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Abstract

Dyadic data are ubiquitous and arise in the fields of biology, epidemiology, sociology, and many

more. Such dyadic data are often best understood within the framework of networks. Network

data can vary in many ways. For example, one might have binary or weighted networks, directed

or undirected networks, and static or longitudinal networks. This last type of network, also called

a dynamic network, is the focus of this work, with the goal of developing important tools and

methodology for the analysis of dynamic networks.

A general framework is developed for modeling dynamic networks via a latent space approach.

Using a latent space approach to model such networks allows the researcher to model both the

local and global structure of the network, inherently accounts for transitivity, and yields rich and

meaningful visualization which can easily be interpreted for qualitative inference on the network. A

Markov chain Monte Carlo (MCMC) estimation method within a Bayesian setting is presented. Sev-

eral useful tools for the researcher arise from this estimation method. First, a method of predicting

future relations, or edges, is given. Second, missing data can easily be incorporated into the model,

obtaining a posterior probability of each missing edge. Third, a novel concept called nodal influence

is introduced which describes how one actor can influence the edges of another actor. Detection

of such nodal influence is given via computationally efficient posterior estimation. This model is

shown to outperform the existing method, as well as being able to handle richer and more complex

data than the existing method. The MCMC algorithm is made scalable by utilizing a log likelihood

approximation proposed in the literature, slightly adapted to allow for missing data.

Many of the dynamic networks that arise inherently have weighted edges. The latent space

model is extended to handle a variety of types of weighted edges which arise. In particular, the

model is extended to account for relational data that can be viewed as, conditioning on the latent

actor positions, having come from an exponential family of distributions. An example is also given

which demonstrates how, through data augmentation, a similar strategy can be employed when this

is not the case. The log likelihood approximation method is then extended to make the MCMC
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algorithms scalable for weighted networks.

Of particular interest is Newcomb’s fraternity data, a network which captures the evolution and

formation of a network beginning in its most nascent form and and ending at a stabilized form. The

previous model is modified in two non-trivial ways; the first allows for the modeling of rank-order

data, which does not fall into the broad categories of weighted network data given previously, and

the second allows for the estimation of the evolution of the stability of the network. Next, it is

shown how to use the uncertainties associated with the posterior estimation for subgroup detection

and for determining the time at which these subgroups formed. Finally, the model parameters are

used to find the association between individual stability and popularity.

A longitudinal mixture model is described which can be used to make hard or soft clustering

assignments for p-dimensional real valued data. This model accounts for temporal dependence of

both the clustering assignment and the object to be clustered. Additionally, the model allows for

covariates which may aid in explaining the clustering assignments. The solutions for implementing

the generalized EM algorithm are presented. Recursive relationships are derived which allow the

computational cost to grow linearly with time rather than exponentially.

The latent space framework and the longitudinal clustering model are combined to perform

community detection within dynamic network data, where the communities’ characteristics are fixed

but the membership of each community can evolve over time. This method can handle directed or

undirected weighted dynamic network data. For community detection within directed or undirected

binary networks, a novel model is given along with an efficient variational Bayes estimation algorithm.

Both methods are shown to have better performance than using community detection methodology

which does not borrow information across time.
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Chapter 1

Introduction

Longitudinal relational, or dyadic, data arise in a variety of fields, examples of which include soci-

ology, biology, computer science, entomology and engineering. This type of data, called dynamic

network data, consists of a set of actors and a sequence of sets of relations between the actors called

“edges” corresponding to observations at discrete time points. Analyzing dynamic networks is key

to seeing how friendships form or dissolve, how politicians form loyalties or break ranks with their

parties, how co-authorship patterns develop and change over time, etc.

There exist numerous methods of modeling network data within a statistical framework. Some

of these models are intended for static networks but have generative processes which can be thought

of as dynamic, in the sense of building up the graph over a series of time points. Examples of

this notion can be found in the rewiring of “small-world” networks (Watts and Strogatz, 1998),

the subsequent addition of edges in an Erdös-Rényi random graph model (Durrett, 2007), or the

addition of nodes and edges in a duplication-attachment model (Kumar et al., 2000). Other methods

were developed for static networks and were then extended for the dynamic case. One of the most

well known methods of analyzing static networks is the exponential random graph model (ERGM)

developed by Frank and Strauss (1986), and much attention is still being given to this class of models

(see, e.g., Robins et al., 2007). This was extended to analyzing networks observed over discrete

time intervals by Hanneke et al. (2010) in the introduction of the temporal ERGM, or TERGM.

Using continuous time Markov processes, Snijders (1996) began a series of works corresponding

to what is known as stochastic actor-oriented models. These two approaches focus on the use of

common network structures or user-defined objective functions. The last commonly used approach

to modeling networks that will be mentioned is the latent space model. Latent space approaches aim

to embed network information into some latent space (usually a low dimensional Euclidean space).

Benefits of using such an approach is that both local and global structures are modeled, transitivity

is inherently incorporated in the model, meaningful visualizations are obtained, and the output is

easily interpreted, lending itself to much qualitative inference. While the bulk of the literature on
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latent space models is concerned with static networks, in this dissertation this approach will be used

to model longitudinal network data.

The ideas behind latent space models have long been in use. For example, Nakao and Romney

(1993) used multidimensional scaling to visualize and analyze the latent positions of the nodes in

Newcomb’s fraternity data (Newcomb, 1956). Two formal latent space models were introduced

for static networks by Hoff et al. (2002), one of which placed the latent node positions within a

Euclidean space, the other placed the latent locations on a unit hypersphere while giving each node

an activity level. This latter model was intended to allow for a lack of reciprocity in directed

networks. Estimation was performed using Markov chain Monte Carlo (MCMC), hence giving the

full posterior of parameters and latent positions. Handcock et al. (2007) expanded the Euclidean

model of Hoff et al. (2002) by allowing the latent space positions to follow a mixture of normals,

hence allowing clustering to occur simultaneously with embedding in a Euclidean space. Krivitsky

et al. (2009) expanded on this work by allowing asymetrical edge probabilities. Schweinberger and

Snijders (2003) used a similar approach as Hoff et al. (2002) but used an ultrametric space rather

than a Euclidean or hypersphere space to perform model-based clustering. Further work was done in

Hoff (2005), where the author extended previous notions of ANOVA models of networks by including

as interaction effects the hypersphere latent positions from Hoff et al. (2002).

A limited number of works has considered the temporal aspect of networks while implementing a

latent space approach. Robinson and Priebe (2012) presented a method of discovering change points

in network behavior via using a k-dimensional simplex latent space. Foulds et al. (2011) developed

a non-parametric infinite feature model, where the features are latent. The work most related to

the model that will be proposed in Chapter 2 is that of Sarkar and Moore (2005), which extended

the Euclidean latent space model of Hoff et al. (2002) to (undirected) dynamic networks. They

developed a generalized multidimensional scaling (GMDS) to find the initial latent node positions

across discrete time points. The authors then furthered this by using a conjugate-gradient method

of optimizing an objective function,. While this is a speedy algorithm and hence can be used for

larger data sets, the estimation is based on a filtering-like algorithm (hence not all the data is used

for estimating the latent positions) which in the end leads to estimates that are not statistically

meaningful. The models in Chapters 2 and 3 extend this to broader contexts while better modeling

the network structures.

In Chapter 2, I present a latent space model for dynamic networks with directed binary edges,

which will be the foundation for more complex models. This model can represent the network
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structure, both local and global, and the evolution of the network. The estimation is done in a

Bayesian framework which allows for prediction, missing data, and detection of nodal influence.

Chapter 3 shows how to extend this model for weighted dynamic network data. Specifically, the

model is extended for the case where the edges belong to an exponential family of distributions; also

is shown the case where a similar strategy can be employed through data augmentation. Chapter

4 takes a close look at Newcomb’s fraternity data. This is a longitudinal network data set which

uniquely captures the evolution of a network as it transitions from an unformed state (all actors

were unacquainted) to a stabilized form. With this data I employ novel strategies for determining

the time at which the network stabilizes, the time at which subgroups form, and the association

between individual stability and popularity. Chapter 5 provides a method of clustering longitudinal

p-dimensional real valued data, providing numerically efficient ways of computing the likelihood and

an estimation method employing the generalized EM algorithm. Chapter 6 provides two methods

of community detection in dynamic networks. The first method combines the models of Chapters

2, 3 and 5 for a model that allows the detection of communities in directed or undirected weighted

or binary dynamic networks. The second method is a novel model and estimation algorithm for

community detection within binary directed or undirected dynamic networks. In both cases, as in

Chapter 5, the structure of each community is assumed fixed but the community memberships are

allowed to vary with time.

3



Chapter 2

Latent Space Model for Binary
Dynamic Networks

Network analysis, and in particular dynamic network analysis, is a ubiquitous area of study, used by

scientists in many distinct fields (Vivar and Banks, 2011). Often studied are dynamic social networks,

which come in a wide variety of forms (see the Special Issues on Network Dynamics in Social

Networks, January 2010 and July 2012). Dynamic networks are also analyzed in epidemiological

contexts (Bansal et al., 2010), in analyzing terrorist networks (Carley, 2006), and much more.

In this chapter, we propose a model which embeds dynamic directed, or undirected, network data

into a latent Euclidean space, allowing each node to have a temporal trajectory in this latent space.

Estimation of the model parameters and latent nodal positions occur within a Bayesian framework

using MCMC. By using our approach, the user can observe much more easily how the network evolves

over time, gain insight into global and local structures, handle missing data, make future predictions,

and can detect the attracting influence one actor has on another actor’s friendships (a concept we

call nodal influence, which will be discussed later). To improve the speed of the MCMC algorithm

for large networks, we describe an approximation method which reduces the computational cost.

The remainder of the chapter is organized as follows: Section 2.1 describes the proposed model

for dynamic networks. Section 2.2 outlines the Bayesian estimation of the model parameters and

latent nodal positions, as well as addressing the issue of scalability. Section 2.3 details how to handle

missing data. Section 2.4 describes how to obtain network predictions. Section 2.5 gives a method

for detecting and visualizing nodal influence. Section 2.6 shows simulation results. Section 2.7

presents the results from analyzing data collected from a Dutch classroom as well as from analyzing

cosponsorship data collected on members of the U.S. House of Representatives. Sections 2.8 and 2.9

gives the proofs of the lemmas given earlier in the chapter.
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2.1 Dynamic Latent Space Model

We assume that data come in the form of (N , {Et : t ∈ T }), where N is the set of all nodes, and Et is

the set of edges at time t. For simplicity let T = {1, 2, . . . , T}. For the majority of the chapter it will

also be assumed that Et consists of directed edges. The general idea of the latent space approach is

that this time series of graphs can be represented as a state space model, with a latent state variable

representing the nodes as positions in a low dimensional Euclidean space. The closer two nodes are

in this latent Euclidean space, the more likely they are to form an edge. This low dimensional space

can be thought of as a characteristic space where the distance between nodes represents how similar

they are (Hoff et al., 2002), or as a social space where the distance between two nodes corresponds

to the strength of the relationship between the two.

The notation to be used throughout the rest of the chapter is as follows: n = |N | is the number

of nodes. For a latent space <p, Xit is the p dimensional vector of the ith node’s latent position at

time t, and Xt is the n× p matrix whose ith row is Xit. Yt = {yijt} is the adjacency matrix of the

observed network at time t, and yijt = 1 if there is an edge from node i to node j at time t and 0

otherwise.

The latent node positions are modeled by a Markov process with the initial distribution

π(X1|ψ) =

n∏
i=1

N(Xi1|0, τ2Ip), (2.1)

and transition equation

π(Xt|Xt−1,ψ) =

n∏
i=1

N(Xit|Xi(t−1), σ
2Ip) (2.2)

for t = 2, 3, . . . , T , where Ip is the p× p identity matrix, N(x|µ,Σ) denotes the normal probability

density function with mean µ and covariance matrix Σ evaluated at x, andψ is a vector of parameters

which will be defined shortly.

The observed networks at different time points are conditionally independent given the latent

positions. This dependence structure is illustrated in Figure 2.1. Further, it is assumed that for

any two (distinct) pairs (i, j) and (i′, j′), yijt and yi′j′t are independent conditioning on (Xt,ψ).

In formulating the observation equation of our model, we desire two main properties: first, the

probability of an edge from actor i to actor j at time t should increase as the distance between their

latent positions decreases; second, the probability of an edge should depend on both who is sending

and who is receiving the link, and we should further be able to determine the importance of each
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in edge formation; i.e., whether the identity of the sender or the identity of the receiver is more

important in edge formation. To this end, we use the formulation

P(Yt|Xt,ψ) =
∏
i 6=j

P(yijt = 1|Xt,ψ)yijt · P(yijt = 0|Xt,ψ)1−yijt =
∏
i 6=j

exp(yijtηijt)

1 + exp(ηijt)
, (2.3)

where

ηijt , log

(
P(yijt = 1|Xt,ψ)

P(yijt = 0|Xt,ψ)

)
= βIN

(
1− dijt

rj

)
+ βOUT

(
1− dijt

ri

)
, (2.4)

and dijt = ‖Xit −Xjt‖ and ψ = (τ2, σ2, βIN , βOUT , r1:n) are the model parameters. Here r1:n =

(r1, r2, . . . , rn); similar notation will be used throughout the rest of the chapter. βIN and βOUT are

global parameters which reflect the importance of popularity and social activity respectively. The

ri’s are positive node specific parameters that represent each node’s social reach and is reflective

of the tendency to form and receive edges. Within the latent space, there is also the geometrical

interpretation of ri forming a radius around the ith node, as we will see later. For model identi-

fiability, the ri’s are constrained so that
∑n
i=1 ri = 1. This parameterization emulates both the

distance and projection models of Hoff et al. (2002) for static networks, given as ηij = β(1 − dij)

and ηij = β + X′iXj/‖Xj‖ respectively, by utilizing the visually appealing and intuitive Euclidean

space for the latent positions while incorporating the individual actors’ “sociability,” or social reach,

while also accounting for both activity and popularity.

Krivitsky et al. (2009) built onto Hoff et al.’s model by including additive random individual

effects. Here our parameterization links the actors’ individual effects to the latent space, in the sense

that the social reach dampens or augments the effect of the distance between the two actors, rather

than having the individual actor effects be constant additive effects; thus these two parameterizations

are in fact different, rather than being subsets of each other. In some sense their model is more flexible

in that an actor has both an indegree effect and an outdegree effect. Our model can be trivially

extended to account for this by simply allowing r1:n to be replaced by two sets of parameters r
(IN)
1:n

and r
(OUT )
1:n . We applied this more complex model on the two real data sets presented in Section 2.7

with no improvement in model fit. Hence our focus remains on the simpler model, given in (2.4).

To better understand the interpretation of the β coefficients and the radii r1:n, we consider the

following two cases which one would reasonably expect to occur in practice: (1) both βIN > 0 and

βOUT > 0 (which we would expect to happen most often), and (2) either βIN < 0 and βOUT > |βIN |

or βOUT < 0 and βIN > |βOUT |.

In case (1), the interpretation of the radii that comes naturally from (2.4) is that ri marks the
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(X1,Ψ) (X2,Ψ) (X3,Ψ) . . .

Y1 Y2 Y3

Figure 2.1: Illustration of the dependence structure for the latent space model. Yt is the observed
graph, Xt is the unobserved latent node positions, and ψ is the vector of model parameters.

radius within the latent social space of the ith node’s social reach. This is evident in that if the

distance between two nodes are within each other’s radii, i.e., dijt < min(ri, rj), then the probability

of an edge is greater than 1/2; if they are outside each other’s radii, i.e., dijt > max(ri, rj), then

the probability of an edge is less than 1/2; and if the distance between the two nodes equals both

radii, i.e., dijt = ri = rj , then the probability of an edge equals 1/2. These scenarios are illustrated

in Figure 2.2. Thus in case (1), a larger radius implies an increasing propensity to send and receive

ties. This fact is illustrated in Figure 2.3a, where the probability P(yijt = 1|Xt,ψ) is shown in a

contour plot, allowing ri and rj to vary, with distance dijt = 0.01, βIN = 2 and βOUT = 1/2. Now

if βIN > βOUT (βOUT > βIN ) then we can conclude that the probability of an edge from node i to

node j (from node j to node i) is determined more by the radius of j than by the radius of i. This

is also illustrated in Figure 2.3a, where it is apparent that the probability of an edge from i to j

increases much faster when we fix a value of ri and allow rj to increase than vice versa. Thus in

case (1), if βIN > βOUT then the edges of the network are determined more by the popularity of

the actors than by their activity, i.e., the identity of the receiver of the edge is more important than

the identity of the sender, and if βOUT > βIN the edges of the network are determined more by the

activity of the actors than by their popularity, i.e., the identity of the sender is more important than

the identity of the receiver.

In case (2), one of the β coefficients is negative; without loss of generality assume βOUT < 0

and βIN > |βOUT |. Considering the probability of an edge from node i to node j, note that as rj

increases the probability of an edge increases; thus in case (2), a larger radius implies an increasing

propensity to receive ties. This is illustrated in Figure 2.3b, where P(yijt = 1|Xt,ψ) is shown in

a contour plot, allowing ri and rj to vary, with distance dijt = 0.01, βIN = 2 and βOUT = −1/2.

Similar to case (1), the probability of an edge from node i to node j is determined more by rj than

ri. This can be seen in Figure 2.3b where it is apparent that when we fix ri and allow rj to increase,

P(yijt = 1|Xt,ψ) increases at a more rapid rate than the rate at which P(yijt = 1|Xt,ψ) decreases

7
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Figure 2.2: Illustration of how to interpret social reach parameters r1:n in the case that βIN , βOUT >
0; the probability of an edge from i to k is less than 1/2, from k to l is greater than 1/2, and from
i to j is equal to 1/2.

when we fix rj and allow ri to increase. Thus in case (2) the edges of the network are determined

more by the popularity of the actors than by their activity. Similar conclusions can be made if we

assume βIN < 0 and βOUT > |βIN |.

Any other case than these two would contradict the intuition of the model that a shorter distance

between two nodes is guaranteed to lead to an increased probability of an edge; additionally the

possibility of groups of nodes (communities) would no longer exist.

ri

r j
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(a) Case (1)
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Figure 2.3: Contour plots of P(yijt = 1|Xt,ψ); βIN = 2, dijt = 0.01, and βOUT = 1/2 in (a), and
βOUT = −1/2 in (b). The point ri = rj = dijt is marked with a dot.

8



2.2 Estimation

We adopt a Bayesian approach, and hence we wish to make inferences based on π(X1:T ,ψ|Y1:T ),

where ψ = (τ2, σ2, βIN , βOUT , r1:n). We implement a Metropolis-Hastings (MH) within Gibbs

MCMC scheme as suggested by Geweke and Tanizaki (2001) to sample from the posterior, hence

giving point estimates and uncertainties. We set the priors on the parameters as follows: as-

sume that βIN ∼ N(νIN , ξIN ), βOUT ∼ N(νOUT , ξOUT ), σ2 ∼ IG(θσ, φσ), τ2 ∼ IG(θτ , φτ ) and

(r1, r2, . . . , rn) ∼ Dirichlet(α1, α2, . . . , αn), where IG is the inverse gamma distribution. The inverse

gamma priors were chosen to be conjugate, and the Dirichlet prior is a natural selection for such

constrained parameters.

2.2.1 Initialization

The number of MCMC iterations required to reach convergence can be greatly reduced by appro-

priate initial values of the latent positions X1:T and the parameters τ2, σ2, βIN , βOUT , and r1:n.

We want the radii r1:n, or social reaches, to be strongly associated with the in and outdegree of

the nodes. Therefore we have the initial estimates (denoted by superscript (1)) of each radius to be

r
(1)
i =

∑T
t=1

∑
j 6=i(yijt + yjit)/2∑T

t′=1

∑
j′ 6=i′ yi′j′t′

. (2.5)

A nice method of obtaining initial latent positions X (1)
1:T is GMDS, given by Sarkar and Moore

(2005). This GMDS method extends the classical multidimensional scaling (CMDS) by using CMDS

to obtain X (1)
1 , and then for t = 2, 3, . . . , T minimizing an objective function that balances the CMDS

estimates for X (1)
t with the previous estimates of X (1)

t−1. To perform GMDS, T distance matrices

{dijt} are required; Sarkar and Moore suggested constructing these distance matrices by setting dijt

to be the length of the shortest path from i to j at time t. We too do this, though we rescale by 1/n

to keep the distances on the same scale as the radii, as (2.4) seems to suggest is necessary. From

the initial estimates of the radii and the latent positions, we find initial estimates of βIN and βOUT

by maximizing the likelihood numerically.

An intuitive initial value for τ2 can be found using the initial latent positions X (1)
1 in the following

way:

1

np

n∑
i=1

‖X(1)
i1 ‖2. (2.6)

One could determine the initial value for σ2 by using the initial positions X (1)
1:T in much the same
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way as was done for τ2. Note that such an initial estimate would be heavily influenced by the

user specified tuning parameter in the GMDS algorithm, and hence the user may be misled into

thinking that the data are supporting a particular initial value when in fact the user has already

predetermined it. In our simulation study and real data analyses we chose a large initial value for

σ2 in order to allow the latent positions Xit to move more during the beginning iterations of the

MCMC algorithm.

There typically is no intuition as to what values to set the hyperparameters of the prior distri-

butions, and so we suggest using some of these initial values of the parameters to aid in this. To

make the prior of τ2 flat one can set the shape and scale parameters of the inverse gamma prior to

be respectively θτ = 2 + δ and φτ = (1 + δ) ·E(τ2) for some small δ > 0, where E(τ2) is set to be the

initial estimate in (2.6). The initial estimates of βIN and βOUT are natural selections for νIN and

νOUT . The prior can then be made flat by simply choosing ξIN and ξOUT to be very large values.

The hyperparameters for r1:n may all be set equal to 1 in order to obtain a flat and uninformative

prior, as well as to simplify the computations involved in the MCMC algorithm. There are no auto-

matic decisions for determining the hyperparameters for σ2. However, as we will see in Section 2.6,

the MCMC algorithm is not sensitive to this selection.

2.2.2 Posterior Sampling

To sample via Metropolis-Hastings within Gibbs algorithm, we draw from the full conditional dis-

tributions iteratively. These conditional distributions are either known in closed form or up to a

normalizing constant and are given below.

Letting pijt , P(yijt|Xt,ψ) = exp(yijtηijt)/(1 + exp(ηijt)), the conditional distribution for Xit is

π(Xit|Y1:T ,ψ) ∝



(
∏
j:j 6=i

pijtpjit) ·N(Xit|0, τ2Ip) ·N(Xi(t+1)|Xit, σ
2Ip), if t = 1

(
∏
j:j 6=i

pijtpjit) ·N(Xi(t+1)|Xit, σ
2Ip) ·N(Xit|Xi(t−1), σ

2Ip), if 1 < t < T

(
∏
j:j 6=i

pijtpjit) ·N(Xit|Xi(t−1), σ
2Ip), if t = T .

(2.7)
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The conditional distributions for βIN and βOUT are

π(βIN |Y1:T ,X1:T , τ
2, σ2, βOUT , r1:n) ∝

 T∏
t=1

∏
i 6=j

pijt

 ·N(βIN |νIN , ξIN ), (2.8)

π(βOUT |Y1:T ,X1:T , τ
2, σ2, βIN , r1:n) ∝

 T∏
t=1

∏
i 6=j

pijt

 ·N(βOUT |νOUT , ξOUT ). (2.9)

Assuming the prior of r1:n is Dirichlet(1, . . . , 1), the conditional distribution for r1:n is

π(r1:n|Y1:T ,X1:T , τ
2, σ2, βIN , βOUT ) ∝

T∏
t=1

∏
i6=j

pijt. (2.10)

The conditional distributions for τ2 and σ2 are

τ2|Y1:T ,X1:T , σ
2, βIN , βOUT , r1:n ∼ IG

(
θτ + np/2, φτ +

1

2

n∑
i=1

‖Xi1‖2
)
, (2.11)

σ2|Y1:T ,X1:T , τ
2, βIN , βOUT , r1:n ∼ IG

(
θσ + np(T − 1)/2, φσ +

1

2

T∑
t=2

n∑
i=1

‖Xit −Xi(t−1)‖2
)
. (2.12)

The posterior sampling algorithm is then

0. Set the initial values of (X1:T ,ψ) (e.g., to those described in Section 3.1).

1. For t = 1, . . . , T and for i = 1, . . . , n, draw Xit via MH using a normal random walk proposal.

2. Draw τ2 from (2.11).

3. Draw σ2 from (2.12).

4. Draw βIN via MH using a normal random walk proposal.

5. Draw βOUT via MH using a normal random walk proposal.

6. Draw r1:n via MH using a Dirichlet proposal.

Repeat steps 1-6.

Due to the constraint on the radii (
∑n
i=1 ri = 1), it is necessary to, within the MH step, accept

or reject all n values simultaneously; hence it is important to keep the movements small, i.e., the

variance of the proposal small. We also desire to keep the means at the current values. Therefore

the proposal used to draw the new values r∗1:n is another Dirichlet distribution with parameters

(κr1, κr2, . . . , κrn), where the ri’s are the current values and κ is some large constant. Thus the

acceptance rate for r∗1:n is

min

{
1,
π(r∗1:n|Y1:T ,X1:T , τ

2, σ2, βIN , βOUT )

π(r1:n|Y1:T ,X1:T , τ2, σ2, βIN , βOUT )
· Dir(r1:n|κr∗1:n)

Dir(r∗1:n|κr1:n)

}
,

where Dir(r1:n|α1:n) is the Dirichlet probability density function with parameters α1:n evaluated at

r1:n, and π(r1:n|Y1:T ,X1:T , τ
2, σ2, βIN , βOUT ) is given in (2.10).
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One last note is that the posterior will be invariant to rotations, reflections, and translations of

the latent positions. Hence any inference must take into account the non-uniqueness of the estimates.

Similar to the approach described in Hoff et al. (2002), we perform a Procrustes transformation to

reorient the sampled trajectories. We set an (nT ) × p reference trajectory matrix X 0, and after

drawing new Xit for all i and t, we construct from these new draws the new trajectory matrix

X = (X ′1, . . . ,X ′T )′. In practice we used the initial latent positions to construct X 0. The Procrustes

transformation on X using X 0 as the target matrix finds

argmin
X∗

tr (X 0 −X ∗)′ (X 0 −X ∗) ,

where X ∗ is some rotation and translation of X ; see, e.g., Borg (2005). By performing the Procrustes

transformation on the trajectory matrix, we obtain a single rotation matrix A with which we use

to set X (`) = XA, where the superscript (`) denotes the stored values for the `th iteration; that is,

we set X
(`)
it = A′Xit. By so doing we are preserving the distances between any actors at any time

points, i.e., ‖X(`)
it −X

(`)
js ‖ = ‖Xit −Xjs‖ for any actors i and j and any time points t and s.

2.2.3 Scalability

Scalability is an issue for latent space models for network data. For static networks, this issue has

been addressed through using variational Bayes (Salter-Townshend and Murphy, 2012) and also by

using case-control principles from epidemiology (Raftery et al., 2012). This latter method reduced

the computational cost (for static networks) of computing the log likelihood from O(n2) to O(n).

The general strategy of the case-control log likelihood approximation is to write the log likelihood

as two summations. Assuming that the network becomes sparser as n gets larger, the computational

cost of the first of the two summations is linear with respect to n, and the cost of the second is

quadratic. The second summation is then replaced by a Monte Carlo estimate obtained from a

subsequence of the actors, thus making the overall cost of computing the log likelihood linear in n.

This method as described by Raftery et al. (2012), however, cannot be directly extended to

longitudinal network data containing missing edge values which is often the case, especially in social

networks. This is because all the links need to be known a priori. By modifying how the log

likelihood is decomposed into two summations, we can apply this same method without knowing all

yijt beforehand. I now give the details on this approximation method, modified slightly to allow for

missing data.

12



One can reduce the computational cost involved in an iteration of the MCMC algorithm by

approximating the acceptance ratios corresponding to the Metropolis-Hastings steps. Consider the

latent positions where, for actor i at time t, it is necessary to compute
∏
j:j 6=i pijtpjit. We can write

the log of this quantity as three summations:

∑
j:j 6=i

log(pijtpjit) =
∑
j:j 6=i

[
yijtηijt + yjitηjit − log(1 + exp(ηijt))− log(1 + exp(ηjit))

]
=

∑
j:yijt=1

ηijt +
∑

j:yjit=1

ηjit −
∑
j:j 6=i

[
log(1 + exp(ηijt)) + log(1 + exp(ηjit))

]
.

(2.13)

From this expression we see that for each MCMC iteration it is necessary to compute O(Tn2)

terms for updating X1:T . It is reasonable, though, to assume that as n gets larger the adjacency

matrices become sparser, and so the first two summations are not growing at an alarming rate;

we can formalize this by assuming that either the maximum node degree is fixed or is of o(n).

The final summation in (2.13), however, requires n − 1 calculations, and hence is responsible for

the computational cost being quadratic with respect to n. To ease the computational burden, we

replace this term with a summation of only a fixed number n0 of terms. Specifically, we randomly

draw for each i a subsequence {jk}n0

k=1. Then the last term in (2.13) can be approximated as

∑
j:j 6=i

[log(1 + exp(ηijt)) + log(1 + exp(ηjit))]

≈n− 1

n0

n0∑
k=1

[log(1 + exp(ηijkt)) + log(1 + exp(ηjkit))] . (2.14)

A similar approximation can be used in the acceptance ratios for βIN , βOUT and r1:n. For each

of these it is necessary to compute
∏T
t=1

∏n
i=1

∏
j:j 6=i pijt. For each i and t, log

(∏
j:j 6=i pijt

)
can be

written as two summations:

∑
j:j 6=i

log(pijt) =
∑
j:j 6=i

[yijtηijt − log(1 + exp(ηijt))]

=
∑

j:yijt=1

ηijt −
∑
j:j 6=i

log(1 + exp(ηijt)). (2.15)

Here again we see that the number of terms to be summed in updating βIN , βOUT and r1:n is of

O(Tn2). Using the same subsequences as before, the second summation in (2.15) can be approxi-
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mated as ∑
j:j 6=i

log(1 + exp(ηijt)) ≈
n− 1

n0

n0∑
k=1

log(1 + exp(ηijkt)). (2.16)

By using the approximations in (2.14) and (2.16), the computational cost of each MCMC iteration

is reduced from O(Tn2) to O(Tn), i.e., the computational cost is now linear with respect to n.

It is not necessary to know the values of the yijt’s a priori in order to draw the subsequences

{jk}n0

k=1. Further, (2.13) can still be calculated because at each iteration of the MCMC algorithm

there will be some estimate of yijt. Therefore this approximation can be implemented in the context

of missing data.

One last note is that the sampling of the subsequences {jk}n0

k=1 can be drawn in a variety of ways.

In the simulations of Section 2.6 and the cosponsorship data analysis of Section 2.7, the subsequences

were drawn via stratified sampling. That is, for each i, the n− 1 other nodes were divided into two

groups, G1 =
{
j 6= i : yijt = 1 or yjit = 1 for at least one t

}
and G2 =

{
j 6= i : yijt = yjit = 0, ∀t

}
.

Then {jk}ck=1 was a random sample from G1 and {jk}n0

k=c+1 was a random sample from G2, where

c =
⌊
n0|G1|/(n− 1) + 0.5

⌋
.

2.3 Missing Data

Missing data in social networks is not uncommon, and can come in various forms, such as boundary

specification, non-response, and censoring by vertex degree (Kossinets, 2006). Here we specifically

focus on non-responses, i.e., missing edge values. For static networks there have been a number of

methods proposed (see, e.g., Robins et al., 2004; Huisman, 2009). For dynamic networks, Huisman

and Steglich (2008) compared several methods to handle missing edges in the context of a stochastic

actor oriented model. Handcock and Gile (2010) developed a theoretical framework for networks in

which only a subset of the dyads are observed; we use this framework in our discussion and refer

the reader to Handcock and Gile’s paper for more details.

Let D denote the sampling pattern; that is, D is the set of n × n matrices {D1, . . . , DT } where

Dijt equals 1 if the dyad yijt is observed and equals 0 otherwise. Letting Y(obs) and Y(mis) denote the

collection of observed edges and missing edges respectively, the complete data is (Y(obs),Y(mis),D),

and the incomplete (observed) data is (Y(obs),D). The unobserved edges Y(mis) are considered

missing completely at random (MCAR) if P(D|Y(obs),Y(mis), ξ) = P(D|ξ), where ξ is some set of pa-

rameters corresponding to the sampling pattern. If, however, P(D|Y(obs),Y(mis), ξ) = P(D|Y(obs), ξ),

then the unobserved edges are considered missing at random (MAR). The case where the pattern of
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unobserved edges depends on the unobserved edges themselves (called non-ignorable missing data)

is a difficult scenario which is beyond the scope of this chapter; thus we will continue the discussion

assuming that the missing edges are either MCAR or MAR.

Rubin (1976) discussed weak conditions for which it is possible to ignore the process that causes

missing data. In our context, we are interested in the posterior distribution π(X1:T ,ψ,Y(mis)|Y(obs),D);

hence if the sampling pattern is ignorable, we may make inference based on the posterior distribu-

tion π(X1:T ,ψ,Y(mis)|Y(obs)), i.e., X1:T , ψ and Y(mis) are independent of D given Y(obs). There are

two sufficient conditions that must be satisfied in order for the sampling pattern to be ignorable

(Rubin, 1976). First, the sampling pattern parameters ξ are a priori independent with the data

(Y(mis),Y(obs)), latent positions X1:T and model parameters ψ, i.e., π(Y(mis),Y(obs),X1:T ,ψ, ξ) =

π(Y(mis),Y(obs),X1:T ,ψ)π(ξ). Second, the space of (ξ,X1:T ,ψ) is a product space, i.e., if ξ ∈ Ξ,

X1:T ∈ X and ψ ∈ Ψ then (ξ,X1:T ,ψ) ∈ Ξ × X × Ψ. If these two conditions are met and the

missing edges are either MCAR or MAR, we have

π(Y(mis),X1:T ,ψ|Y(obs),D) =

∫
π(D|Y(obs), ξ)π(Y(mis),Y(obs),X1:T ,ψ)π(ξ)dξ∫

π(D|Y(obs), ξ)π(Y(obs))π(ξ)dξ

=
π(Y(mis),Y(obs),X1:T ,ψ)

π(Y(obs))

= π(Y(mis),X1:T ,ψ|Y(obs)). (2.17)

Handling the missing data is easy when using the MH within Gibbs sampling scheme of Section

3. Using the observed data and the current values for the missing data, the full conditionals for X1:T

and ψ are unchanged. The full conditional of Y(mis) is determined by, for any yijt ∈ Y(mis),

π(yijt|X1:T ,ψ) =
exp(yijtηijt)

1 + exp(ηijt)
, (2.18)

where ηijt is given in (2.4). That is, including the missing data in the MH within Gibbs sampling

amounts to an additional draw for each missing yijt from a Bernoulli distribution with probability

determined by (2.4).

2.4 Prediction

Predicting future links is an important and interesting problem. Applications include recommender

systems, terrorist networks, protein interaction networks, prediction of friendship networks, and
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more (Wang et al., 2007; Kashima and Abe, 2006; Hopcroft et al., 2011; Liben-Nowell and Kleinberg,

2007).

When considering prediction in the latent space context, it is of interest to predict for time T +1

both the edges of the adjacency matrix YT+1 and the latent space positions XT+1. It is simple to

find point estimates of the latter since

π(XT+1|Y1:T ) =

∫
π(XT+1|XT ,ψ)π(X1:T ,ψ|Y1:T )dX1:T dψ

≈ 1

L

L∑
`=1

n∏
i=1

N(Xi(T+1)|X(`)
iT , σ

2(`)
Ip), (2.19)

where the superscript (`) indicates the `th draw from the posterior. Hence

X̂T+1 , E(XT+1|Y1:T ) ≈ 1

L

L∑
`=1

X (`)
T . (2.20)

It is assumed that an appropriate burn-in period for the chain has been accounted for.

A simple way to compute a point estimate of the probability of an edge between i and j at time

T + 1, P(yij(T+1) = 1), would be to plug in X̂T+1 along with the posterior means of the parameters

into the observation equation (2.4). We can, however, do a little better by not conditioning on

the posterior means of the model parameters, hence eliminating some unnecessary uncertainty. We

aim, then, to find P(YT+1|Y1:T ,XT+1 = X̂T+1). Since conditional on XT+1 we still assume that

the yij(T+1)’s are independent, we need only find P(yij(T+1)|Y1:T , X̂i(T+1), X̂j(T+1)). This can be

estimated as follows:

First, we approximate the joint distribution.

P(yij(T+1),Xi(T+1),Xj(T+1)|Y1:T )

=

∫
π(yij(T+1)|Xi(T+1),Xj(T+1),ψ)π(Xi(T+1),Xj(T+1)|X1:T ,ψ)π(X1:T ,ψ|Y1:T )dX1:T dψ

≈ 1

L

L∑
`=1

π(yij(T+1)|Xi(T+1),Xj(T+1),ψ
(`))π(Xi(T+1),Xj(T+1)|X (`)

T ,ψ(`)). (2.21)

Next the marginal distribution of (Xi(T+1),Xj(T+1))|Y1:T is found as in (2.19) and approximated by

1

L

L∑
`=1

π(Xi(T+1),Xj(T+1)|X (`)
T ,ψ(`)) =

1

L

L∑
`=1

N(Xi(T+1)|X(`)
iT , σ

2(`)
Ip)N(Xj(T+1)|X(`)

jT , σ
2(`)

Ip).

(2.22)
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Thus the conditional distribution of yij(T+1)|Y1:T , X̂T+1 is estimated as a weighted average:

P(yij(T+1)|Y1:T , X̂T+1) =
π(yij(T+1), X̂i(T+1), X̂j(T+1)|Y1:T )

π(X̂i(T+1), X̂j(T+1)|Y1:T )

≈
L∑
`=1

w`π(yij(T+1)|X̂i(T+1), X̂j(T+1),ψ
(`)), (2.23)

where

w` =
N(X̂i(T+1)|X(`)

iT ,ψ
(`))N(X̂j(T+1)|X(`)

jT ,ψ
(`))∑L

`′=1N(X̂i(T+1)|X(`′)
iT ,ψ(`′))N(X̂j(T+1)|X(`′)

jT ,ψ
(`′))

(2.24)

and π(yij(T+1)|X̂i(T+1), X̂j(T+1),ψ) is defined in (2.3) and (2.4).

This method outperforms the simpler plug in method mentioned earlier, as will be seen in Section

2.6 when the simulation results are given. The intuition as to why this is so is that we are using fewer

estimated parameters to make predictions, hence introducing less uncertainty into the prediction

estimates.

2.5 Nodal Influence

The latent space approach gives rise to a novel way of detecting and viewing nodal, or social,

influence. Anagnostopoulos et al. (2008) defined social influence as “the phenomenon that the

actions of a user can induce his/her friends to behave in a similar way.” Many authors attempt to

use social influence to track the propagation of ideas or behaviors through a network (e.g., Kempe

et al. (2003), Leskovec et al. (2006)). Tang et al. (2009) described a method of determining which

nodes will influence which other nodes on a variety of topics. Goyal et al. (2010) proposed a method

of labeling each edge by an influence probability, assuming undirected binary edges. These works

all require data outside of the network, such as, as phrased by Goyal et al., an “action log.” Here

we consider nodal influence as the attracting influence one node has on another node’s friendships;

i.e., how one person draws another person into their own social circle. Hence our new definition of

nodal influence is how one node affects the edges of another node.

We assume that the way in which one node can affect another node’s movements in the network

is manifested in an increased tendency for the influenced node to move in the direction of the

influencing node in the social space. To detect the tendency for a node i to move through the social

space in the direction of another node j, the transition equation for the latent nodal positions is

extended by considering a new parameter to describe the nodal influence between two nodes. We

will then carefully define this parameter, implement an appropriate prior, and then look at posterior
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probabilities that will help the user determine whether or not there is nodal influence. We will

show that this can be done by using the same MCMC output as when the transition equation was

assumed to be a random walk. Throughout the next two sections we consider looking at the nodes

pairwise, i.e., we look at whether or not a specific node i is influenced by another node j.

2.5.1 Nodal Influence Detection

Consider an extension of the transition equation (2.2) such that Xit = Xi(t−1) + εit where εit ∼

N(µt, σ
2Ip). In the following, assume that p = 2. Let θt equal the angle atan2(Xjt−Xi(t−1)), where

atan2 is the common variation of the arctangent function which preserves the angle’s quadrant,

taking a vector rather than a ratio as its argument. Let Rt be the rotation matrix associated with

θt. We then let µt be of the form

µt = Rt

 µ

0

 =

 cos(θt) − sin(θt)

sin(θt) cos(θt)


 µ

0

 , (2.25)

where µ = ‖E(Xit −Xi(t−1))‖ is some unknown parameter taking non-negative values. No nodal

influence is equivalent to the case where µ = 0, and if there does exist some nodal influence then

this will be reflected in some µ > 0. Figure 2.4 gives an illustration of this type of nodal influence.

The idea here is that node i will aim towards wherever node j is within the latent characteristic

space. If we let the prior on the parameters (ψ, µ) be independent, i.e., π(ψ, µ) = π(ψ)π(µ), then

the posterior samples obtained from Section 2.2.2 can be equivalently viewed as having come from

π(X1:T ,ψ|Y1:T , µ = 0). This is important because, as will be seen later, we can use these same

draws to make inference regarding the nodal influence existing between nodes i and j. Also note

that under the extended transition equation, the Markov property still holds for the latent positions,

i.e., π(Xt|X1:(t−1),ψ, µ) = π(Xt|Xt−1,ψ, µ).

The prior distribution of µ is chosen to be a mixture of a point mass on 0 and a continuous

component over the positive reals:

π(µ) =

 p0 if µ = 0

(1− p0)f(µ) for µ > 0,
(2.26)

where f is some proper continuous density on (0,∞). Here f will be assumed for convenience to be
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Figure 2.4: The extension of the transition equation to allow for node j’s influence on node i. Node
i is more likely to move toward node j. The circle around Xi(t−1) represents a von Mises distribution
for the angle component of εit’s spherical coordinates, where dark values indicate high probability
regions and light values indicate low probability regions.

the exponential distribution with mean λ. Then the posterior density is

π(µ|Y1:T ) =
π(Y1:T |µ)π(µ)

π(Y1:T )
=
π(Y1:T |µ)p0

π(Y1:T )
1{µ=0} +

π(Y1:T |µ)

π(Y1:T )
(1− p0)f(µ)1{µ>0}. (2.27)

For notation, let π0(µ = 0|Y1:T ) = π(Y1:T |µ = 0)p0/π(Y1:T ) and let π+(µ|Y1:T ) = π(Y1:T |µ)(1 −

p0)f(µ)/π(Y1:T ). Then π0(µ = 0|Y1:T ) is the point mass posterior probability that µ = 0. If our

prior probability p0 = 1/2 and we find that the posterior probability is less than 1/2 then this

implies the data is pulling the posterior probability towards the conclusion that node i is influenced

by node j.

Since 1 = π0(µ = 0|Y1:T ) +
∫∞

0
π+(µ|Y1:T )dµ, we have that

π0(µ = 0|Y1:T ) =
1

1 +
∫∞

0
κ(ν)dν

, (2.28)

where κ(ν) = π+(µ = ν|Y1:T )/π0(µ = 0|Y1:T ). So if we can find
∫∞

0
κ(ν)dν then we can compute

π0(µ = 0|Y1:T ). To this end, we have the following lemma:
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Lemma 2.5.1. For κ(ν) as defined above,

∫ ∞
0

κ(ν)dν = E(h(X1:T ,ψ)|Y1:T , µ = 0), (2.29)

where

h(X1:T ,ψ) =
(1− p0)

p0λ

√
2πσ2

T − 1
Φ

λ
∑T
t=2(Xit −Xi(t−1))

′
(

cos(θt)

sin(θt)

)
− σ2

λ
√
σ2(T − 1)



· exp


(
λ
∑T
t=2(Xit −Xi(t−1))

′
(

cos(θt)

sin(θt)

)
− σ2

)2

2λ2σ2(T − 1)

 , (2.30)

and Φ is the standard normal cumulative distribution function.

The expectation in (2.29) is taken with respect to the posterior π(X1:T ,ψ|Y1:T , µ = 0), and

hence we can use the posterior draws already obtained from Section 2.2.2 to utilize the following

approximation: ∫ ∞
0

κ(ν)dν ≈ 1

N

N∑
`=1

h(X (`)
1:T ,ψ

(`)). (2.31)

Combining (2.28) with (2.31) we are able to compute the posterior probability π0(µ = 0|Y1:T ).

The quantity in (2.30) that appears in both the normal cumulative distribution function and

in the exponent is interesting in that (Xit −Xi(t−1))
′

(
cos(θt)

sin(θt)

)
is the scalar projection of (Xit −

Xi(t−1)) onto the unit vector whose direction is determined by (Xjt − Xi(t−1)) (see Figure 2.4).

Intuition tells us that if these scalar projections are consistently large then node j is influencing the

way node i moves through the social space; the posterior probabilities reflect this intuition in that

large scalar projections lead to small values of π0(µ = 0|Y1:T ).

One last note of practical value is that for nodal influence to exist in a meaningful way, we must

require that the influencing node has during at least one observation period brought the influenced

node within his social circle. This becomes easy to evaluate by means of the social reaches by

requiring that for nodal influence to exist between i and j, {t : dijt < ri}
⋃{t : dijt < rj} 6= ∅.

2.5.2 Visualizing the Nodal Influence

Suppose there is evidence from the posterior that µ 6= 0. Then, as mentioned earlier, εit = Xit −

Xi(t−1) ∼ N(µt, σ
2Ip). We can visualize and further interpret this influence by considering the polar
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coordinates of εit, dit = ‖Xit−Xi(t−1)‖ and φit = atan2(Xit−Xi(t−1)). The following lemma gives

the distribution of (dit, φit).

Lemma 2.5.2. Let Z and W be independent random variables such that Z ∼ N(µz, σ
2) and W ∼

N(µw, σ
2), and let d = ‖(Z,W )‖ and φ = atan2((Z,W )) be the polar coordinates of (Z,W ). Then

d ∼ Rice (‖(µz, µw)‖, σ) , (2.32)

φ|d ∼ von Mises

(
d‖(µz, µw)‖

σ2
, atan2((µz, µw))

)
. (2.33)

Using this lemma, we see that the polar coordinates of R′tεit, (dit, φit), follow

dit ∼ Rice (µ, σ) , (2.34)

φit|dit ∼ von Mises

(
ditµ

σ2
, 0

)
. (2.35)

In other words, we can think of the transition from Xi(t−1) to Xit as a two step process, where the

distance to move is determined first, and then the angle is chosen. To aid the visualization of the

nodal influence we focus on the von Mises distribution that determines this angle. Hence we are

visualizing the extent of the nodal influence from j on i by looking at the propensity of node i to aim

towards node j. The circle around Xi(t−1) in Figure 2.4 represents such a von Mises distribution

(with mean θt rather than 0), where dark values indicate high probability regions and light values

indicate low probability regions. Note that if µ = 0 then φit ∼ von Mises(0, 0)
D
= Unif(−π, π). That

is, any angle with respect to node j is as likely as any other angle and hence node i does not tend

to angle towards node j more than any other direction in the latent social space.

We can use the posterior mean latent positions to estimate these von Mises distributions, thus

obtaining a good visualization of the nodal influence. First get µ̂, the estimate of µ, by averaging

over time the scalar projection of (X̂it−X̂i(t−1)) onto (X̂jt−X̂i(t−1)). Then we can further estimate

the T −1 concentration parameters (the concentration parameter in (2.33) being d‖(µz, µw)‖/σ2) by

multiplying this µ̂ by ‖X̂it−X̂i(t−1)‖/σ̂2. One can then plot these estimated von Mises distributions

wrapped around the nodes being influenced, such as Figure 2.8. This type of plot may become

overcrowded when there are multiple influencing nodes; in such a case, for each of, say, m influencing

nodes, one could average these T−1 concentration parameters over time to obtain one concentration

parameter for a summary von Mises distribution. These m von Mises distributions can then be

plotted to get an overview of the various influences on the influenced node. An example of this type

of plot can be seen in Figures 2.9 and 2.13.
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2.6 Simulations

Twenty data sets were simulated, each with the number of nodes n = 100 and the number of time

points T = 10. For each of the twenty simulations the following parameter values were set to be

βIN = 1, βOUT = 2, and σ2 = 1/(5n)2. The initial latent positions X1 were drawn according to a

mixture of normals with 5 components, equal mixture weights (1/5), and equal spherical covariances

σ2Ip, where p = 2. The means of the clusters were drawn from a normal distribution with mean zero

and covariance matrix (2/n)2Ip, hence some clustering existed at least at the initial time point. The

radii were then drawn randomly from a Dirichlet distribution. The ith parameter of this Dirichlet

was computed by taking n‖Xi1‖−1/maxj{‖Xj1‖−1}; the motivation for this was for the nodes with

the larger social reach to also be the nodes in the center of the social space. For ten of the twenty

simulations, the latent positions at subsequent time periods X2:T were drawn according to (2.2).

For the remaining ten, these subsequent latent positions were drawn in a slightly different manner

to allow nodal influence to exist in the network. Twenty-five nodes were randomly selected to be

influenced, each of which was accompanied by another randomly selected node to do the influencing,

and we let µ = 0.02. Then X2:T were drawn by

Xit ∼


N(Xi(t−1), σ

2Ip) if node i is not influenced,

N

Xi(t−1) +Rt


µ

0


, σ2Ip

 if node i is influenced.
(2.36)

The prior of σ2 was chosen to be IG(9, 1.5) to keep the possibility of a large σ2. The prior of

τ2 was IG(2.05, 1.05
∑n
i=1 ‖X

(1)
i1 ‖2/(np)), following the suggestions in Section 3.1. The priors of

the coefficients βIN and βOUT were normals centered at the initial estimates and variances equal to

100. The prior of µ was an exponential distribution with mean 0.03. When using a normal random

walk proposal for the latent space positions and the β coefficients, the variance components were

0.0075 and 0.1 respectively. The tuning parameter κ used in the Dirichlet proposal for the radii was

175,000. For each simulation, the chain length was 50,000, and we then removed from the chain a

burn-in of 15,000 samples.

The results from the simulations were compared in several ways: First, for each simulation the

posterior means of βIN and βOUT were computed as well as the correlation between the posterior

means of r1:n and the truth for each of the 20 simulations. The mean (sd) over all 20 simulations of

β̂IN was 0.9172 (0.06207) and for β̂OUT was 2.045 (0.1438). The mean (sd) correlation between r̂1:n
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and r
(true)
1:n was 0.9298 (0.06402). We see then that the posterior means did quite well at estimating

the true values of βIN (1), βOUT (2) and the radii.

Second, the area under the ROC curve (AUC) was computed. This was accomplished by plug-

ging in the posterior means of the model parameters and the latent positions into the observation

equations (2.3) and (2.4), and then comparing these with the simulated data Y1:T . Hence this can be

considered as a measure of how well the model fits the data. For each simulation, the directed graphs

were also converted to undirected graphs by letting yijt = max{yijt, yjit} in order that we might

apply the method of Sarkar and Moore (2005). The AUC values for both undirected and directed

networks were then computed using the estimates from Sarkar and Moore’s method. We similarly

computed the AUC values for the directed network using our method, and, again using those same

estimates, computed the AUC values for the undirected network by using P({yijt = 1}∪{yjit = 1}).

These results are given in Figure 2.5a, where asterisks indicate the directed networks and triangles

indicate undirected. We see that all our values are extremely high, implying that the model fits the

data quite well, and also we see that our method uniformly outperformed that of Sarkar and Moore

on both the directed and undirected networks.

Third, the pairwise distances from the estimated latent positions were compared to the pairwise

distances from the true latent positions. That is, for each triple (i, j, t) we can look at ‖X̂it −

X̂jt‖/‖Xit −Xjt‖, giving us Tn(n− 1)/2 such ratios for each simulation. Figure 2.5b gives, for each

of the twenty simulations, a smoothed curve of the distribution of these ratios. Notice that all these

distributions are narrow and centered around 1, implying that the latent positions from the posterior

means are close to the truth.

Fourth, the capability of predicting YT+1 was evaluated. To this end one could simulate a new

XT+1 from (2.2) and subsequently simulate a new YT+1 from (2.3) and (2.4), and then compare the

predicted edges with these simulated edges. This would, however, introduce unnecessary variation

in YT+1, possibly making good predictions seem bad, or vice versa. Hence we used P(YT+1|XT+1 =

E(XT+1|XT ,ψ),ψ) as the “true” probabilities at time T + 1. We first wanted to make sure that

the more sophisticated prediction method worked better than plugging the posterior means into

the observation equations. Hence we compared the sum of squared differences between the true

probabilities and the predicted probabilities given by (2.23) to the sum of squared differences between

the true probabilities and the probabilities obtained by plugging in the posterior means into (2.3)

and (2.4). Specifically, we looked at

∑
i6=j

[
P(yij(T+1) = 1|XT+1 = E(XT+1|XT ,ψ),ψ)− P(yij(T+1) = 1|XT+1 = X̂T+1, ψ̂)

]2
−
∑
i6=j

[
P(yij(T+1) = 1|XT+1 = E(XT+1|XT ,ψ),ψ)− P(yij(T+1) = 1|Y1:T ,XT+1 = X̂T+1)

]2
.

(2.37)

In all but one simulation this turned out to be positive, with a mean (sd) over the 20 simulations
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of 0.9725 (0.8679). This implies that better prediction estimates can be obtained when we do not

condition on the model parameters. We then let yij(T+1) = 1 if the true probability was greater than

1/2. Using the new YT+1 we computed the AUC for the predicted probabilities, leading to a mean

(sd) over the simulations of 0.9546 (0.04003). Finally, making hard predictions of 1 if the predicted

probability was greater than 1/2 we computed the sensitivity and specificity. We also compared these

values to simply using YT to make hard predictions. The results are given in Figures 2.5c and 2.5d,

where the vertical axis corresponds to our predictions and the horizontal axis corresponds to YT .

Clearly by using our prediction method we obtain much better sensitivity, and though the specificity

is much more comparable, our method still does better in all but three of the 20 simulations.

For those ten cases where nodal influence was part of the simulation, we computed the sensitivity

of detecting nodal influence on those nodes which were in truth influenced, and in all 20 simulations

we computed the specificity of not detecting influence on those nodes which were in truth not

influenced. The mean (sd) sensitivity and specificity for the ten simulations with nodal influence

were 0.952 (0.0316) and 0.832 (0.129). The mean (sd) specificity for the ten simulations without

nodal influence was 0.868 (0.116). We see from this that the Bayesian estimation does a very good

job at detecting nodal influence without giving many false positives when no such influence exists.

Sensible priors have been outlined in Section 2.2.1 for all model parameters except σ2. It is

important then to determine the sensitivity of the MCMC algorithm to the values of θσ and φσ. To

this end we reran the above simulations where the shape and scale parameters of π(σ2) were drawn

from a uniform distribution ranging from 3 to 15 for the shape parameter and from 0.01 to 2 for

the scale parameter. The AUC for rerunning these 20 simulations in this fashion yielded very high

AUC values, ranging from 0.9407 to 0.9858, averaging 0.9621. Thus it appears that the estimation

is quite robust to the hyperparameters for the prior of σ2.

In addition to the simulations described above, five larger data sets were simulated where n = 500

and T = 10. Estimation was performed both using and not using the approximations outlined in

Section 2.2.3, letting n0 = 100, and the AUC was computed to evaluate model fit. Simulations

were analyzed on a UNIX machine with a 2.40 GHz processor. The mean (sd) time to perform

the MCMC analysis with 50,000 iterations using the approximation was, in minutes, 716 (24), and

to perform the MCMC with 50,000 iterations not using the approximation was, in minutes, 2281

(20). Hence by using the approximations there was a mean (sd) decrease in computational time of

68.6% (0.835). The mean (sd) AUC using the approximation was 0.9618 (0.0048), and not using

the approximation was 0.9679 (0.0109). This was a mean (sd) decrease in AUC of 0.00618 (0.0120).
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Thus by using the approximations of Section 2.2.3 there is a drastic decrease in computational time

with very little loss in model fit.

(a) AUC (b) Distance

(c) Prediction Sensitivity (d) Prediction Specificity

Figure 2.5: Results for 20 simulations. (a) AUC using Sarkar and Moore’s method (horizontal axis)
and our method (vertical axis) on both undirected (triangles) and directed (asterisks) networks;
(b) Distribution of pairwise distance ratios, comparing estimated latent positions with true latent
positions; (c)-(d) Sensitivity and Specificity for predicting edges at time T + 1, using YT to make
predictions (horizontal axis) and our method of prediction (vertical axis).
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Figure 2.6: Graphs of Dutch classroom data at, from left to right and top to bottom, times 1, 2, 3,
and 4.

2.7 Real Data Analyses

2.7.1 Dutch Classroom Data

Knecht (2008) conducted a longitudinal study in which students aged 11 to 13 years in a Dutch

class were surveyed over four time points, yielding four asymmetric adjacency matrices where the

(i, j)th entry denotes whether student i claims student j as a friend. Figure 2.6 shows the graphs

from these adjacency matrices. Demographic and behavioral data were also collected on these

individuals. Twenty six students were recorded, although one student left the class before the study

was completed; this student was left out of the analysis. Missing edges exist in the data due to some

students not being present during a survey. This was dealt with as previously described in Section

2.3.

A burn-in of 15,000 iterations was removed, leaving a chain of length 85,000. We compared our

method with that found in Sarkar and Moore (2005) by AUC values. Our method yielded an AUC

value of 0.917 vs. 0.8456 from Sarkar and Moore’s method.

The posterior means of βIN and βOUT were 1.29 and 1.00 respectively, implying that popularity

was more important in edge formation. The posterior means of the latent locations are given

in Figure 2.7. Some interesting features can be noticed by comparing the latent positions with
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demographic information. Figure 2.7 differentiates the nodes’ gender by males as dotted lines and

females as solid lines. This plot corroborates results shown by Snijders et al. (2010) in that the

friendships between two nodes of the same gender are more prevalent. Also, only two of the students

are of non-Dutch ethnicity, circled in Figure 2.7, and these two nodes are very close together in the

social space. One last interesting feature seen in Figure 2.7 regards an interesting link between

academic capability and social behavior. Each student was assessed and ranked from 4 (lowest) to 8

(highest) based on academic capabilities at the end of primary school. There was only one student

(node 9) who was ranked a 4 and one (node 25) who was ranked an 8. The social behavior of these

two individuals, as seen via the latent space positions, are complete opposites. The student with the

highest ranked capability moves from outside the social network to the center of the social space,

while the student with the lowest ranked capabilities moves directly away from the center of the

social space. The reason node 25 started outside of the network may be explained in part by the

fact that he had only gone to primary school with one other student and hence did not start the

school term knowing the others.

Nodal influence was detected in four of the nodes. The posterior mean of the latent positions

of these nodes and those doing the influencing are given in Figure 2.8, where each plot shows the

influenced node in a circle and the influencing nodes in triangles. A wrapped von Mises distribu-

tion is plotted around the influenced node, visually indicating the strength of the influence and in

which direction. In cases where there were multiple influencing nodes, that which had the strongest

influence was used to depict the von Mises distribution. From these plots we see how certain nodes

were drawn towards certain other nodes, and the strength of the influence. This yields much more

detailed information on the local scale of how the network evolved over time. Of note is the fourth

such influenced node (node 25), who was unique in that he was influenced by many of the other

nodes (9 others). As mentioned earlier, node 25 began by only knowing one other node (determined

by having or not having gone to the same primary school as the others), and so it is intuitive that

he would be more susceptible to being pulled into others’ existing social circles, bringing him to the

center of the social space. The von Mises distributions in Figure 2.8 match this intuition in that the

nodal influence wanes as time progresses and node 25 becomes a part of his own social circle. Figure

2.9 shows the von Mises distributions for each of the influencing nodes averaged over time. From

this figure we better see how strongly each node is affecting the direction in which node 25 aims

within the social space. Lastly, the results from the analysis of nodal influence fell in line with the

overall gender and ethnic separation, in that the first three instances of nodal influence all occurred
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within the ethnic Dutch girls, and of the nine nodes influencing node 25 (a male) only one was of

the opposite gender.

Figure 2.7: Posterior means of latent nodal positions for the Dutch classroom data, arrows indicating
the temporal direction of the trajectories. Males’ trajectories are in dotted lines, females’ in solid
lines. Also, two of the students are of non-Dutch ethnicity, and these two nodes’ latent positions are
circled. The two students with the lowest (4) and highest (8) ranked academic capabilities, nodes 9
and 25 respectively, are also marked as such.

2.7.2 Cosponsorship Data

We analyzed data collected by James Fowler on bill cosponsorship of Congressmen in the U.S. House

of Representatives for the 97th to 101st Congresses (see Fowler (2006a) and Fowler (2006b)). There
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(a) Student 5 (b) Student 19

(c) Student 20 (d) Student 25

Figure 2.8: Corresponding to the Dutch classroom data, each plot is zooming in on the posterior
means of the latent positions of the influenced nodes (circles) and those nodes doing the influencing
(triangles). The circles around the influenced nodes are the von Mises distributions from (2.35)
that help to visualize the influence being exerted in terms of the direction the influenced node
moves (corresponding to the node exerting the strongest influence in cases where multiple nodes are
exerting influence). Wider and darker areas on the rings indicate higher probability regions.

were a total of 644 members of Congress (MC’s) who served during these five terms. However, at

each time point around 30% of MC’s were not represented (the actual values ranged from 30.1% to

31.1%). These large proportions of unrepresented MC’s leads to even larger proportions of missing

edges (from 51.2% to 52.5% missing edges). The data were analyzed by letting yijt = 1 if node j

sponsored a bill and node i cosponsored it, hence showing support for node j. Figure 2.10 shows
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(a) (b)

Figure 2.9: Corresponding to the Dutch classroom data, these von Mises distributions, obtained by
averaging the concentration parameters of (31), illustrate the extent of nodal influence on node 25.
Each curve in (a) is a von Mises distribution corresponding to an influencing node, demonstrating
the propensity for node 25 to aim towards the influencing node. The rings in (b) give the same
distributions but wrapped from 0 to 2π, where wider and darker areas on the rings indicate higher
probability regions. The radii and order of the rings are for visual appeal only.

the graphs from these adjacency matrices at times 1 (97th Congress) and 5 (101st Congress) sans

missing data.

Due to the large amount of missing data, some care was needed in initializing the missing edges

in the Markov chain. We modified the preferential attachment method of imputation described by

Huisman and Steglich (2008) by doing the following. We first form an aggregated adjacency matrix

Y whose entries yij are set to one if for any t there is a link from i to j and set to zero otherwise.

Next, for each missing node i (at a particular time point t), we assign the probability of a link from

(a) (b)

Figure 2.10: Graphs of cosponsorship data at times 1 (left) and 5 (right).
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i to j to be proportional to the indegree (averaged over t) of node j and inversely proportional to

the shortest path length between i and j in Y . That is, letting kj denote the average indegree of

node j and nij denote the shortest path length between i and j in Y , the probability of a link from

i to j is set to be

P(yijt = 1) =
kj/nij∑
6̀=i k`/ni`

. (2.38)

We then look at the average outdegree of i (rounded to the nearest integer), denoted di, and randomly

draw di nodes from {1, . . . , n} \ {i} according to (2.38); the corresponding yijt’s are set to be 1. In

this way we obtain initial values for the missing data.

A burn-in of 250,000 iterations was removed, leaving a chain of length 1,250,000. Thinning was

done by recording only every tenth iteration. Using the posterior means to make predictions on Y1:T

led to an AUC value of 0.787 vs. 0.7148 from Sarkar and Moore’s method; when applying Sarkar

and Moore’s method we used Y1:T constructed from the observed edges and imputed edges. From

these AUC values we see that our model fits the data quite well and again outperforms the existing

method.

Many of the congressmen (328 MC’s) analyzed were reelected into the 102nd Congress, and so it

was possible to compare predictions with the truth. In addition to the predictions obtained through

the methods described in Section 2.4, we also considered prediction by using YT to predict YT+1 as

well as using
∑T
t=1 yijt/T to estimate P(yij(T+1) = 1). For both averaging Y1:T and applying our

method, hard predictions were made by letting ŷij(T+1) = 1 if P̂(yij(T+1) = 1) > 0.5 and 0 otherwise.

Table 2.1 gives the results. From this we see that while using a more näıve prediction method yields

higher specificity, it does so at the expense of correctly detecting the future edges. Our method can

better find the future edges, and also gives the lowest mean squared error (MSE).

The posterior means of the coefficients, βIN = 0.974, βOUT = 0.147, indicate that popularity

was dramatically more responsible for creating edges than activity level; i.e., the probability of a

cosponsorship is determined mostly by the MC who sponsors the bill rather than the MC who is

contemplating cosponsoring it. Figure 2.11 shows the posterior mean latent positions of the MC’s.

Unsurprisingly we see the Republicans (hollow circles) and Democrats (solid circles) occupy different

Method Specificity Sensitivity MSE

Averaging Y1:T 0.8014 0.5125 0.2492

P(YT+1|Y1:T , X̂T+1) 0.5962 0.6984 0.2151

Table 2.1: Prediction results for 328 MC’s in our analysis who also served in the 102nd Congress.
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halves of the network space. Both parties seem to have the majority of their members in the center of

the network space along with a scattering of members along the edge of the network space, implying

that both parties have active central members which associate with members from both parties, as

well as less active outlying members which interact less with members of the opposite party.

It is of interest to study the dynamics of the network. To evaluate the stability of the network we

consider the distance each MC moves during each of the four transitions. Figure 2.12 gives a boxplot

for these distances, and from this we can see that the distances corresponding to each transition fall

within a similar range, though the transition to the 99th Congress involves somewhat larger moves.

There were a few MC’s (ranging from 4.4% to 7.7% of the MC’s) who were above the top whisker,

but these typically were different MC’s every transition; only 11 of the MC’s were beyond the top

whisker in two of the transitions, 2 of the MC’s in three of the transitions, and none more than three.

All this indicates that the dynamics of the network remained stable throughout the five terms.

Political ideology, measured from liberal to conservative, is an extremely important aspect of

political science. Much literature exists on this topic; for example, Poole and Rosenthal (2011)

wrote an entire book on ideology and its effect on Congress. Levitt (1996) discussed various factors’

effects on roll-call voting patterns, concluding that personal ideology is the single most important

factor. This relationship between voting patterns and personal ideology is seen in a vivid way by

comparing the latent positions of the MC’s with their ideologies. Specifically, this comparison is

shown visually in Figure 2.11, where the latent positions of the MC’s are superimposed upon a

surface which represents a political ideological landscape. This surface was obtained in the following

way. Each MC has a particular Nominate score which is a measure of their political ideology (see

Poole and Rosenthal, 1985). This score ranges from −1 (liberal) to 1 (conservative). Using the latent

location coordinates, kriging was performed on the absolute value of the Nominate scores using a

spherical variogram model. This gives us the surface in Figure 2.11 that reflects how regions of

the latent network space correspond to radical ideologies (high values) or moderate ideologies (low

values). In the center of the network space where the nodes are most dense (and hence are more

active in legislation) is an interesting dividing line between the two parties that reflects a moderate

political ideology. We also see that both parties have a less dense (hence less active in legislation)

group of MC’s which has more radical ideologies.

Nodal influence was detected in 74 of the MC’s. It is intuitive that an MC would be influenced

more by members of his or her own party than by members of a different party, and indeed this

is the case. Of the influenced MC’s, only 29% were influenced more by members of the opposite
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party than by members of their own party. As an example of an MC influenced by members of the

opposite party, consider Lawrence Coughlin, a Republican from Pennsylvania. Only 35% of those

who exerted influence on Coughlin were also Republicans, and in fact the average Nominate score

for those exerting influence on Coughlin was −0.073, i.e., Coughlin was influenced mostly by slightly

liberal politicians. This influence is manifest in the fact that he is often referred to as a moderate

Republican (e.g., Downey, 2001); his moderate ideology (0.163) is also quantitatively reflected in

having his Nominate score below the first quartile of fellow Republicans, and below the first quartile

of the absolute value of the Nominate scores of all MC’s. In contrast to Coughlin, consider Sidney

Yates, a Democrat from Illinois. 94% of those exerting influence on Yates were also Democrats,

and in fact quite liberal Democrats; the mean ideology score of Yates’ influencing MC’s was −0.301

(recall that a negative Nominate score implies liberal ideology). The influence of these liberal MC’s

on Yates is reflected in Yates also being liberal, himself having a Nominate score (−0.477) below the

first quartile of all Democrats and an absolute score above the third quartile of the absolute values of

all Nominate scores. What is left uncertain is whether Yates aimed towards liberal Democrats in the

latent space because he himself already had a liberal ideology or whether these liberal Democrats

influenced him to become liberal himself. Figure 2.13 gives plots visualizing the nodal influence

exerted on Coughlin and on Yates, as described in Section 2.5.2. From these figures we can see

the range of the strength of the influences on the MC’s by party. We see from this that for both

Coughlin and Yates those from their own party (Republican for Coughlin and Democrat for Yates)

typically exert stronger influence than those from the opposite party. We also see that, in general,

the influence exerted on Coughlin is stronger than that on Yates.
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Figure 2.11: Posterior means of latent positions for the cosponsorship data. Latent positions for
all 5 Congresses are plotted simultaneously. Hollow circles are republicans and solid circles are
democrats. The surface these points lie upon reflects the political ideological landscape within
the network space. Darker regions correspond to more moderate ideologies, and lighter regions
correspond to more radical ideologies.
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Figure 2.12: Boxplots of the distances MC’s traveled within the latent network space during each of
the four transitions. The similar ranges imply that the dynamics of the network are fairly constant
throughout the five terms.
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(a) (b)

(c) (d)

Figure 2.13: Corresponding to the cosponsorship data, these von Mises distributions illustrate the
extent of nodal influence on Lawrence Coughlin (top) and Sidney Yates (bottom) from Democrats
(left) and Republicans (right). Each curve in each figure is a von Mises distribution corresponds
to an influencing MC, demonstrating the propensity for Coughlin or Yates to move towards the
influencing MC. Narrow peaked curves correspond to strong influence, flat curves to weak influence.
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2.8 Proof of Lemma 2.5.1

Let ν be some positive value. Then

π+(µ = ν|Y1:T )

= π(µ = ν|Y1:T )

=

∫
π(µ = ν,X1:T ,ψ|Y1:T )dX1:T dψ

=

∫
π(Y1:T |X1:T ,ψ)π(X1:T ,ψ, µ = ν)

π(Y1:T )
dX1:T dψ

=

∫
π(Y1:T |X1:T ,ψ)π(X1:T ,ψ, µ = 0)

π(Y1:T )

π(X1:T ,ψ, µ = ν)

π(X1:T ,ψ, µ = 0)
dX1:T dψ

=

∫
π(X1:T ,ψ, µ = ν)

π(X1:T ,ψ, µ = 0)
π(X1:T ,ψ, µ = 0|Y1:T )dX1:T dψ

=

∫
π(X1:T |ψ, µ = ν)π(ψ)π(µ = ν)

π(X1:T |ψ, µ = 0)π(ψ)π(µ = 0)
π0(µ = 0|Y1:T )π(X1:T ,ψ, |µ = 0, Y1:T )dX1:T dψ. (2.39)

Before proceeding, we need to establish that the Markov property still holds for the latent positions.

This is seen in that

π(Xt|X1:(t−1),ψ, µ)

= π(X1t, . . . ,X(i−1)t,Xit,X(i+1)t, . . . ,Xnt|X1:(t−1),ψ, µ)

= π(Xit|X1t, . . . ,X(i−1)t,X(i+1)t, . . . ,Xnt,X1:(t−1),ψ, µ)

·π(X1t, . . . ,X(i−1)t,X(i+1)t, . . . ,Xnt|X1:(t−1),ψ, µ)

= π(Xit|Xjt,Xt−1,ψ, µ)π(X1t, . . . ,X(i−1)t,X(i+1)t, . . . ,Xnt|Xt−1,ψ, µ)

= N

Xit|Xi(t−1) +Rt

 µ

0

 , σ2Ip

 ·
∏
k 6=i

N(Xkt|Xk(t−1), σ
2Ip)


= π(Xt|Xt−1,ψ, µ) (2.40)
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for t = 2, 3, . . . , T . Thus we have the following closed form expression

π(X1:T |ψ, µ = ν)π(µ = ν)

π(X1:T |ψ, µ = 0)π(µ = 0)

=
1− p0
λp0

exp

− νλ − 1

2σ2

T∑
t=2

‖Xit −Xi(t−1) −Rt

 ν

0

‖2 − ‖Xit −Xi(t−1)‖2


=
1− p0
λp0

exp

{
−
ν

λ
−

1

2σ2

(
(T − 1)ν2 − 2ν

T∑
t=2

(Xit −Xi(t−1))
′
(

cos(θt)

sin(θt)

))}

=
1− p0
λp0

exp

−
T − 1

2σ2

ν − λ
∑T
t=2(Xit −Xi(t−1))

′
(

cos(θt)

sin(θt)

)
− σ2

(T − 1)λ


2

+

(
λ
∑T
t=2(Xit −Xi(t−1))

′
(

cos(θt)

sin(θt)

)
− σ2

)2

2λ2σ2(T − 1)

 .

Now by dividing both sides of (2.39) by π0(µ = 0|Y1:T ) and integrating over ν we obtain

∫ ∞
0

κ(ν)dν

=

∫ ∞
0

∫
π(X1:T |ψ, µ = ν)π(µ = ν)

π(X1:T |ψ, µ = 0)π(µ = 0)
π(X1:T ,ψ, |µ = 0, Y1:T )dX1:T dψdµ+

=

∫
h(X1:T ,ψ)π(X1:T ,ψ, |µ = 0, Y1:T )dX1:T dψ

= E(h(X1:T ,ψ)|µ = 0, Y1:T ),

where

h(X1:T ,ψ) =
(1− p0)

p0λ

√
2πσ2

T − 1
Φ

λ
∑T
t=2(Xit −Xi(t−1))

′
(

cos(θt)

sin(θt)

)
− σ2

λ
√
σ2(T − 1)



· exp


(
λ
∑T
t=2(Xit −Xi(t−1))

′
(

cos(θt)

sin(θt)

)
− σ2

)2

2λ2σ2(T − 1)


and Φ is the standard normal cumulative distribution function.
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2.9 Proof of Lemma 2.5.2

If a random variable X follows a Rice distribution with distance parameter ν and scale parameter

σ, then the probability density of X is

f(X|ν, σ) = I0

(
Xν

σ2

)
X

σ2
exp

(
−X

2 + ν2

2σ2

)
, (2.41)

where I0 is the modified Bessel function of order 0. If X follows a von Mises distribution with mean

µ and concentration parameter κ, then the probability density of X is

f(X|µ, κ) =
1

2πI0(κ)
exp (κ cos(X − µ)) . (2.42)

By assumption (Z,W ) ∼ N
(
(µz, µw), σ2I2

)
, so Z = d cos(φ) and W = d sin(φ). Hence

fd,φ(d, φ) = fx,y(d cos(φ), d sin(φ))|J | (2.43)

=
1

2πσ2
exp

{
− (d cos(φ)− µz)2 + (d sin(φ)− µw)2

2σ2

}
· d (2.44)

=
d

2πσ2
exp

{
−d

2 + ‖(µz, µw)‖2
2σ2

+
d

σ2
· µw

√
‖(µz, µw)‖2

µ2
w

cos

(
φ−

(
π

2
− tan−1

(
µz
µw

)))}
, (2.45)

where |J | is the Jacobian. Consider the four cases corresponding to where (µz, µw) is in each of the

four quadrants. If (µz, µw) is in quadrant I or II then

fd,φ(d, φ) =
d

2πσ2
exp

{
−d

2 + ‖(µz, µw)‖2

2σ2
+
d‖(µz, µw)‖

σ2
cos

(
φ− tan−1

(
µw
µz

))}
=

d

2πσ2
exp

{
−d

2 + ‖(µz, µw)‖2

2σ2
+
d‖(µz, µw)‖

σ2
cos (φ− atan2 (µz, µw))

}
. (2.46)

If (µz, µw) is in quadrant III then consider φ∗ = φ + π = tan−1(−Z,−W ). Then ‖(−µz,−µw)‖ =

‖(µz, µw)‖, ‖(−x,−y)‖ = d, |dφ∗/dφ| = 1 and (−µz,−µw) is in quadrant I. Hence

fd,φ∗(d, φ
∗) =

d

2πσ2
exp

{
−d

2 + ‖(µz, µw)‖2

2σ2
+
d‖(µz, µw)‖

σ2
cos

(
φ∗ − tan−1

(
µw
µz

))}

and so

fd,φ(d, φ) =
d

2πσ2
exp

{
−d

2 + ‖(µz, µw)‖2

2σ2
+
d‖(µz, µw)‖

σ2
cos (φ− atan2 (µz, µw))

}
. (2.47)

Finally, if (µz, µw) is in quadrant IV then consider φ∗ = −φ = tan−1(Z,−W ). Then ‖(µz,−µw)‖ =
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‖(µz, µw)‖, ‖(x,−y)‖ = d, |dφ∗/dφ| = 1 and (µz,−µw) is in quadrant I. Hence we have

fd,φ∗(d, φ
∗) =

d

2πσ2
exp

{
−d

2 + ‖(µz, µw)‖2

2σ2
+
d‖(µz, µw)‖

σ2
cos

(
φ∗ − tan−1

(
−µw
µz

))}
=

d

2πσ2
exp

{
−d

2 + ‖(µz, µw)‖2

2σ2
+
d‖(µz, µw)‖

σ2
cos

(
φ∗ + tan−1

(
µw
µz

))}

and hence

fd,φ(d, φ) =
d

2πσ2
exp

{
−d

2 + ‖(µz, µw)‖2

2σ2
+
d‖(µz, µw)‖

σ2
cos (φ− atan2 (µw, µz))

}
. (2.48)

So (2.46), (2.47) and (2.48) show that regardless of where (µz, µw) is located, fd,φ(d, φ) is of the

same form. By multiplying (2.46) by I0

(
d‖(µz,µw)‖

σ2

)
/I0

(
d‖(µz,µw)‖

σ2

)
the result of Lemma 6.2 follows

immediately:

fd,φ(d, φ) =
[
d
σ2 I0

(
d‖(µz,µw)‖

σ2

)
exp

{
−d

2+‖(µz,µw)‖2
2σ2

}]
·
[

1

2πI0( d‖(µz,µw)‖
σ2

)
exp

{
d‖(µz,µw)‖

σ2 cos (φ− atan2 (µz, µw))
}]

.
(2.49)

40



Chapter 3

Latent Space Models for Dynamic
Networks with Weighted Edges

Representing relational data by networks is extremely useful and widely implemented. The dyadic

relations which compose these networks are viewed as a set of actors and a set of edges between the

actors. The edges can vary in many ways, such as being directed or undirected, static or temporal,

binary or weighted. Binary networks, where between each actor an edge either does or does not exist,

are encountered more often in the literature, although many such networks are by nature weighted.

Weighted networks, also referred to as valued networks, consist of actors connected by edges which

can take more than two values. By accounting for the weight, or strength, of the edges, the richness

of the data can be better exploited. Examples of analyses of real world weighted networks include

food webs (Krause et al., 2003), gene expression data (Zhang and Horvath, 2005), airline networks

(Barrat et al., 2005), mobile phone networks (Onnela et al., 2007), and many more.

Often in binary networks it is of interest to compute various network measures, and recently

there has been increasing work in extending these measures to weighted networks. Opsahl et al.

(2010) derived for weighted networks measures for degree, closeness, and betweenness. Yang and

Knoke (2001) derived a method for computing path length in the case of weighted edges. Opsahl and

Panzarasa (2009) developed a method for analyzing the clustering that exists within a network with

weighted edges. Other interesting works include Kunegis et al. (2009), which analyzed the case where

edges took values in {−1, 0, 1}, and Newman (2004), which showed how to model networks whose

edges are counts by representing them as multigraphs. To fully model the network, Krivitsky (2012)

extended the commonly used exponential random graph model (ERGM) to account for networks

whose dyads are counts; Krivitsky and Butts (2012) extended the ERGM to account for networks

whose dyads are rankings.

Network data are most often inherently dynamic, even though it is frequently the case that the

data are simply aggregated over time into one static network. Many popular static networks have

been extended to longitudinal network data. Examples of this include the temporal exponential ran-

dom graph model developed by Hanneke et al. (2010), the mixed membership stochastic blockmodel
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for dynamic networks by Xing et al. (2010), and the latent space model for dynamic networks given

in the previous chapter.

This chapter is focused on network data that is dynamic, weighted, and possibly directed. There

are few resources available to the researcher investigating such data. Some existing approaches focus

on latent space models for dynamic undirected binary networks. Latent space models assume the

dependence of the network is induced by a set of latent variables. Such approaches are typically

intuitive and have the advantage of producing meaningful visualizations, allowing the researcher to

better understand the network structure as well as the behavior of individual actors.

Sarkar et al. (2007) extended the CODE model of Globerson et al. (2004) for dynamic undirected

networks. This method is an approximate filtering algorithm which models the longitudinal count

networks, embedding the actors in a latent space. This method is not easily generalizable to other

sorts of co-occurence data besides counts, however, and cannot handle directed edges. Hoff (2011)

described a multilinear model for undirected longitudinal networks. In this work, Hoff shows how

to model undirected edges or ranked edges, where each dyad is an element from a finite ordered set,

though it should be feasible to extend their approach to other types of dyads.

The latent space model presented in the previous chapter handles dynamic network data with

directed binary edges. Our purpose is to extend this work in order to handle weighted edges.

The remainder of the chapter is organized as follows: Section 3.1 extends the latent space model

for dynamic networks with valued edges. Section 3.2 gives a method of estimation. Section 3.3

describes an approximation to reduce computational cost for large networks. Section 3.4 gives

simulation results. Section 3.5 gives the results for analyzing Congressional cosponsorship data and

world trade data. Section 3.6 gives the full conditional distributions referenced earlier in the chapter.

3.1 Models

We assume here that each actor exists within some latent space which can be interpreted as a

characteristic space, or a social space. When actors are closer together in this latent space, the

probability of a stronger edge is increased (where a “stronger edge” means a stronger relationship,

though the actual form of this is context specific).

First is some general notation to be used throughout. Assume we have a set of actors N and a

set of edges E . Let n = |N | be the number of actors, and let Yt be the n × n adjacency matrix of

the observed network at time t whose entries yijt correspond to the weight of the edge from actor i

42



to actor j for t ∈ {1, 2, . . . , T}. Let Xit ∈ <p be the position vector of the ith actor at time t within

the p dimensional latent space. Let Xt be the matrix whose ith row is Xit. Finally, let Ψ be the

vector of unknown parameters (which will vary depending on dyadic type).

We assume the latent actor positions transition according to a Markov process, where the initial

distribution is

π(X1|Ψ) =

n∏
i=1

N(Xi1|0, τ2Ip), (3.1)

and the transition equation is

π(Xt|Xt−1,Ψ) =

n∏
i=1

N(Xit|Xi(t−1), σ
2Ip), (3.2)

for t = 2, 3, . . . , T , where Ip is the p × p identity matrix, and N(x|µ,Σ) denotes the multivariate

normal probability density function with mean µ and covariance matrix Σ evaluated at x.

In most cases it can be assumed that the dependence structure of the network is fully induced

by the latent positions of the actors. This assumption, along with the Markovian properties of the

latent positions, leads to the state space temporal dependence structure given in Figure 2.1, as well

as the conditional independence of each dyad within a time period. The ranked networks of the

form analyzed by Krivitsky and Butts (2012) and in the next chapter are a counter example of

where there is an extra dependency constraint in the data, but we will not further discuss here these

rare data types. What remains then is to derive an appropriate conditional likelihood function,

π(Y1, . . . , YT |X1, . . . ,XT ,Ψ) =
∏T
t=1

∏
i 6=j π(yijt|Xt,Ψ).

Most latent space approaches have the conditional likelihood constructed by writing the logit

of the edge probability as a linear form of covariates and a function of the latent variables, i.e.,

logit(π(yijt|·)) = α′wijt + fΨ(Xit,Xjt), where α is a vector of unknown parameters, wijt is a

vector of dyad specific covariates, and fΨ : <p × <p → < is a function taking as its arguments two

actors’ latent variables. Our generalization of this has the basic form

g(E(yijt)) = α′wijt + fΨ(Xit,Xjt), (3.3)

for some link function g. We can utilize the same types of link functions found in generalized linear

mixed models. For example if our dyads are in the form of continuous data, we may set g to be the

identity; this may arise in, for instance, proximity networks (see, e.g., Olguın et al., 2009), where the

distance between individuals is recorded on a regular basis. The common case of modeling binary
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dyads through the logit link function is yet another example. In Section 3.1.1 we will go into detail

for the context of count data, using a log link function.

In some cases, however, the dyads cannot be modeled directly through a link function as in

(3.3). Instead we can introduce additional latent variables, and then adopt a similar strategy. For

example, we may consider a zero inflated model. The zero inflated model is a two component mixture

model, where one could introduce additional latent indicator variables which determine whether the

observation is coming from the component which is a point mass at zero or the component that

has some other density function π∗ (e.g., π∗ is Poisson). We could then model g(Eπ∗(yijt)) as in

(3.3). This situation may arise in large sparse weighted network data, such as company wide email

count networks. Zero-inflated models are certainly not the only possibility of this type of data

augmentation, as we will see in Section 3.1.2.

For the remainder of the paper we will focus on count data and non-negative continuous edges.

We will furthermore utilize the conditional likelihood given in the previous chapter, determined by

fΨ(Xit,Xjt) = βIN

(
1− dijt

rj

)
+ βOUT

(
1− dijt

ri

)
, (3.4)

where dijt = ‖Xit−Xjt‖ is the distance between actors i and j at time t within the latent space, and

r = (r1, r2, . . . , rn) is a vector of positive actor specific parameters constrained such that
∑n
i=1 ri = 1

for model identifiability.

Each ri can be thought of as the ith actor’s social reach. That is, a larger value of ri implies that

it is more likely for an edge, either yi·t or y·it, to take a larger value. These ri’s also hold a geometric

interpretation within the latent space, specifically a radius. For example, in the context of binary

networks, this radius can be understood to imply that actors inside of each others’ radii have a greater

than 1/2 probability of an edge, and actors are outside of each other’s radii have a smaller than 1/2

probability of an edge. The coefficients βIN and βOUT can help in understanding the global structure

of the network, insofar as telling us whether activity (tendency to send stronger edges) or popularity

(tendency to receive stronger edges) is more important in forming high strength edges. Specifically,

βIN > βOUT implies popularity is more important than activity in the edge formation process, and

βOUT > βIN implies the opposite. If the edges are undirected, then setting P(yijt|·) = P(yjit|·) is

equivalent to constraining βIN = βOUT .
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3.1.1 Counts

A commonly encountered dyadic type which can be modeled by (3.3) is where yijt is a count. This

context may exist in the form of counting the number of phone calls, the number of emails, the

number of cosponsored legislative bills, the number of passengers or of flights in airline data, etc.

We can use the canonical link for a Poisson random variable to determine the likelihood function in

the following way:

P(yijt|Xt,Ψ) =
λ
yijt
ijt exp(−λijt)

yijt!
, yijt = 0, 1, 2, . . . (3.5)

where

log(λijt) = βIN

(
1− dijt

rj

)
+ βOUT

(
1− dijt

ri

)
. (3.6)

Here Ψ = (βIN , βOUT , r, τ
2, σ2) is the vector of parameters. Thus the likelihood is

P(Y1, Y2, . . . , YT |X1,X2, . . . ,XT ,Ψ) =

T∏
t=1

∏
i6=j

λ
yijt
ijt exp(−λijt)

yijt!
. (3.7)

3.1.2 Non-Negative Continuous Edges

Here we consider the case of non-negative continuous real valued edges. These types of networks can

occur in many biological contexts, in economic contexts, in length of phone calls, etc. The latent

space framework provides a natural way to think about such a weighted network, in that we can

consider two actors with large weighted edges between them as very close in the latent space, and

two actors with smaller weighted edges as more separated within the latent space.

By embedding the network into a latent space we can better differentiate between zero valued

edges. Consider as an example a longitudinal sequence of social networks, where the dyadic variable

measured is the amount of time two individuals spent speaking with each other: Suppose at a

particular time, person i has a weighted edge of zero with two others, persons j and k. Now persons

i and j are potential friends though they have not currently met; meanwhile, persons i and k know

each other already and strongly dislike each other. In both cases the measured edges between i and

j and between i and k will be the same (zero), but we can differentiate them in two ways. First

and foremost we can compare edge probabilities (e.g., P(yij = 0) << P(yik = 0)). Second, viewing

the latent variables as unobserved actor attributes, we can determine the dissimilarity between each

pair (e.g., dij << dik). The key point here is that we are using all the data, not just the data from

45



the pairs (i, j) and (i, k), to learn more about such observed zeros; i.e., we are letting all dyads help

inform us as to the position of each actor within the latent space. This can be better understood by

considering if i and j have many links to the same actors, then the geometric constraints within the

latent space imply that i and j will be close together, whereas the same would not be true if, say, i

and k do not have many links to the same actors.

Network data with non-negative continuous edges is a context where there is not an obvious link

function g to be applied to the mean of yijt, but by introducing an additional latent variable we

can adopt a similar strategy. In particular, we apply a tobit model when formulating the likelihood

function, letting yijt = y∗ijt1{y∗ijt>0}, where 1{·} is the indicator function and y∗ijt is a continuous

normal random variable. This type of approach may be most appropriate when the weighted dyads

we observe are really proxies for some underlying relationship between the two actors, but we can

only observe the effects from positive relationships (e.g., length of phone calls can only serve as a

proxy for a relationship between friends, and not between enemies). We then apply (3.3) to the

latent variables y∗ijt, letting g be the identity function, obtaining

y∗ijt = βIN

(
1− dijt

rj

)
+ βOUT

(
1− dijt

ri

)
+ εijt, (3.8)

εijt|(Xt,Ψ)
iid∼ N(0, γ2). (3.9)

With this we have

π(yijt|Xt,Ψ) =
[
N(yijt|E(y∗ijt|Xt,Ψ), γ2)

]1{yijt>0}

[
1− Φ

(E(y∗ijt|Xt,Ψ)

γ

)]1{yijt=0}

, (3.10)

where Φ is the standard normal cumulative distribution function, and E(y∗ijt|Xt,Ψ) =

βIN (1− dijt/rj)+βOUT (1− dijt/ri) is the conditional expectation of y∗ijt. The vector of parameters

is now supplemented by γ2 such that Ψ = (βIN , βOUT , γ
2, r, τ2, σ2). Since the εijt’s are conditionally

i.i.d., we have that the observation equation is

P(Y1, Y2, . . . , YT |X1,X2, . . . ,XT ,Ψ) =

T∏
t=1

∏
i 6=j

π(yijt|Xt,Ψ). (3.11)
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3.2 Estimation

To obtain estimates of the latent space positions and of the unknown parameters, we sample via a

Markov chain Monte Carlo (MCMC) algorithm from the posterior

π(X1,X2, . . . ,XT ,Ψ|Y1, Y2, . . . , YT ). (3.12)

The general strategy is to find reasonable estimates of the latent positions and of the model param-

eters to initialize the chain, and then use a Metropolis-Hastings (MH) within Gibbs sampling to

obtain the posterior samples.

The prior for r was a Dirichlet distribution, with parameters α = (α1, α2, . . . , αn) equal to the

initial estimates of r (given in the next section). The reason for doing so was because the prior

expected value of rj would then be the initial estimate of rj , which reflects our prior intuition;

additionally, as each αj would be small (averaging 1/n), the prior variance for each rj will be large

(leading to a “flat” prior). The priors for τ2, σ2 and, in the case of continuous data, γ2 were chosen

to be inverse gamma (IG), as these distributions are conjugate for τ2 and σ2. The shape and scale

parameters for τ2 were set to be equal to 2 + δ and (1 + δ)τ2
0 respectively for some small δ and some

positive constant τ2
0 , and were similarly set for σ2 and γ2. With this parameterization, the prior

variances of τ2, σ2 and γ2 are kept large. Further, we recommend setting τ2
0 equal to the initial

estimate of τ2 given in the next section (equation (3.16)) to match our intuition. The prior set on

βIN was a normal distribution with mean νIN and (large) variance ξIN , and similarly for βOUT .

3.2.1 Initialization

We initialized the radii as

ri =

∑T
t=1

∑
j 6=i(yijt + yjit)/2∑T

t′=1

∑
j′ 6=i′ yi′j′t′

. (3.13)

To find initial latent positions, we implemented the generalized multidimensional scaling algorithm

(GMDS), as described in Sarkar and Moore (2005). GMDS starts by taking a distance matrix at

time 1 and performing classical multidimensional scaling. Then, for each subsequent time period t,

t = 2, 3, . . . , T , GMDS balances the position matrix from the previous time point with the classical

multidimensional scaling result obtained from the distance matrix at time t.

The original distance matrices can be found in a number of ways, but we offer the following
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suggestion. We treated the data as binary, where

y
(binary)
ijt =

 1 if yijt > 0

0 otherwise.
(3.14)

We then computed each distance dijt according to

dijt =


1
2 min{ri, rj} if yijt = yjit = 1

(ri + rj)/2 if yijt + yjit = 1

1
2

∑nijt
l=1 rkl if yijt = yjit = 0

(3.15)

where the subsequence {kl}nijtl=1 represents the actors along the shortest path between i and j at time

t, neglecting directions, and nijt is the number of actors in that shortest path. The general idea

here is that when there is an edge from one node i to another node j, it is more likely that these two

nodes are within ri, rj , or both. With the T distance matrices computed, we can then implement

GMDS to obtain initial latent positions.

The initial estimate for τ2 was computed (using the initial estimates of X1) as

1

nD

n∑
i=1

‖Xi1‖2. (3.16)

We recommend using a large initial estimate of σ2 in order to initially allow large movements of Xt,

t = 2, 3, . . . , T , and thus help reach convergence faster. The initial estimates for γ, βIN and βOUT

did not significantly affect the number of iterations required to reach convergence.

3.2.2 Posterior Sampling

We implement a MH within Gibbs sampling scheme. The algorithm is

0. Set the initial values of the latent positions and parameters as given in Section 3.1.

1. For t = 1, 2, . . . , T and for i = 1, 2, . . . , n, draw Xit via MH.

2. Draw τ2 from π(τ2|X1).

3. Draw σ2 from π(σ2|X1,X2, . . . ,XT ).

4. Draw r via MH.

5. Draw βIN via MH.

6. Draw βOUT via MH.

If data is non-negative continuous

7. Draw γ2 via MH.
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Repeat steps 1-7.

The full conditional distributions needed for steps 2-7 are given at the end of this chapter.

Regarding the proposal distributions, Xit, βIN , and βOUT can come from a symmetric proposal

(e.g., normal random walk). For γ2, however, some asymmetric proposal such as a log-normal or an

inverse gamma distribution ought to be used to ensure positive valued proposals; this asymmetric

proposal will then need to be accounted for in the acceptance probability. Because of the constraint

on r, a Dirichlet proposal is suggested for the radii, which also will be an asymmetric proposal.

Suggested parameters for this Dirichlet proposal are κrcurr, where rcurr are the current values for

r and κ is some large value.

One final note is that, as is the case for any such latent space model, the posterior is invariant

under rotations, reflections and translations of the latent positions X1,X2, . . . ,XT . Hence after each

iteration of steps 1-7, a Procrustean transformation will be performed on the T trajectories. The

Procrustean transformation finds a set of rotations, reflections and translations to minimize the

difference between a given matrix and some target matrix. In our case, the target matrix is always

chosen to be the initialized latent position trajectories.

3.3 Scalability

Although the two data sets that we will analyze in Section 3.5 are relatively small data sets, it is

likely that researchers will come across network data which is too large for the MCMC algorithm

of Section 3.2.2 to be a viable option. Here we extend the case control log likelihood approximation

method by Raftery et al. (2012) for models whose dyads can be described by an exponential family

of distributions.

For the MCMC algorithm, the MH steps required in updating the latent positions, r, βIN , βOUT

and other likelihood related parameters (e.g., γ2 in the case of non-negative real dyads) all require

O(Tn2) terms to be summed. In this discussion we will assume here that a non-relationship between

two actors implies that yijt = 0, otherwise yijt is some positive value; the principles discussed next

ought to hold even if this is not the case. Generalizing the approximation method first proposed by

Raftery et al. (2012), we can reduce this computational cost to O(Tn).

Suppose that, conditional on the latent positions, the yijt’s are independent with

π(yijt|·) = h(yijt) exp(η′ijtT(yijt)−A(ηijt)), (3.17)
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where ηijt is a vector valued function of (Xt,Ψ) and T(yijt) is a vector of sufficient statistics. Then

we can rewrite the loglikelihood of (Y1, . . . , YT ) as

`(X1, . . . ,XT ,Ψ) =

T∑
t=1

n∑
i=1

 ∑
j:yijt>0

(
η′ijtT(yijt) +A(ηijt)

)

+
∑

j:yijt=0

(
η′ijtT(yijt) +A(ηijt)

)+ constant. (3.18)

It is reasonable to assume that as the network gets larger and larger, the number of edges of each

node does not grow at the same rate (the network gets sparser). Hence we make the assumption

that either the maximum degree is fixed or is of o(n). If this is the case, then we can, for each i and

t, take a subsample {jk}Ni,t,0k=1 from the set {j : yijt = 0} and use a simple Monte Carlo estimate of

the final summation of (3.18) to reduce the computational cost to linear with respect to n. Then

the approximation we use of the log likelihood is

`(X1, . . . ,XT ,Ψ) ≈
T∑
t=1

n∑
i=1

 ∑
j:yijt>0

(
η′ijtT(yijt) +A(ηijt)

)

+
ni,t,0
Ni,t,0

Ni,t,0∑
k=1

(
η′ijktT(yijkt) +A(ηijkt)

)+ constant, (3.19)

where ni,t,0 = |{j : yijt = 0}|. In most cases, T(yijt) = 0 if yijt = 0 and hence the above

can be simplified such that the second summation is only
ni,t,0
Ni,t,0

∑Ni,t,0
k=1 A(ηijkt). Also, there could

potentially be multiple methods of selecting the subsequences {jk}Ni,t,0k=1 ; see Raftery et al. (2012)

for more details.

For T = 1 and yijt ∈ {0, 1}, this leads to Raftery et al.’s approximation. For the context

presented in Section 3.1.1, we can approximate the log likelihood as

`(X1, . . . ,XT ,Ψ) ≈
T∑
t=1

n∑
i=1

 ∑
j:yijt>0

[
−1

2
log(γ2)− 1

2γ2
(yijt − E(y∗ijt|Xt,Ψ))2

]

+
ni,t,0
Ni,t,0

Ni,t,0∑
k=1

log
(

1− Φ(E(y∗ijt|Xt,Ψ)/γ)
)+ constant. (3.20)

.

An interesting point is that if we assume that the network becomes more sparse as n grows,

then it may be more appropriate to utilize a zero-inflated model, such as was mentioned in Sec-
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tion 3.1. Suppose we can augment the data by component indicator variables zijt ∈ {1, 2}, such

that π(yijt|zijt = 1, ·) = δ(yijt), π(yijt|zijt = 2, ·) can be constructed according to (3.3), π(zijt =

1) = α, and δ is the Dirac delta function. Then we can write the complete log likelihood (i.e.,

π(Y1, . . . , YT , Z1, . . . , ZT |·)) as

`(X1, . . . ,XT ,Ψ)

=

T∑
t=1

n∑
i=1

 ∑
j:yijt>0

[
log(1− α) + η′ijtT(yijt) +A(ηijt)

]

+
ni,t,0
Ni,t,0

Ni,t,0∑
k=1

[
1{zijkt=1} log(α) + 1{zijkt=2}

(
log(1− α) + η′ijktT(yijkt) +A(ηijkt)

)]+ constant,

(3.21)

where [Zt]ij = zijt. Since the zijt’s are nuisance parameters, we need not sample all of them in the

Gibbs sampler, but rather only the zijt’s corresponding to each of the n subsequences {jk}Ni,t,0k=1 ,

thus maintaining the computational cost of O(Tn).

3.4 Simulations

3.4.1 Simulated Count Data

Ten data sets were simulated, where the number of actors was 100 and the number of time points

was 10. For each of the simulations, the parameter values were set at βIN = 2, βOUT = 1, and

σ2 = 5× 10−7. The latent positions at time 1 were drawn from a mixture of 12 normals with equal

mixture component weights, where the cluster means were drawn randomly from a multivariate

normal distribution with mean zero and covariance (1 × 10−5)Ip, and p = 2 is the dimension of

the latent space. After the initial latent positions X1 were drawn, the radii r were drawn from a

Dirichlet distribution whose ith parameter was equal to n‖Xi1‖/maxk{‖Xk1‖}. Subsequent latent

positions Xt, t ≥ 2, were drawn according to (3.2). The adjacency matrices Y1 to YT were then

generated according to (3.5) and (3.6).

The priors for σ2 and τ2 were inverse gamma distributions with parameters formulated according

to the description in Section 3, with δ = 0.05, σ2
0 = 1 × 10−4 and τ2

0 = 1/(np)
∑n
i=1 ‖Xi1‖2, using

the initial positions of Xi1. The prior for βIN was N(2, 100), for βOUT was N(2, 100), and for r was

Dirichlet with parameters equal to that given in (3.13). A normal random walk proposal was used

for the latent positions Xt and also for both βIN and βOUT . The proposal for r was a Dirichlet
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(a) Count edges (b) Non-negative real edges

Figure 3.1: Distributions of ratios of pairwise distances for simulated data with count, non-negative
real, and rank edges. Each curve corresponds to a simulation.

distribution with parameters equal to κrcurr, where rcurr represents the current value of r.

To evaluate the simulation results, we compared the estimates of the coefficients βIN and βOUT

with the truth, evaluated the pseudo R2, and evaluated the pairwise ratios of estimated distances

to true distances corresponding to the latent positions. The pseudo R2 value is the deviance based

pseudo R2 for count data found, and recommended, in Cameron and Windmeijer (1996). This is

calculated as

R2 =

∑T
t=1

∑
i 6=j yijt log(λ̂ijt/ȳ)− (λ̂ijt − ȳ)∑T

t′=1

∑
i′ 6=j′ yi′j′t′ log(yi′j′t′/ȳ)

(3.22)

where ȳ =
∑T
t=1

∑
i6=j yijt and λ̂ijt is found by plugging in the posterior mean estimates in (3.6).

To clarify what is meant by the distance ratios, note that for each simulation there are Tn(n− 1)/2

distances within the latent space. We calculate all these pairwise distances using the posterior mean

latent positions as well as using the true latent positions. So for each simulation we can plot a curve

corresponding to the distribution of these ratios. We would hope for this curve to be narrow and

centered at 1.

The posterior mean estimate, averaged over the ten simulations, for βIN (βOUT ) whose true

value was 2 (1), was 2.013 (0.9859), ranging from 2.003 to 2.026 (0.9500 to 0.9998). We see that

the posterior mean estimates are very close to the true value in every simulation. The pseudo R2

values’ average was 0.9866, ranging from 0.9309 to 0.9945, implying that the posterior means fit the

data extremely well. The distributions of the ratios of pairwise distances are given in Figure 3.1a,

where each curve corresponds to a simulation. From this figure we see that the distances from the

posterior mean latent positions are very close to the true distances.
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3.4.2 Simulated Continuous Data

Ten data sets were simulated, where the number of actors was 100 and the number of time points was

10. For each of the simulations, the parameter values were set at βIN = 10, βOUT = 2, γ2 = 0.2, and

σ2 = 5× 10−6. The latent positions at time 1 were drawn from a mixture of 12 normals with equal

mixture component weights, where the cluster means were drawn randomly from a multivariate

normal distribution with mean zero and covariance (5 × 10−5)Ip, and p = 2 is the dimension of

the latent space. After the initial latent positions X1 were drawn, the radii r were drawn from a

Dirichlet distribution whose ith parameter was equal to n‖Xi1‖/maxk{‖Xk1‖}. Subsequent latent

positions Xt, t ≥ 2, were drawn according to (3.2). The adjacency matrices Y1 to YT were then

constructed by generating y∗ijt according to (3.8) and letting yijt = y∗ijt1{y∗ijt>0}.

The priors for σ2, τ2 and γ2 were inverse gamma distributions with parameters formulated

according to the description in Section 3, with δ = 0.05, σ2
0 = 1 × 10−4, τ2

0 = 1/(nD)
∑n
i=1 ‖Xi1‖2

using the initial positions of Xi1, and γ2
0 = 3. The priors for βIN and for βOUT were N(2, 100), and

for r was Dirichlet with parameters equal to that given in (3.13). A normal random walk proposal

was used for the latent positions Xt and for both βIN and βOUT . The proposal used for γ2 was a

log-normal distribution with parameter log-mean equal to log((γ2)curr), where (γ2)curr represents

the current value of γ2. The proposal for r was a Dirichlet distribution with parameters equal to

κrcurr, where rcurr represents the current value of r.

To evaluate the simulation results, we compared the estimates of the coefficients βIN and βOUT

with the truth, evaluated the pseudo R2, and evaluated the pairwise ratios of estimated distance

to true distance. In this context of continuous non-negative data, we used the pseudo R2 value

recommended in Veall and Zimmermann (1994), originally derived by McKelvey and Zavoina (1975).

This is calculated as

R2 =

∑T
t=1

∑
i6=j(ŷ

∗
ijt − ˆ̄y∗)2∑T

t′=1

∑
i′ 6=j′(ŷ

∗
i′j′t′ − ˆ̄y∗)2 + Tn(n− 1)γ̂2

, (3.23)

where ŷ∗ijt = β̂IN (1 − d̂ijt/r̂j) + β̂OUT (1 − d̂ijt/r̂i) and ˆ̄y∗ = 1/(Tn(n − 1))
∑T
t=1

∑
i 6=j ŷ

∗
ijt. The ˆ

symbol over the model parameters implies the posterior mean estimate.

The posterior mean estimate, averaged over the ten simulations, for βIN (βOUT ) whose true

value was 10 (2), was 9.973 (1.970), ranging from 9.633 to 10.07 (1.900 to 2.104). We see that the

posterior mean estimates are very close to the true value in every simulation. The pseudo R2 values’

average was 0.9993, ranging from 0.9983 to 0.99999, implying that the posterior means fit the data

extremely well. The distributions of the ratios of pairwise distances are given in Figure 3.1b, where
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each curve corresponds to a simulation. From this figure we see that the distances from the posterior

mean latent positions are very close to the true distances.

3.5 Data Analysis

3.5.1 Cosponsorship Data

We consider the cosponsorship data for the 93rd to 110th U.S. Congresses, collected by James Fowler

(see Fowler, 2006a,b). Specifically, we consider the same 49 Congressmen that serve in consecutive

House of Representatives for 12 terms (the 98th to the 109th Congresses). We let yijt be the number

of bills sponsored by Congressman j and cosponsored by Congressman i, and hence the network’s

edges consist of counts. Using these counts rather than a more simplified network yields richer and

more reliable data.

The priors for σ2 and τ2 were inverse gamma distributions with parameters formulated according

to the description in Section 3, with δ = 0.005, σ2
0 = 5 × 10−4 and τ2

0 = 1/(np)
∑n
i=1 ‖Xi1‖2 using

the initial positions of Xi1. The prior for the coefficients were N(0.75, 100) for βIN and N(0.25, 100)

for βOUT . The prior for r was Dirichlet with parameters equal to that given in (3.13). The variance

components of the normal random walk proposals for the latent space positions and the β coefficients

were 2.5 × 10−5 and 7.5 × 10−4 respectively. The tuning parameter κ used in the proposal for the

radii was set to be 2×105. A burn-in of 100000 samples was removed from the chain before analysis,

leaving a chain of length 100000. Figure 3.2 gives the trace plots for βIN , βOUT , σ2 and τ2.

The pseudo R2 value was 0.9233, implying a very good fit of the data. The posterior means

of the coefficients were βIN = 1.74 and βOUT = −0.12, implying that, in the formation of a

sponsorship/cosponsorship event, who sponsors a bill is more important than who cosponsors a

bill, i.e. popularity is more important in the network structure than activity. This corroborates the

results from the previous chapter when the larger binary version of this data was analyzed.

Figure 3.3 gives a plot of the posterior mean latent positions. Triangles indicate republicans and

circles indicate democrats. Temporal direction is shown via arrows. The size of a actor’s symbol

corresponds to his/her social reach, where a larger social reach implies that there is an increased

probability of that actor receiving cosponsorships from surrounding actors. From this figure we see

several things. First and most expected, there is a clear split between the two parties. Second,

each party has a central cluster, and these two clusters are relatively close to each other. In other

words, within each party there is a central group of Congressmen, and these two central groups are
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(a) βIN (b) βOUT

(c) σ2 (d) τ2

Figure 3.2: MCMC trace plots for the model parameters corresponding to the cosponsorship data.
Horizontal axis is in iterations ×104.

moderate rather than radical. Third, each party has a few outlying Congressmen, who happen to be

both far from their opposite party and also have small social reach (receive few cosponsorships). An

example of this is Hal Rogers, a Republican from Kentucky, circled in Figure 3.3, who has received

much criticism (e.g., Vrazilek, 2009; Dickinson, 2006; Shannon, 2007).

Figure 3.3 can be helpful in understanding a Congressman’s career. As an example of this,

consider Jim Leach, a Republican from Iowa, whose locations are in boxes. He first was elected by

defeating a Democrat incumbant, and we can see that his early associations were with Democrats.

We can see his transition over his career towards his fellow Republicans, although he maintained

close proximity to the main cluster of Democrats. This last fact was reflected in his stance on several

key issues, such as support for stem cell research, voting against the 2003 extension of the Bush tax

cuts (one of only three Republicans to do so), voting against the Iraq war, and others (Ericson, 2012;

clerk.house.gov, 2003; Leach, 2012).

3.5.2 World Trade Data

World trade data, measuring annual exports/imports between countries in the years 1991-2000, was

analyzed. The data, given in millions of US dollars, was obtained through the Economic Web Insti-
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Figure 3.3: Posterior means of latent positions for the cosponsorship data, arrows indicating the
temporal direction of the trajectories. Triangles are republicans and circles are democrats. The size
of a actor’s symbol corresponds to his/her social reach. Hal Rogers, an often criticized Congressman,
is circled, and the career path of Jim Leach, a moderate Republican, is in boxes.

56



tute at http://www.economicswebinstitute.org/worldtrade.htm, originally obtained through the IMF

Direction of Trade (DOT) Yearbook. The edges here are non-negative reals. As with the cospon-

sorship data, we analyzed a subset of the data. Included in the analysis was 107 countries who were

all involved in world trade through the years 1991 to 2000. To account for global inflation/deflation

and any other non-relational economic effects, the data was rescaled such that
∑
i 6=j yijt =

∑
i 6=j yijs

for any t, s = 1, 2, . . . , T ; i.e., the total quantity of annual world trade is constant.

The priors for σ2, τ2 and γ2 were inverse gamma distributions with parameters formulated

according to the description in Section 3. For σ2, we set δ = 0.000005 and σ2
0 = 1× 10−3; for τ2 we

set δ = 0.05 and τ2
0 = 1/(np)

∑n
i=1 ‖Xi1‖2 using the initial positions of Xi1; for γ2 we set δ = 0.0005

and γ2
0 = 1× 105. The prior for the coefficients were N(15, 500) for βIN and N(10, 500) for βOUT .

The prior for r was Dirichlet with parameters equal to that given in (3.13). A normal random walk

proposal with variance of 5× 10−7 was used for the latent positions Xt and with variance of 100 for

both βIN and βOUT . The proposal used for γ2 was a log-normal distribution with log mean equal to

log((γ2)curr) and log standard deviation equal to 0.01, where (γ2)curr represents the current value

of γ2. The proposal for r was a Dirichlet distribution with parameters equal to (5×106)rcurr, where

rcurr represents the current value of r. Figure 3.4 gives the trace plots for βIN , βOUT , σ2, τ2 and

γ2. A burn-in of 30000 was used, leaving a chain of length 30000.

The pseudo R2 value was 0.8233, indicating a very good fit of the data. The estimates for βIN

and βOUT were 366 and 344 respectively, implying that the amount of trade is determined more by

the importing country than the exporting country, but only slightly so.

Figure 3.5 gives plots of the posterior mean latent positions, broken up into three time periods:

from 1991 to 1993, from 1994 to 1996, and from 1997 to 2000. Temporal direction is shown via

arrows. The size of the actor corresponds to its ri value. Each color represents a geographical

region, where green is Africa, yellow is Asia, dark red is Eurasia, blue is Europe, red is North

America and the Caribbean, sea green is Oceania, and brown is South America. It is apparent that

the actors move within the latent space much less during each of these three periods than during the

transition from 1993 to 1994 and from 1996 to 1997. These two major shrinkage events occurring

both coincide with major events in world trade. In 1993, the General Agreement on Tariffs and

Trade was updated, which would later lead to the creation of the World Trade Organization (WTO)

(see http://www.wto.org). Looking at Figure 3.5, we can see that there is already some shrinkage

happening during the year 1993 which then continues going into 1994. Specifically we see that

certain continents (Africa, Asia, and Europe) come together during this time. Europe is the clearest
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(a) βIN (b) βOUT

(c) σ2 (d) τ2

(e) γ2

Figure 3.4: MCMC trace plots for the model parameters corresponding to the world trade data.
Horizontal axis is in iterations ×104.

case, and it turns out there is a good reason for this: the European Economic Area was established

on January 1, 1994. Regarding the second shrinkage event in 1997, a publication from the WTO

states that “the volume of world merchandise exports grew by 9.5 per cent in 1997.” This is seen

visually in Figure 3.5. However, since the original data had been scaled to account for such growth,

we conclude that the reason for this growth in world exports is not due to existing relationships

getting stronger, but rather to the formation of many more trading relationships.
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Figure 3.5: World trade import/export relational data. Each column is scaled equally. Each figure
on the right is the zoomed in figure of the dotted box in the figures to their left.
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3.6 Full Conditional Distributions

The full conditional distributions for τ2 and σ2 are respectively

π(τ2|X1) ∼ IG(2 + δ + nD/2, (1 + δ)τ2
0 +

1

2

n∑
i=1

‖Xi1‖2), (3.24)

π(σ2|X1,X2, . . . ,XT ) ∼ IG(2 + δ +
nD(T − 1)

2
, (1 + δ)σ2

0 +
1

2

T∑
t=2

n∑
i=1

‖Xit −Xi(t−1)‖2), (3.25)

for δ, τ2
0 , σ2

0 > 0.

We let πyijt , π(yijt|Xt,Ψ). Then the full conditional distribution for Xit in these two cases is

π(Xit|Y1:T ,Ψ) ∝



(∏
j 6=i

πyijtπyjit

)
·N(Xit|0, τ2ID) ·N(Xi(t+1)|Xit, σ

2ID), if t = 1(∏
j 6=i

πyijtπyjit

)
·N(Xi(t+1)|Xit, σ

2ID) ·N(Xit|Xi(t−1), σ
2ID), if 1 < t < T(∏

j 6=i
πyijtπyjit

)
·N(Xit|Xi(t−1), σ

2ID), if t = T .

(3.26)

The full conditional distribution for each of the model parameters follows the form

π(ψ|Y1:T ,X1:T ,Ψ\{ψ}) ∝
[
T∏
t=1

π(Yt|Xt,Ψ)

]
· π(ψ) (3.27)

where Ψ\{ψ} is the set of parameters excluding ψ, and for count data ψ ∈ {βOUT , βIN , r} and for

non-negative real data ψ ∈ {βOUT , βIN , γ2, r}.
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Chapter 4

Analysis of the Formation of the
Structure of Social Networks using
Latent Space Models for Ranked
Dynamic Networks
The formation and evolution of interpersonal relationships are highly studied in the social sciences.

These interpersonal relationships can most easily be thought of in the context of a social network in

which we observe how a certain number of actors interact. By analyzing such a network over time,

one can hope to quantify the construction and stabilization of the network and its structures. In

1954 T. Newcomb began an observational study using a college fraternity for this purpose, and a

very large number of researchers have relied on this study to help understand how social networks

form and stabilize. This fraternity data set gives social scientists the unique opportunity to study the

evolution and formation of the structure of social networks from a nonexistent state to a stabilized

form. The overall goal of the original study was to “improve our understanding of the development

of stable interpersonal relationships” (Newcomb, 1961).

Some authors have used Newcomb’s fraternity data as an example with which to illustrate new

methodology, e.g., Snijders (1996) states “our treatment of Newcomb’s fraternity data in this paper

is not more than an example . . . ” Other authors have analyzed this data set in more depth, utilizing

it for its worth in helping to understand social networks and how they form. A notable example

includes Doreian et al. (1996), who studied this data to determine how reciprocity, transitivity and

group balance, as determined by how well the actors can be partitioned, vary over time. Another

such example can be found in Krackhardt and Handcock (2007), where the authors used this data

to determine the significance of Heiderian triads and Simmelian triads.

We have three questions in particular we attempt to answer in this chapter regarding Newcomb’s

fraternity data. First, does the network stabilize, and if so, when does this happen? Second, how

do subgroups form and stabilize? That is, do some or all of the actors naturally fall into a small

number of groups, and if so when do these groups form? Third, is there a relationship between

the popularity of an individual and the social position of that individual? We desire a unifying
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framework with which we can answer all three of these questions.

Most of the past analyses of Newcomb’s fraternity data have needed to simplify the data to

complete their analyses. For example, Breiger et al. (1975) only considered the top two and the

bottom two rankings for each individual during the final week of the study; Arabie et al. (1978)

similarly used the top two and the bottom three rankings for each individual during the final week.

Wasserman (1980) tried using the top four and the top eight rankings to transform the ranked

network into a binary network; as may be expected, Wasserman found that the network structure is

affected by the binary cutoff. Doreian et al. (1996) used in parts of their analysis only the top four

rankings, and in other parts used the top four and the bottom three. More recently, Moody et al.

(2005) used only the top four rankings, and Krackhardt and Handcock (2007) used the top eight.

Using the methods of Chapter 2, we analyzed the fraternity data using the top four as edges and

using the top eight as edges. The resulting two visualizations of the network differed considerably

from each other, and both gave different visualizations than that obtained in our final model (see

Figures 4.4 and 4.5 for the visualizations obtained from our proposed model). This suggests that,

rather than selecting some arbitrary cutoff value we ought to try to model the full data. For more

on this topic see Thomas and Blitzstein (2011). One last note is that a common theme among the

analyses of Newcomb’s fraternity data is that the network inference is based on ad hoc measures.

While these methods can still be useful, it is clearly more preferable to have a more rigorous model

and estimation method which can elicit more confidence in the estimates and quantify uncertainties.

In this chapter, we propose a latent space model for ranked dynamic network data. Our ap-

proach avoids deciding on an arbitrary cutoff for binarizing the network by appropriately modeling

the rank data. Our approach also models the temporal dependence structure involved in observing

the network over time. Using a latent space approach to dynamic network data allows us to obtain

an intuitive visualization of the network and its evolution, giving us a better understanding of the

network and allowing us to make qualitative inference. Further, by using a latent space approach

we have an intuitive way to think about the network stability by linking network stability with how

stable the actors’ social positions are. That is, if the network is not stable, then the actors’ social

positions ought to vary considerably from one time point to the next; however, as the network stabi-

lizes, the social positions in turn ought to stabilize and vary less over time. Our model allows us to

measure the statistical precision of the movements of these social positions over time. Our proposed

model and estimation method allows us to quantify the uncertainty of the latent positions. This

uncertainty allows us to analyze group structure emergence. Finally, our model also incorporates
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popularity measures, thereby capturing some of the local structure. These popularity measures,

together with the latent positions, can tell us about the relationship between individual popularity

and individual stability.

While the main purpose of this chapter is to analyze Newcomb’s fraternity data, developing

tools for rank-order network data is important in its own right. Ranked networks should inherently

contain more information than binary networks. While it is true that rank-order network data is

much rarer than binary data, it seems likely that this is due to a lack of analytical tools available.

This work adds to the current analytical toolbox, thereby encouraging researchers to collect and

analyze ranked network data.

The remainder of the chapter is as follows. Section 4.1 describes the data; Section 4.2 describes

the proposed model; Section 4.3 gives the estimation algorithm; Section 4.4 gives a simulation study;

Section 4.5 gives the results of analyzing Newcomb’s fraternity data; Section 4.6 gives a sensitivity

analysis for the initialization strategy in our estimation algorithm.

4.1 Newcomb’s Fraternity Data

In 1955, seventeen unacquainted students took part in a semester long study at the University of

Michigan. These students were selected in such a way that they were all unknown to each other

before the study began. Thus the data on a social network would be collected over time, beginning

in its most nascent state and observed as the network evolves and stabilizes to its final form. This

purposeful capturing of the emergence of a social network is why this data is still of such interest

nearly six decades later. For fifteen out of sixteen weeks in the semester (no responses were recorded

for week 9), each student would then rank the sixteen other students from most to least favored.

See Newcomb (1961) Chapter 2 for details on the selection of the students and the data acquisition

process.

Thus the data come in the form of a sequence of adjacency matrices Yt for t = 1, . . . , 15. For

each time point t, the ith row of Yt, denoted as yit = (yi1t, yi2t, . . . , yint), is a permutation of

{1, 2, . . . , n − 1} with a 0 inserted into the ith position. The rankings go, in order of most favored

to least favored, from 1 to n− 1.
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4.2 Models

We first describe our proposed model in Section 4.2.1. This methodology allowed us to gain insight

into the stability of the network, as well as to investigate subgroup formation and the relationship

between individual stability and individual popularity. In Section 4.2.2 we review the model derived

by Hoff (2011). We used this model to investigate the stability of the fraternity network over time,

and while this did not detect all of the stability patterns that our proposed approach detected, it

corroborated our main results on the timing of the network stability.

4.2.1 Latent Space Hierarchical Model for Ranked Dynamic Networks

Due to the lack of existing methods for our context, we develop a latent space model for handling

ranked longitudinal network data with which to answer our research questions. We assume here that

each actor exists within a latent space which can be interpreted as a characteristic space, or a social

space. This is the underlying concept of the latent space: a smaller distance between two actors

within this space corresponds to a larger probability of receiving a favorable ranking. Therefore if

two nodes are far apart in the latent space we would expect them to rank each other unfavorably,

whereas if two nodes are close together we would expect them to view each other quite favorably.

First is some general notation to be used throughout. Assume we have a set of actors N and a

set of edges E ; let n = |N | be the fixed number of actors and T the total number of time points at

which the network is observed. Often it will be more convenient to work with the ordering of yit

rather than yit itself. We will let ωit = (ωi1t, ωi2t, . . . , ωi(n−1)t) be the (n − 1) × 1 vector which is

the ordering of the rank vector yit (e.g., if y1t = (0, 3, 1, 4, 2) then ω1t = (3, 5, 2, 4)). Let Xit ∈ <p

be the position vector of the ith actor at time t within the p dimensional latent space. Let Xt be

the matrix whose ith row is Xit. Finally, let Ψ be the vector of unknown parameters to be defined

later.

We assume the actors’ latent positions transition according to a Markov process, where the initial

distribution is

π(X1|Ψ) =

n∏
i=1

N(Xi1|0, Ip/τ0), (4.1)

and the transition equation is

π(Xt|Xt−1,Ψ) =

n∏
i=1

N(Xit|Xi(t−1), Ip/τt), (4.2)
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for t = 2, 3, . . . , T , where Ip is the p × p identity matrix, and N(x|µ,Σ) denotes the multivariate

normal probability density function with mean µ and covariance matrix Σ evaluated at x.

The precision parameters τt, t = 2, . . . , T , give us the information we need to evaluate the

stability of the network. A larger precision implies that the latent positions are moving less and

therefore implies the actors’ positions are more stabilized, whereas a smaller precision implies that

the latent positions are moving more and therefore implies less stable social positions. The network’s

stability at time t ought to be in some sense smooth over time; that is, one would not expect the

stability of the network at time t to be drastically different from the stability at t− 1 and t+ 1. For

this reason we further model the precision parameters τt, t ≥ 2, as a random walk involving gamma

distributed random variables. Specifically we have for t ≥ 2 that

τt = τt−1ηt, (4.3)

where ηt
iid∼ Γ(θ, θ), and Γ(a, b) indicates a gamma distribution with shape parameter a and rate

parameter b. This is equivalent to having the prior

π(τ2, . . . , τT )
D
=

T∏
t=2

Γ(τt|θ, θ/τt−1), (4.4)

where Γ(x|a, b) is the gamma density function with shape a and rate b evaluated at x. With this

specification, τt conditional on τt−1 has an expected value equal to τt−1 and variance equal to τ2
t−1/θ.

Note that τ1 is a hyperparameter that defines the mean of τ2 (and therefore the unconditional mean

for any τt, t ≥ 2).

The choice of p, the dimension of the latent space, is a topic that is beyond the scope of this

chapter. As visualization of the network is a motivation for using the latent space approach to

modeling networks, typically p is set to two or three. In our analysis we set p = 2.

Many methods, such as the temporal exponential graph model by Hanneke et al. (2010) or the

stochastic actor oriented models originated by Snijders (1996), construct the dependence structure

through modeling specific dependency structures; latent space approaches, such as our proposed

model, assume that the dependency within the network has been induced by the latent variables.

Specifically, we assume that the observed networks at differing time points are conditionally inde-

pendent given the latent positions, and that the observed network at time t depends only on the

latent space positions at time t. Figure 2.1 illustrates this dependence structure. We also assume

that, conditioning on (Xt,Ψ), yit is independent of yi′t, i 6= i′.
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We now describe the likelihood component of the model that relates the distances between the

latent positions and the observed network. To this end we utilize the Plackett-Luce model for ranked

data (see Plackett, 1975). The Plackett-Luce model can be thought of as drawing from a vase. Every

member of the set {1, . . . , n} \ {i} being ranked by i has a particular proportion of the tickets with

their name on it in the vase. At time t, i randomly draws a ticket and the name on the ticket

determines who is ranked first, i.e., ωi1t. For the second rank, i draws until a new name is drawn

and then ranks that name second, ωi2t. This continues until all elements in the set are ranked.

Notice that the second rank is obtained according to the same probability distribution as if i was

deciding the first rank with the smaller set of n − 2 elements, i.e., {1, . . . , n} \ {i, ωi1t}. In other

words, i ranks j above k with the same probability with and without ` included in the set to be

ranked; this condition is called Luce’s Choice Axiom. It is reasonable to assume that this axiom

holds; if Newcomb had only asked a subset of the students living within the fraternity to rank each

other, we would not expect the resulting network to look different than a subnetwork of the full data

we actually have, where all the students are included in the network. Using this framework we can

write the distribution for yit as a product of conditional probabilities given as

P(yit) = P(ωit) =

n−1∏
j=1

P(ωijt|ωi1t, ωi2t, . . . , ωi(j−1)t) =

n−1∏
j=1

νiωijtt∑n−1
`=j νiωi`tt

, (4.5)

where, following the explanation given above, νijt corresponds to the proportion of tickets with j’s

name on it in i’s vase at time t.

As mentioned previously, we desire that the greater the distance between actor i and actor j the

smaller the probability of each giving the other a favorable ranking. Further, even within a common

social circle there will still be more popular and less popular actors, and so it is important to capture

this local structure in the model. Therefore it is intuitive to model the νijt’s as functions of the

latent positions and actor specific parameters. The parameterization is chosen such that

νijt = rj exp(−dijt), (4.6)

where dijt = ‖Xit −Xjt‖ and r = (r1, r2, . . . , rn) is the vector of positive actor specific parameters

constrained such that
∑n
i=1 ri = 1 for model identifiability. These ri’s can be interpreted as each

actor’s social reach, where a larger value implies a higher probability of receiving a favorable ranking

from others. Thus if an actor is generally well liked they will have a large ri value. This parameter-

ization is similar to that of Gormley and Murphy (2007), who applied the Plackett-Luce model to a
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bipartite network, though here we also incorporate the popularity measures into the likelihood.

From (4.5) and (4.6) we have that the conditional likelihood of (Y1, Y2, . . . , YT ) is

P(Y1, Y2, . . . , YT |X1,X2, . . . ,XT ,Ψ) =

T∏
t=1

n∏
i=1

n−1∏
j=1

rωijt exp(−diωijtt)∑n−1
`=j rωi`t exp(−diωi`tt)

, (4.7)

where Ψ = (r, τ0, τ1, τ2, . . . , τT ).

Further motivation for the parameterization in (4.6) is that we can consider the Thurstonian

model interpretation of the Plackett-Luce model. Thurstone (1927) described the following model:

For a vector of ranked data y = (y1, y2, . . . , ym), there is a vector of latent random variables

Z = (Z1, Z2, . . . , Zm) and a vector of scalars µ = (µ1, µ2, . . . , µm) such that Zj − µj
iid∼ F for

some continuous distribution function F . Then P(y) = P(Zω1
> Zω2

> · · · > Zωm), where

ω = (ω1, ω2, . . . , ωm) is the ordering of y. Yellott Jr (1977) showed that the Plackett-Luce model is

equivalent to the Thurstone model if and only if F is the Gumbel distribution. They further showed

that if F is a Gumbel distribution with location parameter equal to zero and scale parameter equal

to 1, then the relationship between the two models is that νj = exp(µj). Coming back to our

context, we let Zit = (Zi1t, Zi2t, . . . , Zi(n−1)t) be a vector of latent random variables which measure

how actor i regards the strength of his/her relationship with the other n− 1 actors. We define these

measures such that

Zijt = µijt + εijt (4.8)

where µijt = log(rj)−dijt, εijt iid∼ F = Gumbel(−γEM , 1), and γEM is the Euler-Mascheroni constant

(≈ 0.5772); the location shift is because a Gumbel(0,1) random variable has mean γEM and thus

by including the location shift we set the mean of εijt to be zero. Note also that the non-zero

location parameter of F does not change the relationship between the Thurstonian model and the

Plackett-Luce model. To see why this is so, it is necessary to recognize that the Plackett-Luce model

is invariant to rescaling the νijt’s, and hence we can rescale by exp(−γEM ). By the relationship

mentioned above, we have that νijt = exp(µijt − γEM ), hence Zijt − (µijt − γEM )
iid∼ Gumbel(0, 1),

which is equivalent to (4.8). This meets our intuition that the ranking of the Zijt’s should not be

affected by a location shift of F . The actual reason we desire this non-zero location parameter of F

is so that we have

E(Zijt|Xt, r) = log(rj)− dijt. (4.9)

Therefore the Plackett-Luce model in (4.7) can be thought of as, for individual i at time t, obtaining
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a set of variables Zijt, j 6= i, whose mean is determined by the social reach of the actor being ranked

and by the social distance between the ranking actor and the ranked actor, which measures on a

continuous scale the relationship between individual i and the rest (as perceived by i). Then the

vector yit is the ranking of the realizations zijt of Zijt.

4.2.2 Multilinear Model for Multiway Data

Hoff (2011) developed a latent space approach for analyzing multiway data, which he then demon-

strated how to apply the model on dynamic network data. In particular, he applied his model

to a dynamic network whose edges yijt consist of ranking the relationship on the constant set

{−5,−4, . . . , 2}. This type of ranked network is different than the fraternity data, where there is the

added constraint on the response variables that the rows of the response array must be a permutation

of {0, 1, . . . , n− 1}. In applying this model to the fraternity data set, we relax this extra constraint,

thereby allowing the model to predict networks that violate the permutation constraint. This can

be thought of as another form of simplifying the network at some cost to the information contained

therein, much like, and arguably to a much lesser degree than, the information lost associated with

transforming the network from weighted to binary according to some arbitrary cutoff. Hoff’s model

utilized an ordered probit model, which we now briefly describe within the context of the fraternity

data.

Let zijt be latent variables such that yijt = max{k : zijt > ck, k ∈ {1, . . . , n − 1}}, where the

ck’s are unknown cutoff points to be estimated. These latent variables are assumed to be normally

distributed whose mean can be written as the following factor model:

E(zijt) =

p∑
`=1

ui`uj`vt`. (4.10)

The p dimensional vectors ui = (u1, . . . , up) are student specific vectors that can be equated to

the latent positions Xit in the model of Section 4.2.1, though instead of being time dependent,

in Hoff’s model the temporal aspect of the data is accounted for by the p dimensional vectors

vt = (vt1, . . . , vtp). The ui’s can then be thought of as the time invariant latent positions of the

students, and the vt’s can be thought of as stretching or compressing the p axes to alter the closeness

of the students at different time points. There are no structural constraints placed on the ui’s and vt’s

beyond the regularization that the Bayesian framework imposes via the prior distributions. Note

also that the closeness between the actors is not measured via Euclidean distance, as in Section
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4.2.1, but rather by the cosine of the angle between the two students, more akin to the dot product

graph model (see, e.g., Young and Scheinerman, 2007). The dimension p, just as in our proposed

approach, is assumed to be 2, though this is in actuality an unknown quantity. Hoff suggested using

the Deviance Information Criterion (Spiegelhalter et al., 2002), though determining the optimal p

could and should be a topic of future research.

The usefulness of this model within our context lies in the values of the vt’s. These vectors give

us a good sense as to the stability of the network, as conceptualized by how much the students’

social positions are changing over time. For example, if the network is completely stabilized over

a set of time points T then the students’ positions are static, and thus vt = vs for s, t ∈ T . If,

on the other hand, the network is quite unstable, then we would expect to see these vt’s to vary

considerably from week to week during the unstable time period.

Estimation for this model was performed by first running a Markov chain Monte Carlo (MCMC)

algorithm to initialize the unknown quantities, and then applying an alternating least squares algo-

rithm to obtain point estimates of the ui’s and vt’s. Section 4.3 gives the details on the estimation

procedure for our proposed model given in Section 4.2.1.

4.2.3 Pseudo-R2

In the context of linear regression, one can determine how well the model explains the data by

using the R2 or adjusted R2 value. For standard ranked data, there exist some measures that are

approximately equivalents (see, e.g., Marden, 1995). However, we cannot apply these measures to

our context due to having each actor ranking a different set, i.e., each i ranks the set {1, 2, . . . , n}\ i.

For the ordinal probit model, McKelvey and Zavoina (1975) devised a goodness of fit measure;

Veall and Zimmermann (1992) showed that McKelvey and Zavoina’s pseudo R2 is closest to the R2

corresponding to the underlying continuous (latent) data. We developed a pseudo-R2 with a similar

flavor by using the Thurstonian model specification outlined at the end of Section 4.2.1. Specifically,

we note that

(zijt − z̄)2 = (µijt − z̄)2 + ε2ijt + 2εijt(µijt − z̄),
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where µijt = log(rj) − dijt and z̄ = 1/(Tn(n − 1))
∑
t

∑
i6=j zijt. Since εijt

iid∼ Gumbel(−γEM , 1),

E(εijt) = 0 and V ar(εijt) = π2/6; thus we have that

T∑
t=1

∑
i6=j

E(ε2ijt + 2εijt(µijt − z̄))

=

T∑
t=1

∑
i6=j

E(ε2ijt)− 2

T∑
t=1

∑
i 6=j

E

εijt 1

Tn(n− 1)

T∑
t′=1

∑
i′ 6=j′

(µi′j′t′ + εi′j′t′)


=

π2

6
(Tn(n− 1)− 2). (4.11)

We can then, similarly to the method used by McKelvey and Zavoina, approximate the total sum

of squares by
T∑
t=1

∑
i6=j

(zijt − z̄)2 ≈ (µ̂ijt − ˆ̄µ)2 +
π2

6
(Tn(n− 1)− 2), (4.12)

where µ̂ijt = log(r̂j) − d̂ijt, ˆ̄µ = 1/(Tn(n − 1))
∑
t

∑
i 6=j µ̂ijt, and the ˆ symbol over the model

parameters implies the posterior mean estimate. Therefore we define the pseudo R2 to be

R2 =

∑T
t=1

∑
i 6=j(µ̂ijt − ˆ̄µ)2∑T

t′=1

∑
i′ 6=j′(µ̂i′j′t′ − ˆ̄µ)2 + π2(Tn(n− 1)− 2)/6

. (4.13)

This R2 value can be interpreted to be the approximate proportion of the variability of the underlying

latent variables zijt explained by the model; hence, all other things equal, we desire to have a higher

R2 value.

4.3 Estimation

Estimation is done within a Bayesian framework; thus we desire to make inference based on the

posterior distribution π(X1, . . . ,XT ,Ψ|Y1, . . . , YT ). The strategy is to find reasonable initial esti-

mates of the latent positions and of the model parameters, and use these estimates to initialize a

Metropolis-Hastings (MH) within Gibbs Markov chain Monte Carlo. From the samples from the

Markov chain we can then obtain posterior inference of the latent positions and of Ψ.

To perform the Bayesian estimation, we first need priors on the model parameters. We use the
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following:

π(r)
D
= Dir(α1, . . . , αn), (4.14)

π(τ0)
D
= Exp(λ0), (4.15)

π(τ1)
D
= Γ−1(λ1/2, 1/2), (4.16)

π(θ)
D
= LN(µ, σ2), (4.17)

where Dir(α1, . . . , αn) is the Dirichlet distribution, Exp(a) is the exponential distribution with rate

a, Γ−1(a/2, 1/2) is the inverse gamma distribution with shape a/2 and scale 1/2 (this is also the

inverse-χ2 distribution with degrees of freedom a), and LN(a, b) is the log-normal distribution with

log-mean a and log-variance b. The Dirichlet is a natural prior for such constrained parameters as

r, the priors for τ0 and τ1 were chosen based on conjugacy, and the prior for θ was chosen to be able

to put a flat prior on θ and also for ease of sampling.

4.3.1 Initialization

In a complicated hierarchical model such as ours, it is difficult to know how to reasonably choose

initial values of the Markov chain estimation algorithm or how to specify the hyperparameters of

the prior distributions. We attempt to address both these issues simultaneously via an approach

which is similar in concept to empirical Bayes methods. That is, we use the data to determine

the initial values and the hyperparameters of the prior distributions. The way in which we use the

data is through a preliminary, and admittedly somewhat ad hoc, analysis of the data. Therefore we

make the priors flat and uninformative where possible, otherwise we use this preliminary analysis to

determine the values of the hyperparameters. In so doing we naturally obtain initial values for the

Markov chain estimation algorithm.

Since the social reaches should reflect the popularity of the individuals, we initialized the social

reaches as

r
(1)
i =

∑T
t=1

∑n
j=1 2(n− yjit)

n2(n− 1)T
, (4.18)

where the superscript (1) denotes the initial estimate. These values account for how favorable

student i was with respect to all other students over all time points. One could use r(1) as the

hyperparameters α1, . . . , αn; in this case, however, we can make the prior distribution flat and

uninformative by setting these hyperparameters all equal to one. This also has the beneficial effect
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of reducing the computational complexity of the algorithm.

To find the initial latent positions we used classic multidimensional scaling (MDS) at each time

point. To implement this, we first needed a dissimilarity matrix for each time point. We constructed

this by setting

dijt ∝
r

(1)
j

n− yijt
+

r
(1)
i

n− yjit
. (4.19)

The logic behind this choice is that the more favorable i and j rank each other, the closer they

ought to be in the latent space. The latent social positions in our latent space model account for

popularity, however, and so we use the initial values of the social reaches r(1) to determine dijt. The

idea is that even if i gives j a favorable ranking, this may not imply that i and j are particularly

close if j has a large social reach. If, however, i gives j a favorable ranking and j has a very small

social reach then this implies that i and j should be very close together in the latent social space.

With the T dissimilarity matrices computed, we can then implement MDS to obtain initial latent

positions. In many contexts it would be more appropriate to initialize using the generalized multi-

dimensional scaling derived by Sarkar and Moore (2005), which implements MDS while accounting

for the longitudinal aspect of the dissimilarity matrices. However, this method implicitly assumes

that τ2 = τ3 = · · · = τT , which we do not assume here; thus we have used a simpler MDS approach

to initialize the latent positions, i.e., we use MDS on each of the T dissimilarity matrices. After each

dissimilarity matrix has been used to embed the actors within a p-dimensional latent space, we used

a Procrustes transformation to orient the latent positions at time t as closely as possible to those

at time t − 1. The Procrustes transformation finds a set of rotations, reflections and translations

to minimize the difference between a given matrix and some target matrix (see, e.g., Borg, 2005).

Lastly, we needed to know how to scale the latent positions. To this end we maximized the likelihood

using a simple line search to find

c0 = argmax
c

π(Y1, . . . , YT |cX ∗1 , . . . , cX ∗T , r(1)),

and then we set X (1)
t = c0X ∗t for t = 1, . . . , T , where X ∗t is the tth latent positions found by using

MDS.

The prior mean of τ0 and the initial estimate τ
(1)
0 was computed as

[
1

np

n∑
i=1

‖X(1)
i1 ‖2

]−1

. (4.20)
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We then set λ0 = 1/τ
(1)
0 , thereby matching the prior expected value of τ0 to τ

(1)
0 . Similarly, for

t ≥ 2, τ
(1)
t was computed as [

1

np

n∑
i=1

‖X(1)
it −X

(1)
i(t−1)‖2

]−1

. (4.21)

We set τ
(1)
1 to equal τ

(1)
2 . Matching the prior expected value of τ1 to equal τ

(1)
1 implies setting

λ1 = 2 + 1/τ
(1)
1 . Looking at (4.3), we see that the variance of ηt (= τt/τt−1) equals 1/θ. Therefore

we can set the initial estimate θ(1) equal to the inverse of the sample variance of {τ (1)
t /τ

(1)
t−1, t ≥ 2}.

We then set µ = log(θ(1)) and set σ2 to be some large value, thereby making the prior flat.

We checked the sensitivity to this initialization scheme on our analysis of the fraternity data. We

checked this sensitivity by choosing two alternative methods of initialization, each of which reflects

some incorrect concept behind the latent space model (a misinterpretation of the latent positions

and an assumption of constant network stability over time). In neither case did the conclusions

based on the samples from the posterior, which will be discussed in Section 4.5, change. The details

of this sensitivity analysis are given at the end of the chapter.

4.3.2 Posterior Sampling

To sample from the posterior distribution, we use a MH within Gibbs sampling scheme. For this

algorithm we need the full conditional distributions. For the latent positions these are given as

π(Xit|·)

∝


π(Y1|X1,Ψ)N(Xi1|0, Ip/τ0)N(Xi2|Xi1, Ip/τ2) if t = 1

π(Yt|Xt,Ψ)N(Xit|Xi(t−1), Ip/τt)N(Xi(t+1)|Xit, Ip/τt+1) if 2 ≤ t < T

π(YT |XT ,Ψ)N(XiT |Xi(T−1), Ip/τT ) if t = T ,

(4.22)
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and for the parameters are given as

π(r|·) ∝ π(Y1, . . . , YT |X1, . . . ,XT ,Ψ) (4.23)

π(τ2, . . . , τT |·) =

T∏
t=2

Γ
(
τt|θ +

np

2
,
θ

τt−1
+

1

2

n∑
i=1

‖Xit −Xi(t−1)‖2
)

(4.24)

π(τ0|·) D= Γ
(

1 +
np

2
, λ0 +

1

2

n∑
i=1

‖Xi1‖2
)

(4.25)

π(τ1|·) D= Γ−1
(λ1

2
+ θ,

1

2
+ θτ2

)
(4.26)

π(θ|·) ∝
[
T∏
t=2

Γ(τt|θ, θ/τt−1)

]
· LN(θ|µ, σ2). (4.27)

The algorithm is

0. Set the initial values of the latent positions and parameters as given in Section 4.3.1.

1. For t = 1, 2, . . . , T and for i = 1, 2, . . . , n, draw Xit from (4.22) via MH.

2. Draw τ0 from (4.25).

3. Draw τ1 from (4.26).

4. For t = 2, . . . , T , draw τt from its conditional distribution in (4.24).

5. Draw θ from (4.27) via MH.

6. Draw r from (4.23) via MH.

Repeat steps 1-6.

Regarding the proposal distributions, Xit, βIN , and βOUT can come from a symmetric proposal (e.g.,

normal random walk). Because of the constraint on r, a Dirichlet proposal is suggested for the radii,

which also will be an asymmetric proposal. Suggested parameters for this Dirichlet proposal are

κrcurr, where rcurr are the current values for r and κ is some large value (e.g., we set κ = 10, 000).

One final note is that, as is the case for any such latent space model, the posterior is invariant

under rotations, reflections and translations of the latent positions X1,X2, . . . ,XT . Hence after each

iteration of steps 1-6, a Procrustean transformation will be performed on the n trajectories; that

is, the transformation is performed on the nT × p matrix (X ′1,X ′2, . . . ,X ′T )′. In our context, the

target matrix is chosen to be constructed from the first MCMC draw of the latent positions after

the burn-in. In so doing we find a rotation matrix A such that for any i and t, X
(`)
it = A′X∗it, where

X
(`)
it is the stored latent positions for the `th iteration and X∗it is the newly drawn latent positions.
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4.4 Simulation Study

Two sets of 20 simulations were run, where the simulated data in the first set was from a properly

specified model, i.e., the data came from the model of Section 4.2.1, and the second simulated data

was from a misspecified model, the details of which will be explained shortly. In each simulation

we desired to evaluate the correlation between the estimated and the true popularity measures and

the relationship between the estimated and true τt’s. For each simulation we drew 100,000 MCMC

samples, and on a UNIX machine with a 2.40 GHz processor the computation time averaged close

to one hour.

For each simulation we set n = 17, T = 15 and p = 2. We set τ0 = 3.16, τ1 = 5.57, and θ = 4.50,

which are the posterior means from the analysis of the fraternity data; these values were chosen to

make the simulated data similar to the real data set we analyzed. We then drew r from Dir(1, . . . , 1)

and for t ≥ 2 drew τt from Γ(θ, θ/τt−1). For the simulations from the correctly specified model we

then drew X1, . . . ,XT according to (4.1) and (4.2) in the main text. For the 20 simulations from the

misspecified model we generated the data in the following way. We drew the initial latent positions

from a mixture of normals with three components. The means of the three normals were drawn

from N(0, Ip/τ0) and the covariances were all set to equal Ip/(5τ0). Then for i = 1, . . . , n, Xi1 was

drawn from this mixture of normals. If we write the transition equation as Xit = Xi(t−1) + εit,

then the correctly specified model would have the correlation matrix of (εi2, . . . , εiT ) equal Ip(T−1).

However, we set

corr(εit, εis) =

 1 ρ|t−s|

ρ|t−s| 1


where ρ was drawn from a uniform distribution with support over (0.25, 0.75). Finally, the data

Y1, . . . , YT were drawn according to the model described in Section 4.2.1 (using the Thurstonian

interpretation of the model proved most convenient).

Figure 4.1 gives the boxplots of the correlation between the true social reaches r and the posterior

means of the social reaches r̂. From this we see that these popularity measures are estimated

well, with the estimates corresponding to the correctly specified model performing similarly to,

though somewhat better than, those corresponding to the misspecified model. Figure 4.2 shows

the scatterplot of the true τt’s vs. the posterior mean estimates. From this we see that we can be

reasonably certain that our estimates of the τt’s will be indicative of the truth. It is also important

to note that while we obtain reasonable estimates of the τt’s, there is a clear pattern in Figure 4.2
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which implies that the variance of the estimates, perhaps unsurprisingly, increases as the true τt’s

values increase. Indeed, this pattern is reflected in the estimates of the fraternity data, as we have

seen.

Figure 4.1: Correlation between true r and r̂ values for the simulations. The wide boxplot corre-
sponds to the data generated from the correctly specified model, the narrow boxplot to the data
generated from the misspecified model.

4.5 Results

We applied our method to Newcomb’s (1961) fraternity data . We let the MCMC algorithm run for

250,000 iterations, including a burn in period of 50,000 iterations. Figure 4.3 gives the trace plots for

selected parameters, namely θ and τt for t = 0, 1, 2, 9, 15. From this we see that the MCMC algorithm

converges. The hyperparameters α1, . . . , α17 were all set to 1, σ, the log standard deviation of π(θ),

was set to equal 5, and all other hyperparameters were chosen as described in Section 4.3.

The pseudo-R2 value was 0.622 (this was equal up to three decimal places of the mean pseudo-

R2 values obtained from analyzing 20 data sets simulated from the model of Section 4.2.1 whose

parameters were set to be equal to those learned from this data set; see the Supplementary Materials

for details on the simulation study). As this value approximates the amount of the variation in the

underlying process explained by our model, we get some sense as to the noisiness of the data. Our

model has explained more than half of the variation of the latent process, though there is still some

inherent unexplained noise in the network data. Figures 4.4 and 4.5 give the posterior means of
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Figure 4.2: True values of τ2, . . . , τT correspond to the vertical axis, posterior means τ̂2, . . . , τ̂T
correspond to the horizontal axis. Solid circles indicate that the model was correctly specified, and
the hollow circles indicate that the model was misspecified.

the latent trajectories of the 17 students through the 15 weeks of the study. From this we get a

better understanding of what the network looks like, what groupings exist, and which actors find

their social positions early and which find their social positions late. The details are given in the

following sections.

4.5.1 Network Stability

Newcomb (1961) and Nakao and Romney (1993) both measured the stability of the network by

comparing each individual’s rankings from week to week. Newcomb claimed that the stability sharply

increases in the first three weeks, and the network is essentially stable after this point. Nakao and

Romney claimed that the network is stable after week five. Much more recently, Krivitsky and Butts

(2012) extended the exponential random graph for ranked network data. Krivitsky and Butts used

this model to analyze Newcomb’s fraternity data, determining the stability of the network through

ranking inconsistencies, showing that according to this measure the stability of the network increases

over time with a decrease at week 15. We wish to use our model to conduct a formal analysis, giving

quantitative answers to how the stability of the network evolves. In so doing we verify the general

trends discovered earlier, as well as discovering a new pattern in the stability of the network.

In a latent space approach to modeling the network, network stability is considered to be how

constant the actor’s social positions become. Before applying our model from Section 4.2.1 for ranked
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(a) θ (b) τ0 (c) τ1

(d) τ2 (e) τ9 (f) τ15

Figure 4.3: Trace plots for select parameters corresponding to the analysis of Newcomb’s fraternity
data.

dynamic networks, we first use Hoff’s multilinear model to obtain a visualization of the evolution of

the stability of the network. Figure 4.6 gives the resulting figures from the analysis. Keep in mind

that the interpretation of the latent positions from Hoff’s model is different than that of the latent

positions from our proposed method, in that a smaller angle, not a smaller distance, between the

actors increases the probability of a favorable ranking. The plots of v1 and v2 give the scalar time

effects (which stretch the gth axis at time t if vtg > 1 or contract if vtg < 1, g = 1, 2) for each of

the two dimensions in the latent space. It is these two plots which indicate how much the latent

positions are moving over time. During the first six weeks we see from Figure 4.6 that the axes

are being scaled by different (increasing) factors, whereas from week six to the end of the study the

axes are being scaled by a nearly constant factor. This implies that for the first six weeks the latent

positions are varying and thus the network is not stabilized, but after week six the latent positions

are mostly static and hence the network is stable. This result implies that both Newcomb and Nakao

and Romney underestimated the time at which the network stabilised.

We next apply our proposed model for ranked dynamic networks to obtain more quantitative
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Figure 4.4: Posterior means of the latent positions of the students in Newcomb’s fraternity study.
Triangles indicate the beginning of the trajectory (week 1) and circles indicate the end of the
trajectory (week 15). When students’ trajectories are obfuscated by each other, the students forming
the group is given, rather than labeling each individual trajectory.
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(a)

(b)

(c)

Figure 4.5: Latent positions of the students; (a)–(c) zoom in on the top, central and bottom dashed
boxes respectively of Figure 4.4, where the obfuscated student trajectories, in dark, are labeled.
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Figure 4.6: Application of the multilinear model to the fraternity data. The latent positions of the
actors are given by u1 and u2, and the time effects are given by v1 and v2.

results on the evolution of the network stability. Again, in using a latent space approach to modeling

the network we consider the network stability to be equivalent to the stability of the actors’ social

positions. While the stability of the social positions is an intuitive way of measuring network stability,

we can understand even better how the actors’ social positions are accurate measures of stability

by considering the fact that the variability of the latent positions directly affects the variability

over time of the probability distribution of the rankings. Thus the stability of the network can be

characterized in the proposed model by the precision variables τt, t ≥ 2.

Our method gives both quantitative point estimates of the network stability as well as uncertainty

estimates. Figure 4.7 gives the posterior means of the τt’s and their 95% credible intervals based on

the posterior samples. The higher the precision the more stable the network. The credible intervals

in Figure 4.7 give a good idea as to what values the precision parameters may take, but the intervals

cannot be directly compared, i.e., they are not simultaneous credible intervals. Table 1 is given to

compare the τt’s directly. The rth row cth column entry of this table is the posterior probability

that τc+1 > τr+1. From Figure 4.7 we can see the overall pattern of the stability of the network

over time, and by using Table 1 we can have more confidence in our inference about the pattern in

stability of the network. For example, looking at Table 1 we see that the posterior probability that

τ7 > τ6 is 0.85, that τ7 > τ5 is 0.96, and that τ7 > τ2, τ3, τ4 each is 0.99, verifying the pattern we see

in Figure 4.7 that the network transitions from week 6 to a more stable form in week 7.

Our results echo that found by using Hoff’s multilinear model in that the first few weeks are

particularly unstable until around week 6. Our model also captures the behavior mentioned by

Krivitsky and Butts that the network had a downturn of stability heading into the final week of the
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semester, which is not present in the output of Hoff’s model. We see that even though there is a

drastic downturn in network stability, the stability still seems to be above that found in the first

five weeks (the probability of the stability being higher in week 15 ranges from 0.75 to 0.91). This

artifact in the data may be due to, as Nakao and Romney suggest, the students becoming distracted

during the final week of the semester and of the experiment.

We also detect a new phenomenon in the stability of the network currently unremarked upon by

previous analyses of the fraternity data. From Figure 4.7 we can see that there is a minor decrease in

network stability transitioning from week 8 to week 9. From Table 1 we see that there is a posterior

probability of 0.79 that there is a decrease in stability compared to the previous week, though only a

0.42 probability of having less stability than that observed in week 6 and 0.16 or smaller probability

of having less stability than that observed in weeks 1-5. This is exactly the time when one week of

data was not recorded, and one can only conjecture what occurred during this time to decrease the

network stability.

The emerging stability within the network implies that the students are making progressively

smaller movements over time within the social space. Looking at Figure 4.4, the movements of actors

3, 10, 14, 15 and 16 move progressively towards the edges of the social space, but this is not the

same concept as what has been discussed in regards to network stability. In fact, using our notions

of stability, a network could in theory be considered stable while some nodes are moving continually

in one direction; in our context we do not in fact see this, but rather most of the actors seem to

reach their social position, wherever it may be, and maintain it.
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Figure 4.7: Estimates of the precision parameters τt, t = 2, . . . , 15, for the fraternity data. 95%
credible intervals are also given.

83



Table 4.1: Posterior probabilities that τc+1 > τr+1 corresponding to the rth row and cth column of the table.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 0 0.61 0.58 0.78 0.93 0.99 0.99 0.95 0.97 0.98 0.99 1.00 1.00 0.91
3 0 0.49 0.72 0.91 0.99 0.99 0.93 0.96 0.97 0.99 1.00 1.00 0.88
4 0 0.76 0.93 0.99 0.99 0.94 0.97 0.97 0.99 1.00 1.00 0.89
5 0 0.84 0.96 0.96 0.84 0.89 0.91 0.96 1.00 0.99 0.75
6 0 0.85 0.85 0.58 0.67 0.70 0.84 0.96 0.95 0.47
7 0 0.58 0.28 0.35 0.38 0.56 0.82 0.80 0.20
8 0 0.21 0.29 0.33 0.50 0.78 0.75 0.16
9 0 0.61 0.63 0.78 0.93 0.92 0.39

10 0 0.55 0.71 0.91 0.89 0.31
11 0 0.71 0.90 0.88 0.28
12 0 0.83 0.77 0.16
13 0 0.48 0.04
14 0 0.03
15 0
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4.5.2 Subgroups

From early on, researchers have attempted to find well connected subgroups within the overall

network; see, e.g., Breiger et al. (1975) and Arabie et al. (1978). These efforts at what is referred to

as community detection were aimed more at demonstrating a new methodology than obtaining any

real meaning from the data, making very limited use of the richness in the data. However, Nakao

and Romney (1993) performed a more serious analysis of Newcomb’s fraternity data. The authors

embedded Newcomb’s fraternity data into a Euclidean space using an ad hoc method of comparing

the correlation between actors’ rankings and then applying MDS on the resulting similarity matrices;

thus two actors would be close together in this space if they ranked the other actors similarly.

Nakao and Romney then used this visualization to determine two subgroups consisting of actors

(1, 5, 6, 8, 13) in group one and (2, 4, 7, 9, 11, 12, 17) in group two. After fitting our model for ranked

dynamic networks, we see similar groupings in Figures 4.4 and 4.5. Nakao and Romney’s group

one seems to be identically grouped in our visualization, and group two is similarly grouped in our

visualization with the exception that actors 4, 9 and 17 seem to form a third, more central, group

which bridges group one and group two. Also, actors 5 and 2 seem to bridge the central group with

group one and group two respectively.

The remaining actors, (3, 10, 14, 15, 16), were labeled by Nakao and Romney as “outliers,” by

which the authors meant that these actors did not find their social positions during the course of

the study. Their visualization has these five actors moving all over the latent space. However, in our

visualization we see that rather than roaming aimlessly, these nodes simply moved farther towards

the edge of the social space; this implies deteriorating friendships rather than allegiance swapping.

Moody et al. (2005) were also able to discover this move towards the edge of the social space in

actors 10 and 15 through their visualization methods.

The question remains as to when these subgroups formed. Nakao and Romney simply state

that the subgroups form early in the study and remain stable afterwards. Using blockmodeling on

the binarized network at week 15 to obtain blocks and comparing the proportion of edges between

and within blocks at each time point, Arabie et al. (1978) claimed that the subgroup formation

became stable at week 5. By partitioning the actors at each time point according to their top four

rankings and bottom three rankings and then comparing the partitions over time, Doreian et al.

(1996) claimed that the subgroup formation reached a stable form at week 7. These methods while

all somewhat reasonable are nevertheless rather ad hoc and typically do not make full use of the

ranked data.
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By using a formal statistical framework to model the fraternity data, we obtain what the other

methods do not have: uncertainty estimates. We utilize these uncertainty estimates to evaluate

the timing of the subgroup formation. From the MCMC output, we can obtain Bayesian credible

regions for the latent positions. If the subgroups have not yet formed we would expect to see these

credible regions to be overlapping considerably, i.e., groups of actors are not well separated with

high probability, whereas after the subgroups have stabilized we would expect to see overlap in

credible regions only in actors belonging to the same subgroup, i.e., low probability that actors of

two differing subgroups would be near.

Figure 4.8 gives, for t = 1, 4, 6, 7, 9, 10, the latent position plots with the 95% posterior probability

regions, using a bivariate density estimation to estimate the boundaries of the regions. At week 1

we see that there is no subgroup structure at all. However, by week 4 we see that the top and

bottom subgroups have begun to form and are already separated, and also that student 10 and to

a lesser degree student 15 are already making their way to the edge of the social space. At week 6

all three subgroups have started to separate, and at week 7 this structure becomes even more clear.

At week 6 we also see that actor 5 is bridging the bottom and middle subgroups and that actors

3, 10, 15 and 16 have departed from the three main subgroups; at week 7 actor 14 also seems to

depart from the three subgroups. At weeks 9 and 10 the subgroup structure is quite clear, with

the final change taking place; this change is due to actor 2 becoming a bridge between the top and

middle subgroups. Although there are some small local changes, it is this structure at week 10 that

is in place for the remainder of the study. We have indicated the top subgroup by a light solid gray

shading, the bottom subgroup by a dark solid gray shading, the central subgroup by speckling, the

outlying students by horizontal stripes, and the bridging students by diagonal stripes. Note that at

each time point there may be several students who do not belong to any subgroup, in which case

there is no shading.

Corresponding to Figure 4.8, we have constructed T adjacency matrices, A1, . . . , AT , where the

ith row and jth column of At equals one if actors i and j have overlapping credible regions at time

t. Thus if two subgroups have separated, we would expect to see blocks of ones along the diagonal

corresponding to the closeness of the subgroups and blocks of zeros in the off-diagonals corresponding

to the separation between the subgroups. While we have not experimented on large data, it would

be interesting to develop algorithms which would take these matrices and find the well separated

subgroups. It may be possible to utilize standard clustering methods on these adjacency matrices to

determine the subgroups. For example, on the fraternity data we performed k-means clustering on
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the n×(Tn) matrix (A1, A2, · · · , AT ), which accurately returned the subgroups discussed previously

(assigning the two bridging students 2 and 5 to the central and bottom subgroup respectively).

Tables 4.2 through 4.7 give the adjacency matrices corresponding to Figure 4.8 in the paper.

While still slightly variable over time, these adjacency matrices help verify the timing of the formation

of the subgroups within the network. The shadings and lines drawn are to aid the reader in viewing

the subgroups, but some explanation is needed. Keep in mind throughout that not all students

belong to one of the distinct subgroups at all time points; such a student is implied by a white

background. The symmetric blocks that are a solid shaded gray indicate the subgroups that exist;

the (possibly asymmetrical) off diagonal blocks that show whether these subgroups are separated

are indicated by stippled gray shading. The outlying students, when they are moving towards the

edge of the social space, are grouped together and are also indicated by stippled gray shading. At

time 6 and beyond, when we desire to point out the bridging actors we use dotted lines rather

than solid lines to separate the bridging actors from the distinct subgroups that are being bridged.

Thus, for example, at week 6 we see that there is a top subgroup consisting of students 7, 11 and

12 (corresponding to the lightly shaded students in Figure 4.8 of the paper), a central subgroup

consisting of students 4 and 17 (corresponding to the speckled students in Figure 4.8), a bottom

subgroup consisting of students 1, 6, 8 and 13 (corresponding to the darkly shaded students in Figure

4.8), student 5 bridges the central and bottom subgroup (corresponding to the diagonally striped

student in Figure 4.8), and students 3, 10, 15 and 16 are outlying (corresponding to the horizontally

striped students in Figure 4.8).
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Table 4.2: Subgroup adjacency matrix at t = 1.

Table 4.3: Subgroup adjacency matrix at t = 4.

Table 4.4: Subgroup adjacency matrix at t = 6.
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It seems reasonable to expect that not all groups would form and stabilize at the same time,

and this is what we see here. The top and bottom groups form first around week 4, the third group

forms at week 6 or 7. Meanwhile, over the first half of the semester certain individuals fail to join a

subgroup, moving farther toward the edge of the social space.
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Table 4.5: Subgroup adjacency matrix at t = 7.

Table 4.6: Subgroup adjacency matrix at t = 9.

Table 4.7: Subgroup adjacency matrix at t = 10.
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(a) t = 1 (b) t = 4

(c) t = 6 (d) t = 7

(e) t = 9 (f) t = 10

Figure 4.8: Plots of 95% credible regions for latent positions. The overlap/nonoverlap of the credible
regions gives information on the timing of the subgroup formation. The light, dark and speckled
shadings indicate the top, bottom and central subgroups respectively; the horizontal stripes indicate
outlying students; diagonal stripes indicate students who bridge two subgroups.
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4.5.3 Popularity and Individual Stability

We now address the question of whether or not an individual’s popularity has any effect on that

individual’s personal stability within the network. Nakao and Romney (1993), by embedding the

fraternity data in a latent Euclidean space, claimed that individual stability can be used to predict

the individual’s position in the final subgroup structure. In other words, this statement by Nakao

and Romney says that actors who have difficulty finding their social position will not find their social

position within one of the subgroups. This is not telling us too much since the subgroup structure

was determined by actors which stayed close together in the latent social space, and hence actors that

have large movements in the latent space would not tend to stay close to any one particular region of

the latent space. Here we are more interested in discovering whether an individual’s popularity, i.e.,

how well liked an individual is, is related to the individual’s stability within the network structure.

That is, does a more popular actor find their social position more effectively than a less popular

individual? Wasserman (1980) used his proposed method to analyze Newcomb’s fraternity data to

claim that popular individuals remain popular while less popular individuals become even less so

over time. This statement implies some of the movements we see in Figures 4.4 and 4.5, where

some individuals stay in the center and others move farther over time towards the edge of the social

space. However, if we take popularity to be an intrinsic time-independent quality of how likeable an

individual is, then we still have not answered the question of whether or not popularity is related to

individual stability.

Using our proposed model for ranked dynamic networks, we frame our question in terms of

finding a relationship between average step size, i.e.,
∑
t≥2 ‖Xit −Xi(t−1)‖/(T − 1) (we will denote

this quantity by si), with the social reach ri. A key understanding in this approach is that by

including r in the model, the step sizes are already accounting for the popularity of the individuals.

Hence there is no forced relationship between the step sizes and r in the model; that is, if r was not

included in the model then an unpopular individual would be forced to move around the outside of

the network to maintain low probabilities of receiving favorable rankings, but here that is not the

case since we have already accounted for the intrinsic popularity of the individuals. Therefore any

relationship we see between step size and r is indicative of some fundamental relationship between

individual stability and popularity.

To make sure that r held the intended meaning of intrinsic likability of an individual, we com-

puted the correlation between the posterior mean of the log of r with the mean ranking for each

individual, averaged over all other nodes at all time points; this correlation was −0.949 (recall that
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a lower ranking is a more favorable ranking), implying that the interpretation of the social reaches

is valid. We then used the posterior means of the latent positions to compute the average step size

and the posterior means of the social reaches to estimate the correlation between s = (s1, . . . , sn)

and log(r). We did comparisons with the log(r) because from plotting s vs. log(r) we see a strong

linear relationship (see Figure 4.9); this is not surprising since the means of zijt equal log(rj)− dijt
(see Section 4.2.1), and hence we might have expected to see a linear relationship between the step

sizes with the log(r). The correlation was −0.819. Hence we see that there is a strong positive

relationship between an individual’s intrinsic popularity and the individual’s ability to stabilize his

social position.

Figure 4.9: Plot of posterior means of the step sizes vs. the log of the posterior means of the social
reaches.

4.6 Sensitivity Analysis

It is of interest to determine how sensitive our MCMC results are to the initialization method given

in Section 4.1. We checked this sensitivity by choosing two alternative methods of initialization,

each of which reflects some incorrect concept behind the latent space model (a misinterpretation of

the latent positions and an assumption of constant network stability over time). In neither case did

the conclusions corresponding to the three substantive questions (labeled Q1, Q2 and Q3 below)
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change.

1. We altered the dissimilarity matrix used to determine the initial latent positions to reflect an

incorrect interpretation of the latent space, in order to see whether this would lead to different

conclusions to the three main substantive questions. In particular, dijt in equation (4.19)

were computed as the correlations between y
−(i,j)
it and y

−(i,j)
jt , where y

−(i,j)
it is the vector yit

excluding the ith and jth entries. In other words, we are setting the initial dissimilarities to

reflect how similarly actors i and j view the other n − 2 actors rather than how favorably

actors i and j view each other after accounting for their respective popularities.

(Q1) Figure 4.10a shows the estimates of τt, t ≥ 2. We see that while the scale of the τt’s

are somewhat larger, the overall pattern is the same as found before, as seen in Figure 4.7.

That is, the precision is very low in the first 5 weeks, has a dip around 8-9 weeks, and remains

relatively high afterwards. (Q2) While the latent positions seem somewhat different (not

unexpected, considering the dimension of the latent space), the subgroup pattern seems to be

very consistent with what was found before as described in Section 4.5.2. That is, we find

in our original analysis (Figures 4.4, 4.5 & 4.8 ) and that from the alternative dissimilarity

matrix (Figure 4.10b) that actors 1, 6, 8 and 13 are close as are 2, 4, 9 and 17 with actor 5

bridging these two groups; also actors 7, 11 and 12 are close together with actor 2 bridging

them; finally, actors 3, 10, 15 and 16 all make their way to the edge of the social space while

actor 14 stays somewhat closer without seeming to join one of the three subgroups. (Q3) The

correlation between the step sizes and social reaches (using posterior means) is −0.64, which

leads to the same conclusion that there is a positive relationship between individual popularity

and individual stability (small step sizes imply more stability).

2. We next tried to initialize the latent positions and τt’s in such a way as to incorrectly reflect

the assumptions on the stability of the network. That is, we assume that the stability will

change over time, but we initialize as though we assume that the stability ought to be constant.

To this end we used Sarkar and Moore’s (2005) generalized multidimensional scaling, which

implicitly assumes that the latent positions at each time point t should be within relatively

the same distance from the latent positions at the previous time point t− 1 for all t. We then

set all τ
(1)
t , t ≥ 2 equal to the value

τt =

 1

(T − 1)np

∑
t≥2

n∑
i=1

‖Xit −Xi(t−1)‖2
−1

for t ≥ 2.
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We finished by setting θ(1) arbitrarily equal to 1. The other parameters were initialized as

discussed in Section 4.3.1.

(Q1) Figure 4.10c shows the estimates of τt, t ≥ 2. We again see the same overall trend of

having small precision values in the first few weeks with an increasing trend afterwards. (Q2)

We see in Figure 4.10d the same subgroupings as before, with actors 1, 6, 8 and 13 close

together and actors 4, 9 and 17 close with 5 bridging the two groups; also actors 7, 11 and 12

are close with actor 2 bridging this group and the middle group of 4, 9 and 17; we finally see

that actors 3, 10, 15 and 16 move toward the edge of the social space, with 14 a little closer

to the center without clearly belonging to any of the three subgroups. (Q3) The correlation

between the step sizes and social reaches (using posterior means) is −0.790, which again leads

to the same conclusion that there is a positive relationship between individual popularity and

individual stability.
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(a) τt, t ≥ 2 for alternative dissimilarity matrix (b) Latent trajectories for alternative dissimilarity matrix

(c) τt, t ≥ 2 for alternative MDS algorithm (d) Latent trajectories for alternative MDS algorithm

Figure 4.10: Results based on the posterior samples using the two alternative initialization strategies.
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Chapter 5

Model-based longitudinal
clustering

Numerous applications exist in which it is of interest to partition the data into homogeneous groups,

or clusters. With longitudinal data in which we observe many objects over a series of time points, one

often wishes to better understand how and why these objects are grouped and how they transition

from one group to another over time. Longitudinal clustering is an important topic in many fields

such as genomics, clinical research, political science, etc. In this chapter, there is a brief departure

from the broader context of dynamic networks in order to introduce a new mixture model for

longitudinal data, though the material to be presented will be used in the following chapter discussing

community detection in dynamic networks.

Much of the previous work on clustering longitudinal data focuses on curve clustering, also

called trajectory clustering. Curve clustering methods view the time series as curves or sometimes

as random functions, and intends to give cluster assignments of the objects based on shape similarity.

For example, Ray and Mallick (2006) used Bayesian wavelets to model the curves, and Luan and

Li (2003) used B-splines to model the cluster means; often this type of longitudinal clustering is

achieved by regression based approaches (see, e.g., Lou et al., 1993; Gaffney and Smyth, 1999).

More related to our work is latent transition analysis (LTA) (see, e.g., Graham et al., 1991;

Collins and Wugalter, 1992; Collins et al., 1994), which is commonly used in the social sciences.

LTA assumes that observed categorical responses are noisy measurements of sequential latent stages,

i.e., we imperfectly can measure over time a subject’s latent stage (at each time point). Vermunt

et al. (1999) and Chung et al. (2005) were able to incorporate extra covariates in their model to

help estimate the latent stages. However, these methods are focused on categorical panel data and

sequential stages hypothesized a priori which are strongly associated with the measured categorical

variables.

We are concerned with clustering vectors of continuous data observed over time, and where the

clusters are based on locations rather than the shape of the trajectories, i.e., the observed values

rather than the shape of the time series. A simple algorithm for this context is the extension of
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the k-means method for longitudinal data (Genolini and Falissard, 2010). This does not, however,

account for the correlation between each object at different time points, but simply vectorizes the

time series, and then performs k-means based on the Euclidean distance (or some other metric) of

the vectorized time series. Further, this method requires the time series to be of the same length,

which may not be the case in practice. A model based approach which accounts for correlation

across time points was given by De la Cruz-Meśıa et al. (2008), who extended the model consisting

of mixture of normal distributions (see Banfield and Raftery, 1993) to univariate time series data.

Further work in the context of mixture of normal distributions was done by McNicholas and Murphy

(2010), who derived estimates for specific covariance constraints corresponding to univariate time

series data. Anderlucci and Viroli (2014) built on these works to handle multivariate data.

Scott et al. (2005) used a hidden Markov model to estimate the cluster assignments which were

allowed to differ for each object at each time point, where the estimation was done using Markov

chain Monte Carlo methods. While a vast improvement, this work still assumes that for each object,

conditioning on the cluster assignment at the current time point, the observed value at the current

time is independent of the observed values at previous (and future) time points. This assumption

ignores individual effects which may be important in modeling the data. Moreover, while the model

of Scott et al. allows for multiple treatments to affect the cluster transition probabilities, it is not

flexible enough to handle multiple explanatory variables of varying types.

The context which is considered in this chapter is where we have recorded a multivariate response

at many (and possibly at a varying number of) time points from many objects. We wish to cluster

these objects at each time point based on the similarity of their responses. The number of clusters

is assumed to be a fixed constant, and the clusters themselves are assumed to be static, in the sense

that the structures that define each cluster are constant over time. To this end we propose a novel

model-based clustering algorithm for longitudinal data. We allow cluster assignments to change over

time, borrowing information across each object’s time series when making these assignments, thus

allowing the researcher to better understand how these objects transition from one group to another.

We incorporate temporal dependence into the model by modeling each object’s current location as a

blending of the current (unobserved) cluster assignment and the object’s previous values. Our model

allows explanatory variables of any form to be incorporated into the model in order to explain the

clustering by incorporating multinomial logistic regression into the model. This is fundamentally

different than other clustering models which incorporate covariates, such as that of De la Cruz-Meśıa

et al. (2008) and Anderlucci and Viroli (2014), in that rather than directly predicting the response
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with the covariates, the group membership of the objects are predicted by the covariates. This results

in clustering being performed purely on the response variables while simultaneously learning how the

covariates explain the clustering results. Estimation is accomplished by using the generalized EM

algorithm. The computational cost of a straightforward implementation of this algorithm can be,

however, prohibitively high. To address this, we derive several recursive relationships which greatly

reduce the computational cost from exponential to linear with respect to the number of time points.

The rest of the chapter is organized as follows. Section 5.1 describes the proposed model. Section

5.2 outlines the details of the generalized EM algorithm. Section 5.3 provides the results of a

simulation study. Section 5.4 gives the analysis of longitudinal data collected on Democrats serving

in the U.S. House of Representatives. Section 5.5 provides a proof of a result stated earlier in the

chapter. Sections 5.6 and 5.7 provide important derivations in the estimation algorithm.

5.1 Models

5.1.1 Non-regressed cluster probabilities

Denote the value of the ith object at time t as Xit, and let Xi = (X′i1, . . . ,X
′
iTi

)′, for i = 1, . . . , n,

denote the data to be clustered, where n is the number of distinct objects, Ti is the length of the ith

time series, and the dimension of each Xit is p. We assume that each object is initially assigned to

one of K clusters according to the 1×K probability vector α = (α1, . . . , αK) (K is a fixed positive

integer assumed to be known). The notation to be used throughout lets Zit be the ith object’s cluster

assignment at time t. Hence P(Zi1 = k) = αk. For subsequent time points, these objects are assigned

to a cluster according to the K ×K transition matrix β; that is, P(Zit = k|Zi(t−1) = h) = βhk.

Hidden Markov models are widely used in many areas such as bioinformatics, biology, economics,

finance, hydrology, marketing, medicine and speech recognition (Frühwirth-Schnatter, 2006). The

usefulness of hidden Markov models in such a wide range of fields motivates us to borrow principles

from this class of models. As we will see shortly, each cluster in our context is defined by a specific

static probability distribution. A hidden Markov model applied to our setting would then imply

that if we knew which cluster a particular object belonged to at each time point, the observed tem-

poral observations from the object would look like random samples from the clusters’ corresponding

distributions. It seems more reasonable to assume that in most real life contexts these observations

would still be dependent in some way, even after accounting for the clustering. For example, in the

context of clustering human behaviors, we might expect a person’s future behavior to depend on that
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person’s past behavior as well as on the influence exerted on him/her by the group to which he/she

belongs. Therefore the current expected behavior of a particular person should be some blending

of the previous behavior (individual effect) and the overall expected behavior from someone coming

from the group to which the person belongs (cluster effect). This more general type of dependency

is known as a Markov switching model.

With this motivation, we make two assumptions about the dependence structure of the model.

First, given all past cluster assignments, the current cluster assignment depends only on the cluster

assignment at the previous time point. Second, given the entire history of both the cluster assign-

ments and the object’s values, the current value of the object depends only on the value of the object

at the previous time point as well as the current cluster assignment. These requirements lead to the

following two dependency assumptions

Zit|Zi1, . . . , Zi(t−1)
D
= Zit|Zi(t−1) , βZi(t−1)Zit , (5.1)

(hence the cluster assignments follow a Markov process) and

Xit|Xi1, . . . ,Xi(t−1), Zi1, . . . , ZiTi
D
= Xit|Xi(t−1), Zit. (5.2)

One of the most widely used clustering methods is to fit a normal mixture model (and the

commonly used k-means is but a special case of this). This approach performs well in a wide range

of settings and so we make the distributional assumptions that

π(Xi1|Zi1) = N(Xi1|µZi1 ,ΣZi1), (5.3)

π(Xit|Xi(t−1), Zit) = N(Xit|λµZit + (1− λ)Xi(t−1),ΣZit), (5.4)

where µk and Σk are the mean vector and covariance matrix for the kth cluster for k = 1, . . . ,K,

λ ∈ (0, 1), and N(x|µ,Σ) denotes the multivariate normal density with mean µ and covariance

matrix Σ. The transition distribution in (5.4) blends the role of the current cluster with the individual

effect. That is, in this framework one can look at the distribution of the current position of the ith

individual as being influenced by both where the individual has been and by a sense of belonging

to a particular cluster. This model can be thought of as extending the widely used normal mixture

model clustering to longitudinal data.

Assuming independence between the objects to be clustered, the complete-data likelihood (the
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distribution of the observed data and unobserved cluster assignments) can be written as

n∏
i=1

π(Xi1, . . . ,XiTi , Zi1, . . . ZiTi) =

n∏
i=1

αZi1π(Xi1|Zi1)

Ti∏
t=2

βZi(t−1)Zitπ(Xit|Xi(t−1), Zit). (5.5)

We can then write the marginal distribution of the data as

n∏
i=1

π(Xi1, . . . ,XiTi ) =

n∏
i=1

K∑
Zi1=1

(
αZi1π(Xi1|Zi1)

K∑
Zi2=1

(
βZi1Zi2π(Xi2|Xi1, Zi2) · · ·

K∑
ZiTi=1

(
βZi(Ti−1)ZiTi

π(XiTi |Xi(Ti−1), ZiTi )
)
· · ·
)
. (5.6)

5.1.2 Regressed cluster probabilities

Suppose there is a set of explanatory variables that may influence how the objects are clustered.

That is, we are not interested in clustering the objects based on the values of these explanatory

variables, but rather we are interested in how these variables explain the clustering results. Let wit

denote a vector of length d corresponding to these explanatory variables for the ith object at time t.

Then the model described in Section 5.1.1 can be slightly modified to allow α and β to be functions

of the explanatory variables, wit, and unknown parameters, denoted as δ`k and γ`k for ` = 0, . . . ,K

and k = 1, . . . ,K. Mimicking the multinomial logistic regression model, for k = 1, . . . ,K we let

log

(
αk(wit)

αK(wit)

)
= δ0k + w′itγ0k, (5.7)

where we fix δ0K = 0 and γ0K = 0; similarly for each h = 1, . . . ,K, for k = 1, . . . ,K we let

log

(
βhk(wit)

βhK(wit)

)
= δhk + w′itγhk, (5.8)

where again we fix δhK = 0 and γhK = 0 for h = 1, . . . ,K. Hence we can write the initial and

transition cluster probabilities respectively as

αk(wit) =
exp(δ0k + w′itγ0k)

1 +
∑K−1
`=1 exp(δ0` + w′itγ0`)

(5.9)

βhk(wit) =
exp(δhk + w′itγhk)

1 +
∑K−1
`=1 exp(δh` + w′itγh`)

(5.10)

(5.11)

for h, k = 1, . . . ,K. It is easy to see that setting γ0k = γhk = 0 for all h, k yields a model equivalent

to the non-regressed transition model of Section 5.1.1.
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The model of Section 5.1.1 then changes in that we are conditioning on the explanatory variables

wit. Specifically we have that the conditional distribution of the cluster assignments changes from

(5.1) to become

Zit|Zi1, . . . , Zi(t−1),wi1, . . . ,wiTi
D
= Zit|Zi(t−1),wit , βZi(t−1)Zit(wit), (5.12)

while (5.2) does not change. The complete-data likelihood becomes

n∏
i=1

π(Xi1, . . . ,XiTi , Zi1, . . . ZiTi |wi1, . . . ,wiTi)

=

n∏
i=1

αZi1(wi1)π(Xi1|Zi1)

Ti∏
t=2

βZi(t−1)Zit
(wit)π(Xit|Xi(t−1), Zit), (5.13)

and the marginal likelihood becomes

n∏
i=1

π(Xi1, . . . ,XiTi |wi1, . . . ,wiTi) =

n∏
i=1

K∑
Zi1=1

(
αZi1(wi1)π(Xi1|Zi1)

K∑
Zi2=1

(
βZi1Zi2(wi2)π(Xi2|Xi1, Zi2) (5.14)

· · ·
K∑

ZiTi=1

(
βZi(Ti−1)ZiTi

(wiTi)π(XiTi |Xi(Ti−1), ZiTi)
)
· · ·
)
.

5.1.3 Computational issues

The estimation procedure to be outlined in Section 5.2 is an iterative procedure aimed to maximize

the likelihood, i.e., the marginal distribution of the data (5.6), and hence we must be able to compute

the likelihood to know if we have reached convergence. However, in computing the likelihood we run

into a potentially debilitating problem — if computed directly, the number of terms to be summed

grows exponentially with Ti. To address this we have the following lemma and theorem, suppressing

the subscript i for ease of notation.

Lemma 5.1.1. The current latent cluster assignments are conditionally independent of the history

of the data up to the previous time point given the previous cluster assignments; i.e.,

π(Zt|Zt−1,X1, . . . ,Xt−1) = βZt−1Zt .

The proof is given in Section 5.5.

102



Theorem 5.1.1. The marginal distribution of the data π(X1, . . . ,XT ) can be computed in O(nT )

terms.

Proof. Using lemma 5.1.1, we have that

π(X1, . . . ,Xt, Zt) =

K∑
Zt−1=1

π(Xt|Xt−1, Zt)π(Zt−1, Zt|X1, . . . ,Xt−1)π(X1, . . . ,Xt−1)

= π(X1, . . . ,Xt−1)

K∑
Zt−1=1

π(Zt−1|X1, . . . ,Xt−1)βZt−1Zt
π(Xt|Xt−1, Zt). (5.15)

Computing the marginal likelihood π(X1, . . . ,XT ) can be accomplished by using this recursion in

two steps, first obtaining π(Zt−1|X1, . . . ,Xt−1) and then π(X1, . . . ,Xt, Zt). More specifically, we

first compute and normalize

π(Z1|X1) ∝ π(X1|Z1)αZ1
. (5.16)

Then for t = 3, . . . , T , from (5.15) we can compute and normalize

π(Zt−1|X1, . . . ,Xt−1)

∝
K∑

Zt−2=1

π(Zt−2|X1, . . . ,Xt−2)βZt−2Zt−1
π(Xt−1|Xt−2, Zt−1). (5.17)

Second, we can compute π(X1) =
∑K
Z1=1 π(X1|Z1)αZ1

, and then use the normalized results from

(5.16) and (5.17) to compute, for t = 2, . . . , T ,

π(X1, . . . ,Xt)

= π(X1, . . . ,Xt−1)

K∑
Zt=1

K∑
Zt−1=1

π(Zt−1|X1, . . . ,Xt−1)βZt−1Zt
π(Xt|Xt−1, Zt). (5.18)

By utilizing these recursive relationships, the number of terms required to be summed in the com-

putation of the likelihood density grows linearly, rather than exponentially, in time.

Regarding the context of regressed cluster assignment probabilities, the previous theorem still

holds simply by exchanging αZi1 for αZi1(wi1) and βZi(t−1)Zit for βZi(t−1)Zit(wit) in equations (5.15)

to (5.18).
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5.2 Estimation

We aim to find the maximum likelihood estimators (MLE’s) for the model parameters, henceforth

denoted as Θ. In the case of non-regressed cluster probabilities,

Θ = {µ1, . . . ,µK ,Σ1, . . . ,ΣK , λ, α1, . . . , αK , β11, . . . , βKK},

and for the case of regressed cluster probabilities,

Θ = {µ1, . . . ,µK ,Σ1, . . . ,ΣK , λ, δ01, . . . , δK(K−1),γ01, . . . ,γK(K−1)}.

To find the MLE’s, we employ the generalized EM algorithm (Dempster et al., 1977; Wu, 1983)

to obtain parameter estimates, as well as cluster assignment probabilities. Heretofore the notation

for probability densities have not included the parameter set Θ, this parameter set being implicit in

the density itself; in the forthcoming discussion, however, the dependency on the parameter set Θ

will be explicitly written as π(·|Θ) since it is necessary to make it clear which value of Θ is being used

to compute the density in the iterative algorithm. We first derive the solutions for the non-regressed

case. Letting Θ̂ denote the current estimate of Θ, we iteratively find

Q(Θ, Θ̂) = E
(

log(Lc)|X1, . . . ,Xn, Θ̂
)
, (5.19)

(E step) where Lc is the complete-data likelihood, as given in (5.5), and find Θ∗, where Q(Θ∗, Θ̂) ≥

Q(Θ̂, Θ̂) (M step), subsequently setting Θ̂ = Θ∗. Now Q(Θ, Θ̂) can, with some algebra (see Section

5.6), be written in the tractable form

Q(Θ, Θ̂) =

n∑
i=1

K∑
`1=1

· · ·
K∑

`Ti=1

[
log(α`1) +

Ti∑
t=2

log(β`t−1`t)

]
P(Zi1 = `1|Xi, Θ̂)

Ti∏
s=2

P(Zis = `s|Zi(s−1) = `s−1,Xi, Θ̂)

+

n∑
i=1

K∑
`1=1

· · ·
K∑

`Ti=1

[
log(π(Xi1|Zi1 = `1,Θ)) +

Ti∑
t=2

log(π(Xit|Xi(t−1), Zit = `t,Θ))

]

· P(Zi1 = `1|Xi, Θ̂)

Ti∏
s=2

P(Zis = `s|Zi(s−1) = `s−1,Xi, Θ̂). (5.20)

In computing a valid Θ∗ which increases the value of Q(Θ̂, Θ̂), we again run into the same

sort of trouble as in the computation of (5.6), in that the number of terms to be summed grows
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exponentially with respect to time. To address this, we have the following theorem and corollary,

again suppressing the subscript i for ease of notation.

Theorem 5.2.1. The conditional posterior distributions of the cluster assignments P(Zt|Z(t−1),X , Θ̂)

can be written recursively up to a proportionality constant, specifically

P(Zt|Zt−1,X ,Θ) ∝ q(Zt|Zt−1), (5.21)

where

q(ZT |ZT−1) = βZT−1ZT π(XT |XT−1, ZT ,Θ), (5.22)

and for 2 ≤ t < T ,

q(Zt|Zt−1) = βZt−1Ztπ(Xt|Xt−1, Zt,Θ)

K∑
`t+1=1

q(Zt+1 = `t+1|Zt). (5.23)

and

P(Z1|X ) ∝ αZ1
π(Xt|Xt−1, Zt)

∑
`2

q(Z2 = `2|Z1). (5.24)

Proof. We start by noticing that

P(ZT |ZT−1,X ) ∝ π(X|ZT , ZT−1)P(ZT |ZT−1)

∝ βZT−1ZT π(XT |XT−1, ZT ). (5.25)

We can then find the iterative relationship for 2 ≤ t < T

P(Zt|Zt−1,X )

∝ π(Xt, . . . ,XT |X1, . . . ,Xt−1, Zt, Zt−1)P(Zt|Zt−1)

∝ βZt−1Zt

∑
`t+1

· · ·
∑
`T

π(Xt, . . . ,XT , Zt+1 = `t+1, . . . , ZT = `T |Xt−1, Zt)

∝ βZt−1Ztπ(Xt|Xt−1, Zt)

·
∑
`t+1

(
βZt`t+1

π(Xt+1|Xt, Zt+1 = `t+1) · · ·
∑
`T

(
β`T−1`T π(XT |XT−1, ZT = `T )

)
· · ·
)

∝ βZt−1Ztπ(Xt|Xt−1, Zt)
∑
`t+1

q(Zt+1 = `t+1|Zt). (5.26)

Similarly, P(Z1|X ) ∝ αZ1π(Xt|Xt−1, Zt)
∑
`2
q(Z2 = `2|Z1).
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Corollary 5.2.1 (Theorem 5.2.1). The marginal posterior distributions and the conditional poste-

rior distributions of the cluster assignments, P(Zt|X , Θ̂) and P(Zt|Z(t−1),X , Θ̂) respectively, can be

computed in O(T ) terms.

Proof. From Theorem 5.2.1 we immediately have that P(Zt|Z(t−1),X , Θ̂) can be computed in O(T )

terms. To obtain the marginals, we start by computing and normalizing

P(Z1|X ,Θ) ∝ αZ1π(X1|Z1,Θ)

K∑
`2=1

q(Z2 = `2|Z1), (5.27)

and recursively obtain

P(Zt|X ,Θ) =
K∑

`t−1=1

P(Zt−1 = `t−1|X ,Θ)P(Zt|Zt−1 = `t−1,X ,Θ). (5.28)

Using the method of Lagrange multipliers, we can find that the value of αk that maximizes

Q(Θ, Θ̂) is

α∗k =
1

n

n∑
i=1

P(Zi1 = k|Xi, Θ̂), (5.29)

and similarly the optimizing value of βhk is

β∗hk =

∑n
i=1

∑Ti
t=2 P(Zi(t−1) = h|Xi, Θ̂)P(Zit = k|Zi(t−1) = h,Xi, Θ̂)∑n

i=1

∑Ti
t=2 P(Zi(t−1) = h|Xi, Θ̂)

. (5.30)

To update λ, µk and Σk, k = 1, . . . ,K, we employ a coordinate ascent method. That is, we initialize

λ∗ = λ̂, µ∗k = µ̂k and Σ∗k = Σ̂k and then find

λ∗ = arg max
λ

Q({λ,Θ∗ \ {λ∗}}, Θ̂)

=

∑n
i=1

∑Ti
t=2

∑K
`t=1 P(Zit = `t|Xi, Θ̂)(Xit −Xi(t−1))

′Σ−1
k (µk −Xi(t−1))∑n

i=1

∑Ti
t=2

∑K
`t=1 P(Zit = `t|Xi, Θ̂)(µk −Xi(t−1))′Σ

−1
k (µk −Xi(t−1))

, (5.31)

µ∗k = arg max
µk

Q({µk,Θ∗ \ {µ∗k}}, Θ̂)

=

∑n
i=1

{
P(Zi1 = k|Xi, Θ̂)Xi1 + λ

∑Ti
t=2 P(Zit = k|Xi, Θ̂)(Xit − (1− λ)Xi(t−1))

}∑n
i=1

{
P(Zi1 = k|Xi, Θ̂) + λ2

∑Ti
t=2 P(Zit = k|Xi, Θ̂)

} , (5.32)
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and

Σ∗k = arg max
Σk

Q({Σk,Θ∗ \ {Σ∗k}}, Θ̂)

=

∑n
i=1

{
P(Zi1 = k|Xi, Θ̂)(Xi1 − µk)(Xi1 − µk)′ +

∑Ti
t=2 P(Zit = k|Xi, Θ̂)HitH

′
it

}∑n
i=1

{
P(Zi1 = k|Xi, Θ̂) +

∑Ti
t=2 P(Zit = k|Xi, Θ̂)

} (5.33)

for k = 1, . . . ,K, where Hit = Xit − λµk − (1 − λ)Xi(t−1). See Section 5.7 for proofs of these

solutions.

In the case of regressed cluster probabilities, the complete-data likelihood in Q(Θ, Θ̂) is that

found in (5.13). To obtain the correct updates for λ, µk and Σk, k = 1, . . . ,K, simply replace

in the above work P(Zit|Xi,Θ) with P(Zit|Xi,Θ,wi1, . . . ,wiTi); these latter distributions are easily

computed by first replacing αk with αk(wi1) in (5.27) and βhk with βhk(wit) in (5.22) and (5.23),

and then proceeding with the recursive relationships previously outlined. To obtain updates for δ0k,

γ0k, δhk and γhk, h = 1, . . . ,K, k = 1, . . . ,K − 1, one can use a numerical optimization method (we

implemented the well known quasi-Newton BFGS method) to find

arg max
{δ0k,γ0k:k=1,...,K}

=

n∑
i=1

K∑
k=1

P(Zi1 = k|Xi, Θ̂) log(αk(wi1)) (5.34)

and

arg max
{δhk,γhk:k=1,...,K}

=

n∑
i=1

Ti∑
t=2

K∑
k=1

P(Zi(t−1) = h|Xi, Θ̂)P(Zit = k|Zi(t−1) = h,Xi, Θ̂) log(βhk(wit))

(5.35)

for h = 1, . . . ,K. Since (5.34) and (5.35) are both concave, finding the global maximum at each

M-step is assured upon convergence of the BFGS algorithm.

5.3 Simulation Study

We simulated two illustrative data sets, one without and one with regressed cluster probabilities,

where p, the dimension of each Xit, is two. We then simulated 100 data sets where p = 5, 50

without and 50 with regressed cluster probabilities. The resulting clustering was compared in both

the variation of information (VI) (Meilă, 2003) and in the corrected Rand index (CRI) (Hubert and

Arabie, 1985). The VI, a true metric on clusterings, yields a value of 0 for identical clusterings;

higher values indicate more disparate clustering assignments. The corrected Rand index, adjusted

to account for chance, yields a value of 1 for perfect cluster agreement and has an expected value of
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0 for random cluster assignments. The results are both in the text as well as in Table 5.1.

Each simulated data set (when p = 2 and when p = 5) without regressed cluster probabilities was

achieved according to the following. The number of objects was 100, the maximum number of time

steps was 10, and the number of clusters was 5. To check whether our method can accurately group

the objects, the simulations consisted of a wide range of possible parameter values. We obtained the

simulated data in the following way. The quantities Ti were uniformly sampled from 1 to 10; λ was

drawn from a beta distribution with both parameters equal to 10 (the mean of the distribution is

0.5); α was drawn from a Dirichlet distribution with parameters all equalling 10; µk’s were drawn

from a multivariate normal distribution with mean 0 and diagonal covariance matrix with diagonal

entries equal to 20; Σk’s were drawn from an inverse Wishart distribution with p + 4 degrees of

freedom and diagonal scale matrix whose diagonal entries equal 3. The hth row of β was set to be

proportional to

(
1

‖µ1 − µh‖
, . . . ,

1

‖µh−1 − µh‖
, 15×max

k 6=h

{
1

‖µk − µh‖

}
,

1

‖µh+1 − µh‖
, . . . ,

1

‖µK − µh‖

)
.

This formulation of β was chosen to put most of the probability on remaining in the same cluster

and to force the probability of jumping to a different cluster to decrease as the distance to that

different cluster increases. The Zit’s were then generated according to α and β, and the Xi’s were

generated according to (5.3) and (5.4).

The simulations with regressed cluster probabilities were generated in a similar manner, but we

allowed α and β to depend on a positive valued covariate which affects the probability of belonging

to cluster one. A high value of the covariate implied a tendency to belong to cluster one while a

low value of the covariate implied a tendency to avoid belonging to cluster one. The other clusters

were treated equally with respect to the covariate. Just as in the simulation without a covariate,

there was a stronger tendency to remain in the same cluster than to switch. This was accomplished

in the following way. For i = 1, . . . , n, the explanatory variable wi1 (d = 1) was drawn from a

chi-squared distribution with five degrees of freedom, and for t = 2, . . . , Ti, wit was drawn from a

normal distribution with mean wi(t−1) and standard deviation 0.5. The parameters γ0k and, for

h = 1, . . . ,K, γhk were set to be log(1.5) if k = 1 and 0 otherwise. We set δ0k and, for h = 1, . . . ,K,

δhk equal to −5 log(1.5) if k = 1 and 0 otherwise; in addition, log(15) was added to δhh, h < K, and

− log(15) was added to δKk, k < K − 1. This leads to the situation described above where there

is an increased chance of staying in the same cluster than switching to another cluster. If wit is 5
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(the mean of wit) then there is no particular tendency or avoidance of belonging to cluster one, if

wit > 5 then there is an increased probability of belonging to cluster one, and if wit < 5 then there

is a decreased probability of belonging to cluster one.

For the illustrative simulation without regressed cluster probabilities (p = 2), the VI from using

the proposed approach was 0.2679 and CRI was 0.9232. Simply using k-means and choosing the

best k-means result from 15 starting positions (which was used to initialize the generalized EM

algorithm), led to a VI of 1.031 and CRI of 0.6615. Figure 5.1a gives the plot of the log-likelihood

over the iterations of the generalized EM algorithm of the proposed method, starting with the

initialized values. We see that the algorithm converged within a small number of iterations. Figure

5.2 shows the simulated data, where the numbers correspond to the true cluster assignments, and

the shapes correspond to the estimated hard cluster assignments. Regarding the 50 simulations

without regressed cluster probabilities (p = 5), the mean (median) VI was 0.0180 (0) and CRI was

0.9953 (1). Using k-means, the mean (median) VI was 0.5516 (0.5175) and CRI was 0.8426 (0.8609).

Using a UNIX machine with a 2.40 GHz processor, the mean (median) elapsed time for our proposed

method was 0.5507 sec (0.5120 sec). These values of VI and CRI imply that our model performs

extremely well, and much better than the näıve k-means approach.

For the illustrative simulation with regressed cluster probabilities (p = 2), the VI from using the

proposed approach was 0.5080 and the CRI was 0.8232. Simply using k-means resulted in a VI of

1.342 and a CRI of 0.5147. Figure 5.1b gives the plot of the log-likelihood over the iterations of the

generalized EM algorithm in the proposed method, starting with the initialized values. From this

we again see that the algorithm reached convergence within a small number of iterations. Figure 5.3

shows the simulated data, where the numbers correspond to the true cluster assignments, and the

shapes correspond to the estimated hard cluster assignments. Regarding the 50 simulations with

regressed cluster probabilities (p = 5), the mean (median) VI was 0.0531 (0) and CRI was 0.9780

(1). Using k-means, the mean (median) VI was 0.7413 (0.7429) and CRI was 0.7729 (0.7953). The

mean (median) elapsed time for our proposed method was 41.82 sec (35.41 sec). As in the case

Without regressed cluster probabilities With regressed cluster probabilities
Proposed method k-means Proposed method k-means

VI 0.0180 (0) 0.5516 (0.5175) 0.0531 (0) 0.7413 (0.7429)
CRI 0.9953 (1) 0.8426 (0.8609) 0.9780 (1) 0.7729 (0.7953)

Table 5.1: From the simulations run without and with regressed cluster probabilities, the estimated
clustering results are compared to the true cluster assignments for both k-means and our proposed
approach using both variation of information (VI) and the corrected Rand index (CRI). Means over
50 simulations are given with medians in parentheses.
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(a) Without regressed cluster probabilities (b) With regressed cluster probabilities

Figure 5.1: Log-likelihood over the iterations for the two illustrative simulations.

for non-regressed cluster probabilities, these values of VI and CRI imply that our model performs

extremely well, and much better than the näıve k-means approach. We can also investigate whether

the model captured the effect of the explanatory variable. An effective visualization of this is to

plot the cluster probabilities αk(wi1) and βhk(wit) for h, k = 1, . . . ,K over the range of wit. This is

much more intuitive than trying to look at the individual δhk’s and γhk’s, allowing the user to see

exactly how the explanatory variables affect the cluster probabilities. Figure 5.4 gives these plots,

where each line corresponds to probabilities of belonging to a particular cluster. Here we can see

that the estimated probability curves (solid lines) correspond very closely to the true probability

curves (dashed lines), implying that the estimation method captured the effect of the explanatory

variable very effectively.

5.4 U.S. Congressional Data

We collected 15 variables measuring legislative activity for Democrats in the House of Representatives

in the 101st-110th Congresses (1989-2008). Because there are multiple variables for a single concept,

we combined these indicators into eight indices — paying attention to the home district; showboating

(e.g., making speeches and writing editorials); voting with the party on roll calls; giving campaign

funds to the party; specializing in particular policy issues; building bipartisan coalitions; overall
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Figure 5.2: Plot of simulated data without regressed cluster probabilities, where the horizontal and
vertical axes correspond to the two variables on which clustering is performed. Numbers correspond
to true clustering, shapes correspond to estimated hard clustering assignments.
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Figure 5.3: Plot of simulated data with regressed cluster probabilities, where the horizontal and
vertical axes correspond to the two variables on which clustering is performed. Numbers correspond
to true clustering, shapes correspond to estimated hard clustering assignments.
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(a) Initial Clustering (b) From Cluster 1

(c) From Cluster 2 (d) From Cluster 3

(e) From Cluster 4 (f) From Cluster 5

Figure 5.4: Cluster probabilities for illustrative simulated data with regressed cluster probabilities. Solid lines

are estimated probability curves, dashed lines are true curves. Each curve represents, for the varying values of the

explanatory variable, the probability of belonging to the cluster whose number is adjacent to the curve. There are

only two or three (depending on the figure) unique true probability curves which are labeled in italics, hence “R”

indicates the probability curve corresponding to those remaining cluster numbers which are not unique, e.g., clusters

2 to 5 in the initial clustering plot.
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fundraising; and lawmaking (e.g., introducing legislation)∗. Thus Xit is the eight-dimensional vector

corresponding to the scores on these eight indices measured for the ith member of Congress (MC)

at his or her tth term. There were n = 539 unique MC’s that served one or more terms over the 20

years included in the study.

We wished to determine the impact of the MCs’ ideology on the MCs’ behaviors. To this end

we included a covariate for MC ideology to help predict initial cluster assignments for individ-

ual MCs, as well as transitions between clusters across time. Our measure of ideology was the

common-space NOMINATE score. These scores are based on a multidimensional scaling algorithm

for roll call voting developed by Poole and Rosenthal (1997) and are a function of how often each

individual MC makes the same vote choice as each other MC. The algorithm allows all legisla-

tors to be arrayed on a scale of about −1 to 1, with negative scores indicating liberal ideology

and positive scores indicating conservative ideology. Since the sample is solely Democrats, the

scores are skewed toward the negative end of the scale, ranging from −0.725 to 0.190. In addition

to this ideology variable, we also included time dummy variables in order to account for behav-

ioral shifts across the entire party that occur during the various Congresses (each Congress has

its own dummy variable). Lastly, for the 101st Congress we differentiated between true freshmen

politicians as well as those MCs who have served previous terms not included in the data by al-

lowing the true freshmen (for all Congresses) and the first observed MCs (of the 101st Congress)

to have different initial clustering coefficients δ0k and γ0k. This was accomplished by letting

wi1 = (ideology, ideology · 1{First Observed}, 1{t1<101}, 1{t1=101}, . . . , 1{t1=109}), where ideology is

the NOMINATE score, 1{First Observed} is 1 if not a true freshman and 0 otherwise, 1{t1<101} if

the MC’s first term was before the 101st Congress and 1{t1=s} is 1 if the ith MC’s first term (of the

study) was served during the sth Congress and 0 otherwise, for s = 101, 102, . . . , 109.

To determine the number of clusters we used the average silhouette statistic (Rousseeuw, 1987).

∗Our variables include the number of district offices operated by the MC, the proportion of legislative staff assigned
to the district (rather than Capitol Hill), the number of bill introductions, cosponsorships, and amendments made by
the MC, the number of one minute speeches the MC gives on the House floor, the number of editorials and opinion
pieces he or she writes for state and national papers, the total amount of campaign money he or she raises, the total
amount of money he or she contributes to the party campaign committee (the Democratic Congressional Campaign
Committee, which collects and redistributes funds for election campaigns), the total amount of money he or she
contributes directly to colleagues, the percentage of the time he or she votes with the party on party votes (defined as
votes where a majority of one party votes against a majority of the other), the percentage of the time he or she votes
with the party leadership on leadership votes (defined as votes where the leadership of one party votes one way and
the leadership of the other party the other), the number of issue areas (out of eighteen) in which he or she introduces
legislative bills, the proportion of his or her cosponsorships that are bipartisan (i.e., for measures introduced by an
MC from the Republican party), and the percentage of his or her introduced bills that are referred to a committee on
which he or she sits.

Each index used in the clustering algorithm was constructed in the following way. First, each raw variable was
standardized at each time point to eliminate global temporal patterns or shifts. Second, each variable was associated
with one index. Finally, each index was constructed by averaging the associated variables.
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We chose this rather than a statistic that is dependent on the number of model parameters, such as

AIC or BIC, in order to avoid the number of covariates determining the number of clusters. That

is, the number of clusters ought not to depend on the number of covariates used to explain the

clustering. The results indicated four clusters of legislator types.

We applied our proposed method and obtained the following results. Figure 5.5 gives the cluster

means µk. Cluster one, the largest cluster (50% of observations, i.e., 50% of Zit’s equal 1), consists

of MCs that we call party soldiers. This group is marked by its very high score on party voting, but

relatively low scores on lawmaking, showboating, and other activities. These are the rank-and-file

legislators who toe the party line, but do not distinguish themselves in other ways. Cluster two,

the second largest cluster comprising 26% of the observations, represents district advocates — these

are legislators who devote their efforts to their home districts, but are not particularly active in the

lawmaking process and are not committed partisans. Cluster three, with 16% of the observations,

are the elites — MCs who are publicly visible, strongly support the party both in voting and giving

of contributions, and are very active in the lawmaking process. Across the sample period, the

actual party leadership (e.g., Richard Gephardt and Nancy Pelosi) fall into this cluster. The final

cluster, the “conscientious objectors,” is the smallest, with just 8% of observations. These are MCs

who are publicly visible (scoring high on the showboat index), are policy specialists, and are very

bipartisan in their coalitions and also have the lowest mean of the four clusters on party support

in voting. These MCs chart their own courses, pursuing their policy goals with less regard for the

party leadership’s preferences.

The results are in line with intuitions about the relationship between ideology and legislative

styles. For example, as shown in Figure 5.6, the probability of falling in the party soldier cluster

decreases as the ideology score increases: strong liberals are more likely than their moderate coun-

terparts to be party soldiers. On the other hand, the probability of being a conscientious objector

increases as the ideology score increases: moderates are more likely than liberals to fall into this

category. The probabilities associated with belonging to the district advocates or elites clusters are

less linear. The likelihood of being in the elite category peaks just to the left of the mean ideology

score — leaders tend to have more pragmatic outlooks, and, while solidly liberal, are seldom ideo-

logically extreme. The probability of being a district advocate, on the other hand, is greatest to the

right of the mean ideology score. MCs who focus on their districts often come from heterogeneous

constituencies, and, as such, must devote special time and attention to cultivating the district in

order to win reelection.
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Figure 5.5: Cluster means for the Democrat MCs. The vertical axis corresponds to the behavioral
variables on which the MCs were clustered, and the horizontal axis corresponds to the clusters.
Lighter hues indicate higher values, darker hues indicate lower values.

Figure 5.7 demonstrates the relationship between the MCs’ ideology and their probability of

falling in a particular cluster at time t + 1, given their cluster assignment at time t. These results

largely correspond to intuitions as well. For example, party soldiers at time t are more likely

to remain as such at t + 1 if they are very liberal. In contrast, district advocates, conscientious

objectors and elites are the most likely to maintain their cluster assignments across time if they are

moderate, although the probability of remaining an elite drops off quickly if the MC becomes too

moderate.

5.5 Proof of π(Zt|Zt−1,X1, . . . ,Xt−1) = βZt−1Zt

We wish to find a tractable form of π(Zt|Zt−1,X1, . . . ,Xt−1). Note that the subscript i is suppressed

for ease of notation. The key equality to show is that π(X1, . . . ,Xt−1|Zt−1, Zt) = π(X1, . . . ,Xt−1|Zt−1).
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Figure 5.6: Initial cluster probabilities for true freshmen in the Congressional data. Each curve
represents, for the varying values along the horizontal axis of the explanatory variable (ideology),
the probability of belonging to the cluster whose number is adjacent to the curve. The horizontal
axis spans the range of all MCs ideology; the dot-dashed lines give the 25% and 75% quantiles of
ideology, and the long dashed line gives the mean ideology.

This is shown by

π(X1, . . . ,Xt−1|Zt−1, Zt)

=
∑

Z1,...,Zt−2

π(X1, . . . ,Xt−1, Z1, . . . , Zt)/π(Zt−1, Zt)

=
∑

Z1,...,Zt−2

π(X1, . . . ,Xt−1|Z1, . . . , Zt)π(Z1, . . . , Zt)/
(
π(Zt−1)βZt−1Zt

)
=

∑
Z1,...,Zt−2

αZ1
π(X1|Z1)βZ1Z2

π(X2|X1, Z2) · · ·βZt−2Zt−1
π(Xt−1|Xt−2, Zt−1)/π(Zt−1)

=
∑

Z1,...,Zt−2

π(X1, . . . ,Xt−1|Z1, . . . , Zt−1)π(Z1, . . . , Zt−1)/π(Zt−1)

=
∑

Z1,...,Zt−2

π(X1, . . . ,Xt−1, Z1, . . . , Zt−1)/π(Zt−1)

= π(X1, . . . ,Xt−1, Zt−1)/π(Zt−1)

= π(X1, . . . ,Xt−1|Zt−1).
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(a) Transition from Party Soldier (cluster 1) (b) Transition from District Advocate (cluster 2)

(c) Transition from Elite (cluster 3) (d) Transition from Conscientious Objector (cluster 4)

Figure 5.7: Transition cluster probabilities for Congressional data. Each curve represents, for the
varying values along the horizontal axis of the explanatory variable (ideology), the probability of
belonging to the cluster whose number is adjacent to the curve given that they currently belong to
cluster (a) 1 (party soldiers) (b) 2 (district advocates) (c) 3 (elites) (d) 4 (conscientious objectors).
The horizontal axis spans the range of all MCs ideology; the dot-dashed lines give the 25% and 75%
quantiles of ideologies of MCs who have belonged to the corresponding cluster, and the long dashed
line gives the mean.
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From this it is straightforward to obtain the result in the following way

π(Zt|Zt−1,X1, . . . ,Xt−1) =
π(X1, . . . ,Xt−1, Zt|Zt−1)

π(X1, . . . ,Xt−1|Zt−1)

=
π(X1, . . . ,Xt−1|Zt−1, Zt)βZt−1Zt

π(X1, . . . ,Xt−1|Zt−1)

= βZt−1Zt .

5.6 Deriving the Tractable Form of Q(Θ, Θ̂)

Let Zi denote the latent cluster assignments Zi1, . . . , ZiTi . Then we have

Q(Θ, Θ̂)

=
∑

Z1,...,Zn

n∑
i=1

[
log(αZitπ(Xi1|Zi1,Θ)) +

Ti∑
t=2

log(βZi(t−1)Zitπ(Xit|Xi(t−1), Zit,Θ))

]
n∏
j=1

P(Zj |Xj , Θ̂)

=
∑

Z1,...,Zn

n∑
i=1

K∑
`1=1

· · ·
K∑

`Ti=1

1[Zi1=`1] · · · 1[ZiTi=`T ]

·
[

log(α`1π(Xi1|Zi1 = `1,Θ)) +

Ti∑
t=2

log(β`t−1`tπ(Xit|Xi(t−1), Zit = `t,Θ))

]
n∏
j=1

P(Zj |Xj , Θ̂)

=

n∑
i=1

K∑
`1=1

· · ·
K∑

`Ti=1

[
log(α`1π(Xi1|Zi1 = `1,Θ)) +

Ti∑
t=2

log(β`t−1`tπ(Xit|Xi(t−1), Zit = `t,Θ))

]

·
∑

Z1,...,Zn

1[Zi1=`1] · · · 1[ZiTi=`Ti ]

n∏
j=1

P(Zj |Xj , Θ̂). (5.36)

We can simplify this last expression by noting that for a fixed i,

∑
Z1,...,Zn

1[Zi1=`1] · · · 1[ZiTi=`T ]

n∏
j=1

P(Zj |Xj , Θ̂)

=

∏
j 6=i

∑
Zj

P(Zj |Xj , Θ̂)

P(Zi1 = `1, . . . , ZiTi = `Ti |Xi, Θ̂)

= P(Zi1 = `1|Xi, Θ̂)

Ti∏
t=1

P(Zit = `t|Zi(t−1) = `t−1,Xi, Θ̂). (5.37)
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Thus we can rewrite Q in the more tractable form

Q(Θ, Θ̂)

=

n∑
i=1

K∑
`1=1

· · ·
K∑

`Ti=1

[
log(α`1) +

Ti∑
t=2

log(β`t−1`t)

]
P(Zi1 = `1|Xi, Θ̂)

Ti∏
s=2

P(Zis = `s|Zi(s−1) = `s−1,Xi, Θ̂)

+

n∑
i=1

K∑
`1=1

· · ·
K∑

`Ti=1

[
log(π(Xi1|Zi1 = `1,Θ)) +

Ti∑
t=2

log(π(Xit|Xi(t−1), Zit = `t,Θ))

]

· P(Zi1 = `1|Xi, Θ̂)

Ti∏
s=2

P(Zis = `s|Zi(s−1) = `s−1,Xi, Θ̂). (5.38)

5.7 Deriving the Parameter Updates

5.7.1 Update α

Letting λα be the Lagrange multiplier corresponding to the constraint
∑K
`=1 α` = 1, we have

∂Q

∂αh
=

∂

∂αh


n∑
i=1

K∑
Zi1=1

· · ·
K∑

ZiTi=1

log(αZi1)P(Zi1|Xi, Θ̂)

Ti∏
s=2

P(Zis|Zi(s−1),Xi, Θ̂)− λα
(

K∑
`=1

α` − 1

)
=

1

αh

n∑
i=1

P(Zi1 = h|Xi, Θ̂)

Ti∏
s=2

K∑
Zis=1

P(Zis|Zi(s−1),Xi, Θ̂)− λα, (5.39)

hence

α̂h =
1

n

n∑
i=1

P(Zi1 = h|Xi, Θ̂). (5.40)

5.7.2 Update α

Here we have K Lagrange multipliers corresponding to the constraint on each row of the transition

matrix, specifically that
∑K
k=1 βjk = 1 for j = 1, . . . ,K. Denoting these as λj , we have

∂Q

∂βhk
=

∂

∂βhk


n∑
i=1

K∑
Zi1=1

· · ·
K∑

ZiTi=1

Ti∑
t=2

log(βZi(t−1)Zit)P(Zi1|Xi, Θ̂)

Ti∏
s=2

P(Zis|Zi(s−1),Xi, Θ̂)

−
K∑
j=1

λj

(
K∑
m=1

βjm − 1

) . (5.41)
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We can make this expression more tractable by noticing that for any i and t ≥ 2

K∑
Zi1=1

· · ·
K∑

ZiTi=1

log(βZi(t−1)Zit
)P(Zi1|Xi, Θ̂)

Ti∏
s=2

P(Zis|Zi(s−1),Xi, Θ̂)

=
K∑

Zi1=1

P(Zi1|Xi, Θ̂)
K∑

Zi2=1

(
P(Zi2|Zi1,Xi, Θ̂) · · ·

· · ·
K∑

Zit=1

log(βZi(t−1)Zit
)P(Zit|Zi(t−1),Xi, Θ̂) · · ·

K∑
ZiTi=1

P(ZiTi |Zi(Ti−1),Xi, Θ̂)

 · · ·


=

K∑
Zi(t−1)=1

P(Zi(t−1)|Xi, Θ̂)

K∑
Zit=1

log(βZi(t−1)Zit
)P(Zit|Zi(t−1),Xi, Θ̂). (5.42)

Thus we can find that

∂Q

∂βhk
=

1

βhk

n∑
i=1

Ti∑
t=2

P(Zi(t−1) = h|Xi, Θ̂)P(Zit = k|Zi(t−1) = h,Xi, Θ̂)− λh (5.43)

and hence

β̂hk =

∑n
i=1

∑Ti
t=2 P(Zi(t−1) = h|Xi, Θ̂)P(Zit = k|Zi(t−1) = h,Xi, Θ̂)∑n

i=1

∑Ti
t=2 P(Zi(t−1) = h|Xi, Θ̂)

. (5.44)

5.7.3 Update λ, µk and Σk

Before we proceed, we need a few preliminaries. The partial derivative of (5.3) and (5.4) with respect

to µk, k = 1, . . . ,K, is

∂

∂µk
log(π(Xi1|k,Θ)) (5.45)

=
∂

∂µk
(−1

2
)
[
(Xi1 − µk)′Σ−1

k (Xi1 − µk)
]

= Σ−1
k Xi1 − Σ−1

k µk (5.46)

and

∂

∂µk
log(π(Xit|Xi(t−1), k,Θ)) (5.47)

=
∂

∂µk
(−1

2
)
[
(Xit − (1− λ)Xi(t−1) − λµk)′Σ−1

k (Xit − (1− λ)Xi(t−1) − λµk)
]

= λΣ−1
k (Xit − (1− λ)Xi(t−1))− λ2Σ−1

k µk, (5.48)
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with respect to Σ−1
k , k = 1, . . . ,K, is

∂

∂Σ−1
k

log(π(Xi1|k,Θ))

=
∂

∂Σ−1
k

[
1

2
log |Σ−1

k | −
1

2
tr(Σ−1

k (Xit − µk)(Xit − µk)′)

]
= Σk −

1

2
diag(Σk)− (Xit − µk)(Xit − µk)′ +

1

2
diag((Xit − µk)(Xit − µk)′)

= Σk ◦
(1

2
Ip

)
− (Xit − µk)(Xit − µk)′ ◦

(1

2
Ip

)
, (5.49)

where ◦ is the Hadamard product, and similarly

∂

∂Σ−1
k

log(π(Xit|Xi(t−1), k,Θ))

= Σk ◦
(1

2
Ip

)
−
(
Xit − λµk − (1− λ)Xi(t−1)

)(
Xit − λµk − (1− λ)Xi(t−1)

)′ ◦ (1

2
Ip

)
, (5.50)

and with respect to λ is

∂

∂λ
log(π(Xit|Xi(t−1), k,Θ))

=
∂

∂λ
(−1

2
)
[
(Xit − λ(µk −Xi(t−1))−Xi(t−1))

′Σ−1
k (Xit − λ(µk −Xi(t−1))−Xi(t−1))

]
= (Xit −Xi(t−1))

′Σ−1
k (µk −Xi(t−1))− λ(µk −Xi(t−1))

′Σ−1
k (µk −Xi(t−1)). (5.51)

To make the form of Q(Θ, Θ̂) more tractable, we notice that for any i

K∑
Zi1=1

· · ·
K∑

ZiTi=1

log(π(Xi1|Zi1,Θ))P(Zi1|Xj , Θ̂)

Ti∏
s=2

P(Zis|Zi(s−1),Xi, Θ̂)

=

K∑
Zi1=1

log(π(Xi1|Zi1,Θ))P(Zi1|Xj , Θ̂)

Ti∏
s=2

K∑
Zis=1

P(Zis|Zi(s−1),Xi, Θ̂)

=

K∑
Zi1=1

log(π(Xi1|Zi1,Θ))P(Zi1|Xj , Θ̂), (5.52)
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and also for any i and t ≥ 2

K∑
Zi1=1

· · ·
K∑

ZiTi=1

log(π(Xit|Xi(t−1), Zit,Θ))P(Zi1|Xj , Θ̂)

Ti∏
s=2

P(Zis|Zi(s−1),Xi, Θ̂)

=

K∑
Zi1=1

· · ·
K∑

Zit=1

P(Zi1|Xj , Θ̂)

[
t−1∏
s=2

P(Zis|Zi(s−1),Xi, Θ̂)

]

· log(π(Xit|Xi(t−1), Zit,Θ))P(Zit|Zi(t−1),Xi, Θ̂)

·
[

Ti∏
u=t+1

K∑
Ziu=1

P(Ziu|Zi(u−1),Xi, Θ̂)

]

=

K∑
Zit=1

log(π(Xit|Xi(t−1), Zit,Θ))P(Zit|Xi, Θ̂). (5.53)

With the above it is not difficult to find, for each distribution parameter, the value which max-

imizes Q(Θ, Θ̂) where the other parameters are fixed, hence finding the solutions to the coordinate

ascent approach. The solutions are found as follows. The derivative of Q(Θ, Θ̂) with respect to λ is

∂Q

∂λ
=

n∑
i=1

Ti∑
t=2

K∑
Zit=1

P(Zit|Xi, Θ̂)

·
[
(Xit −Xi(t−1))

′Σ−1
k (µk −Xi(t−1))− λ(µk −Xi(t−1))

′Σ−1
k (µk −Xi(t−1))

]
.(5.54)

Hence the update for λ is

λ̂ =

∑n
i=1

∑Ti
t=2

∑K
Zit=1 P(Zit|Xi, Θ̂)(Xit −Xi(t−1))

′Σ−1
k (µk −Xi(t−1))∑n

j=1

∑Tj
s=2

∑K
Zjs=1 P(Zjs|Xj , Θ̂)(µk −Xj(s−1))′Σ

−1
k (µk −Xj(s−1))

. (5.55)

The derivative of Q(Θ, Θ̂) with respect to µk, k = 1, . . . ,K, is

∂Q

∂µk
=

n∑
i=1

{
P(Zi1 = k|Xi, Θ̂)

[
Σ−1
k Xi1 − Σ−1

k µk
]

+

Ti∑
t=2

P(Zit = k|Xi, Θ̂)
[
λΣ−1

k (Xit − (1− λ)Xi(t−1))− λ2Σ−1
k µk

]}
. (5.56)

Hence the update for µk is

µ̂k =

∑n
i=1

{
P(Zi1 = k|Xi, Θ̂)Xi1 + λ

∑Ti
t=2 P(Zit = k|Xi, Θ̂)(Xit − (1− λ)Xi(t−1))

}
∑n
i=1

{
P(Zi1 = k|Xi, Θ̂) + λ2

∑Ti
t=2 P(Zit = k|Xi, Θ̂)

} . (5.57)
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Let Aik = Xi1 − µk and Bitk = Xit − λµk − (1 − λ)Xi(t−1). Then the derivative of Q(Θ, Θ̂) with

respect to Σ−1
k , k = 1, . . . ,K, is

∂Q

∂Σ−1
k

=

n∑
i=1

{
P(Zi1 = k|Xi, Θ̂)

[
Σk ◦

(1

2
Ip

)
−AikA

′
ik ◦

(1

2
Ip

)]

+

Ti∑
t=2

P(Zit = k|Xi, Θ̂)

[
Σk ◦

(1

2
Ip

)
−BitkB

′
itk ◦

(1

2
Ip

)]}
. (5.58)

Hence the update for Σk can be found as

Σ̂k =

∑n
i=1

{
P(Zi1 = k|Xi, Θ̂)AikA

′
ik +

∑Ti
t=2 P(Zit = k|Xi, Θ̂)BitkB

′
itk

}
∑n
i=1

{
P(Zi1 = k|Xi, Θ̂) +

∑Ti
t=2 P(Zit = k|Xi, Θ̂)

} .
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Chapter 6

Community Detection in Dynamic
Networks

Researchers are often interested in detecting communities within dyadic data. Clustering these data

into communities can lead to better understanding of the organization of the objects in the network,

and, for dynamic networks, how this organization evolves over time.

Xing et al. (2010) developed a dynamic mixed membership stochastic blockmodel. This work

builds off of the stochastic blockmodel (Holland et al., 1983), further developed into the mixed

membership blockmodel (Airoldi et al., 2005). In the work of Xing et al. (2010), each actor has an

individual membership probability (time-varying) vector and, based on this probability vector, can

choose certain roles with which to interact with other actors. A different approach to be taken in

this chapter begins with the work of Hoff et al. (2002) where the actors are embedded either within

a latent Euclidean space, referred to as the distance model, or within a hypersphere, referred to as

the projection model. Handcock et al. (2007) used their distance model and performed community

detection on the latent actor positions. Further, the distance model of Hoff et al. (2002) was extended

in Chapters 2 through 4. We build on these latent space models with the aim of developing a method

of clustering directed or undirected dynamic network data into communities.

We assume that there is a fixed number of communities that constitute the observed dynamic

network. These communities are treated as constant over time, thus allowing the researcher to

interpret the clusters; the community membership, however, may vary over time, thereby reflecting

realistic community evolution. The clustering, then, is performed at each time point, though our

proposed methods borrow information across time in assigning actors to communities.

Applying a latent space model allows the user to capture local and global structure and outputs

meaningful visualization of the data, providing rich qualitative information. Unlike a blockmodel

approach, the latent space approach naturally accounts for transitivity, reciprocity and, in our

models, individual effects which reflect the propensity to send or receive edges (although some

degree corrected blockmodels have been developed for static networks to account for such individual

effects; see, e.g., Yan et al., 2014; Karrer and Newman, 2011).
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The remainder of the chapter is as follows. Section 6.1 gives the model and methodology. Section

6.2 gives estimation methods. Section 6.3 describes a simulation study. Section 6.4 reports the

results from analyzing Newcomb’s fraternity data (Newcomb, 1956) and world trade data. Section

6.5 gives the full conditional distributions mentioned earlier in the chapter, and Section 6.6 gives

the derivations for the variational Bayes estimation algorithm described earlier in the chapter.

6.1 Models

The data we will analyze are of the form (N , {Et : t ∈ {1, 2, . . . , T}), where N is the set of all actors

(also called by some authors nodes or vertices), and Et ⊆ {{i, j}, i, j ∈ N , i 6= j} is the set of edges

at time t. The edges Et can be viewed as an adjacency matrix Yt with entries yijt denoting the edge

from actor i to actor j at time t. The latent space approach to modeling networks assumes that

there is, for each actor at each time point, a latent position within a network space. We will assume

that at each time point, each actor belongs to one of a fixed number G of clusters; this cluster

assignment may change over time. We will denote the latent position of actor i at time t as Xit and

the cluster assignment for actor i at time t as Zit, a G dimensional vector in which one element is

1 and the others are zero. We will also let Xt = (X ′1t, . . . ,X
′
nt)
′ and Zt = (Z ′1t, . . . ,Z

′
nt)
′. While

the dependency structure of the model may vary, we assume throughout the chapter that given

the latent positions Xt, Yt and Ys, s 6= t, are conditionally independent; in many cases (such as

binary networks) this assumption can be further extended such that yijt and yi′j′t are conditionally

independent given Xt.

6.1.1 Distance Model

Within the context of the distance model, the network is embedded within a latent Euclidean space,

where the probability of edge formation increases as the Euclidean distance between actors decreases.

Let D(Xt) denote the n×n distance matrix constructed such that
(
D(Xt)

)
ij
, dijt = ‖Xit−Xjt‖.

In general we will assume that the density of Yt can be written as a function of the distance matrix

D(Xt) and some set of likelihood parameters, which we will denote as θ`. For example, the original

likelihood for binary networks in Hoff et al. (2002) is

P(yijt = 1|Xt, θ`) =
exp{yijtηijt}
1 + exp{ηijt}

, ηijt = α− dijt, (6.1)
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where in this context θ` = {α}. Variants of this likelihood have been proposed, such as in Sarkar

and Moore (2005), Krivitsky et al. (2009), and Chapter 2. This last was then extended to account

for a wide range of weighted networks in Chapter 3. Other likelihoods may be better suited for

various other types of weighted edges (see, e.g., Chapter 4).

Handcock et al. (2007) clustered static network data by clustering the latent positions via a

normal mixture model. This cannot be directly applied to dynamic network data since the latent

positions must have some sort of temporal dependency imposed. Therefore we propose applying the

model-based longitudinal clustering model given in the previous chapter to the latent positions. Our

focus here is the modeling of the latent positions, which can then be used for whatever likelihood

formulation is most appropriate to the data. We will now describe this model for the latent variables.

We make two assumptions on the latent positions and the cluster assignments. First, the cluster

assignments are assumed to follow a Markov process, i.e.,

Zit|Zi1, . . . ,Zi(t−1)
D
= Zit|Zi(t−1).

Second, given the current cluster assignment and all previous cluster assignments and latent posi-

tions, we assume the current latent positions depend only on the previous latent positions and the

current cluster assignments, i.e.,

Xit|Xi1, . . . ,Xi(t−1),Zi1, . . . ,Zit
D
= Xit|Xi(t−1),Zit.

The joint density of the latent positions and the cluster assignments is given as

π({Xt}Tt=1, {Zt}Tt=1)

=

n∏
i=1

G∏
g=1

[β0gN(Xi1|µg,Σg)]Zi1g
T∏
t=2

G∏
h=1

[
G∏
k=1

[
βhkN(Xit|λµk + (1− λ)Xi(t−1),Σk)

]Zitk]Zi(t−1)h

,

(6.2)

where N(X|µ,Σ) is the normal density with mean vector µ and covariance matrix Σ evaluated

at X. Thus the communities are each modeled as a multivariate normal distribution in the latent

space with mean µg and covariance matrix Σg. The mean of the latent position Xit is then modeled

as λµg + (1 − λ)Xi(t−1), λ ∈ (0, 1), which is a blending of the current cluster effect µg with the

individual temporal effect Xi(t−1). The β0g’s determine the probability of initially belonging to the
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gth community and the βhk’s determine the probability of transitioning from the hth community to

the kth community.

6.1.2 Projection Model

Cox and Cox (1991) and Banerjee et al. (2005) gave many contexts in which there has been empirical

evidence that embedding data onto a hypersphere and/or using cosine distances is preferable to

Euclidean space/distances. Here we continue this tradition by embedding dynamic network data

onto the hypersphere. In this section we assume the more specific, but most commonly encountered,

context of directed binary edges (the model to be proposed can be simplified for undirected edges).

In the projection model, every actor is embedded within some latent hypersphere; the probability

of an edge forming between two actors depends on the angle, rather than the Euclidean distance,

between them. Thus it is the angle between any two actors that represents the “closeness” of the

actors. Though the latent space is strictly a Euclidean space rather than a hypersphere, it is more

helpful to think of the positions within <p as unit vectors on a p− 1 dimensional hypersphere with

individual edge propensities reflected in the magnitude of the latent positions.

Our proposed likelihood of the adjacency matrices adapts the likelihood of the projection model

originally proposed by Hoff et al. (2002), and extends Durante and Dunson (2014) to allow for

directed edges. The specific form of the likelihood is given as

π({Yt}Tt=1|{Xt}Tt=1, θ`) =

T∏
t=1

∏
i 6=j

exp{yijtηijt}
1 + exp{ηijt}

, (6.3)

ηijt = α+ sjX
′
itXjt (6.4)

= α+ ‖Xit‖ · (sj‖Xjt‖) · cos(φijt), (6.5)

where φijt is the angle between Xit and Xjt; in this context θ` = {α, s}, where α reflects a baseline

edge propogation rate and s = (s1, . . . , sn) is a vector of actor specific parameters that reflect

the tendency of the actors to receive edges. While (6.4) is simpler, (6.5) makes it clear how the

probability of an edge from i to j is made up of some constant plus the product of the sending effect

of i, the receiving effect of j, and the closeness between i and j in the latent space as measured by

the cosine of the angle between the two actors.

The question remains as to how to perform clustering. With the projection model the latent

positions are embedded within a hypersphere, and thus the clustering must be done in a fundamen-

tally different way than that done for the distance model. Since we would expect a group of highly
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connected actors to have small angles between them all, we propose clustering based on the angles

of the actors’ latent positions.

We first assume that the latent positions follow a hidden Markov model, with the cluster assign-

ments as the hidden states. That is, the cluster assignments follow a Markov process (i.e., given

Zi(t−1), Zit is conditionally independent of Zi(t−s) for any s > 1), and given the cluster assignments

Zt, the latent positions Xt are assumed to be conditionally independent of Xs for any s 6= t.

The joint density on the latent positions and cluster assignments is given as

π({Xt}Tt=1, {Zt}Tt=1)

=

n∏
i=1

G∏
g=1

[
β0gN(Xi1|riug, τ−1

i Ip)
]Zi1g T∏

t=2

G∏
h=1

[
G∏
k=1

[
βhkN(Xit|riuk, τ−1

i Ip)
]Zitk]Zi(t−1)h

. (6.6)

As with the distance model of Section 6.1.1, the communities are modeled as multivariate normal

distributions within the latent space. Here r = (r1, . . . , rn) are individual effects representing the

individual propensities to send edges, ug is the unit vector corresponding to the direction of the

gth community, τ = (τ1, . . . , τn) are the precision parameters, β0 = (β01, . . . , β0G) is the vector

of initial cluster probabilities, βh = (βh1, . . . , βhG), h = 1, . . . , G, is the vector of probabilities for

transitioning from cluster h, and Ip is the p× p identity matrix.

From (6.6) we can see how the different aspects of the network are captured in the joint density of

{Xt}Tt=1 and {Zt}Tt=1. The clusters are completely determined by the unit vectors ug, and it is these

unit vectors which determine the direction in which the latent actor positions aim, and hence with

whom the actors have the highest probability of forming an edge. The permanence and transience

of the clusters are captured in the transition probabilities βh, h = 1, . . . , G. The individual effects

are captured by the parameters r, which determine the expected magnitude of Xit, and s. Note

that the parameterization (6.4) of the likelihood (6.3) is not identifiable, as s and Xt can be scaled

arbitrarily. The estimation is done within a Bayesian framework, however, and thus by fixing the

hyperparameters corresponding to the priors on the unknown parameters, the posterior distribution

is identifiable.

6.2 Estimation

Our estimation is done within the Bayesian framework, with the goal of finding the maximum a

posteriori (MAP) estimators of the unknown parameters and latent positions.
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6.2.1 MCMC for the Distance Model

We propose a Markov chain Monte Carlo (MCMC) method to obtain posterior modes to estimate

the latent positions and model parameters of the distance model given in Section 6.1.1. Specifically,

we implement a Metropolis-Hastings within Gibbs sampler.

We assign the following priors:

λ ∼ N(0,1)(νλ, ξλ), (6.7)

µg ∼ N(0, τ2Ip) for g = 1, . . . , G, (6.8)

Σg ∼ W−1(p+ 1, diag(γ1, . . . , γp)) for g = 1, . . . , G, (6.9)

τ2 ∼ Γ−1(a, b), (6.10)

γ` ∼ Γ(c, 1/d) for ` = 1, . . . , p, (6.11)

βh ∼ Dir(1, . . . , 1) for h = 0, 1, . . . , G, (6.12)

where N(0,1)(µ, σ
2) indicates the normal distribution with mean µ and variance σ2 truncated to the

range of (0, 1), W−1(a,B) indicates the inverse Wishart distribution with degrees of freedom a and

scale matrix B, diag(d1, . . . , dK) indicates a K×K diagonal matrix with d1, . . . , dK on the diagonal,

Dir(a1, . . . , aK) indicates the Dirichlet distribution with parameters a1 to aK , Γ−1(a, b) indicates

the inverse gamma distribution with shape and scale parameters a and b respectively, and Γ(a, b)

indicates the gamma distribution with shape and scale parameters a and b respectively. Additionally,

there will be some prior π(θ`) on the likelihood parameters θ` that will depend on the formulation

of the likelihood.

With the exception of the latent positions and θ`, these priors are conjugate with respect to the

full conditional distributions; these distributions are given in Section 6.5. For the latent positions

and likelihood parameters, Metropolis-Hastings steps are necessary.

6.2.2 Variational Bayesian Inference for the Projection Model

We apply a mean field variational Bayes (VB) algorithm for estimating the latent positions and model

parameters of the projection model given in Section 6.1.2. Variational Bayes procedures have been

gaining popularity in large part due to their greatly decreased computational cost in comparison with

most sampling methods. Unlike the MCMC approach given for the distance model which obtains

samples asymptotically from the posterior distribution, the VB algorithm here iteratively finds an
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approximation to the posterior density π({Xt,Zt}Tt=1, θ`, θp|{Yt}Tt=1), where θp is all the remaining

model parameters corresponding to the prior on {Xt,Zt}Tt=1. Using the mean field VB implies that

we are finding a factorized approximation Q of the posterior which minimizes the Kullback-Liebler

divergence between the true posterior and Q. This factorized form will be given shortly.

Salter-Townshend and Murphy (2013) applied VB to the static latent space cluster model for

networks given by Handcock et al. (2007) (which is a static form of the distance model). Within

this iterative scheme, the factorized distributions of the latent positions and many of the model

parameters required a numerical optimization, as a closed form analytical solution was unavailable.

By utilizing the projection model as described in Section 6.1.2 we can find closed form solutions

for each iteration, thereby reducing the computational cost involved in the estimation algorithm.

However, to accomplish this, we need to augment the model with extra latent variables; we now

describe this augmentation method.

Polson et al. (2013) gave a data augmentation scheme for logistic models by utilizing the Pólya-

Gamma distribution. This scheme starts by introducing a random variable ωijt which, given ηijt,

follows PG(1, ηijt), where PG(b, c) denotes the Pólya-Gamma distribution with parameters b > 0

and c ∈ <. This auxiliary variable ωijt is conditionally independent of yijt given ηijt. Polson et al.

show that the conditional joint density of yijt and ωijt can be written as

π(yijt, ωijt|ηijt) =
1

2
e(yijt−1/2)ηijte−ωijtη

2
ijt/2PG(ωijt|1, 0), (6.13)

where PG(ω|b, c) is the Pólya-Gamma density with parameters b and c evaluated at ω. There

are two aspects which make (6.13) much more tractable than the original likelihood of yijt|ηijt
given in (6.3). The first is the normal kernel of ηijt. The second is that while the Pólya Gamma

density PG(ω|b, c)
(
∝ exp{−c2ω/2}PG(ω|b, 0)

)
has the awkward form of an infinite summation,

the expected value has a closed form, namely (b/2c)tanh(c/2). These useful results from Polson et

al. lead to easy and efficient estimation for binary data using Gibbs sampling (Choi and Hobert,

2013), the EM algorithm (Scott and Sun, 2013) and, as we will show here, VB.
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We assign the following priors:

ωijt ∼ PG(1, 0) for t = 1, . . . , T , 1 ≤ i 6= j ≤ n, (6.14)

si ∼ Exp(1) for i = 1, . . . , n, (6.15)

ri|τi ∼ Γ(1, cτ−1
i ) for i = 1, . . . , n, (6.16)

τi ∼ Γ(a∗2, b
∗
2) for i = 1, . . . , n, (6.17)

α ∼ N(0, b∗3), (6.18)

π(ug) =
Γ(p/2)

2πp/2
for h = 0, 1, . . . , G, (6.19)

βh ∼ Dir(γ∗h) for h = 0, 1, . . . , G. (6.20)

To estimate the posterior π({Xt,Zt}Tt=1, θ`, θp|{Yt}Tt=1), we use the factorized approximation Q,

which looks like

Q(Ω, {Xt}Tt=1, {Zt}Tt=1, α, s, r, τ ,u, {βh}Gh=0)

= q(Ω)q({Xt}Tt=1)q({Zt}Tt=1)q(α)q(s)q(r)q(τ )q(u)q({βh}Gh=0), (6.21)

where Ω = {ωijt}t,i6=j . The factorized distributions on the right hand side of (6.21) all belong to

well known families of distributions. The exact forms are given in Section 6.6.

6.2.3 Number of Communities

An implicit challenge underlying the previous discourse is that in practice we do not in general know

the number of communities G. We found the strategy given by Handcock et al. (2007) to be quite

successful in our simulation study. We briefly summarize this method and refer the interested reader

to the original source for more details.

Rather than estimating the integrated likelihood π({Yt}Tt=1|G) as would typically be done, we

instead consider the joint distribution of the observed network data and unobserved latent positions,

using our MAP estimator as the fixed values of the latent positions, i.e., π({Yt}Tt=1, {X̂t}Tt=1|G), where

{X̂t}Tt=1 is the MAP estimators of the latent positions. We can rewrite this as

π({Yt}Tt=1, {X̂t}Tt=1|G) =

∫
π({Yt}Tt=1|{X̂t}Tt=1, θ`)π(θ`)dθ`

∫
π({X̂t}Tt=1|θp)π(θp)dθp, (6.22)

where all distributions are implicitly conditioning on G. The two integrals on the right hand side of
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(6.22) can each be estimated via the Bayesian Information Criterion (BIC), thus allowing us to find

the BIC approximation of 2 log(π({Yt}Tt=1, {X̂t}Tt=1|G)) as

BIC = BIC1 + BIC2,

where

BIC1 = 2 log(π({Yt}Tt=1|{X̂t}Tt=1, θ̂`))− dim(θ`) log
( ∑
t,i6=j

yijt

)
,

BIC2 = 2 log(π({X̂t}Tt=1|θ̂p))− dim(θp) log(nT ).

Rather than using maximum likelihood estimators for θ̂` and θ̂p in computing the BIC’s, we used

the MAP estimators, as was also done in, e.g., Fraley and Raftery (2007). One last note is that we

utilized recursive relations identical or similar to those given in Chapter 4 in order for the number

of terms required to compute π({Xt}Tt=1|θ̂p) to be linear, rather than exponential, with respect to

T .

6.3 Simulation Study

We simulated 20 binary networks, each with n = 100 actors and T = 10 time points. Ten of these

were simulated via the distance model, ten via the projection model; the details are given below. For

each simulation we evaluated both the model fit and the misclassification of the cluster assignments.

For the former, we looked at the actual edges and the predicted edge probabilities and computed

the AUC (area under the receiver operating characteristic curve); a value of one implies a perfect

fit, whereas a value of 0.5 implies that the predictions are random. For the latter we computed the

variation of information (VI) (Meilă, 2003). The VI is a true metric, and hence a smaller VI value

implies that the two clusterings being compared are closer to being identical. Thus we desire to have

values close to one for AUC and close to zero for the VI.

For the ten data sets simulated via the distance model, we used likelihood formulation found in

the dynamic latent space model of Chapter 2. This likelihood is given as

logit(P(yijt = 1|Xt, βIN , βOUT , si, sj)) = βIN

(
1− dijt

sj

)
+ βOUT

(
1− dijt

si

)
, (6.23)

where βIN and βOUT are global parameters that reflect the relative importance of popularity and
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activity respectively, the si’s are actor specific parameters that reflect the tendency to send and

receive edges, and dijt is the distance between actors i and j within the latent Euclidean space at

time t.

We set λ = 0.8, G = 6, p = 2, and the likelihood parameters βIN = 0.3, βOUT = 0.7. We

simulated µg ∼ N(0, (5 × 10−4)I2), Σk ∼ W−1(13, (1 × 10−5)I2), β0 ∼ Dir(10, . . . , 10), and for

h = 1, . . . , 6, βh was set to be proportional to

(
1

‖µ1 − µh‖
, . . . ,

1

‖µh−1 − µh‖
, 50×max

k 6=h

{
1

‖µk − µh‖

}
,

1

‖µh+1 − µh‖
, . . . ,

1

‖µK − µh‖

)
.

The cluster assignments {Zt}Tt=1 and latent positions {Xt}Tt=1 were drawn according to (6.2), and

the individual effects (s1, . . . , sn) ∼ Dir
(

100
1/‖X1,1‖

maxj(1/‖Xj,1‖) , . . . , 100
1/‖X100,1‖

maxj(1/‖Xj,1‖)

)
. Finally, the ad-

jacency matrices were simulated according to (6.23).

For the ten data sets simulated via the projection model, we set G = 6, p = 3, α = −10,

β0 = (1/6, . . . , 1/6) and

(u1, . . . ,u6) =

 0 90 0 0 45 45

0 0 90 −90 45 −45

 ,
where the cluster means ug are given in the spherical coordinate angles in degrees. For h = 1, . . . , 6,

βh was set to be proportional to (exp(3u′hu1), . . . , exp(3u′hu6)). For i = 1, . . . , 100, we simulated

si ∼ N(1, 0.15), τi ∼ Γ(16, 1/4) and then set ri = 8/
√
τi. The cluster assignments {Zt}Tt=1 and latent

positions {Xt}Tt=1 were drawn according to (6.6). Finally, the adjacency matrices were simulated

according to (6.3) and (6.4).

We fit both our distance and projection models to all 20 simulated dynamic networks. By so

doing we are to some degree evaluating how our models do under misspecification. We also compare

our methods to clustering results obtained by applying the clustering models of Handcock et al.

(2007) and of Krivitsky et al. (2009). These latter two models cluster static networks via a latent

space approach; to apply them to dynamic networks, clustering was performed at each time point

and then combined sequentially using the relabeling algorithm given in Stephens (2000).

Table 6.1 gives the simulation results. From the AUC values we see that all models fit the data

quite well. However, the VI values imply that our models always outperform the static methods

adapted for dynamic data, even when misspecified.

Also of interest is the computational time required for our proposed methods, and in particular
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True Model Method AUC VI
Distance Projection 0.884 (0.0403) 0.923 (0.273)

Handcock et al. 0.894 (0.0387) 0.965 (0.414)
Krivitsky et al. 0.903 (0.0370) 1.31 (0.469)

Distance 0.887 (0.0378) 0.186 (0.146)
Projection Projection 0.991 (1.40× 10−3) 0.357 (0.273)

Handcock et al. 0.975 (3.06× 10−3) 2.78 (0.181)
Krivitsky et al. 0.991 (1.27× 10−3) 2.85 (0.210)

Distance 0.978 (3.78× 10−3) 0.522 (0.285)

Table 6.1: Simulation results from data generated according to the distance and projection models.
The average values are reported, with standard deviations in parentheses.

how the VB algorithm decreases the computational time required. For our simulations we used a

UNIX machine with a 2.40 GHz processor. Using the VB estimation algorithm for the projection

model yielded an average (over the 20 simulations) of 19.1 minutes and standard deviation of 5

minutes, and using a chain of length 50,000 using the MCMC algorithm for the distance model

yielded an average of 72.4 minutes and a standard deviation of 8.5 minutes.

6.4 Data Analysis

6.4.1 Newcomb’s Fraternity Data

Newcomb (1956) discussed data collected on 17 male college students who were previously unknown

to each other. These 17 students, as part of Newcomb’s study, agreed to live together for sixteen

weeks (though the data set excludes the ninth week due to school vacation). For each week, every

student ranks the other 16 students from 1 (most favored) to 16 (least favored).

In this context Yt is the tth n × n adjacency matrix whose ith row, denoted yit, is how the ith

actor ranks the other n− 1 actors. Without loss of generality, assume that the rankings go, in order

of most favored to least favored, from 1 to n − 1. Then we let oit = (oi1t, oi2t, . . . , oi(n−1)t) denote

the (n − 1) × 1 vector which is the ordering of the rank vector yit (e.g., if y1t = (0, 4, 3, 1, 2) then

o1t = (4, 5, 3, 2)). We assume that, conditioning on (Xt,Ψ), yit is independent of yi′t, i 6= i′.

The likelihood we will use is that used in Chapter 4, given as

P(Yt|Xt, s) =

n∏
i=1

n−1∏
j=1

soijt exp(−dioijtt)∑n−1
`=j soi`t exp(−dioi`tt)

, (6.24)

where again s = (s1, . . . , sn) are actor specific parameters which indicate an actor’s social reach,

and for identifiability
∑n
i=1 si = 1. This is a Plackett-Luce model (Plackett, 1975), and as such
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satisfies Luce’s Choice axiom which can be characterized by having actor i rank actor j over actor

k with the same probability whether or not actor ` is included in the set to be ranked. See Chaper

4 for further motivation of this model. As this likelihood depends on the latent positions through

the distances D(Xt)’s, we implement the distance model of Section 6.1.1. This flexible framework

allows us to detect communities through the latent positions of the students.

For G = 2, . . . , 10, we ran 100,000 iterations of the MCMC algorithm of Section 6.2.1, thus having

a maximum of ten clusters. For each of the 9 chains, we used a short MCMC chain (the same chain

for each G) following the model with no clustering of Chapter 4 to initialize the latent positions

{Xt}Tt=1 and the actor specific likelihood parameters s, and for the remaining prior parameters we

used the generalized EM algorithm given by Chapter 5.

There was negligible difference in the BIC values corresponding to four and five communities,

where the BIC values were computed as described in Section 6.2.3; therefore, to increase inter-

pretability and reduce model complexity we chose to analyze the data assuming four communities.

The goodness of fit was evaluated using the pseudo-R2 value described in Chapter 4. The pseudo-

R2 takes values in the interval [0, 1), where a higher value implies a better fit of the data. After

analyzing the data, we obtained a pseudo-R2 value of 0.561. This is slightly less than that obtained

in Chapter 4 (0.622), which we feel satisfied with since we are imposing much more structure via

the clustering on the prior of the latent positions.

Nakao and Romney (1993), when analyzing Newcomb’s fraternity data, created similarity ma-

trices for each time point and then performed multidimensional scaling to obtain latent network

positions. From these plots the authors visually ascertained two clusters, one consisting of actors 2,

4, 7, 9, 11, 12 and 17 and the other consisting of actors 1, 5, 6, 8 and 13; the actors not in these

two subgroups, 3, 10, 14, 15 and 16, were called “outliers”. Moody et al. (2005) used various visu-

alization methods and also commented on some clustering that were noticed via visual inspection.

Moody et al. similarly concluded that actors 1, 6, 8 and 13 belonged in a cluster together. They

also noticed that actors 7 and 12 stayed close together. Both Nakao and Romney and Moody et al.

agree that actor 10 is not incorporated into a cluster, though Nakao and Romney attribute this to

actor 10 having a “difficult time finding his social position” while Moody et al. describe actor 10

as being on “the edge of the social structure” (they also describe actor 15 in this way). In Chapter

4 we provided a detailed analysis of Newcomb’s fraternity data which included an analysis of the

subgroup formation. Students 1, 5, 6, 8 and 13 were again found to belong to the same group, and

students 2, 7, 11 and 12 were also found to be grouped together. In Chapter 4 we also found students
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Figure 6.1: Latent positions of all actors at all time points in Newcomb’s fraternity data. The
contour lines correspond to the normal distributions which characterize the four communities. The
symbols correspond to the community assignments given.
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(a) Week 1 (b) Week 3

(c) Week 6 (d) Week 9

(e) Week 12 (f) Week 14

Figure 6.2: Latent positions of Newcomb’s fraternity data at specific weeks. The contour lines
correspond to the normal distributions which characterize the four communities. The symbols
correspond to the community assignments given.
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4, 9 and 17 to be in a common group, while students 3, 10, 14, 15 and 16 were all found to lie on the

outside of the social space. Our formal analysis of the data captures the areas of agreement between

these three studies, while giving more detailed information on the cluster composition. We now give

the results from our study.

Figure 6.1 shows the latent space with the MAP estimators of the latent positions, thus showing

the overall structure of the subgroups of the network. All actors at all time points are shown here.

Figure 6.2 shows the latent positions at time points 1, 3, 6, 9, 12 and 14. We can characterize our

four communities, referencing these groups using the shapes given in Figures 6.1 and 6.2. The �

community, which consists of students 1, 6, 8 and 13, matches well with communities discovered by

Nakao and Romney, Chapter 4, and the main community discovered by Moody. Once all the mem-

bers eventually joined this community within the first few weeks (none departed the community), it

remained constant for the remainder of the study. The © community seemed to be the opposite, in

that it was the most transient, and all its member changes were departures to other communities.

This community was the most spread out in the latent space (as measured by the determinant of the

covariance matrix of the community) and the most diverse in terms of popularity. Here we determine

popularity by averaging how each student was ranked by the others, using all time points. The ©

community had students 7 and 12 together, which corroborates what all three previously described

studies claim. The 4 community was also somewhat transient compared to the others. It stabilized

at week 4, thereafter containing only students 10 and 15, who were the least and fourth from least

popular students. The + community was the opposite of the 4 community, in that this community

was the most popular, measured by averaging the community members’ popularity; in fact the three

most popular students all belonged to the + community. This community, whose members primarily

consist of students 2, 4, 5, 9, 11 and 17, matches well with clusters found by Nakao and Romney

and in Chapter 4.

As the network was completely nascent at the first week, it is hardly a surprise that there are

some actors that switch from one community to another during the beginning of the study. Our

model was able to capture this evolution of the network, unlike many clustering algorthims which

assume constant cluster assignments over time. In all, there were seven transitions, and five of these

were during the first three transition periods. This implies that the subgroup formation of the social

network was fairly stable after week four. The other two transitions were between weeks 5 and 6

and between weeks 14 and 15; this last also corroborates statements by various researchers who

noticed some fluctuations in the network structure during the final week (Nakao and Romney, 1993;
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Krivitsky and Butts, 2012; Chapter 4).

6.4.2 World Trade Data

We consider world trade data with the goals of determining trade blocs and gleaning what infor-

mation we can from these blocs. We look at annual export and import data between countries

during the years 1964 to 1976 (so T = 13). A (directed) trade relation is established from coun-

try i to country j if country i exports some non-negligible amount of goods to country j. During

this time, for a variety of reasons a few countries are not constant throughout, and so we only

include the n = 111 countries which exist throughout the entirety of the study period. Thus

we have thirteen 111 × 111 binary adjacency matrices. As this is primarily a pedagogical exam-

ple, we chose these years to strike a balance between a large number of time points with a large

number of countries. The data we used was obtained through the Economic Web Institute at

http://www.economicswebinstitute.org/worldtrade.htm, originally obtained through the IMF Direc-

tion of Trade Yearbook.

To detect trade blocs within the binary trade relations data, we implemented the VB estimation

procedure for the projection model. We obtained an AUC of 0.981, showing that our model fit the

data very well. This result came from choosing five communities according to the method given in

Section 6.2.3, letting 20 be the upper bound on the possible number of clusters. Figure 6.3 shows the

latent positions of all countries at all time points (nT points plotted), where the five communities

have been labeled along segments from the origin to the communities’ centers. For ease of viewing we

have plotted the countries based only on their directional unit vectors, disregarding the magnitudes

of the vectors which correspond to the individual effects.

Bloc 1 is the smallest community, including only four countries. These countries are very active in

international trade; three out of the four are in the top ten countries as ranked by number of trading

partners averaged over all time points. The United States and Brazil are both in this group, and the

fact that they are together may be due to the 1964 coup d’état which led to a pro U.S. military ruled

government in Brazil. Blocs 2 and 3 are both central communities within the latent space, yet differ

in character. Bloc 2 is the largest community averaging 52 countries per year, and involves, with

the exception of Canada, only eastern hemisphere nations. Bloc 3 is of a truly global constitution

with all 6 inhabited continents represented, though its average community size is only around a

third of the size of bloc 2. This is a very unconnected yet central community and may therefore

represent those remaining nations which did not belong to one of the other major trading blocs.
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Figure 6.3: Variational Bayes estimates of latent locations (plotting the unit vectors indicating
direction and ignoring the magnitude of the vectors that correspond to individual effects) of countries
in the international export/import data. The five communities have been labeled along segments
from the origin to the communities’ centers.
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1 2 3 4 5
1 0.949 0.489 0.501 0.527 0.308
2 0.165 0.127 0.102 0.153
3 0.049 0.103 0.135
4 0.195 0.079
5 0.248

Table 6.2: Densities within each community and between each community averaged over all time
points. These densities are computed by dividing the total number of edges by the total possible
number of edges.

See Table 6.2 for the densities within and between each trade bloc, averaged over all time points.

This table shows the connectedness and interconnectedness of the trade blocs. Bloc 4 consists of the

U.S.S.R, several eastern European countries, and most of Latin America (17 countries). This gives

quantitative evidence in favor of claims of close ties between U.S.S.R and Latin America and the

Soviet influence in the western hemisphere (e.g., Blasier, 1988). Bloc 5 is a well connected community

that is indicative of a very interesting vestigial effect from French colonization. Of the 11 countries

that belonged to bloc 5 during all time points, France and her former colonies constitute 7 of them.

French colonial policy required her colonies to import only from or through France, export only to

France, and to ship using French vessels (Grier, 1999). That France and her former colonies form a

well connected trading bloc gives evidence that colonial policy established a longer term trend for

the continued advantage of France.

Only 13 transitions were made in total, implying that nations switched trading blocs infrequently.

These transitions can help make sense of certain world events, as well as lead researchers to future

avenues of investigation. One interesting transition was Romania changing from bloc 3 to bloc 2 in

1965, coinciding with a new direction in foreign and domestic policies, as well as a new economic

program. For more information, see, e.g., Georgescu and Călinescu (1991, p.242-248). These new

policy changes may have led Romania to switch trading blocs. Another interesting transition was

West Germany switching from bloc 2 to the same trading bloc as the United States (bloc 1) in 1973,

the same year the Basic Treaty between West and East Germany went into effect, and one year after

the Four Power Agreement on Berlin occurred. This transition then should lead researchers to ask

more questions about how these agreements may have affected the economic policies and foreign

relations of West Germany.
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6.5 Full Conditional Distributions for the Distance Model

For ease of notation let Igt = {i ∈ {1, . . . , n} : Zitg = 1} be the set of actors in community g at time

t, and let Jhkt = Ih(t−1)

⋂ Ikt be the set of actors transitioning from community h at time t − 1

to community k at time t. Also, let Z̃it =
∑G
g=1 g1{Zitg=1} denote which cluster actor i at time t

belongs to. We denote the conditioning of everything but the parameter of interest as |·.

The full conditional distributions for the clustering parameters are

λ|· ∼ N(0,1)

(
νλ + ξλ

∑n
i=1

∑
t≥2(µZ̃it −Xi(t−1))

′Σ−1

Z̃it
(Xit −Xi(t−1))

1 + ξλ
∑n
i=1

∑
t≥2(µZ̃it −Xi(t−1))′Σ

−1

Z̃it
(µZ̃it −Xi(t−1))

,

ξλ

1 + ξλ
∑n
i=1

∑
t≥2(µZ̃it −Xi(t−1))′Σ

−1

Z̃it
(µZ̃it −Xi(t−1))

)
, (6.25)

µg|· ∼ N(Σµg|·Σ
−1
g

∑
i∈Ig1

Xi1 + λ
∑
t≥2

∑
i∈Igt

(Xit − (1− λ)Xi(t−1))

 ,Σµg|·), (6.26)

where Σµg|· =

|Ig1|Σ−1
g + λ2

∑
t≥2

|Igt|Σ−1
g +

1

τ2
Ip

−1

for g = 1, . . . , G, (6.27)

Σg|· ∼W−1

p+ 1 +

T∑
t=1

|Igt|, diag(γ1, . . . , γp) +
∑
i∈Ig1

(Xi1 − µg)(Xi1 − µg)′+

∑
t≥2

∑
i∈Igt

(Xit − λµg − (1− λ)Xi(t−1))(Xit − λµg − (1− λ)Xi(t−1))
′

 for g = 1, . . . , G,

(6.28)

τ2|· ∼ Γ−1(a+G/2, b+

G∑
g=1

‖µg‖2/2), (6.29)

γ`|· ∼ Γ(c+G(p+ 1)/2,
[
d+

1

2

G∑
g=1

[Σ−1
g ]`,`

]−1

) for ` = 1, . . . , p, (6.30)

β0|· ∼ Dir(1 + |I11|, . . . , 1 + |IG1|), (6.31)

βh|· ∼ Dir(1 +
∑
t≥2

|Jh1t|, . . . , 1 +
∑
t≥2

|JhGt|) for h = 1, . . . , G, (6.32)

where [Σ−1
g ]`,` is the `th diagonal of the inverse of Σg. The log of the full conditional distributions
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for the latent positions are

log(π(Xi1|·)) = const+ log(π(Y1|X1, θ`))−
1

2
(Xi1 − µZ̃i1)′Σ−1

Z̃i1
(Xi1 − µZ̃i1)

− 1

2
(Xi2 − λµZ̃i2 − (1− λ)Xi1)′Σ−1

Z̃i2
(Xi2 − λµZ̃i2 − (1− λ)Xi1), (6.33)

log(π(XiT |·)) = const+ log(π(YT |XT , θ`))

− 1

2
(XiT − λµZ̃iT − (1− λ)Xi(T−1))

′Σ−1

Z̃iT
(XiT − λµZ̃iT − (1− λ)Xi(T−1)),

(6.34)

and for 1 < t < T,

log(π(Xit|·)) = const+ log(π(Yt|Xt, θ`))

− 1

2
(Xit − λµZ̃it − (1− λ)Xi(t−1))

′Σ−1

Z̃it
(Xit − λµZ̃it − (1− λ)Xi(t−1))

− 1

2
(Xi(t+1) − λµZ̃i(t+1)

− (1− λ)Xit)
′Σ−1

Z̃i(t+1)
(Xi(t+1) − λµZ̃i(t+1)

− (1− λ)Xit).

(6.35)

Finally the log of the full conditional distribution for the likelihood parameters is

log(θ`|·) = const+ log(π({Yt}Tt=1|{Xt}Tt=1, θ`)) + log(π(θ`)). (6.36)

6.6 VB Distributions for the Projection Model

Suppose we are interested in a posterior distribution π(θ|Data), but cannot find this distribution

in closed form. Then the mean field variational Bayes approximation finds a distribution Q(θ) that

minimizes the Kullback-Leibler divergence between Q and the posterior, where Q can be written in

a factorized form over subsets {θi} of θ, i.e., Q(θ) =
∏
i q(θi). Each component of Q can be found

by

q(θi) =
exp {E(π(Data, θ))}∫

exp {E(π(Data, θ))} dθi
, (6.37)

where the expectation is taken under Q with respect to θ \ θi (see, e.g., ?).

We employ this approximation to the projection model and obtain the solutions provided below.

To aid in reading these solutions, we first mention the following, where all expectations are taken

under Q:
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q(τi) = Γ(ai2, bi2),

E(α) = a3,

V ar(α) = b3,

E(Xit) = µit,

Cov(Xit) = Σit,

E(ug) = νg,

E(1{Zi1g=1}) = βi0g.

E(1{Zith=1}) = β̄ith,

E(1{Zitk=1}|Zi(t−1)h = 1) = βithk.

Note that µ and Σ are not referring to similar notation used in the distance model.

(1) Derivation of q(ωijt)

Since

log(q(ωijt)) = const+ E
[
−ωijt

2
(α+ sjX

′
itXjt)

2 + log(PG(ωijt|1, 0)
]
,

we have

q(ωijt) ∝ exp(−ωijtc2ijt/2) · PG(ωijt|1, 0),

so

q(ωijt)
D
= PG(1, cijt).

Here

c2ijt = b3 + a2
3 + 2a3E(Sj)µ

′
itµjt + E(s2

j )
(
tr(ΣitΣjt) + µ′jtΣitµjt + µ′itΣjtµit + (µ′itµjt)

2
)
,
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since

E(X ′itXjtX
′
jtXit) = E(X ′it(Σjt + µjtµ

′
jt)Xit)

= E((L′jXit)
′(L′jXit))

= tr(L′jσitLj) + (L′jµit)
′(L′jµit)

= tr(ΣitΣjt) + µ′jtΣitµjt + µ′itΣjtµit + (µ′itµjt)
2,

where LjL
′
j was used to represent the Cholesky decomposition of Σjt + µjtµ

′
jt. Therefore

E(ωijt) =
1

2cijt

(
ecijt − 1

1 + ecijt

)
.

(2) Derivation of q({Xt}Tt=1)

We have

log(q(Xi))

= const+

T∑
t=1

∑
j 6=i

E
{

(yijt − 1/2)sjX
′
itXjt −

ωijt
2

(s2
jX
′
itXjtX

′
jtXit + 2αsjX

′
itXjt)

+(yjit − 1/2)siX
′
itXjt −

ωjit
2

(s2
iX
′
itXjtX

′
jtXit + 2αsiX

′
itXjt)

}
− Eτi

2
E


G∑
g=1

Zi1g‖Xi1 − riug‖2 +
∑
t≥2

G∑
h=1

G∑
k=1

Zi(t−1)hZitk‖Xit − riuk‖2
 .
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For t ≥ 2, we have

log(q(Xit))

= const+
∑
j 6=i

X ′it [((yijt − 1/2)E(sj) + (yjit − 1/2)E(si))µjt

−(E(ωijt)E(s2
j )/2 + E(ωjit)E(s2

i )/2)(Σjt + µjtµ
′
jt)Xit − a3(E(ωijt)E(sj) + E(ωijt)E(si))µjt

]
− ai2bi2

2

[
G∑
h=1

G∑
k=1

β̄i(t−1)hβithk(X ′itXit − 2X ′itE(ri)νk)

]

= const− 1

2

X ′it
∑
j 6=i

(E(ωijt)E(s2
j ) + E(ωjit)E(s2

i ))(Σjt + µjtµ
′
jt)

+ai2bi2

G∑
h=1

G∑
k=1

β̄i(t−1)hβithkIp

]
Xit − 2X ′it

∑
j 6=i

(
(yijt − 1/2)E(sj) + (yjit − 1/2)E(si)

−a3(E(ωijt)E(sj) + E(ωjit)E(si))
)
µjt + E(ri)ai2bi2

G∑
h=1

G∑
k=1

β̄i(t−1)hβithkνk

]}
.

Therefore q(Xit)
D
= N(µit,Σit) where

µit = Σit

∑
j 6=i

(
(yijt − 1/2)E(sj) + (yjit − 1/2)E(si)− a3(E(ωijt)E(sj) + E(ωjit)E(si))

)
µjt

+E(ri)ai2bi2

G∑
h=1

G∑
k=1

β̄i(t−1)hβithkνk

)
,

Σ−1
it =

∑
j 6=i

(E(ωijt)E(s2
j ) + E(ωjit)E(s2

i ))(Σjt + µjtµ
′
jt) + ai2bi2

G∑
h=1

G∑
k=1

β̄i(t−1)hβithkIp.

Similarly, q(Xi1)
D
= N(µi1,Σi1) where

µi1 = Σi1

∑
j 6=i

(
(yij1 − 1/2)E(sj) + (yji1 − 1/2)E(si)− a3(E(ωij1)E(sj) + E(ωji1)E(si))

)
µj1

+E(ri)ai2bi2

G∑
g=1

βi0gνg

)
,

Σ−1
i1 =

∑
j 6=i

(E(ωij1)E(s2
j ) + E(ωji1)E(s2

i ))(Σj1 + µj1µ
′
j1) + ai2bi2

G∑
g=1

βi0gIp.
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(3) Derivation of q({Zt}Tt=1)

We have

log(q(Z)) = const+

n∑
i=1

E

{
G∑
g=1

Zi1g

[
log(β0g) +

p

2
log(τi)−

τi
2
‖Xi1 − riug‖2

]

+
∑
t≥2

G∑
h=1

Zi(t−1)h

[
G∑
k=1

Zitk

[
log(βhk) +

p

2
log(τi)−

τi
2
‖Xit − riuk‖2

]] .

Therefore, since

log(q(Zit|Zi(t−1)h = 1)) = const+

G∑
g=1

Zitg

[
ψ(γhg)− ψ(

∑
k
γhk) +

p

2

(
ψ(ai2) + log(bi2)

)
−ai2bi2

2

(
tr(Σit) + µ′itµit − 2µ′itE(ri)νg + E(r2

i )
)]

and

log(q(Zi1)) = const+

G∑
g=1

Zi1g

[
ψ(γ0g)− ψ(

∑
k
γ0k) +

p

2

(
ψ(ai2) + log(bi2)

)
−ai2bi2

2

(
tr(Σi1) + µ′i1µi1 − 2µ′i1E(ri)νg + E(r2

i )
)]
,

where ψ(·) is the digamma function, we have that Zi1 ∼ Multinomial(1,βi0), where

βi0g ∝ exp
{
ψ(γ0g)− ψ(

∑
k
γ0k) +

p

2

(
ψ(ai2) + log(bi2)

)
−ai2bi2

2

(
tr(Σi1) + µ′i1µi1 − 2µ′i1E(ri)νg + E(r2

i )
)}

∝ exp {ψ(γ0g) + E(ri)ai2bi2µ
′
i1νg}

and Zit|Zi(t−1)h = 1 ∼ Multinomial(1,βith), where

βithg ∝ exp
{
ψ(γhg)− ψ(

∑
k
γhk) +

p

2

(
ψ(ai2) + log(bi2)

)
−ai2bi2

2

(
tr(Σit) + µ′itµit − 2µ′itE(ri)νg + E(r2

i )
)}

∝ exp {ψ(γhg) + E(ri)ai2bi2µ
′
itνg} .
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The row vector of marginal probabilities can be computed recursively in the following way:

P(Zit) , β̄it = β̄i(t−1)βit,

where βit is the G×G transition matrix for Zit.

(4) Derivation of q(r)

Since

log(q(ri)) = const+ E

[
G∑
g=1

Zi1g

(
−τi

2
(r2
i − 2riX

′
i1ug)

)

+
∑
t≥2

G∑
h=1

G∑
k=1

Zi(t−1)hZitk

(
−τi

2
(r2
i − 2riX

′
ituk)

)
− riτi

c


= const− ai2bi2

2

r2
i T − 2ri

 G∑
g=1

βi0gµ
′
i1νg +

∑
t≥2

G∑
h=1

β̄i(t−1)h

G∑
k=1

βithkµ
′
itνk −

1

c

 ,

we have that q(ri)
D
= N(0,∞)(ai1, bi1), where

ai1 =
1

T

µ′i1 G∑
g=1

βi0gνg +
∑
t≥2

µ′it

G∑
h=1

β̄i(t−1)h

G∑
k=1

βithkνk −
1

c

 ,

bi1 =
1

Tai2bi2
.

The mean of ri then is

E(ri) = ai1 +

√
bi1φ(ai1/

√
bi1)

Φ(ai1/
√
bi1)

and the mean of r2
i is

E(r2
i ) = bi1

(
1 +

ai1/
√
bi1φ(ai1/

√
bi1)

Φ(ai1/
√
bi1)

)
+ a2

i1,

where φ(x) is the standard normal density evaluated at x and Φ(x) is the cumulative distribution

function of a standard normal random variable evaluated at x.
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(5) Derivation of q(τ )

Since

log(q(τi)) = const+
pT

2
log(τi)−

τi
2
E

{
G∑
g=1

Zig1(X ′i1Xi1 − 2riX
′
i1ug + r2

i )

+
∑
t≥2

G∑
h=1

G∑
k=1

Zi(t−1)hZitk(X ′itXit − 2riX
′
ituk + r2

i )


+ log(τi)− τiE(ri)/c+ (a∗2 − 1) log(τi)− τi/b∗2,

we have that q(τi)
D
= Γ(ai2, bi2), where

ai2 = a∗2 + pT/2 + 1,

b−1
i2 =

E(ri)

c
+

1

b∗2
+

1

2

G∑
g=1

βi0g

(
tr(Σi1) + µ′i1µi1 − 2E(ri)µ

′
i1νg + E(r2

i )
)

+
1

2

∑
t≥2

G∑
h=1

G∑
k=1

β̄i(t−1)hβithk

(
tr(Σit) + µ′itµit − 2E(ri)µ

′
itνk + E(r2

i )
)
.

(6) Derivation of q(ug)

Since

log(q(ug)) = const+

n∑
i=1

E

Zi1gτiriX ′i1ug +
∑
t≥2

G∑
h=1

Zi(t−1)hZitgτiriX
′
itug


= const+

 n∑
i=1

ai2bi2E(ri)

βi0gµi1 +
∑
t≥2

G∑
h=1

β̄i(t−1)hβithgµit

′ ug,
we have that q(ug)

D
= von Mises-Fisher(κg,νg), where

κg =
∥∥∥ n∑
i=1

ai2bi2E(ri)

βi0gµi1 +
∑
t≥2

G∑
h=1

β̄i(t−1)hβithgµit

∥∥∥,
νg =

1

κg

n∑
i=1

ai2bi2E(ri)

βi0gµi1 +
∑
t≥2

G∑
h=1

β̄i(t−1)hβithgµit

 ,

and therefore E(ug) = νg.

150



(7) Derivation of q(α)

Since

log(q(α)) = const+ E

∑
t

∑
i6=j

((
yijt −

1

2

)
α− ωijt

2
(α2 + 2αsjX

′
itXjt)

)− α2

2b∗3

= const− 1

2

α2

∑
t

∑
i 6=j

E(ωijt) +
1

b∗3

− 2α
∑
t

∑
i 6=j

((yijt − 1/2)− E(ωijt)E(sj)µ′itµjt)

 ,

we have that q(α)
D
= N(a3, b3), where

a3 =

∑
t

∑
i 6=j((yijt − 1/2)− E(ωijt)E(sj)µ

′
itµjt)∑

t

∑
i 6=j E(ωijt) + 1/b∗3

,

b−1
3 =

∑
t

∑
i 6=j

E(ωijt) + 1/b∗3.

(8) Derivation of q(s)

Since

log(q(sj))

= const+ E


T∑
t=1

∑
i 6=j

(
(yijt − 1/2)sjX

′
itXjt −

ωijt
2

(2αsjX
′
itXjt + s2

jX
′
itXjtX

′
jtXit)

)− sj
= const− 1

2

s2
j

∑
t

∑
i 6=j

E(ωijt)
[
tr(ΣitΣjt) + µ′jtΣitµjt + µ′itΣjtµit + (µ′itµjt)

2
]

−2sj

∑
t

µ′jt
∑
i 6=j

(
yijt − 1/2− a3E(ωijt)

)
µit − 1

 ,

we have that q(sj)
D
= N(0,∞)(aj4, bj4), where

aj4 = bj4

∑
t

µ′jt
∑
i 6=j

(
yijt − 1/2− a3E(ωijt)

)
µit − 1

 ,

b−1
j4 =

∑
t

∑
i 6=j

E(ωijt)
[
tr(ΣitΣjt) + µ′jtΣitµjt + µ′itΣjtµit + (µ′itµjt)

2
]

=

T∑
t=1

∑
i6=j

[
E(ωijt)

(
tr(ΣitΣjt) + µ′itΣjtµit

)]
+ µ′jt

(∑
i 6=j

E(ωijt)(Σit + µitµ
′
it)
)
µjt

 .
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The mean of sj then is

E(sj) = aj4 +

√
bj4φ(aj4/

√
bj4)

Φ(aj4/
√
bj4)

,

and the mean of s2
j is

E(s2
j ) = bj4

(
1 +

aj4/
√
bj4φ(aj4/

√
bj4)

Φ(aj4/
√
bj4)

)
+ a2

j4.

(9) Derivation of q(β)

Since

log(q(β0)) = const+ E

{
G∑
g=1

[
n∑
i=1

Zi1g log(β0g) + (γ∗0g − 1) log(β0g)

]}

= const+

G∑
g=1

{
n∑
i=1

βi0g + γ∗0g − 1

}
log(β0g),

we have that q(β0)
D
= Dir(γ0), where

γ0g = γ∗0g +

n∑
i=1

βi0g.

Similarly, for h = 1, . . . , G,

log(q(βh)) = E


n∑
i=1

∑
t≥2

[
Zi(t−1)h

G∑
k=1

Zitk log(βhk)

]
+

G∑
k=1

(γ∗hk − 1) log(βhk)


=

G∑
g=1

γ∗hg +

n∑
i=1

∑
t≥2

β̄i(t−1)hβithg − 1

 log(βhg).

Thus q(βh)
D
= Dir(γh), where

γhg = γ∗hg +

n∑
i=1

∑
t≥2

β̄i(t−1)hβithg.
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