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Abstract 

Regulation of gene expression is an important early step in controlling every biological process that 

underlies the function of living organisms. Even though gene expression may be regulated in several 

stages, the modulation occurs mostly at the primary stage known as “transcription”. Teasing out the 

details of transcriptional regulation is therefore a core focus of biological research. Transcriptional 

regulation of gene expression is dictated by regulatory DNA sequences, often called cis-regulatory 

modules (CRM; also known as “enhancer”), that contain specific binding sites for regulatory proteins 

(transcription factors, TF). The assembly of TFs bound on a CRM drives the desired expression level of the 

gene associated with the CRM. As the abundance of TFs vary across different cell types, the expression 

level of the gene, also termed as the “readout” of the CRM, varies accordingly and results in the 

aforementioned control over biological processes. The rules, collectively known as the “cis-regulatory 

logic”, to predict gene expression level given information about CRMs and TFs, however, are unclear. 

Decades of experimental studies have hypothesized mechanisms about parts of this regulatory process 

(e.g., about the influence of TF-TF interactions), but a comprehensive study of cis-regulatory logic is 

feasible only through computational models. The subject of this thesis is to develop mechanistic models 

of gene expression from regulatory sequences and use the models to understand such details of the 

system that are difficult to assess experimentally.  

The first part of this thesis develops a model that integrates the regulatory effect of signaling pathways 

with that of sequence-bound TFs to understand the expression pattern of a gene from its CRM. Given the 

various types of molecular interactions that the model needs to capture, it is both complex in structure 

and rich in the number of parameters. Similarly complex models commonly used in other disciplines, from 

signaling networks to climatology, have been shown to fit many distinct parameterizations that are 

equally consistent with data but might represent disparate mechanistic hypotheses. Whether this is also 

the case for models of cis-regulation has never been investigated, with the standard practice in this realm 

being to report a single or a few best-fit models. We demonstrate here – taking the Drosophila ind gene 

as an example – that gene expression modeling from cis-regulatory sequences may suffer from incomplete 

and even incorrect conclusions if one adheres to this current practice. We construct an ensemble of 

models by systematically exploring the entire parameter space and leveraging both wild-type data and 

various perturbation experiments, and make statistical inferences from the ensemble about detail 

regulatory mechanisms of ind. Years of genetic experiments have put forth an assortment of hypotheses 

about ind regulation. We use our modeling approach to show how a mechanism involving MAPK induced 

attenuation in the DNA binding affinity of Capicua and the use of low-affinity Dorsal binding sites may 

provide a coherent explanation of ind regulation. Also, we quantitatively predict and experimentally 

validate the role of the “pioneer factor” Zelda in activating ind. Finally, we discuss disparate hypotheses 

that are supported by our ensemble of models and will need future experimentation for a complete 

understanding of ind regulation.  

The second part of this thesis addresses a fundamental goal of computational biology, namely that of 

modeling a gene’s expression from its intergenic locus and trans-regulatory context. Owing to the 

distributed nature of cis-regulatory information and the poorly understood mechanisms that integrate 
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such information, gene locus modeling is a more challenging task than modeling individual enhancers. 

Here we report the first quantitative model of a gene’s expression pattern as a function of its locus. We 

model the expression readout of a locus in two tiers: 1) combinatorial regulation by transcription factors 

bound to each enhancer is predicted by a thermodynamics-based model and 2) independent 

contributions from multiple enhancers are linearly combined to fit the gene expression pattern. The 

model does not require any prior knowledge about enhancers contributing toward a gene’s expression. 

We demonstrate that the model captures the complex multi-domain expression patterns of anterior-

posterior patterning genes in the early Drosophila embryo. Altogether, we model the expression patterns 

of 27 genes; these include several gap genes, pair-rule genes, and anterior, posterior, trunk, and terminal 

genes. We find that the model-selected enhancers for each gene overlap strongly with its experimentally 

characterized enhancers. Our findings also suggest the presence of sequence-segments in the locus that 

would contribute ectopic expression patterns and hence were “shut down” by the model. We applied our 

model to identify the transcription factors responsible for forming the stripe boundaries of the studied 

genes. The resulting network of regulatory interactions exhibits a high level of agreement with known 

regulatory influences on the target genes. Finally, we analyzed whether and why our assumption of 

enhancer independence was necessary for the genes we studied. We found a deterioration of expression 

when binding sites in one enhancer were allowed to influence the readout of another enhancer. Thus, 

interference between enhancer activities was a possible factor necessitating enhancer independence in 

our model. 

The third part of this thesis applies the aforementioned models to two novel datasets. The first dataset 

was created by fusing two well-studied CRMs of the even-skipped (eve) gene in Drosophila. The fused 

constructs differ in the way the CRMs’ orientation, order, and intervening spacing are varied. Interestingly, 

the two constituent CRMs regulate eve expression by using the same TFs, although binding affinities (i.e., 

strength) of the repressor sites in the two CRMs are different – an observation that has been implicated 

to help the CRMs drive expression in two distinct domains (each domain consists of two stripes of eve) 

when they act in their endogenous context. However, the fact that these two CRMs harbor sites for the 

same TFs makes it difficult to predict the readouts of the constructs in our dataset. In particular, readouts 

of these constructs show some subtle aspects that essentially challenge the conventional models of 

information integration from sequences and suggest that a different mechanism may be necessary to 

explain these observations. Our modeling of this novel dataset suggests that the conventional assumption 

that relatively short DNA sequences, e.g., CRMs, do not comprise smaller “independent” regulatory 

sequences may not be true – since the lengths of the fused constructs are comparable to typical CRMs 

and their readouts can be modeled by assuming the existence of smaller independent regulatory 

segments. The second dataset modeled in this part of the thesis features five genes that control the 

growth and patterning of wing in Drosophila. Notably, ours is the first attempt to link regulatory sequences 

and the related molecular details to the growth and scaling of an organ. In course of fitting this dataset, 

we identify the important regulatory role of a TF called Scalloped (Sd) and speculate on Sd’s role in 

assuring that the expression domains of the studied genes scale with wing growth. We also use our models 

to identify novel regulatory sequences of these genes and to answer several questions that were left open 

in the experimental studies that attempted first to understand the cis-regulatory logic for these genes.   
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Chapter 1  

Introduction 

Cellular and organismal processes depend critically on the establishment of complex gene expression 

patterns at precise times and spatial locations (Davidson 2006). Mis-regulation is increasingly implicated 

in a broad range of disease states, and changes in gene expression underlie morphological differences 

between species (Maurano, Humbert et al. 2012). The information for directing complex gene expression 

patterns is encoded in regulatory DNA sequences, also known as cis-regulatory modules (CRM) or 

enhancers. Genes exhibiting complex expression patterns (in temporal and/or spatial domain) are 

typically regulated by multiple CRMs; each CRM regulates the corresponding gene’s expression in a 

distinct spatio-temporal context. The regulatory control of a CRM is conferred by an assembly of 

transcription factor (TF) molecules that bind to their cognate sites on the CRM and control the activity of 

the molecular complexes (referred to as the basal transcription machinery, BTM) that transcribe the 

corresponding gene (Ptashne 2002) (Fig. 1.1). 

Decades of genetic experiments have revealed that assembly of TFs on a CRM is not sufficient to achieve 

regulatory control. Precise regulatory control is achieved by constraining the strength and/or the 

arrangement of binding sites on a CRM, and it depends on how TFs interact with each other, with other 

molecular species (e.g., molecules in signaling pathways), and with the BTM. Essentially, regulatory 

control of gene expression is the outcome of a “transcriptional program” that follows a “cis-regulatory 

logic” (Levo and Segal 2014, Weingarten-Gabbay and Segal 2014) (Fig. 1.2). Given the central role of gene 

expression regulation in many biological processes, a predictive and quantitative understanding of the cis-

regulatory logic is desirable. Such an understanding would allow us to go beyond merely identifying the 

TFs and CRMs that are involved in a biological process, and would replace the existing qualitative and 

phenomenological descriptions with a mechanistic view of the process that integrates the components 

that are involved into realistic mechanistic models (Fig. 1.3). Models of gene expression from CRMs – aptly 

known as sequence-to-expression models – thus have direct applications in comparative genomics, 

identification of functional SNPs in GWAS and eQTL analyses, and design of sequences in synthetic biology 

and gene therapy (Levo and Segal 2014). This thesis aims at building computational models of this genre 

and applying them on quantitative data of gene expression during early embryonic development of 

Drosophila melanogaster (fruitfly). 

As transcriptional regulation across different organisms uses the same types of molecules, which interact 

according to the universal laws of physical chemistry, the basic rules of our models apply broadly. Indeed, 

different mechanistic aspects modeled here were shown functional in bacteria (Bintu, Buchler et al. 2005), 

yeast (Kaplan, Moore et al. 2009), flies (Segal, Raveh-Sadka et al. 2008) and mammals (Sinha, Adler et al. 

2008). Recent thrust to generate large amounts of data on how transcription factors bind DNA sequences 

and how these binding events produce expression patterns (Roy, Ernst et al. 2010) has paved the way to 

build the class of quantitative models we opt for. Furthermore, high-throughput assays (e.g., STARR-Seq) 

(Sharon, Kalma et al. 2012, Arnold, Gerlach et al. 2013) are cataloguing the expression patterns driven by 

almost any sequence in the genome – enabling tests to probe the extent to which these models may 

explain cis-regulatory logic and to identify the necessary modifications toward building more realistic 
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models. In the rest of this chapter, we introduce four such projects where we have worked with the 

aforementioned goal to develop and apply models of transcriptional regulation from regulatory 

sequences. 

1.1 An Ensemble Approach in Sequence-to-Expression Modeling: Application in Eliciting 

the Cis-Regulation of a Neuro-Ectodermal Gene in Drosophila 

The cis-regulatory logic that drives the early expression of the intermediate neuroblasts defective (ind) 

gene in Drosophila has remained elusive to date (Stathopoulos and Levine 2005, Garcia and Stathopoulos 

2011). The ind gene is a classic example of how a precise expression domain results from combinatorial 

interaction between graded and uniformly expressed TFs and their interplay with activating input from 

the MAPK signaling pathway. Our objective in this work was to develop a mechanistically rich model to 

capture the possible interactions between the regulators of ind, and explore the entire parameter space 

for models that may be considered reasonably good agreements with the data on ind regulation. The 

latter goal is justified from several recent works that argue that conventional approaches of identifying a 

single model by likelihood-maximization techniques may fail to capture the most plausible mechanistic 

hypothesis underlying the data. As such, we go beyond seeking the model that provides the best 

agreement with data to computing model ensembles and identifying all possible explanations of the data 

(Janssens, Hou et al. 2006, Parker, White et al. 2011, Kim, Martinez et al. 2013). This also required us to 

deal with a second challenge, namely to exploit the identified models to reveal diverse yet plausible 

mechanistic explanations of the available data, which in turn can led to systematic design of future 

experiments. 

More specifically, we performed here a systematic exploration – following the full factorial sampling 

strategy – of the entire parameter space of our proposed cis-regulatory model for ind and identified many 

different parameter combinations that are equally good in explaining the wild-type expression data. Next, 

we used these numerous models to predict the gene’s expression pattern under various cis- and trans-

perturbations for which data is available. Only models that survive this test of prediction were retained 

for further analyses. The resulting ensemble of models unanimously explains several previously reported 

observations and provides novel insights about the gene’s regulation. Importantly, by examining the 

differences among these models, either in parameter values or in terms of their prediction on new 

perturbation situations, we were able to identify the remaining uncertainties in our understanding of the 

underlying cis-regulatory logic and could provide suggestions for future experimental investigations so as 

to obtain a complete and predictive quantitative model of the gene’s regulation. 

Several biological insights from this study are as follows. First, we show that a novel mechanism involving 

ERK-dependent relief of ind repression by Capicua (Cic), proposed recently in studies of EGFR signaling in 

cultured human cells, likely plays an important role in this gene’s regulation. We explain how Cic 

repression can set the dorsal boundary of ind in the blastoderm stage embryo, even though Cic nuclear 

concentration is constant across the D/V axis – this has been one of the least understood aspects of ind 

regulation and is now an elegant example of how extracellular signaling may confer transcriptional 

precision by acting at the sequence level. Secondly, we offer a comprehensive picture of Dl and Zld binding 

sites in the ind CRM and their relative roles, with an explanation of why a recent study (Garcia and 
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Stathopoulos 2011) found no significant change in ind expression upon mutating a high-affinity Dl site in 

the ind CRM, even though prior evidence suggests Dl as a major activator of this gene. In particular, we 

demonstrated the importance of the weak binding sites of Dl in activating ind – a question that is of much 

interest at present due to an increasing appreciation of the role of weak TF sites in evolution and 

developmental precision. Along the same lines, we also predicted and experimentally verified a reduction 

in ind expression upon Zld site mutagenesis. Finally, based on our ensemble models we proposed a set of 

experiments which can reduce the remaining uncertainty in ind regulation. 

1.2 Multi-Tier Models of Gene Expression from Intergenic sequences or “Loci” 

While state of the art sequence-to-expression models focus on gene expression modeling from 

experimentally characterized CRMs, we took here the first step toward the broader goal of predicting the 

expression readout of arbitrary genomic sequences. This first step involves understanding the 

mechanisms of how the sequence of a gene’s locus may regulate the entire expression pattern of the 

gene. We decided here not to use any a priori knowledge about the CRMs of the gene, since an important 

goal here was to understand the role of an entire locus in driving the expression pattern of a gene despite 

the fact that a minimal set of CRMs is often sufficient to capture all aspects of the expression pattern. The 

first challenge here was therefore to deal with the unknown locations of CRMs in a locus. A second major 

challenge in this work was to model the mechanisms that integrate outputs from distinct CRMs into the 

endogenous gene expression. Moreover, when the locus harbors multiple CRMs with similar readouts, as 

has been suggested by the discovery of “shadow CRMs” (Hong, Hendrix et al. 2008), we attempted to 

explain how to take into account the contributions from all of them.  

To address the above challenges, we developed here GEMSTAT-GL (GEMSTAT-Gene Locus), a quantitative 

model of a gene’s expression pattern as a function of the sequence of its entire locus. We focused on the 

expression of the genes even-skipped, hairy, runt, and giant in the developmental stage following the 

maternal to zygotic transition in early Drosophila embryos. In this stage, each of these genes has a multi 

stripe expression pattern along the A/P axis that is known to be controlled by multiple enhancers within 

the locus, and is thus an ideal test for our model. We started with our statistical thermodynamics-based 

model GEMSTAT that was shown previously to accurately model ~40 enhancers involved in A/P patterning 

(He, Samee et al. 2010, Samee and Sinha 2013). Following conventional wisdom (Howard, Ingham et al. 

1988, Howard and Struhl 1990, Ishihara, Sato et al. 2008, Perry, Boettiger et al. 2011), we then framed 

our working hypothesis that the expression readout of an entire gene locus is two tiered – sites within 

each enhancer act together to produce that enhancer’s contribution, and contributions from multiple 

enhancers are combined via yet unknown rules to produce the gene’s expression pattern. Pursuing this 

hypothesis, we showed that a gene’s expression can be modeled as a weighted sum of expression driven 

by several enhancers within its locus, where each enhancer’s output is predicted by the thermodynamics-

based GEMSTAT model. From the intergenic locus of each gene, our model automatically selects a handful 

of segments that together generate the gene’s expression. In order to demonstrate the broader 

applicability of GEMSTAT-GL, we next used it to model the expression patterns of 23 additional genes in 

early Drosophila embryo. From the intergenic locus of each gene, our model automatically selected one 

or a handful of segments that together generated the gene’s expression. The selected segments were 
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found to overlap CRMs known to regulate the gene, even though the model was not informed about these 

CRMs.  

An immediate practical benefit of our model is the automatic discovery of candidate CRMs in the locus, 

along with accurate assignments of regulatory activity to each CRM. This goes one step beyond our 

previous work (Kazemian, Blatti et al. 2010) where CRMs were annotated based on their pattern 

generating potential. The new method ensures that activities of multiple CRMs in the locus can be 

aggregated to match the gene’s expression profile. Also, since GEMSTAT-GL allows model parameters to 

be trained simultaneously with the discovery of CRMs in a gene’s locus, the assignment of regulatory 

activity to CRMs is empirically more accurate than those reported in (Kazemian, Blatti et al. 2010). We 

performed in silico knock-downs of TFs and identified the TFs responsible for the formation of stripe 

boundaries in A/P expression patterns of these genes. The resulting network of regulatory interactions 

exhibits a very high level of agreement with known regulatory influences on the target genes, illustrating 

the potential of the model-based approach for unraveling regulatory networks. We also developed a 

method to investigate whether and why the assumed independence of CRMs was necessary in our model. 

We found that interaction or “cross-talk” (Kirstein, Sanz et al. 1996, Yao, Phin et al. 2008, Prazak, Fujioka 

et al. 2010) between the CRMs of a gene is detrimental to our model’s fits to the gene’s expression data, 

and identified cases where specific binding sites in one CRM that may interfere with another CRM’s 

readout. This suggests that in these cases the independence of CRM contributions is necessary for proper 

modeling of gene expression. We also investigated whether and how the intergenic sequence outside 

these selected segments contributes to the gene’s expression. Our findings suggest the presence of 

sequence segments in the locus that would exert an irreconcilable impact on the gene’s expression 

pattern and thus were required to be explicitly “shut down” by the model, presumably reflecting a similar 

phenomenon in vivo. 

1.3 Thermodynamic Modeling of Fused Enhancer Constructs to Reveal Novel Mechanism 

of Transcriptional Cis-Regulation 

State of the art research have shown the adequacy of cis-regulatory models that translate the strength of 

individual binding sites and the overall site content of a CRM into its expression readout (Janssens, Hou 

et al. 2006, Gertz, Siggia et al. 2009, Fakhouri, Ay et al. 2010, He, Samee et al. 2010, Parker, White et al. 

2011, Kwasnieski, Mogno et al. 2012, Kim, Martinez et al. 2013, Samee and Sinha 2013). On the other 

hand, recent computational models of intergenic loci (Samee and Sinha 2014) have also pointed to the 

possibility that the readout of an entire locus may not model the expression pattern of a gene; rather a 

locus comprises multiple active regulatory sequences that act independently and whose individual 

readouts are aggregated, while the rest of the locus remains inactive and does not affect gene expression. 

This contrast is expected given the change in the length of the modeled DNA (i.e., from CRMs which are 

~1Kb in length to loci which are ~20-90 Kb in length) and our increasing understanding of the role of 

chromatin remodeling and epigenetic modifications that delineate active regulatory sequences in a locus 

(Weingarten-Gabbay and Segal 2014). Our objective here was to probe for the length scale that gives rise 

to this dichotomy. In other words, we asked “what is the length scale beyond which a sequence has to be 
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treated as a locus, rather than a CRM”? To this end, we asked in this work an alternative and more 

tractable question: “can CRM-length sequences comprise active and inactive sequences?” 

We chose here a recent dataset of expression patterns driven by sequences that are created by fusing 

two well-studied CRMs regulating the even-skipped gene in Drosophila. We fit the statistical 

thermodynamics based GEMSTAT model on this data under various hypothesis on how the entire site 

content of a sequence may generate an observed expression pattern. This showed us the extent to which 

these different models may explain the data. We also fit the GEMSTAT-GL model and assessed whether a 

delineation of active and inactive regulatory sequences may explain the data better. Indeed, we find that 

the readouts of the sequence constructs in this data set are best explained as a linear superposition of 

independent readouts from distinct sub-elements of the construct. We find that each of the two 

component CRMs includes sub-elements that may be capable of driving expression in an approximately 

correct spatial location but to a lower level than the component CRM itself. This points to a novel 

mechanism where even CRM-length sequences may comprise distinct active and inactive sequences. 

1.4 Computational Modeling of Gene Expression in the Developing Wing Imaginal Disc in 

Drosophila 

State of the art models of organ development, e.g., those of wing development in Drosophila, focus on 

morphology of the organ but do not elicit molecular explanations at the level of regulatory sequences 

(Yin, Xiao et al. 2013, Zhang, Alber et al. 2013). Therefore, the comprehensiveness of the existing 

knowledge about cis-regulation of the genes involved in organ development and growth has never been 

assessed, although an understanding of the molecular details at the sequence level is the ultimate goal in 

every developmental investigation (Davidson 2006, Davidson 2010). We attempted in this study to link 

the expression patterns and the dynamic changes of the Drosophila wing developmental genes to their 

cis-regulatory logic.  

We studied here a dataset that comprises the set of five genes whose expression initiates the patterning 

of the Drosophila wing imaginal disc in the anterior-dorsal compartment. Of particular biological 

significance in this compartment is the development of the vein L2 from the cells that express the gene 

knirps (kni). We fit this dataset using the GEMSTAT model and use the fit models to investigate the details 

of formation of the expression patterns of the studied genes. In particular, we have applied the models to 

complement the known experimental observations on these genes and quantitatively assess various 

hypotheses of how these genes are expressed. Our analysis suggests important and novel roles for a gene 

called scalloped (sd) which has drawn attention for years as an important gene in wing development, but 

was never demonstrated quantitatively to play the hypothesized roles (Guss, Benson et al. 2013). We also 

quantitatively predict the effects of knocking-down these genes and show how our model predictions 

remain consistent with known genetic experimental results. Finally, we use the model to search for 

additional CRMs of the genes modeled in this work. 
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1.5 Figures 

Figure 1.1: The regulation of gene transcription through transcription factor (TF) molecule recruitment at 

specific regulatory sequences (CRM).  

 

Top panel: overview of steps in protein production from gene coding sequence. Bottom panel: TF assembly 

at CRM regulates the recruitment of Basal Transcription Machinery (BTM) at gene promoter, which in turn 

transcribes the gene. 
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Figure 1.2: Cis-Regulatory Control of the Drosophila even-skipped gene 

 

 

Top panel: A blastoderm-stage embryo and quantitative data extracted from it. The seven stripes show 

the seven distinct expression domains of the gene even-skipped. Middle panel: the five distinct CRMs of 

eve. Each sequence is color coded with the stripe that it regulates. Bottom panel: the five CRMs contain 

the binding sites for nine regulatory TFs and the logic to map their spatial gradients into the seven stripes 

of eve.  

  



8 
 

Figure 1.3: Framework of a sequence-to-expression model: inputs are the sequences, the sequence 

specificities of TFs, and the expression profiles of TFs which are mapped by the model to the expression 

readout of the sequences. 
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Chapter 2  

Background 

In this chapter, we will discuss some basics of modeling transcriptional cis-regulation, parameter 

optimization algorithms, and the strategy of parameter estimation through an ensemble approach. We 

will also discuss a goodness-of-fit score for scoring and ranking models of transcriptional cis-regulation. 

Some sections in this chapter are summarized from our published works, namely the sections on 

thermodynamic models (He, Samee et al. 2010, Samee and Sinha 2013), design of scoring function (Samee 

and Sinha 2013), and comparison of global and local parameter estimation techniques (Suleimenov, Ay et 

al. 2013). 

2.1 Modeling Transcription Factor Binding Specificity 

Transcription factors (TF) are regulatory proteins that identify specific DNA sequences (typically short, 6-

15 bps in length) as their binding target (Kazemian, Pham et al. 2013). In order to model the specificity of 

TF binding, one starts with a set of experimentally identified (and also aligned, if necessary) sequences 

where the TF has been found to bind in vivo. Then a matrix called position weight matrix (PWM) is 

constructed such that the element W(b, i) of the matrix specifies the score a sequence S should receive if 

the base b (b = A, C, G, or T) occurs at position i of S. One can then compute a score, Score(S|W) as 

∑b,iW(b,i)S(b,i), where S(b,i) = 1 if the i-th base in S is b, and 0 otherwise. The goal is therefore to model 

the PWM such that instances of the TFs binding sites are scored higher than random sequences. 

A common approach to this problem is to construct a probabilistic score by defining W(b, i) = log(F(b, i)) 

where F(b, i) = ∑k Sk(b,i)/N, N is the number of instances of the TFs binding site (Stormo and Zhao 2010). 

As such, it is being assumed that base occurrences at every position i follow a multinomial distribution 

with parameters F(b, i) and we are using the maximum likelihood estimates for these parameters at each 

position. Note that, the logarithm is taken in the definition of W(b,i) so that the additivity in the definition 

of Score(S|W) may be retained. To make the score discriminative against random sequences, Schneider 

et al. (Schneider, Stormo et al. 1986) proposed to model W(b, i) as the log-odds score log(F(b, i)/p(b)) 

where p(b) denotes base occurrences in the genomic background. In particular, the information content 

as each position i computed from the PWM entries W(b,i) denotes the Kullback-Leibler divergence of the 

genomic background base distribution from the multinomial distribution at i.  

Berg and von Hippel, and later Stormo and his colleagues, showed an interesting connection to the above 

definition of W(b,i) with the energy of TF-DNA binding at position i (Berg and von Hippel 1987, Stormo 

and Fields 1998) – which has made PWMs readily incorporable into biophysical models of TF-DNA binding 

and transcriptional regulation. In particular, if each position i contributes independently to the free energy 

of TF-DNA binding, and the entries W(b,i) in the PWM denotes the energy contribution of base b at 

position i, then the total binding energy E at a given site S is ∑b,iW(b,i)S(b,i), where S(b,i) = 1 if the i-th base 

in S is b, and 0 otherwise. It was shown in (Stormo and Fields 1998) that if the collection of sites used to 

build the PWM are selected based on their binding affinities, then it corresponds to the sites being 

selected from a Boltzmann distribution, and the energy contribution at a given position i by base b equates 
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log(F(b, i)/p(b)). See Fig. 2.1 for an example of a PWM and its motif “logo” that shows the KL-divergence 

(with respect to a uniform genomic background) at each base’s location. 

2.2 Thermodynamic Modeling of Transcriptional Regulation 

We discuss here a model called GEMSTAT (Gene Expression Modeling Based on Statistical 

Thermodynamics) which we proposed first in (He, Samee et al. 2010, Samee and Sinha 2013) for modeling 

gene expression from regulatory sequences. GEMSTAT estimates the probability of gene expression from 

the ensemble of all possible configurations of bound TFs and BTM. To this end GEMSTAT computes a 

“statistical weight” 𝑍𝑐 for each configuration 𝑐 from the energies of the protein-DNA, BTM-DNA, protein-

BTM, and protein-protein interactions in 𝑐 (Shea and Ackers 1985). Below we elaborate on the 

computation of 𝑍𝑐 (see Fig. 2.2). 

2.2.1 Statistical weight of a configuration 

For a configuration 𝑐, the expression for 𝑍𝑐 has terms reflecting binding of TFs to their cognate sites and 

those reflecting TF-TF interactions. If 𝑐 is a BTM-bound configuration, then 𝑍𝑐 will have additional terms 

reflecting TF-BTM interactions and the binding of BTM to promoter (Figure 1). Through these four types 

of terms, 𝑍𝑐 captures the energy of various binding and interaction events occurring in 𝑐, where the 

ground state for computing the energies is a configuration where no TF or the BTM is bound. We explain 

below how different types of binding and interaction events are accommodated in the formulation of 𝑍𝑐. 

2.2.2 TF-DNA binding 

For a given site 𝑆, the binding of a TF 𝑓 at 𝑆 contributes a statistical weight of 𝑞𝑓,𝑆 = 𝐾𝑓,𝑆[𝑓] to 𝑍𝑐. Here 

𝐾𝑓,𝑆 is the equilibrium constant of the DNA-binding reaction between 𝑓 and 𝑆, and [𝑓] is the concentration 

of 𝑓. Let 𝑆𝑚𝑎𝑥
𝑓

 denote the strongest binding site of 𝑓 and 𝐾(𝑆𝑚𝑎𝑥
𝑓
) denote the association constant of the 

TF-DNA binding reaction between 𝑓 and 𝑆𝑚𝑎𝑥
𝑓

. Then we can re-write 𝐾𝑓,𝑆 as 𝐾(𝑆𝑚𝑎𝑥
𝑓
)exp (−𝛽∆𝐸𝑓,𝑆), 

where 𝛽 = 1 𝑘𝐵𝑇
⁄ , 𝑘𝐵 is the Boltzmann constant, T is the temperature, and ∆𝐸𝑓,𝑆 denotes the “mismatch 

energy” of the site 𝑆 relative to 𝑆𝑚𝑎𝑥
𝑓

 for 𝑓. According to the theory of Berg and von Hippel (Berg and von 

Hippel 1987), we can estimate exp (−𝛽∆𝐸𝑓,𝑆) from exp (−𝐿𝐿𝑅(𝑓, 𝑆) + 𝐿𝐿𝑅(𝑓, 𝑆𝑚𝑎𝑥
𝑓
)), where 𝐿𝐿𝑅(𝑓,∙) is 

the log likelihood ratio score of a site, computed based on the known position weight matrix (PWM) of 𝑓 

and the background nucleotide distribution (Stormo 2000).  

The concentration [𝑓] of the TF 𝑓 is in arbitrary units and essentially can be re-written as 𝑣[𝑓]𝑟𝑒𝑙  where 

[𝑓]𝑟𝑒𝑙  is the concentration of 𝑓 relative to some unknown reference value 𝑣. The expression for 𝑞𝑓,𝑆 then 

becomes: 

𝑞𝑓,𝑆 = 𝐾(𝑆𝑚𝑎𝑥
𝑓
)𝑣[𝑓]𝑟𝑒𝑙  exp (𝐿𝐿𝑅(𝑓, 𝑆) − 𝐿𝐿𝑅(𝑓, 𝑆𝑚𝑎𝑥

𝑓
)) 

where both 𝐾(𝑆𝑚𝑎𝑥
𝑓
) and 𝑣 are unknown quantities. We take their product 𝐾(𝑆𝑚𝑎𝑥

𝑓
)𝑣 as a free parameter 

in our model and refer to it as the “DNA-binding parameter” for the TF 𝑓. We note that, the estimated 

values of different TFs’ DNA-binding parameters in our model are not biochemically comparable since this 
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parameter represents a product of a biochemical parameter (i.e., 𝐾(𝑆𝑚𝑎𝑥
𝑓
)) and an unknown reference 

value (i.e., 𝑣). We also note that, owing to this formulation, we can fit our model using the relative levels 

of mRNA and TF expression. 

In case the site 𝑆 is a signaling pathway response element and the signaling activity is known to attenuate 

the DNA binding affinity of 𝑓, then using the concentration of a chemical species Sgnl whose spatial 

distribution correlates with the signal’s level of activity, we model a modification of 𝑞𝑓,𝑆 as follows.  

𝑞𝑓,𝑆,Sgnl = 𝐾(𝑆𝑚𝑎𝑥
𝑓
)𝑣[𝑓]𝑟𝑒𝑙exp (𝐿𝐿𝑅(𝑓, 𝑆) − 𝐿𝐿𝑅(𝑓, 𝑆𝑚𝑎𝑥

𝑓
) − 𝜑([Sgnl])) 

We used 𝜑([dpERK]) = 𝐶 × [dpERK] in this study, where 𝐶 is a free parameter, to model an attenuation 

of the DNA binding affinity of Cic under the influence of ERK. 

2.2.3 TF-TF interaction 

If two TFs 𝑓1 and 𝑓2 interact when bound to closely located sites (with no other TF bound between them), 

as opposed to one TF binding independently of the other (Shea and Ackers 1985), then for each such 

instance of 𝑓1 and 𝑓2 bound in a configuration 𝑐, the statistical weight 𝑍𝑐 includes an extra multiplicative 

term 𝜔𝑓1,𝑓2. This term represents the energy of interaction between 𝑓1 and 𝑓2. As such, 𝜔𝑓1,𝑓2 >  1 or <  1 

depending on whether the interaction between 𝑓1 and 𝑓2 enhance or diminish their occupancy in those 

closely located sites. Note that, 𝑓1 and 𝑓2 may denote the same TF.  

2.2.4 TF-BTM interaction 

We assume each TF 𝑓 to impart on the BTM a “transcriptional effect”, which essentially represents the 

energy of interaction between 𝑓 and the BTM. As such, for each instance of 𝑓 binding to one of its cognate 

sites in a BTM-bound configuration 𝑐, the statistical weight 𝑍𝑐 includes an extra multiplicative term 𝛼𝑓. 

If 𝑓 facilitates the recruitment of BTM, then 𝑓 is a transcriptional activator and 𝛼𝑓 >  1. Similarly, 𝛼𝑓 <  1 

if 𝑓 is a transcriptional repressor.  

2.2.5 BTM-promoter binding 

We include a parameter 𝑞𝐵𝑇𝑀 in 𝑍𝑐 for every BTM-bound configuration 𝑐 to capture the energy of BTM 

binding to promoter.  

Considering all the possible binding events occurring in a configuration 𝑐, we then write the term 𝑍𝑐 as: 

𝑍𝑐 =

(

 
 
∏(𝑞𝑓,𝑆

𝜎𝑓,𝑆 ∏ 𝜔𝑓,𝑔
𝜎𝑓,𝑆×𝜎𝑔,𝑆′  

𝑆′< 𝑆 and 
𝑁(𝑆′,𝑆)=0

)

𝑆

)

 
 
(𝑞𝐵𝑇𝑀∏𝛼𝑓

𝜎𝑓,𝑆

𝑆

)

𝜎𝐵𝑇𝑀

 

Where 
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 Sites in the enhancer are ordered according to their location in a scan of the enhancer (either 5' 

to 3' or 3' to 5'),  

 𝜎𝑓,𝑆 is an indicator variable (0/1) to denote where TF 𝑓 binds to site 𝑆, 

 𝜎𝐵𝑇𝑀 is an indicator variable (0/1) to denote whether 𝑐 is a BTM-bound configuration, and 

 𝑁(𝑆′, 𝑆) denotes the number of TF-occupied sites located between two specific sites 𝑆′ and 𝑆 

where 𝑆′ < 𝑆. 

As mentioned in the Results section, we ultimately compute the probability of BTM-bound configurations, 

i.e., 

P(bound BTM) =
𝑍bound

𝑍unbound+𝑍bound
, 

where the denominator 𝑍unbound + 𝑍bound equates 𝑍, the partition function. An efficient computation 

of the partition function involves application of dynamic programming and the relevant formulations are 

given in detail in (He, Samee et al. 2010). 

2.3 Identifying Putative Binding Sites for Transcription Factors 

The above description of our thermodynamic modeling framework assumes that binding sites in a 

sequence have been annotated beforehand. In theory, such an annotation is not necessary since every k-

bp window in a CRM is a potential binding target for a TF, where k denotes the length of the TF’s motif 

(represented by a position weight matrix, PWM). However, most of these targets are weak-affinity sites 

and presumably do not represent stable and functional binding. On the other hand, regarding every k-

mer as a putative binding target will increase computational overhead in model optimization. As such, we 

apply a thresholding scheme (described below) to mark only the relatively strong binding sites of a TF and 

discard any site that fails to satisfy the threshold. In particular, to annotate a TF’s binding sites in a CRM, 

we first compute the log likelihood ratio (LLR) score of each k-bp window in the CRM, where k denotes 

the length of the TF’s motif and the two likelihoods in the ratio are computed from the PWM and a uniform 

background distribution. A window is then annotated as a binding site for the TF if the window’s LLR score 

is at least half the LLR score of the TF’s optimal site. In our experience of working with other datasets of 

Drosophila developmental gene regulation, this scheme can capture the TF’s experimentally annotated 

sites in the given CRM. The motif PWMs used in this model were all collected from the FlyFactorSurvey 

database (Zhu, Christensen et al. 2011). 

2.4 Designing Goodness of Fit Scores 

An important part of modeling gene expression is the score used to assess “goodness of fit” between 

model predictions and data. Typically, this score is also used as the objective function of the model-

training algorithm. The popular choice among the handful of quantitative models published previously 

has been either the Pearson correlation coefficient (“CC”) (Zinzen, Senger et al. 2006, Segal, Raveh-Sadka 

et al. 2008, He, Samee et al. 2010) or the sum of squared errors (“SSE”) (Janssens, Hou et al. 2006, Gertz, 
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Siggia et al. 2009, Fakhouri, Ay et al. 2010). Both scores are easy to compute and a natural choice when 

the data being modeled is a vector of expression values. However, neither CC nor SSE is sensitive to the 

shape as well as magnitude of expression, and can lead to counter-intuitive assessments of goodness-of-

fit. CC is invariant to scaling or shifts of the compared variables, as a result of which a model’s prediction 

can receive a perfect score (CC=1) even though biological intuition would dictate otherwise (see Figure 

2A). On the other hand, the SSE can lead to counter-intuitive assessments because it is insensitive to the 

sign of the difference between the actual and the predicted expression. An example scenario is shown in 

Figure 2B. In some cases, the sensitivity of SSE to the magnitude of difference between real and predicted 

expression levels can lead to undesirable situations, as shown in Fig. 2.3. These shortcomings of the CC 

and SSE scores were also discussed in our previous work (Kazemian, Blatti et al. 2010), where we proposed 

a new scheme called “Pattern Generating Potential” (PGP) for comparing gene expression profiles, and 

argued that it addresses those shortcomings.  

The PGP score was designed for binary expression profiles, i.e., where the data specifies cells or nuclei 

where the gene is expressed and where it is not. This was a reasonable assumption in that work, where 

the expression data being modeled comprised the one-dimensional enhancer readouts we mentioned in 

the previous subsection. These expression profiles were of low resolution and carried little information 

beyond the binary information about expression domains. However, the expression profiles derived from 

BDTNP are of higher resolution and include quantitative information on mRNA levels. Therefore, we built 

upon the PGP score to define the “weighted pattern generating potential’ (w-PGP) score, which serves as 

the goodness-of-fit function in this study. As explained in the following paragraph, the w-PGP score 

extends the core ideas of the PGP so as to handle quantitative (i.e., continuous valued, rather than binary) 

expression profiles. 

The PGP score rewards predicted expression in domains of expression and penalizes predicted expression 

in domains of non-expression. The final score is based on these reward and penalty terms. To be more 

specific, consider a real expression profile that specifies axial positions or “bins” where the gene is 

expressed (denoted by the set E), and bins where the gene is not expressed (set E ). The predicted 

expression profile is a vector p of expression levels (on a scale of 0 to 1), one prediction pi for each bin i. 

The reward term of PGP is then computed by considering all bins in E, and averaging the predicted 

expression pi in these bins. Similarly, the penalty term is computed by examining all bins in E  and 

averaging the predicted expression pi in these bins. The w-PGP score does not operate on binary 

expression profiles, and in place of E and E  the expression profile has an expression value ri for every bin 

i, and the predicted profile assigns a value pi to each of these bins. The amount of correctly predicted 

expression in any bin can then be defined as min(pi,ri), and in the w-PGP scheme the contribution of this 

bin to the reward term is defined as ri x min(pi,ri). In other words, the amount of correctly predicted 

expression is weighted by the real expression level in that bin. Bins with greater expression levels 

contribute more to the reward term. Similarly, the contribution of any bin to the penalty term is defined 

as (1-ri) x abs(pi-ri). The factor abs(pi-ri), which represents the amount of false prediction (either over- or 

under-prediction) is weighted by the extent of non-expression (1-ri) in that bin. Note that w-PGP is a linear 

combination of reward and penalty terms such that its value ranges between 0 (bad prediction) and 1 

(perfect prediction). 
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2.5 Parameter Optimization: Local and Global Search Algorithms 

In order to identify the optimal model parameters, one needs first to identify a suitable optimization 

algorithm. In one of our studies on this issue (Suleimenov, Ay et al. 2013), we have compared several such 

algorithms and found that given the current quality (resolution) of gene expression data, local search 

algorithms or an engineered combination thereof might be a suitable strategy. 

Local estimation techniques generally require either the calculation or approximation of the objective 

function’s derivative or a comparison of the objective function at multiple different parameter values. 

Some common local parameter estimation techniques include the Conjugate Gradient method, Newton′s 

method, and the Nelder-Mead algorithm. In two earlier thermodynamic-based modeling studies, local 

parameter estimation techniques were used (Segal, Raveh-Sadka et al. 2008, He, Samee et al. 2010). Segal 

and colleagues employed the conjugate gradient ascent and the Nelder-Mead simplex methods in an 

alternating fashion. In a later study, Sinha and colleagues applied the quasi-Newton and the Nelder-Mead 

simplex methods in an alternating fashion on a slightly different model using the same data set. The major 

drawback of using such local parameter estimation techniques is that they may lead to the discovery of 

local, not global, minima of the objective function, producing misleading results. This problem can be 

minimized if the modeler has prior knowledge of where the global optimal parameter values lie, allowing 

for an initial guess close to the global minima and thus quick convergence by a local algorithm. In many 

real-world settings, including the modeling of transcription, almost no prior knowledge of key parameter 

values is available, however. Thus, the only way to overcome the problem of getting stuck at local minima 

is to run the algorithm multiple times, with different initial parameter values, a so called multi-start 

strategy. Multiple starts with different initial parameter values were implemented in both of the studies 

mentioned above. However, this method is not very efficient, and it has been shown that for highly 

nonlinear inverse problems, local parameter estimation strategies cannot find the correct parameters 

even when run with an extremely large number (>300) of starting points (Moles, Mendes et al. 2003). 

Global parameter estimation techniques offer another path to finding global minima of a model when no 

a priori information on parameters is available. However, with these techniques, obtaining the global 

minima for a nonlinear model is still very difficult, depending on the parameter landscape, and 

computationally expensive. Both deterministic and stochastic global techniques have been developed. 

Deterministic methods such as the branch-and-bound and interval optimization methods are more 

reliable, but they are computationally very expensive and impractical for many nonlinear problems. In 

contrast, stochastic methods such as genetic algorithms, simulated annealing, and evolutionary strategies 

can more quickly find the location of global minima. These methods move through parameter space with 

some stochasticity to avoid getting “stuck” at local minima. Global convergence has been proven for 

evolutionary algorithms provided a unique global minimum exists, and a nonzero probability of reaching 

the neighborhood of that minimum from any initial starting population in a single evolutionary time step. 

Unfortunately, global optimality cannot be guaranteed for all problems due to their probabilistic nature, 

therefore multiple runs are advised. 

In the realm of stochastic techniques, evolutionary strategies (ES) have shown excellent performance in 

many studies of continuous models with large sets of estimated parameters. These strategies are inspired 
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by biological evolution, and include features such as crossover, mutation and selection. Specific 

techniques vary in the number of offspring and parents, whether mutation rates, recombination, or 

crossover are considered, and the selection strategy applied. In each ES, the “fittest individuals” (the 

parameter sets with lowest value for the objective function), have a higher probability of surviving to the 

next “generation”. Along with selection criteria, the use of mutation rates, recombination, and crossover 

allow populations of parameter sets to leave local minima to reach a global minimum. In the same study 

(Suleimenov, Ay et al. 2013), we used a version of an evolutionary strategy, the so called covariance matrix 

adaptation–evolutionary strategy (CMA–ES). Our choice was motivated by the documented success of 

CMA–ES algorithms over other global parameter estimation techniques on benchmark problems. 

Nonlinear models, such as thermodynamic-based models of gene regulation, are known to be ill-posed, 

that is, either they do not have a solution, the solution is not unique, or the solution does not depend 

continuously on the data. In these problems the parameter space is usually unknown and the complexity 

of the parameter estimation problem grows exponentially as the number of parameters increase. For this 

reason, it may be worth employing computationally expensive global parameter estimation techniques. 

However, in several recent thermodynamic-based modeling studies, local strategies rather than global 

counterparts were employed to achieve computational efficiency. It is not clear what the potential trade-

off was in these cases: the fits obtained were judged adequate, but perhaps the use of a local strategy 

had a significant effect on fits with possible misleading biological interpretations. To better understand 

the possible trade-offs in using these diverse parameter estimation approaches, it is necessary to compare 

performance on the same dataset, using the same models. Here, we test the performance of the CMA–

ES global and QN/NMS local methods, with respect to fitting parameter values in thermodynamic-based 

models of gene regulation. We compared these algorithms using both synthetic and experimental gene 

expression data. In designing the synthetic datasets, we used a score called “the derivative score” that we 

designed to score expression patterns generated from real enhancers but random parameters to score 

and identify patterns for their non-randomness. The score computes the derivative of the computed 

expression pattern at each data point and takes the average of the absolute values of these derivatives to 

quantify the amount of non-randomness of the pattern generated by the parameter.  
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2.6 Figures  

Figure 2.1: Overview of Position Weight Matrix Computation 

 

Left: sequences of binding sites, right: the matrix where each entry corresponds to the frequency of that 

corresponding base and that position and the corresponding motif logo computed from KD-divergence 

between the base frequencies and a uniform background distribution at each postion. 
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Figure 2.2: Overview of the thermodynamics based GEMSTAT model 

 

(A) GEMSTAT models the major components and their interactions involved in transcriptional regulation: 

the CRM (DNA sequence), transcription factors (TFs), and the basal transcriptional machinery (BTM). TFs 

bind at their cognate sites in the CRM and the BTM binds at the promoter. The mRNA expression level is 

determined by strength of TF-DNA interactions (at the binding sites) and TF-BTM interactions. Different 

possible interactions are shown with arrows. (B) GEMSTAT assumes that the system is at thermodynamic 

equilibrium. An exponential number of possible configurations of bound TFs and the BTM may occur in 

equilibrium. Shown are the eight possible configurations corresponding to the example shown in A. (C) 

GEMSTAT assumes the mRNA expression level is proportional to the equilibrium probability of the BTM 

binding at the promoter. Under standard statistical mechanical assumptions, equilibrium probabilities of 

configurations follow Boltzmann distribution. Shown is a hypothetical probability distribution for the 

configurations shown in B. The probability of BTM binding at promoter is computed from the probabilities 

of all BTM-bound configurations (i.e., configurations c1—c4). 
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Figure 2.3: The Weighted Pattern Generating Potential Score 

 

Illustration of the various terms involved in computing the w-PGP score. The blue and the red curves 

represent the actual and the predicted expression profiles, respectively. The profiles have 16 data points 

(bins) each. Terms of the w-PGP formulation are illustrated with respect to data point 10. 
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Chapter 3  

An Ensemble Approach to Predict Gene Expression from Regulatory 

Sequences 

3.1 Introduction 

The integration of various regulatory inputs at genomic regulatory sequences known as cis-regulatory 

modules (CRMs) is an important early step in regulating eukaryotic gene expression. CRMs harbor specific 

sites where regulatory proteins (transcription factors, TF) bind and regulate transcription of a target gene 

(Yanez-Cuna, Kvon et al. 2013). As TF abundance varies across different cell types, CRM-controlled 

expression level of the gene, also termed as the “readout” of the CRM, varies accordingly. However, the 

rules to predict gene expression level given information about CRMs and TFs, sometimes collectively 

known as the “cis-regulatory logic”, are unclear (Yanez-Cuna, Kvon et al. 2013, Weingarten-Gabbay and 

Segal 2014). Understanding the general principles of this logic and its implementation in specific biological 

contexts is one of the grand challenges in biology today. Genetic experiments often facilitate such 

investigations by eliciting isolated pieces of information, e.g., how “knocking-down” a TF affects a gene’s 

expression pattern. However, the ultimate goal is a unifying picture (model) that explains the available 

assortment of experimental results both qualitatively and quantitatively, suggests experiments to 

improve upon the current model, and is capable of predicting the gene’s expression pattern upon 

alterations of its cis- or trans-determinants. This motivates the development of quantitative models that 

map regulatory sequence to associated gene expression levels in given cellular contexts (Ay and Arnosti 

2011). We refer to such models here as “sequence-to-expression” models. Note that the formulation and 

capabilities of such models are distinct from the numerous existing attempts to reconstruct transcriptional 

regulatory networks that are based on modeling one gene’s expression as a function of other genes’ 

expression levels (Perkins, Jaeger et al. 2006).  

Transcriptional regulatory mechanisms are known to be complex (Yanez-Cuna, Kvon et al. 2013), and 

additional levels of complexity continue to be discovered (Levo and Segal 2014). Sequence-to-expression 

models must capture essential elements of this mechanistic complexity, and at the same time make 

simplifications that allow those models to be trained on the generally sparse datasets available. One of 

the simplest such modeling paradigms uses sequence-specific descriptions of binding site affinities 

(Stormo 2000) to model variable site affinities and transcription rates within an equilibrium 

thermodynamics framework (Shea and Ackers 1985). Thermodynamic models of this genre are arguably 

more realistic, yet do not use more parameters, than models where all sites of a TF are assumed to have 

the same affinity (Zinzen, Senger et al. 2006, Zinzen and Papatsenko 2007, Papatsenko and Levine 2008, 

Fakhouri, Ay et al. 2010) or only two types of affinity, viz. “strong” and “weak” (Bintu, Buchler et al. 2005, 

Gertz, Siggia et al. 2009, Parker, White et al. 2011, White, Parker et al. 2012). We previously reported one 

such sequence-to-expression model called GEMSTAT, and used it for modeling ~40 CRMs involved in 

anterior-posterior patterning in early stages of Drosophila development (He, Samee et al. 2010). 

Equilibrium thermodynamics is an established framework today for modeling transcriptional cis-

regulation (Ay and Arnosti 2011, Sherman and Cohen 2012). As mentioned above, GEMSTAT incorporates 
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sequence-specific TF-DNA interaction energy in the thermodynamic framework. It focuses on molecular 

interaction energies involving TF proteins, DNA and the basal transcriptional machinery, and uses 

statistical thermodynamics to map combinations of interactions to the probability of finding the CRM in a 

configuration supporting transcription. Changes in sequence and/or TF concentrations translate to 

changes in these interactions and consequently to changes in the rate of transcription.  

Typically, quantitative models of gene expression include free parameters whose values are learned 

during model training so as to obtain the best fit between model and data, after which this optimal model 

may be used to predict the effects of cis or trans perturbations. For instance, GEMSTAT and other models 

resort to parameter fitting to estimate equilibrium constants of TF-DNA binding and the effects of a DNA-

bound TF on gene expression. These parameters are TF-specific (1-3 parameters per TF (Zinzen, Senger et 

al. 2006, Segal, Raveh-Sadka et al. 2008, Fakhouri, Ay et al. 2010, He, Samee et al. 2010, White, Parker et 

al. 2012, Kim, Martinez et al. 2013)) and, given that typical CRMs are controlled by a handful of TFs 

(Berman, Nibu et al. 2002, Berman, Pfeiffer et al. 2004, He, Samee et al. 2010, Kazemian, Blatti et al. 2010, 

Samee and Sinha 2013), even simple models may have a considerable number of free parameters. A 

consequence of the high dimensionality of parameter space is that the model may make predictions 

consistent with available data at many distinct parameter settings. Sequence-to-expression models have 

been successfully used in the literature, but to what extent their parameters are constrained by data is 

unclear. It is entirely possible that in the typical scenario there are multiple optima in the parameter space. 

In such cases, any of the multiple optima or near-optima in the parameter space may represent the 

underlying mechanisms, within the assumed modeling framework.  

The above considerations argue for going beyond the common practice of seeking the single best fitting 

model, and instead exploring the entire parameter space for models exhibiting strong agreement with 

data. Although some related studies have found widely different parameter assignments to fit a dataset 

(Granek and Clarke 2005, Zinzen and Papatsenko 2007), the standard practice is to report one or at most 

a few best models that result after iterative improvements upon a small sample of initial random guesses 

(Janssens, Hou et al. 2006, Segal, Raveh-Sadka et al. 2008, He, Samee et al. 2010, Parker, White et al. 2011, 

Kim, Martinez et al. 2013). In this work, we performed a systematic exploration of the entire parameter 

space of the GEMSTAT model for a specific developmental gene – intermediate neuroblasts defective (ind) 

– and identified many different parameter combinations that are equally good in explaining the wild-type 

expression data. We used this diverse ensemble of models to predict the gene’s expression pattern under 

various cis- and trans-perturbations, and related the predictions to experimental data.  

The subject of our analysis is the homeobox transcription factor gene ind – a transcriptional target of the 

Dorsal (Dl) morphogen – that plays an important role in dorso-ventral (D/V) patterning of the ventral 

nerve cord in Drosophila. The embryonic spatio-temporal pattern of this gene has been accurately 

characterized (Weiss, Von Ohlen et al. 1998) and a well-delineated CRM driving its neuro-ectodermal 

expression pattern is known (Stathopoulos and Levine 2005). Prior work has revealed or suggested 

identities of its major regulatory inputs, including activation by the morphogen Dl (Hong, Hendrix et al. 

2008) and the ubiquitously expressed Zelda (Zld) (Nien, Liang et al. 2011), and repression by Snail (Sna) 

(Cowden and Levine 2003), Ventral neuroblasts defective (Vnd) (McDonald, Holbrook et al. 1998, Weiss, 

Von Ohlen et al. 1998), and Capicua (Cic) (Lim, Samper et al. 2013). Binding specificities (motifs) of these 
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TFs are also available (Zhu, Christensen et al. 2011). Furthermore, a selection of genetic perturbations and 

the resulting changes in ind expression have been reported in the literature (Stathopoulos and Levine 

2005, Garcia and Stathopoulos 2011, Lim, Samper et al. 2013). In this work, we use GEMSTAT to formally 

integrate this information about ind regulation into a quantitative description of combinatorial action by 

these known TFs and develop a predictive model to study the effects of cis- and trans-perturbations on 

ind expression.  

The parameters of our model include two special parameters (one pertaining to TF-DNA binding and one 

to the TF’s effect on transcription rate) for each of the five hypothesized TFs, a parameter for Dl-Zld 

cooperativity, and a parameter reflecting the baseline transcriptional rate. The regulatory influence of Cic 

is incorporated in a special way. Cic has a uniform dorso-ventral expression profile at the appropriate 

developmental stage, but a spatially patterned post-transcriptional modification of this protein is 

hypothesized to shape its regulatory effect on ind. In particular, a recent study (Lim, Samper et al. 2013) 

suggests that locally activated ERK reduces DNA binding by Cic, and that the resulting gradation in Cic-

DNA binding may set the dorsal boundary of ind. The strength of this reduction is unknown and is one of 

the 13 free parameters of our model. We modeled the ind enhancer sequence along with the ind 

expression pattern in wild type as well as under three different perturbations (involving the three 

repressors Sna, Vnd, Cic) to determine the extent to which the model parameters can be constrained by 

the rich data available on regulation of this gene.  

Our results can be summarized as follows. We found that a number of distinct quantitative models are 

consistent with the wild type ind pattern and that additionally modeling the gene’s response to genetic 

perturbations of repressors substantially reduces the number and diversity of plausible models. Among 

other things, these models support and quantify the hypothesized interplay between ERK and Cic in 

defining the dorsal boundary of ind expression. At the same time, the ensemble of models makes clear 

predictions about the quantitative roles of Dl and Zld, underscoring previous observations that tight 

predictions can emerge from systems biology models despite diversity in parameter assignments 

(Gutenkunst, Waterfall et al. 2007). We experimentally tested and confirmed one of these predictions, 

viz., a reduction in ind expression upon Zld site mutagenesis, demonstrating that sequence-to-expression 

models can be used to make quantitative predictions in perturbation conditions. The learned models also 

explain why a recent study (Garcia and Stathopoulos 2011) found no significant change in ind expression 

upon mutating a high-affinity Dl site in the ind CRM, even though prior evidence suggests Dl as a major 

activator of this gene. Finally, we noted examples of situations where predictions from a model ensemble 

exhibit large uncertainty, opening the door for principled approaches to design of experiments that may 

significantly reduce this uncertainty. 

In summary, we use sequence-to-expression modeling to determine what can and cannot be inferred, 

from data, about the cis-regulatory logic of a gene that is regulated by the combinatorial interplay of a 

morphogen, a signaling pathway, and both graded and uniformly expressed regulators. In doing so, we 

also hope to establish an example of how a quantitative study should proceed in developing a truly 

predictive model of gene expression from its regulatory sequences.  



22 
 

3.2 Results  

3.2.1 A model of transcriptional regulation by transcription factors and their interplay 

with signaling molecules 

In this work we modified GEMSTAT (He, Samee et al. 2010), a previously reported sequence-to-expression 

model, to study how TFs bound to the ind CRM may regulate the gene’s expression. We outline the model 

here, see Methods for the details. GEMSTAT is founded on a theory of combinatorial gene regulation first 

proposed by Shea and Ackers (Shea and Ackers 1985). The model considers the system of TF molecules 

and their cognate sites in the CRM, as well as the basal transcriptional machinery (BTM) and its binding to 

the promoter, and uses a minimal set of parameters to model the interactions among TFs, BTM and DNA 

(Fig. 3.1-A). The model includes two parameters for each TF, that quantify the TF’s DNA binding strength 

and its interaction with the BTM, respectively. Additionally, there is one parameter for each pair of TFs 

that are assumed to bind the DNA cooperatively, and one parameter to represent the basal expression 

level. All interactions are assumed to happen in thermodynamic equilibrium, which is reached much more 

rapidly than the time scale at which the transcription machinery is activated and begins producing mRNA. 

Under these assumptions, the transcription initiation rate, and hence the equilibrium level of mRNA 

transcription, is proportional to the fractional occupancy of the BTM at the promoter. The GEMSTAT 

model computes this fractional occupancy by considering all possible configurations of DNA-bound TFs 

and BTM (Fig. 3.1-B) and summing the probability of configurations where the BTM is promoter-bound 

(Fig. 3.1-C). The equilibrium probability of each configuration is computed as per the Boltzmann 

distribution (see Methods). As TF concentrations change across cell types, the probability of bound BTM 

configurations also changes, reflecting the variation of readout levels due to the change in regulator 

concentration (Fig. 3.1-D).  

An important distinction of the GEMSTAT model from several other thermodynamics-based models 

(Zinzen, Senger et al. 2006, Zinzen and Papatsenko 2007, Papatsenko and Levine 2008, Gertz, Siggia et al. 

2009, Fakhouri, Ay et al. 2010, Parker, White et al. 2011, White, Parker et al. 2012) is its ability to 

automatically account for varying affinities of a TF’s binding sites, by relating mutations from the optimal 

or ‘consensus’ site to corresponding changes in binding energy. For this, GEMSTAT implements Berg and 

von Hippel’s theory of protein-DNA interaction energetics (Berg and von Hippel 1987), using the TF’s 

position weight matrix (Stormo 2000) to predict the “mismatch energy” relative to the consensus site (see 

Methods). In this work, we further extended GEMSTAT to allow for modulation of a TF’s DNA binding 

affinity depending on the concentration of some other molecular species, which in our case (next section) 

was an extracellular signal regulated kinase. We used the newly implemented mechanism to model a “de-

repression” effect whereby the kinase attenuates a repressor TF’s DNA-binding affinity, resulting in higher 

expression levels of the regulated gene at higher levels of the kinase (Fig. 3.1-E). This allows us to model, 

for the first time, how a patterned but non DNA-binding regulatory input may shape the expression 

pattern of a specific target gene by interacting with the gene’s enhancer.  
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3.2.2 A model of transcriptional regulation of the intermediate neuroblasts defective gene  

We used the GEMSTAT model introduced above to study the details of regulation of intermediate 

neuroblasts defective (ind), a dorso-ventral (D/V) patterning gene in Drosophila. Our main goal was to 

characterize the roles played by various previously reported regulators of this gene, at a qualitative as 

well as quantitative level, infer mechanistic details of the combinatorial action of these regulators, and 

test if these details are consistent with observations made under various perturbations (cis as well as 

trans) of the system. Expression patterns of ind and its regulators are shown in Fig. 3.2-A. We begin here 

by listing the qualitative features of our model (Fig. 3.2-B), based partly on evidence from the literature. 

 Dl activates ind (Hong, Hendrix et al. 2008) while Sna and Vnd work as its repressors (McDonald, 

Holbrook et al. 1998, Weiss, Von Ohlen et al. 1998, Cowden and Levine 2003) (Fig. 3.2-B,C).  

 Zld activates ind (Nien, Liang et al. 2011)(Fig. 3.2-B,C). Additionally, we modeled Zld and Dl as 

exhibiting cooperative DNA binding at closely located binding sites. We noted the presence of five Zld 

sites in the ind CRM, with two pairs of adjacent Dl-Zld sites located < 25 bps apart (Fig. 3.2D), and 

similarly spaced Dl-Zld sites in orthologous sequences in other Drosophila species (Supplementary Fig. 

3.1), suggesting the inclusion of Dl-Zld cooperativity in our model. Dl-Zld cooperativity is expected to 

allow the uniformly expressed Zld to accentuate Dl activation and could in principle lead to a steeper 

dorsal boundary of ind expression (Kanodia, Liang et al. 2012), mirroring a similar mechanism in the 

sog CRM (Liberman and Stathopoulos 2009). Including Dl-Zld cooperativity can also act as a surrogate 

for chromatin-mediated effect of Zld on Dl activation, as suggested in our recent work (Cheng, 

Kazemian et al. 2013). On the other hand, modeling a direct activating influence of Zld would increase 

the predicted peak expression levels but also increase the basal levels commensurately. We included 

both of these mechanisms (direct activation as well as indirect activation through cooperative binding 

with Dl) as model features, whose quantitative importance was left to be learned from the data. 

 Cic acts as a repressor of ind (Fig. 3.2-B,C). It has been noted that ind expands dorsally upon mutating 

Cic sites in its CRM (Lim, Samper et al. 2013). However, Cic has a spatially uniform nuclear 

concentration during the pre-gastrulation stage (Lim, Samper et al. 2013), suggesting that an 

additional input that localizes Cic’s activity domain must be considered when modeling Cic-mediated 

repression of ind. EGFR signaling may provide this input, presumably by relieving Cic-driven repression 

of ind (Cornell and Ohlen 2000, Hong, Hendrix et al. 2008, Chopra and Levine 2009, Ajuria, Nieva et 

al. 2011, Lim, Samper et al. 2013). In particular, EGFR is known to activate ERK (Ajuria, Nieva et al. 

2011), which phosphorylates Cic and has been proposed to influence Cic activity by impeding its DNA 

binding (Dissanayake, Toth et al. 2011, Lim, Samper et al. 2013), leading to ind de-repression in a 

specific domain along the D/V axis. This is the mechanism we chose to implement here, though other 

mechanisms have also been proposed (Grimm, Sanchez Zini et al. 2012). We obtained a D/V profile of 

dual-phosphorylated ERK (dpERK) from (Lim, Samper et al. 2013) to serve as a surrogate for ERK 

activity. To model the interplay of EGFR signaling and Cic-driven repression, we modified GEMSTAT 

so that the energy of Cic-DNA binding is increased (binding affinity is reduced) to an extent 

proportional to dpERK concentration (see Methods for details). 
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We instantiated the GEMSTAT model using the above features. This model has 13 free parameters: two 

per TF representing its DNA-binding and activation/repression potency (denoted by 𝐾 and 𝛼, 

respectively), one for Dl-Zld cooperativity (denoted by 𝜔), one representing basal transcriptional activity 

(denoted by 𝑞𝐵𝑇𝑀), and one representing the attenuation of Cic’s DNA-binding energy in proportion to 

the nuclear concentration of dpERK (denoted by 𝐶𝑖𝑐𝐴𝑇𝑇). Acquisition of data on the mRNA expression 

profile of ind and the concentration profiles of the regulatory TFs and of dpERK are described in Methods. 

The free parameters of the model were trained on the wild-type D/V expression profile of ind, and 

prediction from the trained model was found to be in excellent agreement with this wild-type expression 

pattern and also to be sensitive with respect to most of the parameters (Fig. 3.2-E), indicating that the 

model is flexible enough to capture the combinatorial effect of the assumed regulators in driving ind 

expression. However, this also raised questions about the validity and utility of the trained model, such 

as: 1) Can the model correctly predict the effect of cis- and trans- perturbations to the system? 2) Is there 

a unique set of parameter values determined by the data? 3) What insights do the trained parameter 

values provide about the underlying mechanisms of ind regulation?  

3.2.3 Systematic exploration of parameter space provides an ensemble of plausible models that 

explain wild-type data 

In Fig. 3.2-E, we presented the prediction of a single model, i.e., one particular setting of parameter values, 

that accurately fits wild-type ind expression. Any assignment of values to the 13 free parameters of the 

model corresponds to a predicted readout of the ind CRM, which can then be scored against the wild-type 

ind pattern using an appropriate “goodness-of-fit” function (see Methods). A high-scoring parameter 

assignment represents a plausible quantitative model of ind regulation, and its examination may provide 

insights into the relative strengths of various regulatory functions that are combined in the model.  

Given any initialization of parameter values, the GEMSTAT program systematically and iteratively modifies 

those values and reports a locally optimal parameter setting that maximizes the goodness-of-fit. However, 

there may exist many other parameter assignments that are as good or nearly as good in terms of their 

agreement with data, and examining the one optimal assignment reported by GEMSTAT may provide a 

skewed view of plausible models (Kirk, Thorne et al. 2013). We therefore modified the GEMSTAT program 

to perform a comprehensive exploration of the multi-dimensional parameter space, with the goal of 

constructing a complete map of plausible quantitative models. To this end, we first generated a large 

number of 13-dimensional vectors (parameter assignments) as follows (Fig. 3.3-A). We partitioned each 

parameter’s allowed range into two halves, which gave us 213 compartments of the parameter space (see 

Methods). From each of these compartments, we sampled and scored 1000 vectors of parameter values 

for their goodness-of-fit to data. We next sorted the 1000 x 213, i.e., ~8 million, sampled parameter vectors 

based on their scores. Finally, for each parameter vector whose score ranks among the top 2% of unique 

scores in this sorted list (~21000 in total) we optimized the GEMSTAT model using that vector as initial 

estimate of model parameters. (See Methods for details.) The collection of optimized models can predict 

ind expression accurately in wild-type condition, with little dispersion in their predictions. We call this 

collection of models the “wild type ensemble”. Interestingly, the ~21,000 models spanned widely different 

compartments of the parameter space (652 out of 213 ≈ 8000). This suggested there might be many 
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distinct parameterizations that explain the wild-type data equally well. This is also apparent from the high 

variance and multimodality of the marginal probability densities of model parameters as estimated from 

the wild-type ensemble (Fig. 3.3-C, dotted curves). This however raises the concern that not all of these 

~21,000 models would be able to yield accurate predictions under conditions different from the wild-type. 

As described in the next subsection, upon checking model predictions under different trans- and cis-

perturbations, we could discard nearly 90% of models in the wild-type ensemble.  

3.2.4 Data from perturbation experiments narrow down the range of plausible models 

Wild-type data may not have sufficient information to constrain a highly flexible (parameter-rich) model 

into capturing the precise extent of each TF’s effect on the target gene. To further constrain the values of 

model parameters, we examined how well models in the ensemble predict the effects of the following 

genetic perturbations for which we have data from the literature. 

 Mutation of sna: the ind expression domain remains essentially unaltered in sna mutants. vnd 

expression is de-repressed in these embryos and expands ventrally such that ind stays repressed in 

the endogenous domain of sna expression. 

 Mutation of vnd: the ind expression domain expands ventrally, yet does not encroach into the 

mesoderm region, in vnd mutants (McDonald, Holbrook et al. 1998, Weiss, Von Ohlen et al. 1998).  

 Mutation of Cic binding sites in the ind CRM: the readout of the ind CRM expands dorsally, to an extent 

that matches the spatial domain of the Dl protein, upon mutating two particular Cic sites in the CRM 

(Lim, Samper et al. 2013). 

These are the only perturbation results that manifest direct effects on ind expression. (See Discussion.) 

We used our model to predict ind expression pattern upon knocking down a TF: first, the DNA-binding 

parameter of the respective TF was set to zero (to simulate the absence of the TF) and secondly, if the 

knock-down affects the expression of a second regulator of ind, then the affected expression pattern was 

replaced with its altered expression pattern in the model. The latter case occurs in sna mutants, where 

the spatial pattern of vnd and egfr are altered. To predict the effect of mutating a site, we discarded the 

site from our set of annotated TF binding sites in the ind CRM (see Methods). In evaluating trained models 

on perturbation data we focused on carefully selected domains along the D/V axis which, we reasoned, 

should provide adequate information about the accuracy of model predictions (see Methods).  

For each of the ~21,000 models in the wild-type ensemble, we evaluated its predictions on perturbation 

data and discarded every model that failed to correctly predicted the known effects. We found ~2100 

models whose predictions are accurate in both wild-type and in the three perturbation conditions (Fig. 

3.3-B). We call these models the “final ensemble”. Parameters of these models were found to be far more 

constrained than those of the initial ensemble (Fig. 3.3-C, solid curves compared to dotted curves). One 

common class of models discarded in this step was those estimating a very weak activating input from Dl 

(low KDL, αDL) to ind. In fact, this class of models overestimate the activating role of Zld on ind. Therefore, 

these models consistently and incorrectly predict a high expression level of ind in the dorsal-ectoderm 

when Cic sites are mutated, leading to their exclusion from the final ensemble and suggesting that the 

filtered models have a more delicate balance between the activator and repressor parameter values than 

one may achieve solely by fitting wild-type data.  
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The additional constraints imposed above clearly narrowed our estimates for the ranges of several 

parameter values, but did not provide a unique model of ind regulation. In particular, model parameters 

in the final ensemble are located in 42 (out of 213) different compartments of the parameter space with 

large variability remaining in the activation-related parameters, namely KZLD, αDL, αZLD, ω, qBTM, and the 

repression-related parameter αSNA. 

3.2.5 Predicting the effect of mutating activator binding sites  

We used the final ensemble models to investigate a major unanswered question about ind regulation: the 

relative contributions of its two activators – Dl and Zld. ind expression is known to become abolished in 

Dl mutants (von Ohlen and Doe 2000) and to become significantly weak in Zld mutants (Nien, Liang et al. 

2011). However, both Dl and Zld are also implicated in regulating several direct regulators of ind (e.g., sna, 

vnd, and egfr) (Hong, Hendrix et al. 2008, Nien, Liang et al. 2011), so their genetic effects on ind may be a 

combination of direct and indirect influences. To accurately characterize the direct activating roles of Dl 

and Zld one needs to mutate their binding sites in the ind CRM. A computational scan of the ind CRM using 

PWMs of Dl and Zld identifies several putative binding sites for both TFs (Fig. 3.4-A; see Methods). Below 

we describe the final ensemble predictions of mutating these activator sites and relate the predictions to 

experimental data. 

The only experimental study that examines direct effects of Dl on ind is that of Garcia and Stathopoulos 

(Garcia and Stathopoulos 2011), who mutated a Dl binding site in the ind CRM and found no significant 

change in ind expression. Predictions from our final ensemble for the particular mutation performed in 

(Garcia and Stathopoulos 2011) agree with that study, in that no effect on ind expression is predicted (Fig. 

3.4-B). Importantly, we also predict that removal of all putative Dl sites will cause an abolishment of ind 

expression (Fig. 3.4-C). We consider this as an important quantitative explanation to Garcia and 

Stathopoulos’ report, since it is impossible to predict purely based on qualitative reasoning that mutating 

the strongest Dl binding site in the CRM will have no significant effect on the gene’s expression. However, 

our results also suggest Dl as a strong activator of ind, which Garcia and Stathopoulos could not affirm 

due to their focus on a specific binding site. 

We also used the final ensemble to predict that Zld-induced activation is necessary for wild-type ind 

expression levels; specifically, that activation of ind should reduce to ~50% of its peak wild-type level upon 

mutating Zld binding sites in the CRM (Fig. 3.4-D). We tested this prediction experimentally, and noted 

that ind expression indeed reduces in transgenic embryos where Zld sites were mutated (Fig. 3.4-E). In 

particular, the mean intensity of LacZ mRNA expression upon mutating Zld sites dropped to an extent that 

agrees remarkably with our model prediction (Fig. 3.4-F). However, the expression of ind in these embryos 

appear to be noisier than its endogenous expression, leading us to speculate whether the apparent 

reduction in expression level is due to increased noise (i.e., ind is expressed either at a basal level or at a 

level comparable to its endogenous expression) or due to an overall reduction in expression level within 

the nuclei where ind is expressed. While the latter highlights a more direct transcriptional role of Zld, the 

former may be an artifact of Zld working a chromatin remodeler. Our analysis shows an overall reduction 

in the LacZ mRNA intensity (Fig. 3.4-G), suggesting a more direct involvement of Zld in activating ind. A 

possible link between this phenomenon and our model predictions is provided by the theoretical work of 
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Raser and O’Shea (Raser and O'Shea 2004). Raser and O’Shea proposed and validated a stochastic model 

(Raser and O'Shea 2004) that formulates the intrinsic noise in gene expression as a function of the rates 

at which a promoter switches between active and inactive states. For a gene where (a) promoter 

activation is infrequent relative to transcription and (b) the active promoter state is stable, their model 

predicts that a decrease in the rate of promoter activation should result in an increase in the intrinsic 

noise in gene expression. We note that, the aforementioned conditions are assumed to hold true in our 

model (more generally, in the Shea-Ackers’ model). As noted above, our model predicts ~50% reduction 

in ind expression upon mutating Zld sites. More specifically, it predicts a lower BTM occupancy at the 

promoter when Zld sites are mutated, which in the parlance of Raser and O’Shea is a reduction in the rate 

of promoter activation and should result in increased noise. Thus, our model predictions combined with 

the Raser-O’Shea model (Raser and O'Shea 2004) suggest an explanation to the observed weak and 

sporadic ind expression resulting from Zld site mutations. Importantly, our prediction of weak ind 

expression complies also with the emerging view of Zld’s function as a chromatin remodeler (Foo, Sun et 

al. 2014). In particular, one way to realize Zld’s activating role in our model is as a facilitator of Dl’s DNA 

binding (through the assumed cooperativity between Dl and Zld), a phenomenon reported recently for 

other D/V CRMs (Foo, Sun et al. 2014). To our knowledge, ours is the first model to confirm Zld’s 

involvement and quantify its role in transcriptional cis-regulation. 

3.3 Methods 

Experimental methods specific to the results discussed in this chapter are given below. 

3.4 Discussion 

Recent advances in high-throughput and high-resolution assays have made quantitative biology rife with 

hypotheses that are often impossible to reconcile. Multi-parameter computational models with complex 

structures are currently the only means to unify these hypotheses into comprehensive descriptions of the 

biological systems under study. Parameter richness and structural complexity are likely indispensable 

aspects of these models since biological systems, as we understand them today, comprise many 

components working under a variety of interactions. Concomitant to these models is the issue of 

parameter uncertainty that makes it questionable to rely, for predictive purposes, on point estimates of 

the model parameters. The same has been demonstrated for computational models of transcriptional cis-

regulation – the class of models we used in this study. In fact, an emerging perspective suggests parameter 

uncertainty is “universal” in systems biology models. Despite the concerns of parameter uncertainty, 

perhaps in response to them, ensemble modeling has been shown to be a powerful strategy for reducing 

prediction uncertainties in models of signal transduction networks (as well as those of climate change and 

protein folding). A major contribution of our work is the demonstration, for the first time, of how 

ensemble modeling may benefit a parameter-rich model of transcriptional cis-regulation, helping refine 

its parameter estimates. In doing so, we also show how such modeling can help us comprehend the 

disparate experimental evidence pertaining to regulation of the ind gene in Drosophila.  

What if we did not adopt the ensemble approach? Standard approaches of finding one or a few optimal 

solutions do not guarantee finding any of our final ensemble models, regardless of whether one adopts a 
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global parameter estimation strategy or a local strategy coupled with random restarts. Given the sheer 

number of “wrong” models we discarded upon filtering with perturbation data, all of which were 

consistent with wild-type data, it is arguable that the conventional approaches are prone to report the 

wrong models and elicit incorrect inferences thereby. (The same was reported recently (Dresch, Liu et al. 

2010) for a model of cis-regulation where random-restart based local parameter search repeatedly 

produced very similar parameter estimates (Zinzen, Senger et al. 2006).)  

The benefits of ensemble modeling may not be immediately clear given that our final ensemble models 

make relatively “tight” predictions. We note that our final ensemble embodies a catalogue of many 

possible explanations to the details of ind regulation, although in the course of computing the ensemble 

we have discarded numerous explanations that did not meet additional consistency requirements 

imposed by perturbation data. By using the final ensemble models to make in silico predictions for novel 

perturbations, one may pose and experimentally validate (or reject) further hypotheses about the roles 

of different regulators of ind. For example, the final ensemble models predict a wide variation in ind 

expression in the dorsal ectoderm region upon mutating all Cic sites in the ind CRM. (Of note, the available 

experimental result of Cic site mutation was obtained by mutating two Cic sites in the CRM.) As such, the 

final ensemble suggests mutation of all Cic sites as an immediate experiment that can clarify the extent 

of Zld-mediated activation on ind. 

An important finding in this work is the involvement of Zld in activating ind, with the broad message being 

that Zld binding is important for the establishment of wild-type ind expression. To our knowledge, this is 

the first demonstration, quantitatively under a combined modeling-experimental assessment, that Zld 

impacts transcription of a target gene. Current literature places Zld as a “potentiator” of activation by Dl, 

ostensibly by facilitating the DNA binding of Dl (Foo, Sun et al. 2014). Although cases are known where 

Zld binding sites do not follow a precise “grammar” and where the expression of Dl targets are delayed in 

zld mutants, a direct activating role of Zld has always been ruled out because none of the targets of Dl are 

expressed in genetic backgrounds lacking nuclear Dl. Our final ensemble models, however, suggest that 

both these roles of Zld may explain the available data. Thus, CRM-bound Zld may facilitate the binding of 

Dl, a proposition that supports Zld’s role as a chromatin remodeler or as a functional associate of Dl, or it 

may directly activate ind, a proposition that suggests Zld has a role similar to other direct activators of 

gene transcription (e.g., Bicoid and Dorsal). 

We also demonstrated here how weak binding sites may influence transcriptional activity. The role of Dl 

in activating ind was not clear either under the affinity-threshold model or based on the limited 

experimental results (Garcia and Stathopoulos 2011). Our analysis not only reconciled the previous 

experimental result with the existence of multiple weak Dl binding sites, but also makes a case about the 

functional importance of weak binding sites (Ramos and Barolo 2013). 

An important step in this study was the assumption that post-translational modification of CIC by ERK may 

inhibit DNA-binding by CIC and relieve ind from CIC-mediated repression in a manner that depends on 

ERK’s spatial distribution. Without such an assumption, we were not able to fit any model with reasonable 

accuracy: models would estimate very weak repressive potential of CIC, but that also caused dorsal 

expansion of ind. To our knowledge this is the first demonstration of how signal transduction may 
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influence transcriptional regulation at the sequence level (Barolo and Posakony 2002). However, our goal 

was merely to capture a de-repression effect based on spatial distribution of ERK and our specific 

mechanistic assumption, although plausible based on several recent studies (Dissanayake, Toth et al. 

2011, Lim, Samper et al. 2013), need not be the only way to achieve this de-repression. For example, 

alternative hypotheses about modifications in the influence of CIC on transcription initiation or on 

activator recruitment (without any modification in its DNA binding) are also plausible. Ascertaining any 

such mechanism is a subject for future studies.  

Finally, it is worth discussing that although the Shea-Ackers’ model assumes gene expression to be 

proportional to the total probability of BTM-bound configurations, this aspect of the model need not be 

interpreted literally. In particular, the BTM-bound configuration may be considered as a surrogate for a 

more complex biochemical state that is a pre-requisite for transcription initiation. For instance, 

recruitment of key co-activators or a critical chromatin remodeling event may be subsumed in the 

definition of the BTM-bound configuration, as long as the assumption of thermodynamic equilibrium can 

reasonably be made (Parker, White et al. 2011). Moreover, the Shea-Ackers model does not ignore events 

following BTM recruitment, which include isomerization of closed BTM-DNA complex to an open state 

and promoter clearance, among others. Rather, these events are modeled as one irreversible reaction 

with first order kinetics (Swain, Elowitz et al. 2002). The details of these events are not considered critical 

to model the effect of TFs on the overall transcription rate. 
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3.5 Figures 

Figure 3.1: Overview of thermodynamic modeling of gene expression from enhancers 

 

Overview of GEMSTAT. (A) GEMSTAT models the major components and their interactions involved in 

transcriptional regulation: the CRM (DNA sequence), transcription factors (TFs), and the basal 

transcriptional machinery (BTM). TFs bind at their cognate sites in the CRM and the BTM binds at the 

promoter. The mRNA expression level is determined by strength of TF-DNA interactions (at the binding 

sites) and TF-BTM interactions. Different possible interactions are shown with arrows. (B) GEMSTAT 

assumes that the system is at thermodynamic equilibrium. An exponential number of possible 

configurations of bound TFs and the BTM may occur in equilibrium. Shown are the eight possible 

configurations corresponding to the example shown in A. (C) GEMSTAT assumes the mRNA expression level 

is proportional to the equilibrium probability of the BTM binding at the promoter. Under standard 

statistical mechanical assumptions, equilibrium probabilities of configurations follow Boltzmann 

distribution. Shown is a hypothetical probability distribution for the configurations shown in B. The 

probability of BTM binding at promoter is computed from the probabilities of all BTM-bound 

configurations (i.e., configurations c1—c4). (D) GEMSTAT’s predictions for mRNA levels change as the TF 

concentrations change across different experimental conditions. Shown is the profile of mRNA levels 

resulting from a uniformly expressed activator (green) and a graded repressor (red). The horizontal axis 

represents different conditions, e.g., different spatial locations along Drosophila D/V axis. Also shown are 

the different equilibrium probability distributions as the TF concentrations change at different conditions 

x, y, and z. (E) A molecular species (gray) that can attenuate the DNA-binding affinity of a repressor may 

also affect the mRNA level of the gene shown in D. Shown is how one such molecular species may de-

repress the gene and result in high mRNA levels in conditions where the gene was previously repressed. 

Also shown is how the equilibrium probability distributions in D are affected due to this new molecular 

species. 
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Figure 3.2: Wild-type data and results of fitting GEMSTAT on wild-type data. 

 

(A) Lateral (left) and D/V cross-sections (right) of Drosophila embryos in blastoderm stage. Embryos were 

stained with ind mRNA (magenta) and its four non-uniform regulators, Dl (green), Vnd (blue), Sna (red), 

and dpERK (gray). Two uniform regulators Zld and Cic are not shown. (B) The assumed regulatory 

relationships between ind and its regulators. Dl and Zld activates ind, while Sna, Vnd, and Cic are 

repressors. ERK represses Cic and thus relieves ind from repression. (C) Quantitative expression profiles 

of ind and its regulators along the D/V axis (computed using fluorescence data from images of > 10 

embryos for each TF; see Methods). (D) PWMs used to scan the ind CRM and the map of TF binding sites 

matching the PWM motifs. Asterisks mark the two pairs of closely located Dl-Zld sites. (E) (i) Predicted ind 

expression from a model optimized on wild-type data. Purple and red curves show the wild-type data and 

the model prediction, respectively. (ii – iv) Sensitivity of a model (sampled from the wild-type ensemble) 

with respect to different parameters. Each panel shows the RMSE score of the model (vertical axis) as the 

corresponding parameter’s value is varied from the minimum to the maximum of its range (horizontal 

axis), keeping other parameters fixed at their optimized values. For brevity, we limit the vertical axis at 

RMSE = 0.10. 
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Figure 3.3: Outline of ensemble construction, predictions from final ensemble models, and parameter 

values before and after filtering. 

 

(A) Schematic of parameter space exploration and ensemble construction for a two-parameter model. 

Each parameter axis is partitioned into halves. A large number of samples are drawn from each of the four 

resulting compartments in the parameter space. Samples are scored according to their goodness of fit 

with respect to the data and the best samples are retained for further optimization in the second phase. 

In the second phase, we optimize one model, starting from each parameter retained in the first phase and 

the resulting optimized models constitute our wild-type ensemble. Models in the wild-type ensemble are 

filtered according to their accuracy in predicting the effects of various cis- and trans-perturbations. The 

remaining models (not crossed-out) constitute the final ensemble. (B) Predictions of the final-ensemble 

models under perturbed conditions: sna mutants (left), vnd mutants (middle), and mutation of two Cic 

sites of the ind CRM (right). Shown is the mean expression (red) and the standard error (shaded red area 

around the curve) for 1000 models sampled from the ensemble (we first sampled a compartment and 

then a model from the sampled compartment, both times uniformly at random). (C) Marginal densities of 

parameters of the wild-type and the final ensemble models (dashed and solid lines, respectively). 
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Figure 3.4: Predictions of the final ensemble models, and corresponding experimental results, upon 

mutating Dl and Zld sites in the ind CRM. 

 

Semantics of the plots are the same as that in Figure 3B. (A) A computational scan of the ind CRM finds 

nine sites matching the Dl PWM (with two clusters of overlapping sites) and five sites matching the Zld 

PWM. Green and cyan boxes mark locations of Dl and Zld sites, respectively. (B) Final ensemble models do 

not predict any significant change in ind expression when the mutations performed by Garcia and 

Stathopoulos (Garcia and Stathopoulos 2011) are introduced to the CRM. Shown are Garcia and 

Stathopoulos’ mutations and also the fact that although these mutations eliminate the targeted Dl site 

and two other sites overlapping with the targeted one, they create a new site for Dl. (C) Final ensemble 

models predict that ind expression abolishes upon removing all putative Dl sites. (D) Final ensemble models 

predict that ind expression reduces to ~50% of the peak expression upon mutating Zld sites in the ind CRM. 

The mutations are shown as gray sequences in A. (E) The ind CRM was used to drive expression that 

recapitulates the endogenous ind expression (ind1.4WT-lacZ). Zld sites located in the CRM were mutated to 

study the Zld-dependent control of ind (ind1.4zldmut-lacZ). Embryos were co-stained with ind (red) and lacZ 

(white). (F) Histograms of mean intensity values computed from 1000 bootstrapped intensity profiles of 

each type (i.e., wild-type and mutant; see Methods). Asterisks mark the bootstrapped mean values. (G) 

Smoothed histograms from the wild-type and mutant lacZ intensity profiles (see Methods), where each 

histogram was created from 20 profiles (one profile from each embryo) on 256 bins (one bin for each 

intensity value).  
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Chapter 4  

Quantitative Modeling of a Gene's Expression from Its Intergenic Locus 

4.1 Introduction 

Gene regulation is key to understanding of a variety of biological processes ranging from development 

(Davidson 2006) to disease (Epstein 2009). Transcriptional regulation is one of the best studied stages of 

gene regulation (Courey 2008), especially in the context of developmental biology (White 2001). Studies 

of early embryonic development in Drosophila (Schroeder, Pearce et al. 2004) have revealed the roles of 

various transcription factors (TFs) in setting up precise spatio-temporal gene expression patterns, and 

delineated many “enhancers” (also called “cis-regulatory modules” or “CRMs”) that mediate the activities 

of combinations of TFs. We have today a fairly detailed knowledge of the transcriptional regulatory 

network involved in patterning of the anterior-posterior (A/P) and dorso-ventral (D/V) axes in the 

blastoderm-stage Drosophila embryo (DePamphilis 2002, Arnosti 2003, Reeves and Stathopoulos 2009). 

This knowledge has spurred the development of quantitative models of gene regulation that aim to map 

the sequence of a given enhancer to the expression pattern driven by that enhancer (Buchler, Gerland et 

al. 2003, Bintu, Buchler et al. 2005, Janssens, Hou et al. 2006, Zinzen, Senger et al. 2006, Segal, Raveh-

Sadka et al. 2008, Gertz, Siggia et al. 2009, Zinzen, Girardot et al. 2009, He, Samee et al. 2010, Kazemian, 

Blatti et al. 2010). These models attempt to (1) predict the strength of TF binding to sites within the 

enhancer by using data on TF concentration and binding specificity, and (2) integrate the predicted binding 

strengths of multiple TFs into a quantitative prediction of that enhancer’s contribution to gene expression. 

The prediction may vary from one cell type to another, as TF concentrations vary. The ultimate goal is to 

build a computational tool that automatically predicts the expression of any gene in any cellular condition 

based solely on the genome sequence and a quantitative description of the trans-regulatory context (Kim, 

Martinez et al. 2013). Such a computational tool will embody our knowledge of the so-called “cis-

regulatory code” (Istrail and Davidson 2005, Ochoa-Espinosa and Small 2006). It will help us annotate the 

regulatory genome at a single nucleotide resolution, and predict the effects of genotypic changes (in cis 

or in trans) on gene expression and phenotype.  

Gene expression modeling: In this study, we consider the problem of modeling gene expression, which is 

an important intermediate step in the more ambitious goal of building the predictive tool mentioned 

above. In the modeling task, we are given the inputs (sequence and TF concentrations) and output (gene 

expression), and a model with tunable parameters is trained to map the inputs to the outputs. Such a 

model has many possible uses. Once trained on wild-type data on a gene, it can be used to predict outputs 

on non-wild-type inputs, which may include changes in cis (sequence) or trans (TF concentrations). It can 

provide a quantitative description of how a specific gene’s regulation is encoded in the sequence, and can 

precisely characterize each TF’s role in regulating the gene. Moreover, by testing alternative models in 

terms of their goodness-of-fit on the data, we can gain valuable insights into the mechanisms underlying 

gene regulation. Here, we develop such a model of gene expression, show that it fits the available data 

accurately, and demonstrate a few practical utilities of the model.  
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4.1.1 Locus-level gene expression modeling 

A key challenge in achieving the above-stated goal is to model a gene’s expression from the sequence of 

its entire intergenic region, or “locus”. While regulatory influences on a gene have been known to be 

located at great distances (> 1 Mbp) from the gene (Sagai, Hosoya et al. 2005, Visel, Rubin et al. 2009), it 

is frequently observed that much of the information about the gene’s expression pattern is encoded in its 

locus (Blackwood and Kadonaga 1998). This information is typically organized in modular units of length 

~1 Kbp, called enhancers, that are scattered in the locus, both proximal and distal to the gene, and 

upstream, downstream as well as within introns of the gene. For instance, complex gene expression 

patterns such as the seven-striped patterns of “pair-rule” genes (Fig. 4.1-A,B) in the Drosophila embryo 

are known to be determined by multiple, distinct enhancers (Fig. 4.1-C), each of which is sufficient to drive 

a discrete aspect (one or two stripes) of the gene’s overall pattern (Riddihough and Ish-Horowicz 1991, 

Andrioli, Vasisht et al. 2002). How the information encoded by multiple enhancers in a locus is integrated 

together is a largely unexplored problem. A simple hypothesis might be that the binding sites located 

across different enhancers in a gene’s locus constitute one large enhancer, interpreted by the same rules 

of combinatorial action that apply to binding sites within any single enhancer. The more common view 

(Howard and Struhl 1990, Fujioka, Emi-Sarker et al. 1999), however, is that each enhancer is interpreted 

independently of others, and readouts of multiple enhancers are superimposed or combined additively 

to produce the gene expression pattern. If this latter view is more accurate, existing sequence-to-

expression models, which have been tested on individual enhancers, may not suffice to model a gene’s 

expression from its entire intergenic region. Indeed, while there have been several successful attempts to 

model enhancer readouts, especially for A/P and D/V patterning genes in Drosophila (Buchler, Gerland et 

al. 2003, Bintu, Buchler et al. 2005, Janssens, Hou et al. 2006, Zinzen, Senger et al. 2006, Segal, Raveh-

Sadka et al. 2008, Gertz, Siggia et al. 2009, Zinzen, Girardot et al. 2009, Fakhouri, Ay et al. 2010, He, Samee 

et al. 2010, Kazemian, Blatti et al. 2010, Kim, Martinez et al. 2013), we are not aware of any computational 

model that has been successfully tested on a multi-enhancer gene locus such as those of the pair-rule 

genes (Figure 4.1). Our primary objective in this work is to implement and test such a computational 

model. A recent study by Kim et al. (Kim, Martinez et al. 2013) makes significant contributions to this 

modeling question, although the authors’ primary focus was on elucidating specific details of 

transcriptional control mechanisms. (Also see Discussion.) 

We present a computational framework for modeling the expression level of a gene from the sequence 

of its locus and a quantitative description of the trans-regulatory context (TF concentrations). We refer to 

this task as “locus-level gene expression modeling”, where a gene’s locus is considered to be the non-

coding sequences extending upstream and downstream of the gene until a neighboring gene’s boundary. 

(This includes UTRs and introns.) Our new model, called GEMSTAT-GL (“Gene Expression Modeling based 

on Statistical Thermodynamics - Gene-locus Level”), implements the two-layered, modular organization 

of cis-regulatory information mentioned above, thus reflecting the commonly held view today.  

4.1.2 Practical problems in implementing a locus-level model 

An important challenge for a model that interprets multiple enhancers in a locus and combines their 

separate readouts is the unknown location of enhancers in a locus (Halfon, Grad et al. 2002, Lifanov, 
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Makeev et al. 2003, Kazemian, Zhu et al. 2011) – an enhancer is typically ~1 Kbp long and may be located 

anywhere within the much longer (often 10-50 Kbp long) gene locus. Accurate identification of all the 

necessary enhancers in the locus will be a prerequisite for modeling gene expression. High throughput 

characterization of chromatin marks (Visel, Blow et al. 2009, Ernst, Kheradpour et al. 2011, Kharchenko, 

Alekseyenko et al. 2011, Negre, Brown et al. 2011) and computational enhancer scans (Berman, Nibu et 

al. 2002, Halfon, Grad et al. 2002, Frith, Li et al. 2003, Sinha, van Nimwegen et al. 2003, Donaldson, 

Chapman et al. 2005, Philippakis, He et al. 2005) may help overcome this challenge in the future; but 

ideally the quantitative model should automatically discover the contributing segments in the locus, 

rather than relying on enhancers identified a priori. A second major challenge in locus-level modeling is 

to model the mechanisms that integrate outputs from distinct enhancers into the endogenous gene 

expression. As noted above, a relatively simple ‘additive’ mechanism has been suggested in the literature 

(Howard, Ingham et al. 1988, Howard and Struhl 1990, Ishihara, Sato et al. 2008, Perry, Boettiger et al. 

2011), where readouts of the contributing enhancers are summed up to produce the gene expression 

pattern. However, existing quantitative models often are capable of predicting enhancer readouts only 

on a relative scale (e.g., expression pattern along the A/P axis rather than absolute expression values). As 

such, it is not clear if a simple summation of model predictions on enhancers will suffice to accurately 

predict gene expression patterns. Moreover, while a minimal set of enhancers may capture all aspects of 

the gene expression pattern, it is not clear what role the rest of the locus plays. If the locus harbors 

multiple enhancers with similar readouts, as has been suggested by the discovery of “shadow enhancers” 

(Hong, Hendrix et al. 2008, Perry, Boettiger et al. 2010, Barolo 2012), a quantitative model should take 

into account contributions from all of them. These are some of the challenges related to locus-level gene 

expression modeling that motivate our work.  

4.1.3 Overview of model development and testing 

We report here the first general-purpose quantitative model of a gene’s expression pattern as a function 

of the sequence of its entire locus. Here, “general-purpose” implies that the model can be trained on any 

given dataset with minimal or no manual parameter tuning. Admittedly, the model has to be provided 

with a complete set of candidate regulators (TFs), as well as their DNA binding motifs and relative 

concentrations, which currently limits its applicability to regulatory networks where such information is 

available. But given this information the model then automatically learns values for all of its free 

parameters, and the locations of relevant enhancers in the gene locus. As noted above, the new model 

treats the expression readout of an entire gene locus as being two tiered – 1) sites within each enhancer 

act together to produce that enhancer’s contribution, which is modeled using the thermodynamics-based 

GEMSTAT model of enhancer function (He, Samee et al. 2010), and 2) contributions from multiple 

enhancers are combined as a weighted sum to produce the gene expression profile. We initially focused 

on the expression patterns of the genes even-skipped, hairy, runt, and giant in the developmental stage 

following the maternal to zygotic transition (DePamphilis 2002) in early Drosophila melanogaster 

embryos. In this stage, each of these genes is expressed in a complex multi stripe pattern and is known to 

be regulated by multiple enhancers within its locus, and is thus an ideal test case for locus-level modeling. 

As a point of contrast to the two-tiered model of GEMSTAT-GL, we also trained the GEMSTAT model that 

was shown previously to accurately model ~40 enhancers involved in A/P patterning. We found that 
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GEMSTAT fails to model multiple sharply defined stripes and instead predicts one broad expression 

domain when it is used for locus-level modeling of each of the four genes mentioned above. In order to 

demonstrate the broader applicability of GEMSTAT-GL, we next used it to model the expression patterns 

of 23 additional genes in early Drosophila embryo (we have thus modeled all the 27 A/P genes from 

Kazemian et al. (Kazemian, Blatti et al. 2010)). From the intergenic locus of each gene, our model 

automatically selected one or a handful of segments that together generated the gene’s expression. The 

selected segments were found to overlap enhancers known to regulate the gene, even though the model 

was not informed about these enhancers. We also investigated whether and how the intergenic sequence 

outside these selected segments contributes to the gene’s expression. Our findings suggest the presence 

of sequence segments in the locus that would exert an irreconcilable impact on the gene’s expression 

pattern and thus were required to be explicitly “shut down” by the model, presumably reflecting a similar 

phenomenon in vivo.  

4.1.4 Practical utilities of the new model 

We used our models to analyze several aspects of the regulation of eve, h, run, and gt. 1) An immediate 

practical benefit of our model is the automatic discovery of candidate enhancers in the locus, along with 

accurate assignments of regulatory activity to each enhancer. This goes one step beyond our previous 

work (Kazemian, Blatti et al. 2010) where enhancers were annotated based on their pattern generating 

potential. The new method ensures that activities of multiple enhancers in the locus can be aggregated 

to match the gene’s expression profile. Also, since GEMSTAT-GL allows model parameters to be trained 

simultaneously with the discovery of enhancers in a gene’s locus, the assignment of regulatory activity to 

enhancers is empirically more accurate than those reported in (Kazemian, Blatti et al. 2010). 2) We 

performed in silico knock-downs of TFs and identified the TFs responsible for the formation of stripe 

boundaries in A/P expression patterns of these genes. The resulting network of regulatory interactions 

exhibits a very high level of agreement with known regulatory influences on the target genes, illustrating 

the potential of the model-based approach for unraveling regulatory networks. 3) We also developed a 

method to investigate whether and why the assumed independence of enhancers was necessary in our 

model. We found that interaction or ‘cross-talk’ (Kirstein, Sanz et al. 1996, Yao, Phin et al. 2008, Prazak, 

Fujioka et al. 2010, Perry, Boettiger et al. 2011) between the enhancers of a gene is detrimental to our 

model’s fits to the gene’s expression data, and identified cases where specific binding sites in one 

enhancer that may interfere with another enhancer’s readout. This suggests that in these cases the 

independence of enhancer contributions is necessary for proper modeling of gene expression. 

4.2 RESULTS 

4.2.1 A thermodynamics-based model accurately predicts readouts of the enhancers of even-

skipped, hairy, runt, and giant 

We previously reported a statistical thermodynamics-based model of enhancer function, called 

“GEMSTAT”, that was shown to successfully predict the expression patterns of ~40 enhancers of the 

anterior posterior (A/P) axis patterning system in early Drosophila embryo (He, Samee et al. 2010). 

GEMSTAT is built on basic physical principles laid out by Shea and Ackers (Shea and Ackers 1985, Buchler, 
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Gerland et al. 2003). It is the only available general purpose tool that can predict the expression readout 

of an arbitrary DNA segment and whose parameters can be trained on any given set of enhancers. It 

assumes gene expression in a cell type to be proportional to the fractional occupancy (Ay and Arnosti 

2011) of the basal transcriptional machinery at the gene promoter, and estimates this occupancy from 

the enhancer sequence and the binding specificities (motifs) and concentrations of TFs in that cell type. 

Due to its previous successful application to individual enhancers and due to our extensive experience 

with it, GEMSTAT was a natural initial choice for modeling a gene locus. We made a major modification to 

GEMSTAT’s objective function, which is used to compare predicted and real expression patterns: instead 

of the “root mean square error” function (He, Samee et al. 2010), it now uses a “weighted Pattern 

Generating Potential” (w-PGP) function (Samee and Sinha 2013) that was designed specifically for 

comparing spatial gene expression patterns. (See Chapter 2.) 

Before using GEMSTAT to model the entire locus, we sought to confirm if it accurately models the 

characterized enhancers of the genes of interest in this study. We first focused on four genes in the early 

Drosophila embryo, namely even-skipped (eve), hairy (h), runt (run), and giant (gt). The multi-stripe 

patterns of these genes (e.g., Fig. 4.1-A,B) are among the first manifestations of complex combinatorial 

regulation in the Drosophila embryo (Reinitz and Sharp 1995). These genes are initially regulated by an 

interplay of maternally deposited proteins and their immediate regulatory targets (DePamphilis 2002), 

and their expression is later stabilized through more complex mechanisms including auto-(Harding, Hoey 

et al. 1989, Jiang, Hoey et al. 1991) and cross-regulation (Harding, Rushlow et al. 1986). Due to the 

complexity and multi-enhancer origins of their expression patterns and due to availability of high 

resolution expression data (Pisarev, Poustelnikova et al. 2009), these four genes were chosen as the 

primary subject of our study. A total of 18 early functioning enhancers have been reported in the literature 

for eve, h, run, and gt – 5 for eve (Fig. 4.1-C), 7 for h, 3 for run, and 3 for gt – each responsible for some 

discrete aspect (typically one or two “stripes”) of the respective gene’s pattern during early stages of 

development. Thus, for each gene our dataset included the sequences and known expression readouts of 

each enhancer, and the DNA motifs and A/P concentration profiles of nine TFs – BCD, CAD, ZLD, GT, HB, 

KNI, KR, TLL, and SLP (Fig. 4.1-D) – that are known to regulate expression at this stage of development 

(DePamphilis 2002, Harrison, Li et al. 2011, Nien, Liang et al. 2011). For each gene, GEMSTAT learns one 

set of parameters so as to maximize the agreement between predicted and known expression profiles of 

all enhancers of a gene according to the w-PGP metric (see Methods). As shown in Fig. 4.1-E, readouts of 

known enhancers were modeled accurately for each of the four genes, suggesting that the GEMSTAT 

model captures the combinatorial action of multiple, heterotypic binding sites in those enhancers. (The 

enhancers responsible for stripes 2, 4, and 6 of run are not known.) This exercise is shown schematically 

in Fig. 4.2-A. We used a constrained parameter estimation strategy here to guard against over-fitting. (See 

Methods.)  

4.2.2 Intergenic locus readout under the thermodynamic model does not agree with multi-

stripe expression pattern 

Having confirmed that GEMSTAT can model enhancer readouts accurately, we next tested if GEMSTAT 

can model the multi-stripe patterns of the genes of interest from their respective intergenic regions (Fig. 
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4.2-B). By doing so, we hoped to answer the following question raised in the introductory section: Do 

the rules for interpreting a collection of binding sites in an enhancer apply unchanged to the larger 

collection of sites present throughout the locus? The intergenic region or “locus” was defined here as 

the sequence bounded by the immediate neighboring genes on either side (Fig. 4.1-C), and was of length 

17 Kbp, 68 Kbp, 58 Kbp, and 17 Kbp for eve, h, run, and gt, respectively. 

We performed two exercises, under different assumptions about the range of regulatory influence of 

repressors. In the first exercise, we assumed that repressor molecules bound to their cognate binding 

sites can directly affect the transcriptional machinery (“DIRECT INTERACTION” mode of GEMSTAT (He, 

Samee et al. 2010)). However, GEMSTAT was unable to find any set of parameters for which the predicted 

gene expression profiles match the multi-stripe profiles. One possible explanation for this failure is the 

phenomenon of “short range repression” (SRR). Some of the repressors of this regulatory system (e.g., 

GT, KNI, and KR) are known to act over short ranges only, i.e., their binding sites mediate a repressive 

action only if located within 100-150 bp of activator sites (Fakhouri, Ay et al. 2010). Therefore, in our 

second set of tests we trained GEMSTAT in the “SRR” mode (He, Samee et al. 2010), which captures short 

range repression, on each gene’s locus (Fig. 4.2-C). However, this test was also unsuccessful, i.e., no 

parameter setting was found for which predicted expression profiles match the real gene expression 

profiles. We note that all of these failed experiments were performed with an unconstrained parameter 

estimation strategy (which is GEMSTAT’s default strategy, see Methods). Therefore, failures of these 

experiments were presumably not due to shortcomings of the parameter optimization algorithm. 

The finding that GEMSTAT successfully models enhancer functions but fails on the entire locus has at least 

two possible explanations. The first explanation is that binding sites within certain segments in the locus 

contribute to gene expression while sites outside of these segments do not contribute, and their inclusion 

in the model is somehow detrimental to the goodness-of-fit. To test this, we concatenated the known 

enhancers of each gene (Fig. 4.2-D) and searched for the best fit between GEMSTAT predictions and data. 

No satisfactory fit was found, suggesting that the above explanation is not sufficient. A second explanation 

for the failure of GEMSTAT on locus-level modeling has to do with the way GEMSTAT models the 

sequence. It computes the readout as a single non-linear function of (the strengths of) all binding sites in 

the sequence. Perhaps the readout of the locus is not best described as computing this function on all 

sites in the locus, even though the readout of individual enhancers does conform to this model. An 

emerging hypothesis was that local clusters of sites act together in ways captured by the GEMSTAT model 

(as demonstrated by the enhancer modeling exercise above) but contributions from different clusters of 

sites do not interfere with each other and these clusters should not be interpreted together. This 

hypothesis reflects the conventional wisdom about cis-regulatory architecture, and was reached here on 

the basis of the failed modeling exercises described above. We explored this hypothesis next, within a 

modeling framework, and found it being supported by all the genes modeled in this work. 

4.2.3 A two-tiered model based on GEMSTAT accurately predicts expression from the entire 

gene locus 

Our working hypothesis now was that distinct segments in the gene locus are interpreted separately based 

on the collection of sites within each segment, and their individual readouts are then aggregated to 
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produce the overall pattern. Thus, it presents a “two-tiered” gene expression model. The main challenges 

in formulating and training such a model are: (i) determining the segments whose readouts are 

aggregated, and (ii) choosing an appropriate aggregator function. The quantitative model may not assume 

prior knowledge of enhancers in the locus since such a strategy is not generalizable to poorly characterized 

loci. Gene expression profiles should be modeled solely from the gene locus and TF data (concentrations 

and motifs). 

Pursuing the above hypothesis, we implemented a two-tiered model that uses contributions from a 

number of sequence windows in the locus, and predicts gene expression as a weighted sum of these 

contributions (Fig. 4.2 E). We call this new model “GEMSTAT-GL”, with “GL” abbreviating for “gene-locus 

level”. The sequence windows were allowed to be of varying lengths, even mutually overlapping if 

necessary, and their separate readouts were predicted using GEMSTAT. The number and locations of 

contributing sequence windows, as well as the weight of each window’s contribution were left to be 

automatically discovered during model training. Model training was performed iteratively, with a new 

sequence window being included for contributing to gene expression only if its inclusion significantly 

improved the agreement between predicted and real expression profiles. In this way, the complexity of 

the model was kept under control. Details of this two tiered model and its parameter estimation 

procedure are described in Methods. Roughly speaking, this procedure (a) finds a window whose 

GEMSTAT readout matches one aspect (e.g., a stripe) of the gene expression pattern, (b) tests if a 

weighted summation of this window’s readout and the readouts of already selected windows improves 

the overall prediction, and (c) includes the window if such an improvement is noted. The model 

parameters were fit separately for each gene; hence we adopted a “constrained” parameter estimation 

strategy to avoid over-fitting (see Methods and Discussion).  

Predictions from the GEMSTAT-GL model agreed very well with the real expression profiles of each of the 

four target genes, eve, h, run, and gt (Fig. 4.3-A-D). For instance, we noted that the seven-stripes of eve 

and h expression were faithfully captured by the model (Fig. 4.3-A,B), while the seven-striped pattern of 

run was well approximated by a six-striped predicted pattern, with the model failing to separate stripes 4 

and 5. Both domains of gt expression and their experimentally characterized assignments to three 

different enhancers were reproduced by the model. The agreement between model and data seen here 

for the eve and h stripes is qualitatively superior to corresponding fits in previous work on enhancer 

modeling (Segal, Raveh-Sadka et al. 2008, He, Samee et al. 2010), and this may be attributed to the fact 

that GEMSTAT-GL fits parameters on each gene separately. However, subsequent control experiments 

(described next) largely ruled out the possibility of obtaining such accurate models through over-fitting 

and highlighted the significance of the reported models. From each gene’s locus, the model chose a small 

number of segments (at most seven) in the first tier before aggregating their GEMSTAT-based readouts in 

the second tier. The segments selected from a locus received comparable weights, with their values 

differing by at most two-fold. Moreover, these automatically chosen segments showed strong overlap 

with previously characterized enhancers of the respective genes (Fig. 4.3-A-D), even though the enhancers 

were not known to the model training procedure. In particular, of the 21 regulatory segments chosen 

from the four gene loci, 16 overlapped with REDFly enhancers (Gallo, Gerrard et al. 2011).  
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This initial success of the model motivated us further to test its generalizability. We therefore applied the 

model to all 27 A/P genes considered in (Kazemian, Blatti et al. 2010). These 27 genes, which are expressed 

between stages 4 and 6 during Drosophila embryogenesis, include several gap genes, pair-rule genes, and 

anterior, posterior, trunk, and terminal genes. They are, with the exception of secondary pair-rule genes 

(Text S1), likely to be regulated primarily by the maternal and the early zygotic proteins, and therefore are 

reasonable targets for modeling using the same input TFs as above. (We also used the TFs Capicua (CIC), 

Forkhead (FKH), and Huckebein (HKB) in modeling these genes, as in (Kazemian, Blatti et al. 2010).) The 

four genes modeled above – eve, h, run, and gt – are included in these 27 genes; hence we show the 

modeled expression patterns of the additional 23 genes in Fig. 4.4. GEMSTAT-GL was able to accurately 

fit the expression pattern for most of the genes, demonstrating its wide applicability for gene-locus 

modeling. The model fits were less accurate for the secondary pair-rule genes ftz, odd, and prd, where 4, 

3 and 5 stripes were correctly reproduced (out of seven stripes of each gene). This relative lack of accuracy 

is probably because the direct regulators of these genes include the primary pair-rule proteins (Schroeder, 

Greer et al. 2011), which were not among the input TFs (see Text S1). Another case of model failure was 

ttk, presumably because the precise seven-striped pattern of ttk occurs later than stage 6 of 

embryogenesis (Brown and Wu 1993) and it requires other regulators than the used TFs (e.g., Biniou 

(Jakobsen, Braun et al. 2007)). To model these additional 23 genes, GEMSTAT-GL selected 29 regulatory 

segments, 23 of which were overlapping with REDFly enhancers. As above, a constrained parameter fitting 

strategy was used here.  

4.2.4 Control experiments suggest that the trained model is not over-fit 

Over-fitting was a concern in the above modeling exercise, since our framework does not allow testing of 

predictions on unseen data. We performed a number of control experiments, described next, to address 

this concern. As “negative controls”, we repeated the above model-training exercise on the following 

types of artificial datasets (see Methods): (a) the locus of one gene was used to model the expression 

pattern of a different gene, (b) the locus of a given gene was used to model a “random” expression 

pattern, and (c) a gene’s expression pattern was modeled from a randomly generated sequence of the 

same length as the gene’s locus, and (d) a gene’s expression pattern was modeled from a random 

relocation of TF binding sites in its locus. Each negative control experiment failed, as expected: no 

parameter settings were found for which model predictions agreed with data. Moreover, experiment (d) 

allowed us to assess the significance of our original model fits by comparing the goodness-of-fit score 

(value of objective function) of the trained model to an empirical distribution of scores from 100 negative 

controls for each gene. The original models were highly significant, with goodness-of-fit scores greater 

than all negative controls and with values 30-40 standard deviations above the mean from negative 

controls. We note that, as opposed to the constrained parameter estimation strategy in the modeling of 

real data, there was no constraint on parameter values in the control experiments. As an additional test, 

we trained the model on D. melanogaster gene expression profiles of eve, h, run and gt using sequence 

from the loci of their respective D. pseudoobscura orthologs. We assumed that the expression profile 

characterized experimentally in D. melanogaster remains unchanged in this related species (Segal, Raveh-

Sadka et al. 2008). The trained model was found to capture the real expression profiles well (Fig. 4.3-E), 

although not as accurately as in D. Melanogaster: for the seven-striped patterns of eve, h, and run, the 
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model reproduced the locations of 6, 7, and 6 stripes respectively, though the inter-stripe boundaries 

were not as prominent as in the D. melanogaster models. The model fits on gt reproduced both anterior 

and posterior domains of endogenous expression, though the model-predicted domains were shifted 

posteriorly. We note again that we are unable to test the trained model by direct prediction of the readout 

of an unseen gene locus, since the locations and weights of contributing sequence windows have to be 

learned from that locus. 

4.2.5 A sampling strategy reveals the cis-regulatory architecture of a gene locus  

The two-tiered model described above discovered a small number of segments whose readouts could be 

aggregated to match the gene expression profile. This set of segments describes the “regulatory 

architecture” of the gene locus (Fig. 4.3-A-D), as a checkered pattern of putative enhancers (green boxes 

in the genome browser views) interspersed with large spacer regions that do not contribute to gene 

expression. However, since the model was trained with a local search algorithm and was designed to 

utilize only as many segments as necessary, it is possible that the learned architecture is one of many 

possible architectures, each of which has its own locations of putative enhancers and intervening spacers. 

To investigate this possibility, we performed Markov Chain Monte Carlo sampling of the space of 

architectures. (See Methods for details.) Each architecture was represented by the locations of sequence 

segments that contribute to gene expression, and their respective weights. Also, each architecture was 

sampled with probability proportional to its w-PGP score, which quantifies how well the model predictions 

for that architecture agree with gene expression. A summary of the large number (50,000) of architectures 

sampled by this scheme from the eve locus is shown in Fig. 4.5-A. It shows the average weight that a 

segment received over all samples. (A weight of zero indicates that the segment was part of the spacer 

regions between putative enhancers in that architecture, and weights cannot be negative.) We see that 

the average weights are heavily peaked at a handful of locations, while most other segments within the 

locus have very low average weights. Moreover, the high weight locations are coincident with the 

contributing segments from the optimal architecture found above (Fig. 4.3-A). This indicates the existence 

of a unique regulatory architecture at the gene locus. We also noted that the high weight segments of this 

architecture overlap known enhancers of the gene.  

 

On the other hand, there were many segments with average weight close to 0 (Fig. 4.5-A), that were not 

included in any sampled architecture. Such segments either (a) have no regulatory information within 

them, or (b) their readout as predicted by the GEMSTAT model is inconsistent with and must not be 

aggregated with the readouts of other segments. The latter possibility suggests that there may be 

segments that exert an irreconcilable impact on the gene’s expression pattern and thus have to be 

explicitly “shut down” by the model. A direct examination of their predicted readouts confirmed that this 

was indeed the case for some segments (Fig. 4.5-B). While most of the non-contributing segments had no 

noticeable readout, some such segments led to predicted expression at levels comparable to the known 

enhancers but at inappropriate axial positions, i.e., outside the stripe domains.  
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4.2.6 A regulatory network of transcription factors determining “stripes” of gene expression 

One of the advantages of a quantitative model of gene expression is that it allows us to predict the effects 

of perturbations in cis- (the regulatory sequence) or in trans- (the transcription factors) on expression. For 

example, a “knock-down” of a TF is easily simulated by setting the TF’s concentration to zero. Such in silico 

knock-downs may then be used to infer regulatory influences of any TF on the gene, and a transcriptional 

regulatory network may be constructed. In our past work (Kazemian, Blatti et al. 2010), we constructed 

such a regulatory network at the level of individual enhancers, i.e., the network predicted when a TF’s 

knock-down would significantly affect an enhancer’s readout. Such an effect does not necessarily 

translate to a change in gene expression, as there may be redundancy of information in the locus (Frankel, 

Davis et al. 2010, Perry, Boettiger et al. 2010, Barolo 2012). An advantage of having a quantitative model 

of the readout of the entire gene locus is that regulatory networks may be constructed at the level of 

genes rather than enhancers. An edge in such a network would correspond to a TF’s knock-down affecting 

the gene expression; such an effect can be then be probed experimentally through an in situ hybridization 

assay in TF-
 condition. (Testing a TF-enhancer association experimentally would involve reporter gene 

assays, which are more expensive.) 

Here, we used in silico knock-downs to predict TF-gene regulatory interactions, and described the 

predicted interactions as a “TF-stripe” network where edges connect TFs to specific stripes in the gene’s 

expression profile, reflecting an effect of the TF on establishment of that particular stripe. The TF-stripe 

network for the eve gene (Fig. 4.6-A) shows 35 edges (12 activating, 23 repressive influences) between 

nine TFs and seven stripes of eve expression. The activators BCD and CAD regulate the anterior and 

posterior stripes, as expected from their concentration profiles. Each of the two borders (anterior and 

posterior) of any stripe is regulated by one or two TFs. This automatically constructed network is in very 

high agreement with the literature: 30 of the 35 edges have been previously confirmed or hypothesized 

based on genetic evidence, and only two interactions (small dashed edges: BCD  Stripe 5 and HB  

Stripe 2) with experimental evidence were not recovered by our procedure. The “HB  Stripe 2” 

interaction cannot be recovered by our model because we assign a fixed role (activator or repressor) to 

each TF, while the literature points to an activating role for HB at stripe 2 (Small, Blair et al. 1992, Arnosti, 

Barolo et al. 1996) and a repressive role elsewhere (Zhang and Bienz 1992). Overall, the strong agreement 

between the predicted and previously characterized TF-stripe network strongly argues for the usefulness 

of our approach, when we consider the vast amount of experimental work that has gone into 

characterizing those 30 recovered edges. Moreover, our model-based approach predicts three regulatory 

interactions that were not known previously (large dashed edges). These include roles for TLL and SLP in 

setting up the anterior border of Stripe 1 and a role for TLL at the posterior border of Stripe 5. Similar TF-

stripe networks were constructed for h, run, and gt; these networks are shown, along with known 

interactions from the literature, in Fig. 4.6-B-D. As in the network for eve, we missed very few of the 

known edges in these latter three networks, and most of the missed edges correspond to ‘indirect’ 

activation (i.e., if A is a repressor of B and B is a repressor of C, then A indirectly activates C) which can 

only be captured by a network level model of gene regulation (Dresch, Thompson et al. 2013). 
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A comparison of the networks predicted by GEMSTAT-GL with the ones deduced in previous 

computational studies (Reinitz and Sharp 1995, Kazemian, Blatti et al. 2010) highlights several edges that 

previous models had failed to identify but have been corroborated by in vivo experiments. For example, 

the “TLL  h Stripe 6” and “TLL  h Stripe 7” edges in our network were suggested previously through 

experiments involving tll mutant embryos (Riddihough and Ish-Horowicz 1991, La Rosee, Hader et al. 

1997), but the enhancer-based model of our previous work (Kazemian, Blatti et al. 2010) misses both of 

these edges. Several such examples were also noted with respect to the network reported in (Reinitz and 

Sharp 1995) (not shown).  

An important observation from the TF-stripe networks of Fig. 4.6 is the major role played by Zelda in 

setting up pair rule gene expression. Recent studies have shown Zelda (zld) to be a master regulator of 

early embryonic development (Liang, Nien et al. 2008, Harrison, Li et al. 2011, Nien, Liang et al. 2011), and 

Nien et al. (Nien, Liang et al. 2011) have specifically shown the effect of Zelda knockdown on pair-rule 

expression. While all four genes (eve, h, run, and gt) showed severely modified expression in zld– 

experiments, a closer examination of Fig. 4.5 in (Nien, Liang et al. 2011) reveals specific effects that are in 

agreement with our TF-stripe network. For instance, the h gene shows complete abolishment of stripes 

1, 2, 4, consistent with our predictions of direct Zelda influence on stripes 1, 2, 3, and 4 of this gene. 

Similarly, the most pronounced effect of Zelda knockdown on run expression is the abolishment of stripes 

1, 2, 5, and 6, and our network predicts direct effects of Zelda of stripes 1 and 2. We are not aware of any 

previous computational modeling effort that predicts these specific effects of Zelda. 

We should note that, our reported success in recapitulating known regulatory edges is based on our own 

literature survey where we have tried to be as exhaustive as possible, but admittedly we might have 

missed some results. As such, the high rate of recapitulated network edges is a preliminary, rather than 

an absolute, assessment of the accuracy of these networks.  

4.2.7 Modeling cross-talk between enhancers results in aberrant expression readouts 

Several studies make a case for interactions between enhancers of a gene (Kirstein, Sanz et al. 1996, 

Barolo and Levine 1997, Spitz, Gonzalez et al. 2003, Gonzalez, Duboule et al. 2007, Yao, Phin et al. 2008, 

Prazak, Fujioka et al. 2010, Montavon, Soshnikova et al. 2011), raising doubts about enhancer modularity 

or independence (Maeda and Karch 2011, Barolo 2012). Our experience in computational modeling of 

gene expression, as reported above, seems to suggest that enhancer independence is the common case. 

GEMSTAT-GL, which assumes independence of enhancer activities and linear aggregation of their 

readouts, fits expression data accurately, while GEMSTAT, which interprets all binding sites in the locus 

together, completely failed to fit the data. We investigated the source of this dichotomy in a systematic 

way, by modifying GEMSTAT-GL to allow for a limited degree of interaction (non-independence) between 

enhancers and noting cases where such interaction leads to a marked deterioration in model fits. We 

report this analysis for the enhancers of eve, h, run, and gt. 

Let C1 and C2 be two non-overlapping enhancers (and the only two enhancers) in a locus. Let E denote the 

gene expression profile and let G(Ci) denote the readout predicted by GEMSTAT for any enhancer Ci. As 

described in the previous sections, GEMSTAT-GL tests how well C1 and C2 explain E by computing w-PGP(E, 
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G(C1)+ G(C2)), i.e., the similarity between gene expression profile E and the integrated output of C1 and C2. 

(We ignore weights of summands here, for simplicity.) Now, let us consider any sub-segment c of C2 and 

represent by G(C1, c) the GEMSTAT prediction on the set of binding sites in C1 and c considered together. 

This simulates an interaction between C1 and a part of C2. We may now use w-PGP(E, G(C2) + G(C1,c)) as 

the accuracy of a model where the outputs of C1 and C2 are no longer independent, and in particular, the 

output of C1 is shaped by contributions from a part of C2. Let G1 and G2 denote two GEMSTAT-GL models 

(i.e., two different parameter settings) trained to optimize w-PGP(E, G1(C2) + G1(C1)) and w-PGP(E, G2(C2) 

+ G2(C1,c)), respectively. Our goal is to find a c such that w-PGP(E, G2(C2) + G2(C1,c)) < w-PGP(E, G1(C2) + 

G1(C1)), i.e., where the model with enhancer interaction is significantly worse than the additive model. 

Likewise, we search for a subsegment c of C1 such that w-PGP(E, G3(C1) + G3(C2,c)) < w-PGP(E, G1(C1) + 

G1(C2)) where G3 is a new GEMSTAT-GL model trained to optimize w-PGP(E, G3(C1) + G3(C2,c)). The 

discovery of any such subsegment of either C1 or C2 will point to an avoided interaction between the two 

enhancers, i.e., a specific example in support of the enhancer independence assumed in GEMSTAT-GL. 

We show in Fig. 4.7, using a heat map, the outcome of the above analysis performed on the five enhancers 

contributing towards the eve gene’s expression. Rows in this heat map represent binding sites within the 

enhancers, and columns represent enhancers. The cell at row i and column j represents the effect (on 

model fits) of allowing the binding site i to interact with enhancer j. Red indicates that modeling this 

interaction leads to worse fits, suggesting that the interaction is avoided in reality through unknown 

mechanisms of enhancer independence. Green color in the heat map suggests a synergistic interaction.  

Heat maps for the four genes modeled in this study (Fig. 4.7) highlighted the necessity of their enhancers 

to act autonomously. The many red cells indicate that such interaction must be explicitly avoided. For 

instance, we noted that a segment containing KR sites within the eve stripe 2 enhancer (Segment S1, Fig. 

4.7) adversely affects the predicted readout of the eve stripe 3+7 enhancer. These KR sites, when included 

in modeling the stripe 3+7 enhancer result in a weaker stripe 3, since the expression domain of KR covers 

eve stripe 3. A similar effect is noted for a second segment in the stripe 2 enhancer (Segment S2, Fig. 4.7) 

that contains four KNI sites, which adversely influence modeling of the stripe 3+7 enhancer. Although the 

latter contains several KNI sites, the four additional KNI sites impart more repression than necessary and 

hence a deterioration in the quality of fit. (This deterioration is, however, less severe than that caused by 

the first segment.) These examples provide more detailed insights into why we failed in our initial 

attempts to model gene expression from an entire locus using GEMSTAT, where all such interactions were 

allowed.  

4.3 Methods 

Methodological details of the experiments reported in this chapter are given below.  

4.3.1 Constrained parameter estimation strategy 

To guard against over-fitting, we used the following model training strategy. We first trained GEMSTAT 

on ~40 enhancers with A/P patterned expression (Segal, Raveh-Sadka et al. 2008), while excluding 

enhancers of the given gene. Training on this large dataset greatly constrains the model and rules out 



46 
 

over-fitting. We used the parameter values thus obtained as the starting point of the parameter training 

procedure on regulatory sequences of the given gene. Thereafter, the training procedure was prohibited 

from altering any parameter’s value by more than two fold from its initial value. This strategy ensured 

that the final model trained on the given gene is largely consistent with a model that reflects other 

regulatory parts of the genome.  

4.3.2 Modeling a gene locus with GEMSTAT 

This was performed just as any individual enhancer would be modeled by GEMSTAT. The inputs were the 

sequence of the locus, and the motifs and concentration profiles of the nine TFs. GEMSTAT’s goal was to 

learn parameters such that its prediction for the readout of the entire locus matches the gene expression 

pattern, as quantified by the “weighted Pattern Generating Potential” (w-PGP) score described in the next 

paragraph. Also, since we claim (see RESULTS) that GEMSTAT is unable to model gene loci, we used an 

unconstrained parameter estimation strategy where the model training procedure was free to use any 

parameter values within a reasonable range. 

4.3.3 GEMSTAT-GL model for predicting gene expression from intergenic sequence 

 The new quantitative model for predicting gene expression from the entire locus of a gene operates in 

two tiers. Recall that the inputs to the model are (i) the sequence of the locus, TF motifs, and TF 

concentration profiles along the A/P axis, and (ii) the gene’s expression profile (assumed here to be 

multiple stripes along the axis). The trained model comprises (i) a set of windows (possibly of varying 

length, and possibly overlapping each other) in the locus, and their “window weights” (positive numbers), 

and (ii) values for GEMSTAT parameters reflecting TF-DNA, TF-BTM, and TF-TF interactions. The model’s 

prediction of gene expression is the weighted sum of readouts from every window in the model, the 

readouts being predicted by GEMSTAT, and the weights being the window weights mentioned above.  

We describe here the procedure for training the two-tiered model, given its input. The procedure learns 

optimal values of the GEMSTAT parameters as well as “window weight” parameters (see above) that 

maximize the w-PGP score between the gene expression profile and the model’s prediction. A model is 

denoted by M = (W, , ) where W is a set of sequence windows from the locus,  is the set of window 

weights, one for each window in W, and  is a set of GEMSTAT parameters. The model training happens 

in two phases. In the beginning,  is set to GEMSTAT parameters learned from a large set of known 

enhancers excluding any known enhancers of the target gene. 

Phase 1: In the first phase, the algorithm scans the intergenic sequence to find N=5 best sequence 

windows for each stripe in the gene expression pattern. To do so, it examines every window starting at 

100 bp intervals in the locus, and of length between 500 bp and 2500 bp. (These are user-configurable 

parameters.) It scores every window W against every stripe S of the target gene expression, based on how 

well the expression read-out of W (predicted by GEMSTAT) fits the expression profile of S. The fit is 

quantified by the w-PGP score. At the end of this phase, the algorithm has found a set of N best windows 

for each stripe S, denoted by C(S). 
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Phase 2: Next, the algorithm iteratively selects windows to include in the model, and learns their 

corresponding window weights. In the ith iteration, it builds a model Mi = (Wi , i , ) for the first i stripes 

of gene expression. A pseudo-code is provided next. 

Given: GEMSTAT parameters  and a candidate set of windows C(S) for every stripe S. 

Initialization: W0 := NULL; BESTSCORE0 := 0. 

For i := 1 to K (the number of stripes in gene expression pattern) do: 

1. Wi := Wi-1; BESTSCOREi := BESTSCOREi-1; 

2. For each window w in C(Si) do 

a. Define a new set W’ = Wi U {w} 

b. Let  be a set of window weights, one weight for each window in W’. Let Scorei(W’, ) 

denote the w-PGP score that compares (i) the two-tiered model predictions using 

windows of W’ and window weights , and (ii) the gene expression pattern limited to the 

first i stripes or expression domains. (The stripes were considered arbitrarily from anterior 

to posterior.) 

c. Find  that maximizes Scorei(W’, ) over all possible . This maximization is performed 

through alternating between the Simplex and the Gradient Descent algorithms for 

numerical optimization. Denote max Scorei(W’, ) by Score(w). 

3. Let w* denote the window that maximizes Score(w) in the previous step.  

4. If Score(w*) is greater than BESTSCOREi, then 

a. Wi := Wi U {w*} 

b. C(Si) := C(Si)\w*  

c. BESTSCOREi := Score(w*) 

d. Loop back to (2). 

At the end of this phase, a model M = (W, , ) has been found for the entire expression pattern. Now, 

the GEMSTAT parameters  are retrained while keeping W and  fixed. The algorithm then loops back to 

Phase 1. It iterates through these two phases until a constant number NI of iterations have been 

completed or the improvement in the model's w-PGP score is less than a small constant δ > 0. We set NI 

= 100 and δ = 10-4 for training the models in this chapter. 

4.3.4 Control experiments: 

(1) One of the negative control experiments involved modeling a gene’s expression pattern from a 

randomly generated sequence of the same length as the gene locus. The random sequence was generated 

by independently sampling each nucleotide from a common frequency distribution. (2) Another negative 

control experiment involved modeling a “random” expression pattern from the sequence of a gene locus. 

Random expression patterns were generated based on the gene’s real expression pattern, as follows. 

First, for any axial position, let us define the gene to be OFF if the expression value is less than 0.5 and ON 

otherwise. Then, for a gene G whose actual expression profile has N stripes and K axial positions where it 



48 
 

is ON, we defined a “random” expression profile as one where: (a) the number of stripes is a randomly 

chosen number between N/2 and N, (b) the stripes are located randomly along the A/P axis, and (c) there 

are K data points where it is ON. (3) In the final set of negative control experiments we used a “variant” 

of a gene’s locus, where the TF binding sites were relocated to randomly selected positions within the 

locus, to model the gene’s expression pattern.  

4.3.5 Sampling the two-tiered model 

As noted above, a model is denoted by M = (W, , ) where W is a set of sequence windows from the 

locus,  is the set of window weights, one for each window in W, and  is a set of GEMSTAT parameters. 

We described above a local search algorithm to find the optimal model. We also performed MCMC 

sampling of the space of all possible windows and window-weights, i.e., (W, ) for a global examination 

of the expression contributions of segments in the locus.  

Sample space: Each sample is an extended weight vector  that has one real number for every possible 

window in the locus. Recall that this includes windows of length between 500 and 2500 (in increments of 

50), with start positions that are multiples of 100 bp. Note also that any  corresponds to a particular 

model M: the window set W is determined by the non-zero weights in , and the GEMSTAT parameters 

 are assumed fixed. The w-PGP score of model M is denoted by Score(), and the MCMC attempts to 

sample  with probability proportional to Score(). 

Sampling algorithm: We used the Metropolis-Hastings algorithm to sample . The allowed moves from a 

current sample i are determined as follows. Let bi be a bit vector of the same dimensionality as i and its 

jth bit being defined as bij = 1 if ij > 0 and bij = 0 otherwise. That is, bi indicates which windows have positive 

weights in i. The samples reachable in one move from the current sample i (with bit vector bi) are those 

with bit vectors within a Hamming distance of 2 from bi. In other words, any move adds or deletes at most 

two windows from consideration in the first tier of the model. The proposal distribution of the Metropolis 

Hastings algorithm is described next. Given a current sample i (with bit vector bi), we choose two bits at 

random and toggle each bit with probability 1/2. This samples a bit vector bj that is (a) identical to bi with 

probability ¼, (b) 1 Hamming distance from bi with probability ½, and (c) 2 Hamming distance from bi with 

probability ¼. All bit vectors with a particular Hamming distance are equally likely. There are L = | bi | of 

these at Hamming distance 1, and (𝐿
2
) of these at Hamming distance 2. The newly sampled bit vector bj is 

then used as the “shape vector” of a Dirichlet distribution, from which a probability vector is sampled. 

This is the newly sampled weight vector j. As prescribed by the Metropolis Hastings algorithm, this 

proposed sample j is then accepted with probability min(1, Score(j)/Score(i)). 

4.3.6 Constructing heatmaps to study enhancer interactions 

Our goal was to probe potential interactions between binding sites from two different enhancers. In 

particular, we wanted to determine if interpreting the sites of one enhancer together with sites from 

another enhancer leads to better model predictions than the baseline of GEMSTAT-GL where each 

enhancer is interpreted independently. A natural way to represent such potential interactions is with a 



49 
 

hypergraph. Hypergraphs generalize the concept of graphs by allowing each edge (called “hyperedge”) to 

represent a relationship shared among more than two nodes. In our formulation, every binding site in 

every enhancer is a node in a hypergraph, and any subset of sites from two different enhancers defines a 

hyperedge. The evidence in favor of that subset of sites being interpreted together, as if they were sites 

in the same enhancer, is the weight of the hyperedge. Such weights can be negative also, indicating that 

the particular subset of sites if interpreted together will make model predictions worse. We limited our 

attention to hyperedges defined by including (a) all sites of one enhancer and (b) sites within a sub-

segment of a different enhancer, thus simplifying the space of enhancer interactions considered. Our 

model-based predictions of potential interactions (or avoidance of interactions) can be captured by this 

weighted hypergraph. However, a hypergraph is hard to visualize and less likely to lead to biological 

insights via direct examination. We therefore mapped the constructed hypergraph to a weighted graph 

where the weight of every edge represents the effect of allowing interaction between the two binding 

sites that the edge represents. Visualization of the edge weights of this graph through heatmaps then 

revealed how any binding site could affect the readout of any enhancer in our model.  

Hypergraph construction: For a gene g, suppose the GEMSTAT-GL model selects n contributing enhancers 

C1, C2, …, Cn. Let SITES(Ci) denote the set of TF binding sites in enhancer Ci. Then, for every binding site in 

every set SITES(Ci), we include one node in a hypergraph. There are two types of hyperedges in our 

hypergraph. First, every subset of SITES(Ci) constitutes one hyperedge, and every such hyperedge was 

assigned a weight of zero. Each of the remaining hyperedges represents a collection of binding sites from 

two different enhancers, and was constructed as follows. Let eh denote a hyperedge that consists of 

binding sites from enhancers C1 and C2. Then the hyperedge eh would include all the binding sites of one 

enhancer (say, C1) and between one and five contiguous binding sites of the other enhancer (C2 in this 

case). For each hyperedge eh constructed in this way, we optimized a new GEMSTAT-GL model where the 

contributing enhancers are C2, … Cn, as well as the newly constructed set of sites eh treated as an 

“enhancer”. The difference between the w-PGP score of this new model and the original model learned 

for gene g was then assigned as the weight of eh. 

Mapping hypergraph to graph: A graph was constructed with the same nodes as that in the hypergraph, 

with an edge for each pair of nodes. The weight of an edge was computed by averaging the weight of 

every hyperedge where the corresponding pair of nodes appeared. This approach of approximating a 

hypergraph through a graph was discussed in detail in (Agarwal, Jongwoo et al. 2005). By construction, 

this graph has the property that the edge between node i and node j has the same weight for all nodes j 

corresponding to sites in the same enhancer. 

4.4 Discussion  

We have presented for the first time a quantitative model that relates gene expression to the sequence 

of an entire gene locus, using information on the trans-regulatory context (TF concentrations). We started 

by showing that the thermodynamics-based model “GEMSTAT” accurately models individual enhancer 

readouts, but fails to model the entire locus. We then performed a series of tests where we changed the 

way the GEMSTAT model was applied to the locus, all of which resulted in failure. We developed a new 

model called GEMSTAT-GL where the expression readout of the locus is two-tiered: sites within each 
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enhancer act together to produce that enhancer’s contribution, and contributions from multiple 

enhancers are aggregated to produce the gene’s expression pattern. This model shows very good fits to 

the data (Fig. 4.3 and Fig. 4.4) for the 27 genes studied here, and most remarkably for the complex, seven-

stripe patterns of eve, h, and run. The process of training the model on a gene locus automatically predicts 

enhancers in that locus, without relying on chromatin accessibility data, and makes accurate assignments 

of regulatory activity to each of the predicted enhancers. We will make available, upon publication, a 

general-purpose implementation of the GEMSTAT-GL model that may be applied to any gene for which 

the relevant inputs (TFs, TF motifs, TF concentrations) and output (gene expression) are known. The 

implementation also allows users to include chromatin accessibility data as a filter on the locus being 

modeled. 

We note that the GEMSTAT-GL model, as presented here, is given an intergenic sequence and its 

expression readout, and it finds a plausible explanation of whether and how the sequence could drive 

that expression. As such, it can be applied, in principle, to any of the thousands of genes whose embryonic 

expression patterns are known from in situ hybridization assays (Tomancak, Berman et al. 2007). Once 

trained, the model reveals the cis-regulatory architecture of the locus (locations and readouts of individual 

enhancers), and can predict the effects of perturbations in cis (sequence) or trans (TF concentration).  

However, the model cannot currently be used to predict the expression readout of a gene locus from 

sequence only. This is because the locations of contributing segments in the locus are free parameters of 

the model and can be learnt only if the gene expression readout is known. Thus, the model performance 

reported here refers only to “training data accuracy”, and leaves open the possibility of over-fitting. 

However, the model training failed on a variety of different “negative control” tests, where there was no 

link between the given sequence and expression, thus addressing concerns of over-fitting. We expect 

future work to address the current limitation that prevents the new model from a full-fledged application 

to the genome. One way this may be achieved is through intelligent use of accessibility and chromatin 

state information (Ernst and Kellis 2010, Kharchenko, Alekseyenko et al. 2011) from the locus when 

selecting segments that contribute to gene expression.  

Another potential limitation of this work is its reliance on prior knowledge of the TFs relevant to the 

regulatory system being studied (the A/P patterning system here). Ideally, the model should be able to 

automatically identify the TFs that are needed to explain the data, but this ability was not tested in this 

work. In a separate work (Samee and Sinha 2013), we address the question of systematically identifying 

the TFs to use when modeling enhancers using GEMSTAT. 

A basic principle underlying GEMSTAT-GL is the modular view of the gene locus’ readout, which holds that 

individual enhancers drive discrete aspects (e.g., one or two stripes) of the gene’s expression pattern, 

through combinatorial action of the binding sites within them, and the overall gene expression pattern 

results from a superposition of these separate enhancer readouts. Our tests showed that a model that 

violates this modular view and instead interprets all binding sites in the locus as acting together is unlikely 

to fit the data. In other words, the rules for interpreting the set of sites across all enhancers are not the 

same as the rules that apply to sites within an enhancer. The final subsection of RESULTS provides details 

of this principle in action: the different enhancers have the potential to interfere with each other, i.e., if 
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some sites in one enhancer, say Si, are interpreted together with sites of another enhancer, say Sj, the 

combined readout may be different from the readout of Sj itself.  

Another defining aspect of our model is the use of a “weighted sum” as the aggregator of multiple 

enhancer readouts. We note that the weights assigned by the model to different contributing segments 

(enhancers) are comparable to each other, and that a simple unweighted sum captures the seven stripe 

pattern of gene expression qualitatively, but fails to capture the “valley” between stripes 2 and 3 for eve 

and between stripes 4 and 5 for run; whereas the prediction for h remains relatively unaffected. Thus, the 

use of non-uniform weights may be a way for our model to correct for inaccuracies of the GEMSTAT model 

in predicting enhancer readout, especially at stripe borders. These weights need not be a reflection of any 

fundamental biochemical preference for one enhancer over another.  

One may speculate on biochemical mechanisms that implement the two-tiered readout of the regulatory 

information at the locus, and the additive aggregator function. An obvious possibility is that each 

contributing segment interacts with the promoter separately, as shown in Fig. 4.8-A. In the example 

shown, there are two enhancers and three possible configurations of enhancer-promoter interaction. The 

“Boltzmann weight” of each configuration is assumed to depend only on the enhancer interacting with 

the promoter in that configuration. Let these weights be 1, B and A for the configurations at the top, 

middle and bottom respectively. Assuming that gene expression ‘𝐸’ is proportional to the total probability 

‘𝑝𝑙𝑜𝑐𝑢𝑠’ of configurations with any enhancer-promoter interaction, we get:  

𝐸 ∝ 𝑝𝑙𝑜𝑐𝑢𝑠 =
𝜂𝐴 + 𝜂𝐵

𝜂𝐴 + 𝜂𝐵 + 1
 

First, let us consider a trans-regulatory context where one of the enhancer (say A) drives expression and 

the other (say B) does not. This can be formulated as: 
𝜂𝐴

𝜂𝐴+1
= 𝑝 and 

𝜂𝐵

𝜂𝐵+1
≪ 𝑝 

Under these conditions, we get 𝑝𝑙𝑜𝑐𝑢𝑠 ≈ 𝑝, i.e., the contributions of the two enhancers add up to produce 

the expression driven by the locus. Thus, if a gene is under the control of multiple enhancers and if a single 

enhancer dominates all others in any particular trans-regulatory context (position along the A/P axis, for 

pair rule genes), we expect the combined readout of the multiple enhancers to be a sum of their individual 

readouts.  

Now consider a trans-regulatory context where both enhancers A and B (of Fig. 4.8-A) have comparable 

outputs. We may formulate this as: 

𝜂𝐴
𝜂𝐴 + 1

=
𝜂𝐵

𝜂𝐵 + 1
= 𝑝 

It is easily shown that in this case  

𝑝𝑙𝑜𝑐𝑢𝑠 =
2𝑝

1 + 𝑝
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We plot this function, representing the combined readout of the locus, in Fig. 4.8-B. For small values of p 

(< 0.2), this function is reasonably approximated by 2p, indicating that the enhancer contributions add up. 

Note that a value of p = 0.2 does not necessarily mean low gene expression; under the Shea & Ackers 

theory, expression levels are only proportional to p as defined here. For larger values of p, we see that 

𝑝𝑙𝑜𝑐𝑢𝑠 is better approximated by the function 1 – (1-p)2, which represents the model of enhancer synergy 

proposed by Perry et al. (Perry, Boettiger et al. 2011). In this case, the separate readouts of enhancers do 

not combine additively. Another scenario in which additivity is not expected is where multiple enhancers 

can interact simultaneously with the promoter, as is the case in the “long range dominant repression” 

model of Perry et al. (Perry, Boettiger et al. 2011). We explicitly prohibited such a configuration in the 

model of Fig. 4.8-A.  

In light of the simplistic arguments presented above, we suggest that the model illustrated in Fig. 4.8-A, 

with the strength of each enhancer-promoter interaction being unaffected by other enhancers in the 

locus, as a mechanistic basis of the GEMSTAT-GL model. Additivity of enhancer contributions in any given 

trans-regulatory context can be explained by this model as arising out of (a) one enhancer’s contribution 

dominating all others or (b) each enhancer’s contribution being at a relatively low level, i.e., the probability 

p defined above being not close to 1.  

4.4.1 A note on parameter estimation for the locus-level modeling problem 

A locus-level model of gene expression requires more precision than an enhancer-level model. The 

success of an enhancer-level model is typically assessed from its precision in modeling the position of the 

peaks of the expression domains driven by an enhancer. Consequently, the most successful enhancer-

level models produce qualitatively accurate expression patterns for each enhancer but may not capture 

the peak amplitude of expression domains correctly. That is, relative peak amplitudes of readouts from 

two enhancers are often inconsistent with model predictions. Another type of imprecision noted in 

enhancer-level models is the inability to predict the sharp boundaries of expression domains. A locus-level 

model cannot afford to tolerate such imprecision, especially when it is applied to model complex multi-

stripe expression patterns. The two weaknesses of enhancer-level model fits mentioned above can cause 

our locus-level model to predict qualitatively inaccurate expression patterns (e.g., miss an inter-stripe 

boundary), and are likely to lead to false regulatory sequence discovery and wrong inference about the 

roles of TFs. At the same time, the quantitative imprecision in predicted enhancer readouts may be 

unavoidable at this time due to fundamental limitations of the thermodynamic model, e.g., biochemical 

mechanisms that are not modeled.  

Our strategy of optimizing the thermodynamic parameters for each gene separately was a pragmatic 

decision made to compensate for the minor inaccuracies of enhancer-level modeling. When GEMSTAT-GL 

was optimized without re-training the thermodynamic parameters (thus, the locations and the weights of 

the windows were the only free parameters in the model), it could still capture the correct locations for 

five of the seven stripes of eve expression but suffered severely in terms of modeling the inter-stripe 

valleys. Thus, fitting the thermodynamic parameters in a locus-specific manner helps GEMSTAT-GL to 

achieve the desired accuracy. It is plausible that this strategy might lead to over-fit GEMSTAT-GL for the 

single intergenic locus being modeled. This is why we performed four different types of negative controls, 
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to demonstrate that the constraints imposed on the parameters during model optimization are strongly 

guarding us against over-fitting the model for any specific locus.  

In a recent study (Kim, Martinez et al. 2013), Kim et al. trained thermodynamics-based models on a 

collection of eve enhancers in order to provide deeper insights into combinatorial cis-regulatory logic, 

which, as they pointed out, is a pre-requisite for locus-level modeling of gene expression. Among other 

findings, they reported a model that predicts eve stripes 2, 3, and 7 from the sequence upstream of the 

gene, and a different model (i.e., different parameter settings) that predicts stripes 4, 5, and 6 from the 

sequence downstream of the gene. Their results, in addition to providing insights about functioning of 

enhancers, highlight the difficulty of modeling the readout of an entire gene locus using pre-determined 

parameters, even when the models are accurate at the enhancer level. This agrees with our own view 

mentioned above, and suggests that fitting thermodynamic parameters for individual loci, with 

appropriate constraints, is a necessary step at the current stage of computational modeling of gene 

expression from the locus. 
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4.5 Figures 

Figure 4.1: Examples of complex expression patterns and GEMSTAT’s performance on the individual 

enhancers of the corresponding genes.  

 

(A) Schematic of expression pattern of the pair-rule gene even-skipped (eve) in D. melanogaster embryo. 

'A' and 'P' denote the anterior and the posterior ends of the embryo, respectively. (B) Quantitative profile 

of eve gene expression along the anterior-posterior axis of the embryo. (C) Genome Browser view of the 

five distinct enhancer elements that drive eve gene expression; each enhancer’s name denotes the 

specific stripe(s) of gene expression that it drives. The entire locus is 17 Kbp long. (D) Concentration 

profiles along the anterior-posterior axis, for the nine TFs used to model the expression patterns of the 

genes eve, h, run, and gt. (E) Real (red) and GEMSTAT-predicted (green) expression profiles along the A/P 

axis for the known enhancers of eve, h, run, and gt.  
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Figure 4.2: Systematic application of increasingly complex models to compute gene locus’ readout. 

 

A hypothetical example illustrating the different attempts at developing a locus-level model of gene 

expression. The hypothetical gene here is expressed in four stripes - shown in panels (B)-(E) as green 

stripes within a rectangle. The thick black line near the base of each panel denotes the locus; red circles 

and blue triangles denote activator and repressor binding sites within the locus, respectively. The bold 

pink arrow indicates GEMSTAT prediction of an expression readout on a given segment. (A) GEMSTAT 

accurately models the 2-striped expression patterns driven by “known” enhancers for this hypothetical 

gene. (B) GEMSTAT fails to model the 4-striped readout of entire locus in the “Direct Interaction” mode. 

(C) GEMSTAT fails to model the locus readout in the “Short Range Repression” mode (quenching effect of 

repressor sites is shown using the red ‘X’ marks on arrows connecting repressor sites to nearby activator 

sites). (D) GEMSTAT also fails to model the gene’s 4-striped expression from the concatenation of its two 

“known” enhancers. (E) A two-tiered model, that first selects a handful of variable-length windows 

(putative enhancers) from the locus and then takes a weighted summation of the GEMSTAT-predicted 

readouts of those windows to model gene expression. This model produces accurate fits. 
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Figure 4.3: Predictions of the GEMSTAT-GL 

 

 (A) Results of applying GEMSTAT-GL on the intergenic region of eve in D. melanogaster. Left panel shows 

the real (red) and predicted (green) expression profiles along the A/P axis. Right panel shows the locations 

of selected windows (green boxes) in the locus and their predicted expression patterns (top), along with 

locations of known eve enhancers (red boxes). (B), (C), and (D), same information for h, run, and gt, 

respectively. (E) Expression patterns modeled by GEMSTAT-GL from the intergenic regions of eve, h, run, 

and gt in the D. pseudoobscura genome. 
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Figure 4.4: GEMSTAT-GL on additional 23 genes 

 

Results of fitting the GEMSTAT-GL model on the intergenic locus of 23 additional genes studied in 

(Kazemian, Blatti et al. 2010). Quantitative data on target expression patterns were obtained from the 

companion website of the same study, and were originally derived from in situ expression images at the 

FlyExpress (Kumar, Konikoff et al. 2011) database. For each gene, the red and the green plots represent 

the target (real) and the modeled expression patterns, respectively. 
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Figure 4.5: Discovering the regulatory architecture of a gene locus 

 

Outcome of MCMC sampling to reveal the cis-regulatory architecture of eve intergenic region. (A) Top 

panel shows the eve intergenic locus along with the known enhancers of eve and windows selected by 

GEMSTAT-GL to model eve expression pattern. Bottom panel shows the average weight of segments in 

the locus as estimated by MCMC sampling. The horizontal axis of the bottom panel spans the eve locus; 

green diamonds in the plot represent the starting positions of the sequence segments that comprise the 

MCMC samples (segments corresponding to two different green diamonds might therefore differ in 

length). The vertical axis denotes the average weight (on a relative scale between 0 and 1) that each 

segment received over 50,000 samples. (B) Predicted readouts of three zero-weight segments that could 

have an irreconcilable effect on the gene expression pattern, and were not selected by the two-tiered 

model. 
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Figure 4.6: Discovering TF-stripe networks 

 

(A)-(D) Networks showing regulatory influences of TFs on individual stripes of eve, h, run, and gt, 

respectively. Red edges denote repressive and green edges denote activating role of the corresponding 

TF. Solid edges denote predicted influences that are already known in the literature. Edges with large 

dashes denote predicted influences that were not reported in the literature before (false positive or novel 

predictions), while edges with small dashes denote predicted influences already known in literature but 

missed by our model (false negatives). 
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Figure 4.7: Testing for interactions between enhancers. 

  

A heatmap visualization of the changes in GEMSTAT-GL’s goodness-of-fit owing to interactions between 

the enhancers selected for the eve gene. The heatmap has 5 columns and 𝑁𝑒𝑣𝑒 rows, where 𝑁𝑒𝑣𝑒 denotes 

the total number of binding sites in the five eve enhancers. Each row in the heatmap represents a binding 

site; the ordering of the rows, from top to bottom, reflects the 5' to 3' order of the respective binding sites 

in the locus. Each horizontal dot-dash line demarcates binding sites from two different enhancers. Each 

column in the heatmap represents an enhancer; the columns are ordered, from left to right, according to 

the 5' to 3' order of the corresponding enhancers in the locus. The cell at row i and column j represents, 

on a green-to-red color scale (green: high, red: low), the effect of allowing the binding site i to interact 

with enhancer j. This effect quantifies how the goodness-of-fit improves (green) or decreases (red) when 

interactions are allowed (see Methods for details). Two segments S1 and S2 within the eve stripe 2 

enhancer are shown on the left of the heatmap, along with their constituent binding sites for TFs KR, TLL, 

KNI, BCD. Each of these segments has binding sites that, when allowed to interact with the eve_3_7 

enhancer, result in poorer fits. 
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Figure 4.8: Molecular principles underlying the GEMSTAT-GL model 

 

(A) A gene locus with two enhancers (A and B) can be in one of three different configurations of enhancer-

promoter interaction: (top) neither enhancer interacts with promoter, (middle) only B interacts and 

(bottom) only A interacts. In a configuration where A interacts with promoter, B does not interact, and 

vice versa. (B) Combining contributions from two enhancers. If each enhancer’s contribution is given by 

the gene expression probability p due to that enhancer, the combined contribution of the two enhancers 

(assuming independent interactions with the promoter) is 2p/(1+p), plotted in red. For small values of p, 

this is well approximated by 2p (green), the sum of their contributions. For larger values of p, a better 

approximation is provided by the function 1-(1-p)2, in blue. 
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Chapter 5  

Thermodynamic Modeling of Fused Enhancers Reveals Novel Mechanism 

of Enhancer Readout 

5.1 Introduction 

An important goal in regulatory genomics is to understand the logic that specifies expression readout of 

enhancers – sequences that determine the expression level of an associated gene as the cellular 

environment varies, thus shaping the spatio-temporal expression ‘pattern’ of that target gene (Levo and 

Segal 2014). At the molecular level, the expression pattern driven by an enhancer (its readout) is realized, 

in major part, through the regulatory effects of transcription factor (TF) molecules bound to their cognate 

sites in the enhancer (Yanez-Cuna, Kvon et al. 2013). Enhancers are assumed to function independent of 

their genomic context (Arnold, Gerlach et al. 2013), hence their alternative designation as cis-regulatory 

‘modules’. Mechanistically, this implies that when TFs bound to an enhancer exert their regulatory effects 

on the target gene, TFs bound elsewhere do not exert any regulatory effect on that gene (Fig. 5.1-A). Note 

that TFs bound outside a particular enhancer can and do exert regulatory effects on the target gene, but 

such effects are assumed to be irrelevant to understanding and modeling the regulatory events within the 

enhancer and its modular readout. 

Going beyond the above assumption of enhancer modularity, conventional models of enhancer readout 

(‘enhancer-level’ models) also assume that TFs bound to sites within an enhancer exert their regulatory 

effects simultaneously (Ay and Arnosti 2011). This additional assumption and the success of 

corresponding models suggests that to understand an enhancer’s readout one need not be concerned 

about smaller segments within the enhancer functioning independently from the rest of the enhancer, 

just as the enhancer functions independently from the sequence context outside it. This assumption is 

not obvious, as the same cannot be said of the entire regulatory region (“locus”) of a gene: as noted above, 

one does not assume that TFs bound to sites across the locus exert their regulatory influence 

simultaneously, rather one must delineate the locus as a collection of distinct enhancers with 

independently computed readouts (Buchler, Gerland et al. 2003). For instance, we showed previously 

(Samee and Sinha 2014) that to model a gene’s expression from its regulatory region (‘locus’) one must 

consider a locus as consisting of independently functioning sub-segments (Fig. 5.1-B) whose regulatory 

effects are insulated from each other and are aggregated at the gene-level. This view of cis-regulatory 

architecture is in line with the emerging role of higher order chromatin structures in determining gene 

expression (Shlyueva, Stampfel et al. 2014). 

In short, there seem to be two different sets of rules for interpreting a regulatory sequence, one set 

applicable within enhancers and a different set at the level of the entire locus. The distinction appears to 

be generally based on the length of the sequence, with enhancers typically being ~1-2 Kbp long (Berman, 

Pfeiffer et al. 2004) while the locus is often tens or even hundreds of Kbp in length. However, this 

partitioning of cis-regulatory length scales into two regimes (subject to interpretation by an enhancer-

level model versus a locus-level model) is somewhat arbitrary, and raises several related and significant 
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questions. What length, if any, acts as the boundary separating the two regimes? What is the mechanistic 

origin of the dichotomy? Is it possible, for instance, that an enhancer-length sequence (~1 Kbp long) 

contains multiple independent segments that must be interpreted separately? We investigate this last 

question here. The question challenges our current understanding of sequence-mediated regulatory logic. 

The two models may lead to qualitatively different readouts from the same sequence, with one model 

predicting the gene to be highly expressed and the other predicting no expression, as we illustrate 

informally in Fig. 5.1-C and demonstrate formally in the following sections. If an enhancer may indeed be 

further delineated into smaller modular segments, it would reveal an additional layer of complexity in the 

cis-regulatory code, that must be systematically investigated and ultimately incorporated into 

quantitative models of gene expression and predictions of non-coding mutations (Yanez-Cuna, Kvon et al. 

2013, Weingarten-Gabbay and Segal 2014).  

It is non-trivial to answer this question since one needs a carefully chosen data set that can challenge the 

current enhancer-level models: these models have already proven sufficient in explaining readouts of 

experimentally characterized enhancers (Segal, Raveh-Sadka et al. 2008, He, Samee et al. 2010, Kazemian, 

Blatti et al. 2010, Samee and Sinha 2013) and several libraries of short (~100 bps) sequences generated 

by random insertion of TF sites (Gertz, Siggia et al. 2009, Kwasnieski, Mogno et al. 2012). However, a 

stated tendency towards defining minimal functional enhancers and the resulting ascertainment bias in 

current collections of bona fide enhancers means that these may not offer the opportunity to test the two 

contradictory models mentioned above. A possible solution is to test artificial enhancer-length sequences 

of 1-2 Kbp length that have synthesized by concatenating two shorter enhancers, and asking if their 

readout follows the enhancer-level model or the locus-level model.  

In this work, we model a novel data set (Lydiard-Martin et al., unpublished) that was constructed 

specifically to challenge the conventional models of enhancer readout. The data set includes six artificial 

constructs created by fusing two well-studied enhancers of the Drosophila even-skipped (eve) gene in 

different ways. The two constituent enhancers, namely ‘eve_3/7’ and ‘eve_4/6’, drive four of the seven 

stripes where eve is expressed in pre-cellular stage Drosophila embryo (Fig. 5.1-D). The fused constructs 

are all ~1.4 kbps in length, comparable to the average length of other developmental enhancers in 

Drosophila (Fig. 5.1-E), and they manifest patterned readout when placed next to a reporter gene (Fig. 

5.1-F). The two original enhancers (eve_3/7 and eve_4/6) contain binding sites for the same nine TFs, but 

their main difference is in the affinity of the sites they harbor for two of the repressor TFs, namely 

Hunchback (Hb) and Knirps (Kni) (Fig. 5.1-G). Due to this special property (not shared with a previous study 

of fused enhancers (Small, Arnosti et al. 1993)), it is not clear what the readout of a sequence that fuses 

the eve_3/7 and the eve_4/6 enhancers should be. If an enhancer-level model (where all bound TFs act 

simultaneously) is operational, one would expect two broad stripes as the readout. If a locus-level model 

is appropriate for the fused constructs, with the two constituent enhancers as the two independent 

segments, then one would expect four stripes. A third possibility is that of a locus-level model with a 

different delineation of independent segments, in which case it is not possible to intuitively predict the 

readouts. This data set therefore provides an opportunity to test the two alternative models of cis-

regulatory organization at the length scale of typical enhancers. Details of creating the data set are 

provided in (Lydiard-Martin et al., in preparation); here we attempt to understand the mechanism leading 
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to the observed readouts of these constructs, and to answer the central question raised above. 

Computational modeling is necessary to rigorously discern which of the scenarios/models outlined above 

is most supported by the data.  

We approached this data set by systematically fitting different state-of-the-art thermodynamics-based 

sequence-to-expression models to it. We found that GEMSTAT – a mechanistically rich enhancer-level 

model (He, Samee et al. 2010) – fits the readouts of the individual enhancers of eve with high accuracy, 

but fails completely to model the fused constructs even though they are similar in length to typical 

enhancers. Given the richness of the GEMSTAT model and the flexibility we allowed the model (see 

Methods), we interpreted this as insufficiency of the current enhancer-level models and attempted next 

to fit the data set using GEMSTAT-GL – a locus-level model (Samee and Sinha 2014). GEMSTAT-GL models 

the readout of a sequence as a weighted sum of the readouts of multiple independently functioning 

segments (within the sequence), which the model discovers automatically in the course of data-fitting. In 

light of the additional flexibility (additional parameters) allowed in GEMSTAT-GL we adopted a much more 

constrained strategy for model fitting (see Methods). We found that for each of the fused constructs 

GEMSTAT-GL selected independent regulatory segments whose readouts could be linearly aggregated to 

fit the construct’s readout with much higher accuracy, thus providing a resolution to the motivating 

question of this study.  

Our observation of multiple independently interpreted segments within an enhancer-like sequence 

suggests some form of localization of regulatory effects of DNA-bound TFs. One well-studied mechanism 

that results in such localization is that of “short-range repression” (SRR), whereby a bound TF molecule 

exerts its repressive effect within a short range (~100 bp). We investigated the SRR mechanism within our 

modeling framework and noted that it improves fits compared to the baseline enhancer-level model but 

fails to capture several salient features of data that GEMSTAT-GL was able to model. In summary, results 

of modeling a unique data set strongly argues that even enhancer-length sequences might work through 

independently functioning smaller segments present within the sequence. 

5.2 Results 

5.2.1 An enhancer-level model explains the readouts of the even-skipped enhancers but fails to 

explain readouts of fused constructs 

We modeled the sequence-to-expression relationship of six artificial constructs that have been tested 

experimentally through reporter constructs in the early Drosophila embryo. As explained above, each 

artificial construct is a concatenation or ‘fusion’ of two well-studied enhancers ‘eve_3/7’ and ‘eve_4/6’, 

and has length comparable to a typical developmental enhancer. To test whether the assumptions 

underlying enhancer-level models hold for this data set, we fit a state of the art enhancer-level model 

called GEMSTAT (He, Samee et al. 2010) individually on each artificial construct to fit the corresponding 

readout (see Methods). The GEMSTAT model has been shown previously to produce fairly accurate fits to 

the readouts of ~40 enhancers involved in anterior-posterior (A/P) patterning of the Drosophila embryo 

and particularly for enhancers of the even-skipped (eve) gene (He, Samee et al. 2010, Samee and Sinha 

2014); the two fused enhancers are known to individually regulate aspects of the endogenous expression 
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of this gene. We repeated the same exercise here, as shown in Fig. 5.2, to fit each fused construct’s 

readout as a function of its sequence. Since our aim here was to test whether any parameterization of 

GEMSTAT can fit the readout of any artificial construct, we adopted this approach of fitting the model 

individually on each construct. This approach might have led to overfitting the data, but also makes it 

unlikely that failure to fit the data will be due to technical limitations such as optimization over a large 

parameter space.  

As part of the modeling exercise, we first randomly sampled ~1 million models from the parameter space. 

Then we considered each of the top 1000 models from the sampled collection, one at a time, as the initial 

parameterization of the GEMSTAT model and re-estimated parameters to optimize the model for the 

specific construct under consideration (see Methods). Although this setup provided considerable 

flexibility to fit the constructs’ readouts (in comparison to a typical enhancer modeling setup), GEMSTAT 

failed to model any construct’s readout with satisfactory accuracy, as shown in Fig. 5.2. In particular, the 

model even after optimization could only produce two broad stripes for each construct, and failed 

completely to capture the salient features (see below) of each construct’s readout.  

5.2.2 A locus-level model can explain readouts of the artificial constructs by identifying 

independent regulatory segments within each construct 

The failure of the enhancer-level model (GEMSTAT), as noted above, is very similar to what we had 

experienced in our past work on modeling the expression pattern of a gene from its entire locus (the 

intergenic region bounded by its neighboring genes on either side). There, we found that for several multi-

stripe genes (namely, even-skipped, hairy, and runt), the GEMSTAT model predicted a broad domain of 

expression spanning all or most of the multiple stripes, failing to capture their striped patterns of 

expression. This led us to develop a new model called GEMSTAT-GL (GEMSTAT for Gene Locus) that has 

the flexibility to select several segments (i.e., putative enhancers) from the locus, assumes that the 

selected segments function independently, and models the readout of the locus as a weighted sum of the 

readouts of the selected segments.  

In the present work, having noted similar failures of the GEMSTAT model on fused constructs, we asked 

if a locus-level model such as GEMSTAT-GL might be sufficient to model this data set. Note that applying 

the GEMSTAT-GL model to these data amounts to assuming that a fused construct may function more like 

a gene locus, with independently functioning segments (enhancers) within, even though the construct’s 

length is typical of a single enhancer. We optimized parameters of the GEMSTAT-GL model, under a highly 

constrained setting (as adopted in the original work (Samee and Sinha 2014); see Methods) and obtained 

accurate fits to the readouts of all constructs in the data set (Fig. 5.3). In particular, GEMSTAT-GL was 

successful in capturing both the inter-stripe gaps (as observed in constructs Fusion C, Spacer 200, and 

Spacer 1000) and the broad domain of overlapping stripe expressions (as observed in constructs Fusion 

A, B, and D). Interestingly, the model always selected one contributing regulatory segment from each of 

the two constituent enhancers in a fused construct. That it did not select multiple segments from any of 

the two constituent enhancers is consistent with the literature: prior experimental attempts to identify 

smaller functional segments within these constituent enhancers showed loss of function (Fujioka, Emi-

Sarker et al. 1999). The GEMSTAT-GL model never selected a segment that straddled across the boundary 
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of the fused constructs, even though its optimization phase had the flexibility to do so. This raises the 

intriguing possibility of yet unidentified mechanisms that maintain the constituent enhancers’ 

independence although they were fused without any spacer. Overall, the most significant conclusion from 

this exercise is that the regulatory function of each fused construct can be explained with a model that 

regards it as two independently acting enhancers and cannot be explained by regarding the construct as 

a single enhancer, even though the construct is very much like a single enhancer in its length and binding 

site content.  

5.2.3 A model where repressors act only over short ranges can explain readouts of constructs 

with spacer sequences but fails on the other constructs 

The above modeling exercise points to the existence of at least two independent regulatory segments 

within each fused construct. However, it does not offer a mechanistic explanation of their separate 

existence, when sequences similar to the fused construct are known to function as single enhancers.  

Previous studies have hypothesized that repressor TFs, by working over short-ranges, may confer 

independence to segments in the genomic DNA. In particular, it has been hypothesized that certain TFs 

upon binding to their cognate sites inhibit the binding of activator TFs to neighboring sites, typically to 

those located within 150 bps, and thereby repress the expression of the target gene. This short-range 

repression mechanism (SRR) can thus partition a given sequence into clusters of TF binding sites, and has 

been hypothesized to confer independence to enhancers in a locus (Small, Arnosti et al. 1993, Gray and 

Levine 1996, Kim, Martinez et al. 2013). We therefore considered the SRR mechanism as a potential 

explanation for the existence of independent segments within fused constructs. It should be noted 

however that two clusters (of sites) are considered independent under the SRR mechanism when they are 

sufficiently far apart so that repressors bound to one cluster do not interact with those in the other cluster. 

Closely located clusters may interfere in each other’s regulatory effect as has been shown in (Small, 

Arnosti et al. 1993, Kim, Martinez et al. 2013). We should note here that, in our previous work with the 

locus-level model we found the SRR mechanism to be insufficient to model a gene’s expression pattern 

as the readout of its locus. A different implementation of the SRR model (Kim, Martinez et al. 2013) was 

used to explain the expression pattern of the eve gene from its locus, but was unable to find a single 

parameterization of the model that could fit all seven stripes. Hence, it was not clear a priori if the SRR 

mechanism would prove to be an acceptable explanation for the independent action of the two enhancers 

in each fused construct. 

To pursue the above line of investigation, we first noted that the two fused constructs having spacer 

sequences in our dataset show readouts with four clear stripes, as might be expected if the two 

constituent enhancers act independently. (Each is known to drive two stripes of expression by itself.) 

While stripe formation in the readouts of the other four fused constructs is disrupted, their overall 

expression domain still appears to be the same as the combined domain of the four eve stripes. We asked, 

in light of considerations described above, whether the SRR mechanism may explain: (a) the proper 

formation of four stripes in the former two cases by conferring independence to the two fused enhancers 

due to spacers between them, and (b) the disrupted stripe formation in the latter four cases (no spacer 
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between fused enhancers) by revealing interference in regulatory effects at the junctions of the fused 

constructs.  

For each fused construct in our dataset we fit its readout using the GEMSTAT model in the SRR mode 

(GEMSTAT-SRR), allowing the model the same flexibilities in training as were allowed to the baseline 

GEMSTAT model (see Methods). We found that for the constructs with spacers the model’s accuracy was 

comparable to that of the locus-level GEMSTAT-GL model (Fig. 5.4). However, for those where the two 

enhancers were fused adjacent to each other, the model’s fits were not as accurate as GEMSTAT-GL, 

though improved over the baseline GEMSTAT model. These observations imply that the SRR model is not 

mechanistically rich enough to explain the readouts in our current dataset. In particular, for none of the 

fused constructs, we could find a satisfactory fit so that we could attribute the disrupted stripe formation 

to interference at the junctions. We therefore favor the GEMSTAT-GL model’s findings as the explanation 

to the readouts of our fused constructs: linear aggregation of independent regulatory segments’ readouts 

give rise to the observed expression patterns. 

5.3 Methods 

The models GEMSTAT and GEMSTAT-GL have been described in Chapters 2 and 4. Enhancer sequences 

and TF motifs were collected from the same sources as used in our work on GEMSTAT-GL described in 

Chapter 4. There are several motifs available for each TF. We therefore needed to select the motif and 

the threshold on the LLR-score (see Chapter 2) for each TF. To this end, we first listed all the footprinted 

binding sites in the enhancers for eve from the Redfly database (Gallo, Gerrard et al. 2011). For each TF, 

we selected the motif and the threshold that could identify all the footprinted sites along with the 

minimum number of additional weak sites. The expression profiles were collected from (Lydiard-Martin 

et al., manuscript in preparation). The parameter space exploration and subsequent pipeline for choosing 

1000 best models is adopted from our ensemble construction method described in Chapter 3. The 

constrained optimization method for parameter optimization was adopted from our work on GEMSTAT-

GL described in Chapter 4. 

5.4 Discussion 

The classic definition of an enhancer is empirical: it is a piece of DNA that can direct expression of a target 

gene independent of orientation and distance from the promoter (Moreau, Hen et al. 1981, Banerji, Olson 

et al. 1983, Gillies, Morrison et al. 1983). This definition reflects the first experiments used to identify 

enhancers and their major properties, namely dense clustering of TF binding sites, high TF occupancy, 

specialized histone marks, and location within open chromatin structure (reviewed in (Bulger and 

Groudine 2010)). However, we are far from understanding the details of the cis-regulatory process 

mechanistically; this requires us to abstract the underlying processes appropriately because different 

mechanisms may be captured by different functional forms. If we abstract inappropriately, we may not 

capture our experimental data accurately or we may be unable to discern underlying mechanistic 

principles. A priori we can define an enhancer as a functional unit whose output depends on short-range 

interactions; longer range interactions between enhancers can then be modeled separately. This 

definition of an enhancer reflects its role in information-processing—it is a mathematical description of 
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how it interprets TF concentrations to produce a specific expression pattern. Our fusions demonstrate the 

utility of this definition. The fusions look like a single enhancer in terms of average length and overall 

binding site content and behave as a typical single “active” fragment in reporter assays. However, they 

are best modeled as two separate functional units whose output can be aggregated as a weighted sum to 

produce the total expression pattern of the reporter.  

What molecular mechanisms might define the length of a functional segment within a given sequence? 

Local interactions between TFs are well-documented and could provide a length constraint on TFs that 

can work together. In support of this type of underlying mechanism, the “enhanceosome” is a 55 bp 

enhancer that works by assembling a large protein complex in a highly cooperative fashion (Panne 2008). 

The precise placement of TF binding sites within the enhancer facilitates assembly of the complex. Altering 

the position and affinity of the binding sites disrupts enhanceosome function, and as a result, the 

sequence of this enhancer is highly conserved. Though developmental enhancers are typically much 

longer (200 bps to 2 kbps or larger), they could be comprised of small cooperative units defined by local 

interactions, as proposed in the billboard model (Arnosti and Kulkarni 2005). There could also be length-

restrictions on functional segments independent of local TF interactions. For example, chromatin state or 

nucleosome placement could define a region that is interpreted as a single functional unit. DNAse 

accessibility clearly helps to define which TF binding sites are occupied (Kaplan, Li et al. 2011). However, 

currently available assays for accessibility in vivo average the measurements for these features across 

multiple cells, making it difficult to discern whether they could also help to define functional segments at 

a fine scale. Another possible source of a length constraint could be the physical interaction with co-

factors or the promoter. Presumably, a constrained amount of bound DNA is involved in these 

interactions. This would result in a length constraint on functional segments that is dependent on how 

much sequence is sampled during each interaction event, whether the same piece is always sampled, and 

the dynamics of the interaction. Length constraints that do not depend on local cooperative interactions 

would likely have different evolutionary properties. TF binding sites would be free to rearrange within the 

functional segment and there would be smooth rather than abrupt changes in activity due to mutations. 

We propose that the two particular enhancers in this study are composed of functional segments, larger 

than individual TF binding sites, but smaller than the component enhancer. Each of these segments can 

direct expression in the proper position but at a lower level than the entire enhancer. Our computational 

analysis finds sub-enhancer length fragments capable of driving expression in the proper position, but to 

varying levels. These fragments are placed together asymmetrically within the annotated enhancers. The 

asymmetry may explain the orientation dependence of expression that we observe. A clear future 

direction is to test the expression driven by these predicted fragments located within the annotated 

enhancers. A technical challenge will be detecting potentially low-levels of expression, though this should 

be aided by quantitative imaging and improvements in fluorescent staining techniques.  
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5.5 Figures 

Figure 5.1: Overview of different enhancer-readout mechanisms and the dataset 

 

(A) Assumptions of independence underlying the enhancer model. (B) Assumption of exclusively 

functioning enhancers underlying the locus model. (C) Different possible scenarios due to different 

delineations of independent segments in a sequence. (D) The Drosophila embryo and the enhancers and 

the expression domain of eve. (E) Plot showing site count vs. enhancer length for the 44 enhancers used 

by Segal et al. (Segal, Raveh-Sadka et al. 2008) (blue) and the constructs in the current study (red). (F) 

Expression readout of two example constructs. (G) The underlying mechanism of how, due to differences 

in affinities of the HB and KNI sites, the two enhancers drive expression in different domains.  
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Figure 5.2: GEMSTAT model on the data set 
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Figure 5.3: GEMSTAT-GL on the data set 
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Figure 5.4: GEMSTAT-SRR on the data set 
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Chapter 6  

Quantitative Modeling of Gene Expression in the Drosophila Imaginal 

Wing Disc 

6.1 Introduction 

Mathematical modeling of organ growth is as classical a topic as that of modeling embryonic pattern 

formation (Zhang, Alber et al. 2013). However, state of the art models of organ development focus only 

on the morphology of organs and do not elicit molecular explanations at the level of regulatory sequences 

(Yin, Xiao et al. 2013, Zhang, Alber et al. 2013). Given that the ultimate goal of developmental investigation 

is to understand the logic of regulatory control as encoded in the genomic DNA, i.e., to understand the 

cis-regulatory network of genes involved in patterning and growth, it is therefore important to include 

enhancer sequences in models of organ growth. In this work, we take the first step toward this goal by 

applying a state of the art sequence-to-expression model on a network of genes that are responsible for 

the primary patterning of the Drosophila wing imaginal disc and formation of the second vein (known as 

L2) therein (Fig. 6.1-A). 

The Drosophila wing is a widely adopted model system in studies of organ growth, scaling, and patterning 

(Affolter and Basler 2007, Wartlick, Mumcu et al. 2011). Many genes involved in wing development have 

been identified – with concomitant hypotheses of how they work – yet no study to date has attempted to 

build a sequence-level understanding of how these genes are expressed. The “WingX” project – the most 

elaborate attempt undertaken to date for understanding wing development – plans to elicit systems-level, 

broad pictures of Drosophila wing development, but does not address the problem of charting the 

regulatory sequences of this system or deciphering how they control the related genes. Therefore, the 

comprehensiveness of existing knowledge about cis-regulation of the wing developmental genes has 

never been assessed.  

We apply here the GEMSTAT model on the cis-regulatory network comprising five genes, namely brinker 

(brk), optomotor-blind (omb), spalt (sal), daughters against dpp (dad), and knirps (kni), for the primary 

patterning of the Drosophila wing imaginal disc. Our objective here is to complement the known 

experimental observations on these genes and quantitatively assess various hypotheses of how their 

expression is regulated. The models developed here will offer several additional benefits. First, upstream 

regulatory events that set the primary morphogen of wing development (i.e., Decapentaplegic, Dpp) are 

being actively studied by several other groups (Nahmad and Stathopoulos 2009, Parker, White et al. 2011). 

Our study, combined together with these ongoing efforts, will enable us to obtain an understanding of a 

larger system of genes beyond this primary morphogen. Secondly, the gene regulatory network in wing 

disc patterning is nearly identical to that in haltere patterning except for the expression of the gene 

ultrabithorax (Weatherbee, Halder et al. 1998). Our study thus holds the promise of explaining data from 

two developing organs. Furthermore, we have confirmed that the assumed structure of the gene 

regulatory network is reflected in its cis-regulatory sequences by validating the model predictions against 
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various perturbation data. Finally, utilizing the models, we have offered novel insights about the system 

of genes functioning in wing development. 

6.2 Results 

6.2.1 A sequence-to-expression model of the genes involved in patterning the anterior 

compartment of Drosophila wing imaginal disc 

In this work, we have modeled the gene regulatory network involved in early patterning of the wing pouch 

in Drosophila imaginal wing disc. The imaginal wing disc in Drosophila refers to a cluster of cells in the 

developing embryo that are destined to form the wing blade and the notum. An oval region within the 

disc – called the “pouch” – corresponds to the blade; the region can be divided into four quadrants based 

on the horizontal (anterior-posterior, A/P) and vertical (dorso-ventral, D/V) axis of the pouch. Gene 

expression and developmental morphology are symmetric with respect to the A/P, but not to the D/V, 

axis. However, the regulatory roles played by each gene remain the same throughout the pouch. We chose 

here to model the part of the anterior compartment where the level of Dpp expression falls from the 

maximum to the basal level at the lateral boundary of the pouch (Fig. 6.1). Within this domain of 

expression, Dpp activates three genes, expressed in nested domains that are localized near the peak level 

of Dpp expression, namely omb, sal, and dad. Dpp also activates brk and localizes its expression at the 

lateral boundary. The gene kni is expressed in a narrow domain between brk and sal domains. In 

particular, kni domain is completely constrained within the sal domain and the lateral borders of the two 

genes coincide. We assumed the location of the posterior border of kni corresponds to the location of 

10% of the peak concentration of sal. Although specific regions within the wing pouch are under control 

of signaling networks, for these genes within the spatial region of our interest, it is widely known to be 

transcriptional control, as shown in Fig. 6.1. The regulatory edges in the figure have been reported in 

(Affolter and Basler 2007). For each of the genes we collected their experimentally validated enhancer 

and for each TF we collected their sequence specificity. We scanned the enhancers for the putative sites 

of these TFs and the scans supported these edges. Of note in Fig. 6.1 is the inclusion of the protein 

Scalloped (Sd) which is ubiquitously expressed and known to regulate several genes in the wing 

development by forming a complex with another protein named Vestigial (Vg). This mode of Sd-Vg 

complex is specific to wing development and has been shown to be important for the expression of several 

genes during early wing development. There was no motif for Sd-Vg complex, hence we created a motif 

from the experimentally tested sequences that were reported in (Guss, Nelson et al. 2001) (see Methods). 

The concentration profiles of the TFs were collected from images published in (Moser and Campbell 2005) 

and processed using the image processing software ImageJ (Rasband 1997-2014) (see Methods).  

As shown in Fig. 6.2 the model fits the data accurately capturing all the notable and important features, 

i.e., the nested domains of omb, sal, and dad, the precise domain of kni, and the narrower peak yet overall 

broader expression domain of dad in comparison to that of sal. 
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6.2.2 Model quantifies the role of each TF and the effect of its knock-down 

The Role and Significance of Scalloped: The role of Scalloped (Sd) has been demonstrated to be important 

for several genes. However, Sd functions in developing wings as a complex with Vg. A DNA-binding motif 

for this complex was not well defined in the literature. We created a motif from the highly conserved sites 

reported in FlyReg and in (Guss, Nelson et al. 2001). The motif matches all the experimentally tested 

instances. Also, a match to this motif is located in the brk enhancer identified by Muller et al. (Muller, 

Hartmann et al. 2003). Notably, the Sd-Vg motif – despite its high information content – is present in all 

but two of the enhancers of brk that were reported in Yao et al. (Yao, Phin et al. 2008). Sd-Vg was also 

important for our model to predict a strong expression for kni. Overall, these observations assured us 

about the ability of our motif to identify functional Sd-Vg binding sites. We find that Sd-Vg sites are 

important for accurate modeling of expression profiles of all genes in our data set but dad whose enhancer 

does not contain any site for Sd-Vg. We find that knock-down of Sd causes abolishment of brk expression, 

while it causes weak and expanded expression for each of omb, sal, and kni. 

The Effects of Changes in the Expression of the Dpp Morphogen: Our model captures the effect of the Dpp 

morphogen very accurately as described below (see Fig. 6-3). For brk, we find an expansion in its domain 

when Dpp is restricted more toward the medial axis. Under the same change, the downstream genes omb, 

sal, and dad are expressed in narrower domains. The effect on kni is more subtle, yet accurately captured 

by our model: since kni is not directly regulated by Dpp, we use the altered expression domains of the 

above regulators of kni to predict its expression and find that the kni domain shifts toward the direction 

of shift of the sal domain.  

The Effect of Brinker Knock-Down: In this case, we find that all the genes are expanded anteriorly with the 

lateral borders being defined by the level of Dpp. As a result, we do not see a clear border of kni being 

formed. 

6.2.3 Model details the mechanisms of cis-regulation of the genes by regulatory sequences 

within their loci 

Mechanisms of brinker Regulation: Our motif scanning identified both Sd-Vg and Schnurri-Mad-

Medea (SMM) sites in the brk locus. In particular, these sites were there in every enhancer 

reported in the current literature (Muller, Hartmann et al. 2003, Yao, Phin et al. 2008). Our model 

predictions from each of these enhancers was accurate (Fig. 6-4). We thus concluded that brk is 

activated by Sd-Vg and repressed by Dpp. We note that, the activation of brk was hitherto poorly 

understood. Ours is the first demonstration at a quantitative level, with these validation results, 

that Sd-Vg is a strong candidate for being considered as an activator of brk. (Fig. 6-4) 

Mechanisms of spalt Regulation: The original study that identified the regulatory sequences of 

sal (Barrio and de Celis 2004) reported two enhancers. Our model predicts the correct expression 

pattern from both of these enhancers. The same study identified repressor sites of Brk in the sal 

locus by identifying several other sequences that drive expanded expression of sal. Our model 
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predicts the correct readout from these sequences as well. However, for the activator sequence 

in the sal enhancer, Barrio and de Celis could not identify the activator TF. Our model identifies 

Sd-Vg as the activator TF in this sequence and this also matches with the activator sequence 

identified by Barrio and de Celis that could drive ubiquitous sal expression. (Fig. 6-5) 

6.2.4 Model Highlights an Important Role for Scalloped in Scaling of Gene Expression with 

Organ Growth 

It is known that the expression of Dpp and its downstream genes scale with the size of the developing 

Drosophila wing. However, the mechanism of how the gene expression domains might scale is not clear 

(Ben-Zvi, Pyrowolakis et al. 2011). Recent works have shown that scaling of Dpp expression is due to the 

presence of Pentagone which helps in diffusion of Dpp. The downstream genes in this cascade, however, 

are known to be directly transcribed in a graded expression domain rather than being diffused as is the 

case with Dpp. More interestingly, Dpp does not only scale with tissue size but also increases in its 

expression level (Hamaratoglu, de Lachapelle et al. 2011) – which makes it impossible to explain the 

patterning of the target genes under the French-flag model (Wolpert 1969, Jaeger and Martinez-Arias 

2009). We note that a dynamic increase in Sd’s expression can reconcile all these confusion and present 

a coherent picture: an increase in the expression level of Sd in proportion with the scaled and increased 

expression level of Dpp can ensure the proper scaling of brk pattern. This in turn can ensure the proper 

scaling of all the downstream genes. 

6.3 Methods 

The motif for Sd was created by collecting the published Sd-Vg binding sites from (Guss, Nelson et al. 

2001) and the highly conserved sites from FlyReg (Bergman, Carlson et al. 2005). The model fitting was 

done using the same pipeline as described in Chapter 2. We had one additional free parameter in the 

model that captured the extent beyond which Sal does not repress kni. 

6.4 Discussion 

Our work demonstrates for the first time the importance of Sd in patterning the Drosophila wing disc at a 

quantitative level. The high conformance of our model predictions with available data from different 

sources make us confident about a real role of Sd in this case. There is an increasing interest in discovering 

how uniformly expressed TFs may facilitate the regulation of target genes. We showed here how a 

uniformly expressed TFs may be important for proper scaling of the developing tissue as well. 

Furthermore, as has been shown with other morphogen gradients, we showed that the domains of the 

morphogen targets do not only follow the morphogen’s spatial pattern, rather it is decided by 

combinatorial interaction between the morphogen, and graded and uniformly expressed TFs 
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6.5 Figures 

Figure 6.1: Network of the modeled genes and the expression patterns thereof 

 

 

Figure 6.2: Results of model fitting on the five genes’ expression pattern 
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Figure 6.3: Model predictions of changing the Dpp expression domain 
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Figure 6.4: Predictions of brk expression from the known enhancers of brk 

 

Figure 6.5: Predictions of sal expression from the different sequences tested in (Barrio and de Celis 2004) 
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Chapter 7  

Conclusion 

Understanding how DNA encodes instructions for cellular function has been a major interest in biological 

research ever since the onset of genome sequencing projects. Recent works highlighting the roles of 

mutations in non-coding DNA have put more thrust in this direction. The contribution of my thesis may 

be summarized as follows. 

We introduce an ensemble based approach for modeling of transcriptional cis-regulation. Computational 

models of gene expression from cis-regulatory sequences are becoming increasingly complex in both their 

structures and the number of parameters, in trying to keep up with our growing knowledge of regulatory 

inputs to a gene. Models of comparable complexity commonly used in other disciplines, from signaling 

networks to climatology, are known to have many parameterizations that are consistent with available 

data. While different parameterizations may encode distinct hypotheses, the current practice in modeling 

transcriptional cis-regulation is to identify one model that best fits the data. Using the Drosophila ind 

(intermediate neuroblast defective) gene as our working example, we demonstrate how this practice is 

prone to providing an incomplete picture of reality and even lead to incorrect conclusions. We instead 

present an approach where we systematically explore the entire multi-dimensional parameter space and 

leverage information from perturbation experiments to construct an ensemble of models that are 

consistent with available information on ind regulation. The value of this approach, as we discuss in the 

here, is not only in robustly identifying models consistent with both wild-type and mutant data, but also 

in pinpointing further experiments that will eliminate current gaps in our understanding of the gene’s 

regulation. The methodological significance of our work is thus as an example of how models in this realm 

should be built and analyzed in future. 

In computing models that unify the current knowledge of ind regulation, we believe we have made an 

important contribution of interest to the developmental biology community and more broadly to 

scientists working to decipher the “cis-regulatory code”. The ind gene is an early developmental gene 

whose transcription depends on both extra-cellular signaling (MAPK) and the combinatorial action of an 

assortment of transcription factors, both activators and repressors. Our models justify a mechanism – 

proposed based on similar results from studies on cultured human cells – of how the MAPK signaling may 

affect DNA binding affinity of the transcription factor Capicua. To our knowledge, this is the first 

quantitative work that uses sequence-level modeling to demonstrate the involvement of signaling 

pathways in regulation of gene transcription.  

Another important biological contribution of this work is to show how Zelda, a ubiquitously expressed 

‘pioneer’ transcription factor, may regulate transcription upon binding to the DNA. We report 

experimental validation of our prediction about the quantitative effect of inhibiting Zelda binding to the 

ind enhancer. This result, based on a combination of modeling and experimental work, is especially 

interesting in light of recent experimental studies demonstrating a role for Zelda in remodeling the 

chromatin, affecting DNA accessibility, and ultimately influencing gene expression in the early Drosophila 

embryo.  
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We also establish the importance of weak-affinity (non-consensus) binding sites of the transcription factor 

Dorsal in activating ind and show that while our model-based predictions are in agreement with cis-

perturbation experiments conducted previously, the conclusion drawn from those experiments regarding 

the role of Dorsal may have been incorrect, in part due to a disregard of the contribution of weak-affinity 

sites. We believe this will be appreciated as an important example aligned with the recent findings about 

evolutionary and functional significance of weak-affinity sites. 

We present a computational framework for interpreting the sequence of a gene’s intergenic region and 

modeling the gene’s expression level in a cell type, given the concentrations of relevant transcription 

factors in that cell type. The quantitative model builds upon our previous work on statistical 

thermodynamics-based modeling of enhancer function, which was published two years ago (6). The new 

model relies upon those thermodynamics-based models to predict the readout of individual enhancers, 

and uses a weighted summation of those readouts to predict the regulatory output of the entire locus. 

We demonstrate the utility of the model in predicting the complex multi-stripe expression patterns of 

several genes in early embryonic development in Drosophila melanogaster. The model automatically 

discovers segments within the locus that contribute to gene expression. Segments that are not selected 

are in some cases predicted to produce a pattern that is irreconcilable with the gene’s overall expression 

pattern, and must be “shut down” by some mechanism. Indeed, these non-selected segments are 

observed to be in inaccessible regions of the locus. In light of various in silico experiments conducted using 

the new model, we argue that the full complement of binding sites spread out over the locus acts together 

in ways that are different from the combinatorial action of sites within any one enhancer.  

We expect this new work to push the boundaries of quantitative modeling of gene expression, and spur 

further work on sequence-to-expression models that operate without prior knowledge of enhancer 

locations. This will be the natural next step in the community’s attempts to lay out the cis-regulatory code 

in quantitative terms. We also anticipate our computational framework to play a significant role in 

synthetic biology, which needs to precisely quantify input-output relationships of regulatory sequences, 

in studies of regulatory evolution, and in the common bioinformatics task of discovering novel regulatory 

elements. 

Some future extensions of this modeling framework are as follows. First, the framework may be extended 

to understand the basis of tissue- and stage-specific gene expression. Information on co-factor 

recruitment along with chromatin remodeling, three-dimensional configuration of the DNA, and various 

histone modification marks may aid to this end. However, the challenge will be to understand how these 

new factors may be integrated in a biophysical model, or whether we can use them more 

phenomenologically as we did to incorporate MAPK’s action on Cic. It is also worth investigating whether 

and to what extent the above functional genomics data are generalizable to arbitrary contexts of interest. 

A second extension of this system is in the realm of dynamic studies of gene expression. Clearly there is a 

thrust in this direction to understand variation in gene expression due both to intrinsic and extrinsic noise 

through dynamic models. None of these models, however, consider the effect of sequence – which we 

have shown in Chapter 3 as an important factor. Recent single cell genomics data, coupled with our 

mechanistic framework will be valuable in the future. A major application of this system will be in 

identifying causal variants among the significant SNPs and variants identified through statistical 
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overrepresentation. The ultimate goal of GWAS studies can only be realized when one can explain 

functional associations – for which a sequence to expression framework like ours would be valuable. 
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