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ABSTRACT 

 

Fusarium head blight (FHB) is an important diseases of wheat (Triticum aestivum L.), 

occurring in most growing areas. It is primarily caused by Fusarium graminearum Schwabe 

[telemorph: Gibberella zeae Schw. (Petch)], in North America, and the majority of current wheat 

cultivars are susceptible to it. Significant economic losses are associated with FHB since it 

results in yield reduction, poor kernel quality, and grain contamination by mycotoxins. 

Resistance to FHB has been identified in the wheat gene pool, but breeding for it remains a 

challenge for several reasons, including the complex genetic control of resistance and poor 

adaptability of the traditional sources. In this context, molecular markers could contribute to the 

identification of genomic regions associated with FHB resistance. In addition, markers could be 

used to calculate breeding values for wheat lines, for traits related to resistance disease. In the 

first study of this dissertation, genomic selection (GS) models were compared for predicting 

traits associated with resistance to FHB resistance, using 273 breeding lines in use at the 

University of Illinois’ soft red winter wheat breeding program. Genotyping-by-sequencing 

(GBS) was used to identify 5,054 single nucleotide polymorphisms (SNPs) which were then 

treated as predictor variables in GS analysis. Different parameters affecting the prediction 

accuracy of the genomic estimated breeding values (GEBVs) were tested, including: i) five 

genotypic imputation methods (random forest imputation – RFI, expectation maximization 

imputation – EMI, k-nearest neighbor imputation – KNNI, singular value decomposition 

imputation – SVDI  and the mean imputation – MNI); ii) three statistical models (ridge 

regression best linear unbiased predictor – RR-BLUP, least absolute shrinkage and operator 

selector – LASSO, and elastic net); iii) marker density (p = 500, 1500, 3000, and 4500 SNPs); 

and iv) training population size (nTP = 96, 144, 192, and 218). No discernable differences in 
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prediction accuracy were observed among imputation methods. For five of six traits, RR-BLUP 

outperformed other statistical models (LASSO and elastic-net), and a significant reduction in 

prediction accuracy was observed when marker number decreased to 3000 or 1500 SNPs, 

depending on the trait. Lastly, prediction accuracies decreased significantly when the sample size 

of the training set was less than 192. The second study consisted in a genome-wide association 

study (GWAS) performed on the same panel used in the first study. A total of 19.992 SNPs were 

obtained with GBS and ten significant SNP-trait associations were detected for multiple 

parameters associated with FHB resistance on chromosomes 4A, 6A, 7A, 1D, 4D, 7D, and 

multiple SNPs were associated with Fhb-1 on chromosome 3B. Fhb-1 is a major effect QTL 

identified in China, and it is very popular among wheat breeders worldwide. The genomic region 

on chromosome 6A appears to be new, as no other study reported QTL for that region. In 

addition, combination of favorable alleles of these SNPs resulted in lower levels of disease. The 

third study compared marker-assisted selection (MAS) with GS using different sets of genotypic 

data, including the QTL identified in the second study and Fhb-1. GS greatly outperformed 

MAS, with cross-validated prediction accuracy varying from 0.24 to 0.74 and from 0.59 to 0.98 

for MAS and GS, respectively. Treating QTL as fixed effects in GS models resulted in higher 

prediction accuracy when compared with a GS model with only random effects. For the same 

selection intensity, GS resulted in higher selection differentials than MAS for all traits. This 

study indicates that GS is a more appropriate strategy than MAS for FHB resistance. The last 

study of this dissertation was concerned with a linkage mapping study using a population of 233 

recombinant inbred lines obtained from IL97-181 (resistant) and Clark (susceptible). Neither 

parent possesses the traditional Asian sources of resistance to FHB in their pedigree. A total of 

2275 single nucleotide polymorphisms (SNPs) were detected using genotyping-by-sequencing 
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(GBS) and a genetic map was built covering all 21 wheat chromosomes. Inclusive composite 

interval mapping (ICIM) analysis identified four genomic regions associated with multiple FHB 

parameters, across all environments. Four QTL were detected for FHB resistance under field 

conditions on chromosomes 1B, 2D, 6D, and 7B. Two QTL were associated with type I 

resistance (6D and 7B), and two were associated with type II resistance (1B and 2D). The 

percentage of the phenotypic variation explained by these QTL varied between 6.7 and 12.5%. 

For QTL on sub-genome B, intervals smaller than 2 cM were obtained. The results show that 

elite germplasm can contribute to FHB resistance.  
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OBJECTIVES 
 

My objectives in this dissertation were to: 

i. Assess the accuracy of genomic predictions for parameters associated with FHB 

resistance and how accuracy is impacted by different factors; 

ii. Perform a genome-wide association study (GWAS) for detecting QTL associated with 

FHB resistance; 

iii. Compare marker-assisted selection (MAS) and genomic selection (GS); 

iv. Perform linkage mapping for native resistance to FHB using a bi-parental population.  
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CHAPTER 1: LITERATURE REVIEW 

 

Wheat and the importance of Fusarium head blight 

Wheat (Triticum aestivum L) is a self-pollinating, allohexaploid plant with chromosome 

number equal to 2n = 6X = 42. The 17-gigabase pair genome is divided in three sets of seven 

homeologous chromosomes, with each set belonging to subgenomes A, B, and D (IWGSC, 

2014). The crop is one of the most important staple grains worldwide. The economic and social 

importance of wheat is derived from its magnitude of production and ability to generate diverse 

foods (McFall and Fowler, 2009). In 2013-2014, the world wheat production was estimated to be 

716.1 million metric tons, and the United States was responsible for 58.1 million metric tons, the 

third largest production for a single country. China and India were responsible for 121.9 and 93.5 

million metric tons, respectively. Considering exportation, in the same period the US ranked 

number one with 32 million metric tons exported, which corresponded to 19% of the total wheat 

exported in the world. In Illinois, winter wheat was cultivated on 271,000 hectares, mainly in the 

southern area of the state (USDA, 2015). Wheat is an important crop for Illinois, especially for 

the southern area where it can be used for double-cropping with soybeans. 

Fusarium head blight (FHB), also known as head scab or ear blight, is one of most 

destructive diseases of wheat. It can be caused by many different species of Fusarium such as 

Fusarium graminearum Schwabe [telemorph: Gibberella zeae Schw. (Petch)], F. culmorum, F. 

avenacum, F. poae and Microdochium nivale (formerly classified as F. nivale) (Parry et al., 

1995). Fusarium graminearum, the prevailing species in North America, causes FHB on wheat, 

barley, oats, rye, and rice.  
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In the US, FHB was first described by Chester (1890) in Delaware. One year later, the 

disease was reported by Arthur (1891) in Indiana. By the first decades of the 19th century, the 

disease was already reported across Europe, Asia and Australia (Stack, 2003).  During the early 

1900’s, several outbreaks of the disease were reported in the Midwest US, as in 1905 and 1907 

in Minnesota (MacInnes and Fogelman, 1923). In 1919, several states reported significant losses, 

especially Illinois and Iowa (Dickson and Mains, 1929). Epidemics of FHB continued to take 

place for decades in the US as well as in other wheat growing countries (Stack, 2003). From 

2003 to 2005, FHB outbreaks were reported in many wheat producing areas of the US again 

(McMullen et al., 2008), and FHB continues to be one of the most important diseases of wheat in 

both temperate and sub-tropical wheat growing areas.  

Recent epidemics of FHB caused unprecedented economic losses and prolonged 

hardships for producers and rural communities (McMullen, 2003). According to Wood et al. 

(1999), FHB is the most important plant disease to hit the nation since the stem rust epidemics of 

the 1950’s. From 1992 to 1993, yield losses of 95, 43 and 18 million bushels were estimated for 

North Dakota, Minnesota and South Dakota, respectively (McMullen et al., 1997). In 

northeastern North Dakota, an average yield reduction of 45% was reported for the 1993 

epidemic. During the 1990’s, American farmers lost 500 million bushels of wheat due to FHB, 

an amount equivalent to $2.5 billion (Windels, 2000). In a meta-analysis involving 77 studies, 

Madden and Paul (2009) estimated a yield reduction of 0.038MT/ha per unit of disease index. 

Yield losses can be attributed to failed kernel development or to shriveled kernels with lower test 

weight. In addition, F. graminearum-damaged kernels, low test weight and mycotoxin 

contaminated grain severely reduce wheat market price (McMullen et al. 2012). 
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Severely damaged kernels are called “tombstones”, which are lightweight and frequently 

lost during harvest (Adams, 2010). Besides that, F. graminearum infection leads to poor quality 

wheat flour and low baking performance. Dexter et al. (1996) showed that FHB negatively 

impacted flour refinement (ash and color). Some cultivars showed reduced baking performance 

as a result of the disease, and test weight and kernel weight were inversely related to FHB. 

Boyacioğlu and Hettiarachcy (1995) demonstrated compositional changes as a consequence of 

FHB. Moderately diseased kernels were found to have reduced cellulose, amylase and 

hemicelluloses content and higher total protein content (but less glutenin and albumin) when 

compared to an uninfected wheat control.  

Mycotoxin contaminated grain is another important concern in F. graminearum-infected 

wheat. The pathogen produces potent animal toxins such as trichothecenes and estrogenic 

metabolites. Deoxynivalenol (DON) is the most common trichothecene found in FHB-affected 

wheat grain. DON is especially harmful to monogastric animals, and its effects include vomiting, 

diarrhea, nausea and feed refusal by swine (Bennett and Klich, 2003), and decreased 

performance of cattle and other animals. The effects of zearalenone (ZEA) include reduced litter 

size, abortion and disfigured sexual organs in animals. Tiemann et al. (2008) found evidence of 

spleen dysfunction (hemosiderosis) in sows fed ZEA and DON contaminated wheat. In humans, 

ZEA may be associated with endometrial adenocarcinoma (Tomaszewski et al. 1998). Also, F. 

graminearum mycotoxins have been linked with alimentary disorders such as Akakabi toxicosis, 

a disease characterized by vomiting, anorexia and convulsions (Bennett and Klich, 2003).  

Although some industrial treatments have been found to reduce the levels of mycotoxins 

in the grain, no single method has been developed to equally reduce the wide range of 

mycotoxins that may occur simultaneously in the commodities (Shapira, 2004). Since 
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trichothecenes such as DON are heat-stable molecules, they may survive the food production 

process. Consequently food cereals and beverages are frequently found to contain trichothecenes 

(Hazel and Patel, 2004). In order to protect consumers, many countries have defined maximum 

tolerable levels that are unlikely to be of health concern (Kuiper-Goodman, 2004). In the US, the 

Food and Drug Administration recommends DON maximum tolerable level of 1 ppm for 

finished wheat products for human consumption, 10 ppm on grains and grain by-products and 30 

ppm in distillers and brewer grains.  

Disease cycle 

Fusarium head blight is primarily a monocyclic disease. The fungus can survive on living 

plants of many different crops such as wheat, barley, oats and corn (Bai and Shaner, 2004). 

According to Farr et al. (1989), species of several genera serve as hosts to F. graminearum, 

including: Avena, Bromus, Cucumis, Hordeum, Secale, Sorghum, Trifolium, Triticum, Zea and 

others. Crops such as soybean (Baird et al., 1997), potato (Estrada Jr et al., 2010), and sugar beet 

(Christ et al., 2011) have been shown to host F. graminearum. Overwintering structures of the 

pathogen includes perithecia and sporodochia. Ascospores, macroconidia, chlamydospores, and 

hyphae all can serve as primary inoculum (Bai and Shaner, 1994); however, ascospores are 

considered the principal inoculum. During spring, ascospores are discharged from perithecia and 

are carried out by splashing rain and air currents to wheat heads. Similarly, macroconidia 

produced from sporodochia are transported to the heads.  

Wheat is susceptible to infection from head emergence to harvest; however, it is during 

anthesis that infections have the greatest destructive potential (Adams, 2010). Strange and Smith 

(1971) showed that wheat anthers contain fungal growth stimulants that are not present on other 

flower structures. After spores are dispersed to the wheat spike, germination occurs if conditions 
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are warm and wet. The optimum temperature range for infection is 20 – 30ºC (Sutton, 1982). 

Germ tubes grow rapidly over floret and glume surfaces forming a mycelia network. The fungus 

penetrates the plant through the opening between lemma and palea of the spikelet; through the 

base of glumes; or through stomata.  No appresorium formation occurs for direct penetration 

(Bushnell et al., 2003). 

At this early stage of infection, the fungus establishes a biotrophic relationship with the 

host and starts growing in the apoplast. Floral tissues remain alive and functional, and no 

trichothecene production occurs. Visual symptoms such as brown or purplish brown lesions on 

the first floret to flower can be seen at this stage. Then, a subsequent shift from biotrophic to 

necrotrophic interaction takes place. This shift is probably mediated by DON and other 

trichothecene mycotoxins (Bushnell et al., 2003). These mycotoxins inhibit protein synthesis by 

interfering with important plant enzymes (Desjardins, 2006). Although not necessary for the 

initial infection, DON is a virulence factor and is important for fungal spread. Bai et al. (2001) 

demonstrated that F. graminearum mutants not producing DON cause less severe disease. At this 

phase, floret discoloration spreads apically and basally in the head (Astanasoff, 1920), and one or 

more spikelets or even the entire head become prematurely bleached. The fungus spreads from 

spikelet to spikelet through vascular bundles in the rachis and rachilla. When the rachis is 

infected, all tissues above that point may be killed (Adams, 2010). The last stage of the fungus 

infection is characterized by trichothecene accumulation and the death of the floral structure. At 

this truly necrotic stage, black perithecia can be identified on infected spikelets, nodes and 

crowns. The grains usually are shriveled, with a “scabby” or chalky appearance. 
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FHB management 

FHB management in the field includes a wide range of strategies. The use of genetic 

resistance, cultural practices, and fungicides represent important measures for managing the 

disease (Edwards et al., 2004; Willyerd et al., 2012). Cultural practices such as crop rotation and 

tillage both reduce the amount of initial inoculum of the pathogen. Guo et al. (2010) 

demonstrated that reduced tillage and no till both had significantly higher amounts of initial 

inoculum of F. graminearum in spring wheat when compared to conventional tillage. Also, the 

authors quantitatively demonstrated a reduction in initial inoculum when rotating spring wheat 

with non-host crops.  

The use of fungicides is becoming more common for FHB management; however, 

relying only on fungicides for FHB control may lead to mixed success since in most cases the 

level of control is inadequate when susceptible cultivars are used. Poor efficacy of the products, 

incorrect timing of application, variation among tillers in flowering, timing and severity of 

infection and virulence of isolates are possible reasons for the lack of control (Mesterházy et al., 

2003). Some fungicides such as strobilurins can even increase the level of DON in the grains 

when compared to untreated control (Oldenbur et al., 2001). Tebuconazole was previously the 

best fungicide in terms of reducing FHB severity and DON concentration and increasing yield, 

as demonstrated by Mesterházy et al. (2003). Paul et al. (2008) showed prothioconazole +  

tebuconazole to be the most effective fungicide for controlling FHB when compared to 

metconazole, prothioconazole, tebuconazole, and propiconazole. For DON, however, 

metconazole was the most effective treatment. According to Wegulo et al. (2011), in years with 

high FHB incidence the disease is better controlled with fungicide combined with moderately 

resistant cultivars; whereas in years with low to moderate incidence it may not be necessary to 
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apply fungicide on moderately resistant cultivars. Willyerd (2012) reported that a single 

tebuconazole + prothioconazole application combined with cultivar resistance is the most 

effective and stable FHB management practice. More recently, Salgado et al. (2014) reported the 

efficacy and cost-benefit of different FHB management strategies involving chemical control, 

cultivar resistance, and combine configuration. In order to assist American farmers on their 

decision about fungicide application for FHB control, a collaborative research group from 

multiple US universities developed the Fusarium head blight risk assessment tool 

(http://www.wheatscab.psu.edu/riskTool_ 2011.html), which is a FHB forecasting system.   

Wheat resistance to FHB 

FHB resistant wheat varieties play an important role in FHB management and prevention 

of mycotoxin contamination. Fortunately, large genetic variability for resistance to FHB is 

present in the wheat gene pool (Buerstmayr et al. 2009). In contrast to the wheat rusts, complete 

resistance to FHB is not known. Resistance to F. graminearum in small grain crops was first 

classified by Schroeder and Christensen (1963) into two major components: resistance to initial 

infection by the pathogen (type I) and resistance to fungal spread along the rachis (type II). In 

wheat lines, both types of resistance may be present individually or in combination.  In addition, 

other physiological resistance types have been described, which include resistance to toxin 

accumulation (type III), resistance to kernel infection (type IV) and tolerance (type V) 

(Mesterházy, 1995; Mesterházy, 1999). Also, morphological traits may be associated with FHB 

resistance such as flower opening (Gilsinger et al., 2005). 

Progress has been made towards understanding the biological basis of resistance to FHB 

in wheat. Ribichich et al. (2000) reported increased callose deposition between the rachilla and 

rachis in Sumai-3 (resistant) when compared to a susceptible cultivar. This callose deposition 

http://www.wheatscab.psu.edu/riskTool_
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was associated with less spread of the pathogen, generally referred to as type II resistance. The 

plant defense-related callose biosynthesis can be disrupted by lipase FGL1, a virulence factor of 

F. graminearum (Blümke et al., 2014). Proteins with antioxidant function were found to be 

induced or upregulated in wheat spikelets of the resistant cultivar Ning7840 only when 

inoculated with the pathogen (Zhou et al., 2005). Using a metabolon-proteomic approach, 

Gunnaiah et al. (2012) reported that resistance controlled by Fhb-1 is mainly associated with cell 

wall thickening due to phenolic glucosides, hydroxycinnamic acid amides, and flavonoids. Xiao 

et al. (2013) reported the proteins PR4, PR5, ABC transporter, and the jasmonic acid (JA) 

pathway were crucial in FHB resistance, especially resistance mediated by the quantitative trait 

loci (QTL) Fhb-1. Kugler  et al. (2013) reported G-protein coupled receptor kinases and 

biosynthesis genes for jasmonate and ethylene to be earlier induced by Fhb-1. Resistance to 

mycotoxin accumulation has been regarded as an important resistance mechanism, which can 

occur independently from resistance to spread and penetration. It has been shown that some 

wheat lines can convert deoxynivalenol into the less phytotoxic DON-3-O-glycoside. This 

conversion is mediated by DON-glucosyl-transferase, and a QTL on chromosome 3B either 

encodes it or regulates its expression (Lemmens et al., 2005). 

Breeding for FHB resistance 

Conventional plant breeding has made significant progress in introgressing FHB 

resistance into wheat genotypes since the first report of the disease by Chester (1890). Arthur 

(1891) was the first to observe intervarietal variability for FHB susceptibility. Later, MacInnes 

and Fogelman (1923) reported the prevalence of the disease on the susceptible cultivar Marquis. 

According to Stack (2003) the “classical” era of research on FHB started in 1908 with the 

experimental reproduction of the disease by inoculation. Two important problems in screening 
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for FHB resistance were resolved during the 1930’s and the 1940’s. One was the development of 

statistical tools, allowing analysis of experiments with complex effects. The second problem was 

related to the control of the environment. Devices such as muslin tents were developed in order 

to keep high relative humidity, which created a favorable microclimate for the pathogen. Despite 

these advances and the significant amount of research regarding FHB during the last century, the 

development of high yielding, FHB resistant cultivars is still a challenge for the wheat breeding 

community. The polygenic inheritance of resistance, poor agronomic performance of most 

sources of resistance, and the environmental effect on resistance are some of the factors pointed 

out by Bai and Shaner (2004) as constraining the development of commercial cultivars. 

In wheat breeding programs, the worldwide spring wheat sources of resistance to FHB 

include the Chinese cultivars and lines Sumai 3, Nobeoka Bozu, Shangai 7-31B, Nyubai, Fan 1, 

Ning 8343, Ning 7840, Pekin 8, the Brazilian cultivars Frontana and Encruzilhada and others 

(Mesterházy, 2003).  These genotypes have shown to have poor agronomic performance (Kohli, 

1989). Compared to spring wheat, winter wheat received less emphasis and investment in regard 

to FHB resistance studies. However, resistance sources for winter wheat were also identified, 

such as the North American cultivars Freedom, Roane (Liu et al., 2005), Bess, Ernie (McKendry 

et al., 1995), Truman (McKendry et al., 2005), and the European cultivars Praag 8, Sorbas, Arina 

and others (Buerstmayr et al. 1996). According to Merterházy (2003), many successful breeding 

institutions have demonstrated that developing FHB resistant wheat lines is no longer a scientific 

problem. As mentioned earlier, the challenge is combining resistance to the disease with other 

desirable agronomic traits. 

Classic genetic studies showed that FHB resistance in wheat is under polygenic (Van 

Ginkel et al., 1996; Liu et al., 2005) or oligogenic (Bai et al., 2000) control. Several factors may 



11 

 

influence the number of genes found to be controlling FHB resistance, such as the source of 

resistance, phenotyping procedures and isolates of the pathogen (Kolb et al., 2001). Additive 

effects have been shown to play a major effect on the trait (Bai et al. 2000; Snijders, 1990), 

indicating that accumulation of resistance genes may be possible. Although less frequent, 

dominance and epistatic effects can also be present (Bai et al. 2000). FHB resistance is strongly 

influenced by the environment and, consequently, heritability estimates are usually low and/or 

inconsistent. For example, using F2:4 families Verges et al. (2006) reported broad-sense 

heritability estimates varying between 0.3-0.33 for FHB severity and between 0.16-0.20 for 

Fusarium-diseased kernels (FDK). Snijders (1990) studied 39 F2 populations segregating for 

FHB resistance and found broad-sense heritability estimates varying between 0.05 and 0.89, with 

average of 0.39. 

Quantitative trait loci mapping for FHB resistance 

Selection for FHB resistance has been performed mainly based on phenotypic data. Since 

FHB resistance is strongly influenced by the environment, biased measurements of true genetic 

resistance of an individual frequently occur. Selection based on genotypic data instead of 

phenotypic data can improve the breeder’s ability to select specific genomic segments 

responsible for improved performance. In this context, marker assisted selection (MAS) has been 

regarded as a promising breeding strategy. During the last two decades several mapping studies 

were carried out to identify QTL associated with wheat resistance to FHB, and the most 

commonly used molecular markers have been: restriction fragment length polymorphisms – 

RFLP (Waldron et al., 1999), amplified fragment length polymorphisms – AFLP (Bai et al., 

1999; Guo et al., 2003), random amplified polymorphic DNA – RAPD (Ban, 2000) and single 

sequence repeats – SSR (Bonin and Kolb, 2009; Mardi et al., 2005; Jia et al., 2005; Zhou et al., 
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2004; Yu et al., 2008). Methods for detecting single nucleotide polymorphism (SNP) have been 

developed for wheat (Somers et al., 2003) and are now being used in several genetics/breeding 

studies. 

More than one hundred QTL for FHB resistance in wheat were reviewed by Buerstmayr 

et al. (2009). These QTL were identified through linkage mapping and were localized across all 

21 chromosomes, except on chromosome 7D; however, Cativelli et al. (2013) identified QTL for 

type II resistance for this chromosome. Twenty two QTL reviewed by Buerstmayr et al. (2009) 

were found independently in different studies, indicating that these QTL may be stable. They are 

distributed on chromosomes 1B (two regions), 1D, 2A (2), 2B (2), 2D (2), 3A, 3B (2), 3D, 4B, 

4D, 5A, 5B, 6A, 7A and 7B (2). Liu et al (2009) conducted a meta-analysis with 245 QTL for 

FHB resistance published in 45 studies. Confidence intervals were calculated for 43 clusters of 

QTL on 21 chromosomes, and marker information surrounding these clusters is provided in their 

work. Loffler  et al. (2009) conducted a similar study and the mean location of each cluster is 

provided. The review by Buerstmayr et al. (2009) and these two meta-analyses represent a rich 

source of information for QTL associated with the disease.  

 The great majority of the QTL associated with FHB resistance were identified through 

linkage mapping, most of the time exploring the polymorphism of only two parents. Genome 

wide association studies (GWAS) is another method to detect QTL, and it has already been 

implemented for FHB resistance in wheat. While linkage mapping relies on experimental 

populations such as recombinant inbred line population from biparental crosses, GWAS are 

based on diverse panel of unrelated lines, taking advantage of the recombination history of the 

panel. As consequence, higher map resolutions are expected in GWAS (Myles et al., 2009). In a 

study with 455 soft winter wheat European lines and 115 SSRs, Miedaner et al. (2011) detected 



13 

 

nine QTL on multiple chromosomes, two of them on genomic regions (1D and 3A) not 

previously reported. Also working with European germplasm, Kollers et al. (2013) evaluated 358 

winter wheat and 14 spring wheat cultivars genotyped with 732 SSRs. QTL were identified in all 

chromosomes except 6B, the highest number of QTL being detected on chromosome 5B. 

 Despite the fact that hundreds of QTL for FHB resistance have been identified in wheat, 

selection of highly resistance individuals remains a challenge for many reasons. First, in QTL 

studies, only the statistically significant marker/trait associations are considered, leaving small 

effect QTL out. For this reason, the effect of the significant markers could very well be inflated. 

In addition, choosing the statistical threshold to determine which markers are significant is 

arbitrary. Second, considering that FHB resistance is a quantitatively inherited trait and major 

QTL are not common, selection based on few significant QTL may not be the best strategy for 

developing resistant lines.  

Genomic selection  

Genomic selection (GS) or genome wide selection may represent an advance compared to 

marker-assisted selection (MAS). The GS concept was first proposed by Meuwissen et al. (2001) 

in animal breeding, and it consists of using all marker information to calculate genomic 

estimated breeding values (GEBV). Instead of considering only the significant QTL, GS 

incorporates all loci, regardless of the effect of each locus. This approach is particularly 

interesting when high-density genome-wide molecular markers are available. The first step in GS 

is defining the training population, which will consist of individuals having both phenotypic and 

genotypic information. This group is used to estimate mode parameters that will be necessary to 

calculate the GEBV of selection candidates. Having phenotypic and genotypic data, one can 

proceed to the second step in GS, which involves estimating marker effects using an appropriate 
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GS model. Lastly, marker effects are used to obtain the GEBVs in a validation population, for 

which only genotypic information is available. Lorenz et al. (2011) provides a detailed, 

comprehensive description of each step.  

Genomic selection has traditionally been used on dairy cattle (Bos taurus) where there is 

great availability of SNP markers (Van Raden et al., 2009). In crop plants, the use of genomic 

selection has been delayed by the number of molecular markers available and the size and 

complexity of some polyploidy genomes, as is the case of the wheat genome. Nakaya and Isobe 

(2012) reviewed seven studies involving GS in plants. Among the annual crop plants, the number 

of markers ranged from 69 to 1339; whereas, for perennial crops, the number ranged from 3120 

to 3938 markers. More recently, high density genome-wide markers are becoming available for 

multiple crops due to the significant reduction in sequencing costs. The pace of this recent plant 

genomic boom is illustrated by Michael and Jackson (2013), who reviewed the publication of 55 

plant genomes, 37 of them published between 2011 and 2013. As plant genomes are becoming 

available, breeders can have access to a whole new level of genotypic information, which can be 

incorporated in breeding strategies such as genomic selection. 

 In genomic selection, markers are used as predictor variables (p) whereas phenotypes are 

used as the response variable (n). With high density genome-wide markers becoming more 

available, the number of markers frequently surpasses the number of phenotypes. In other words, 

the number of predictor variables gets larger than the number of observations, creating the so 

called “large p small n problem”. In this case, models relying on shrinkage factors or variable 

selection are needed in order to estimate the effect of each marker. There is an abundance of 

statistical models being used in the context of genomic selection, with the most popular being 

ridge regression best unbiased linear predictor (RR-BLUP), which is equivalent to the genomic 
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best unbiased linear predictor (G-BLUP), least absolute shrinkage and selection operator 

(LASSO), elastic-net, and Bayesian models (BayesA, BayesB, BayesC, wBSR, BL), (Lorenz et 

al., 2011; Heslot et al., 2012). 

 An infinitesimal model is assumed in RR-BLUP, in which markers are assumed to have a 

common variance (homocedastic) and are equally shrunken towards zero (Meuwissen et al. 

2011). That does not mean the marker effects are equal to zero, but the amount of shrinkage is 

the same for all markers (Bernardo and Yu, 2007; Heffner et al., 2009). The assumption of 

homocedastic genetic variance for all markers is unrealistic in animal and plant breeding for the 

great majority of traits. Despite that, RR-BLUP has been extensively used in plant breeding with 

promising results (Riedelsheimer et al., 2012; Lipka et al., 2014). The LASSO allows some 

predictor variables to have variance equal to zero and performs continuous shrinkage of the 

remaining variables (Tibshirani, 1996). For this reason, the LASSO has been regarded as a 

suitable model when major genes are present; however, the LASSO only selects n predictor 

variables at most and does not perform well when the variables are correlated. The elastic-net is 

a combination of both RR-BLUP and LASSO, allowing p >> n and encouraging grouping of 

correlated variables (Zou and Hastie, 2005). In a recent study with 540 switchgrass (Panicum 

virgatum) accessions, Lipka et al. (2014) compared these three statistical models and obtained 

numerically higher prediction accuracies for RR-BLUP. In a simulation study, however, Ogutu 

et al. (2012) observed higher prediction accuracy for LASSO, elastic net and their extension 

when compared to RR-BLUP. 

 Bayesian models differ from the models above by allowing predictor variables to have 

different variances. In BayesA and BayesB, a marker or predictor variable has effect equal to 

zero with probability π, and normally distributed around mean equal to zero and a locus-specific 
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variance with probability 1 – π. In BayesA π = 0, meaning that no marker can have effect equal 

to zero. BayesB has a more realistic prior, with π > 0. The locus-specific variance has a scaled 

inverted chi-square prior (Meuwissen et al., 2011; Habier  et al., 2011). In BayesC, some 

markers will have common variances whereas others will have variance set to zero. Different 

from BayesB, π is not fixed, but estimated from the data. Heffner et al. (2011) compared these 

three Bayesian models with RR-BLUP and other breeding strategies for 13 agronomic traits in 

wheat. Despite different assumptions, the four models performed equally well, with the mean 

accuracy for all traits ranging from 0.58 to 0.60. One disadvantage of Bayesian models is that 

they are computationally demanding.  

 Recently, new models have been proposed in order to overcome the homocedastic 

variance requirement of infinitesimal models and still be computationally efficient (Shen  et al., 

2013; Hofheinz and Frisch, 2014). Another strategy that allows markers to display a non-

common variance is by treating them as fixed effects, as successfully demonstrated by Bernardo  

(2014), Owens et al. (2014), and Zhao et al. (2014). In addition, methods that specifically model 

marker by environment interaction have been proposed (Jarquín et al., 2014) and tested (Zhang 

et al., 2015).  

In genomic selection, a model that produces high accuracy (r) is desired since accuracy 

impacts the response to selection, 𝑅 = 𝑖𝑟𝜎𝐴, where 𝑖 is the selection intensity and 𝜎𝐴 is the 

additive variance. Accuracy is calculated as 𝑐𝑜𝑟(𝐺𝐸𝐵𝑉, 𝐸𝐵𝑉), Pearson’s correlation between 

GEBV and the true breeding value (EBV), which is not known; however, this correlation is 

equivalent to 𝑐𝑜𝑟(𝐺𝐸𝐵𝑉, 𝑃𝐸𝐵𝑉)/√ℎ2 , in which the phenotypically estimated breeding value 

(PEBV) and the heritability of the trait are used (Lorenz et al., 2011). Numerous parameters have 

been shown to affect the estimates of prediction accuracy. Zhong et al. (2009) studied how 
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estimates of prediction accuracy are affected by marker density, level of linkage disequilibrium 

(LD), number of QTL affecting the trait, sample size, and level of replication in populations 

generated by inbred lines. Bernardo and Lorenzana (2009) also showed how accuracy is affected 

by the size of the training population, marker density, and GS models. Daetwyler et al., (2013) 

discussed the drivers of genomic prediction accuracy using a framework of deterministic 

predictions. When several QTL control a specific trait, the prediction accuracy can be calculated 

with 𝜌 =  √𝑁𝑝ℎ2(𝑁𝑝ℎ2 + 𝑀𝑒)−1, in which 𝑁𝑝 is the number of individuals in the training 

population, ℎ2 is the heritability of the trait, and 𝑀𝑒 is the number of independent chromosome 

segments. Another factor that influences accuracy is the degree of relatedness between the 

training and validation population. The more related the two sets are, the higher the accuracies 

(Riedelsheimer  et al., 2013). Over time, new recombination events will affect the linkage 

disequilibrium between markers and QTL, reducing the predictive ability of the model. Then, the 

GS model can be updated as more lines are advanced in the breeding pipeline and more 

phenotypic and genotypic information are obtained, feeding the training set (Heffner et al., 

2009).  

 There are several opportunities where GS can be applied in a breeding pipeline. Heslot et 

al. (2015) present a simple doubled-haploid based scheme of one breeding cycle and highlight 

how GS can benefit the breeding process. At the early stages, parent selection and prediction of 

cross variances could be supported by GS. At the later stages, the method can improve accuracy 

of expensive phenotype traits and predict genotype by environment interactions. Other schemes 

for incorporating GS in plant breeding pipelines are presented by Heffner et al. (2009), Rutkoski  

et al. (2011), and Desta  and Ortiz (2014).  
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Genotyping-by-sequencing 

Recently, a new approach has been developed for generating genome-wide markers using 

next generation sequencing (NGS) technology. Genotyping by sequencing (GBS) consists of a 

highly multiplexed system for developing reduced representation libraries for the Illumina next-

generation platform. By using methylation-sensitive restriction enzymes, the genome of interest 

is cut in such a way that repetitive regions can be avoided and lower copy regions targeted 

(Elshire et al., 2011). This genome reduction is followed by a DNA barcoding step, where 

adapters are attached to the ends of the restriction fragments. These fragments are then 

sequenced in parallel multiplex samples on a single run of next-generation sequencing platforms 

(Poland and Rife, 2012). GBS can generate tens of thousands to hundreds of thousands of tags 

that can be used as dominant markers (presence/absence of each tag) or can also be used for SNP 

calls. Considering the high complexity and large size of the wheat genome, the GBS 

methodology would be highly desirable for generating high-density genome-wide molecular 

markers. 

 GBS has already been applied to small grains, including wheat and barley (Poland et al., 

2012a). The authors developed a high density map for each for these crops using a two-enzyme 

GBS protocol (a rare cut-site and a common cut-site enzyme) and bi-parental populations. 

Approximately 34,000 and 20,000 SNPs were identified for barley and wheat, respectively. 

Interestingly, the authors successfully developed a high density map for both a diploid and an 

allopolyploid crop species. Now, these maps can be used for genomic assisted selection and 

precise mapping of agronomically important genes (Poland et al., 2012a). In a panel of 254 lines 

from CIMMYT, Poland et al. (2012b) identified 41K SNPs using GBS. The authors calculated 

GEBV for each line and observed an increase in performance of 10-20% when compared to an 
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established marker platform. Lado et al. (2013) applied GBS to call 102,324 SNPs in a panel 

consisting of wheat lines from Chile, Uruguay, and CYMMIT. The authors developed GS 

models for agronomic traits such as heading date, grain yield, thousand-kernel weight, and 

number of kernels per spike. 

 In a recent study, Forrest et al. (2014) applied three different genotyping platforms in bi-

parental populations and a wheat panel to identify markers linked to Lr67, a gene that confers 

resistance to leaf rust (Puccinia triticina). The authors reported that SNP-based markers tightly 

linked to Lr67 were obtained with GBS, but not with exhaustive SSR genotyping and the 9K 

Infinum iSelect array. The poor performance of the 9K SNP chip was attributed to difficulties in 

distinguishing duplicated gene copies or ascertainment bias caused by pre-selection of SNPs in 

populations of reduced size. 

 Talukder et al. (2014) performed a QTL linkage mapping study for heat tolerance in a 

wheat bi-parental population that had been previously genotyping with AFLPs, SSRs, and ESTs. 

By adding GBS SNPs, the authors were able to resolve conflicting chromosomal assignment of 

the linkage groups. More specifically, two linkage groups could not be differentiated based on 

SSR markers (Xgwm356 and Xbarc353) since the markers mapped to multiple chromosomes, 2A 

and 6A. The extra GBS SNPs allowed the identification of a single linkage group. In addition, 

the authors were able to successfully detect multiple QTL associated with heat tolerance. 

 Langer et al. (2014) conducted a GWAS in a wheat panel to investigate the genetic 

architecture of flowering time. A total of 410 European winter wheat lines were genotyped for 

candidate genes (Ppd-D1, Ppd-B1, and others) and genotyping-by-sequencing was used for SNP 

calling. Although the gene Ppd-D1 accounted for most of the variation in the panel, GBS 

allowed the detection of small effect QTL for flowering time.   
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 Considering the recent advances in DNA marker technology and its application on wheat, 

the way wheat breeders use markers is expected to change dramatically. The great availability of 

high throughput markers at decreasing cost per sample will allow precise mapping of 

agronomically important genes by using high-density marker maps as well as the development of 

robust GS models in order to calculate GEBVs. These recently developed approaches represent a 

great opportunity for wheat breeders in dealing with quantitatively controlled traits. 
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CHAPTER 2: GENOMIC SELECTION FOR PREDICTING FUSARIUM HEAD 

BLIGHT RESISTANCE IN A WHEAT BREEDING PROGRAM 

Abstract 

Genomic selection (GS) is a breeding method that uses marker-trait models to predict 

unobserved phenotypes. This study developed GS models for predicting traits associated with 

resistance to Fusarium head blight (FHB) in wheat (Triticum aestivum L.), using 273 breeding 

lines in use at the University of Illinois’ soft red winter wheat breeding program. Genotyping-by-

sequencing (GBS) was used to identify 5,054 single nucleotide polymorphisms (SNPs) which 

were then treated as predictor variables in GS analysis. In this study, the following parameters 

affecting the prediction accuracy of the genomic estimated breeding values (GEBVs) were 

tested: i) five genotypic imputation methods (random forest imputation – RFI, expectation 

maximization imputation – EMI, k-nearest neighbor imputation – KNNI, singular value 

decomposition imputation – SVDI  and the mean imputation – MNI); ii) three statistical models 

(ridge regression best linear unbiased predictor – RR-BLUP, least absolute shrinkage and 

operator selector – LASSO, and elastic net); iii) marker density (p = 500, 1500, 3000, and 4500 

SNPs); and iv) training population size (nTP = 96, 144, 192, and 218). No discernable differences 

in prediction accuracy were observed among imputation methods. For five of six traits, RR-

BLUP outperformed other statistical models, and a significant reduction in prediction accuracy 

was observed when marker number decreased to 3000 or 1500 SNPs, depending on the trait. 

Lastly, prediction accuracies decreased significantly when the sample size of the training set was 

less than 192. Overall, the moderate to high prediction accuracies observed in this study suggest 

GS as a very promising breeding strategy for FHB resistance in wheat. 
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Introduction 

Originally proposed by Meuwissen et al. (2001) for animal breeding, genomic selection 

(GS) predicts breeding values of individuals based on genome-wide molecular markers. It can be 

considered as a form of marker-assisted selection in which all markers are used to calculate 

genomic estimated breeding values (GEBVs). It is assumed that all quantitative trait loci (QTL) 

are in linkage disequilibrium with at least one marker and that all the genetic variance can be 

explained by markers (Goddard and Hayes, 2007). For this reason, GS is particularly promising 

for predicting quantitative, complex traits where many small effect loci contribute to phenotypic 

variation. In GS, marker effects are estimated from a training population (TP), for which 

phenotypes and genotypes are available. Marker effects are then used to predict phenotypes in a 

set of individuals that will only be genotyped, the breeding population. Based on GEBVs, 

individuals can be selected before being tested in field experiments, potentially speeding up the 

breeding cycle (Jannink et al., 2010; Heffner et al., 2009). Several factors can impact the 

accuracy of GS models, including marker density, QTL number, sample size, and genotypic 

imputation methods (Zhong et al., 2009; Heffner et al., 2011; Rutkoski et al., 2013). 

Fusarium head blight (FHB) is the single most important wheat disease in the US 

Midwest, causing yield losses, reduction of grain quality (Dexter et al., 1996), and grain 

contamination due to mycotoxins. Fusarium graminearum (teleomorph: Gibberella zea) Schw. 

(Petch)] is the predominant pathogen that causes FHB of wheat and barley in North America. 

Classic genetic studies showed that wheat resistance to FHB is quantitatively inherited (Van 

Ginkel et al., 1996; Liu et al., 2005). Previous studies suggest that the sources of genetic 

variation for FHB resistance are predominantly additive (Bai et al. 2000; Snijders, 1990), 

indicating that accumulation of resistance genes may be possible. Selection for FHB resistance is 
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performed mainly using phenotypic data, and because FHB resistance is strongly influenced by 

the environment, inaccurate measurements of true genetic resistance of an individual frequently 

occur. Selection based on GEBVs instead of phenotypes could improve the breeder’s ability to 

select individuals with superior FHB resistance. Although over 100 QTL for FHB have been 

reported in the literature (Buerstmayr et al. 2009), breeding for FHB resistance remains an 

important challenge as most QTL detected to date explain less than 15% of the variation.  

Although the availability of genotypic information has greatly improved over the past 

few decades, phenotyping capabilities have not kept pace. Phenotyping for FHB resistance is 

usually a laborious task, requiring mist irrigation systems in the field or greenhouse capabilities. 

Some measurements, like mycotoxin analysis, are only obtained after harvest and are time 

consuming. As a consequence, breeders are now facing the so-called “large p, small n problem” 

(i.e., p >> n) when applying markers to predict phenotypes. In this situation the number of 

predictor variables is larger than the number of observations, resulting in an infinite number of 

marker effect estimates (Gianola, 2013). To address this problem, several penalized regression 

approaches have been proposed for GS models. Ridge regression best linear unbiased predictor 

(RR-BLUP) is based on an infinitesimal model, in which all markers are equally shrunken 

towards zero. This model sets markers to be random effects with a common variance 

(Meuwissen et al., 2001). The least absolute shrinkage and selection operator (LASSO) performs 

continuous shrinkage and variable selection simultaneously. In the p >> n setting, LASSO will 

select n variables at most and set the effects of the remaining predictors equal to zero (Tibshirani, 

1996). The elastic net is a combination of both RR-BLUP and LASSO, where the penalty is a 

weighted average of the penalties from these two approaches (Zou and Hastie, 2005).  



24 

 

In a previous publication, Rutkoski et al. (2012) compared GS models for FHB-related 

traits in wheat using 2402 DArT and 38 single sequence repeat (SSR) markers. This study 

involved germplasm from 18 different breeding programs at the USA and Canada. Heffner et al. 

(2011) used 1158 Diversity Array Technology (DArT) markers to compare genomic selection 

models, marker assisted selection, and phenotypic selection for agronomic traits, using 

germplasm from the Cornell University wheat breeding program (Ithaca, NY). Both studies 

showed GS as a promising strategy for wheat breeding. 

With the advent of high-throughput single nucleotide polymorphism (SNP) genotyping 

methods, high-density genome-wide marker sets are becoming viable in several crop species, 

making GS a practical approach for predicting complex traits. A robust, high throughput 

genotyping method called genotyping-by-sequencing (GBS) has been applied to wheat (Triticum 

aestivum L.) with promising results (Poland et al., 2012a). Briefly, this technique consists of 

reducing genome complexity using restriction enzymes that target gene-rich regions (Elshire et 

al., 2011). The targeted segments are then polymerase chain reaction (PCR) amplified, barcoded 

and sequenced in a multiplexed reaction. The protocol can be modified to accommodate a 

combination of enzymes, as performed in wheat and barley by Poland et al. (2012b). GBS 

typically generates many thousands of SNPs with minimum of ascertainment bias, a common 

problem of SNP-chips.  

Resistance to FHB is an important breeding objective in most programs in the Corn Belt, 

including the soft red winter wheat program of the University of Illinois at Urbana-Champaign. 

This study aimed to develop genomic models for FHB-related traits, using GBS. Three penalized 

models were compared: RR-BLUP, LASSO, and elastic net. This study also investigated how the 
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GS accuracies are impacted by imputation methods, number of SNP markers, the size of the 

training population, and the number of folds used in cross validation. 

Materials and methods 

Plant material and phenotypic data 

The germplasm used in this study consisted of 273 breeding lines involving 233 different 

crosses. A total of 185 lines came from the University of Illinois soft red winter wheat program, 

and 88 lines belonging to 17 programs across the midwestern and eastern US. Of these 88 lines, 

50 have been used as parents at the University of Illinois. Hence, this collection is representative 

of the genetic diversity currently being explored at the University of Illinois. Measurements 

associated with FHB resistance were collected from one-meter long single rows, cultivated in a 

field nursery during 2011, 2013 and 2014 field seasons. Due to drought conditions no phenotypic 

data were obtained in 2012. Each experiment was set up as a randomized complete block design 

with two replicates. Since not all lines were present in 2011, the experiment was analyzed as an 

unbalanced design. Grain spawn inoculum was prepared with a mixture of ten different isolates 

of F. graminearum collected throughout Illinois over several years. Agar plugs containing the 

isolates were placed in carboxylmethyl-cellulose liquid media, and allowed to grow and 

sporulate (Tuite, 1969). After seven days, a conidial suspension was obtained and mixed to 

autoclaved maize grain. Colonized grains were then spread in the field at a rate of approximately 

287kg.ha-1, two to four weeks before anthesis. The field was mist irrigated three times per day 

during six weeks, starting two weeks before the first wheat line headed. The following traits 

were used to evaluate FHB resistance: incidence (INC), severity (SEV), FHB index (FHBdx; 

[(incidence x severity]/100), Fusarium-damaged kernels (FDK), incidence-severity-kernel index 

(ISK; [(0.3 x incidence + 0.3 x severity + 0.4 x FDK)] and deoxynivalenol concentration (DON). 
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INC was estimated as the percentage of infected heads, irrespective of the severity of disease on 

each head. SEV was visually estimated as the percentage of infected spikelets in a wheat head. 

INC and SEV are used to quantify the resistance to penetration and spread of the disease, 

respectively, and they are also known as type I and type II resistance (Schroeder and 

Christensen, 1963). FDK is a visual estimate of the percentage of F. graminearum-damaged, 

tombstone kernels using known standards, and it is often classified as type III resistance 

(Mesterházy 1995, Merterházy et al., 1999). FHBnx and ISK are disease indexes routinely used 

by breeders when performing selection. SEV and INC were recorded one month after the 

heading date of each breeding line, whereas FDK and DON were recorded after harvest. 

Resistance to toxin accumulation has been classified as type IV resistance (Miller et al., 1985) 

and deoxynivalenol (DON) is by far the most important mycotoxin produced by F. graminearum 

in wheat. Its concentration was determined by gas chromatography-mass spectrometry at the 

Department of Plant Pathology at the University of Minnesota by Dr. Yanhong Dong.  

For each line and each trait, best linear unbiased predictions (BLUPs) were calculated 

using PROC MIXED SAS version 9.4 (SAS Institute 2013), according to equation (i):  

𝑌𝑖𝑗𝑘 =  𝜇 + 𝑦𝑒𝑎𝑟𝑖 + 𝑏𝑙𝑜𝑐𝑘(𝑦𝑒𝑎𝑟)𝑖𝑗 + 𝑙𝑖𝑛𝑒𝑘 + ℎ𝑒𝑎𝑑𝑖𝑛𝑔𝑖𝑗𝑘 + (𝑦𝑒𝑎𝑟 𝑥 𝑙𝑖𝑛𝑒)𝑖𝑘 + 𝜀𝑖𝑗𝑘𝑙 (i) 

in which 𝑌𝑖𝑗𝑘 is the observed phenotype, 𝜇 is the overall mean, 𝑦𝑒𝑎𝑟𝑖 is the randon effect of the 

ith year, 𝑏𝑙𝑜𝑐𝑘(𝑦𝑒𝑎𝑟)𝑖𝑗 is the random effect of jth block within the ith year, 𝑙𝑖𝑛𝑒𝑘 is the random 

effect of the kth line, ℎ𝑒𝑎𝑑𝑖𝑛𝑔𝑖𝑗𝑘 is a quantitative covariate trait treated as fixed,  consisting of 

the Julian day for the kth line in the jth block within the ith year, 𝑦𝑒𝑎𝑟 𝑥 𝑙𝑖𝑛𝑒𝑖𝑘 is the random 

effect of the interaction between the ith year and kth line, and 𝜀𝑖𝑗𝑘𝑙 is the random error term. 
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Genotypic data 

DNA was extracted from 5-day-old leaves using a cetyltrimethyl ammonium bromide 

(CTAB)/chloroform protocol. After quantification, the GBS libraries were constructed according 

to Poland et al. (2012b), with a few modifications. For genomic complexity reduction, three two-

enzyme combinations were used: PstI-HF-MspI, PstI-HF-HinP1I, and PstI-HF-BfaI. The 

enzyme PstI-HF (CTGCAG) is a rare cutter, whereas MspI (CCGG), HinP1I (GCGC), and BfaI 

(CTAG) are common cutters. A different set of barcodes were used for each enzyme 

combination. Sequence data were obtained from 96-plex Illumina HiSeq2000 runs (W.M. Keck 

Center for Comparative and Functional Genomics).   

SNPs were called using the UNEAK pipeline (Lu  et al., 2013) using a population-based 

approach similar to the one described by Poland et al. (2012b). A mismatch of 1 bp in a 64 bp tag 

was allowed when aligning the tag sequences using BWA (Li and Durbin, 2009). Putative SNPs 

were identified from tags that differed by 1 bp, and then filtered with the Fisher’s exact test (p < 

0.001), which tests whether two alleles are independent in a population of inbred lines. The 

minor allele frequency cut off was set to 5% and SNPs with more than 20% missing data were 

eliminated from the analysis. 

Imputation methods 

Genotypic missing values were imputed using five different methods: mean imputation 

(MNI), k-nearest neighbors imputation (KNNI) (Troyanskaya et al. 2001), expectation 

maximization imputation (EMI) (Dempster et al. 1977), random forest regression imputation 

(RFI) (Stekhoven and Bühlmann 2011), and singular value decomposition (SVDI). These 

methods are described in detail by Rutkoski et al (2013). The imputations were performed using 

the R scripts provided by the same authors. The methods were compared in terms of GS 
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accuracy for all traits, using the RR-BLUP model. All mean comparison tests were performed in 

SAS PROC GLM using the Ryan-Einot-Gabriel-Welch (REGWQ) multiple testing correction at 

α = 0.05 level. The REGWQ correction conservatively controls the familywise error. 

Assessing the population structure level 

Population structure is an important factor in genomic selection as it can affect the 

prediction of breeding values (Lipka et al., 2014; Isidro et al., 2015). Biased estimates of 

genomic selection accuracy can be obtained when population structure is not taken into account 

(Riedelsheimer et al., 2013). For these reasons, the level of structure of the germplasm was 

assessed before running any GS analyses. A relationship matrix was built in GAPIT (Lipka et al., 

2012) using 5054 SNPs. Principal component analysis (PCA) was performed with the same 

SNPs in order to detect genetic structure in this collection of lines. The PCA was performed in 

JMP Genomics 7 (SAS Institute 2015). 

Calculation of genomic-estimated breeding values 

GEBVs were calculated by the general equation (Lorenz et al., 2011): 

𝑔(𝑥𝑖) = ∑ 𝑥𝑖𝑘𝛽𝑘
𝑝
𝑘=1 ,              (ii) 

where 𝑔(𝑥𝑖) is a function relating phenotypes to genotypes, 𝑥𝑖𝑘 is the score of the kth SNP (coded 

additively as -1, 0, or 1) for the ith individual, and 𝛽𝑘 is the effect of the kth SNP. For each trait, 

three models were tested: ridge regression best unbiased prediction (RR-BLUP) (Hoerl and 

Kennard, 1970; Meuwissen et al., 2001), least absolute shrinkage and selection operator 

(LASSO) (Tibshirani, 1996), and elastic net (Zou and Hastie, 2005). Shrinkage models differ 

from ordinary least square (OLS) regression by adding a penalty to the cost function. If in OLS 
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regression the cost function is represented by the sum of squared residuals (i.e., ∑ 𝑒𝑖
2), in 

shrinkage models the general cost function is given by equation (iii): 

1

2
∑ 𝑒𝑖

2 +
𝜆

2
∑ |𝛽𝑘|𝑞

𝑘𝑖 ,                    (iii) 

where 𝜆 is the regularization parameter, and the term q is equal to 2 for RR-BLUP, 1 for LASSO, 

and 0 < q < 1 for elastic net (Lorenz et al. 2011). While in OLS regression the parameter 

estimators are calculated with argmin
𝛽

‖𝑌 − 𝑋𝛽‖𝑙𝑛
2 , the parameter estimators for RR-BLUP, 

LASSO, and elastic net are given by equations (iv), (v), and (vi), respectively: 

argmin
𝛽

(
‖𝑌−𝑋𝛽‖2

2

2𝜎2 + 𝜆‖𝛽‖2
2) ,                                      (iv) 

argmin
𝛽

(
‖𝑌−𝑋𝛽‖2

2

2𝜎2 + 𝜆‖𝛽‖1) ,                                      (v) 

(1 + 𝜆2)argmin
𝛽

(
‖𝑌−𝑋𝛽‖2

2

2𝜎2 + 𝜆2‖𝛽‖2
2 + 𝜆1‖𝛽‖1) ,        (vi) 

where the notation ‖. ‖2 is used for the L2 - norm loss function (Euclidian norm) ‖𝛽‖2 =

(∑ 𝛽𝑖
2

𝑖 )1/2, ‖. ‖1 is used for the L1 norm (Manhattan norm) ‖𝛽‖ = ∑ |𝛽𝑖|𝑖 , and 𝜆 ≥ 0 is the 

tunning (penalty or regularization) parameter which regulates the strength of shrinkage of the 

estimates. The L1 part is responsible for automatic variable selection, whereas the L2 part does 

grouped selection, encouraging grouping of highly correlated variables. The expression 

“argmin
𝛽

” refers to the solution of coefficients 𝛽 that minimizes the equation inside the brackets. 

The terms 𝜆1 and 𝜆2 refer to the tunning parameters associated with the L1 and L2 norm penalties 

(Heslot et al., 2012; Ogutu, 2012). The “rr-BLUP package (Endelman, 2011)” in the R 
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programming language was used to conduct RR-BLUP, while LASSO and elastic net were 

conducted in the “glmnet R package (Friedman et al., 2010)”. 

Genomic selection prediction accuracies 

For each GS model and trait, the prediction accuracy was calculated as follows: 

𝑟(𝐺𝐸𝐵𝑉:𝑃𝐸𝐵𝑉)

√ℎ2
  ,                     (vii) 

where r is the Pearson’s correlation between the GEBVs and the phenotypically estimated 

breeding values (PEBVs) in the validation population (Dekkers 2007; Albrecht et al., 2011; Zhao 

et al., 2012), and ℎ2 is the broad-sense heritability on a line mean basis (Fehr, 1991). The 

variance components estimated from PROC MIXED in SAS (described in “Plant Material and 

Phenotypic data”) were used to calculate these heritabilities. 

Number of SNP markers 

The number of markers used in GS has a strong impact on the time required to run each 

analysis. Thus, it was assessed how a reduction on the number of markers would impact the GS 

accuracies. Sixty randomly sampled marker datasets, each consisting of either 500, 1500, 3000, 

or 4500 SNPs, were drawn from the original genotypic data. For each combination of GS model 

(RR, LASSO, and elastic net), marker set, and trait, GS was performed using 5-fold cross 

validation, resulting in 5 values of prediction accuracy for each of the 60 runs. For each trait, the 

mean prediction accuracy was compared among GS models for the marker sets containing the 

same number of SNPs, and between numbers of SNPs within the same GS model. The exact 

same folds were used to compare the prediction accuracy of different GS models. 
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Training and validation populations 

Marker effects estimated from the training population (TP) are used to calculate GEBVs 

for individuals in the validation population (VP). For a fixed number of breeding lines, one needs 

to decide how many lines will be part of the TP and VP. Therefore, the impact of the TP size (nTP 

= 96, 144, 192, and 218) on prediction accuracy was assessed in this study. Also, different 

proportions of the TP and VP were by evaluated by comparing different number of folds in cross 

validation. In 2-fold cross validation the population is equally divided in two groups (VP and 

TP), yielding a proportion of 0.5 of the TP in relation to the total. When 3-fold cross validation is 

used, this proportion is 0.66, as two thirds of the lines are assigned to the training set. Prediction 

accuracy was compared for 2-fold, 3-fold, 5-fold, and 10-fold cross validation. For each 

scenario, 150 analyses were performed, resulting in different number of accuracy values, 

depending upon the number of folds. For instance, 2-fold cross validation resulted in 300 values. 

Then, 300 values of accuracy were randomly selected from the 3, 5, and 10-fold schemes and 

their means were compared in SAS PROC GLM using the REGWQ procedure at ∝ = 0.05 level. 

GEBVs and PEBVs 

After determining the best imputation method, GS model, SNP number, TP size and 

proportion of TP/total, marker effects were estimated using cross validation, and a total of 300 

estimated were obtained for each marker. Then, the mean effect of each marker of obtained and 

used to calculate GEBVs for all 273 lines, for each trait. As a final step, the bias of the 

predictions was estimated as the slope (b) of the linear regression of PEBVs on GEBVs, as 

performed by Zhang et al. (2014). 
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Results 

Genotypes, structure and imputation methods 

More than 30,000 SNPs were called this collection of breeding lines using the UNEAK 

pipeline. After applying a Fisher’s exact test cutoff (p < 0.001), a cut off no more than 20% 

missing data and a minor allele frequency cutoff of > 5%, the number of SNPs was reduced to 

5054 with 12.57% overall missing data.  

No clear genetic structure was detected in this population, as revealed by Figure 1. This 

finding is not surprising as 86% of the lines belong to the University of Illinois breeding program 

or have been used in its crossing block. This low level of population structure was also detected 

by the principal component analysis, with the first and second eigenvectors explaining only 4.6% 

and 2.8% of the total variability, respectively.  

Four imputation methods were used to generate different genotypic data sets, which were 

then compared in terms of accuracy of GS modeling. As shown in Figure 2, the methods 

performed equally well for all traits. The EMI method was numerically superior for two traits 

(FDK and INC), KNNI was superior for two traits (DON and ISK) and SDVI resulted in 

numerically higher accuracies for FHBdx and SEV. Although no statistically significant 

difference was detected among the imputation methods for most traits, the methods differed 

considerably in terms of computation time required to impute missing genotypic data, with RFI 

being by far most time demanding (over 8 hours), followed by EMI (1min and10s), SVDI (< 

1min), KNNI (<1min) and MNI (<0.5min). These analyses were performed in a Dell Precision 

with CORE i7 vPro 3.00GHz, 8GB RAM, 700GB HD. In a study involving five populations and 

a super computer set, Rutkoski et al. (2013) also found the RFI method to be substantially more 

computationally demanding than the other methods. The EMI approach was selected for 
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subsequent analysis because it gave numerically higher accuracies for two traits, it was not very 

computationally demanding, and it has been used in other wheat genomic selection studies 

(Poland et al., 2012b; Lado et at., 2013, Rutkoski et al., 2013). 

GS models and SNP number 

Moderate to high values of cross-validated accuracies were observed for all traits, with 

the highest accuracies observed for FDK, ranging from 0.73 to 0.88, and the lowest for SEV, 

ranging from 0.46 to 0.59. As a general trend, the accuracies increased with the number of SNPs, 

albeit at different rates depending on the GS model and trait (Figure 3). For instance, a plateau 

was observed for ridge regression after 1500 (FDK and DON) or 3000 SNPs (SE, INC, and 

ISK), but not for FHBdx. The LASSO and the elastic net behaved very similarly to each other, 

showing a different pattern from the RR-BLUP. No plateau was observed when they were used 

for FHBdx, FDK, and ISK. For all three models, the trait with the least increase in accuracy was 

DON. 

For the same number of SNPs, RR-BLUPs outperformed LASSO and elastic net for all 

traits, except INC. For this trait, the GS models provided non-significantly different results when 

SNPs were equal to 3000 or higher. According to Zou and Hastie (2005), elastic net is expected 

to outperform the LASSO when p>>n. In this study, that was indeed the case for all traits, but the 

differences among these models were negligible. Considering the overall performance of the GS 

models, RR-BLUP was selected as the model of choice for subsequent analyses. 

Training population size 

Increasing the size of the training population (TP) resulted in higher accuracies for all 

traits (Figure 4). For most traits, the greatest increase occurred when TP changed from 96 to 144 

breeding lines. On average, accuracies were boosted by 16.6% across all traits. The rate of gain 
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decreases as the TP size increases, reaching a plateau between 192 and 218 for all traits, except 

FHBdx. Among all traits, FDK showed the highest accuracy values, followed by ISK and DON. 

Even with only 96 individuals in the TP, FDK showed mean accuracy of 0.76. The lowest values 

were obtained for FHBdx, ranging from 0.35 (nTP = 96) to 0.61 (nTP = 218). In a study with 

agronomic and quality traits in wheat, Heffner et al. (2011) reported a decrease of the mean 

accuracy across all traits by 30% when nTP decreased from 288 to 96, which is an average 

reduction of 0.156% per individual removed from the TP. In this study, the mean decreased by 

20.51% by changing nTP from 218 to 96, resulting in an average reduction of 0.168% per 

individual.   

In another series of analyses, the effect of the proportion of the TP in relation to the total 

number of lines was assessed by changing the number of folds used in cross-validation. 

Accuracies increased linearly with the proportion of TP until 0.8 or 0.9, except for DON (Figure 

5); Marker effects are better estimated as the TP increases; however, as the proportion of the TP 

reached 0.9 the variance of the accuracy values increased substantially. In fact, whereas the mean 

accuracy increased linearly with TP, the variance increased exponentially, as demonstrated in 

Figure 6 for FDK. 

GEBVs and PEBVs 

For each trait, GEBVS were calculated using the same imputation method (EMI), the best 

GS model (RR-BLUP), the largest training population size (nTP = 218), and 5-fold cross 

validation. For all traits, the values were distributed around the reference straight line reasonably 

well, with higher agreement for the mid values. The fitted linear regression of PEBVs on GEBVs 

all obtained slope estimated of approximately b = 1, suggesting little to no bias in the GEBVs 

(Table 2). Routinely, lines showing phenotypic values of ISK ≤ 45 are selected for further 
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testing. In this study, 65 or 23.81% of the lines showed PEBVs below that threshold. Using 

GEBVs ≤ 45 as the criterion, 43 or 15.75% of the lines would have been selected, with 42 

selections shared between PEBVs and GEBVs, and three unique to PEBVs. Twenty five lines 

with PEBVs below 45 would have been missed since as their GEBVs were above 45. For DON, 

using a PEBV ≤ 8 ppm for DON, 51 or 18.68% of the lines would have been selected. At the 

same time, using GEBV ≤ 8 ppm as the threshold instead, 36 lines would have been chosen, 

with 31 being shared between PEBVs and GEBVs, and five being unique to PEBVs. In addition, 

20 lines with PEBVs below 8 ppm would have been missed (GEBVs > 8 ppm). Similar trends 

were observed for the other traits when comparing selection based on GEBVs instead of PEBVs. 

Discussion 

Genotypes and imputation methods 

A collection of 273 breeding lines in use at the University of Illinois’ soft red winter 

wheat breeding program was used to develop genomic selection models for traits associated with 

Fusarium head blight resistance. Cultivars with higher levels of resistance to this disease are 

urgently needed across the United States. Five thousand and fifty four SNPs were called by 

genotyping-by-sequencing and the UNEAK pipeline (Lu et al., 2013). Allelic effects of each 

marker were estimated and used to calculate genomic estimated breeding values for the lines.  

Five different imputation methods were compared in terms of GS accuracy. The EMI, 

SVDI, KNNI, RFI and MNI methods performed equally well for all traits. At the same level of 

missing data (20%), Rutkoski et al. (2013) found similar results. Moreover, they demonstrated 

that these imputation methods tend to show differences with respect to GS accuracy as the level 

of missing data increases. Poland et al. (2012b) found no difference in GS accuracy for wheat 

traits when imputation methods were compared, even working with up to 80% missing data per 
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marker. In this study, EMI was numerically superior for two traits (FDK and INC) and required 

only 1 minute and 10 seconds to run a complete set of imputation for one data set. At the same 

time, RFI required over 8 hours and did not result in higher GS accuracy for any traits. Two 

other methods required almost 1 minute to run one set of imputation, and MNI required less than 

30 seconds, but this method resulted in the lowest accuracies.  

A low level missing data was selected for two reasons. First, the GS analysis gets 

computationally intensive as the number of SNP increases. Second, a total of 5054 SNPs were 

called with 20% missing data per markers. GS analyses with a larger number of SNPs were 

performed, but the increments in accuracy were not substantial enough to justify include the 

larger marker sets (data not shown). 

GS models and SNP number 

In this study, RR-BLUP, LASSO, and elastic net were compared for six traits under a 

range of SNP numbers. RR-BLUP is based on an infinitesimal model where all predictors are 

maintained in the analysis, resulting in a non-parsimonious model. In contrast, the LASSO 

performs variable selection and keeps a subset of predictors in the model, which is a reasonable 

assumption in plant breeding, as some SNPs are expected to not be associated with the response 

variable. This method, however, has its shortcomings: it can be unstable with high dimension 

data. In addition, the LASSO tends to be problematic when the predictor variables are highly 

correlated, but that should not be the case in this study as SNPs exhibiting pairwise correlations 

exceeding r2 ≥ 0.8 were not used. The elastic net can be seen as a combination of both methods. 

For most traits, higher values of accuracy were obtained when using RR-BLUP than with the 

other methods. In only one situation (trait = INC and SNP = 4500) did the LASSO and elastic-

net provide numerically higher accuracies, although they were not significantly different from 
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RR-BLUP. This led to the conclusion that, for the traits used in this study, a model with a very 

large number of small effect SNPs is more appropriate than a reduced model. It has been 

suggested that the LASSO is better suited for situations when large effect genes are present. It is 

possible that such genes are present in the University of Illinois’ germplasm for INC, and 

possibly for other traits. Even so, the superiority of RR-BLUP was demonstrated.  

Training population size 

A significant increase in accuracy was observed when more breeding lines were included 

in the TP. The overall rate of gain averaged over the six traits was comparable to a study in 

wheat conducted by Heffner et al. (2011), although they worked with different traits. In contrast 

to their results, a plateau in accuracy was observed when nTP > 192 for all traits, except FHBdx. 

The impact of the training population size on accuracy was assessed in other crops such as barley 

with empirical (Lorenz et al., 2012) and simulated data (Iwata and Jannink, 2012), oats (Asoro et 

al., 2011), wheat (Heffner et al., 2011), sugar beet (Würschum et al., 2013), and maize (Crossa et 

al., 2014). Lorenz et al. (2012) reported diminishing returns for prediction accuracies of DON 

and FHB resistance when nTP > 200, with no real gain when nTP changed from 200 to 300 barley 

lines. Considering that expected accuracy depends on nTP, h
2, and the number of loci involved 

(Daetwyler et al., 2008), it would be necessary to increase the genetic variability of the 

germplasm and the number of testing environments in order to obtain higher accuracies.  

The influence of the ratio TP/total number of lines was also assessed in terms of 

accuracies. Different number of folds used in k-fold cross validation schemes were tested: 2, 3, 

5, and 10-fold. For a fixed number of breeding lines, one needs to decide how many lines will be 

part of the TP and how many will be used for validation. Due to a very low level of structure in 

the group of lines used in this study, no particular sampling technique (Lipka et al., 2014; Isidro 
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et al., 2015) was used for choosing the lines to be part of the TP. As the ratio TP/total number of 

lines increased, higher values of accuracies were obtained. Similar results were obtained in an 

analysis conducted in maize by Zhao et al. (2012). In this study it was observed that the values of 

accuracy became excessively variable when the proportion is larger than 0.8. 

GEBVs and PEBVs 

A high agreement between PEBVs and GEBVs was found all for parameters associated 

with FHB resistance. Consequently, wheat lines with higher levels of resistance can be selected 

even before being planted. At the University of Illinois wheat breeding program, great emphasis 

is placed on ISK and DON when making selections. For ISK, it was observed that some lines 

would have been misclassified and missed by using the same value of GEBV as the reference 

PEBV value. That is because, although the agreement is sufficient, it is not perfect (Figure 7). 

Had the GEBV threshold been reduced by 14% (using 51.3 instead of 45), not a single line 

would have been missed. It is true that 11 extra lines would be selected inappropriately, but 

100% of the right lines would be carried to the selected pool. For DON, using 9.48 instead of 8 

ppm (relaxing the threshold by 18.5%) would guarantee all the right lines would have been 

chosen. In this case, 51 additional lines would have been selected. It is important to note that 

phenotyping for FDK and DON requires significant amount of time since grains must be 

harvested, samples must be cleaned, and then evaluated. In this case of DON, samples are 

shipped to a specific laboratory where mycotoxin quantification is performed. Given this 

scenario, genomic selection should have a significant impact in reducing resources associated 

with FDK and DON quantification. 
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Conclusions 

Most of the germplasm used in this study is primarily represented by breeding lines from 

the University of Illinois soft red wheat program. This study showed that moderate to high 

prediction accuracies can be achieved for FHB resistance-related traits within the context of a 

breeding program. Ridge regression-BLUP outperformed the other models for all traits. It was 

also demonstrated that moderate to high accuracies can be obtained even with a reduced set of 

SNPs and a few hundred lines in the training set. These results are encouraging and show that 

genomic selection can indeed be a promising strategy when breeding for FHB resistance.  

Historically, breeders have relied on phenotypic selection and, to some extent, on marker 

assisted selection when breeding for FHB resistance. The cooperative system of nurseries and 

research projects supported by the Agricultural Research Service/USDA under the US Wheat 

and Barley Scab Initiative (USWBSI), has greatly improved the knowledge about the disease and 

has been important for incorporating resistance into cultivars. The results obtained in this study 

support GS as a feasible breeding strategy for FHB resistance, aiding to the strategies already 

implemented by breeders and the USWBSI. A next step would be using GS to calculate GEBVs 

in the F4:5 generation in order to reduce the number of lines tested in replicated field trials. 

Additionally, GEBVs can be used to select which lines will compose the crossing blocks. 

Heffner et al. (2010) provide a framework for incorporating GS in a winter wheat breeding 

program based on single seed descent. Doubled haploid-based programs could benefit even more 

from GS as the number of lines to be field-evaluated could be drastically reduced as soon as the 

doubled haploid lines are available.  
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CHAPTER 3: GENOME-WIDE ASSOCIATION MAPPING OF FUSARIUM HEAD 

BLIGHT RESISTANCE IN WHEAT (Triticum aestivum L.) USING GENOTYPING-BY-

SEQUENCING 

Abstract 

Fusarium head blight (FHB) is one of the most important wheat diseases worldwide and 

host resistance displays complex genetic control. A genome-wide association study (GWAS) was 

performed on 273 winter wheat breeding lines from the midwestern and eastern regions of the 

US to identify chromosomal regions associated with FHB resistance. Genotyping-by-sequencing 

(GBS) was used to identify 19,992 single nucleotide polymorphisms (SNPs), covering all 21 

wheat chromosomes. Marker-trait associations were performed with different statistical models, 

the most adequate being a compressed mixed linear model (cMLM) controlling for relatedness 

and population structure. Ten significant SNP-trait associations were detected on chromosomes 

4A, 6A, 7A, 1D, 4D, 7D, and multiple SNPs were associated with Fhb-1 on chromosome 3B. 

The genomic region on chromosome 6A appears to be new, as no other study reported QTL for 

that region. In addition, combination of favorable alleles of these SNPs resulted in lower levels 

of disease; however, lines carrying multiple beneficial alleles were in very low frequency for 

most traits.  Predicted protein for identified SNPs included receptor-like kinase, reverse 

transcriptase, retrotransposon, and others, indicating a complex network of genes is involved in 

FHB resistance. 
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Introduction 

Fusarium head blight (FHB), also known as head scab or ear blight, is a destructive 

disease of wheat (Triticum aestivum L.), and is considered the most important plant disease to hit 

the USA since the stem rust epidemics of the 1950’s (Wood et al., 1999). In North America it is 

primarily caused by Fusarium graminearum Schwabe [telemorph: Gibberella zeae Schw. 

(Petch)]. In addition to wheat, the pathogen causes disease on barley, oat, rye, and corn.  

The economic losses associated with FHB are due to grain yield reduction, decrease of 

grain quality and mycotoxin-contaminated grain. Decreased grain quality results from low test 

weight and damaged kernels. Some damaged kernels are also frequently lost during harvest due 

to low grain weight (Adams, 2010). In addition, F. graminearum produces potent animal toxins 

such as trichothecenes and estrogenic metabolites. Deoxynivalenol (DON), the most common 

trichothecene in FHB infected wheat, is especially harmful to monogastric animals, causing 

vomiting, diarrhea, nausea and feed refusal by swine (Bennet and Klich, 2003). In humans, F. 

graminearum mycotoxins have been linked with alimentary disorders such as Akakabi toxicosis, 

which is characterized by vomiting, anorexia and convulsions (Bennett and Klich, 2003). Lastly, 

trichotecenes can survive the production processes employed by the food industry (Hazel and 

Patel, 2004), imposing technical challenges.  

FHB resistant wheat cultivars play an important role in FHB management and prevention 

of mycotoxin contamination. Fortunately, large genetic variability for resistance to FHB is 

present in the wheat gene pool (Buerstmayr et al. 2009). Resistance to F. graminearum in small 

grains was first classified by Schroeder and Christensen (1963) into two major components: 

resistance to initial infection by the pathogen (type I) and resistance to fungal spread along the 

rachis (type II). In wheat lines both types of resistance may be present individually or in 
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combination. In addition, other physiological resistances have been described such as resistance 

to toxin accumulation (type III), resistance to kernel infection (type IV) and tolerance (type V) 

(Mesterházy, 1995; Mesterházy, 1999).  

During the last two decades many linkage mapping studies in bi-parental populations 

have been published, identifying QTL associated with the different types of resistance to FHB on 

nearly every chromosome. Buerstmayr et al. (2009) and Liu et al. (2009) both reviewed these 

QTL (including over 100 and 249 QTL, respectively) in an attempt to find stable and useful QTL 

for breeding purposes. Genome-wide association studies (GWAS), first developed for human 

genetics, exploit the recombination events present in a group of unrelated individuals, usually 

resulting in higher mapping resolution. A key strategy in genome-wide association is to have 

enough genome coverage so that functional alleles will be in linkage disequilibrium (LD) with at 

least one marker (Myles et al., 2009). To date, a few GWAS have been conducted for FHB 

resistance traits in wheat, but marker availability has substantially changed since then. For 

instance, Miedaner et al. (2011) applied 115 single sequence repeat (SSR) markers in a GWAS 

involving European breeding lines. Kollers et al. (2013), also working with European 

germplasm, used 732 SSRs to detect QTL for FHB resistance. Ghavami et al. (2011) used 2300 

diversity array technology (DArT) markers in a durum wheat (Triticum durum L. var. durum 

Desf) association study. Although DArT markers are more abundant than SSRs, the authors 

found some chromosomes to be poorly covered. More recently, Gurung et al. (2013) used 4781 

single nucleotide polymorphisms (SNPs) to identify QTL associated with five diseases in wheat: 

Stagonospora nodorum blotch, Tan spot (caused by Pyrenophora tritici-repentis) races 1 and 5, 

bacterial leaf streak (caused by Xanthomonas translucens pv. Undulosa), spot blotch [caused by 

Cochliobolus sativus (Ito & Kuribayashi) Drechsler ex Dastur)], and Septoria tritici blotch.  
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Genotyping-by-sequencing (GBS) is a high throughput method for SNP genotyping that 

relies on genome complexity reduction with restriction enzymes (Elshire et al., 2011). 

Methylation-sensitive restriction enzymes can be used to target euchromatic, gene-rich regions, 

and hundreds of samples can be pooled and processed together following ligation with unique 

barcodes. The resulting pooled libraries are then polymerase chain reaction (PCR) amplified and 

Illumina sequenced. Poland et al. (2012a) modified the original protocol to accommodate a 

combination of enzymes. The striking advantages of GBS over other platforms are: i) 

identification of abundant SNPs at low cost; ii) simultaneously discovery and genotyping; iii) 

reduced ascertainment bias when compared to array based markers; iv) relatively easy 

automation (Elshire et al., 2011; Poland et al., 2012). 

Poland et al. (2012b) applied GBS in a wheat panel consisting of 254 lines from 

CIMMYT and were able to identify 41,371 SNPs. Rutkoski et al. (2013) used GBS to identify 

130,000 GBS polymorphisms from 360 elite spring lines belonging to CIMMYT. The number of 

SNPs was reduced to 2014 after applying a per-marker percent missing data threshold of 20%. 

Both studies successfully applied the GBS-SNP markers for genomic selection (GS). Langer et 

al. (2012) studied a panel consisting of 410 European winter wheat lines, and identified a total of 

23,371 SNPs for use in GWAS. 

In this study GBS-SNP markers were developed from a wheat panel of elite lines 

composed for genome-wide marker-trait association purposes. SNPs associated with resistance 

can accelerate the breeding process through marker assisted selection (MAS) or can be 

incorporated into GS strategies. In addition, significant SNPs can give insights into the biological 

function of the polymorphism and how it relates to resistance. The objective of this study was to 
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establish marker-trait associations for the different types of resistance to FHB using GBS-SNP 

markers. 

Materials and methods 

Plant material and disease assessment 

A total of 273 breeding lines were evaluated in this study, with 185 lines belonging to the 

University of Illinois soft red winter wheat breeding program, and the remaining lines selected 

from different land grant universities and private companies across the midwestern and eastern 

regions of the US. Phenotypic data were obtained from multiple experiments conducted in 2011, 

2013, and 2014 in Urbana, Illinois. No symptoms were obtained in 2012 due to extreme drought 

conditions. Each year, the experiment was set up as a complete randomized block design 

(RCBD) with two replications. Since not all lines were present in 2011, the experiment was 

analyzed as an unbalanced design. The experimental unit consisted of a 1-meter long single-row 

plot. The field was inoculated with grain spawn, which was prepared from autoclaved maize 

kernels and isolates collected throughout Illinois. The infested kernels were spread at a rate of 

approximately 224kg.ha-1, starting two to four weeks before anthesis. Mist irrigation was applied 

three times per 24 hour period prior to, during, and after anthesis. FHB resistance was assessed 

by measuring the following parameters: disease incidence (INC), severity (SEV), FHB index 

(FHBdx; [(severity x incidence)/100], Fusarium-damaged kernels (FDK), incidence-severity-

kernel index (ISK; [(0.3 x incidence + 0.3 x severity + 0.4 x FDK)], and deoxynivalenol 

concentration (DON). INC and SEV are referred to as type I and type II resistances (Schroeder 

and Christensen, 1963), and are used to quantify resistance to penetration and spread of the 

pathogen, respectively. INC and SEV were measured approximately 21 days after anthesis. INC 

is measured as a visual estimate of the percentage of infected heads from a sample of 20 heads 
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per plot. SEV was an estimate of infected spikelets in an infected head. FHBdx is calculated as 

(INC x SEV / 100). FDK is referred to as type III resistance (Mesterhazy 1995, Merterhazy et al., 

1999), and is a visual estimate of the percentage of Fusarium-damaged kernels. For each 

breeding line, one sample of kernels was taken and compared against a set of known FDK 

standards. The ISK index is often used for making selections in the University of Illinois 

breeding program, and is calculated as (0.3 x incidence + 0.3 x severity + 0.4 x FDK). Lastly, 

DON was quantified by gas chromatography-mass spectrometry at the Department of Plant 

Pathology at the University of Minnesota. Resistance to mycotoxins has been classified as type 

IV resistance (Miller et al., 1985), and DON is the most abundant mycotoxin in FHB damaged 

kernels in wheat.  

Phenotypic data analysis 

Best linear unbiased predictors (BLUPs) for each trait were calculated using a mixed 

model approach:  

𝑌𝑖𝑗𝑘 =  𝜇 + 𝑦𝑒𝑎𝑟𝑖 + 𝑏𝑙𝑜𝑐𝑘(𝑦𝑒𝑎𝑟)𝑖𝑗 + 𝑙𝑖𝑛𝑒𝑘 + ℎ𝑒𝑎𝑑𝑖𝑛𝑔𝑖𝑗𝑘 + (𝑦𝑒𝑎𝑟 𝑥 𝑙𝑖𝑛𝑒)𝑖𝑘 + 𝜀𝑖𝑗𝑘    (i) 

where 𝑌𝑖𝑗𝑘 is the observed phenotype, 𝜇 is the overall mean, 𝑦𝑒𝑎𝑟𝑖 is the random effect of the ith 

year, 𝑏𝑙𝑜𝑐𝑘(𝑦𝑒𝑎𝑟)𝑖𝑗 is the random effect of jth block within the ith year, 𝑙𝑖𝑛𝑒𝑘 is the random 

effect of the kth line, ℎ𝑒𝑎𝑑𝑖𝑛𝑔𝑖𝑗𝑘 is a quantitative covariate trait treated as fixed, consisting of 

the Julian day for the kth line in the jth block within the ith year, 𝑦𝑒𝑎𝑟 𝑥 𝑙𝑖𝑛𝑒𝑖𝑘 is the random 

effect of the interaction between the ith year and the kth line, and 𝜀𝑖𝑗𝑘 is the random error term. 

The plot mean-based broad-sense heritability (h2) was calculated for each trait using the variance 

components estimated from equation (i). 
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Genotypic data 

DNA extraction was performed using a cetyltrimethyl ammonium bromide 

(CTAB)/chloroform protocol and then diluted to a concentration of 25ng*ul-1. GBS libraries 

were prepared according to Poland et at. (2012b), with modifications. Three two-enzyme 

combination for genome complexity reduction were used: PstI-HF-MspI, PstI-HF-HinP1I, and 

PstI-HF-BfaI. The enzyme PstI-HF (CTGCAG) is a rare cutter, whereas MspI (CCGG), HinP1I 

(GCGC), and BfaI (CTAG) are common cutters. For each enzyme combination a different set of 

barcodes was used. A set of 384 barcodes with the PstI overhang was used, and a total of three 

96-plex libraries were sequenced on the Illumina HiSeq2000 at the W.M. Keck Center for 

Comparative and Functional Genomics. 

SNP calling was performed using the TASSEL 4 GBS pipeline (Glaubitz  et al., 2013) by 

aligning reads against a pseudo-reference genome developed from the T. aestivum  Chinese 

Spring chromosome survey sequence (here after referred to as the WCSS1 reference). The 

pseudo reference consisted of 41 molecules, one for each chromosome arm expect for 

chromosome 3B, which was a single molecule. Contigs longer than 200 bp originating from the 

chromosome arm specific libraries were downloaded at 

https://urgi.versailles.inra.fr/download/iwgsc/. Each pseudo molecule consisted of concatenated 

sequences for chromosome specific contigs with a string of 64 Ns inserted between contigs. The 

WCSS1 reference was indexed and alignment was done using the Burrows-Wheeler aligner 

(BWA) version 0.6.2. A text file having the start and end position of each contig within the 

pseudo molecule was created and used to identify SNP containing contigs and to determine 

location of SNPs on contigs. SNPs were named in the following format: 

CSS1_ChromArm_contig number_SNP position within the contig. Map positions of SNP 

https://urgi.versailles.inra.fr/download/iwgsc/
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containing contigs were obtained from the POPSEQ map (IWGSC, 2014) available at 

http://wheat-urgi.versailles.inra.fr/Seq-Repository/Publication. After obtaining their location, 

SNPs were excluded from the analysis if: i) per-marker missing data level > 50%; ii) minor allele 

frequency < 5%; iii) percent of heterozygotes > 10% ; iv) SNP mapped into multiple 

chromosomes. Missing data were imputed using the expectation maximization (EM) imputation 

method as described by Rutkoski et al. (2013). The panel was also genotyped with single 

sequence repeat (SSR) markers known to be associated with FHB resistance at the Eastern 

Regional Small Grains Genotyping Lab, USDA-ARS, Raleigh, NC. 

Wheat is an allohexaploid species with 2n = 6X = 42 chromosomes distributed over sub-

genomes A, B, and D. Since these sub-genomes share similarities, the same SNP may map to 

homoeologous chromosomes (1A, 1B, 1D) or even to non-homoeologous chromosomes (1A and 

2B, for example). In this study, SNPs that mapped to multiple locations were excluded from the 

analysis. Lastly, redundant SNPs were eliminated based on LD (r2 > 0.8) using the LD tagSNP 

selection option in JMP Genomics 7 (Carlson  et al., 2004; SAS Institute, 2015). 

Genome-wide association analysis 

Principal component analysis (PCA) was first performed to access the level of genetic 

structure of the panel. The analysis was performed in JMP Genomics v.7, PCA for Population 

Stratification option (SAS Institute, 2015). Marker-trait associations were tested in the Genome 

Association and Prediction Integrated Tool – GAPIT (Lipka et al., 2012), using five linear 

models: 1) “naïve” model, with no control for population structure and relatedness, was 

implemented in GAPIT by setting the parameters group.from and group.to equal to 1 and using 

no covariates. 2) Q model, similar to model 1 but using 4 principal components from the PCA as 

fixed effects (Zhao et al., 2007); 3) K model, with a variance-covariance matrix (K) between 

http://wheat-urgi.versailles.inra.fr/Seq-Repository/Publication
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individuals treated as random, implemented in GAPIT by setting the parameters group.from and 

group.to equal to the number of taxa; 4) Mixed Linear Model “MLM”, incorporating both the 

fixed effects from model 2 and the random effect from model 3 (Yu et al., 2006); 5) compressed 

MLM (cMLM), in which individuals are clustered in groups and a reduced kinship matrix is used 

in the analysis (Zhang et al., 2010). The same number of principal components were used in 

models 2, 4, and 5. 

The “naïve” and Q models can be expressed as: 

𝒀 = 𝑿𝜷 + 𝒆                   (iii), 

in which Y represent the phenotypes, 𝑿 is the design matrix, 𝜷 is a vector containing fixed 

effects, and 𝒆 is the random error. In the “naïve” model 𝜷 contains only the markers, whereas in 

the Q model it contains both the markers and the eigenvalues from the PCA. The other three 

models (K, MLM, and compressed MLM) can be expressed as: 

 𝒀 = 𝑿𝜷 + 𝒁𝒖 + 𝒆        (iv), 

in which the 𝒁 is a design matrix and 𝒖 is a vector of random additive genetic effects. In the K 

model,  𝜷 contains only markers and 𝒖 contains the K matrix. In both MLM and compressed 

MLM, 𝜷 has both markers and eigenvalues, and 𝒖 has the K matrix. The significance of marker-

trait associations was based on a false discovery rate-adjusted P-value of 0.10.  

Results 

Phenotypic data 

Substantial phenotypic variation was observed for all traits, with SEV and FHBdx 

showing the largest range (Table 3). For DON, the mean value of the untransformed BLUPs was 

13.48 ppm, which is considerably higher than the maximum allowed in wheat grains in the US 



49 

 

(10 ppm). Also, values of SEV as high as 100% for individual plots were observed in all years, 

indicating adequate conditions for disease development. Medium to high values of broad-sense 

heritabilities were observed in this experiment. The lowest value was observed for DON (0.43) 

and the highest value observed for SEV (0.67). These heritability estimates indicate that the 

panel contains adequate levels of genetic variation for the traits considered in this study. 

Genotypic data and population structure 

A total of 32,483 SNPs were identified with the GBS protocol after applying the filtering 

criteria. This number was then reduced to 19,992 SNPs after the LD-SNP analysis, in which 

SNPs showing linkage disequilibrium (r2) higher than 0.8 were eliminated. The observed SNP 

missing level was 0.31 and MAF was 0.17. Genome B showed the highest number of SNPs 

(9084), followed by A (6992), and D (3916) (Table 4). On average 1297, 998, and 559 SNPs 

were found for each chromosome of genomes B, A, and D, respectively. The overall 

polymorphism information content (PIC) of the panel was 0.2029, and the SNP diversity (DIV) 

was 0.2405. The values of PIC and DIV were similar among sub-genomes A and B, but lower 

for D. Not surprisingly, the chromosome with the highest number of SNPs was 3B, which is the 

largest of the wheat chromosomes, and for which a draft genome sequence is available (Choulet 

et al., 2014). Although the PCA showed lines from Illinois clustering together, separated from 

lines of different origin (Figure 8), the level of population structure across the panel was 

considered low, with the first four PCs accounting for 5.0, 3.0, 2.7, and 2.4% of the total genetic 

variation, respectively. No other grouping pattern could be detected with this analysis.  

Marker-trait associations 

Five statistical models were compared in their ability to detect marker-trait associations. 

The models that did not include the K matrix - “naïve” and Q model - revealed a large number of 
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significant SNPs for most traits (Table 5). For instance, the “naïve” model detected 160 QTL for 

INC whereas the Q model detected 208 for the same trait. These numerous associations probably 

arose from the fact that the breeding lines used in this study have a high degree of relatedness 

and the K matrix was not included in those models. In fact, the number of significant 

associations reduced considerably with the inclusion of the K matrix. Very similar numbers of 

associations were detected for the same trait across the K, MLM, and cMLM models.  

Ideally, the p-value distribution would follow a uniform distribution around the expected 

values. A considerable deviance from the expected distribution was observed, especially for the 

“naïve” and Q models (data not shown). At the same time, the models including the K matrix 

showed good agreement with the expected distribution, with the outliers representing the 

significant SNPs based on the raw p-value. Models K, MLM, and cMLM performed very 

similarly and the cMLM was selected as the model of choice for subsequent analysis for all traits 

due to its improved statistical power (Zhang et al., 2010). 

FHB-related traits 

Severity 

SNP WCSS1_contig10676713_3B_7175 was significantly associated with SEV (Fig. 9a). 

This SNP accounted for 8% of the variability and its estimated effect was -9.54 (Table 6). 

Chromosome 3B harbors a major effect QTL, Fhb-1, which has been extensively studied. The 

significant SNP was found to be in linkage disequilibrium with SSR markers flanking Fhb1 (D’ 

= 0.39 and 0.34 for umn10Fd and Xgwm533, respectively); however, these SSRs did not meet 

the threshold to be declared a QTL in this study, probably due to genotyping errors. When SNPs 

were ranked based on FDR-adjusted p values, three additional SNPs on chromosome 3B, located 

at similar genetic position of Fhb1, were among the top seven markers. Two of these three SNPs 
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were also in linkage disequilibrium with the SSRs flanking Fhb-1 (data not shown). Due to the 

importance of this genomic region for FHB resistance, it was decided to further analyze the 

relationship between these four SNPs on chromosome 3B and their impact on SEV. Thirteen 

haplotypes involving these four SNPs were found in the panel. The haplotypes were compared 

using a series of contrasts (table 7). Haplotypes with fewer than 10 individuals were not used in 

the analysis. In general, a tendency towards lower levels of SEV was observed as favorable 

alleles accumulate (Fig. 10a). The lowest mean SEV was observed for the group with lines 

carrying all four favorable alleles (“+ + + +”); however, this group did not differ from the second 

best haplotype (“+ + - +”), suggesting SNPs WCSS1_contig10676713_3B_7175, 

WCSS1_contig10352272_3B_5482, and WCSS1_contig10699215_3B_3620  are sufficient for 

providing lower SEV levels.   

Incidence 

Five SNPs on chromosomes 4D, 7D, 4A, 6A, and 7A, were significantly associated with 

INC (Fig. 9b). WCSS1_contig3876750_7DS_2023 accounted for 16% of the variance, and its 

effect was 6.74 (Table 6). The other SNPs showed effects varying from -4.56 to 3.60. A positive 

effect means that the presence that allele is associated with higher levels of disease. In these 

cases, the alternate allele is the one to be selected. Unfortunately, lines carrying more than one 

favorable allele were very rare, and a meaningful statistical comparison could not be performed. 

The only two contrasts performed were (“- - - - -“ versus “- - - - +”) and (“- - - - -“ versus “- - - + 

-“). The first was significant (p = 0.017), but the second was not (p = 0.57). In general, a pattern 

similar to SEV was observed for INC, with lower disease levels with more favorable alleles (Fig. 

10b). 
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DON 

Four SNPs were associated with DON on chromosomes 1D and 3B (two on the short arm 

and one on the long arm) (Table 6). Although in the same locus, SNPs 

WCSS1_contig10413672_3B_4839 and WCSS1_contig10764618_3B_2168 were not in linkage 

disequilibrium. For this reason, they were both considered in further analysis. Differently from 

other traits, some of the SNPs detected for DON had the major allele as being the favorable one. 

In other words, the lines showing the minor allele had the highest DON values, especially when 

multiple favorable alleles were absent. Eight different haplotypes were present in the panel (Fig. 

10c), with two having more than 10 individuals. The first group consisted of lines carrying four 

“+” alleles, and the second comprised lines with “+” alleles for 

WCSS1_contig10676713_3B_7175, WCSS1_contig1879930_1DS_3352, and 

WCSS1_contig10764618_3B_2168. These groups were not significantly different from each 

other (Table 7). 

Disease indexes 

Marker-trait association were tested for disease indexes, which incorporate multiple 

disease measurements all at once. One SNP was detected for FHBdx 

(WCSS1_contig10676713_3B_7175) and two for ISK (WCSS1_contig10676713_3B_7175 and 

WCSS1_contig3876750_7DS_2023). These are the same SNPs detected for SEV and INC 

(Table 4). Both indexes were based on values of SEV and INC (plus FDK in the case of ISK).   

Discussion  

Fusarium head blight is the most important wheat disease in the Midwest US, and 

cultivars with higher levels of resistance are urgently needed. The identification of QTL 

associated with resistance can potentially facilitate the incorporation of resistance into elite 
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germplasm. In this study GBS was used to generate SNPs for a panel consisting of 273 winter 

wheat lines. This germplasm is mainly from soft winter wheat breeding programs across the 

midwestern and eastern regions of the US. A total of 19,992 SNPs were used for genome-wide 

marker-trait association for FHB-resistance traits. A larger number of SNPs was detected for 

sub-genome B. The levels of PIC and DIV were comparable between sub-genomes A and B, but 

considerably lower for D. The relative lower diversity of this genome has been reported in other 

studies (Poland et al., 2012a, Nielsen et al., 2014). Akhunov et al. (2010) point to the low 

effective recombination and prevention of homoeologous chromosome paring as an explanation 

for the difference in genetic diversity among the wheat genomes. In addition, it is known that 

genome D was latest to be added to the cultivated bread wheat (Peng et al., 2011) .Chromosome 

3B showed the largest number of SNPs. This is not surprising since 3B is the largest wheat 

chromosome and has more sequence available for aligning tags. In fact, wheat chromosome 3B 

is more than twice size of the entire rice genome (Itoh et al., 2007; Paux et al., 2008). 

Population structure can result in spurious associations between markers and traits 

(Matthies et al., 2012), and association studies that do not account for it should be viewed with 

skepticism (Flint-Garcia et al. 2003). The level of stratification of the panel was assessed via 

PCA using all 19,992 SNPs. Only a low level of structure was detected, as revealed by the 

modest contribution of the first four PCs to the total genetic variance (13.1%). This reduced 

population structure is most likely due to the fact that 86% of the lines used in the panel were 

breeding lines from the University of Illinois’ breeding program, and/or due to the extensive 

germplasm exchange among the breeding programs from which the lines originated. This 

exchange of breeding lines is facilitated by the US Wheat and Barley Scab Initiative through a 

cooperative system of FHB nurseries. 
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Five statistical models were tested for detecting marker-trait associations. The best model 

can vary with the trait, as reported by Gurung et al. (2014). The authors found the K model to be 

the best for Stagnosporam nodorum blotch and tan spot caused by Pyrenophora tritici-repentis 

races 1 and 5. The MLM (Q + K matrices) was the most suitable for bacterial leaf streak, spot 

blotch, and Septoria tritici blotch. In this study, models lacking control for relatedness detected a 

large number of (most likely) spurious associations. The lines used in this study belong to 

breeding programs that extensively exchange germplasm. For this reason, high degree of 

relatedness was expected. The marker-based kinship (K) matrix was shown to be important for 

controlling false-positive associations. 

Several QTL have been identified for FHB resistance and few of them are considered 

stable, being detected by independent studies. To date, the best studied and characterized QTL is 

Fhb-1, on the short arm of chromosome 3B. This major effect QTL has been introgressed into 

several adapted lines and cultivars worldwide. In this study, one SNP on the short arm of 

chromosome 3B (locus 18.32 cM) was associated with SEV. Independent studies detected QTL 

for multiple traits associated with FHB resistance on that same region. In a meta-analysis with 

249 QTL from 45 studies, Liu et al. (2009) reported 27 QTL associated with SEV, INC, FDK, 

and DON within loci between 0 and 21.6 cM. This cluster, or meta-QTL (MQTL) was flanked 

by the SSR markers Xfba311 and Xgwm493. Working with 30 mapping populations of mostly 

European germplasm, Loffler et al. (2009) performed a meta-analysis and found 13 QTL for 

SEV and INC, clustered around 16.1cM. In a comprehensive review, Buerstmayr et al. (2009) 

compiled information from 52 mapping studies and found 26 QTL for multiple FHB resistance 

traits falling within positions 0 to 20 cM on chromosome 3B, between Xgwm533 and Xgwm493. 

Although some overlap exists between the mapping populations used in these meta-analyses and 
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review, they all show Fhb-1 spanning over loci 0 and 20 cM. In this study, a SNP associated 

with SEV, FHBdx, and DON on chromosome 3B locus18.32 cM is reported. This SNP was in 

linkage disequilibrium with SSRs flanking Fhb-1, suggesting that this GWAS was able to detect 

the same chromosomal region associated with Fhb-1. In addition, it was showed that a 

combination of SNPs in that region, albeit not all significant when considered individually, can 

confer lower levels of SEV. Interestingly, the combination without SNP 3B-3 did not differ from 

the best combination (“+ + + +”).  

Five SNPs were associated with INC, on chromosomes 4A (locus 78.35 cM), 4D (0), 6A 

(134.15), 7A (22.82), and 7D (70.84). Liu et al. (2009) reported a MQTL consisting of two QTL 

on chromosome 4A between loci 75.7 to 77.1 cM. Both QTL were associated with SEV. They 

also found 10 QTL on chromosome 4D clustered around locus 12 cM, most of them associated 

with SEV. Interestingly, these 10 QTL all overlapped with Rht-D1, a plant height gene. The 273 

breeding lines used in this study was genotyped for markers linked to Rht-D1, and they showed 

no association with FHB resistance. The SNP on chromosome 6A seem to be a unique QTL, as 

no other mapping study has reported associations with FHB resistant traits around locus 134.15 

cM. It is known that two regions on chromosome 7A harbor QTL for SEV and one region on 7D 

for multiple FHB resistance traits (Liu et al., 2009). In this study, SNPs detected for INC were 

relatively close to those regions. As it was found for SEV, lines carrying multiple (“+”) alleles 

showed lower levels of disease.  

Mycotoxin accumulation in harvested grain is an important problem for growers, the food 

industry, and consumers. DON is the most important mycotoxin in wheat, and QTL associated 

with lower levels of DON have been reported on multiple chromosomes. This study detected 

four SNPs significantly associated with DON on chromosomes 3B (one on the short arm and two 
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on the long arm) and 1D. The SNP on short arm of chromosome 3B is the same found for SEV 

and the disease indexes. The SNPs on the long arm of 3B could potentially be associated with 

QTL reported previously. For instance, Liu et al. (2009) detected a cluster of QTL between loci 

49 and 57 cM, and Loffler et al. (2009) reported a cluster around locus 45.5 cM. In this study, the 

SNP detected on chromosome 1D falls within the same cluster detected by Liu et al. (2009) on 

that chromosome. The combination of SNPs had a numerical reduction on DON level. 

Unfortunately the group of lines with no positive allele (“- - - -”) consisted of only two lines and 

were not included in the contrasts; however, a substantial numerical difference was observed 

when compared with the class (“+ + + +”) and (“+ - + +”). These two classes were not 

significantly different. Miedaner et al. (2006) compared eight combinations of QTL on 

chromosomes 3A, 3B, and 5A in terms of DON and FHBdx. For both traits, the combination 3B 

and 5A did not differ from three QTL stacked together. In this study, it was observed that most 

lines in the panel (90.4%) already have at least three favorable alleles 

(WCSS1_contig10676713_3B_7175, WCSS1_contig1879930_1DS_3352, and 

WCSS1_contig10764618_3B_2168). When this combination is absent, DON levels increase 

substantially. It is possible to speculate that the combination of QTL associated with these SNPs 

may play a role in DON accumulation and/or detoxification. Future research is necessary to 

clarify the function of the QTL associated with these SNPs and DON levels.   

In a study with recombinant inbred lines from a cross involving Ning 7840, the main 

source of Fhb-1 in North America, Bernardo et al. (2012) reported seven SNPs mapped within 

the Fhb-1 region flanked by Xgwm533 and Xgwm493. The nucleotide sequences of the contigs 

containing the significant SNPs found in this study were compared with the sequences reported 
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by Bernardo et al. (2012). No correspondence was found, indicating the high level of 

polymorphism within the Fhb-1 region.  

Hypothetical protein predictions were obtained for eight out of twelve contigs (Table 8), 

many of which seem to be involved in epigenetic regulation. For the contig on chromosome 1D 

harboring WCSS1_contig1879930_1DS_3352, the predicted protein is a receptor-like kinase 

(RLK), which are known to be involved in a wide range of plant responses including 

development, growth, and response to pathogen (Goff et al., 2007). Other predicted proteins 

contain a reverse transcriptase, protein phosphatase inhibitor, transcription factors, and other 

ubiquitin protein. These results suggest resistance to FHB in wheat may involve intricate gene x 

gene interactions. In fact, some SNP x SNP interactions were significant in this study (data not 

shown). Miedaner et al. (2011) also found digenic epistatic interactions to be involved in FHB 

resistance. 

Conclusion 

Breeding wheat for FHB resistance has been a difficult task due to a number of reasons, 

including the complex nature of resistance. In this study QTL for FHB resistance were identified 

in a new genomic region as well as in regions previously reported as harboring QTL, especially 

on chromosome 3B. This study also provides evidence that QTL accumulation can result in 

higher levels of resistance, but certain haplotypes occur in rare combinations. The SNPs reported 

in this study can be used immediately for marker-assisted selection and/or genomic selection. In 

addition, functional characterization of the underlying QTL could be performed for elucidating 

their biological role in FHB resistance. This is the first GWAS for FHB resistance using the 

contig information from the International Wheat Genome Sequencing Consortium. The 
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sequences associated with the SNPs found in this study can be obtained in the consortium’s 

website for future research.  
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CHAPTER 4: COMPARING GENOME-WIDE ASSOCIATION MAPPING AND 

MARKER-ASSISTED SELECTION FOR FUSARIUM HEAD BLIGHT IN WHEAT 

(Triticum aestivum L.) 

Abstract 

Genomic selection (GS) and markers-assisted selection (MAS) rely on marker-trait 

association and are routinely used for breeding purposes. Although similar, these strategies differ 

regarding how markers as used to estimate breeding values. In this study, GS and MAS were 

compared for predicting six parameters associated with resistance to a destructive wheat disease, 

Fusarium head blight (FHB). A panel consisting of 273 soft red winter wheat lines from the US 

midwestern and eastern regions was used in this study. Quantitative trait loci (QTL) identified in 

a previous genome-wide study and Fhb-1, the best studied QTL for FHB resistance, were used 

for MAS using multiple linear regression (MLR). GS relied on 19,992 SNPs, QTL and Fhb-1, 

and marker effects were estimated with ridge regression-best unbiased linear predictor (RR-

BLUP). GS greatly outperformed MAS, with cross-validated prediction accuracy varying from 

0.24 to 0.74 and from 0.59 to 0.98 for MAS and GS, respectively. Treating quantitative trait loci 

(QTL) as fixed effects in GS models resulted in higher prediction accuracy when compared with 

a GS model with only random effects. For the same selection intensity, GS resulted in higher 

selection differentials than MAS for all traits. This study indicates that GS is a more appropriate 

strategy than MAS for FHB resistance.  
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Introduction 

Several marker-based strategies are being applied in modern plant breeding with the 

objective of selecting individuals with superior performance; marker-assisted selection (MAS) 

and genomic selection (GS) are two examples. In MAS, individual lines are selected based on 

quantitative trait loci (QTL), which are detected through linkage mapping (LM) or genome-wide 

association studies (GWAS). While LM relies on experimental populations with limited 

recombination events, GWAS is performed on panels or collections of lines, taking advantage of 

all recombination events that occurred throughout the history of the panel, usually resulting in 

higher mapping resolution when compared to LM (Myles et al., 2009). In both LM and GWAS, 

only QTL meeting a certain threshold will be declared as significant, all the remaining marker-

trait associations being ignored for further analysis. Thus, the number of markers per trait used in 

traditional MAS is generally low. For traits under complex genetic control, with multiple small 

effect genes playing a role, MAS can be of limited applicability (Bernardo et al., 2008). GS can 

be viewed as an extension of MAS. Instead of defining a statistical threshold for declaring 

significant QTL, all markers are used in GS for modeling the performance of an individual, 

regardless of the magnitude of their effect (Meuwissen et al., 2001). Therefore, for traits with 

complex inheritance, GS is expected to perform better because the variation due to small effect 

genes is potentially captured.  

During the last decade, an exponential reduction in sequencing cost has occurred 

(Wetterstrand et al., 2015), and numerous next generation sequencing platforms are available to 

the plant research community (Patel et al., 2015). As a consequence, high density genome-wide 

markers are becoming available for most crops, making MAS and GS even more attractive. 

Assessing how these strategies compare is important for making more rational and efficient use 
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of markers in a breeding pipeline. Heffner et al. (2011) compared GS and MAS for 13 agronomic 

traits in wheat and reported a 28% advantage of GS over MAS for prediction accuracies. Wang  

et al. (2014) found GS to outperform MAS for agronomic and quality traits in inbred and hybrid 

rye. In the case of grain yield, the prediction accuracy, defined as the correlation between 

phenotypically estimated breeding values (PEBVs) and genomic estimated breeding values 

(GEBVs), increased from 0.12 (MAS) to 0.59 (GS) in one population. Zhao et al. (2014) 

compared both methods for heading time and plant height in rye, and found the best method to 

be trait specific. When major genes are present, GS models such as ridge regression-best 

unbiased linear prediction (RR-BLUP) will underestimate the variance associated with these 

genes, negatively impacting accuracies. By treating major genes as fixed effects in the GS model 

even higher accuracies can sometimes be achieved (Bernardo, 2014; Owens et al., 2014; Zhao et 

al.; 2014), but not always (Rutkoski et al., 2012).  

Fusarium head blight (FHB), caused by Fusarium graminearum Schwabe [telemorph: 

Gibberella zeae Schw. (Petch)], is a major wheat disease in most growing areas, including the 

US midwestern region, where the pathogen can overwinter on maize debris. The pathogen causes 

damage due to significant grain yield reduction (Madden and Paul, 2009) and mycotoxin 

contamination in infected grain. Breeding for FHB resistance has been challenging due to the 

complex, polygenic nature of resistance, labor intensive phenotyping, and the delayed 

availability of high density, genome-wide markers compared to other economically important 

crops. One major QTL, Fhb-1 has been identified by independent studies and multiple small 

effect QTL have been detected on nearly all wheat chromosomes, revealing the complex genetic 

architecture of FHB resistance (Buerstmayer et al., 2009; Liu et al., 2009; Loffler et al., 2009). 
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The objective of this study was to compare marker-based breeding strategies (MAS and GS) in 

their ability to predict phenotypes associated with FHB resistance.  

Materials and methods 

Plant material and phenotypes 

A panel consisting of 273 breeding lines from multiple institutions was used in this study. 

Most of the lines originated from the University of Illinois soft red winter wheat breeding 

program, the remaining lines came from breeding programs in the US midwestern and eastern 

regions. The panel was phenotyped as described in Chapters 2 and 3. Briefly, six parameters 

associated with FHB resistance were recorded: severity (SEV), incidence (INC), FHB index 

(FHBdx; [(SEV x INC)/100], Fusarium-damaged kernel (FDK), incidence-severity-kernel index 

(ISK; [0.3 x INC + 0.3 x SEV + 0.4 x FDK]), and mycotoxin accumulation (DON). SEV was 

recorded as the percentage of infected spikelets within a wheat head. INC is the percentage of 

infected heads in an experimental unit. FDK was recorded as the visual estimate of the 

percentage of Fusarium-damaged kernels in a sample of kernels. DON was quantified using 

chromatography-mass spectrometry at the Department of Plant Pathology at the University of 

Minnesota by Dr. Yanhong Dong. The experiment was grown in Urbana, Illinois in 2011, 2013, 

and 2014. Each year, the experiment was set up as a randomized complete block design (RCBD), 

with two replications. Since not all lines were planted in 2011, the data was analyzed as an 

unbalanced design. The experimental unit consisted of one-meter long single rows cultivated in a 

scab nursery with mist irrigation and grain spawn inoculation. Maize kernels were infested with 

F. graminearum from isolates collected throughout Illinois over several years, and then spread in 

the field at a rate of approximately 224kg.ha-1. 
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For each trait, best linear unbiased predictor (BLUP) was calculated for each line using 

PROC MIXED SAS version 9.4 (SAS Institute 2013), according to equation (i):  

𝑌𝑖𝑗𝑘 =  𝜇 + 𝑦𝑒𝑎𝑟𝑖 + 𝑏𝑙𝑜𝑐𝑘(𝑦𝑒𝑎𝑟)𝑖𝑗 + 𝑙𝑖𝑛𝑒𝑘 + ℎ𝑒𝑎𝑑𝑖𝑛𝑔𝑖𝑗𝑘 + (𝑦𝑒𝑎𝑟 𝑥 𝑙𝑖𝑛𝑒)𝑖𝑘 + 𝜀𝑖𝑗𝑘    (i) 

where 𝑌𝑖𝑗𝑘 is the observed phenotype, 𝜇 is the overall mean, 𝑦𝑒𝑎𝑟𝑖 is the random effect of the ith 

year, 𝑏𝑙𝑜𝑐𝑘(𝑦𝑒𝑎𝑟)𝑖𝑗 is the random effect of jth block within the ith year, 𝑙𝑖𝑛𝑒𝑘 is the random 

effect of the kth line, ℎ𝑒𝑎𝑑𝑖𝑛𝑔𝑖𝑗𝑘 is a quantitative covariate trait treated as fixed, consisting of 

the heading date in Julian days for the kth line in the jth block within the ith year, 𝑦𝑒𝑎𝑟 𝑥 𝑙𝑖𝑛𝑒𝑖𝑘 

is the random effect of the interaction between the ith year and the kth line, and 𝜀𝑖𝑗𝑘 is the 

random error term.  The BLUPs were used as phenotypically estimated breeding values (PEBVs) 

for model comparisons. 

Genome-wide association analysis 

The procedures for single nucleotide polymorphisms (SNPs) identification and QTL 

detection were described in Chapter 3. In short, genotyping-by-sequencing (GBS) was employed 

using three two-enzyme combinations, where a rare cutter (PstI-HF) was combined with three 

common cutters (MspI, HinP1I, and BfaI). TASSEL GBS version 4 was used against a pseudo 

reference genome developed from the Spring Chinese chromosome survey. A total of 19,992 

SNPs were identified after applying the following filtering criteria: i) maximum per-marker 

missing data level of 50%; ii) minimum allele frequency of 5%; iii) maximum heterozygosity 

level of 10%; iv) SNPs mapped to single chromosomes. Missing data was imputed using the 

expectation maximization method (Rutkoski et al., 2013). The panel was also genotyped with 

single sequence repeat (SSR) markers known to be associated with FHB resistance. Two SSRs 

(Xgwm533 and umn10Fd) flanking Fhb-1 were used to determine whether or not a particular line 
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had this major effect QTL. Lines carrying the resistant allele for both SSRs simultaneously was 

scored as “2” (Fhb-1-resistant), whereas lines carrying the susceptible allele for both SSR was 

scored as “0” (fhb-1-susceptible). Other combinations were classified as heterozygote (“1”). 

Genome-wide marker-trait associations were tested using the Genome Association and 

Prediction Integrated Tool – GAPIT (Lipka et al., 2012). A compressed mixed linear model was 

used having a marker-based kinship (K) matrix treated as random effect and matrix (Q) with the 

first four eigenvalues from a principal component analysis, treated as fixed effects. A false-

discovery rate (FDR)-adjusted p-value of 0.10 was used for detecting significant marker-trait 

associations. The number of QTL identified with this procedure varied according to the trait: 

SEV(1), INC (5), FHBdx (1), DON (4), ISK (2), and FDK (0). 

Comparison of models 

 Genomic selection and marker-assisted selection were compared in this study using 

different genotypic data sets. The GS model was based on RR-BLUP under three different 

scenarios: all markers treated as random effects (GS1); all markers as random effects and Fhb-1 

treated as fixed effect (GS2); all markers as random effects and QTL treated as fixed effects 

(GS3); For marker-assisted selection, multiple linear regression (MLR) was used with QTL 

treated as fixed (MAS1); and MLR with Fhb-1 treated as fixed (MAS2). Although Fhb-1 was 

not associated with some traits such as INC and DON, this QTL was included for these traits due 

to its importance for FHB resistance and popularity among wheat breeders worldwide. Since no 

QTL were identified for FDK, the five SNPs with the lowest FDR-adjusted p-values were 

selected from GAPIT and treated as fixed effects in GS1 and MAS1. In addition, three extra 

SNPs were considered for SEV because they were ranked among the top eight SNPs with the 
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lowest FDR-adjusted p-values, and they targeted the Fhb-1 region. For more information about 

the SNPs used in this study, see Table 6.  

Prediction accuracy 

A 5-fold cross validation scheme was used to estimate SNP effects. Initially, the 273 lines 

were divided into five groups, four groups consisting of the training population (TP) and one 

group consisting of the validation population (VP). SNP effects were estimated in the TP and 

genomic estimated breeding values (GEBVs) were calculated for the lines in the VP. Prediction 

accuracy was calculated as: 

𝑟(𝐺𝐸𝐵𝑉: 𝑃𝐸𝐵𝑉)

√ℎ2
 

where r is the Pearson’s correlation between the GEBVs and the PEBVs in the validation 

population, and ℎ2 is the broad-sense heritability, estimated in Chapter 2 (Dekkers 2007; 

Albrecht et al., 2011). For each model and trait, 60 TPs were randomly obtained, resulting in 300 

values of accuracy. The models were compared in SAS PROC GLM using the Ryan-Einot-

Gabriel-Welch test at ∝ = 0.05 level.  

Selection differential 

In a second step, GEBVs were calculated for the entire panel using the averaged SNP 

effect across the 300 runs. For each trait, the 273 lines were then ranked based on their GEBVs 

(provided by GS1, GS2, GS3, MAS1, and MAS2). In other words, five different ranks were 

obtained for each trait. Then, the selection differential was calculated as the difference between 

the mean PEBV of the top 5, 10, 15, 20, and 25% best lines and the mean PEBV of the reference, 

unselected group of 273 lines. 
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Results 

Prediction accuracies for six parameters associated with FHB resistance are presented in 

Figure 11. For SEV, genomic selection models GS1, GS2, and GS3, provided the highest mean 

accuracy, varying from 0.58 to 0.67, whereas MAS1 and MAS2 resulted in accuracies of 0.26 

and 0.29, respectively. Interestingly, model GS3 outperformed GS2, even though the QTL 

considered in GS3 is localized on the same region as Fhb1, on chromosome 3BS. This result 

suggests that using the four SNPs around the Fhb-1 region is more advantageous than using Fhb-

1 itself. Whereas MAS2 performed poorly for SEV (accuracy = 0.26), this model resulted in the 

second best mean prediction accuracy for INC (0.74), after GS3 (0.84). The best two models for 

INC both included five significant QTL, indicating these QTL may play an important role for 

this trait. The results for FHBdx and ISK are similar to SEV, the only difference being that GS1 

and GS2 were not significantly different. For FHBdx it was expected that GS2 and GS3 would 

not differ since the QTL for FHBdx shares the same location as Fhb-1. A striking difference was 

observed between the MAS models and GS models for FDK. Accuracies varied from 0.24 to 

0.39 for MAS1 and MAS2 and varied from 0.87 for GS1 to as high as 0.98 for GS3. Even 

though no QTL has been detected for this trait, treating five SNPs as fixed effect resulted in a 

substantial increase in accuracy. The GS models showed high accuracies for DON, but there 

were no significant differences among them.  

 The selection differential varied greatly between MAS and GS models but not within 

these groups (Figure 2). In fact, GS1, GS2, and GS3 overlapped for all traits, except FHBdx. At 

the same time, MAS2 outperformed MAS1 for SEV, INC, and ISK when at least 10% of the 

individuals were selected. For FDK, the selection differential barely changed with the selection 

intensity when MAS1 and MAS2 were applied, indicating the models are not appropriate for 
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ranking the breeding lines for that trait. This is not surprising since Fhb-1 does not seem to be 

involved with FDK, and no other QTL was detected for this trait in the GWAS. The GS models 

also performed better for DON when compared to MAS, with no discernable difference among 

GS models. MAS2 was consistently superior than MAS1 across all selection intensities.   

Discussion 

Breeding for FHB resistance remains a major challenge among wheat breeders for several 

reasons, the complex genetic control of resistance being one of them. Since the introgression of 

Fhb-1 from Sumai3 and its derivatives into adapted germplasm in North America, significant 

emphasis has been put on MAS, in which Fhb-1 and a few other QTL are selected for. In this 

study, GS and MAS were compared using different genotypic data sets, including SSRs markers 

flanking Fhb-1 and SNPs significantly associated with FHB resistance. The results showed that 

MAS with only Fhb1 (MAS1) and QTL (MAS2) can lead to poor accuracy for nearly all traits. 

In addition, the values of accuracy showed much higher variability associated with these two 

models when compared to the GS models. GS greatly outperformed MAS for all traits, 

particularly for FDK, which seemed to not be controlled by large effect QTL. For one trait, INC, 

MAS2 was able to provide accuracy values higher than GS1 and GS2, suggesting the presence of 

medium to large effect QTL; however, incorporating these QTL in genomic selection (GS3) 

resulted on even greater accuracy. Five QTL have been shown to be associated with INC and this 

study suggests that they should be included in any of the marker-based breeding strategies tested 

in this study. Zhao et al. (2014) found MAS outperformed GS for heading time in rye, but not for 

plant height. In their study, the photoperiod insensitivity gene Ppd-D1 was found to be 

associated with a single SNP whereas plant height was associated with 16 SNPs.  
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 Treating QTL as fixed effects significantly improved prediction accuracy for all traits 

except DON. In fact, neither the QTL detected in chapter 3 nor Fhb-1 treated as fixed effects 

resulted in higher accuracy for this trait. Rutkoski et al. (2012) compared several GS models and 

MAS for FHB resistance and concluded that GS outperformed MAS, but treating QTL as fixed 

effects did not improve accuracy; however, in a recent study with stem rust (caused by Puccinia 

graminis f.sp. tritici) resistance in wheat, Rutkoski et al. (2014) showed that treating major genes 

as fixed effects can lead to higher GS prediction accuracy. Bernardo (2014) observed that having 

a single gene treated as fixed was never disadvantageous, except when the variability explained 

by the major gene was lower than 10%. In this study, considering only the GS models, having a 

single major gene treated as fixed effet (Fhb-1) led to higher accuracies when compared to a 

model with all markers as random (GS1), except for one trait; however, treating all QTL as fixed 

(GS3) resulted in even better performance.  

 Although the GS models differed in terms of prediction accuracy, they performed equally 

well for selection differential. One possible explanation is that the differences in prediction from 

these GS models are not enough to substantially change the order of the breeding lines when they 

are ranked for a specific trait. The same cannot be said for MAS1 and MAS2. For INC, MAS2 

was not superior than the GS models for selection differential, although it provided higher 

prediction accuracies than GS1 and GS2. One possible explanation is that MAS2 was more 

appropriated for predicting susceptible lines (and they are in larger number than resistant ones); 

however, when ranking the most resistant lines, the GS models were able to discriminate small 

differences better than MAS2. 
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Conclusion 

GS greatly outperformed MAS in both prediction accuracy and selection differential for traits 

associated with FHB resistance. Treating significant QTL as fixed effects in GS models resulted 

in even higher accuracies, but this increase did not substantially change the order of lines when 

ranked according to their breeding values. These results indicate that GS is a more appropriate 

marker-based strategy when breeding for a complex trait such as FHB resistance. 
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CHAPTER 5: MAPPING QTL ASSOCIATED WITH NATIVE RESISTANCE TO 

FUSARIUM HEAD BLIGHT IN WHEAT (Triticum aestivum L) 

Abstract 

Fusarium head blight (FHB) is a destructive disease of wheat, and most cultivars are 

susceptible to it. Host resistance plays an important role in FHB management and native sources 

of resistance have been identified in elite background, adding to the traditional Sumai-3 derived 

resistance sources. In this study, a population of 233 recombinant inbred lines derived from a 

cross between IL97-1828 (resistant) and Clark (susceptible) was used to identify quantitative 

trait loci (QTL) associated with FHB resistance. Neither parent possesses the traditional Asian 

sources of resistance to FHB in their pedigree. A total of 2275 single nucleotide polymorphisms 

(SNPs) were detected using genotyping-by-sequencing (GBS) and a genetic map was built 

covering all 21 wheat chromosomes. Inclusive composite interval mapping (ICIM) analysis 

identified four genomic regions associated with multiple FHB parameters, across all 

environments. Four QTL were detected for FHB resistance under field conditions on 

chromosomes 1B, 2D, 6D, and 7B. Two QTL were associated with type I resistance (6D and 

7B), and two were associated with type II resistance (1B and 2D). Type I and type II resistances 

are quantified by severity and incidence, respectively. The percentage of the phenotypic variation 

explained by these QTL varied between 6.7 and 12.5%, and they seem to co-localize with 

regions previously identified with FHB resistance. For QTL on sub-genome B, intervals smaller 

than 2 cM were obtained. The results show that elite germplasm can contribute to FHB 

resistance.  
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Introduction 

Fusarium head blight (FHB) is one of the most important wheat diseases, occurring in 

most wheat producing countries. The disease is caused by many different Fusarium species 

(Parry et al., 1995), and in North America it is primarily caused by Fusarium graminearum 

Schwabe [telemorph: Gibberella zeae Schw. (Petch)]. The effects of the disease on wheat 

include reduction in yield and grain weight, poor quality, and contamination by mycotoxins such 

as deoxinivalenol. Multiple components of FHB resistance have been identified in wheat: 

resistance to infection (type I) and spread (type II) (Schroeder and Christensen, 1963), resistance 

to mycotoxin accumulation (type III), resistance to kernel infection (type IV), and tolerance (type 

V) (Mesterházy, 1995; Mesterházy, 1999). The development of high yield potential cultivars 

with acceptable levels of FHB resistance remains a challenge for several reasons: the complex 

inheritance of the trait, difficulties in obtaining reproducible phenotypes, and the lack of 

adaptation of the main sources of resistance. Many quantitative trait loci (QTL) associated with 

FHB resistance have been reported in the literature (Buerstmayer et al., 2009) and a major QTL 

(Fhb1) on chromosome 3B has been identified in Sumai-3 and its derivatives by a number of 

independent studies (Bai et al., 1999; Anderson et al., 2001; Shen et al., 2003; Zhou et al.,2004; 

Chen et al., 2006; Liu et al., 2009; Loffler et al., 2009). Sumai-3 is a Chinese spring cultivar and 

it is arguably the most widely used source of FHB resistance in the world, although it shows 

undesirable agronomic traits in most wheat growing areas. Despite that, Fhb1 has been 

successfully introgressed into multiple lines and cultivars around the world and the QTL itself 

does not seem to affect agronomic and quality traits (Salameh et al., 2011; Suzuki et al., 2012, 

Bakhsh et al., 2013); however, Von der Ohe et al. (2010) showed that, depending on the genetic 
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background, Fhb1 can have a small negative effect on grain yield when introgressed into elite 

germplasm. 

Numerous sources of resistance unrelated to Sumai-3 have been identified in elite 

germplasm. In Europe, QTL for FHB resistance have been detected on multiple chromosomes 

from numerous resistance sources including Renan (Gervais et al., 2003), Arina (Paillard et al., 

2004), Cansas (Klahr et al., 2007; Häberle et al., 2010), Dream (Schmolke et al., 2008), Apache, 

Rubens and Romanus (Hopzapfel et al., 2008), and Frontana (Szabó-Hevér et al., 2014). The 

majority of the QTL identified in these studies can be considered minor effect QTL, some being 

stable across environments. In the US, many cultivars and breeding lines have been classified as 

moderately to highly resistant such as Ernie (McKendry et al., 1995), Freedom (Gooding et al., 

1997), Massey, Roane (Griffey et al., 2001), Truman (McKendry et al., 2005), Bess (McKendry 

et al., 2007) and Goldfield (Ohm et al., 2000). Gilsinger et al. (2005) identified two regions of 

chromosomes 2B and 7B associated with FHB incidence and narrow flower opening in a 

population derived from Goldfield. Liu et al. (2007) reported four QTL from Ernie on 

chromosomes 2B, 3B, 4B, and 5A. Bonin and Kolb (2009) detected three QTL for FDK and 

DON accumulation in the line IL94-1653. A study with multiple native sources of resistance 

including Ernie, Freedom, Lyman, and Overland identified 15 QTL for multiple FHB resistance 

traits on 12 chromosomes (Eckard et al., 2015).  

Until very recently, mapping studies in wheat relied mostly on a limited number of 

manually scored markers, the most popular being single sequence repeat (SSR), restriction 

fragment length polymorphism (RFLP), and amplified fragment length polymorphism (AFLP). 

The diversity array technology (DArT) represented an advance due to its automation, but its 

distribution across the wheat genome remains non-uniform. Recent advancements in next 
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generation sequencing (NGS) technology have dramatically increased the availability of SNP 

markers at decreasing costs (Wetterstrand, 2015). Akhunov et al., (2010) used the Illumina 

GoldenGate essay to identify SNPs in tetraploid and hexaploid wheat. Since then, SNPs have 

been increasing in popularity in mapping studies in wheat, including FHB resistance QTL 

identification. Bernardo et al., (2012) detected 7 SNPs between Xgwm533 and Xgwm493, the 

SSRs flanking the Fhb1 region. Petersen et al. (2014) used DArTs, SSRs and SNPs to detect 

QTL for FHB resistance in a population derived from Neuse, a native source of resistance. 

Genotyping-by-sequencing (GBS) is a next generation sequencing method that performs SNP 

discovery and genotyping simultaneously, generating many thousands of SNPs with lower 

ascertainment bias than SNP-chips (Elshire et al., 2011). GBS can be easily modified to 

accommodate multiple enzyme combinations, allowing detection of SNPs uniformly distributed 

across the genome (Poland et al., 2012b). The method has been successfully applied in wheat  

(Poland et al., 2012a; Poland et al., 2012b; Lado et al., 2013; Forrest et al., 2014; Talukder et al., 

2014; Langer et al. 2014). The objective of this study was to identify QTL associated with FHB 

resistance in a population derived from the cross between the native source of resistance IL97-

1828 and Clark (susceptible), using GBS-SNPs. 

Materials and methods 

Plant material 

A recombinant inbred line (RIL) population consisting of 233 individuals was derived 

from the cross Clark (susceptible) x IL97-1828 (resistant). The line IL97-1828 displays both type 

I, II, and III resistances under high disease pressure. In addition, it does not have the traditional 

Asian source of resistance in its background (PioW549/PioW558//P79404G1-26-2/3/P81131-16-

2-1-2-3-3). Clark (Beau//665256A1-8-1/67137B5-16/4/Sullivan/3/Beau5517B8-5-3-3/Logan) 
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(Ohm et al., 1988) is a winter wheat cultivar with high susceptibility to FHB. The cross was 

made in 2005 in greenhouse, and generations F1 to F5 were advanced by single seed descent.  

Phenotypes 

In 2008 Thompson (2010) evaluated F5:6 plants in the field at the Crop Science Research 

and Education Center, University of Illinois at Urbana-Champaign. The following year, F5:7 

seeds were planted in two locations: Urbana, Illinois and Wooster, Ohio at the Snyder farm of 

the Ohio Agricultural Research and Development Center. In Urbana three resistant lines were 

used as FHB resistant checks (Ernie, IL97-6755 and IL00-8061) whereas in Wooster five 

resistant checks (Ernie, IL97-6755, IL00-8061, IL02-18228 and Truman) and one susceptible 

check (Pio25R47) were used.  In both locations F. graminearum was inoculated using the grain 

spawn inoculation method, as described by Thompson (2010). Briefly, a conidial suspension was 

prepared with different isolates of F. graminearum and then used to infest autoclaved maize 

grain and allowed to colonize. In Urbana, grain spawn was spread in the field at a rate of 287 

kg.ha-1 two to four weeks before anthesis. Mist irrigation was used to guarantee high humidity, 

favoring disease development.  In Wooster, Ohio grain spawn was disseminated at a rate of 360 

kg.ha-1 three weeks prior to anthesis. In addition, a suspension of macroconidia (25,000 conidia 

mL-1) was applied every five days starting three days after heading of the earliest line. 

 FHB resistance was assessed by measuring the following parameters: incidence (INC), 

severity (SEV), FHB index (FHBdx; [(incidence x severity]/100), Fusarium-damaged kernels 

(FDK), incidence-severity-kernel index (ISK index; [ (0.3 x incidence + 0.3 x severity + 0.4 x 

FDK)] and deoxynivalenol concentration (DON). INC and SEV were recorded one month after 

the heading date of each line, whereas FDK and DON were recorded after harvest. FDK is a 

visual estimate of the percentage of damaged kernel using known standards. DON concentration 
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was determined by Dr. Yanhong Dong in the Department of Plant Pathology at the University of 

Minnesota using gas chromatography-mass spectrometry.  

For each trait and line, least-squares means were calculated in JMP v. 11 (SAS Institute, 

2015) according to the equation (i):  

𝑌𝑖𝑗𝑘𝑙 =  𝜇 + 𝑦𝑒𝑎𝑟𝑖 + 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑗 +  𝑙𝑖𝑛𝑒𝑘 + (𝑦𝑒𝑎𝑟 𝑥 𝑙𝑖𝑛𝑒)𝑖𝑘 + (𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑥 𝑙𝑖𝑛𝑒)𝑗𝑘 +

𝑏𝑙𝑜𝑐𝑘(𝑦𝑒𝑎𝑟 𝑥 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛)𝑖𝑗𝑙 +  𝜀𝑖𝑗𝑘𝑙                                                                            (i) 

where 𝑌𝑖𝑗𝑘𝑙 is the observed phenotype, 𝜇 is the overall mean, 𝑦𝑒𝑎𝑟𝑖 is the random effect of the ith 

year, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑗  is the random effect of the jth location, 𝑙𝑖𝑛𝑒𝑘 is the fixed effect of the kth line, 

(𝑦𝑒𝑎𝑟 𝑥 𝑙𝑖𝑛𝑒)𝑖𝑘 is the random effect of the interaction between the ith year and the kth line, 

(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑥 𝑙𝑖𝑛𝑒)𝑗𝑘 is the random effect of the interaction between the jth location and the kth 

line,  𝑏𝑙𝑜𝑐𝑘(𝑦𝑒𝑎𝑟 𝑥 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛)𝑖𝑗𝑙 is the random effect of lth block within the ith year and jth 

location, and 𝜀𝑖𝑗𝑘𝑙 is the random error term. For DON, the effects involving “location” were not 

included in the model since DON values were only obtained in Urbana, Illinois. 

Genotyping-by-sequencing 

Seeds of the 233 RILs and the parents were sent to the USDA Eastern Regional Small 

Grains Genotyping Laboratory, Raleigh, North Carolina for DNA extraction. A library was 

prepared with a two-enzyme restriction digest: PstI-HF (CTGCAG) is a rare cutter whereas MspI 

(CCGG) is a common cutter. Each restriction enzyme leaves an overhang on the DNA strand, to 

which the barcode is bound. The barcodes adapters were selected according to Poland et al. 

(2012). Only segments that were cut by both enzymes were sequenced. Two lanes of sequences 

were obtained from Illumina HiSeq 2000 runs and were then analyzed using the TASSEL GBS 4 

against a pseudo reference genome developed from the T. aestivum Chinese Spring chromosome 
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survey (IWGSC, 2014) (as described in Chapter 3). After obtaining their location, SNPs were 

filtered based on: i) per-marker missing data level < 50%; ii) minor allele frequency > 5%; iii) 

percent of heterozygotes < 10%; iv) probability of chi-square test (1:1) > 0.05.  

Linkage map and QTL detection 

A linkage map was built using the QTL IciMapping v. 4 software (Li et al., 2008, Meng 

et al., 2015). Initially, non-redundant SNPs with missing data level < 20% were selected to build 

a preliminary genetic map. SNPs were considered redundant if they were completely correlated 

or identical. For two or more redundant SNPs, the one with lowest percentage of missing value 

was kept. The Chinese Spring chromosome survey provided the chromosome arm to which each 

SNP was assigned. In other words, for every SNP, its chromosome number and arm was known 

in advance, and this information was used for assigning SNPs into linkage groups (LG). 

Ordering within LG was performed with the “nnTwoOpt” option. The genetic distances obtained 

with this preliminary map were used as anchors for a second map including SNPs with up to 

50% missing data level. The final map was aligned with the POPSEQ map (IWGSC, 2014) 

available at http://wheat-urgi.versailles.inra.fr/Seq-Repository/Publication. The inclusive 

composite interval mapping (ICIM) analysis performed for QTL detection in QTL IciMapping v. 

4 (Meng et al., 2015). The method first identifies the most significant markers and marker-pairs 

multiplication using stepwise regression. Then, a two-dimension scan is performed to identify 

significant digenic epistasis based on adjusted phenotypic data (Li et al., 2008). Significant 

thresholds were based on 1000 permutations and α = 0.05 and 0.10. 

http://wheat-urgi.versailles.inra.fr/Seq-Repository/Publication
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Results 

Phenotypes 

A detailed phenotypic description of the population used in this study is provided by 

Thompson (2010). Least-squares mean were newly calculated from the raw data and are 

presented in Table 9. The traits with the largest variation were SEV, FDK, and FHBdx, as 

indicated by their standard deviation. At the same time, DON and ISK showed the lowest 

variation. All traits were correlated with each other at α = 0.05 level, with the Spearman 

correlation coefficient varying from 0.30 (SEV and DON) to 0.92 (FHBdx and SEV). The data 

indicate that this population shows adequate phenotypic variation for the parameters evaluated, 

and it is suitable for mapping purposes.  

Linkage map and QTL identification 

The GBS method identified 2275 non-redundant SNPs after passing the filtering criteria 

described in the materials and methods. The final genetic map spanned 2875 cM over the 21 

wheat chromosomes, with an overall marker density of 1.26 cM per SNP (Table 10); however, 

the number of SNPs varied greatly among the sub-genomes, resulting in densities of 1.11, 1.41, 

and 6.46 cM/SNP for sub-genomes A, B, and D, respectively. Chromosome 3B displayed the 

highest number of markers (578), more than then entire D sub-genome (187). A satisfactory 

agreement was observed between the map developed in this study and the POPSEQ map 

(IWGSC, 2014). 

 Two QTL were detected for SEV on the short arms of chromosomes 1B and 2D (Table 

11). The QTL on chromosome 1B was flanked by the SNPs WCSS1_1190535_1BS_1034 and 

WCSS1_3457475_1BS_7477, within a 1.09 cM region (Fig. 13). Its estimated effect was 2.10. 
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The QTL on chromosome 2D was flanked by WCSS1_5315750_2DS_5213 and 

WCSS1_5354063_2DS_3647, within an 11.5 cM region (Fig. 14), and estimated effect of -2.05. 

The percentage of the variation explained by these two QTL was 7 and 6.6%, respectively. Two 

QTL were detected for INC on chromosomes 6D and 7B. The first was flanked by 

WCSS1_3239902_6DL_273 and WCSS1_2895599_6DL_459, within 6.87cM region (Fig. 15), 

and the second was flanked by WCSS1_5085227_7BL_199 and WCSS1_3115996_7BL_172, 

spanning over 1.88 cM (Fig. 16). A larger percentage of the variation was explained by the QTL 

for INC than for SEV, accounting for 12.6% (6D) and 10.3% (7B). Their estimated effects were 

comparable to the QTL for SEV; however, comparing effect sizes between traits can be 

misleading since the traits were not normalized at first. One QTL was detected for FDK on 

chromosome 2A using data only from Urbana (2009 and 2010) and three extra QTL were found 

to be environment-specific, being significant in only one environment.   

Discussion 

 In this study, a population of 233 RILs from a cross between IL97-1828 and Clark was 

used for mapping QTL associated with FHB resistance. The line IL97-1828 does not have the 

traditional Asian sources of FHB resistance on its pedigree, and it has been extensively used in 

the University of Illinois winter wheat breeding program as a parent. For these reasons, IL97-

1828 represents an important source of native resistance to FHB. 

In a previous study, Thompson (2010) studied the same population using 214 DArT and 

16 SSR markers, and detected multiple QTL, but only three genomic regions (on chromosomes 

1B, 2B, and 3B) were significant in more than one environments. In this study, a new genetic 

map was built using 2275 SNPs identified from GBS, covering all wheat chromosomes, with an 



79 

 

overall marker density of 1.26 cM per SNP. In addition, exact chromosome assignment of the 

markers was possible since the chromosome arm of each SNP was known in advance, except for 

chromosome 3B (both arms of this chromosome have been sequenced together). This new map, 

and the ICIM analysis allowed the identification of four genomic regions associated with FHB 

resistance using phenotypic data from all environments. These genomic regions belong to 

chromosomes 1B, 2D, 6D, and 7B. 

 The QTL on chromosomes 1B and 2D are associated with SEV. Several other QTL in 

these regions have been reported elsewhere. In a meta-analysis involving 249 QTL for FHB 

resistance, Liu et al. (2009) identified clusters of QTL or meta-QTL (MQTL) on all wheat 

chromosomes, with 3 MQTL on chromosomes 1B and 2A each. Loffler et al. (2009) also 

performed a meta-analysis with QTL for FHB resistance and detected the same number of 

MQTL on those chromosomes. In this study, the total genetic distance for chromosome 7B was 

211 cM, which is much larger when compared to the distance mapped in the meta-analyses, most 

likely due to the number of markers used on each map. Using the genetic distance to infer QTL 

location in clusters can be misleading for chromosome 1B; however, the name of the SNPs 

flanking the QTL on 1B indicates it belongs to the short arm. Both meta-analyses showed Asian 

and non-Asian sources contributing to QTL in those regions.  

 Two QTL were detected for INC on the long arms of chromosomes 6D and 7B. The 

meta-analysis by Liu et al. (2009) also detected MQTL for these regions. Interestingly, only non-

Asian sources contributed with QTL for these clusters. Loffler et al. (2009) also reported two 

MQTL for chromosome 7B, one on each arm. Lastly, one QTL was detected for FDK on the 

short arm of chromosome 2A. In this same region, Liu et al. (2009) detected two clusters. The 

cluster closer to the centromere contains a QTL for FDK from the Chinese landrace 
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Wangshuibai. Overall, narrower intervals were obtained for QTL on genomes A and B than for 

D. This is not surprising since far more SNPs were identified for these genomes. Genome D is 

known to bear a reduced level of polymorphism when compared to A and B (Poland et al., 

2012a, Nielsen et al., 2014). 

 The parents of the RILs used in this study were present in the GWAS described in 

Chapter 3, but no similarity was found between the genomic regions associated with FHB 

resistance in both studies. In other words, the QTL identified in this study were not significant in 

the GWAS, and vice-versa. The reasons for this disparity are: i) the limited number of SNPs 

occurring in both studies (226 SNPs). Only two SNPs associated with QTL in the biparental 

population were present in the GWAS; ii) the linkage disequilibrium (LD) pattern in both studies 

is different; iii) the panel used in the GWAS bears polymorphisms not present in the biparental 

population; and iv) the effect of the environment. These studies were carried out in different 

years, and the RILs were evaluated in one extra location.  

Conclusion 

 In this study, multiple QTL were detected for FHB resistance in a population from an 

elite by elite cross. These QTL were located in chromosomal regions not detected in a previous 

study with the same population, but in similar regions reported elsewhere. The SNP-based 

genetic map, and the ICIM analysis allowed the location of these QTL with relative precision. In 

three situations, the genetic distance between the flanking markers was less than 2 cM. These 

results are encouraging, especially considering that these QTL were identified in elite germplasm 

and no linkage drag is expected. Future research could explore the biological role played by 

these genomic regions on FHB resistance. In addition, crosses between full-sibs that differ for 
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these QTL could be used for fine-mapping. Lastly, the SNPs flanking the QTL detected in this 

study can be used in kompetitive allele specific PCR (KASPTM) assays, which could facilitate the 

introgression of these QTL into newer, competitive wheat germplasm. 
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FIGURES 

 

 

 

 
Figure 1. Heat map of the marker-based relationship matrix for 273 wheat breeding lines. Matrix obtained from 

5054 SNPs. Rows and columns represent the breeding lines.   
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Figure 2. Five-fold cross validated genomic selection accuracies for six traits associated with FHB resistance and 

four imputation methods. Methods receiving the same letter do not differ according to the Ryan-Einot-Gabriel-

Welch multiple comparison test at α 0.05 level. EMI = expectation maximization imputation, MNI = mean 

imputation, RFI = random forest imputation, and SVDI = singular value decomposition imputation. DON = 

deoxynivalenol concentration, FDK = Fusarium-damaged kernels, FHBdx = FHB index, INC = incidence, ISK = 

ISK index, SEV = severity. Error bars represent ± one standard error of the mean. 
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Figure 3. Five-fold cross validated genomic selection accuracies for six FHBrelated traits as a function of genomic selection models and SNP numbers. a = SEV 

(severity), b = INC (incidence), c = FHBdx (FHB index), d = FDK (Fusarium-damaged kernels), e = ISK (ISK index), f = DON (deoxynivalenol concentration). 

RR = ridge regression best unbiased linear predictor, NET = elastic net, LASSO = least absolute shrinkage and selection operator. Error bars represent ± one 

standard error of the mean.
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Figure 4. The effect of training population (TP) size on genomic selection accuracy for six FHB related traits. FDK 

= Fusarium-damaged kernels, ISK = ISK index, DON = deoxynivalenol concentration, INC = incidence, FHBdx = 

FHB index, SEV = severity. TP = training population. Error bars represent ± one standard error of the mean. 
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Figure 5. The effect of proportion of the training population/total number of lines on genomic selection accuracy for 

six FHB related traits. FDK = Fusarium-damaged kernels, ISK = ISK index, DON = deoxynivalenol concentration, 

INC = incidence, FHBdx = FHB index, SEV = severity. TP = training population. Error bars represent ± one 

standard error of the mean.  
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Figure 6. The effect of proportion of the training population/total number of lines on the mean and variance of 

genomic prediction accuracies for Fusarium-damaged kernels (FDK). Genomic estimated breeding values calculated 

using RR-BLUP with five-fold cross validation. TP = training population. 
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Figure 7. Distribution of phenotypically estimated breeding values (PEBVs) and genomic estimated breeding values 

(GEBVs) for ISK index (a) and deoxynivalenol concentration (DON) (b). GEBVs calculated using RR-BLUP with 

five-fold cross validation.    
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Figure 8. Principal component analysis of 273 winter wheat breeding lines using 19,992 SNPs. Colors represent the 

origin of the breeding lines. Illinois = University of Illinois at Urbana-Champaign; Kentucky = University of 

Kentucky; Missouri = University of Missouri; Indiana = Purdue University; North Carolina = North Carolina State 

University; Virginia = Virginia Tech University; Pioneer = Pioneer HiBred International; Arkansas = University of 

Arkansas; Ohio = Ohio State University; Georgia = University of Georgia; Limagrain = Limagrain Cereal Seeds; 

Syngenta = Syngenta/AgriPro Associates; Michigan = Michigan State University; and Oklahoma = Oklahoma State 

University. 
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Figure 9. Genome-wide association scan for three parameters associated with FHB resistance: SEV (a), INC (b), 

and DON (c). The y axis represents the P value of the marker-trait association on a -log10 scale. The horizontal line 

represents the threshold for declaring a marker as significant (FDR-adjusted P-value ≤ 0.10).  
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Figure 10. Mean phenotypic value of SEV (a), INC (b), and DON (c) for groups of wheat lines carrying different 

SNP combinations, with (“+”) signal representing the favorable allele. Lines were evaluated in 2011, 2013, and 2014 

in Urbana-IL. SNP 3B-1 = WCSS1_contig10676713_3B_7175, SNP 3B-2 = WCSS1_contig10352272_3B_5482, 

SNP 3B-3 = WCSS1_contig10698462_3B_2332, SNP 3B-4 = WCSS1_contig10699215_3B_3620, SNP 7D = 

WCSS1_contig3876750_7DS_2023, SNP 6A = WCSS1_contig5780077_6AL_12152, SNP 4D = 

WCSS1_contig2300354_4DS_4482, SNP 4A = WCSS1_contig7146617_4AL_11335, SNP 7A = 

WCSS1_contig4132011_7AS_1400, SNP 3B-5 = WCSS1_contig10413672_3B_4839, SNP 1D = 

WCSS1_contig1879930_1DS_3352, SNP 3B-6 = WCSS1_contig10764618_3B_2168.
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Figure 11. Cross validated prediction accuracies for six parameters associated with Fusarium head blight (FHB) resistance: severity (A), incidence (B), FHB 

index (C), Fusarium-damaged kernel (D), incidence-severity-kernel index (E), and deoxynivalenol concentration (F). The dotted line divides marker-assisted 

selection (left) and genomic selection (GS) (right). MAS1: Marker assisted selection with Fhb-1 using linear regression. MAS2: Marker assisted selection with 

QTL using multiple linear regression. GS1: genomic selection with 19,992 SNPs using ridge regression-best linear unbiased predictor (RR-BLUP) model. GS2: 

genomic selection with 19,992 SNPs + Fhb-1 using RR-BLUP. GS3: genomic selection with 19,992 SNPs + QTL using RR-BLUP. All marker estimates were 

obtained using a 5-fold cross validation scheme, 60 randomly selected training populations (TP) of size 218 and validation population (VP) of size 55. 

Treatments with the same letter at not significantly different according to the Ryan-Einot-Gabriel-Welch-q test at α = 0.05 level. 
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Figure 12.  Selection differential for six parameters associated with Fusarium head blight (FHB) resistance: severity (A), incidence (B), FHB index (C), 

Fusarium-damaged kernel (D), incidence-severity-kernel index (E), and deoxynivalenol concentration (F). The numbers on the x-axis represent the percentage 

and number of selected individuals after ranking 273 breeding lines according to breeding values estimated through five different models: MAS1: Marker 

assisted selection with Fhb-1 using linear regression, MAS2: Marker assisted selection with QTL using multiple linear regression, GS1: genomic selection with 

19,992 SNPs using ridge regression-best linear unbiased predictor (RR-BLUP) model, GS2: genomic selection with 19,992 SNPs + Fhb-1 using RR-BLUP, 

GS3: genomic selection with 19,992 SNPs + QTL using RR-BLUP.
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Figure 13. Linkage map and LOD scores after inclusive composite interval mapping (ICIM) analysis for FHB 

resistance for chromosome 1B. Dotted and solid lines represent significant thresholds obtained after 1000 

permutations at type I error probability of 0.05 and 0.10, respectively.  
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Figure 14. Linkage map and LOD scores after inclusive composite interval mapping (ICIM) analysis for FHB 

resistance for chromosome 2D. Dotted and solid lines represent significant thresholds obtained after 1000 

permutations at type I error probability of 0.05 and 0.10, respectively. 
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Figure 15. Linkage map and LOD scores after inclusive composite interval mapping (ICIM) analysis for FHB 

resistance for chromosome 6D. Dotted and solid lines represent significant thresholds obtained after 1000 

permutations at type I error probability of 0.05 and 0.10, respectively. 
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Figure 16. Linkage map and LOD scores after inclusive composite interval mapping (ICIM) analysis for FHB 

resistance for chromosome 7B. Dotted and solid lines represent significant thresholds obtained after 1000 

permutations at type I error probability of 0.05 and 0.10, respectively. 
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TABLES 

 

Table 1. Five-fold cross validated prediction accuracies (± standard error of the mean) for FHB related 

traits according to GS model and marker density. For this analysis, genotypes were imputed by 

expectation maximization imputation method. Training population size was equal to 218 and 

validation population size equal to 55. RR-BLUP = Ridge regression – best unbiased linear predictor, 

NET = ELASTI-NET, LASSO = least absolute shrinkage and selection operator, SEV = severity, INC 

= incidence, FHBdx = Fusarium head blight index, FDK = Fusarium-diseased kernels, ISK = 

incidence, severy and kernel quality index, DON = deoxynivalenol concentration.  

SNP 

number 

SEV 

RR NET LASSO 

4500 0.59±0.0067Aa†‡ 0.52±0.0074Ba 0.52±0.0076Ba 

3000 0.57±0.0061Aa 0.51±0.0071Bab 0.51±0.0073Bab 

1500 0.54±0.0070Ab 0.49±0.0076Bb 0.49±0.0075Bb 

500 0.51±0.0063Ac 0.46±0.0070Bc 0.46±0.0070Bc 

 

INC 

RR NET LASSO 

4500 0.68±0.0103Aa 0.69±0.0138Aa 0.68±0.0143Aa 

3000 0.66±0.0106Aab 0.65±0.0143Ab 0.65±0.0146Ab 

1500 0.63±0.0078Ab 0.58±0.0089Bc 0.58±0.0088Bc 

500 0.60±0.0081Ac 0.49±0.0086Bd 0.49±0.0086Bd 

 

FHBdx 

RR NET LASSO 

4500 0.61±0.0065Aa 0.54±0.0065Ba 0.54±0.0065Ba 

3000 0.58±0.0060Ab 0.49±0.0066Bb 0.49±0.0064Bb 

1500 0.58±0.0065Ab 0.45±0.0071Bc 0.45±0.0068Bc 

500 0.50±0.0073Ac 0.41±0.0075Bd 0.41±0.0072Bd 

 

FDK 

RR NET LASSO 

4500 0.88±0.0074Aa 0.83±0.0079Ba 0.83±0.0078Ba 

3000 0.87±0.0071Aa 0.76±0.0083Bb 0.75±0.0083Bb 

1500 0.85±0.0076Aa 0.75±0.0077Bb 0.75±0.0076Bb 

500 0.79±0.0079Ab 0.74±0.0081Bb 0.73±0.0082Bb 

 

ISK 

RR NET LASSO 

4500 0.81±0.0065Aa 0.74±0.0070Ba 0.74±0.0071Ba 

3000 0.81±0.0061Aa 0.71±0.0071Bb 0.70±0.0071Bb 

1500 0.75±0.0069Ab 0.68±0.0075Bbc 0.68±0.0076Bbc 

500 0.75±0.0068Ab 0.66±0.007B5c 0.66±0.0074Bc 

 

DON 

RR NET LASSO 

4500 0.74±0.0054Aa 0.65±0.0069Ba 0.65±0.0072Ba 

3000 0.74±0.0059Aa 0.65±0.0062Ba 0.64±0.0063Ba 

1500 0.73±0.0057Aa 0.64±0.0062Ba 0.63±0.0061Ba 

500 0.69±0.0065Ab 0.61±0.0070Bb 0.61±0.0071Bb 
† Within rowns, means followed by the same capital letter are not signicantly different according to REGWQ (0.05) 
‡ Within columns, means followed by the same lower case letter are not signicantly different according to REGWQ 

(0.05) 
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Table 2. Estimate (± standard error of the mean) and 99% confidence interval of unbiasedness for six FHB-related 

traits 

Trait b(PEBV, GEBV)
†
 99% CI 

SEV 1.002 ± 0.0161 0.9598 1.0434 

INC 1.048 ± 0.0195 0.9973 1.0987 

FHBdx 1.009 ± 0.0163 0.9667 1.0510 

FDK 1.003 ± 0.0142 0.9661 1.0402 

ISK 1.014 ± 0.0124 0.9815 1.0461 

DON 0.974 ± 0.0220 0.9169 1.031 
 

† Unbiasedness estimated by the slope of the linear regression of PEBVs on GEBVs. The GEBVs were calculated 

using RR-BLUP with 5054 SNPs, genotypic missing data imputed by EMI, and TP size = 218. Confidence interval 

based on 300 values of the slope.  
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Table 3. Descriptive statistics and Spearman correlation for untransformed BLUPs for 273 wheat lines, and broad sense heritabilities 

on a plot mean-basis.  

Trait 
BLUPs 

h2 correlations 

Mean Min Max Range SD SEV INC FHBdx FDK ISK 

SEV 44.15 10.37 83.41 73.03 15.02 0.57 
     

INC 77.80 51.69 87.82 36.12 5.92 0.67 0.51** 
    

FHBdx 36.74 2.43 79.01 76.58 15.12 0.68 0.98** 0.62** 
   

FDK 38.56 15.93 69.00 53.07 8.82 0.55 0.55** 0.50** 0.58** 
  

ISK 51.99 16.57 83.43 66.86 10.55 0.53 0.85** 0.71** 0.89** 0.85** 
 

DON 13.48 6.21 27.86 21.65 2.69 0.43 0.47** 0.50** 0.52** 0.48** 0.57** 

Mean, minimum, maximum, range, standard deviation, and Spearman correlation coefficient for untransformed best linear unbiased 

predictors (BLUP), and broad-sense heritabilities (h2) for six measurements associated with FHB resistance. The data was calculated 

for 273 winter wheat breeding lines in Urbana, Illinois, in 2011, 2013, and 2014. ** Significant at α = 0.05 level. DON was measured 

in ppm, and the other parameters were measured in percentage.   
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Table 4. SNP coverage and diversity obtained a wheat panel consisting in 273 breeding lines using genotyping-by-

sequencing.   

Chromosome n PIC DIV 

G
en

o
m

e 
A

 

1 916 0.217 0.26 

2 1521 0.213 0.254 

3 553 0.229 0.277 

4 1200 0.201 0.237 

5 590 0.215 0.258 

6 1028 0.223 0.268 

7 1184 0.222 0.267 

    6992a 0.217b 0.26b 

G
en

o
m

e 
B

 

1 991 0.214 0.256 

2 1962 0.231 0.28 

3 2154 0.204 0.241 

4 777 0.209 0.249 

5 1560 0.23 0.277 

6 796 0.221 0.265 

7 844 0.185 0.216 

    9084 0.217 0.26 

G
en

o
m

e 
D

 

1 610 0.179 0.208 

2 860 0.163 0.184 

3 286 0.172 0.197 

4 350 0.176 0.204 

5 662 0.176 0.204 

6 551 0.217 0.26 

7 597 0.213 0.254 

    3916 0.175 0.202 

  total 19992 0.203c 0.241c 

a Number of SNPs on genome A. b Mean values for genome A. c Mean values across genomes A, B, and D.  
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Table 5. Number of QTL associated with FHB-related traits according to different statistical models. 

 

 

 

 

 

 

Marker-trait association tests were performed on a panel consisting in 273 wheat breeding lines genotyped with 

19,992 SNPs. “naïve” = statistical model with no control for population structure and relatedness; Q model = 

population structure controlled using four principal components (PCs), treated as fixed effects, from a principal 

component analysis (Q matrix); K model = relatedness controlled using a marker-based kinship (K) matrix, treated 

as random; MLM = mixed linear model having the Q and K matrices, with fixed and random effects, respectively; 

cMLM = compressed mixed linear model, similar to MLM, but with a compressed matrix of individual.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“naïve” Q K MLM cMLM Chromosomes 

SEV 80 25 1 1 1 3B 

 INC 160 208 2 3 5 7D, 6A, 4D, 4A, 7A 

FHNdx 95 31 2 2 1 3B 

 FDK 38 162 0 0 0 * 

 ISK 132 59 2 2 2 3B, 7D 

 DON 60 57 6 3 4 1D, 3 on 3B 
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 Table 6. SNPs associated with FHB resistance in a panel of 273 breeding lines, chromosomal position, P values, and marker effects.  

Trait SNP C cM pa mafb r2 Adj pc effects 

SEV 

WCSS1_contig10676713_3B_7175 3B 18.32 5.14 0.11 0.08 0.050 -9.54 

WCSS1_contig10352272_3B_5482d 3B 10.19 3.83 0.14 0.05 0.980 -7.21 

WCSS1_contig10698462_3B_2332d 3B 6.86 3.6 0.44 0.04 0.980 6.02 

WCSS1_contig10699215_3B_3620d 3B 18.32 3.37 0.20 0.04 0.980 -4.99 

INC 

WCSS1_contig3876750_7DS_2023 7D 70.84 11.57 0.07 0.16 <0.001 6.74 

WCSS1_contig5780077_6AL_12152 6A 134.15 4.94 0.07 0.06 0.097 3.60 

WCSS1_contig2300354_4DS_4482 4D 0 4.72 0.06 0.06 0.097 -4.56 

WCSS1_contig7146617_4AL_11335 4A 78.35 3.54 0.06 0.06 0.070 -3.02 

WCSS1_contig4132011_7AS_1400 7A 22.82 4.54 0.16 0.05 0.097 -2.62 

FHBdx WCSS1_contig10676713_3B_7175 3B 18.32 5.14 0.11 0.07 0.052 -8.96 

ISK WCSS1_contig10676713_3B_7175 3B 18.32 5.14 0.11 0.07 0.052 -5.55 

 
WCSS1_contig3876750_7DS_2023 7D 70.84 11.57 0.07 0.16 0.000 7.47 

DON WCSS1_contig10413672_3B_4839 3B 73.67 5.14 0.06 0.07 0.052 1.75 

 
WCSS1_contig10676713_3B_7175 3B 18.32 5.14 0.11 0.07 0.052 -1.36 

 
WCSS1_contig1879930_1DS_3352 1D 19.04 5.10 0.05 0.06 0.052 -1.99 

 WCSS1_contig10764618_3B_2168 3B 73.67 4.99 0.07 0.06 0.052 2.08 
a P value reported in a –log10 scale; b maf = minor allele frequency; c Adj p = FDR-ajusted p value; d SNP not significant according to the 

FDR-adjusted p value. Marker-trait associations were tested using a compressed mixed linear model with control for population structure 

and relatedness.  
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Table 7. Contrast between haplotypes for different traits associated with FHB resistance. 

Trait Haplotypes Estimate Std F Prob > F 

SEV 

“+ + + +” “ - - - -” -19.68 5.05 15.13 < 0.001 

“+ + - +” “- - - -” -18.43 5.59 10.85 < 0.001 

“- - - +” “- - - -” -2.14 4.04 0.28 0.597 

“+ + + +” “+ + - +” -1.25 7.26 0.03 0.864 

“+ + - +” “- - - +” -16.29 6.59 6.12 0.014 

INC 
“- - - - +” “- - - - -” -2.50 1.05 5.73 0.017 

“- - - + -” “- - - - -” -1.20 2.18 0.33 0.567 

DON “+ + + +” “+ - + +” -0.28 0.36 0.57 0.98 

The “+” signal represents the favorable allele of the SNP, and the “-” signal represents the unfavorable allele. For 

SEV, four SNPs were considered: WCSS1_contig10676713_3B_7175, WCSS1_contig10352272_3B_5482, 

WCSS1_contig10698462_3B_2332, and WCSS1_contig10699215_3B_3620. Haplotypes for INC were built with: 

WCSS1_contig3876750_7DS_2023, WCSS1_contig5780077_6AL_12152, WCSS1_contig2300354_4DS_4482, 

WCSS1_contig7146617_4AL_11335, and WCSS1_contig4132011_7AS_1400. Haplotypes for DON were 

combinations of the following SNPs: WCSS1_contig10413672_3B_4839, WCSS1_contig10676713_3B_7175, 

WCSS1_contig1879930_1DS_3352, and WCSS1_contig10764618_3B_2168. 
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Table 8. Hypothetical protein prediction and conserved domains for contigs harboring SNPs associated with FHB resistance.  

SNP C cM hypothetical protein predition conserved domains 

WCSS1_contig1879930_1DS_3352 1D 19.04 
RLK protein (Brachypodium, 

Setaria, Nicotiana, Solanum) 
none   

WCSS1_contig10413672_3B_4839 3B 73.67 
chloroplast DNA / transcription 

factor 
BSD superfamily 

WCSS1_contig10764618_3B_2168 3B 73.67 
uncharacterized hypothetical 

protein 
none   

WCSS1_contig7146617_4AL_11335 4A 78.35 FAR-1-related  (Tritum urartu) FAR-1 DNA-binding 

WCSS1_contig2300354_4DS_4482 4D 0 
PPI (Brachypodium, Oryza, Zea, 

Elaeis, etc) 

Protein phosphatase inhibitor-2 

superfamily 

WCSS1_contig5780077_6AL_12152 6A 134.2 
Rop guanine nucleotide exchange 

factor 2 (Aegilops tauschii) 

FHA, PRONE, DNA-

polymerase-viral-N-terminal,  

WCSS1_contig4132011_7AS_1400 7A 22.82 
Putative reverse transcriptase 

(Oryza sativa) 

Reverse-transcriptase 

superfamily and EEP family 

WCSS1_contig3876750_7DS_2023 7D 70.84 
GDSL esterase/lipase (Aegilops 

tauschii) 

SGNH_hydrolase superfamily, 

Lipase_GDSL, UBA2 

RLK = Receptor-like kinase protein. BSD = BTF2-like transcription factors, synapse-associated proteins, and DOS2-like proteins. FAR = far-red-impaired 

response. PPI = Protein phosphatase inhibitor. Rop = Repressor of primer. FHA = Forkhead associated domain. PRONE = Plant-specific Rop nucleotide 

exchanger. EEP = Endonuclease/Exonuclease/phosphatase. GDSL = consensus amino acid sequence of glycine (G), aspaspartic acid (D), serine (S), and 

leucine (L). SGNH = consensus amino acid sequence of serine (S), glycine (G), asparagine (N), and histidine (H). Predicted amino acid sequences obtained 

with Fgenesh gene finder, and hypothetical protein prediction and conserved domain obtained with BLASTp.  

 

 

 

 

 



106 

 

Table 9. Descriptive statistics and Spearman correlation coefficient for six measurements associated with Fusarium head blight (FHB) resistance.  

Trait 
Parents 233 RILs 

 

Correlation1 

IL97-1828 (R) Clark (S) 
 

Mean Min Max Range SD 
 

SEV INC FHBdx FDK ISK 

SEV 32.74 74.66 
 

54.11 37.90 75.24 37.34 7.92 
      

INC 57.44 86.77 
 

74.75 52.65 86.47 33.81 6.67 
 

0.46* 
    

FHBdx 20.30 67.19 
 

40.70 23.03 60.28 37.25 8.24 
 

0.92* 0.75* 
   

FDK 21.25 63.75 
 

38.99 22.50 62.50 40.00 7.56 
 

0.33* 0.36* 0.39* 
  

ISK 36.07 72.50 
 

54.79 40.00 70.73 30.73 5.78 
 

0.67* 0.70* 0.79* 0.80* 
 

DON 8.90 11.90 
 

10.19 4.55 22.30 17.75 3.05 
 

0.30* 0.42* 0.40* 0.45* 0.47* 

Summary statistics of least-squares means for six parameters associated with FHB resistance evaluated in 233 recombinant inbred lines (RILs) from a 

cross between IL97-1828 (resistant) and Clark (susceptible). Least-squares means were calculated from phenotypic data obtained in Urbana, Illinois in 

2009 and 2010, and Wooster, Ohio in 2010. Deoxynivalenol (DON) concentration was not recorded in Wooster, Ohio in 2010.  1Spearman correlation 

coefficient. * Significant at α = 0.05 level. DON was measured in ppm, and the other parameters were measured in percentage. 
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Table 10. SNP coverage obtained in a population of 233 winter wheat recombinant inbred lines using genotyping-

by-sequencing.   

Chromosome n cM Da 

G
en

o
m

e 
A

 

1 97 86 0.88 

2 150 211 1.41 

3 57 96 1.69 

4 109 162 1.48 

5 47 117 2.49 

6 62 78 1.26 

7 175 194 1.11 

 
 

697b 944c 1.11d 
G

en
o
m

e 
B

 
1 208 130 0.63 

2 313 232 0.74 

3 578 325 0.56 

4 48 104 2.17 

5 51 178 3.50 

6 100 100 1.00 

7 93 115 1.24 

 

 
1391 1185 1.41 

G
en

o
m

e 
D

 

1 70 154 2.20 

2 26 72 2.76 

3 8 59 7.36 

4 5 96 19.26 

5 34 178 5.24 

6 21 72 3.43 

7 23 115 4.99 

  
187 746 6.46 

 
total 2275 2875 1.26e 

a D: Density (genetic distance divided by the number of SNPs). b Number of SNPs on genome A. c Length of genome 

A in centimorgans (cM). d Average SNP density for genome A. e Average SNP density across genomes A, B, and D. 
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Table 11. Summary of inclusive composite interval mapping (ICIM) analysis for FHB resistance performed in 233 wheat recombinant inbred lines (RILs) 

from a cross between IL97-1828 (resistance) and Clark (susceptible).  

Trait Ca Pb 
 

Flanking markers 
 

Dc LOD r (%) Effect alpha Envd 

SEV 1B 73 
 

WCSS1_contig_1190535_1BS_1034 WCSS1_contig_3457475_1BS_7477 
 

1.09 3.99 7.03 2.10 0.05 3 

SEV 2D 52 
 

WCSS1_contig_5315750_2DS_5213 WCSS1_contig_5354063_2DS_3647 
 

11.50 3.79 6.72 -2.05 0.10 3 

INC 6D 72 
 

WCSS1_contig_3239902_6DL_273 WCSS1_contig_2895599_6DL_459 
 

6.87 4.61 12.49 2.36 0.05 3 

INC 7B 97 
 

WCSS1_contig_5085227_7BL_199 WCSS1_contig_3115996_7BL_172 
 

1.88 3.78 10.66 -2.17 0.10 3 

FDK 2A 54 
 

WCSS1_contig_5308233_2AS_2588 WCSS1_contig_5237718_2AS_3323 
 

1.55 3.48 5.91 1.84 0.10 2 

SEV 7B 19 
 

WCSS1_contig_3110112_7BS_2886 WCSS1_contig_3075459_7BS_802 
 

0.44 5.22 8.85 3.61 0.05 1a 

ISK 2A 143 
 

WCSS1_contig_6344163_2AL_8696 WCSS1_contig_6430050_2AL_1026 
 

1.10 7.54 11.66 -3.06 0.05 1a 

ISK 2A 186 
 

WCSS1_contig_5282575_2AS_7303 WCSS1_contig_5302874_2AS_3463 
 

1.61 5.95 7.40 -1.76 0.05 1b 

a C: wheat chromosome. b P: genetic position (cM) of the QTL. c D: genetic distance (cM) of the interval between flanking markers.  d Env: environments in 

which the quantitative trait loci was significant (3 = Urbana, Illinois – 2009 and 2010, and Wooster, Ohio - 2010; 2 = Urbana, Illinois – 2009 and 2010; 1a 

= Urbana, Illinois – 2009; 1b = Urbana, Illinois – 2010). 
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