v′} and v′ is free. Then v is unmovable and adjacent to all unmovable

vertices in A′.

Lemma 4.13.2. G[U ] = Ka.

Proof: Suppose X = {x, x′, x′′} ∈ A′, Z = {z, z′, z′′} ∈ A′, and xz /∈ E(G). Since x and z are

unmovable, xz′, x′z ∈ E(G). Then swapping x with z′ creates a super-optimal coloring with two unmovable

vertices in Z − z′ + x, a contradiction to the main text.

By Lemma 4.13.2, we can choose Z = {z, z′, z′′} ∈ A′ with low z.

Lemma 4.13.3. One can construct a super-optimal coloring in which a low unmovable vertex in A′ has a

solo neighbor in B.

Proof: Suppose z has no solo neighbors inB. Then ||B,Z|| ≥ 6b+2, ||z′, B|| ≤ 2b+1 and ||z′′, B|| ≤ 2b+2.

So ||x,B|| ≥ 2b − 1. Since z is low, ||x,B|| ≤ b + 1. Thus b = 2, a = 3 and all inequalities used above are

equalities: ||B,Z|| = 6b+ 2 = 14, ||z′, B|| = 2b+ 1 = 5, ||z′′, B|| = 2b+ 2 = 6, d(z) = k = 5 and ||z,A|| = 2.

In particular, each y ∈ B has exactly two neighbors in Z. Then switching z′′ with another free vertex should

give us the same pattern. So N(w) = N(z′′) for every free w. Let X = {x, x′, x′′} be the other class in A′.

Since z′ is not free, the unique neighbor of z in A is v or x or x′. If z′x′ ∈ E(G) then we can switch x′ with

z′ and get another super-optimal coloring. If z is not solo in it, then N(x′) ∩ B = N(z′) ∩ B, but two high

vertices cannot be adjacent. So z′x′ /∈ E(G). If z′x ∈ E(G), then x is low but has two neighbors in Z; thus

||x,B|| ≤ 2 and it has a solo neighbor in B. Therefore, z′v ∈ E(G). The only possible neighbor of x′ in A

also is v. Since switching x′ with z′ does not create a solo neighbor for z, N(x′) = N(z′). So for every of the

four y ∈ B ∩N(z′) ∩N(z′′), N(y) = A − U and y is isolated in G[B]. Then x has two neighbors in A and

at most 3 neighbors in B. In particular, x is low. So N(x) ∩B = N(z) ∩B and for each of the two vertices
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y′ ∈ N(x) ∩B, N(y′) = F + x+ z. In particular, B is independent. Let B ∩N(z′) ∩N(z′′) = {y1, . . . , y4}.

Then our color classes will be N(z) ∩B, {x, y1, y2}, {z, y3, y4}, X − x+ z′ and V − + z′′.

Let f be a super-optimal coloring and z be a low unmovable vertex in A′ with a solo neighbor in B

guaranteed by Lemma 4.13.3. Let Z = {z, z′, z′′} ∈ A′ be the class of z. Let Y = B1(z) ∪ B2(z) and

Y ′ = B − Y . By the choice of f and z, there is y1 ∈ B1(z). Since each of z′ and z′′ is adjacent to every

vertex in B0(z) ∪B3(z), |Y | ≥ b.

CASE 1: |Y | ≥ b+ 1. Since y1 is low and is adjacent to all vertices in Y − y1, |Y | = b+ 1. Since z is low,

B3(z) = ∅ and ||z,A|| = a− 1. Let y2, y3 be nonadjacent vertices in Y . By Lemmas 4.4.7 and 2.2.22, y2 and

y3 are 1/2-neighbors of z. Since z′ has at most one neighbor in Y , we may assume that y2z
′′ ∈ E(G).

CASE 1.1: y3z
′′ ∈ E(G). If some w ∈ F is not adjacent to y3 then switching w with z′′ creates a super-

optimal coloring in which solo neighbor y3 of z is not adjacent to y2 not adjacent to z′. This contradicts

Lemma 4.4.7 or 2.2.22. Thus each of y2 and y3 is adjacent to each w ∈ F and thus to at least 2a− 1 vertices

in A. Since also y1y2 ∈ E(G), d(y2) + d(z′′) ≥ (2a− 1 + 1) + (2b+ 2) = 2k + 2, a contradiction.

CASE 1.2: y3z
′ ∈ E(G). If there is a nonneighbor y4 of y2 or y3 in Y − y2− y3, then it is a half-neighbor

of z and thus must be adjacent to z′′. Because of Case 1.1, y4y2 ∈ E(G), and every other vertex in Y is

a solo neighbor of z. Then ||y4, Y || = ||y2, Y || = b − 1. Furthermore, one of the adjacent vertices y2, y4,

say y2, is low. Then ||y2, A − Z|| ≤ k − ||y2, Y ∪X|| = k − (b − 1 + 2) = a − 1 and each neighbor of y2 in

A′ −Z is solo. Since y2y3 /∈ E(G), this yields ||y3, A|| ≥ 2(a− 1) + 1 and d(y3) ≥ b− 2 + 2a− 1 = k+ a− 3.

Since d(z′) ≥ 2b + 2, we get 2b + 2 + k + a − 3 ≤ 2k + 1, i.e. b ≤ 2. So b = 2, but then we have no room

for y4. Thus every y ∈ Y − y2 − y3 is adjacent to both, y2 and y3. Since d(y3) ≤ 2k + 1 − d(z′) ≤ 2a − 1,

||y3, A−Z|| ≤ (2a− 1)− (b− 1)− 2 = 2a− b− 2 ≤ a− 1. Hence a = b+ 1 and each neighbor of y3 in A′−Z

is solo. Then ||y2, A|| ≥ 2(a− 1) + 1 and d(y2) ≥ b− 1 + 2a− 1 = k+ a− 2. So b = 2 = a− 1 and d(y2) = 6.

Let X = {x, x′, x′′} be the other class in A′. Then ||y2, X|| = 2. Since y2 is not adjacent to solo neighbor y3

of x, x′y2 ∈ E(G) and so d(x′) ≤ 5. Then ||x′, B|| ≤ 4, a contradiction to Lemma 4.12.5.

CASE 2: |Y | ≤ b. By Corollary 4.12.3, |Y | = b. Since each of z′ and z′′ is adjacent to all vertices in Y ′,

vertices in Y are not adjacent to z′ and at most one of them is adjacent to z′′. So at least b− 1 vertices in

Y are solo neighbors of z and thus G[Y ] = Kb.

CASE 2.1: There is y′1 ∈ B3(z). If y′1 has no solo neighbors in A′ then d(y′1) ≥ 2a, otherwise by

Corollary 4.12.3, ||y′1, B|| ≥ b − 1 and d(y′1) ≥ b − 1 + a + 2 ≥ 2a, again. But it is adjacent to z′ of degree

2b+ 2, a contradiction.

CASE 2.2: B3(z) = ∅, i.e., Y ′ = B0(z). If any y′ ∈ Y ′ is not adjacent to any free w, then switching w

with z′′ we get a coloring in which the solo neighbor of y′ in Z − z′′ +w is movable z′. Thus each y′ ∈ Y ′ is

adjacent to each w ∈ F and thus to at least two vertices in each X ∈ A′. Since y′z′ ∈ E(G), we can write

110



“exactly two” instead of “at least two”,

each y′ ∈ Y ′ is isolated in G[B], and N(y′) ∩ V − = {v′}. (4.46)

Let Y ′ = {y′1, . . . , y′2b+1} and Y = {y1, . . . , yb}. Suppose an unmovable x in X = {x, x′, x′′} ∈ A′ is not

adjacent to some y1 ∈ Y and some y′1 ∈ Y ′. By (4.46), we can color B − {y1, y′1, y′2, y′3} with b − 1 colors

including into each color class one vertex of Y − y1 and two vertices in Y ′ − {y′1, y′2, y′3}, then add classes

{y1, y′1, x} and {y′2, y′3, v}, move v′ to X − x and keep the remaining classes in A′. So if an unmovable x in

X = {x, x′, x′′} ∈ A′ is not adjacent to some y1 ∈ Y , then it is adjacent to every y′ ∈ Y ′ and y1 is adjacent

to x′ and x′′. Also, then y1 is adjacent to every w ∈ F . So y1 is adjacent to two vertices in each class of A′

and d(y1) ≥ (2a − 1) + (b − 1) = k + a − 2 ≥ k + 1, implying that y1 is the only nonsolo neighbor of z in

Y . But then similarly x must be adjacent to each of the b − 1 low vertices in Y , and so d(x) ≥ 3b + a − 1

and d(x) + d(z) ≥ (3b + a − 1) + (k − 1) = 2k + 2b − 2, a contradiction. Therefore each y ∈ Y is adjacent

to each unmovable x ∈ A′. Similarly, if some y1 ∈ Y is not adjacent to v, then by (4.46), we can color

B − {y1, y′1, y′2, y′3} with b− 1 colors including into each color class one vertex of Y − y1 and two vertices in

Y ′−{y′1, y′2, y′3}, then add classes {y1, y′1, v} and {y′2, y′3, z}, move v′ to Z− z and keep the remaining classes

in A′. Hence

G[Y ∪ U ] = Kk. (4.47)

Suppose that some y′1 ∈ Y ′ is adjacent to an unmovable x in X = {x, x′, x′′} ∈ A′. If some low y1 ∈ Y is

not adjacent to x′, then we can shuffle free vertices so that x is the solo neighbor of y1, a contradiction. If a

high y2 ∈ Y is not adjacent to x′, then it is adjacent to x′′ with d(x′′) ≥ |Y ′| + 1 = 2b + 2, a contradiction

again. So Y ⊂ N(x′) and hence |Y ′−N(x′)| ≥ b−1. If x′v /∈ E(G), then choose y′1 ∈ Y ′−N(x′), color B−y′1

with b colors, add class {y′1, v, x′}, move v′ to X − x′ and keep the remaining classes in A′. So x′v ∈ E(G)

and x′z /∈ E(G). If also xz′ /∈ E(G) then by switching z with x we get a coloring in which the vertices in

Y ′ − N(x′) are solo neighbors of the movable vertex x′′ in X − x + z. Thus xz′ ∈ E(G) and z′v /∈ E(G).

Then choose y′1 ∈ Y ′ −N(x′), color B − y′1 with b colors, add class {y′1, z, x′}, move v′ to X − x′ and v to

Z − z and keep the remaining classes in A′. Therefore, N(y′) = A−U for every y′ ∈ Y ′ and G contains the

union of disjoint Kk = G[Y ∪ U ] and K2b+1,2a−1 with partite sets Y ′ and A− U , as claimed.
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Chapter 5

Saturation of Ramsey-Minimal
Families

The following results are joint work with Michael Ferrara and Jaehoon Kim; this chapter is based on [16].1

Ramsey theory deals with partitioning the edges of graphs so that each partition avoids the particular

forbidden subgraph assigned to it. In this chapter, we study the saturation of Ramsey-minimal families. Our

motivation for studying these families is that they provide a convincing edge-colored (Ramsey) version of

graph saturation. We develop a method, called iterated recoloring, for using results from graph saturation

to understand this new Ramsey version of saturation. As a proof of concept, we use iterated recoloring to

determine the saturation number of the Ramsey-minimal families of matchings and describe the assiociated

extremal graphs.

5.1 Introduction

Given an edge coloring φ of a graph G, let Gφ denote the edge-colored graph obtained by applying φ to G,

and let Gφ[i] denote the spanning subgraph of Gφ induced by all edges of color i. When the context is clear,

we will simply write G and G[i] in place of the more cumbersome Gφ and Gφ[i].

In this paper, we are concerned with saturation number. This parameter was introduced by Erdős,

Hajnal and Moon in [14], wherein they determined sat(n,Kt) and characterized the unique saturated graphs

of minimum size.

Theorem 5.1.1. If n and t are positive integers such that n ≥ t, then

sat(n,Kt) =

(
t− 2

2

)
+ (t− 2)(n− t+ 2).

Furthermore, Kt−2 ∨Kn−t+2 is the unique Kt-saturated graph of order n with minimum size.

Subsequently, sat(n,F) has been determined for a number of families of graphs and hypergraphs. For a

thorough dynamic survey, see [15].

1Use of a published journal article for a thesis is permitted under Elsevier’s “Personal Use” copyright policy.
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The (classical) Ramsey number r(H1, . . . ,HK) is the smallest positive integer n such that Kn →

(H1, . . . ,Hk). A graph G is (H1, . . . ,Hk)-Ramsey-minimal if G → (H1, . . . ,Hk) but for any e ∈ G,

(G− e) 6→ (H1, . . . ,Hk). Let Rmin(H1, . . . ,Hk) denote the family of (H1, . . . ,Hk)-Ramsey-minimal graphs.

Here we are interested in the following general problem.

Problem 5.1.2. Let H1, . . . ,Hk be graphs, each with at least one edge. Determine

sat(n,Rmin(H1, . . . ,Hk)).

It is straightforward to prove that G→ (H1, . . . ,Hk) if and only if G contains an (H1, . . . ,Hk)-Ramsey-

minimal subgraph. Hence Problem 5.1.2 is equivalent to finding the minimum size of a graph G of order n

such that there is some k-edge-coloring of G that contains no copy of Hi in color i for any i, yet for any

e ∈ G every k-edge-coloring of G+ e contains a monochromatic copy of Hi in color i for some i. We observe

as well that

sat(n,Rmin(H,K2, . . . ,K2)) = sat(n,H),

so that Problem 5.1.2 not only represents an interesting juxtaposition of classical Ramsey theory and graph

saturation, but is also a direct extension of the problem of determining sat(n,H). Problem 5.1.2 is inspired

by the following 1987 conjecture of Hanson and Toft [19].

Conjecture 5.1.3. Let r = r(Kt1 ,Kt2 , . . . ,Ktk) be the standard Ramsey number for complete graphs. Then

sat(n,Rmin(Kt1 , . . . ,Ktk)) =


(
n
2

)
n < r

(
r−2
2

)
+ (r − 2)(n− r + 2) n ≥ r.

In [7] it was shown that

sat(n,Rmin(K3,K3)) = 4n− 10

for n ≥ 54, thereby verifying the first nontrivial case of Conjecture 5.1.3. At this time, however, it seems

that a complete resolution of the Hanson-Toft conjecture remains elusive. As such, one goal of the study of

Problem 5.1.2 is to develop a collection of techniques that might be useful in attacking Conjecture 5.1.3.

Here, we solve Problem 5.1.2 completely in the case where each Hi is a matching, and further completely

characterize all saturated graphs of minimum size. Specifically, we prove the following.
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Theorem 5.1.4. If m1, . . . ,mk ≥ 1 and n > 3(m1 + . . .+mk − k), then

sat(n,Rmin(m1K2, . . . ,mkK2)) = 3(m1 + . . .+mk − k).

If mi ≥ 3 for some i, then the unique saturated graphs of minimum size consist solely of vertex-disjoint

triangles and independent vertices. If mi ≤ 2 for every i, then the graphs achieving equality are unions of

edge-disjoint triangles and independent vertices.

As noted in [20], a result of Mader [35] implies that the unique minimum saturated graph of order

n ≥ 3m−3 for H = mK2 is (m−1)K3∪ (n−3m+3)K1. Hence, the minimum saturated graphs in Theorem

5.1.4 are precisely a union of miK2-saturated graphs of minimum size. This provides an interesting contrast

to both Conjecture 5.1.3 and the main result in [7] which posit and demonstrate, respectively, a stronger

relationship between r(Kt1 ,Kt2 , . . . ,Ktk) and sat(n,Rmin(Kt1 , . . . ,Ktk)).

The proof of Theorem 5.1.4 uses iterated recoloring, a new technique that utilizes the structure of Hi-

saturated graphs to gain insight into Rmin(H1, . . . ,Hk)-saturated graphs. We describe this approach next.

5.2 Iterated Recoloring

Given graphs G,H1, . . . ,Hk−1 and Hk, a k-edge coloring of G is an (H1, . . . ,Hk)-threshold-coloring if under

this coloring G contains no monochromatic copy of Hi in color i, but for any e in G and any i ∈ [k], the

addition of e to G in color i creates a monochromatic copy of Hi in color i. In the interest of concision, we

will frequently refer to an (H1, . . . ,Hk)-threshold-coloring of G as an (H1, . . . ,Hk)-coloring. Central to our

approach here is the following observation.

Observation 5.2.1. If G is an Rmin(H1, . . . ,Hk)-saturated graph, then every k-edge-coloring of G that

contains no monochromatic copy of Hi in color i for any i is an (H1, . . . ,Hk)-coloring. In particular, G has

at least one (H1, . . . ,Hk)-coloring.

An (H1, . . . ,Hk)-coloring of a graph G is i-heavy if for any edge e in G with color not equal to i, recoloring

e with color i creates a monochromatic copy of Hi in color i. The next proposition connects the structure

of Hi-saturated graphs with the monochromatic subgraph G[i] in an i-heavy (H1, . . . ,Hk)-coloring of G.

Lemma 5.2.2. If G is an Rmin(H1, . . . ,Hk)-saturated graph and φ is an i-heavy (H1, . . . ,Hk)-coloring of

G for some i ∈ [k], then Gφ[i] is Hi-saturated.

Proof. Throughout the proof, it suffices to treat G[i] as an uncolored graph. As φ is an (H1, . . . ,Hk)-

coloring of G, it follows that G[i] contains no subgraph isomorphic to Hi. It remains to prove that for any
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edge e ∈ E(G[i]), G[i] + e has a subgraph isomorphic to Hi.

If e ∈ E(G) − E(G[i]), then φ(e) 6= i. Because φ is i-heavy, changing e to color i in Gφ creates a copy

of Hi in color i. Therefore, adding e to G[i] creates a subgraph isomorphic to Hi. On the other hand, if

e ∈ E
(
G
)
, then the fact that φ is an (H1, . . . ,Hk)-coloring of G implies that adding e to Gφ in color i

creates a copy of Hi in color i. Consequently, Hi ⊆ G[i] + e.

The general technique is as follows. Starting with an (H1, . . . ,Hk)-coloring φ of an Rmin(H1, . . . ,Hk)-

saturated graph G, we iteratively recolor edges in Gφ to obtain a 1-heavy (H1, . . . ,Hk)-coloring φ1, and then

recolor edges in Gφ1
to obtain a 2-heavy coloring φ2, and so on until we have successively created i-heavy

(H1, . . . ,Hk)-colorings φi for every i ∈ [k].

By Lemma 5.2.2, the monochromatic subgraph G[i] corresponding to each φi is Hi-saturated. The goal

is to then use any knowledge we may have about (uncolored) H-saturated graphs to force additional extra

structure within G.

For instance, here we will use the following characterization of large enough mK2-saturated graphs due

to Mader [35]. A dominating vertex in a graph G of order n is a vertex of degree n− 1.

Theorem 5.2.3. If G is an mK2-saturated graph of order n ≥ 2m− 1, then:

1. G is disconnected and every component is an odd clique, or

2. G has a dominating vertex v and G− v is (m− 1)K2-saturated.

5.3 Proof of Theorem 5.1.4

We begin by proving the upper bound in Theorem 5.1.4.

Proposition 5.3.1. sat(n,Rmin(m1K2, . . . ,mkK2)) ≤ 3(m1 + . . . + mk − k) whenever n > 3(m1 + . . . +

mk − k).

Proof. Let G be the vertex-disjoint union of (m1 + . . . + mk − k) triangles and n − 3(m1 + . . . + mk − k)

independent vertices. We can create an (m1K2, . . . ,mkK2)-coloring φ of G by coloring the edges of mi − 1

triangles with color i, for each i. A monochromatic matching can use at most one edge from each triangle,

so for any i, the size of the largest matching in color i is mi − 1.

Note that in any coloring of G containing no monochromatic miK2 in color i for any i, each triangle is

monochromatic and each color i is used in mi − 1 triangles. There are at most mi − 1 triangles containing

an edge of color i, lest there exist an i-colored miK2. Therefore, by the pigeonhole principle, the only way

to color G without creating a forbidden subgraph, up to isomorphism, is φ.
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Consequently, for any e = uv in G, Gφ contains a copy of (mi − 1)K2 in color i that is disjoint from u

and v. Given a k-edge coloring of G + e in which G does not contain a copy of miK2 in color i, it then

follows that e lies in a monochromatic copy of mφ(e)K2. Thus, G is Rmin(H1, . . . ,Hk)-saturated.

We note that if each mi = 2, then there are minimum saturated graphs aside from kK3. Indeed, let

n ≥ 8 and let G be the disjoint union of K7 and n−7 isolated vertices. Note K7 is the edge-disjoint union of

seven triangles, so that any (m1K2, . . . ,mkK2)-coloring necessarily assigns a distinct color to each triangle.

Then for any e ∈ E(G), G+ e→ (H1, . . . ,Hk), so G is Rmin(H1, . . . ,Hk)-saturated.

To prove the upper bound in Theorem 5.1.4, we will utilize the iterated recoloring technique described in

Section 5.2. Assume that G is an Rmin(m1K2, . . . ,mkK2)-saturated graph of order n > 3(m1 + · · ·+mk−k)

with at most 3(m1 + · · ·+mk − k) edges. If G has a dominating vertex, then necessarily G is a star of order

3(m1 + · · · + mk − k) + 1, which is clearly not Rmin(m1K2, . . . ,mkK2)-saturated. Hence we may assume

that G contains no dominating vertex.

The following claims establish several important properties of G. The first follows immediately from

Lemma 5.2.2 and the fact that G has no dominating vertex.

Proposition 5.3.2. If φ is an i-heavy (m1K2, . . . ,mkK2)-coloring of G, then G[i] is the disjoint union of

odd cliques.

Next we show that no component of any G[i] arising from an (m1K2, . . . ,mkK2)-coloring can have a cut

edge.

Proposition 5.3.3. If φ is an (m1K2, . . . ,mkK2)-coloring of G, then each component of G[i] is 2-edge-

connected. In particular, each component C of G[i] has at least |V (C)| edges.

Proof. Suppose φ is an (m1K2, . . . ,mkK2)-coloring of G and that C is a component of G[i] with cut-edge

uv. As Gφ contains no mi-matching in color i, every (mi − 1)-matching assigned color i in Gφ necessarily

uses either u or v. Let C − uv = C1 ∪ C2 for disjoint subgraphs C1 and C2 of C with u ∈ C1 and v ∈ C2.

Because G has no dominating vertex, there exist (not necessarily distinct) vertices x and y such that

ux, vy ∈ E(G). By the saturation of G, if we extend φ to G + ux or G + vy by assigning φ(ux) = i or

φ(vy) = i, respectively, then we create an mi-matching in color i. Let Mu be an mi-matching in color

i in G + ux that uses n1 edges from C1 − u and n2 edges from C2. Then Mu restricted to G gives an

(mi − 1)-matching that does not use u, and so uses v. Indeed, any matching on C2 that has n2 edges must

use v.

Now let Mv be an mi-matching in color i in G + vy. Mv restricted to G does not use v, so C2 − v

contributes at most n2 − 1 edges to Mv. Then C1 contributes at least n1 + 1 edges. Now, if we take the
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matching formed by restricting Mv to C1 and Mu to C2, then G has a matching in color i with at least

n1 + 1 + n2 = mi edges, a contradiction.

The assertion that C has at least as many edges as vertices then follows from the fact that C has no

leaves.

Let φ be an (H1, . . . ,Hk)-coloring of a graph G. An edge e in G is inflexible if changing the color of

e to any j 6= φ(e) creates a monochromatic copy of Hj . The next proposition follows immediately from

Proposition 5.3.3.

Proposition 5.3.4. If φ is an (m1K2, . . . ,mkK2)-coloring of G, and H is a component of some G[i] that

is isomorphic to a triangle, then every edge of H is inflexible.

Let φ be an (m1K2, . . . ,mkK2)-coloring of G, and let C be an i-component of Gφ. If ψ is a coloring

of G obtained from φ by iteratively recoloring edges of G in a manner such that each successive coloring

is an (m1K2, . . . ,mkK2)-coloring, then we say that ψ is obtained from φ by flexing, or that we flex φ to

ψ. In particular, it is always possible to flex to an i-heavy (m1K2, . . . ,mkK2)-coloring of G from any other

(m1K2, . . . ,mkK2)-coloring of G.

Proposition 5.3.5. Let φ be an (m1K2, . . . ,mkK2)-coloring of G, and let C be a component of Gφ[i]. If ψ

is obtained from from φ by flexing, then V (C) induces a component of Gψ[i].

Proof. Suppose that there is some edge e such that recoloring e causes the order of C to increase or decrease

in G[i]. If recoloring e to color i causes the order of C to increase, then e is necessarily a cut-edge in G[i]. On

the other hand, if recoloring e causes the order of C to decrease, then prior to recoloring, e was a cut-edge

in G[i]. In either case, we have contradicted Proposition 5.3.3, completing the proof.

Let φ be an (m1K2, . . . ,mkK2)-coloring of G and flex φ to a 1-heavy (m1K2, . . . ,mkK2)-coloring φ1.

For 2 ≤ i ≤ k, we flex φi−1 to an i-heavy (m1K2, . . . ,mkK2)-coloring φi. Consider then the nontrivial

components of Gφi
[i], all of which are odd cliques by Proposition 5.3.2. In particular, suppose that these

components have order 2xj + 1 for 1 ≤ j ≤ `. Then, as φi is an (m1K2, . . . ,mkK2)-coloring, we have that

x1 + · · · + x` = mi − 1. Further, since the components of Gi do not change order via flexing, a component

C of order 2x+ 1 in Gφj
[i] must have a maximum matching of size x.

Propositions 5.3.2 and 5.3.5 imply that a set X of vertices in G induces a component of Gφi [i] if and

only if X induces a component of Gφj
[i] for all i, j ∈ [k]. This, in turn, implies that if φ′ and φ′′ are i-heavy

colorings obtained via flexing from φ, then Gφ′ [i] = Gφ′′ [i]. This yields the following proposition.
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Proposition 5.3.6. Let C be a component of Gφi [i]. Then there are at least |V (C)| edges e in C such that

φj(e) = i for all 1 ≤ j ≤ k.

Proof. Let S ⊂ E(C) be those edges e in C such that {φj(e) : 1 ≤ j ≤ k} = {i} and suppose that

|S| < |V (C)|. Every edge of C that is not in S lies in some component C ′ of Gφj [j] for some j 6= i.

Iteratively recoloring each e /∈ S with any such j does not create a matching of size m` in color ` for any `,

as all edges colored ` lie within some component of Gφ`
[`]. However, this means that at most |S| < |V (C)|

edges of C remain colored with color i, contradicting Proposition 5.3.5.

Our final proposition shows that no edge in G receives more than two colors under φ1, . . . , φk.

Proposition 5.3.7. If Q is a component of Gφi [i] on 2m + 1 vertices, with m ≥ 1, then any edge of Q is

assigned at most 2 colors under φ1, . . . , φk. Furthermore, if Q is a triangle, then every edge of Q is inflexible

in every Gφi .

Proof. Note first that if m = 1, so that Q is a triangle, then this is the result of Proposition 5.3.4. Hence we

will assume that m ≥ 2.

Suppose Q is a component of Gφ1 [1], and an edge uv ∈ E(Q) appears in components Q2 and Q3 of Gφ2 [2]

and Gφ3
[3], respectively. Recall that by Proposition 5.3.2, Q2 and Q3 are necessarily odd cliques.

Let V (Q)− {u, v} = {x1, x2, . . . , x2m−1}. First, we define a coloring ψ′ of Q.

ψ′(e) :=


2 if e = x2xj

3 if e = x3xj with j 6= 2

1 otherwise

Now:

ψ(e) :=



φ(e) if e /∈ Q ∪Q2 ∪Q3

1 if e is in Q ∪Q2 ∪Q3 and incident to u or v.

ψ′(e) if e is not incident to u, v and e is in Q

2 e is not incident to u or v, and e ∈ Q2 \Q3

3 e is not incident to u or v, and e ∈ Q3

In this coloring, the (2m− 3) vertices {x1, x4, . . . , x2m−1} form a clique of color 1, contributing at most

m−2 edges to any matching in color 1. Further, edges incident to u or v also contribute at most two matching

edges, so any matching in color 1 has at most m edges with an endpoint in Q. As Proposition 5.3.5 implies

that the other ` nontrivial components of Gψ[1]− V (Q) are odd cliques with total order 2m1 − 2m+ `− 2,

the maximum size of a matching with color 1 in Gψ is m1 − 1.
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Let Q2 have 2n2 + 1 vertices, and let Q3 have 2n3 + 1 vertices. Note that in Gφ1 , Q2 contributes n2

edges to any maximum monochromatic matching of color 2 and Q3 contributes n3 edges to any maximum

monochromatic matching of color 3. As we have recolored all edges in Q∪Q2 ∪Q3 that are incident to u or

v with color 1, for color i ∈ {2, 3}, Qi − u− v contains a matching of size ni − 1. One more edge of color i

incident with xi completes a matching of size at most ni in Q∪Q2 ∪Q3. Outside Q∪Q1 ∪Q2, ψ = φ, so ψ

is a (H1, . . . ,Hk)-coloring.

If x is a vertex in G that is not adjacent to u, then adding the edge ux to G in color 1 does not

increase the size of a maximum 1-colored matching. Thus G is not Rmin(m1K2, . . . ,mkK2)-saturated, a

contradiction.

We are now ready to prove Theorem 5.1.4.

Proof. Let G and φ1, . . . , φk be as given above, and further assume that

|E(G)| = sat(n,Rmin(m1K2, . . . ,mkK2)) ≤ 3(m1 + · · ·+mk − k).

For each i, we let Qi,1, . . . , Qi,pi be the (clique) components of Gφi [i], and suppose that each Qi,j has 2ti,j+1

vertices. Recall that
∑pi
j=1 ti,j = mi − 1.

For any e ∈ E(G), we define w(e) = |{φi(e) : 1 ≤ i ≤ k}|. That is, w(e) is the number of colors assigned

to e by the heavy colorings φ1, . . . , φk. Note

|E(G)| =
k∑
i=1

∑
e∈Gi[i]

1

w(e)
.

By Proposition 5.3.7, w(e) ≤ 2 for every edge of G. Further, by Proposition 5.3.6, w(e) = 1 for at least

|V (Q)| edges of Q. Therefore,

|E(G)| =
k∑
i=1

∑
e∈G[i]

1

w(e)

≥
k∑
i=1

pi∑
j=1

(
(2ti,j + 1) +

1

2

[(
2ti,j + 1

2

)
− (2ti,j + 1)

])
(1)

≥
k∑
i=1

pi∑
j=1

3ti,j =

k∑
i=1

3(mi − 1) = 3(m1 + . . .+mk − k).
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We therefore conclude that

sat(n,Rmin(m1K2, . . . ,mkK2)) = 3(m1K2 + . . .+mkK2).

Additionally, equality holds in all equations above, leading us to conclude that every component of every

Gφi
[i] is a triangle. By Proposition 5.3.4, also every component of every Gφi

[j] is a triangle.

It remains only to show that if mi ≥ 3 for at least one i, then G consists of triangles that are vertex

disjoint. Suppose not. Then there exists at least one ”bow-tie” B: a subgraph of G consisting of two triangles

that share one vertex. We can create an (H1, . . . ,Hk)-coloring φ of G by assigning color i to mi − 1 of the

edge-disjoint triangles in a triangle decomposition of G. Let φ be a such a coloring, in which both triangles

of B are assigned color i. If we flex φ to be i-heavy, then Proposition 5.3.2 implies that the vertices of B

must lie in a clique on at least five vertices. However, as equality holds throughout (1) and φ was selected

arbitrarily, each component of G[i] under any valid coloring is a triangle, a contradiction.

120



Chapter 6

Induced Saturation

The results in this chapter are joint work with Sarah Behrens, Catherine Erbes, Michael Santana, and Derrek

Yager; this chapter is based on [2].

6.1 Background and Introduction

Consider an n-vertex forbidden graph H. If a graph G with |G| ≥ |H| does not contain an induced copy

of H, then every collection of n vertices in G either does not contain H as a subgraph, or contains H as

a subgraph that is not induced. So, to extend the notion of graph saturation to induced subgraphs, it is

natural to consider not only adding edges to create H, but also deleting them.

To this end, we offer the following definition: a graph is H-induced-saturated if H is not an induced

subgraph of G, but it we add or delete any edge of G, H arises as an induced subgraph. Unfortunately,

under this definition, there exist graphs H and positive integers n so that no graph G on n vertices is

H-induced-saturated. (A simple example is n = 4 and H = K1,3.)

In order to offer a definition that is well-defined, Martin and Smith [36] consider generalized graphs,

called trigraphs, objects also used by Chudnovsky and Seymour in their structure theorems on claw-free

graphs [8]. The definition given above is equivalent to the definition of Martin and Smith in the case that an

n-vertex graph G exists that is H-induced-saturated. We concern ourselves almost entirely with this case.

It was not previously known that for any non-trivial graphs H there exists a graph that was H-induced-

saturated. However, we found a surprising number of graphs H for which H-induced-saturated graphs

exist. Motivated by this, we began examining the minimum number of edges over all n-vertex, H-induced-

saturated graphs. This is a natural extension of saturation number to induced subgraphs, and leads to many

unexpected and beautiful constructions. For example, several Platonic solids are H-induced-saturated for

appropriate graphs H. (See Figures 6.1 and 6.2, as well as [2], for examples.)
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6.1.1 Definitions

Definition 6.1.1. A trigraph T is a quadruple (V (T ), EB(T ), EW (T ), EG(T )), where V (T ) is the vertex

set and the other three elements partition
(
V (T )

2

)
into a set EB(T ) of black edges, a set EW (T ) of white

edges, and a set EG(T ) of gray edges. These can be thought of as edges, nonedges, and potential edges,

respectively. For any e ∈ EB(T )∪EW (T ), let Te denote the trigraph where e is changed to a gray edge, i.e.

T ′ = (V (T ), EB(T )− e, EW (T )− e, EG(T ) + e).

The complement of a trigraph T , denoted T , is the trigraph with V (T ) = V (T ), EB(T ) = EW (T ),

EW (T ) = EB(T ), and EG(T ) = EG(T ).

In a trigraph, the black (resp. gray) degree of a vertex is the number of black (resp. gray) edges incident

to that vertex.

Definition 6.1.2. A realization of T is a graphG = (V (G), E(G)) with V (G) = V (T ) and E(G) = EB(T )∪S

for some S ⊆ EG(T ). Let R(T ) be the family of graphs that are a realization of T .

Definition 6.1.3. A trigraph T is H-induced-saturated if no realization of T contains H as an induced

subgraph, but H occurs as an induced subgraph of some realization whenever any black or white edge of T

is changed to gray. The induced saturation number indsat(n,H) of a forbidden H is the minimum number

of gray edges over all n-vertex, H-induced-saturated trigraphs.

The induced saturation number of a graph H with respect to n, written indsat(n,H), is the minimum

number of gray edges in an H-induced-saturated trigraph with n vertices.

Notice that a trigraph with EG(T ) = ∅ has a unique realization, so if indsat(n,H) = 0, there is a graph

G that has no induced copy of H yet adding or removing any edge creates an induced copy of H. We will

call such a graph H-induced-saturated.

6.1.2 Observations and Previous Results

By definition, the only trigraphs on fewer than |H| vertices that are H-induced-saturated are those in which

all edges are gray. Thus we will usually assume that n ≥ |H| when we compute indsat(n,H).

The following theorem summarizes the results of Martin and Smith [36]:

Theorem 6.1.4. Let H be a graph.

• For all n ≥ |H|, indsat(n,H) ≤ sat(n;H). By [20], sat(n;H) ∈ O(n), so in particular indsat(n,H) ∈

O(n).

• For all n ≥ m ≥ 3, indsat(n,Km) = sat(n;Km). (Note that sat(n;Km) was determined by Erdős,

Hajnal, and Moon in [14].)
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• For all n ≥ m ≥ 2, and for e ∈ E(Km), indsat(n,Km − e) = 0. In particular, for all n ≥ 3,

indsat(n, P3) = 0.

• For all n ≥ 4, indsat(n, P4) =
⌈
n+1
3

⌉
.

Observation 6.1.5. A trigraph T is H-induced-saturated if and only if T is H-induced-saturated. In

particular, indsat(n,H) = indsat(n,H).

Proof. Suppose a trigraph T has a realization G such that H is an induced subgraph of G. Then H is an

induced subgraph of G. Using the definition of T , G is a representation of T . It follows that a trigraph T is

H-induced-saturated if and only if T is H-induced-saturated.

6.1.3 Minimally H-induced-saturated Graphs

In this paper we show that for several graphs H, indsat(n,H) = 0. That is, there exists a graph that is

H-induced-saturated. This leads to a natural saturation question: What is the minimum number of edges

in such a graph?

Definition 6.1.6. For a graph H and whole number n with indsat(n,H) = 0, we define

indsat∗(n,H) := min{‖G‖ : |G| = n and G is H-induced-saturated}.

We say a graph G on n vertices with indsat∗(n,H) edges is minimally H-induced-saturated.

By Observation 6.1.5, the maximum number of edges in an n-vertex H-induced-saturated graph is
(
n
2

)
−

indsat∗(n,H).

In this chapter, we show that the following graphs (and their complements) have induced-saturation

number zero for n sufficiently large: K+
1,3, C4, odd cycles of length at least 5, C ′2k, Ĉ2k, and matchings.

Additionally, we provide bounds on indsat∗(n,H) for the graphs listed above. In particular, we characterize

the K+
1,3-induced-saturated graphs, which in turn completely determines indsat∗(n,K+

1,3).

6.2 The Paw

In this section we provide a construction that shows indsat(n,K+
1,3) = 0 for n ≥ 7. We then show

that our construction characterizes all K+
1,3-induced-saturated graphs, allowing us to completely determine

indsat∗(n,K+
1,3) for n ≥ 7.
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This construction, given in Construction 6.2.1 requires n ≥ 7, and since Theorem 6.2.4 will show that

these are the only K+
1,3-induced-saturated graphs, we deduce that indsat(n,K+

1,3) is nonzero for n ∈ {4, 5, 6}.

The exact values for such n are provided in Table 6.1.

Table 6.1 exhibits paw-induced-saturated trigraphs on n vertices with only one gray edge for n ∈ {5, 6}.

Since indsat(n,K+
1,3) > 0, this establishes indsat(n,K+

1,3) = 1 for such n.

For n = 4, Table 6.1 gives a 4-vertex, paw-induced-saturated trigraph with two gray edges. To show that

indsat(4,K+
1,3) = 2, we argue that any 4-vertex trigraph T with only one gray edge is not K+

1,3-induced-

saturated.

T has at least two black edges, otherwise chaning a white edge to gray does not result in a realization

with an induced K+
1,3. Now suppose T has no white edges. Since it has precisely one gray edge, its black

edges form K4−e, and changing the black edge whose endpoints have black degree three to a gray edge does

not result in a realization with an induced K+
1,3. Next, suppose T has at least two white edges. Since K+

1,3

has precisely two nonedges, changing a black edge to gray does not result in a realization with an induced

K+
1,3., unless T already had such a realization. Therefore T has precisely one white edge. If the gray edge of

T is incident to the white edge, then K+
1,3 is a realization, so the black edges induce C4. Since C4 6⊆ K+

1,3,

changing the white edge to gray does not create an induced K+
1,3.

Table 6.1: Values of indsat(n,K+
1,3) for 4 ≤ n ≤ 6 and trigraphs realizing those values

trigraph

indsat(4,K+
1,3) = 2

indsat(5,K+
1,3) = 1

indsat(6,K+
1,3) = 1

Having established indsat(n,K+
1,3) for small values of n, we now present our construction.

Construction 6.2.1. LetG be a graph with at most one trivial component, where each nontrivial component

is complete multipartite, each with at least three parts, at most one of which contains only one vertex, and

the remainder of which have order at least three.
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Proposition 6.2.2. The graph G in Construction 6.2.1 is K+
1,3-induced-saturated.

Proof. Since K+
1,3 is not an induced subgraph of a complete multipartite graph, G contains no induced K+

1,3.

Suppose we add an edge xy such that x and y are in distinct components, say Fx and Fy, respectively. Since

at least one of these components, say Fx, has at least three parts, x is in some triangle xab in Fx. Because

y is in a different component, y is adjacent to x but not a or b. Thus {x, y, a, b} induces a K+
1,3.

Suppose we add an edge xy such that x and y are in the same component. Then in particular, they are

in the same part. This part has at least two vertices, so by construction it has at least three vertices; choose

z distinct from x and y from this part, and let a be in another part of the component. Then {x, y, z, a}

induces a K+
1,3.

Suppose we delete an edge xy. Then x and y were in different parts of one component, say F . As F is

complete multipartite with at least three parts, there exists a vertex z in a third part of that component.

Since at most one part has only one vertex, there is a vertex a in the same part as either x or y; say x. Then

{x, y, z, a} induces a K+
1,3.

Corollary 6.2.3. For n ≥ 7, indsat(n,K+
1,3) = 0.

We now show that Construction 6.2.1 describes all K+
1,3-induced-saturated graphs.

Theorem 6.2.4. A graph is K+
1,3-induced-saturated if and only if it is as described in Construction 6.2.1.

To prove this theorem, we begin by making several observations.

Lemma 6.2.5. Let G be a K+
1,3-induced-saturated graph. Then G has the following properties:

(a) Every edge of G is in a triangle.

(b) The neighborhood of any vertex of G is a complete multipartite graph.

(c) Given any non-isolated vertex v ∈ V (G), there exists a (possibly empty) independent set S = S(v) such

that for every x ∈ N(v), S = N(x) \N [v].

Proof. Lemma 6.2.5(a) holds because deleting any edge in G creates an induced K+
1,3. As a consequence,

any vertex has degree either zero or at least two.

Since G does not contain an induced K+
1,3, the neighborhood of any vertex cannot contain an induced

copy of K2 ∪K1. This is equivalent to the neighborhood being a complete multipartite graph. This gives us

Lemma 6.2.5(b).

To prove Lemma 6.2.5(c), suppose there exists x ∈ N(v) that has a neighbor not in N [v]. (If no such x

exists, the claim holds with S = ∅.) Let S := N(x) \ N [v]. If G[S] has an edge ss′, then G[v, x, s, s′] is a

paw. Since G is K+
1,3-induced-saturated, we conclude that S is independent.

125



By Lemma 6.2.5(a), there exists y ∈ N(v) ∩ N(x). If any element s ∈ S is not adjacent to y, then

G[v, x, y, s] is a paw with s as the pendant vertex. Therefore, S ⊆ N(y), but also N(y)\N [v] ⊆ S or else we

would have a paw. Because N(v) is complete multipartite by Lemma 6.2.5(b), every vertex in N(v) \ {x, y}

is adjacent to x or y. By symmetry, we conclude that for every z ∈ N(v), N(z) \N [v] = S.

We proceed to the proof of Theorem 6.2.4.

Proof of Theorem 6.2.4. Let G be a K+
1,3-induced-saturated graph. Then G has at most one nontrivial

component, since adding an edge between two isolated vertices does not create an induced K+
1,3. We now

show that every nontrivial component of G is a complete multipartite graph. Let v be a non-isolated vertex

in G and let S be the set given by Lemma 6.2.5(c). By Lemmas 6.2.5(b) and 6.2.5(c), G[N [v] ∪ S] is a

complete multipartite graph, with v and S sharing a part. So, we need only show N [v] ∪ S is a component

of G. If not, then there exists some vertex s ∈ S with a neighbor t 6∈ N [v] ∪ S, since we have included the

neighborhood of every x ∈ N [v] and S is an independent set. If there exists an edge xy in G[N(v)], then

G[x, y, s, t] is a paw, so N(v) is an independent set. This violates Lemma 6.2.5(a).

Now, by Lemma 6.2.5(a), every nontrivial component of G has at least three parts. Next, we show that

no part in any component of G has order two, and any component has at most two parts of order one.

Suppose x and y either make up a part of order two, or are each a part of order one in a component F .

Then {x, y} dominates F \ {x, y}, and so x and y do not appear together in an induced paw, so adding or

deleting the edge xy does not create an induced paw. Hence, G being K+
1,3-induced-saturated implies that

it can be formed by Construction 6.2.1.

Corollary 6.2.6. For n ≥ 7, let n ≡ r mod 7, where 0 ≤ r ≤ 6. Then

indsat∗(n,K+
1,3) =


15

7
n if r = 0

15bn/7c+ 4(r − 1) if r 6= 0
.

Proof. Let G be a minimally K+
1,3-induced-saturated graph on n vertices. From Theorem 6.2.4, each nontriv-

ial component of G is a complete multipartite graph with at least three parts. If some nontrivial component

F of G has at least three parts, then we form a K+
1,3-induced-saturated graph with strictly fewer edges by

dropping edges between two of the parts and forming a single larger part. Thus each nontrivial component

of G is tripartite.

The number of edges of a complete tripartite graph on m vertices with parts of size s, t, and m− (s+ t) is

given by (m− [s+ t])(s+ t)+st. Given the constraints s ≥ 1, t ≥ 3, and m ≥ t, we see that (m− [s+ t])(s+ t)
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is minimized when s+ t is minimized, i.e. s+ t = 4; also st is minimized when s+ t is minimized. Therefore,

K1,3,m−4 obtains the smallest number of edges among all complete tripartite graphs on m vertices.

Now, we may assume G has components F0, F1, . . . , Fi with |F0| ∈ {0, 1} and for i > 0, Fi = K1,3,ni−4,

where |F0|+
∑k
i=1 ni = n. Then:

e(G) =

k∑
i=1

e(Fi) =

k∑
i=1

(4ni − 13) = 4n− 13k − 4|F0|.

This is minimized by taking k as big as possible and, subject to this, |F0| = 1. That is, we take k = bn/7c

and

|F0| =

 0 if 7 divides n

1 else.

Observation 6.2.7. Given H for which indsat∗(n,H) is defined for all sufficiently large n, the function

indsat∗(n,H) is not necessarily monotone in n. In particular, from Corollary 6.2.6 we see for any integer

k ≥ 2, indsat∗(7k,K+
1,3) < indsat∗(7k+2,K+

1,3) < indsat∗(7k−1,K+
1,3). This is a similarity between minimal

induced saturation and saturation: as noted in [15], the function sat(n;H) is not necessarily monotone in n

for fixed H.

6.3 Small Cycles

6.3.1 C4 and its complement

In this section we show that the induced saturation number of C4 is zero for sufficiently large n, and we

compute some bounds on indsat∗(n,C4). Additionally, using Observation 6.1.5 and the fact that C4 = 2K2,

we use C4-induced-saturated graphs to obtain results for matchings.

Construction 6.3.1. For j ≥ 5 and k ≥ 2, let Ikj be the graph that combines k copies of a wheel with j

spokes. Label the copies W 1, . . . ,W k, and label the vertices of W i so that its center is wi0, and the outer

cycle of W i is wi1, . . . , w
i
j . For 1 ≤ i < i∗, add the edges wi`w

i∗

` and wi`w
i∗

`+1 for every ` ∈ [j], defining

j + 1 := 1.

I25 is the icosahedron, shown in Figure 6.1. The icosahedron can be thought of as two wheels with 5

spokes whose outer-cycle vertices are joined by a zig-zag pattern (as described precisely in Construction

6.3.1). Construction 6.3.1 generalizes the icosahedron by allowing the number of wheels and the length of

their outer cycles to vary.
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Figure 6.1: The icosahedron graph.

Proposition 6.3.2. For j ∈ {5, 6, 7}, and k ≥ 2, Ikj is C4-induced-saturated.

Proof. We first show that Ikj does not contain an induced C4. Suppose to the contrary that it does. Since a

single wheel does not contain an induced C4, this C4 must contain vertices from at least two different wheels.

Suppose that wp0 is in this C4. Recall that wp0 is the center of wheel W p. Then, this C4 must contain wpr

and wps such that |s− r| ≥ 2. However, since |s− r| ≥ 2, wpr and wps contain no common neighbors outside

of W p. Thus, all four vertices of this induced C4 must be inside of W p, a contradiction. So our induced C4

contains no centers of wheels.

If this C4 contains exactly three vertices from a single W p, then they must be consecutive along their

cycle. That is, C4 contains wps , w
p
s+1, and wps+2. However, as above, wps and wps+2 have no common neighbors

outside of W p. Thus, our induced C4 contains at most two vertices from each W p.

If this C4 contains exactly two vertices from a single W p, then by the above arguments, they are adjacent

in W p, say wps and wps+1. No vertex of the form wqs , with q < p, or wrs+1, with r > p, can be in our C4, as

either produces a triangle with wps and wps+1.

Now, wps+1 must have another neighbor in our C4. Suppose it is in W t. If t > p, then it must be wts+2

by the above. However, the only common neighbors wts+2 and wps have are of the form wqs+1 where q > p, a

contradiction. So t < p, and the other neighbor of wps+1 is wts+1. Again though, the only common neighbors

of wps and wts+1 are either of the form wqs+1 where q > p, or wrs where r < p. In either case, we have a

contradiction to the above. Thus, our C4 has exactly one vertex from each wheel.

Suppose our induced C4 contains the vertices wpt1 , w
q
t2 , w

r
t3 , w

s
t4 . If |{t1, t2, t3, t4}| ≤ 2, then we have a

triangle, a contradiction. If |{t1, t2, t3, t4}| = 4, then some vertex is not adjacent to two of the others, a

contradiction. So |{t1, t2, t3, t4}| = 3, and two vertices have the same subscript. We may assume that it is

wpt1 , w
q
t2 = wqt1 , and that p < q. Then, wpt1 must have a neighbor not adjacent to wqt1 in this C4, say it is wrt3 .
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However, in order for this to be possible, we must have t3 = t1 + 1 and p < r < q. Thus, wst4 is adjacent

to both wrt1+1 and wqt1 . However, since t4 must be distinct from both t1 and t1 + 1, this cannot happen, a

contradiction. So Ikj is C4-free.

By inspection we see that Ikj has the property that every edge is the lone diagonal of a C4. Thus, removing

any edge results in an induced C4. So we only need to consider adding edges. Adding an edge within one

wheel (say Wm) is simply adding a chord wmi w
m
p to a 5-, 6-, or 7-cycle. If p 6= i+ 2 or j = 5, then this chord

creates an induced 4-cycle. If p = i+ 2 and j = 6 or j = 7, then if m 6= k, wmi w
`
i+1w

`
i+2w

m
i+2w

1
i is an induced

4-cycle, where ` > m, and if m = k, then wmi w
m
i+1w

`
i+1w

`
i is an induced C4.

Now suppose we add an edge between wheels, say Wm and W `, where we may assume m < `. If the

new edge is between the centers of these wheels, that is, wm0 w
`
0, then wm0 w

`
0w

`
1w

m
1 w

m
0 is an induced C4. If

it is from the center of Wm to a vertex on the cycle of W `, say w`i , then wm0 w
`
iw

`
i+1w

m
i+1w

m
0 is an induced

C4; a similar cycle is also created if the new edge is w`0w
m
i . Finally, if we add an edge wmi w

`
p, note that wmi

is not adjacent to at least one of wmp and wmp−1; label this vertex u. Since u is adjacent to w`p, the vertices

wm0 , w
m
i , w

`
p, and u induce a C4.

Proposition 6.3.2 implies that for many values of n, indsat(n,C4) = 0. In fact, this is the case for n ≥ 12.

To show this, we use the following proposition regarding kK2. While we only employ the proposition in the

case k = 2, the more general statement which we present is not difficult.

Proposition 6.3.3. Let s := (s1, . . . , sn) be a sequence of positive integers. Let G be a graph with vertex

set {v1, . . . vn}, and let Gs be the graph obtained from G by replacing each vertex vi with an independent set

of order si and each edge with a complete bipartite graph between the corresponding independent sets. For

k ≥ 2, G is kK2-induced-saturated if and only if Gs is kK2-induced-saturated.

Proof. For each vertex vi ∈ V (G), let Vi be the independent set in Gs that corresponds to it. We will call

this collection of vertices in Gs that replaces a single vertex in G a part.

Note that no induced matching in Gs uses two vertices from the same part, and the same holds if we

add or remove a single edge from Gs. We claim that if wi and wj are vertices from different parts Vi and

Vj , respectively, of Gs, then Gs (or Gs +wiwj or Gs −wiwj) contains an induced matching if and only if G

(resp. G+ vivj , or G− vivj) contains an induced matching M . Suppose Ms is such an induced matching in

Gs (or Gs+wiwj or Gs−wiwj). Then each vertex in Ms comes from a different part of Gs (resp. Gs+wiwj

or Gs − wiwj), and thus they correspond to distinct vertices in V (G). This is an induced matching in G.

If G (or G + vivj or G − vivj) has an induced matching M , then when the graph is expanded, no new

adjacencies have been added between the parts corresponding to the endpoints of vertices in M (except for
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wiwj in the case of G+vivj). Thus, we can find an induced matching in Gs (resp. Gs+wiwj or Gs−wiwj).

This shows that if Gs is kK2-induced-saturated, then so is G.

To show that if G is kK2-induced-saturated, then so is Gs, it remains to consider adding edges between

vertices in one part of Gs. First we note that G has no dominating vertex. Indeed, if u is a dominating

vertex, then deleting an edge incident to u, say uw, does not create an induced 2K2, let alone an induced

kK2, as u dominates NG(w).

Now, suppose we add wiw
′
i to Gs, in the part Vi corresponding to vi. Since vi is not dominating, there

exists w not adjacent to vi. Since G is kK2-induced-saturated, G + viw contains an induced matching

M = {viw, x2y2, . . . , xkyk}. Then Ms = {wiw′i, X2Y2, . . . , XkYk} is an induced matching in Gs + wiw
′
i,

where Xj and Yj are vertices in the parts corresponding to xj and yj , respectively.

Corollary 6.3.4. For n ≥ 12, indsat(n,C4) = 0.

Proof. Applying Observation 6.1.5 to case k = 2 in Proposition 6.3.3, allows us to begin with a graph that

is C4-induced-saturated, replace a single vertex with a clique of any order, replace the affected edges with

complete bipartite graphs, and produce another graph that is C4-induced-saturated. Thus, beginning with

I25 , applying these operations obtains C4-induced-saturated graphs for all values of n ≥ 12.

Observation 6.3.5. Recall that Observation 6.1.5 states that a graph is H-induced-saturated if and only

if its complement is H-induced-saturated. Thus, beginning with a graph that is C4-induced-saturated, the

operations of replacing a single vertex with a clique of some order and replacing the affected edges with

complete bipartite graphs produces another graph that is C4-induced-saturated. This shows that we can

create C4-induced-saturated graphs for any n ≥ 12 by applying these operations to the graphs in Construction

6.3.1. Thus, indsat(n,C4) = 0 for all n ≥ 12.

For 4 ≤ n ≤ 10, a computer search showed indsat(n,C4) > 0. At this time, whether indsat(11, C4) is

zero or not, is yet unknown. We now turn our attention to indsat∗(n,C4).

Theorem 6.3.6. For sufficiently large n, (5/2)n ≤ indsat∗(n,C4) ≤ (7/64)n2 + o(n).

Proof. To prove the lower bound we show that δ(G) ≥ 5. Suppose G is a C4-induced-saturated graph. Let

x ∈ V (G), and let H := G[N(x)]. Since deleting any edge produces an induced C4, every edge is the diagonal

of a C4 and d(x) ≥ 3. In particular, there exists v1, v2, v3 ∈ V (H) such that v1v3 is not an edge, but v1v2

and v2v3 are edges. Now, G− xv1 contains an induced C4 that contains both x and v1, but not v3. If v2 is

not in this C4, then there exists two other vertices distinct from v1, v2, v3 in H. Thus, d(x) ≥ 5. If v2 is in

this C4, then there exists v4 ∈ V (H) distinct from v1, v2, v3 such that v1v4 is an edge, but v2v4 is not. By
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a similar argument, considering G− xv3 gives at least one additional vertex in H distinct from v1, v2, v3, v4.

So in any case, d(x) ≥ 5, and as x was arbitrary, δ(G) ≥ 5. Thus, provided n ≥ 12, indsat∗(n,C4) ≥ (5/2)n.

To prove the upper bound, we choose n ≥ 56 and create a graph G of order n. Let r ≡ n mod 8, where

0 ≤ r ≤ 7. Set k = bn/8c so that k ≥ r and |Ik7 | = 8k. If r = 0, choose G = Ik7 . If r > 0, we create

G by adding r vertices to Ik7 . Recall, as discussed after Proposition 6.3.3, by replacing the vertices of Ik7

with cliques, and its edges with complete bipartite graphs, we preserve the property of being C4-induced-

saturated. Accordingly, using the notation of Construction 6.3.1, we replace w1
0, . . . , w

r
0 with copies of K2

and make each new vertex adjacent to the neighborhood of the vertex it replaces.

Now we determine e(G). The first r wheels have 22 edges, and the rest have 14. Between any two wheels

there are 14 edges. So e(G) = 14
[(
k
2

)
+ k
]

+ 8r. Since r ∈ [0, 7] and k = bn/8c, e(G) ≤ 7
64n

2 + 7
8n+ 56.

6.3.2 Matchings

Another graph that is C4-induced-saturated is the join I25 ∨ Kn−12. Observation 6.1.5 implies that the

complement of this graph is 2K2-induced-saturated. We can further generalize this to get a kK2-induced-

saturated graph for any k ≥ 2.

Proposition 6.3.7. Let I25 be the complement of the icosahedron. For fixed k and n ≥ 12(k − 1), the graph

(k − 1)I25 + (n− 12(k − 1))K1 is kK2-induced-saturated. Thus, for n ≥ 12(k − 1), indsat(n, kK2) = 0.

Proof. By Proposition 6.3.2 and Observation 6.1.5, the complement of an icosahedron is 2K2-induced-

saturated. Let G denote (k − 1)I25 + (n − 12(k − 1))K1. Clearly, G contains (k − 1)K2 as an induced

subgraph, but no induced kK2. If we add or delete any edge inside a component, or add an edge among the

isolates, we create an induced kK2. Note that every vertex v in I25 is in an induced copy of K2 +K1 where

v is the isolate. Thus, adding any edge with an endpoint in a copy of I25 creates an induced kK2.

Corollary 6.3.8. For n ≥ 12(k − 1), indsat∗(n, kK2) ≤ 36(k − 1).

In particular, for fixed k, indsat∗(n, kK2) is bounded above by a constant.

6.3.3 C8

Construction 6.3.9. The dodecahedron (Figure 6.2) is C8-induced-saturated.

Proof. Clearly, the dodecahedron is C8 free. Because every edge is on the boundary between two 5-faces,

deleting any edge creates an induced C8. To check what happens when we add edges, note that any pair of
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vertices at distance d from each other is symmetric with any other pair at distance d. Therefore, it suffices

to check only a generic pair of vertices at distance d for d ∈ {2, 3, 4, 5}, Figure 6.3.

Figure 6.2: Dodecahedron

Figure 6.3: Adding Edges to Dodecahedron to obtain C8

While we cannot add a dominating clique to the dodecahedron to obtain graphs that are C8-induced-

saturated, we can add a few vertices in a nice way to show that the induced saturation number of C8 is zero

for a small range of n.

Construction 6.3.10. LetD be a dodecahedron. Note that we can partition V (D) into five sets S1, S2, S3, S4, S5

such that each Si has exactly four vertices in it that are pairwise distance 3 apart in D. An example of one

such Si is in Figure 6.4. It is easy to see from the figure how we can obtain the other sets in the partition

by rotating the first five times along the dodecahedron.

Let Gk be the graph obtained from D by adding vertices x1, . . . , xk such that NG(xi) = Si, 1 ≤ i ≤ k ≤ 5.

Then, Gi is C8-induced-saturated.

Proof. The proof that G1 is C8-induced-saturated is based on two observable facts. First, given any pair of

vertices u, v in S1, there exists an induced path between them of length six that contains exactly one other

vertex in S1 and does not contain x1 (see Figure 6.4). Second, for any vertex u ∈ S1 and v /∈ S1, v 6= x1,

there exists an induced path between them of length six that contains no internal vertex in S1 ∪ {x1}.
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Figure 6.4: Set S in a dodecahedron, with induced P7

These facts correspond to removing and adding an edge incident to x1, respectively. As we know that

the dodecahedron is C8-induced-saturated, this suffices to show that G1 is C8-induced-saturated.

The only additional fact needed to show that Gk is C8-induced-saturated, for 2 ≤ k ≤ 5, is that for any

i, j, where 1 ≤ i < j ≤ k, and for any u ∈ Si, v ∈ Sj , there exists an induced path between u and v of length

five that contains no internal vertex in Si ∪ Sj ∪ {x1, . . . , xk}.

This additional fact corresponds to adding the edge xixj . As the dodecahedron is C8-induced-saturated,

and adding or removing edge incident to a single xi produces an induced C8, we deduce that Gk is indeed

C8-induced-saturated.

Corollary 6.3.11. indsat(n,C8) = 0, for 20 ≤ n ≤ 25.

While the icosahedron is C4-induced-saturated and the dodecahedron is C8-induced-saturated, the cube

is not C6-induced-saturated.

6.4 Odd Cycles and Modified Cycles

In this section we provide a construction proving that odd cycles also have induced saturation number zero for

n sufficiently large. As it is already known that indsat(n,C3) = sat(n;C3) [36], we only consider odd cycles

of length at least five. Additionally, this construction is also H-induced-saturated when H is a modification

of an even cycle as described below.

Let C ′2k denote a cycle of length 2k with a pendant vertex, and let Ĉ2k denote an even cycle with a chord

between two vertices at distance 2 from each other (sometimes called a triangle chord, or hop).

For a given k and n ≥ (k+1)2 +2, we can write n as (k+1)t−s where t and s are integers with t ≥ k+2

and 0 ≤ s ≤ t − 3. In particular, we choose t = d n
k+1e. Using this expression for n, we give the following

construction.

Construction 6.4.1. For k ≥ 3 and n ≥ (k + 1)2 + 2, let n = (k + 1)t − s, where t = d n
k+1e ≥ k + 2 and

0 ≤ s ≤ t− 3. Let Gn,k be formed from the Cartesian product Kk+1 �Kt by removing s vertices from one

133



copy of Kt.

Proposition 6.4.2. If H ∈ {C2k−1, C ′2k, Ĉ2k} for some k ≥ 3, then the graph Gn,k in Construction 6.4.1 is

H-induced-saturated.

Proof. LetGn,k be as described in Construction 6.4.1. We first show thatGn,k isH-free forH ∈ {C2k−1, C ′2k, Ĉ2k}.

Any induced subgraph of Gn,k that is triangle-free has at most two vertices from any copy of Kk+1 or Kt.

Since 2k − 1 is odd, an induced C2k−1 would contain precisely one vertex v from some copy of Kk+1. Then

the neighbors of v must be in the same copy of Kt, which means they form a triangle. Thus, Gn,k has no

induced odd cycle larger than a triangle. Since Ĉ2k contains C2k−1 as an induced subgraph, neither C2k−1

nor Ĉ2k are induced subgraphs of Gn,k. Similarly, if Gn,k contained an induced C ′2k subgraph, then because

C ′2k is triangle-free with an odd number of vertices, there would be one copy of Kt containing precisely one

vertex v of the subgraph. If v is on the cycle, it has at least two neighbors, but these can only be other

copies of v, forming a triangle in some copy of Kk+1. If v is the pendant vertex, suppose it has neighbor u

on the cycle. Then u has some neighbor u′ in a different copy of Kt from itself, and u, u′, and v are all in

one copy of Kk+1, forming a triangle. Thus, Gn,k has no induced C ′2k.

In the remainder of this proof we view Kk+1 �Kt as a t-by-(k + 1) grid with vertices vi,j for 1 ≤ i ≤ t

and 1 ≤ j ≤ k + 1, where two vertices are adjacent if and only if they share a row or column. Note that we

can permute rows, or columns, by changing only the labeling of the vertices. We form Gn,k by removing s

vertices from a copy of Kt. Let j∗ be the index of the column with the s removed vertices. Since s ≤ t− 3

and k ≥ 3, Gn,k has at least three vertices in each row and column.

To complete this proof, we show that adding or deleting any edge of Gn,k creates an induced copy of H,

for every H ∈ {C2k−1, Ĉ2k, C
′
2k}. In order to show this, we first add or delete the edge in Kk+1 �Kt, and

find an induced copy of H in that graph. Since Gn,k is an induced subgraph of Kk+1 �Kt, it remains only

to show that by permuting rows and columns appropriately, V (H) ⊆ V (Gn,k).

Consider adding an edge to Kk+1 �Kt. Up to relabeling, we may assume that v1,1vk+1,k+1 is the added

edge, and j∗ 6= 1. Let T ′ := {vi,i+1, vi+1,i+1 : 1 ≤ i ≤ k − 2}, and let T := T ′ ∪ {v1,1, vk+1,k+1}. Then

V1 := T∪{vk−1,k+1} induces C2k−1, V2 := T∪{vk−1,k, vk−1,k+1} induces Ĉ2k, and V3 := T∪{vk−1,k, vk,k, vk,1}

induces C ′2k. Below, we show how to permute rows and columns of Gn,k so that Vi ⊆ V (Gn,k) for every

i ∈ [3]. Note that, since we assume we are adding edge v1,1vk+1,k+1, we do not permute rows or columns

containing the endpoints of this edge. That is, we leave fixed row 1, column 1, row k+ 1, and column k+ 1.

Case 6.4.2.1. j∗ = k + 1.

Since Gn,k has at least three vertices in every column, there is at least one vertex of column k + 1 that

is not in row 1 or k+ 1; then we arrange rows so that vk−1,k+1 ∈ V (Gn,k). That is, the s deleted vertices of
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column j∗ were deleted from rows other than k−1 and k+1, and we achieve this indexing by permuting only

rows from {2, . . . , k}, leaving the indexing of the added edge intact. With this new indexing, Vi ⊆ V (Gn.k)

for every i ∈ [3].

Case 6.4.2.2. k + 1 6= j∗, and v1,j∗ 6∈ V (Gn,k).

We permute columns so that j∗ = k. By the case, there exist at least 2 vertices in column j∗ that

lie in rows other than 1 and k + 1. We arrange rows so that vk−1,k, vk,k ∈ V (Gn,k). With this labeling,

Vi ∈ V (Gn,k) for every i ∈ [3].

Case 6.4.2.3. k + 1 6= j∗, and v1,j∗ ∈ V (Gn,k).

Permute columns so that j∗ = 2. Then v1,2 ∈ V (Gn,k), and there is at least one vertex in column 2 in a

row other than 1 or k + 1. Permute rows so that v2,2 ∈ V (Gn,k). Now Vi ∈ V (Gn,k) for every i ∈ [3].

Now consider deleting an edge of Kk+1 �Kt. Up to relabeling, we need only consider deleting v1,1v1,2

or v1,2v2,2. Suppose first we delete v1,1v1,2. Without loss of generality, we may assume j∗ 6= 2. Now

U1 := T ′ ∪ {v1,1, vk−1,1, v1,k} induces C2k−1; U2 := T ′ ∪ {v1,1, vk−1,1, vk−1,k, v1,k+1} induces Ĉ2k; and

U3 := T ′ ∪{v1,1, vk−1,k, vk,k, vk,k+1, v1,k+1} induces C ′2k. Below, we show how to permute rows and columns

of Gn,k so that Ui ⊆ V (Gn,k) for every i ∈ [3]. Note that, since we delete edge v1,1v1,2, we do not permute

row 1, column 1, or column 2.

Case 6.4.2.4. j∗ = 1.

There exists some vertex in column 1 other than v1,1. Permute rows so that vk−1,1 ∈ V (Gn,k). Now

Ui ∈ V (Gn,k) for every i ∈ [3].

Case 6.4.2.5. j∗ ≥ 3 and v1,j∗ ∈ V (Gn,k).

Permute columns so j∗ = k+ 1. There exists some vertex of Gn,k in column j∗ not from row 1; permute

rows so that vk,k+1 ∈ V (Gn,k). Now Ui ∈ V (Gn,k) for every i ∈ [3].

Case 6.4.2.6. j∗ ≥ 3 and v1,j∗ 6∈ V (Gn,k).

First, permute columns so that j∗ = k+1. Then U1 ∈ V (Gn,k). Second, permute columns so that j∗ = k.

There exist at least two vertices in column j∗ not in row 1, so permute rows so that vk−1,k, vk,k ∈ V (Gn,k).

Now U2, U3 ∈ V (Gn,k).

Finally, suppose we delete v1,2v2,2 from Kk+1 �Kt. Now W1 := T ′ ∪ {v1,k, vk,2, vk−1,k} induces C2k−1;

W2 := T ′ ∪ {v1,k+1, vk,2, vk−1,k, vk−1,k+1} induces Ĉ2k; and

W3 := T ′ ∪ {vk,2, vk,k, vk+1,k, vk+1,k+1, vk−1,k+1} induces C2k−1. Below, we show that by permuting rows

and columns of Gn,k (other than row 1, row 2, or column 2), we find Wi ⊆ V (Gn,k) for every i ∈ [3].
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Case 6.4.2.7. j∗ = 2

Since we deleted edge v1,2v2,2, both its endpoints are in Gn,k. There exists some vertex in column 2 other

than these; permute rows so that vk,2 ∈ V (Gn,k). Now Wi ∈ V (Gn,k) for every i ∈ [3].

Case 6.4.2.8. j∗ 6= 2

Permute columns so that j∗ = 1. Now Wi ∈ V (Gn,k) for every i ∈ [3].

We conclude the graphGn,k in Construction 6.4.1 isH-induced-saturated for everyH ∈ {C2k−1, C ′2k, Ĉ2k}

andk ≥ 3.

Corollary 6.4.3. For all k ≥ 3, if n ≥ (k + 1)2 + 2 and H ∈ {C2k−1, C ′2k, Ĉ2k}, then indsat(n,H) = 0.

In the following discussion assume H ∈ {C2k−1, C ′2k, Ĉ2k}. Using Construction 6.4.1 we obtain an upper

bound on indsat∗(n,H) with order of magnitude n2, which is trivial. We can improve this order of magnitude

slightly in the case when d
√
n e is not prime. To do so we note that if n can be written as a product of two

integers s and t that are both at least k, then the graph Ks�Kt is H-induced-saturated.

Proposition 6.4.4. Fix k ≥ 3 and choose n such that n1/4 ≥ k + 1. For H ∈ {C2k−1, C ′2k, Ĉ2k}, if d
√
n e

is divisible by some t ≥ 3, indsat∗(n,H) ≤ cn7/4 +O(n3/2) for some constant c.

Proof. As noted above, the Cartesian product of two sufficiently large cliques is H-induced-saturated. So,

consider G := Kd√n e/t�Ktd√n e. Simple computation shows n ≤ |G| ≤ n+2
√
n+1. So, |G| can be written

as n + s, where 0 ≤ s ≤ 2
√
n + 1 ≤ t

√
n − 3, as t ≥ 3. Let G′ be obtained from G by removing s vertices

from a single copy of K3d√n e as in Construction 6.4.1. An argument similar to that in Proposition 6.4.2

shows that G′ is H-induced-saturated. Observe:

e(G′) ≤ td
√
n e
(

(1/t)d
√
n e

2

)
+ (1/t)d

√
n e
(
td
√
n e

2

)
=
d
√
n e2

2

((
t+

1

t

)
d
√
n e)− 2

)
.

Since t divides d
√
n e, t ≤

√
d
√
n e ≤ c′n1/4 for some c′ > 1. Using this and d

√
n e ≤

√
n + 1 gives

e(G′) ≤ c′

2 n
7/4 +O(n3/2).

Considering odd cycles points out another property of the induced saturation number. That is, if

indsat(n,H) = 0 for a particular n, it is not necessarily the case that indsat(k,H) = 0 for all k > n.

For example, Construction 6.4.1 shows indsat(n,C5) = 0 for n = 9 and n ≥ 12. However, a computer search

showed that for n = 10 and n = 11, we have indsat(n,C5) > 0. (A C5-induced-saturated trigraph on 10

vertices with one gray edge is shown in Figure 6.5, so that indsat(10, C5) = 1.)
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v

v′

Figure 6.5: This trigraph, with the gray edge vv′, is C5-induced-saturated.

The fact that, for sufficiently large n, indsat(n,H) = 0 when H is an odd cycle or a modification of an even

cycle raises the question of whether a similar construction exists for even cycles. Note that indsat(n,C4) = 0

for sufficiently large n, and indsat(n,C8) = 0 for a narrow interval of values for n. If indsat(n,C8) > 0 for

sufficiently large n, this would be the first known example of a graph H with induced saturation number

zero for a number of non-trivial n, but not for large n. Conversely, if indsat(n,C8) = 0 for all sufficiently

large n, this would make the case of even cycles all the more interesting. In particular, is indsat(n,C6) = 0

for sufficiently large n? Is there some condition on k that predicts whether indsat(n,C2k) = 0?

Further resuts regarding graphs with induced saturation number zero can be found in [2]. In particular,

we prove indsat(n,K1,k) = 0 for all k ≥ 3 and n sufficiently large. There is an in-depth discussion of

indsat∗(n,K1,3), and an extension of the definiton of induced saturation to forbidden families of graphs.
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