
c© 2015 Andrew Joseph Bean

MESSAGE PASSING ALGORITHMS – METHODS AND APPLICATIONS

BY

ANDREW JOSEPH BEAN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Doctoral Committee:

Professor Andrew Singer, Chair
Assistant Professor Pulkit Grover, Carnegie Melon University
Assistant Professor Maxim Raginsky
Professor Naresh Shanbhag

Abstract

Algorithms on graphs are used extensively in many applications and research

areas. Such applications include machine learning, artificial intelligence, com-

munications, image processing, state tracking, sensor networks, sensor fusion,

distributed cooperative estimation, and distributed computation. Among

the types of algorithms that employ some kind of message passing over the

connections in a graph, the work in this dissertation will consider belief prop-

agation and gossip consensus algorithms.

We begin by considering the marginalization problem on factor graphs,

which is often solved or approximated with Sum-Product belief propagation

(BP) over the edges of the factor graph. For the case of sensor networks,

where the conservation of energy is of critical importance and communica-

tion overhead can quickly drain this valuable resource, we present techniques

for specifically addressing the needs of this low power scenario. We create a

number of alternatives to Sum-Product BP. The first of these is a generaliza-

tion of Stochastic BP with reduced setup time. We then present Projected

BP, where a subset of elements from each message is transmitted between

nodes, and computational savings are realized in proportion to the reduction

in size of the transmitted messages. Zoom BP is a derivative of Projected

BP that focuses particularly on utilizing low bandwidth discrete channels.

We give the results of experiments that show the practical advantages of our

alternatives to Sum-Product BP.

We then proceed with an application of Sum-Product BP in sequential

investment. We combine various insights from universal portfolios research

in order to construct more sophisticated algorithms that take into account

transaction costs. In particular, we use the insights of Blum and Kalai’s

transaction costs algorithm to take these costs into account in Cover and Or-

dentlich’s side information portfolio and Kozat and Singer’s switching port-

folio. This involves carefully designing a set of causal portfolio strategies and

ii

computing a convex combination of these according to a carefully designed

distribution. Universal (sublinear regret) performance bounds for each of

these portfolios show that the algorithms asymptotically achieve the wealth

of the best strategy from the corresponding portfolio strategy set, to first

order in the exponent. The Sum-Product algorithm on factor graph repre-

sentations of the universal investment algorithms provides computationally

tractable approximations to the investment strategies. Finally, we present

results of simulations of our algorithms and compare them to other portfolios.

We then turn our attention to gossip consensus and distributed estimation

algorithms. Specifically, we consider the problem of estimating the param-

eters in a model of an agent’s observations when it is known that the pop-

ulation as a whole is partitioned into a number of subpopulations, each of

which has model parameters that are common among the member agents.

We develop a method for determining the beneficial communication links

in the network, which involves maintaining non-cooperative parameter esti-

mates at each agent, and the distance of this estimate is compared with those

of the neighbors to determine time-varying connectivity. We also study the

expected squared estimation error of our algorithm, showing that estimates

are asymptotically as good as centralized estimation, and we study the short

term error convergence behavior.

Finally, we examine the metrics used to guide the design of data converters

in the setting of digital communications. The usual analog to digital con-

verters (ADC) performance metrics—effective number of bits (ENOB), total

harmonic distortion (THD), signal to noise and distortion ratio (SNDR), and

spurious free dynamic range (SFDR)—are all focused on the faithful repro-

duction of observed waveforms, which is not of fundamental concern if the

data converter is to be used in a digital communications system. Therefore,

we propose other information-centric rather than waveform-centric metrics

that are better aligned with the goal of communications. We provide compu-

tational methods for calculating the values of these metrics, some of which are

derived from Sum-Product BP or related algorithms. We also propose Statis-

tics Gathering Converters (SGCs), which represent a change in perspective

on data conversion for communications applications away from signal rep-

resentation and towards the collection of relevant statistics for the purposes

of decision making and detection. We show how to develop algorithms for

the detection of transmitted data when the transmitted signal is received by

iii

an SGC. Finally, we provide evidence for the benefits of using system-level

metrics and statistics gathering converters in communications applications.

iv

For Sophia

v

Acknowledgments

I would like to express my appreciation to Professor Andrew Singer, first of

all for his support and guidance. I also want to thank him for the opportunity

to present my research in so many incredible places all over the world. Even

when I was struggling to maintain interest in a topic, the encouragement to

submit at numerous international conferences provided much needed moti-

vation to keep pushing forward. Finally, I especially want to thank him for

his willingness to allow me to search for the research I could be passionate

about, for his considerable patience as I dabbled in a number of different

topics throughout this process, and for his understanding of my struggles.

I am grateful for many discussions, both academic in nature and not, with

many people throughout the years. This includes my office mates Thomas

Riedl and Peter Kairouz; past roommates John Kolinski, Praveen Bomman-

navar, and Michael Cason; and fellow ECE students Zuofu Cheng, Sundeep

Kartan, Roger Serwy, Daniel Barron, Alex Duda, and Jon Weissman.

I am also grateful for the many people with whom I have been able to share

my passion for rock climbing, and who have helped me find a way to get

away from research a bit and reboot my mind. This includes Ricardo Mejia-

Alvarez, Juan Saenz, James Fran, Rich Weston, Rob Werner, Praveen Bom-

mannavar, Tzlil Perahia, Georg Zeitler, Andrew Maginniss, Kevin Sierzega,

Mirella Bajric, Anthony Ho, Jon Weissman, Michael Cason, Michael Schu-

bert, and many others.

Finally, the importance of my family to helping me achieve my academic

goals cannot be overstated. I am most indebted to my parents Vicky and

Kevin Bean, and my brother Jonathan Bean, for years of support, encour-

agement, and confidence in my potential. I similarly have a most heartfelt

gratitude toward Flora Zhou for these same things, as well as for her un-

derstanding of my experiences as I have gone through the highs and lows of

my graduate research, especially in the time leading up to the completion of

vi

this dissertation. I truly appreciate all of the effort she has put in to help

me make it through the process as smoothly as possible. Finally, I want to

thank my daughter Sophia Bean for helping me to appreciate every moment

and for being my motivation to plan for a bright future ahead of us.

Portions of this research were performed under an appointment to the U.S.

Department of Homeland Security (DHS) Scholarship and Fellowship Pro-

gram, administered by the Oak Ridge Institute for Science and Education

(ORISE) through an interagency agreement between the U.S. Department of

Energy (DOE) and DHS. ORISE is managed by Oak Ridge Associated Uni-

versities (ORAU) under DOE contract number DE-AC05-06OR23100. All

opinions expressed in this dissertation are the author’s and do not necessarily

reflect the policies and views of DHS, DOE, or ORAU/ORISE. This work

was also supported by the department of the Navy, Office of Naval Research,

under grants ONR MURI N00014-07-1-0738 and ONR N00014-07-1-0311 and

by the National Science Foundation under grant NSF CCF 07-29092. Fur-

ther support came from the Gigascale System Research Center (GSRC), one

of five research centers funded under the Focus Center Research Program

(FCRP), a Semiconductor Research Corporation program. Finally, we have

received support from Systems on Nanoscale Information fabriCs (SONIC),

one of the six SRC STARnet Centers, sponsored by MARCO and DARPA.

vii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 RESOURCE EFFICIENT BELIEF PROPAGATION
ALGORITHMS . 4
2.1 Introduction . 4
2.2 Basics of the Sum-Product Algorithm 6
2.3 Stochastic Belief Propagation 8
2.4 Projected Belief Propagation 15
2.5 Quantized Coded Belief Propagation: Zoom BP 44
2.6 Simulations . 47
2.7 Conclusion . 66

CHAPTER 3 FACTOR GRAPHS FOR UNIVERSAL
PORTFOLIOS UNDER TRANSACTION COSTS 68
3.1 Introduction . 68
3.2 Preliminaries: Universal Portfolios, Transaction Costs, and

Side Information . 73
3.3 Universal Portfolios with Side Information under Transaction

Costs . 76
3.4 Computation by Factor Graphs for Portfolios with Side

Information . 86
3.5 Universal Switching Portfolios under Transaction Costs 89
3.6 Implementation of the Switching Portfolio 92
3.7 Simulation Results . 100
3.8 Conclusion . 106

CHAPTER 4 COOPERATIVE ESTIMATION IN
HETEROGENEOUS POPULATIONS 108
4.1 Introduction . 108
4.2 Bernoulli Populations . 109
4.3 Simulations: Heterogeneous Populations 118
4.4 Time to Disconnect . 120
4.5 Simulations: Time to Disconnect 122
4.6 Least Mean Squares Filter Populations 122
4.7 Conclusion . 124

viii

CHAPTER 5 ADCs, SGCs, AND SYSTEM METRICS 126
5.1 Introduction . 126
5.2 Unquantized System Model 128
5.3 Metrics for Unquantized Systems 133
5.4 Efficient Computation of System Metrics 135
5.5 Quantized System Model . 145
5.6 Metrics for Quantized Systems 147
5.7 Converter Performance: System Level versus Traditional

Metrics . 154
5.8 Receiver Design with Statistics Gathering Converters 167
5.9 Robustness of System Metric Performance under

Parameter Variation . 169
5.10 Conclusion . 171

REFERENCES . 173

ix

CHAPTER 1

INTRODUCTION

Algorithms on graphs are used extensively in many applications and research

areas. Such applications include machine learning, artificial intelligence, com-

munications, image processing, state tracking, sensor networks, sensor fusion,

distributed cooperative estimation, and distributed computation. Among

the types of algorithms that employ some kind of message passing over the

connections in a graph, the work in this dissertation will consider belief prop-

agation and gossip consensus algorithms.

In belief propagation (BP), typically we have a graphical representation

of the joint probability distribution relating a number of variables to one

another. The goal of the belief propagation algorithm might be, for example,

to find the most likely state of all of the variables or to approximate marginal

probability distributions of subsets of variables. The canonical problem of

gossip consensus algorithms, on the other hand, is simply to compute the

average of a number of observations in a distributed fashion in a network.

Examples where this may be useful are distributed data fusion in a sensor

network, or distributed computing in a computer cluster. While these two

kinds of message passing algorithms have distinct fundamental differences, it

is sometimes possible to adapt techniques developed in one domain for use in

the other. This is the first goal of the research we present here. In addition to

this, we will explore a number of applications for message passing algorithms,

as well as improvements to existing uses of message passing algorithms.

We begin in Chapter 2 by considering the Sum-Product belief propagation

algorithm in a general setting. The Sum-Product algorithm represents a

generalized framework for unifying the understanding of a wide diversity of

algorithms developed in engineering and science. It can be applied both

in distributed low resource sensor networks as well as in centralized high

performance computing hardware. For the case of sensor networks, where the

conservation of energy is of critical importance and communication overhead

1

can quickly drain this valuable resource, we present techniques for specifically

addressing the needs of this low power scenario by creating an algorithm that

improves both the computational complexity of message passing as well as the

communications overhead with a corresponding increase in convergence rate

per unit time as compared to the standard Sum-Product belief propagation.

In part, we accomplish this by adapting techniques from gossip consensus

research for efficient communication over the connections in a graph.

In Chapter 3, we examine the sequential investment problem under trans-

action costs. In particular, we make the observation that the computations

of “universal” portfolios that do not account for transaction costs can be

thought of as filtering algorithms (in the sense of Kalman filtering, particle

filtering, and related algorithms) that have implementations equivalent to

message passing in a factor graph. This realization allows us to generalize

universal portfolios to the situation with transaction costs, and furthermore

provides techniques for the computational approximation of these generalized

algorithms.

In Chapter 4, we turn our attention to gossip consensus and distributed

estimation algorithms. Specifically, we consider the problem of estimating

the parameters in a model of an agent’s observations when it is known that

the population as a whole is partitioned into a number of subpopulations,

each of which has model parameters that are common among the member

agents. We develop a method for determining the beneficial communication

links in the network and study the expected squared estimation error of our

algorithm.

Finally, in Chapter 5, we examine the metrics used to guide the design of

data converters in the setting of digital communications. Analog to digital

converters (ADCs) are typically viewed as a generic component for sensing

signals. It is usually not considered whether the end use of the ADC is

audio, digitization of sensor measurements, oscilloscopes, digital communi-

cations, or any of a number of other applications. Instead, it is assumed

that the performance requirements of the application can be stated in terms

of a small number of generic ADC performance metrics. These include ef-

fective number of bits (ENOB), total harmonic distortion (THD), signal to

noise and distortion ratio (SNDR), and spurious free dynamic range (SFDR).

However, these performance metrics are all focused on the faithful reproduc-

tion of observed waveforms, which is not of fundamental concern if the data

2

converter is to be used in a digital communications system. Therefore, we

propose other information-centric rather than waveform-centric metrics that

are better aligned with the goal of communications. We provide computa-

tional methods for calculating the values of these metrics, some of which are

derived from Sum-Product BP or related algorithms. We also propose Statis-

tics Gathering Converters (SGCs), which represent a change in perspective

on data conversion for communications applications away from signal rep-

resentation and towards the collection of relevant statistics for the purposes

of decision making and detection. We show how to develop algorithms for

the detection of transmitted data when the transmitted signal is received by

an SGC. Finally, we provide evidence for the benefits of using system-level

metrics and statistics gathering converters in communications applications.

3

CHAPTER 2

RESOURCE EFFICIENT BELIEF
PROPAGATION ALGORITHMS

2.1 Introduction

Algorithms on graphs are important in many decision making, inference, and

detection tasks. Belief Propagation (BP), one example being Sum-Product

Belief Propagation, is an example of an algorithmic approach to compu-

tations on graphs that has applications in diverse areas such as communi-

cations, signal processing, and artificial intelligence [1]. Belief propagation

provides the advantages of distributed computation and fast approximation

for hard inference problems. However, further reductions in the compu-

tational complexity or communication overhead of the algorithm may be

possible, beyond a basic parallel-updates Sum-Product implementation of

BP. One technique for increasing the efficiency of computation is Residual

BP [2], which involves prioritizing belief updates according to the most re-

cent change of the inputs to the computation of that belief. There has also

been some work on alternatives to the basic Sum-Product algorithm that

specifically targets applications with strict low power requirements, such as

sensor networks. One example is the Stochastic Belief Propagation Algo-

rithm [3], which reduces both the computational cost of an iteration of the

algorithm and the communication overhead at the expense of convergence

rate. In [4], an overview is given of work toward accounting for the partic-

ular issues that arise in using belief propagation for information fusion in

sensor networks. Much of the focus of that paper is on methods for networks

with communication constraints, such as particle-based messaging, message

censoring, and message approximation (typically from quantization). It may

also be desirable to develop alternatives to belief propagation that are robust

to computation/communication errors, or to otherwise understand how ro-

bust belief propagation is in a particular application with such errors. The

4

small amount of work in this direction includes analysis of LDPC decoding

subject to errors [5,6], the error-resilient Markov random field message pass-

ing architecture for stereo matching [7], and analysis of belief propagation

subject to certain types of messaging errors [8].

Another class of graph algorithms is gossip and consensus algorithms [9],

where the typical application involves computing the average of observations

taken at the nodes in a graph. In contrast to belief propagation research,

where much of the focus is on convergence properties and methods of improv-

ing convergence rather than further reductions in computation and commu-

nication overhead or improvements to robustness, the primary focus of a

significant amount of consensus research has been exactly these issues. This

is because sensor networks are a central motivation for consensus algorithms,

where power constraints are typical and errors may be expected. For exam-

ple, methods of average consensus with quantized messages are studied in a

number of articles [10–19]. Consensus in networks with unreliable links has

been studied by several researchers [18–23]. Unfortunately, only limited work

has been done in connecting consensus research with probabilistic graphical

models, belief propagation, and factor graphs. One paper that does make this

connection describes an algorithm reminiscent of belief propagation, which

is named Consensus Propagation [24].

In this chapter, we use some of the tools from the consensus research de-

veloped for lower computational and communication complexity in order to

create belief propagation algorithms that are more appropriate to applica-

tions with strict resource constraints. In Section 2.2, we give background

on the Sum-Product Belief Propagation algorithm and discuss potential ar-

eas for increased efficiency. In Section 2.3, we look at the Stochastic Belief

Propagation algorithm [3], and proceed to both generalize and simplify the

algorithm. In Section 2.4, we address some of the drawbacks of Stochastic

BP, especially the slow convergence rate, by applying a technique that is

reminiscent to Residual BP on a high level. We call the resulting algorithm

Projected BP. We proceed to prove some properties of the fixed points and

convergence of the algorithm. In Section 2.5, we consider more severely con-

strained communications between nodes in the graph, and propose a method

of belief propagation with coarsely quantized messages. In Section 2.6, we

present experimental results comparing our algorithms to other belief propa-

gation algorithms, and explore the reasons behind the computational benefits

5

of our methods. Finally, we give concluding remarks in Section 2.7, and dis-

cuss some potential topics for future investigation.

2.2 Basics of the Sum-Product Algorithm

In this chapter, we consider the design of alternatives to the Sum-Product

algorithm that are more efficient, with respect to both computation and

communication, for the situation where all variables live in finite sets and

the kernels at the function nodes are bounded above zero, but otherwise

arbitrary (i.e. non-parametric). We begin by reviewing the form of Sum-

Product BP in this scenario of interest.

Let v ∈ V = {1, ..., |V|} be the variable nodes, let f ∈ F = {1, ..., |F|}
be the function nodes, and let e ∈ E ⊂ V × F be the undirected edges in

a bipartite graph. Associate with each variable node v a variable Xv ∈ Xv
where D , |Xv|. We have defined every Xv to be the same size for simplicity.

Extending to the case of variables living in finite sets of varying sizes would be

a trivial matter. Now, associate with each function node f a kernel function

ψf :
∏

v:(v,f)∈E

Xv → R+,

i.e., ψf (·) is a function mapping the variables of the nodes neighboring f to

the (strictly) positive real numbers. For convenience, let Nv ⊂ F be the

neighbors of v and let Nf ⊂ V be the neighbors of f . As a slight abuse of

notation, we may use S =
∏

v∈S Xv for S ⊂ V . Therefore, we have that the

bipartite graph, which we call a factor graph, is a graphical representation of

the global function

Ψ(V) = Ψ(X) =
∏
f∈F

ψf (Nf), (2.1)

where X = (X1, ..., X|V|). Often, the factor graph is meant to represent a

joint probability distribution over the variables Xv, v ∈ V . In this case, we

have that

PX(V) = P(X) ∝
∏
f∈F

ψf (Nf).

Inference within the factor graph often involves computing the single variable

6

Algorithm 2.1: Sum-Product Belief Propagation.

Data: V , F , E , ψf (·) for each f ∈ F
Result: P̂Xv(i) for each v ∈ V

1 Initialize µ0
v→f (Xv) = 1

D
for each (v, f) ∈ E ;

2 Initialize t = 0;
3 repeat
4 t← t+ 1;

/* Update function to variable messages */

5 foreach (v, f) ∈ E do
6 if |Nf | = 1 then
7 θtf→v(Xv) = ψf (Xv);

8 else
9 θtf→v(Xv) = Marginal(f → v);

10 end

11 end
/* Update variable to function messages */

12 foreach (v, f) ∈ E do
13 if |Nv| = 1 then
14 µtv→f (Xv) = 1

D
;

15 else
16 µtv→f (Xv) = 1

Z

∏
g∈Nv\f θ

t
g→v(Xv);

17 end

18 end

19 until some stopping condition;

20 return P̂Xv(i) = 1
Z
θtf→v(i)µ

t
v→f (i) for each v ∈ V and any f ∈ Nv

marginal distributions

PXv(i) =
∑
x:xv=i

PX(X = x). (2.2)

Approximating these marginal distributions is the objective of the Sum-

Product belief propagation algorithm, and this is the problem we are con-

cerned with throughout this chapter.

The Sum-Product algorithm iteratively updates messages on the edges of

the graph. Let µtv→f (Xv) be a message from variable node v to function

node f in iteration t, and let θtf→v(Xv) be a message from function node f

to variable node v in iteration t. The Sum-Product algorithm proceeds as in

Algorithm 2.1. The scaling factors 1
Z

on Lines 16 and 20 are chosen so that

the respective messages and marginal probability estimates sum to 1. Such

7

normalization may not be necessary in a factor tree, i.e., a factor graph that

is a tree. We also have that

Marginal(f → v) =
∑

Xu:u∈Nf\v

ψf (Nf)
∏

w∈Nf\v

µt−1
w→f (Xw). (2.3)

Note that the computational complexity of the function to variable mes-

sage update in Line 9, via Equation (2.3), is O(D|Nf |) as a function of D. In

some applications, the function node kernels ψf (·) have structure that allows

simplifications that lead to computational savings in this step. However, in

this work we consider the general case, which does not allow such computa-

tional savings. Also, note that each of the messages involves the transfer of

D (for function to variable node messages) or D − 1 (for variable to func-

tion node messages) real numbers, and this may be prohibitive if D is large

or if communication is severely constrained. Finally, we note that this pre-

sentation of the Sum-Product belief propagation is for a flooding messaging

schedule. Of course, other schedules for updating messages in the graph are

possible, and this has been extensively studied [2, 25–27].

2.3 Stochastic Belief Propagation

The first alternative to the Sum-Product algorithm that we will explore is

called Stochastic Belief Propagation. Proposed by Noorshams and Wain-

wright in [3], the intended goal of the work is to provide an alternative to

Sum-Product that has greatly reduced computational complexity per itera-

tion, as well as reduced communication requirements, in order to tailor belief

propagation to settings like distributed sensor networks, where there may

be strict computational and communications restrictions. In this section, we

present the original Stochastic BP as given in [3], and proceed to both gen-

eralize their method and simplify it in order to overcome some drawbacks of

the original algorithm.

2.3.1 Original Stochastic Belief Propagation

The original Stochastic BP, which we will refer to as SBP0, is a randomized

algorithm that can approximate the single variable marginals as given by

8

Equation (2.2). We maintain the restrictions given above, such as strict

positivity of the function kernels and finite variables, but we additionally

enforce that the function nodes have maximum degree of two. Each iteration

of the algorithm essentially consists of a randomized low complexity update

of the function to variable messages, conditional upon the current variable

to function messages, such that the expected value of the update is equal

to a step in the same direction as a Sum-Product update. Equivalently, the

expectation of the update is equivalent to a damped version of Sum-Product.

Interesting to note, the nature of the variable to function messages, being

samples from the sets Xv, is reminiscent of the types of messages exchanged

in the Social Sampling distributed consensus algorithm presented in [28].

In particular, first define the following precomputed values βf→v() and

Γf→v(). These are defined for each factor node of degree 2, where we have

that the function kernel ψf (Nf) = ψf (Xv, Xw) for Nf = {v, w}. Specifically,

we have that

βf→v(Xw) =
∑
i∈Xv

ψf (i,Xw),

and

Γf→v(Xv, Xw) =
ψf (Xv, Xw)

βf→v(Xw)

for every function to variable edge. Once these have been computed, they

are maintained for use in all iterations of the algorithm, which proceeds

as in Algorithm 2.2. Again, we have that 1
Z

is a normalization factor to

ensure that the message or distribution sums to 1. Furthermore, note that

there is a decaying step size parameter λt. In our work, we always use

λt = 2
t+1

. The algorithm begins with function to variable messages θ0
f→v(Xv),

which are initialized as in Lines 6 and 8. These are used to update the

variable to function messages µtv→f (Xv) exactly as with Sum-Product BP.

The difference is in how these are subsequently used to update the message

θ0
f→v(Xv). Rather than computing an update like Equation (2.3), the update

is chosen randomly such that, in expectation, θ0
f→v(Xv) moves in the direction

of the update indicated by Equation (2.3).

A number of theoretical results are given in the original Stochastic BP

paper [3], but the main results state that if the Sum-Product update rule

mt = F (mt−1) is contractive in the Euclidean norm, where mt is the con-

catenation of all function to variable messages θtf→v(Xv) throughout the

9

Algorithm 2.2: Original Stochastic Belief Propagation – SBP0.

Data: V , F , E , ψf (·) for each f ∈ F
Result: P̂Xv(i) for each v ∈ V

1 Precompute βf→v(Xw) for each (v, f) ∈ E ;
2 Precompute Γf→v(Xv, Xw) for each (v, f) ∈ E ;
3 Initialize t = 0;
4 foreach (v, f) ∈ E do
5 if |Nf | = 1 then
6 Initialize θ0

f→v(Xv) = ψf (Xv); /* |Nf | = 1 */

7 else
8 Initialize θ0

f→v(Xv) = 1
D

; /* |Nf | = 2 */

9 end

10 end
11 repeat
12 t← t+ 1;

/* Update variable to function messages */

13 foreach (v, f) ∈ E do
14 if |Nv| = 1 then
15 µtv→f (Xv) = 1

D
;

16 else
17 µtv→f (Xv) = 1

Z

∏
g∈Nv\f θ

t−1
g→v(Xv);

18 end

19 end
/* Update function to variable messages */

20 foreach (v, f) ∈ E do
21 if |Nf | = 1 then
22 θtf→v(Xv) = ψf (Xv);

23 else
24 pick w as the only element of Nf \ v;
25 Generate J tf→v ∈ Xw:

J tf→v ∼ Pt
f→v(Xw) ∝ µtw→f (Xw)βf→v(Xw);

/* We use λt = 2
t+1. Other choices are possible. */

26 θtf→v(Xv) = (1− λt)θt−1
f→v(Xv) + λtΓf→v(Xv, J

t
f→v);

27 end

28 end

29 until some stopping condition;

30 return P̂Xv(i) = 1
Z
θtf→v(i)µ

t
v→f (i) for each v ∈ V and any f ∈ Nv

graph, such that ‖F (m)− F (m′)‖2 ≤ α‖m−m′‖2 for some α ∈ [0, 1), then

the expected deviation of the Stochastic BP state from the unique Sum-

Product fixed point, i.e., E[‖mt −m∗‖2], for the Stochastic BP update rule

10

mt = F̂ (mt−1) in the same graph decreases, at best, like 1√
t
. This holds true

for both tree graphs, as well as graphs with cycles that satisfy the stated

contraction property.

2.3.2 Generalization to Higher Degree Interactions (SBP1)

In the original Stochastic BP paper [3], no method is given for extending the

algorithm to graphs that have function nodes of degree larger than 2. We

will now show how the method can be extended to such graphs.

We begin by generalizing the definitions of the precomputed values βf→v()

and Γf→v(), as follows:

βf→v(Nf \ v) =
∑
Xv

ψf (Nf),

and

Γf→v(Nf) =
ψf (Nf)

βf→v(Nf \ v)
.

In words, for each fixed (Xv2 , ..., Xvn) with {v2, ..., vn} = Nf \ v, the func-

tion Γf→v(Xv, Xv2 , ..., Xvn) takes the form of a conditional probability dis-

tribution Pf→v(Xv|Xv2 , ..., Xvn) over the values Xv, and is obtained by tak-

ing the values from ψf (Xv, Xv2 , ..., Xvn) and applying a normalization factor

βf→v(Xv2 , ..., Xvn) =
∑

Xv
ψf (Xv, Xv2 , ..., Xvn). Note that we can think of

βf→v(Xv2 , ..., Xvn) as proportional to a joint probability distribution over the

variables Xv2 , ..., Xvn , which is derived from a joint distribution Pf (Nf) that

is proportional to the function kernel ψf (Nf).
Once βf→v() and Γf→v() have been computed, the generalized Stochastic

BP algorithm, which we will refer to as SBP1, then proceeds as in Algorithm

2.3. The value Z and the step sizes λt are as described for SBP0. Note that

EJtf→v [Γf→v(Xv, J
t
f→v)] =

∑
Nf\v

Γf→v(Nf)Pt
f→v(Nf \ v)

=
∑
Nf\v

ψf (Nf)
1

Z

∏
w∈Nf\v

µtw→f (Xw),

which shows that the function to variable message update is proportional, in

expectation, to that of Sum-Product. Therefore, in expectation, this gener-

alized Stochastic BP is also equivalent to a damped version of Sum-Product

11

Algorithm 2.3: Generalized Stochastic Belief Propagation – SBP1.

Data: V , F , E , ψf (·) for each f ∈ F
Result: P̂Xv(i) for each v ∈ V

1 Precompute βf→v() for each (v, f) ∈ E ;
2 Precompute Γf→v() for each (v, f) ∈ E ;
3 Initialize t = 0;
4 foreach (v, f) ∈ E do
5 if |Nf | = 1 then
6 Initialize θ0

f→v(Xv) = ψf (Xv); /* |Nf | = 1 */

7 else
8 Initialize θ0

f→v(Xv) = 1
D

; /* |Nf | > 1 */

9 end

10 end
11 repeat
12 t← t+ 1;

/* Update variable to function messages */

13 foreach (v, f) ∈ E do
14 if |Nv| = 1 then
15 µtv→f (Xv) = 1

D
;

16 else
17 µtv→f (Xv) = 1

Z

∏
g∈Nv\f θ

t−1
g→v(Xv);

18 end

19 end
/* Update function to variable messages */

20 foreach (v, f) ∈ E do
21 if |Nf | = 1 then
22 θtf→v(Xv) = ψf (Xv);

23 else
24 Generate J tf→v ∈

∏
w∈Nf\v Xw:

J tf→v ∼ Pt
f→v(Nf \v) ∝ βf→v(Nf \v)

∏
w∈Nf\v µ

t
w→f (Xw);

/* We use λt = 2
t+1. Other choices are possible. */

25 θtf→v(Xv) = (1− λt)θt−1
f→v(Xv) + λtΓf→v(Xv, J

t
f→v);

26 end

27 end

28 until some stopping condition;

29 return P̂Xv(i) = 1
Z
θtf→v(i)µ

t
v→f (i) for each v ∈ V and any f ∈ Nv

BP. Furthermore, note that if we restrict the graph to have function nodes of

degree at most equal to 2, then SBP1 reduces to the SBP0 algorithm from [3].

As a final point, we comment on how to generate J tf→v, which comes from a

potentially high dimensional distribution. One way to deal with this, which is

12

the approach we take later in our computational experiments, is an instance

of rejection sampling, where we first sample each variable Xu : u ∈ Nf \ v
independently according to µtw→f (Xu) to get Ĵ tf→v. We then accept or reject

Ĵ tf→v according to βf→v(Ĵ
t
f→v) by drawing a value U uniformly from 0 to

maxJ βf→v(J). We let J tf→v = Ĵ tf→v if U < βf→v(Ĵ
t
f→v). Otherwise, try

again with a newly generated Ĵ tf→v. A downside is that this reduces the

decentralized nature of the algorithm, as it requires repeated coordination

between the function and variable nodes to give as many random samples

as necessary to get one accepted. Alternatively, if Ĵ tf→v is rejected, we may

simply skip the update for that iteration. Then, the only difference is that

the step has some probability of having size zero, but the update still results

in a damped Sum-Product in expectation.

2.3.3 Simplification with Reduced Setup Time (SBP2)

With SBP1, we have overcome the degree-2 function node limitation of SBP0,

but there are still some significant drawbacks that we would like to address.

For example, the precomputation of βf→v() and Γf→v() requires O(D|Nf |)

computations and O(D|Nf |) storage for every edge in the graph connected to

a function node of degree greater than 1. In addition to this, the procedure to

generate J tf→v could potentially involve a high probability of sample rejection,

which leads to a loss of efficiency. For these reasons, we have developed a

simplified Stochastic BP, which we will refer to as SBP2. This algorithm

proceeds as in Algorithm 2.4

Importantly, this algorithm completely avoids the computation and stor-

age requirements of SBP0 and SBP1 for βf→v() and Γf→v(). It also avoids

the complications with generating samples of J tf→v, because we simply need

independent samples of each Xw for w ∈ Nf \ v, thus avoiding complications

with sampling from high dimensional joint distributions from which sampling

may be difficult. Furthermore, note that

EJtf→v [ψf (Xv, J
t
f→v)] =

∑
Nf\v

ψf (Nf)Pt
f→v(Nf \ v)

=
∑
Nf\v

ψf (Nf)
1

Z

∏
w∈Nf\v

µtw→f (Xw).

13

Algorithm 2.4: Simplified Stochastic Belief Propagation – SBP2.

Data: V , F , E , ψf (·) for each f ∈ F
Result: P̂Xv(i) for each v ∈ V

1 Initialize t = 0;
2 foreach (v, f) ∈ E do
3 if |Nf | = 1 then
4 Initialize θ0

f→v(Xv) = ψf (Xv); /* |Nf | = 1 */

5 else
6 Initialize θ0

f→v(Xv) = 1
D

; /* |Nf | > 1 */

7 end

8 end
9 repeat

10 t← t+ 1;
/* Update variable to function messages */

11 foreach (v, f) ∈ E do
12 if |Nv| = 1 then
13 µtv→f (Xv) = 1

D
;

14 else
15 µtv→f (Xv) = 1

Z

∏
g∈Nv\f θ

t−1
g→v(Xv);

16 end

17 end
/* Update function to variable messages */

18 foreach (v, f) ∈ E do
19 if |Nf | = 1 then
20 θtf→v(Xv) = ψf (Xv);

21 else
/* Sample each component of J t

f→v independently. */

22 Generate J tf→v ∈
∏

w∈Nf\v Xw:

J tf→v ∼ Pt
f→v(Nf \ v) ∝

∏
w∈Nf\v µ

t
w→f (Xw);

/* We use λt = 2
t+1. Other choices are possible. */

23 θtf→v(Xv) = (1− λt)θt−1
f→v(Xv) + λtψf (Xv, J

t
f→v);

24 end

25 end

26 until some stopping condition;

27 return P̂Xv(i) = 1
Z
θtf→v(i)µ

t
v→f (i) for each v ∈ V and any f ∈ Nv

2.3.4 Advantages and Shortcomings

As we have seen, these stochastic belief propagation algorithms have advan-

tages over Sum-Product BP in resource usage efficiency per iteration. With

respect to computations, we see that each iteration has only complexity of

14

O(D) (after setup of the algorithm). For communications overhead, we have

only O(log(D)) overhead for each variable to function message, since we

send only samples from each Xv. Unfortunately, the convergence rate suf-

fers, as it is reduced from an exponential rate of convergence, as seen in

the contractivity assumption, to a rate of O(1√
t
). Due to this convergence

rate disadvantage, in the following sections we will examine methods for

reduced compexity belief propagation without giving up exponential conver-

gence rates in the cases where Sum-Product converges exponentially quickly.

2.4 Projected Belief Propagation

The next set of belief propagation algorithms we will develop are what we

call Projected BP algorithms. On a high level, these are most closely related

to the Residual BP algorithm [2]. This is because Residual BP, as well as

the algorithms to be presented in this section, essentially involve intelligently

selecting small subsets of the algorithm’s state space to update or transmit

in each iteration. In the case of Residual BP, the granularity is on the level

of messages, where we choose to update a message if the portion of state

that the update depends on has changed significantly since the last time

that message was updated. What results is a message update schedule that

prioritizes updating the messages with inputs that have changed the most

since the last update of the message. This reduces the amount of computa-

tion by computing only the high priority updates, but it has the additional

benefit of reducing the amount of data transferred between nodes in the net-

work, because a message does not need to be transferred if that message was

not updated in that iteration. Of course, this message update prioritization

scheme involves some global coordination within the network. In our Pro-

jected BP algorithms, the granularity of the state subset selection is much

finer, on the level of the individual components of the beliefs that are passed

between nodes in the graph. In this way, we can realize greater computational

and communications efficiency without the need for any global coordination.

This makes our algorithms better suited to resource constrained distributed

networks, where any kind of global coordination is difficult, if not infeasible.

15

Algorithm 2.5: Projected Belief Propagation.

Data: V , F , E , ψf (·) for each f ∈ F
Result: P̂Xv(i) for each v ∈ V

1 Initialize µ̂0
v→f (Xv) = 1

D
for each (v, f) ∈ E ;

2 Initialize U0
v→f = Xv;

3 Initialize θ0
f→v(Xv) = µ̂−1

v→f (Xv) = 0 for each (v, f) ∈ E ;

4 Initialize t = 0;
5 repeat
6 t← t+ 1;

/* Update function to variable messages */

7 foreach (v, f) ∈ E do
8 if |Nf | = 1 then
9 θtf→v(Xv) = ψf (Xv);

10 else
11 Enforce θtf→v(Xv) = Marginal(f → v);

12 end

13 end
/* Update variable to function messages */

14 foreach (v, f) ∈ E do
15 if |Nv| = 1 then
16 µtv→f (Xv) = 1

D
;

17 else
18 µtv→f (Xv) = 1

Z

∏
g∈Nv\f θ

t
g→v(Xv);

19 end

20 end
21 foreach (v, f) ∈ E do
22 Choose U tv→f where U tv→f ⊆ Xv;

23 µ̂tv→f (i) =

{
µt−1
v→f (i) if i ∈ U tv→f
µ̂t−1
v→f (i) if i /∈ U tv→f

;

24 end

25 until some stopping condition;

26 return P̂Xv(i) = 1
Z
θtf→v(i)µ

t
v→f (i) for each v ∈ V and any f ∈ Nv

2.4.1 Algorithm Description

Projected BP simply involves choosing a subset of elements from each vari-

able to function message to send to the function nodes. The description

is given as Algorithm 2.5. In Line 11 of Algorithm 2.5, the expression

Marginal(f → v) differs from Equation (2.3) only in that µt−1
w→f (Xw) is re-

16

placed with µ̂t−1
w→f (Xw). Specifically, we have that

Marginal(f → v) =
∑

Xu:u∈Nf\v

ψf (Nf)
∏

w∈Nf\v

µ̂t−1
w→f (Xw). (2.4)

Again, Z is a normalizing constant to ensure that the respective results sum

to 1.

There are two important differences between Projected BP and Sum-

Product BP. First, we point out Lines 21-24 of Algorithm 2.5. Here, we see

that the algorithm state vectors µ̂v→f are not updated with the full variable-

to-function beliefs µv→f . Instead, only a subset of the entries take on the

values in µv→f , while the rest remain unchanged. Because of this, if the sizes

of the subsets U tv→f are much smaller than D, then this potentially represents

large savings in communications overhead per iteration for the variable-to-

function updates. Note that it is possible to use the same communication

saving method for the function to variable messages, but this does not give

a correspondingly significant computational savings, since the computation

is dominated by the updates of each µ̂f→v. (The communications savings

may nevertheless still be desirable.) This is broadly similar to Stochastic

BP [3], with the most important difference being that our careful determin-

istic choice of information to send in the message is more informative than

sending a random value sampled from the distribution µtf→v(Xv).

The other important difference is on Line 11 of Algorithm 2.5. First, the

full variable to function messages µtv→f (Xv) are not available for the updates

of the function to variable messages θtf→w(Xw). Only the estimates µ̂tv→f are

available. Plus, instead of simply computing the update Marginal(f → v)

in full, we will make use of the fact that the messages µ̂t−1
w→f (Xw) differ from

µ̂t−2
w→f (Xw) only in the elements specified by U t−1

w→f . This is why we specify

that we enforce the equality in Line 11.

To see how this enforcement is done with reduced computational complex-

ity, consider a function node f with only two neighbors Nf = {v1, v2}. The

full update of θtf→v2(Xv2) would be

θtf→v2(Xv2) =
∑
Xv1

ψf (Xv1 , Xv2)µ̂
t−1
v1→f (Xv1).

17

Algorithm 2.6: Reduced Complexity Update of θtf→v(Xv),
i.e., “Enforce θtf→v(Xv) = Marginal(f → v).”

Data: t,(v, f), Nf , {µ̂t−1
w→f , µ̂

t−2
w→f ,U

t−1
w→f} for each w ∈ Nf

Result: θtf→v
/* If not a flooding schedule, Nto update may be a smaller subset. */

1 Initialize Nto update = Nf \ v;
2 Initialize Nupdated = (Nf \ v) \ Nto update; /* {} if flooding. */

3 Initialize θtf→v = θt−1
f→v;

4 foreach w ∈ Nto update do
5 t← t+ 1;

/* Incorporate changes in µ̂t−1
w→f from µ̂t−2

w→f */

6 µ̃w→f (Xw) = µ̂t−1
w→f (Xw)− µ̂t−2

w→f (Xw); /* = 0 for Xw /∈ U t−1
w→f */

7 ∆θf→v(Xv)

=
∑

Xw∈Ut−1
w→f

∑
Xu:u∈Nf\{v,w}

(
ψf (Nf) µ̃w→f (Xw)

×
∏

m∈Nupdated

µ̂t−1
m→f (Xm)

∏
m∈(Nf\{v,w})\Nupdated

µ̂t−2
m→f (Xm)

)
;

8 θtf→v(Xv)← θtf→v(Xv) + ∆θf→v(Xv);

9 Nupdated ← Nupdated ∪ {w};
10 end
11 return θtf→v(Xv)

However, we have that

θt−1
f→v2(Xv2) =

∑
Xv1

ψf (Xv1 , Xv2)µ̂
t−2
v1→f (Xv1),

and µ̂t−1
v1→f (Xv1)− µ̂t−2

v1→f (Xv1) = 0 for Xv1 /∈ U t−1
v1→f . Therefore, we have that

∆θtf→v2(Xv2) =
∑

Xv1∈U
t−1
v1→f

ψf (Xv1 , Xv2)(∆µ̂
t−1
v1→f (Xv1)), (2.5)

where we have that

∆θtf→v2(Xv2) = θtf→v2(Xv2)− θt−1
f→v2(Xv2)

and

∆µ̂t−1
v1→f (Xv1) = µ̂t−1

v1→f (Xv1)− µ̂t−2
v1→f (Xv1).

18

Thus, the update is simply

θtf→v2(Xv2)← θt−1
f→v2(Xv2) + ∆θtf→v2(Xv2),

which is accomplished with a fraction |U t−1
v1→f |/D of the full Sum-Product

update complexity. The generalization for this update for function nodes

that have degree greater than 2 is given in Algorithm 2.6. The only time this

simplification is not possible is during the first iteration, when it is necessary

to initialize every θtf→v(Xv) with the full computation of Marginal(f → v) as

in Equation (2.4). This is hinted at by the fact that we initialize U0
v→f = Xv.

Of course, this is equivalent to a Sum-Product update of θtf→v(Xv), and is

therefore not a disadvantage of Projected BP compared to Sum-Product.

2.4.2 Subset Selection Methods

We will consider two versions of Projected BP, where the difference is in

the method of selecting the update subsets U tv→f . The first will be called

K-Projected BP. For this, we choose the set U tv→f as a size K ≤ D subset of

indices to elements of µ̂t−1
v→f (Xv) to update to produce µ̂tv→f (Xv). Specifically,

we construct U tv→f from K elements of Xv so that for i ∈ U tv→f and j /∈ U tv→f
we have that

|µ̂t−1
v→f (i)− µ

t
v→f (i)| ≥ |µ̂t−1

v→f (j)− µ
t
v→f (j)|.

In other words, choose the indices where µ̂t−1
v→f (·) and µtv→f (·) differ the most.

The other Projected BP variant will be called β-Projected BP. This in-

volves selecting subsets of varying sizes in order to ensure that the mes-

sage estimates µ̂tv→f (Xv) are within a certain relative distance of µt−1
v→f (Xv).

Specifically, choose a value β ∈ [0, 1) that indicates, for some norm N , how

small the residual difference ‖µ̂tv→f (Xv) − µtv→f (Xv)‖N should be compared

to the size of the desired update ‖µ̂t−1
v→f (Xv) − µtv→f (Xv)‖N . Therefore, we

19

refer to this algorithm as β-Projected BP. Hence, we have that

U tv→f = arg minU |U|

subject to

‖µ̂tv→f (Xv)−µtv→f (Xv)‖N
‖µ̂t−1
v→f (Xv)−µtv→f (Xv)‖N

≤ β.

(2.6)

Note that for both K-Projected BP and β-Projected BP, the variable-to-

function messages µtv→f (Xv) comprise the result of computing a Sum-Product

update, starting with the message estimates µ̂t−1
v→f (Xv). Furthermore, note

that for many norms, this discrete optimization is an easy operation.

2.4.3 Computation and Communication Complexity

We now examine more carefully the complexity of our Projected BP algo-

rithms, in terms of both computation and communication. We will also

examine the complexity of the Sum-Product algorithm in order to make a

comparison.

First, consider the computational complexity of the updates of the variable

to function beliefs µtv→f (Xv), which is the same for both Sum-Product and

both versions of Projected BP. The update for a single edge simply involves

|Nv|− 1 multiplies for each of D belief elements, followed by D− 1 additions

and D multiplications or divisions for the normalization step. Therefore,

the overall computational complexity for this portion of the computation, in

terms of the variable cardinality D, is simply O(D).

Next, consider the computational complexity of the updates of the func-

tion to variable beliefs µtf→v(Xv) in the Sum-Product algorithm. Reiterating

Equation (2.3), we have that

θtf→v(Xv)︸ ︷︷ ︸
D elements

=

D
(|Nf |−1)

terms︷ ︸︸ ︷∑
Xu:u∈Nf\v

ψf (Nf) ∏
w∈Nf\v

µt−1
w→f (Xw)

︸ ︷︷ ︸

|Nf |−1 multiplies

.

Therefore, the number of multiplies, when naively computed, isD×D(|Nf |−1)×

20

(|Nf | − 1) = (|Nf | − 1)D|Nf |. The number of additions is comparable, com-

ing to D × (D(|Nf |−1) − 1). Hence, we have that the overall computational

complexity of the update of θtf→v(Xv) is O(D|Nf |), with respect to D. We

will mention briefly that we may employ some tricks to reduce slightly the

number of computations, such as maintaining partial products in order to use

fewer than |Nf | − 1 multiplies per summation term, but the computational

complexity remains O(D|Nf |). Now, over the whole graph, we may conclude

that the overall computational complexity of a Sum-Product iteration, with

respect to the variable cardinality D for a particular graph topology, is domi-

nated by the function to variable message updates, implying that the overall

iteration complexity is O(DNmax), where Nmax is the maximum function node

degree. Of course, the complexity also scales with the size of the graph and

the number of nodes with a particular degree, but the differences in com-

putational complexity that we will observe between Sum-Product and our

Projected BP algorithms are only in the parameter D and the parameter K

of K-Projected BP.

Now, consider the computational complexity of the updates of the function

to variable beliefs θtf→v(Xv) in the K-Projected BP algorithm. This time,

reiterating Lines 7 and 8 of Algorithm 2.6, we have that

θtf→v(Xv)︸ ︷︷ ︸
D elements

←

K terms︷ ︸︸ ︷
∑

Xw∈Ut−1
w→f

D
(|Nf |−2)

terms︷ ︸︸ ︷∑
Xu:u∈Nf\{v,w}

ψf (Nf) µ̃w→f (Xw)︸ ︷︷ ︸
Ksubtractions︸ ︷︷ ︸

2 multiplies

∏
m∈Nf\{w,v}

µ̂
t[m]
m→f (Xm)

︸ ︷︷ ︸
|Nf |−3 multiplies

+θtf→v(Xv)︸ ︷︷ ︸
D additions

.

We have combined the products over the sets (Nf \ {v, w}) \ Nupdated and

Nupdated by defining t[m] = t − 1 if m ∈ Nupdated, otherwise t[m] = t − 2.

Therefore, the number of multiplies for the full update of θtf→v(Xv) is D ×
K × D(|Nf |−2) × (|Nf | − 1), which is O(KD(|Nf |−1)) with respect to K and

D. The number of additions and subtractions is on the same order, coming

to K(D(|Nf |−1) + 1). Of course, this also dominates the O(D) complexity

of the variable to function message updates, so the overall computational

complexity of an iteration of K-Projected BP, with respect to K and D, is

21

O(KD(Nmax−1)). Furthermore, note that if we employ a flooding message

passing schedule, we need to perform this update of θtf→v(Xv) separately for

each updated message µ̂t−1
w→f (Xw), w ∈ Nf \ v, contributing an additional

constant factor |Nf |−1 to the complexity. This does not change the compu-

tational complexity of the iterations with respect to the parameters K and

D.

Note that the most significant scaling constant ignored in the order no-

tation that is different between Sum-Product BP and K-Projected BP is

the factor of (|Nf | − 1) resulting from separate updates for each variable to

function message that θtf→w(Xw) depends on in a flooding message passing

scheme. Therefore, when we compare the complexity of Sum-Product BP

to that of K-Projected BP, we see that we are able to save a potentially

large factor D
K(Nmax−1)

of computation per iteration by using the K-Projected

BP algorithm. The only exception is the setup for the first iteration of K-

Projected BP and β-Projected BP, which is essentially equivalent to one

Sum-Product update. As we will examine more closely later, there are a

number of applications where D can be quite large (say, over 50), and both

K and (Nmax − 1) may each be as little as 1.

2.4.4 Theoretical Convergence Properties

We will now turn to showing a number of theoretical results pertaining to

our Projected BP algorithms. In particular, as was done in both [2] and [3],

we will examine the theoretical convergence properties of our algorithms in

relation to the convergence properties of Sum-Product BP. In this analysis,

as was done for the original Stochastic BP [3] and for Residual BP [2], we

make certain assumptions about the convergence of Sum-Product and the

application instance, such as contractivity of the Sum-Product updates and

positivity of the function kernels, in order to derive the properties of our

algorithms.

Correspondence of Fixed Points

Our first theoretical results concern the fixed points of our Projected BP

algorithms. Essentially, these results say that every fixed point of Sum-

Product corresponds with a unique fixed point of Projected BP, and every

22

fixed point of Projected BP corresponds with a unique fixed point of Sum-

Product.

To demonstrate this, we will consider flooding message passing schedules

for both Sum-Product BP and Projected BP. In the case of Sum-Product,

we will employ normalization on the variable to function messages, but

not on the function to variable messages. Let MV→F be the concatena-

tion of all variable to function messages and let MF→V be the concate-

nation of all function to variable messages. Then an iteration of Sum-

Product BP may be written as alternating updates MF→V = F (MV→F)

and MV→F = G(MF→V). Projected BP, on the other hand, can be writ-

ten as cyclical updates MV→F = U(M̃V→F ,MV→F), MF→V = F (MV→F)

and M̃V→F = G(MF→V). In this case, MV→F consists of the message

estimates at the receiving end of the variable to function channels. Note

that the function node update function F (·) and the variable node update

function G(·) are the same between Sum-Product and Projected BP, such

that the only difference between the algorithms is the message estimate up-

date function U(·), which is used only for Projected BP. Recall that the

message estimate update function U(MV→F ,M̂V→F) is equal to M̂V→F ex-

cept where MV→F is the most different from M̂V→F . Hence, we have that

U(MV→F ,M̂V→F) = M̂V→F if and only if MV→F = M̂V→F .

Now, to discuss the fixed points of the algorithms, we must specify what

the state is. Let the Sum-Product iteration be defined as

Mt
V→F = G(F (Mt−1

V→F)),

where the state of the algorithm at time t is taken to be the messagesMt
V→F .

Let the Projected BP iteration be defined as

Mt
V→F = U(G(F (Mt−1

V→F)),Mt−1
V→F).

Again, the state of the algorithm at time t is taken to be Mt
V→F . We can

now state the following theorem.

Theorem 2.4.1. A state space point M∗
V→F is a fixed point of Sum-Product

if and only if it is a fixed point of Projected BP.

Proof. Assume that M∗
V→F is a fixed point of Sum-Product. Then we must

23

have that

M∗
V→F = G(F (M∗

V→F)).

Then, applying the Projected BP update to the Sum-Product fixed point,

we see that

U(G(F (M∗
V→F)),M∗

V→F) = U(M∗
V→F ,M∗

V→F)

=M∗
V→F .

This shows that M∗
V→F is also a fixed point of Projected BP.

Conversely, suppose that M?
V→F is a fixed point of Projected BP. Then

we must have that

M?
V→F = U(G(F (M?

V→F)),M?
V→F).

However, since the second argument of U() is equal to the output of U(), we

know that the arguments of U() must be equal. Hence, we have that

M?
V→F = G(F (M?

V→F)),

which implies that M?
V→F is also a fixed point of Sum-Product. Thus, we

have that Sum-Product and Projected BP have the same fixed points. �

Conditions for Guaranteed Convergence to Fixed Points

We have established that Sum-Product and Projected BP have the same fixed

points. We will now explore whether Projected BP will converge to these

fixed points. We will now establish that under standard assumptions, similar

to those of other related approaches [2, 3], β-Projected BP will converge to

a fixed point, as long as Sum-Product is guaranteed to converge and the

β parameter is small enough. Our methods are similar to the methods of

analysis for Residual BP [2] in that we first establish some basic properties

of iterative algorithms and then proceed to apply these results to Projected

BP.

We begin with the following definitions. Let f(x) be the update for some

iterative algorithm, i.e., x[t + 1] = f(x[t]). Let g() be another iterative

24

algorithm, such that g(x) = f(x) + e(x), i.e., g() is the original algorithm

plus a perturbation e(x) in each step. Let BN(r, x) = {x′ : ‖x − x′‖N ≤ r},
which is simply a ball of radius r around the point x with respect to the

norm N .

Assumption 2.4.2 (Exponential Convergence). Under norm N , there is a

ball BN(r, x∗) with r > 0 around a point x∗ where, for x ∈ BN(r, x∗) and

some α ∈ [0, 1), we have that

‖f(x)− x∗‖N ≤ α‖x− x∗‖N .

Assumption 2.4.2 implies that iterations of algorithm f() converge expo-

nentially quickly toward the fixed point x∗ within BN(r, x∗). Furthermore,

note that this is a weaker assumption than contractivity, which is the as-

sumption used for convergence analysis of Residual BP [2] and Stochastic

BP [3], and results that hold under Assumption 2.4.2 will therefore also hold

under a contractivity assumption.

Lemma 2.4.3. Suppose the following are true:

• Iterative algorithm f() satisfies Assumption 2.4.2.

• Iterative algorithm g() is defined as g(x) = f(x) + e(x).

• For x ∈ BN(r, x∗) and β ∈
[
0,
(

1−α
1+α

))
, we have that

‖e(x)‖N ≤ β‖f(x)− x‖N .

Then, the iterative algorithm g(), defined as g(x) = f(x) + e(x), converges

toward x∗ exponentially quickly within BN(r, x∗), such that

‖g(x)− x∗‖N ≤ (β(1 + α) + α) ‖x− x∗‖N .

25

Proof. Using Assumption 2.4.2 and the triangle inequality, we have that

‖f(x)− x‖N = ‖f(x)− x∗ + x∗ − x‖N
≤ ‖f(x)− x∗‖N + ‖x∗ − x‖N
≤ α‖x− x∗‖N + ‖x− x∗‖N
= (1 + α)‖x− x∗‖N

⇒ ‖f(x)− x‖N ≤ (1 + α)‖x− x∗‖N .

This then allows us to show that

‖g(x)− x∗‖N = ‖g(x)− f(x) + f(x)− x∗‖N
≤ ‖g(x)− f(x)‖N + ‖f(x)− x∗‖N
≤ ‖e(x)‖N + α‖x− x∗‖N
≤ β‖f(x)− x‖N + α‖x− x∗‖N
≤ β(1 + α)‖x− x∗‖N + α‖x− x∗‖N
= (β (1 + α) + α) ‖x− x∗‖N

⇒ ‖g(x)− x∗‖N ≤ (β (1 + α) + α) ‖x− x∗‖N .

But, we have that

β (1 + α) + α <

(
1− α
1 + α

)
(1 + α) + α

= (1− α) + α

= 1

⇒ β (1 + α) + α < 1.

Hence, for x0 ∈ BN(r, x∗) and xt = g(xt−1), we have that

‖xt − x∗‖N ≤ r(β (1 + α) + α)t. �

We would now like to apply this result to our β-Projected BP algorithm to

better understand the convergence of the algorithm. Recall that the global

state of Sum-Product and β-Projected BP, MV→F , is a concatenation of

the individual variable to function message estimates µ̂v→f , which each have

their own norm Nv→f . We will first define some notation. Let [MV→F]i

indicate the ith message µ̂v→f from the state MV→F , where the edges (v, f)

26

have been uniquely enumerated. The norm for that particular message is Ni.

Furthermore, Let [MV→F]i,j indicate the jth element of the ith message in

MV→F . The global norm on MV→F is simply N .

To apply Lemma 2.4.3 to derive a relationship between convergence of

Sum-Product and β-Projected BP, we make the following assumption relating

the global norm to the message norms:

Assumption 2.4.4. Consider any two global state space pointsM1
V→F and

M2
V→F . If we have that

‖[M1
V→F]i‖Ni ≤ β‖[M2

V→F]i‖Ni

for every edge i, then we also have that

‖M1
V→F‖N ≤ β‖M2

V→F‖N .

We now state our first theorem relating the convergence of β-Projected BP

to that of Sum-Product BP.

Theorem 2.4.5. Suppose the following are true:

• The Sum-Product iteration f(MV→F) , G(F (MV→F)) satisfies As-

sumption 2.4.2 (with x∗ =M∗
V→F).

• the message and global norms on MV→F satisfy Assumption 2.4.4.

• We have that β ∈
[
0,
(

1−α
1+α

))
for the β-Projected BP iteration

g(MV→F) , U(G(F (MV→F)),MV→F).

Then β-Projected BP converges toward M∗
V→F exponentially quickly in the

ball BN(r,M∗
V→F), such that

‖g(MV→F)−M∗
V→F‖N ≤ (β(1 + α) + α) ‖MV→F −M∗

V→F‖N .

Proof. We simply need to verify that β-Projected BP can be written as

g(MV→F) = f(MV→F) + e(MV→F), (2.7)

27

and that

‖e(MV→F)‖N ≤ β‖f(MV→F)−MV→F‖N (2.8)

when β ∈
[
0,
(

1−α
1+α

))
, which allows us to apply Lemma 2.4.3. To this end,

using the notation from above and writing the subset selections Uv→f (a

function of MV→F) as Ui where i is the index of edge (v, f), we have that

[g(MV→F)]i,j =

 [f(MV→F)]i,j if j ∈ Ui

[MV→F]i,j if j /∈ Ui.

Therefore, if we define

[e(MV→F)]i,j =

 0 if j ∈ Ui

[MV→F]i,j − [f(MV→F)]i,j if j /∈ Ui,

this verifies that the algorithms satisfy Equation (2.7).

Now, to verify Equation (2.8), note that the subset selection of β-Projected

BP in Equation (2.6) ensures that

‖[e(MV→F)]i‖Ni ≤ β‖[f(MV→F)−MV→F]i‖Ni .

Assumption 2.4.4 then leads to verification of Equation (2.8). Finally, appli-

cation of Lemma 2.4.3 concludes the proof. �

We now briefly consider what global norms satisfy Assumption 2.4.4.

Claim 2.4.6. Let the individual message norms be the usual Euclidean

norm, i.e.,

‖ [MV→F]i ‖Ni = ‖ [MV→F]i ‖2 =

√∑
j

([MV→F]i,j)
2.

The Euclidean norm for the global message, ‖MV→F‖2, defined as

‖MV→F‖2 =

√∑
(i,j)

([MV→F]i,j)
2,

satisfies Assumption 2.4.4.

28

Proof. Consider any two global state space points M1
V→F and M2

V→F , and

suppose that

‖[M1
V→F]i‖2 ≤ β‖[M2

V→F]i‖2

for every component message. Then we have that(
‖[M1

V→F]i‖2

)2 ≤
(
β‖[M2

V→F]i‖2

)2

⇒
∑
i

(
‖[M1

V→F]i‖2

)2 ≤
∑
i

(
β‖[M2

V→F]i‖2

)2

⇒
∑
i

∑
j

([
M1
V→F

]
i,j

)2

≤
∑
i

β2
∑
j

([
M2
V→F

]
i,j

)2

= β2
∑
i

∑
j

([
M2
V→F

]
i,j

)2

⇒
√∑

(i,j)

(
[M1

V→F]i,j

)2

≤ β

√∑
(i,j)

(
[M2

V→F]i,j

)2

⇒ ‖M1
V→F‖2 ≤ β‖M2

V→F‖2. �

Claim 2.4.7. Let Ni be any norm defined for the message [MV→F]i. The

composite max norm ‖MV→F‖C , defined as

‖MV→F‖C = max
i
‖[MV→F]i‖Ni ,

satisfies Assumption 2.4.4.

Proof. Consider any two global state space points M1
V→F and M2

V→F , and

suppose that

‖[M1
V→F]i‖Ni ≤ β‖[M2

V→F]i‖Ni

for every component message. Then we have that

‖M1
V→F‖C = max

i

∥∥[M1
V→F

]
i

∥∥
Ni

≤ max
i
β
∥∥[M2

V→F
]
i

∥∥
Ni

= βmax
i

∥∥[M2
V→F

]
i

∥∥
Ni

= β‖M2
V→F‖C

⇒ ‖M1
V→F‖C = β‖M2

V→F‖C . �

29

Claim 2.4.8. Let each Ni be the max norm, i.e.,

‖ [MV→F]i ‖Ni = max
j

∣∣∣[MV→F]i,j

∣∣∣ .
The global max norm ‖MV→F‖∞, defined as

‖MV→F‖∞ = max
(i,j)

∣∣∣[MV→F]i,j

∣∣∣ ,
satisfies Assumption 2.4.4.

Proof. We have that

‖MV→F‖∞ = max
(i,j)

∣∣∣[MV→F]i,j

∣∣∣
= max

i
max
j

∣∣∣[MV→F]i,j

∣∣∣
= max

i
‖[MV→F]i‖Ni

= ‖MV→F‖C .

Therefore, the global max norm is a special case of the composite norm of

Claim 2.4.7. �

Theorem 2.4.5 demonstrates that if the convergence property of Assump-

tion 2.4.2 holds for Sum-Product with respect to any one of a broad class of

norms satisfying Assumption 2.4.4, then there is a β such that β-Projected

BP is also convergent. However, there remains the possibility that better

guarantees could be given if we consider particular global norms N . In the

following, similar to the convergence analysis of Stochastic BP [3], we will

consider exponential convergence in the form of Assumption 2.4.2 with re-

spect to the Euclidean norm ‖MV→F‖2. We will also consider Assumption

2.4.2 with respect to the max norm ‖MV→F‖∞. Note that Theorem 2.4.5

already applies to these cases, as demonstrated by Claims 2.4.6 and 2.4.8.

In addition to specializing the results with respect to the norms under con-

sideration, we will also take advantage of the particular structure of the

perturbation term e(MV→F) to widen the range of values of β for which

convergence of β-Projected BP is guaranteed.

First, we consider the Euclidean global norm.

Lemma 2.4.9. Suppose the following are true:

30

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

α
√

1 − β2 + β

β (1 + α) + α

β = 1−α2

1+α2β = 1−α
1+α

������

U
p
p

er
B

ou
n
d

β

Convergence Factor Upper Bounds

Figure 2.1: Different upper bounds on the convergence factor, where α = 1
2
.

A convergence factor less than 1 guarantees exponential convergence, with
smaller factors corresponding with faster convergence. Values of β where
the bounds transition to above 1 are labeled.

• The norm N is the (global) Euclidian norm, as defined in Claim 2.4.6

• Iterative algorithm f() satisfies Assumption 2.4.2 with respect to the

particular norm N .

• We have that the iterative algorithm g(x) = f(x) + e(x).

• The perturbation e(x) takes the form e(x) = b(x) � (x− f(x)), where

b(x) is a vector of zeros and ones, and � signifies the element-wise

product.

• For x ∈ B2(r, x∗) and β ∈ [0, cos(2 tan−1(α))) =
[
0, 1−α2

1+α2

)
, we have

that

‖e(x)‖2 ≤ β‖f(x)− x‖2.

Then the iterative algorithm g() converges toward x∗ exponentially quickly

within B2(r, x∗), such that

‖g(x)− x∗‖2 ≤
(
α
√

1− β2 + β
)
‖x− x∗‖2.

31

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1− α

2

1 + α
2

1− α

1 + α

al
lo

w
ed

β
va

lu
es

α

Perturbation Bounds

Figure 2.2: Different upper bounds on the relative perturbation size, β, for
which convergence is guaranteed, as a function of α. Note that the bound
specialized for the Euclidean norm includes a wider range of β values that
guarantee convergence.

We note that, for α and β in the allowed ranges, it can easily be shown

that

0 ≤ α
√

1− β2 + β ≤ β(1 + α) + α,

demonstrating that Lemma 2.4.9 achieves a better bound on convergence rate

than Lemma 2.4.3 by specifically accounting for the form of the global norm

and the type of perturbation. This is shown in Figure 2.1. Furthermore, as

shown in Figure 2.2, note that

1− α2

1 + α2
≥ 1− α

1 + α
,

and therefore Lemma 2.4.9 guarantees exponential convergence of β-Projected

BP for a wider range of β values than Lemma 2.4.3.

Proof. We need to verify that algorithm g reduces the distance of the state

from x∗ by a factor at least as fast as α
√

1− β2 + β, and that this factor

is less than 1 for the specified range of β. First, let us define the notation

[x]i as the ith element of x. Next, note that the particular form of e(x)

guarantees that g(x) lies on a sphere centered at 1
2
(f(x) + x) with radius

32

equal to
∥∥∥f(x)

2
− x

2

∥∥∥
2
. We will use the notation SN(r, c) to indicate a sphere

of radius r centered at c under norm N , i.e.,

SN(r, c) = {x : ‖x− c‖N = r}.

To see that g(x) is on the sphere S2

(∥∥∥f(x)
2
− x

2

∥∥∥
2
, f(x)

2
+ x

2

)
, first note that

[e(x)]i =

 0 if [b(x)]i = 0

[x− f(x)]i if [b(x)]i = 1
.

Therefore, we have that[
g(x)− 1

2
(f(x) + x)

]
i

=

[
f(x) + e(x)− f(x)

2
− x

2

]
i

=

[
f(x)

2
− x

2
+ e(x)

]
i

=

[
f(x)

2
− x

2

]
i

if [b(x)]i = 0[
x
2
− f(x)

2

]
i

if [b(x)]i = 1
.

Hence, we have that√√√√∑
i

[
g(x)− 1

2
(f(x) + x)

]2

i

=

√√√√∑
i

[
f(x)

2
− x

2

]2

i

=

∥∥∥∥f(x)

2
− x

2

∥∥∥∥
2

.

We continue the proof by examining how far g(x) can be from x∗ in the

Euclidean norm. To this end, for a given α and β, consider

α̃ = max
x,x∗,f,g

‖g − x∗‖2

‖x− x∗‖2

subject to

f ∈ B (α ‖x− x∗‖2 , x

∗)

g ∈ S
(

1
2
‖f − x‖2 ,

1
2
(f + x)

)
g ∈ B (β ‖f − x‖2 , f)

.

The first constraint comes from Assumption 2.4.2, the second from the as-

sumption on the form of the perturbation, and the third constraint comes

from the assumption on perturbation size. Thus, α̃ ‖x− x∗‖2 is an upper

bound on ‖g − x∗‖2. Now, note that we may arbitrarily translate, scale, and

33

1

θα
γ

φ

ψ
e

d

f

g

x=u1x∗=0

Figure 2.3: Geometry of x, f , and g.

rotate the coordinate system without affecting the value of α̃ in this max-

imization. Furthermore, the maximization will force f and g to be on the

boundaries of their respective ball constraints, restricting their values to the

corresponding spheres. Finally, the maximizing value of g will be in the same

plane as x, x∗, and f , such that we only need to consider the maximization in

two dimensions. Therefore, we translate the coordinates so that x∗ = [0, 0]T ,

and both scale and rotate the coordinates so that x = [1, 0]T , u1, f is on

the circle S (α, 0), and g is on the circle S
(

1
2
‖f − u1‖2 ,

1
2
(f + u1)

)
. Then

our expression for α̃ becomes

α̃ = max
f,g
‖g‖2 subject to

f ∈ S (α, 0)

g ∈ S
(

1
2
‖f − u1‖2 ,

1
2
(f + u1)

)
g ∈ S (β ‖f − u1‖2 , f)

.

This situation is depicted in Figure 2.3. In the figure, we have labeled the

points x, x∗, f , and g, the angles θ, ψ, and φ, and the lengths α, e (the

perturbation size), and d. We can now see that we may find an expression

34

for g as a function of α, β, and the angle θ. From this, we maximize with

respect to θ. From the figure, we have that

f = [α cos(θ), α sin(θ)]T .

We can also compute the angle γ, and find that

γ = tan−1

(
α sin(θ)

1− α cos(θ)

)
.

The angle φ is found to be

φ = cos−1
(e
d

)
= cos−1 (β) .

The length e is found to be

e = βd

= β
√

(α sin(θ))2 + (1 + α cos(θ))2.

We then find that

g = f + [e cos(ψ), e sin(ψ)]T

= f + [e cos(φ− γ), e sin(φ− γ)]T

= [α cos(θ) + e cos(φ− γ), α sin(θ) + e sin(φ− γ)]T .

Hence, we have that

‖g‖2
2 = (α cos(θ) + e cos (φ− γ))2

+ (α sin(θ) + e sin (φ− γ))2 .
(2.9)

Substituting the expressions for e, φ, and γ leads to a complicated expression,

but with the judicious, yet liberal, application of numerous trigonometric

identities, Equation (2.9) may be transformed into

‖g‖2
2 = α2 + β2 − α2β2 + 2αβ sin(θ)

√
1− β2.

35

This is maximized for θ = π
2
, which leads to

α̃ = max
f,g
‖g‖2

=

√
α2 + β2 − α2β2 + 2αβ

√
1− β2

= α
√

1− β2 + β.

It remains to show that α̃ < 1 for β ∈
[
0, 1−α2

1+α2

)
. To this end, we will show

the following:

1. α
√

1− β2 + β = α for β = 0.

2. α
√

1− β2 + β = 1 for β = 1−α2

1+α2 .

3. α
√

1− β2 + β is strictly increasing in β for each fixed value of α.

For β = 0, clearly we have that α
√

1− 02 + 0 = α. Next, for β = 1−α2

1+α2 , we

have that

α
√

1− β2 + β = α

√
1−

(
1− α2

1 + α2

)2

+
1− α2

1 + α2

= α

√
(1 + α2)2 − (1− α2)2

(1 + α2)2
+

1− α2

1 + α2

= α

√
4α2

(1 + α2)2
+

1− α2

1 + α2

=
2α2

1 + α2
+

1− α2

1 + α2

=
1 + α2

1 + α2

= 1.

Finally, we have that

d

dβ

(
α
√

1− β2 + β
)

= 1− αβ√
1− β2

,

which we must verify is positive. We begin with

1 ≥ (1− α2)2

1 + α2
= (1 + α2)

(
1− α2

1 + α2

)2

.

36

Noting that β < 1−α2

1+α2 , we have that

1 > (1 + α2)β2.

Which then gives us

1− β2 > α2β2.

Since the square root function is monotone increasing, we have that√
1− β2 > αβ.

We can now divide by
√

1− β2 on both sides to get

1 >
αβ√
1− β2

.

And finally we have that

1− αβ√
1− β2

=
d

dβ

(
α
√

1− β2 + β
)
> 0.

Therefore, α
√

1− β2 + β is strictly increasing in β from α to 1 for each α.

Hence, we have that α
√

1− β2 +β < 1 for β ∈
[
0, 1−α2

1+α2

)
, which gives us the

exponential convergence of algorithm g. �

We will now apply Lemma 2.4.9 to β-Projected BP.

Theorem 2.4.10. Suppose the following are true:

• The global and message norms, N and Ni respectively, are the Euclidian

norms, as defined in Claim 2.4.6

• The Sum-Product iteration f(MV→F) , G(F (MV→F)) satisfies As-

sumption 2.4.2 (with x∗ =M∗
V→F) with respect to the specified norm.

• We have that β ∈
[
0,
(

1−α2

1+α2

))
for the β-Projected BP iteration

g(MV→F) , U(G(F (MV→F)),MV→F).

Then β-Projected BP converges toward M∗
V→F exponentially quickly in the

37

ball BN(r,M∗
V→F), such that

‖g(MV→F)−M∗
V→F‖N ≤

(
α
√

1− β2 + β
)
‖MV→F −M∗

V→F‖N .

The proof of this result involves essentially the same procedure as the proof

of Theorem 2.4.5, but with application of Lemma 2.4.9 instead of Lemma

2.4.3. We note that the specified Euclidean norms satisfy Assumption 2.4.4,

as demonstrated in Claim 2.4.6.

We now consider the global max norm. In order to indicate composition

of a function with itself, let g0(x) = x and gM(x) = g(gM−1(x)) for M > 0.

Lemma 2.4.11. Suppose the following are true:

• The norm N is the (global) max norm, as defined in Claim 2.4.8.

• Iterative algorithm f() satisfies Assumption 2.4.2 with respect to the

particular norm N .

• We have that the iterative algorithm g(x) is a perturbed version of f(x),

i.e., g(x) = f(x) + e(x).

• The perturbation e(x) takes the form e(x) = b(x) � (x− f(x)), where

b(x) is a vector of zeros and ones, and � signifies the element-wise

product.

• In every sequence of M consecutive iterations of g(x), we have that

[b(x)]i, the ith element of b(x), is 1 at least once. Alternatively, we can

say that every element of the state has been updated at least once.

Then the iterative algorithm g() converges toward x∗ exponentially quickly

within Br,N(x∗), such that

∥∥gM(x)− x∗
∥∥
∞ ≤ α ‖x− x∗‖∞ .

Note that this lemma is closely related to Theorem 3.3 and Corollary 3.4

from [2]. In fact, the proof method for this lemma can be used to prove the

mentioned corollary.

Proof. First, let us write the sequence of states for the iterations of algorithm

g as xt, where x0 is some arbitrary initial state within Br,N(x∗), and xt+1 =

38

g(xt). Now, note that

∣∣[f(xt)− x∗
]
i

∣∣ ≤ α
∥∥xt − x∗∥∥∞ ,∀i,

which follows directly from Assumption 2.4.2 under the max norm. We now

note that

∣∣[xt − x∗]
i

∣∣ ≤ α
∥∥xt − x∗∥∥∞ implies

∣∣[xt+1 − x∗
]
i

∣∣ ≤ α
∥∥xt − x∗∥∥∞ . (2.10)

This is true because, due to the form of the perturbation e(x), we have that

[
xt+1

]
i

=
[
g(xt)

]
i

=

{
[f(xt)]i if [b(xt)]i = 1

[xt]i if [b(xt)]i = 0
.

Since we have that

∣∣[f(xt)− x∗
]
i

∣∣ ≤ α
∥∥xt − x∗∥∥∞ ,

and ∣∣[xt − x∗]
i

∣∣ ≤ α
∥∥xt − x∗∥∥∞ ,

this proves the intermediate result in Equation (2.10). On the other hand,

we have that

‖g(x)− x∗‖∞ ≤ ‖x− x
∗‖∞ .

This is true because

‖g(x)− x∗‖∞ = max
i
|[g(x)− x∗]i|

= max
i
|[f(x) + e(x)− x∗]i|

≤ max
(

max
i
|[f(x)− x∗]i| ,max

i
|[x− x∗]i|

)
= max

i
|[x− x∗]i|

= ‖x− x∗‖∞ .

Iterating this on the state sequence xt, starting with state xt0 , results in

∥∥xt − x∗∥∥∞ ≤ ∥∥xt0 − x∗∥∥∞ for t ∈ Z, t ≥ t0. (2.11)

39

This allows us to iterate Equation (2.10) to obtain∣∣[xt − x∗]
i

∣∣ ≤ α
∥∥xt − x∗∥∥∞

⇒
∣∣[xk − x∗]

i

∣∣ ≤ α
∥∥xt − x∗∥∥∞ for k ∈ Z, k ≥ t.

We show this by induction. The base case is Equation (2.10). Now, suppose,

for k > t, we have that ∣∣[xt − x∗]
i

∣∣ ≤ α
∥∥xt − x∗∥∥∞

⇒
∣∣[xk − x∗]

i

∣∣ ≤ α
∥∥xt − x∗∥∥∞ .

From Equation (2.11), we have that
∥∥xk − x∗∥∥∞ ≤ ‖xt − x∗‖∞, since k ≥ t.

Combining this with Equation (2.10), we have that∣∣[xk − x∗]
i

∣∣ ≤ α
∥∥xk − x∗∥∥∞ ≤ α

∥∥xt − x∗∥∥∞
⇒
∣∣[xk+1 − x∗

]
i

∣∣ ≤ α
∥∥xk − x∗∥∥∞ ≤ α

∥∥xt − x∗∥∥∞ .
Therefore, we have that∣∣[xt − x∗]

i

∣∣ ≤ α
∥∥xt − x∗∥∥∞

⇒
∣∣[xk+1 − x∗

]
i

∣∣ ≤ α
∥∥xt − x∗∥∥∞ ,

which completes the induction step. One more application of Equation (2.11)

results in ∣∣[xt − x∗]
i

∣∣ ≤ α
∥∥xt0 − x∗∥∥∞

⇒
∣∣[xk − x∗]

i

∣∣ ≤ α
∥∥xt0 − x∗∥∥∞ for k ≥ t ≥ t0.

More specifically, we have that∣∣[xt − x∗]
i

∣∣ ≤ α
∥∥x0 − x∗

∥∥
∞

⇒
∣∣[xk − x∗]

i

∣∣ ≤ α
∥∥x0 − x∗

∥∥
∞ for k ≥ t ≥ 0.

Essentially, this says that if g updates element i of the state to be at most

α ‖x0 − x∗‖∞ away from x∗, then it will forever stay within that distance of

the fixed point. Since we have assumed that every element of the state gets

40

updated by the completion of iteration M , then we have that

∣∣[xM − x∗]
i

∣∣ ≤ α
∥∥x0 − x∗

∥∥
∞ ∀i.

Finally, this implies that

∥∥xM − x∗∥∥∞ ≤ α
∥∥x0 − x∗

∥∥
∞ .

By applying this to every subsequence of M consecutive iterations of g, we

are able to conclude the proof of Lemma 2.4.11. �

At this point, we note that Lemma 2.4.11 could be applied to a suitably

modified β-Projected BP or K-Projected BP, where the algorithm is modified

to ensure that every state element gets updated within some specified bound

on the number of iterations. Furthermore, if the Projected BP algorithm is

reduced to a round-robin updating of the elements of each variable to function

message estimate, then we have that Lemma 2.4.11 applies for M = D,

i.e., the cardinality of the variables. Since the computational complexity

of D iterations of such an algorithm is comparable to a single iteration of

Sum-Product, we see that if Sum-Product satisfies Assumption 2.4.2 with

respect to the max norm, then Lemma 2.4.11 implies that we stand to gain

in convergence rate by breaking up the updates into fine-grained element-

by-element updates, quite analogous to the arguments made in support of

Residual BP in [2].

Convergence in Trees in Finite Iterations

We will now change direction a bit and consider the convergence of our

algorithms specifically for finite tree factor graphs. We will call this a factor

tree. Of course, as is well known, the Sum-Product algorithm converges to a

unique fixed point in a finite number of iterations for factor trees,1 i.e., for a

factor graph that has no cycles [29]. We will now state a result saying that K-

Projected BP also converges in a finite number of steps to a unique fixed point

for a factor tree. Furthermore, as discussed earlier, this fixed point must also

be a fixed point of Sum-Product, and hence must be the unique fixed point

of Sum-Product that gives the exact marginals with respect to the variables.

1Whenever we mention a tree, it shall be assumed that it is a finite tree.

41

For the following theorem, we will assume, without loss of generality, that

all leaf nodes are function nodes. This is possible because we can append

to any variable node v a function node with the kernel ψf (Xv) = 1 with

no consequential alteration to the overall graphical model. Furthermore, if

p(u, v) is the number of edges from node u to node v in the tree, then the

diameter d of the tree equals max(u,v) p(u, v).

Theorem 2.4.12. In a factor tree of finite diameter d and variable nodes of

cardinality D, the K-Projected BP update,

Mt+1
V→F = g(Mt

V→F) = U(G(F (Mt
V→F)),Mt

V→F),

will converge to the unique fixed point M∗
V→F in at most d

2

⌈
D
K

⌉
iterations.

Proof. We begin by defining some notation. Let T(v → f) be the subtree

rooted at node f through v, i.e., the subtree containing all nodes with paths

to f that necessarily include the edge (v, f). Let d∗(v → f) be the depth

of T(v → f), i.e., the maximal distance from f to a leaf node of T(v → f).

We will say that a message or intermediate computation, such as µ̂tv→f , is

stable from iteration t if its value does not change with further iterations

of the algorithm after iteration t. For example, if µ̂t+kv→f = µ̂tv→f for k ≥ 0,

then µ̂tv→f is stable from iteration t. Note that if, from iteration t, message

[Mt
V→F]i is stable for every component i, then Mt

V→F =M∗
V→F . Thus, the

claim of the theorem is that there exists t∗ ≤ d
2

⌈
D
K

⌉
such that

[
Mt∗
V→F

]
i

is

stable from t∗ for every i.

Before we proceed, we will define some intermediate computations implicit

in Mt+1
V→F = g(Mt

V→F). First, let

Mt+1
F→V = F (Mt

V→F),

which consists of all the function to variable messages
[
Mt+1
F→V

]
i

= µt+1
f→v.

Also, let

M̃t+1
V→F = G(Mt+1

F→V),

which consists of all the (exact) variable to function messages
[
M̃t+1
V→F

]
i

=

µt+1
v→f . Finally, we have that

Mt+1
V→F = U(M̃t+1

V→F ,M
t
V→F),

42

which consists of all the (estimated) variable to function messages
[
Mt+1
V→F

]
i

=

µ̂t+1
v→f .

Now, consider a particular variable to function message estimate [Mt
V→F]i =

µ̂tv→f . We will first find an upper bound on the number of iterations t until

[Mt
V→F]i = [M∗

V→F]i. By induction on the factor tree, we will prove that

µ̂tv→f is stable from t∗v→f , where t∗v→f ≤
d∗(v→f)

2

⌈
D
K

⌉
.

We begin with the base case. Suppose that d∗(v → f) = 2, such that each

node f ′ ∈ Nv \ f is a leaf node. Note that the message µ̂tv→f is a function of

µ̂t−1
v→f and µtv→f . Furthermore, the message µtv→f is a function of the messages

µtf ′→v for f ′ ∈ Nv \ f . Since the nodes f ′ are leaf nodes, the messages µtf ′→v
are stable from t = 1. This implies that the message µtv→f is also stable

from t = 1. This furthermore implies that µ̂tv→f will be stable from t∗v→f ,

where t∗v→f ≤
⌈
D
K

⌉
= d∗(v→f)

2

⌈
D
K

⌉
. This is because it will take at most

⌈
D
K

⌉
iterations for the update function U(·) to fill in µ̂v→f with the D elements of

µv→f , K elements at a time.

We will now perform induction on subtree depth d̂. Assume that, for any

edge (ṽ, f̃), if d∗(ṽ → f̃) ≤ d̂, then µ̂t
ṽ→f̃ is stable from iteration t∗

ṽ→f̃ , where

t∗
ṽ→f̃ ≤

d∗(ṽ→f̃)
2

⌈
D
K

⌉
. Now consider an edge (v, f) where, for f ′ ∈ Nv \ f , we

have either that f ′ is a leaf node or that T(v′ → f ′) is a subtree of the factor

tree for v′ ∈ Nf ′ \ v. Furthermore, assume that the maximal depth of these

subtrees is d̂. Note that this implies that d∗(v → f) = d̂+ 2.

Note that the message µ̂tv→f is a function of µ̂t−1
v→f and µtv→f . We also have

that the message µtv→f is a function of the messages µtf ′→v for f ′ ∈ Nv \ f .

Finally, we have that, for each f ′ ∈ Nv \ f , the message µtf ′→v is either

constant, i.e., stable from t = 1, if f ′ is a leaf node, or it is a function of

each µ̂t−1
v′→f ′ for v′ ∈ Nf ′ \ v. However, from our induction hypothesis and

the assumption on subtree depth, we have that each µ̂tv′→f ′ is stable from

t ≤ d∗(v′→f ′)
2

⌈
D
K

⌉
≤ d̂

2

⌈
D
K

⌉
. Of course, we also have that 1 ≤ d̂

2

⌈
D
K

⌉
. This

makes µtf ′→v stable for t ≤ d̂
2

⌈
D
K

⌉
+ 1. This implies that µtv→f is stable for

t ≤ d̂
2

⌈
D
K

⌉
+ 1. Finally, filling in the elements of µ̂tv→f will take at most⌈

D
K

⌉
iterations, beginning no later than iteration d̂

2

⌈
D
K

⌉
+ 1, which implies

µ̂tv→f will be stable from t ≤ d̂
2

⌈
D
K

⌉
+
⌈
D
K

⌉
= d̂+2

2

⌈
D
K

⌉
= d∗(v→f)

2

⌈
D
K

⌉
. This

proves, from the induction hypothesis, that for any edge (ṽ, f̃), if d∗(ṽ →
f̃) ≤ d̂+2 then µ̂t

ṽ→f̃ is stable from iteration t∗
ṽ→f̃ , where t∗

ṽ→f̃ ≤
d∗(ṽ→f̃)

2

⌈
D
K

⌉
.

This, together with the base case, prove that for any edge (v, f) in the finite

43

factor tree, we have that µ̂tv→f is stable from iteration t∗v→f , where t∗v→f ≤
d∗(v→f)

2

⌈
D
K

⌉
. Therefore, every message µ̂tv→f will be stable from some t∗v→f ≤

max(v,f)
d∗(v→f)

2

⌈
D
K

⌉
= d

2

⌈
D
K

⌉
. Therefore, K-Projected BP has reach a fixed

point no later than iteration d
2

⌈
D
K

⌉
. Since this fixed point must correspond

with a fixed point of Sum-Product, then it must correspond with the unique

fixed point of Sum-Product. This concludes the proof of Theorem 2.4.12. �

2.5 Quantized Coded Belief Propagation: Zoom BP

We will now present a variation of belief propagation that places even greater

emphasis on the communication overhead than the Projected BP algorithms

developed in Section 2.4. Essentially, this algorithm, which we call Zoom

Belief Propagation, is an adaptation of Projected BP that incorporates ideas

from [15] for the coding of messages of real values into a finite alphabet.

2.5.1 The Zoom Belief Propagation Algorithm

The algorithm is similar to the Projected BP algorithms, with the exception

that real values are not transmitted from variable nodes to function nodes in

the updating of the message estimates µ̂v→f . Instead, we transmit quantized

representations of a subset of the differences [µv→f − µ̂v→f]i. To do so, we

employ separate encoder/decoder pairs as described in [15] for each element

[µv→f − µ̂v→f]i. For simplicity, let us look at the coded transmission for

the updates to a particular element µ̂ , [MV→F]i,j from the element µ ,[
M̃V→F

]
i,j

. First, define a scale factor a whose value will be known at both

the sending and receiving sides. This will be the state of our encoder/decoder

pair. We also define globally known initial values for a and µ̂, in order that

their values may be tracked at both the encoding and decoding sides with only

knowledge of the transmitted symbols. Next, we define an encoder function

Q : R× R→ A that takes the scale factor a and the difference ∆µ , µ− µ̂
and produces a symbol q from the finite alphabet A = {i : i ∈ Z, |i| ≤ Q̄}
for some integer Q̄ ≥ 1. We also define a decoder function H : R × A → R
that takes the scale factor a and the transmitted symbol q and constructs a

message estimate update. Finally, we define an encoder/decoder state update

function V : R×A → R that takes the current encoder/decoder state—the

44

scale factor a—and the transmitted symbol q and determines the updated

encoder/decoder state.

Specifically, for the encoder function, we have that

Q(a,∆µ) ,

{
min

(⌊
∆µ
a

⌋
, Q̄
)

if ∆µ ≥ 0

max
(⌈

∆µ
a

⌉
,−Q̄

)
if ∆µ ≤ 0

.

For the decoder function, we have that

H(a, q) , aq.

Finally, for the encoder/decoder state update function, we have that

V (a, q) ,

{
Zina if |q| < Q̄

Zouta if |q| = Q̄
,

where we have that 0 < Zin < 1 and Zout > 1. In the course of the algorithm,

the sending node will compute a value µ, which it wishes to transmit to a

neighboring node. Rather than sending µ, it may (if this element is in the

update set) then compute the symbol q = Q(a, µ − µ̂) and send it to the

neighboring node. At this point, both the sending and receiving nodes com-

pute the update µ̂← µ̂+H(a, q), and follow this with the encoder/decoder

state update a ← V (a, q). Note that the encoder and decoder ensure that

µ̂ + H(a, q) is not outside the range between µ and µ̂. This ensures that all

message estimate values µ̂ remain in the range [0, 1], since we have such a

condition on the message values µ.

The details of the algorithm are given in Algorithm 2.7. The marginal

computation at Line 12 is identical to the same computation in Projected BP.

We now note that the computational complexity of Zoom BP is essentially the

same as that of Projected BP. The only real computational difference is the

small amount of computation involved in the encoder and decoder operations.

On the other hand, with Zoom BP, we are able to send much smaller messages

than would be involved with Sum-Product BP or even Projected BP, since

we do not need to send entire floating point values. Instead, for each edge

(v, f), we may send the size
∣∣U tv→f ∣∣ of the update subset using dlog2(D)e

bits, followed by the elements of U tv→f using
∣∣U tv→f ∣∣ dlog2(D)e bits, followed

by the symbols qtv→f (i) for i ∈ U tv→f , using
∣∣U tv→f ∣∣ dlog2(2Q̄ + 1)e bits. This

45

Algorithm 2.7: Zoom Belief Propagation, quantized coded messages.

Data: V , F , E , ψf (·) for each f ∈ F
Result: P̂Xv(i) for each v ∈ V

1 Initialize µ̂0
v→f (Xv) = 1

D
for each (v, f) ∈ E ;

2 Initialize U0
v→f = Xv;

3 Initialize θ0
f→v(Xv) = µ̂−1

v→f (Xv) = 0 for each (v, f) ∈ E ;

4 Initialize a0
v→f (Xv) = a0;

5 Initialize t = 0;
6 repeat
7 t← t+ 1;

/* Update function to variable messages */

8 foreach (v, f) ∈ E do
9 if |Nf | = 1 then

10 θtf→v(Xv) = ψf (Xv);

11 else
12 Enforce θtf→v(Xv) = Marginal(f → v);

13 end

14 end
/* Update variable to function messages */

15 foreach (v, f) ∈ E do
16 if |Nv| = 1 then
17 µtv→f (Xv) = 1

D
;

18 else
19 µtv→f (Xv) = 1

Z

∏
g∈Nv\f θ

t
g→v(Xv);

20 end

21 end
22 foreach (v, f) ∈ E do
23 Choose U tv→f where U tv→f ⊆ Xv;
24 Transmit U tv→f ;
25 Transmit qtv→f (i) = Q(at−1

v→f (i), µ
t
v→f (i)− µ̂t−1

v→f (i)) for i ∈ U tv→f ;
26 end
27 foreach (v, f) ∈ E do

28 µ̂tv→f (i) =

{
µ̂t−1
v→f (i) +H(at−1

v→f (i), q
t
v→f (i)) if i ∈ U tv→f

µ̂t−1
v→f (i) if i /∈ U tv→f

;

29 atv→f (i) =

{
V (at−1

v→f (i), q
t
v→f (i)) if i ∈ U tv→f

at−1
v→f (i) if i /∈ U tv→f

;

30 end

31 until some stopping condition;

32 return P̂Xv(i) = 1
Z
θtf→v(i)µ

t
v→f (i) for each v ∈ V and any f ∈ Nv

46

0 50 100 150
10

−20

10
−15

10
−10

10
−5

10
0

Normalized Distance from fixed point vs iteration number

iteration number

di
st

an
ce

2 fr
om

 fi
xe

d
po

in
t

Figure 2.4: 10× 10 square grid, D = 4096, Potts model. Normalized
squared distance from the Sum-Product fixed point versus iteration
number. Sum-Product is marked with circles. The other curves are
K-Projections BP, where K=1 is the top curve, and larger values of K
approaching the Sum-Product curve. Note that all instances of
K-Projections and Sum-Product reach ∼1e-7 after about 70 iterations.

represents potentially significant savings in communication rate compared to

the transmission of 32- or 64-bit floating point values.

2.6 Simulations

In this section, we examine the performance of various belief propagation

algorithms in a variety of scenarios. Specifically, we will be comparing Sum-

Product BP, the Stochastic BP algorithms SBP1 and SBP2, K-Projected BP,

and Zoom BP, all of which we have implemented in C++.

2.6.1 Convergence in a Simple Test Graph

The first set of experiments are with the simple square grid Potts model

Markov random field (MRF) from [3]. In this graph, we have pairwise po-

tential functions,

ψf (i, j) =

{
1 if i = j

γ if i 6= j
, (2.12)

47

0 1000 2000 3000 4000 5000 6000 7000 8000
10

−20

10
−15

10
−10

10
−5

10
0

Normalized Distance from fixed point vs iteration number

CPU time, seconds

di
st

an
ce

2 fr
om

 fi
xe

d
po

in
t

Figure 2.5: 10× 10 square grid, D = 4096, Potts model. Normalized
squared distance from the Sum-Product fixed point versus CPU time.
Sum-Product is marked with circles. The other curves are K-Projections
BP. For K = 1, convergence becomes quite slow after reaching ∼1e-7. For
K = {6, 11, 16, 21}, the convergence rate per second CPU time improves.
For K greater than approximately 65, the improvement in convergence per
iteration no longer compensates the increase in computational complexity.
The K = 65 curve is set in a thick dashed line.

for each edge in the MRF grid, and single variable potentials,

ψf (i) =

{
1 if i = 1

µ+ σZv,i if i 6= 1
,

connected to each MRF node, where Zv,i is an IID uniform random number

from (−1, 1). In our experiments using the square grid Potts MRF model, we

have a 10× 10 grid, |Xv| = D = 4096, γ = 0.1, and µ = σ = 0.13. Note that

all of the function kernels are strictly positive with probability 1. We note

that message update simplifications are possible due to the structure of the

pairwise potentials, but this structure is not being exploited in the message

updates in the algorithms.

Figures 2.4, 2.5, and 2.6 show some results of these experiments. In each

of these graphs, we show results of the Sum-Product algorithm (marked by

red circles), as well as K-Projected BP for K = {1, 6, 11, 16, 21, ...}. First,

Figure 2.4 shows how the K-Projections BP algorithm converges to a fixed

point in comparison to Sum-Product, as a function of iteration number. The

vertical axis is the squared distance from the fixed point of the Sum-Product

48

0 500 1000 1500 2000 2500 3000 3500 4000
−1

−0.8

−0.6

−0.4

−0.2

0
Convergence Rate near Fixed Point vs K Parameter

K Parameter

co
nv

er
ge

nc
e

ra
te

 p
er

 it
er

at
io

n

Figure 2.6: 10× 10 square grid, D = 4096, Potts model. Convergence rate
R of the normalized squared distance from the Sum-Product fixed point
versus the parameter K of the K-Projections algorithm, such that
|εt+1|2 ≈ eR|εt|2 near the fixed point. This is computed for
K = {1, 6, 11, ..., 1446}. The rate of Sum-Product is marked with a circle,
and corresponds with K = 4096.

algorithm, normalized by the squared norm of the fixed point. In these

experiments, we have taken the algorithm state to be the concatenation of all

function to variable messages on all edges of the graph. (For K-Projections,

the messages used are normalized versions of every θtf→v(·).) What we see

is that after some number of iterations, the convergence per iteration of the

K-Projections algorithm is slower than Sum-Product. This convergence is

slowest for K = 1, and steadily improves as K is increased. However, it

is quite interesting that all instances of K-Projections, even with K = 1,

converge to a normalized squared distance of about 10−7 after about 70

iterations, which is essentially the same as Sum-Product. In fact, for many

values of K, K-Projections reaches 10−7 sooner than Sum-Product.

In Figure 2.5, we show the same comparison between K-Projections and

Sum-Product, with the same vertical axis, except that now the horizontal

axis is in seconds of computation (wall) time. We see that for K = 1, con-

vergence becomes quite slow after reaching ∼1e-7. For K = {6, 11, 16, 21},
the convergence rate per second CPU time improves. Hence, in this range the

computational cost incurred per iteration by utilizing larger update subsets is

more than compensated by the corresponding increase in convergence speed.

For K greater than approximately 65, the improvement in convergence per

49

iteration no longer compensates the increase in computational complexity.

However, for essentially all instances of K-Projections in this simulation,

convergence is faster than the standard Sum-Product update.

Finally, in Figure 2.6, we show how the convergence rate per iteration of

K-Projected BP in the vicinity of the belief propagation fixed point depends

on the choice of parameter K. To be specific, let |εt|2 be the normalized

squared distance of the belief propagation state from the BP fixed point at

iteration t. When we write rate R, we mean that |εt|2 is decreasing such that

|εt+1|2 ≈ eR|εt|2. Therefore, we hope for R to be as negative as possible. We

see that up to K ≈ 250, R decreases linearly as K increases, then the rate

accelerates downward until it stops decreasing for K > 410. At this point,

K-Projections has already achieved the convergence per iteration of Sum-

Product BP, with a small fraction of the computational load. Unfortunately,

we were unable to determine the cause of this feature of our algorithm, but

we suspect it is a result of the messages converging to sparse distributions.

2.6.2 Stereo Image Matching - Energy Minimization

The remainder of our simulations use the “Cones” stereo image pair from [30],

as shown in Figures 2.7(a) and 2.7(b), and the “Tsukuba” stereo image pair

from [31], as shown in Figures 2.7(c) and 2.7(d), in order to test the algo-

rithms on a basic model for stereo image matching. We note that the model

we use in these tests admit computational simplifications due to the special

form of the potential functions, but none of this structure is being exploited,

allowing us to focus our attention only on the virtues and drawbacks of each

of the algorithms. This model consists of the following: First, let variables

Xi,j represent disparities of the right image from the left image. Specifically,

if Xi,j = d, then the content of pixel (i, j) of the left image, indexed from the

bottom left of the image, lines up with content of pixel (i − d, j). We also

have pairwise potential functions composing a square grid Pott’s model as in

Equation (2.12), where we have that

ψv1,v2(i, j) =

{
1 if i = j

γ if i 6= j
,

50

(a) “Cones” left source image. (b) “Cones” right source image.

(c) “Tsukuba” left source image. (d) “Tsukuba” right source image.

Figure 2.7: The “Cones” and “Tsukuba” stereo matching source images.

for v1 = Xx,y and v2 is one of the four neighboring variables Xx+1,y, Xx−1,y,

Xx,y+1, or Xx,y−1. In our experiments, we use γ = 1
20

. Finally, we have single

variable data potentials, whose values depend on the source images. These

are defined as follows:

ψi,j(d) = max (ε, exp (−λ ‖CL(i, j)− CR(i− d, j)‖1)) ,

where we have that CL(i, j) and CR(i, j) are vectors of red, green, and blue

color components of pixel (i, j), taking values 0 to 255, for the left and right

source images, respectively, and ‖·‖1 is the L1-norm. In our experiments, we

use ε = 1
1000

and λ = 1
10

. Note that if the colors of pixels (i, j) and (i− d, j)
are similar, then ψi,j(d) will have a value closer to 1, whereas if the colors

are less similar, then ψi,j(d) will be smaller, with a minimal value of ε.

We will also define an “energy,” which is a function of specific realiza-

51

tions xi,j of the variables Xi,j. This energy is simply defined as E(x) =

− log(Ψ(x)), where Ψ(·) is the global function represented by the factor

graph, as defined in Equation (2.1), and x is the vector of all values xi,j.

We will now present the results of experiments where we evaluate Sum-

Product BP and some of its alternatives with respect to this energy function

E(x). However, this requires some justification. Note that when the global

function Ψ(·) is considered proportional to a probability distribution P(·)
modeling the joint distribution among the variables at the variable nodes,

minimizing E(x) with respect to x is equivalent to finding a maximum a

posteriori probability (MAP) estimate of x, i.e., x̂ = arg minxE(x). This is

often approximated by the use of Max-Product belief propagation (on the

factor graph of Ψ(x)) or, equivalently, Min-Sum belief propagation (on a

graphical representation of E(x)). Sum-Product belief propagation, on the

other hand, does not move toward minimizing the energy function E(x), but

instead minimizes something different called the Bethe free energy [32, 33].

Ultimately, however, we use Sum-Product or one of its alternatives in order to

approximate the marginal probabilities PXv(xv) as in Equation (2.2). From

this, the decision rule is to choose x̂v = arg maxxv PXv(xv). We will use the

notation v∼ to indicate “all other variables in the graph other than v.”

In order to justify evaluating Sum-Product and its relatives according to

E(x), suppose, for some variable node v, we have that

PXv(xv) =

{
1 if xv = x̃v

0 if xv 6= x̃v
. (2.13)

Clearly, the decision rule applied to this would give

x̂v = arg max
xv

PXv(xv)

= x̃v.

On the other hand, we have that maxx PX(x) > 0, since
∑

x PX(x) = 1.

However, we have that

PXv(xv) =
∑

x̄:x̄v=xv

PX(x̄)

=
∑

x̄:x̄v=xv

PXv |Xv∼ (x̄v|x̄v∼)PXv∼ (x̄v∼),

52

which implies that PXv∼ (xv∼) = 0 whenever PXv |Xv∼ (·|xv∼) 6= PXv(·). Now,

consider some x̌ such that x̌v 6= x̃v. Then we have that

PX(x̌) = PXv |Xv∼ (x̌v|x̌v∼)PXv∼ (x̌v∼).

If PXv |Xv∼ (·|x̌v∼) = PXv(·), then we have that

PX(x̌) = PXv |Xv∼ (x̌v|x̌v∼)PXv∼ (x̌v∼)

= PXv(x̌v)PXv∼ (x̌v∼)

= 0,

since x̌v 6= x̃v. But, if PXv |Xv∼ (·|x̌v∼) 6= PXv(·), then we have that

PX(x̌) = PXv |Xv∼ (x̌v|x̌v∼)PXv∼ (x̌v∼)

= PXv |Xv∼ (x̌v|x̌v∼)× 0

= 0.

Since we know that maxx PX(x) > 0, we must have that x̌ 6= arg maxx PX(x),

which implies that x̂v = x̃v when x̂ = arg maxx PX(x).

In summary, this shows that if PXv(·) is of the form given in Equation

(2.13), then the decision rule from an algorithm of the Sum-Product family is

attempting to find the same xv as the MAP rule, which minimizes the energy

function E(x). Thus, if we believe that PXv(·) is close to the form given in

Equation (2.13) for most of the variables in the graphical model, which seems

to be the case in many applications including our stereo matching example,

then it seems that E(x̂) is a reasonable way to evaluate the quality of the

estimate x̂.

In these experiments, we will be comparing the standard Sum-Product

BP, K-Projected BP with K = 1, Zoom BP, Stochastic BP 0 (SBP0), and

Stochastic BP 2 (SBP2). For Zoom BP, we are using Q̄ = 7, Zin = 0.763,

Zout = 225, and a0 = 1
1000

. Furthermore, we apply the encoding and decoding

procedure to both the variable to function messages and the function to vari-

able messages. For Stochastic BP, note that we are not separately comparing

with Stochastic BP 1, since the graphical model in which we are performing

inference has function nodes of maximal degree equal to 2, which means that

SBP1 is the same as SBP0. For the Cones data set, the disparities to be

53

0 100 200 300 400 500
1

2

3

4

5

6

7
x 10

5

Sum−Product BP
K−Projected BP
Zoom BP
Stochastic BP 0/1
Stochastic BP 2

E
n
er

gy
of

H
ar

d
D

ec
is

io
n
s

Compute Time (seconds)

Energy in Graph for Cones Image

Figure 2.8: Cones Energy Graph. Markers indicate energy and compute
time since the start of the initialization process for the first 30 iterations of
each algorithm. Compute time includes any algorithm setup time and
precomputations.

estimated have D = 50 possible values, whereas for the Tsukuba data set,

the disparities to be estimated have D = 17 possible values. The square grid

factor graph generated from the Cones images has dimensions 351×375, and

that generated from the Tsukaba images has dimensions 367× 288.

First, we have results on the Cones images in Figure 2.8. What we see is

that Sum-Product takes the largest steps in decreasing the energy, but the

iterations each take much more compute time than the iterations of any other

algorithm. The consequence is that in the first phase of convergence, after

the initialization period, all of the other algorithms are decreasing the energy

faster than Sum-Product, albeit with more iterations along the way. Taking

into account the initialization time, we see that all of K-Projected BP, Zoom

BP, and SBP2 reach lower levels of energy than Sum-Product, and come close

to this level in a fraction of the time that it takes Sum-Product. Stochastic

BP 0, on the other hand, takes a significant amount of time to precompute

every βf→v(Xw) and Γf→v(Xv, Xw). Of course, Stochastic BP 2 avoids this

computation entirely, and suffers no comparative loss in convergence rate

as a consequence. Stochastic BP 0 ends up converging to an energy level

54

0 20 40 60 80 100
0

1

2

3

4

5

6

7
x 10

5

Sum−Product BP
K−Projected BP
Zoom BP
Stochastic BP 0/1
Stochastic BP 2

E
n
er

gy
of

H
ar

d
D

ec
is

io
n
s

Compute Time (seconds)

Energy in Graph for Tsukuba Image

Figure 2.9: Tsukuba Energy Graph. Markers indicate energy and compute
time since the start of the initialization process for the first 30 iterations of
each algorithm. Compute time includes any algorithm setup time and
precomputations.

comparable to Sum-Product, which is higher than the level to which the

other algorithms converge. Even Zoom BP outperforms Sum-Product BP in

energy minimization, despite sending such a small amount of information in

every message update.

We present similar results for the Tsukaba images in Figure 2.9. Since D is

smaller in this case, the per-iteration advantage of each algorithm over Sum-

Product is less significant. We see that K-Projected BP converges faster and

to a lower energy level than any other algorithm. Zoom BP is comparable

to Sum-Product in convergence speed, though it approaches a slightly lower

value than Sum-Product. With Stochastic BP 0, we see that the precompute

time is less significant than with Cones, due to the reduced cardinality of

the variables and the smaller size of the source images. Interestingly, both

Stochastic BP 0 and Stochastic BP 2 seem to suffer in convergence speed,

with the energy vs. time decreasing less steeply than the other algorithms.

We will revisit this observation when we examine the qualitative results seen

in the disparity maps. In brief, this is a result of the Stochastic BP algo-

rithms having difficult propagating beliefs over long distances in the graph.

55

(a) Sum-Product BP. Iter=2. (b) K-Projected BP, K = 1. Iter=9.

(c) Zoom BP, K = 1. Iter=8. (d) Stochastic BP 2. Iter=38.

(e) Stochastic BP 0/1. Iter=38.

Figure 2.10: Comparison of results given same computation time, except for
SBP0. Computation time is 26.6 seconds, equal to 2 iterations of
Sum-Product. SBP0 did not complete its precomputation by this time.
Also included in (e) is the SBP0 result after the same number of iterations
as SBP2, at 238.5 seconds.

56

(a) Sum-Product BP. Iter=10. (b) K-Projected BP, K = 1. Iter=90.

(c) Zoom BP, K = 1. Iter=80. (d) Stochastic BP 2. Iter=194.

(e) Stochastic BP 0/1. Iter=194.

Figure 2.11: Comparison of results given same computation time, except for
SBP0. Computation time is 130 seconds, equal to 10 iterations of
Sum-Product. SBP0 did not complete its precomputation by this time.
Also included in (e) is the SBP0 result after the same number of iterations
as SBP2, at 402.8 seconds.

57

(a) Sum-Product BP. (b) K-Projected BP, K = 1.

(c) Zoom BP, K = 1. (d) Stochastic BP 2.

(e) Stochastic BP 0/1.

Figure 2.12: Comparison of results after 1000 iterations.

58

In summary, the energy graphs for Cones and Tsukaba seem to indicate that

K-Projected BP has the most reliable advantage over Sum-Product, Zoom

BP can be comparable or better than Sum-Product at greatly reduced data

transfer requirements (relevant to distributed networks), and the precompute

phase of Stochastic BP 0 provides no benefit over Stochastic BP 2 while in-

creasing the setup time severely. Finally, the per-second convergence rate,

after initialization, of Stochastic BP (either 0 or 2) has the potential to be

better than any of the other algorithms, but this is subject to the particular

graph, as we will see in the following.

2.6.3 Stereo Image Matching - Qualitative Results

We will now present some qualitative stereo matching results. Specifically

we will examine the disparity maps generated by applying the decision rule

x̂v = arg maxxv P̂Xv(xv) for each variable node. First, in Figure 2.10, we have

the disparity maps that result after 26.6 seconds of compute time on the

Cones data for the algorithms Sum-Product BP, K-Projected BP, Zoom BP,

and Stochastic BP 2. This time is equivalent to the time it takes to perform

2 iterations of Sum-Product BP. In order of increasing apparent quality of

results, we have Zoom BP, then Sum-Product BP appears slightly better,

followed by K-Projected BP, which looks much better, and finally Stochastic

BP 2. This is roughly in line with the algorithm performance indicated by

the energy of the solutions, shown in Figure 2.8. Although Stochastic BP 0

had not completed its precomputation by this point, we show the disparity

map at iteration 38 in Figure 2.10(e), which is the number of iterations of

Stochastic BP 2 that had completed by 26.6 seconds. We see that the results

of Stochastic BP 0 are comparable to or slightly worse than the results of

Stochastic BP 2.

In Figure 2.11, we have the disparity maps that result after 130 seconds of

compute time on the same algorithms. This time is equivalent to the time

it takes to perform 10 iterations of Sum-Product BP. In order of increasing

apparent quality of results, we have Sum-Product BP, then Zoom BP is

qualitatively almost the same, followed by K-Projected BP and Stochastic

BP 2, which appear to have essentially the same quality. Finally, although

Stochastic BP 0 had not completed its precomputation by this point, we show

59

the disparity map at iteration 194 in Figure 2.11(e), which is the number of

iterations of Stochastic BP 2 that had completed by 130 seconds. We see

that the results of Stochastic BP 0 actually appear inferior to the results of

Stochastic BP 2, especially in the regions of the fence at the back, and the

mug in the front.

Finally, in Figure 2.12, we have the disparity maps that result after 1000

iterations of each of the 5 algorithms. Each of Sum-Product BP, K-Projected

BP, Zoom BP, and Stochastic BP 2 have results that are essentially the same,

whereas Stochastic BP 0 appears to give inferior results. Again, the regions

of concern are the fence at the back, and the mug in the front.

The disparity map results for the Cones images show that the alternatives

to Sum-Product BP can give good results in a practical application sooner

than Sum-Product. With the Tsukuba images, however, we will see the same,

but we will also gain more intuition about the strengths or weaknesses of the

Sum-Product alternatives.

In Figure 2.13, we have the disparity maps that result after 6.3 seconds of

compute time for Sum-Product BP, K-Projected BP, Zoom BP, and Stochas-

tic BP 2, the amount of time it took for 2 iterations of Sum-Product BP.

We make some of the same conclusions as with the Cones data: Even with a

smaller variable cardinality of D = 17, we can see by the result given by K-

Projected BP that it is possible to improve on the efficiency of Sum-Product

BP. We also see that there is essentially no advantage in Stochastic BP 0

over Stochastic BP 2, only the disadvantage of the large precompute time,

which is evident because the results of iteration 7 of Stochastic BP 0 are

comparable to those of iteration 7 of Stochastic BP 2, but the results from

SBP0 are achieved after significantly more computation time.

Figure 2.14, where we have the disparity maps that result after 24.6 seconds

of compute time (10 iterations of Stochastic BP), is where we begin to see one

of the drawbacks of Stochastic BP (SBP0 and SBP2). Specifically, focusing

on the parts of the disparity maps corresponding with the table, as well as the

top right dark background (among other areas) in Figures 2.14(d), 2.14(e)

and 2.14(f), we see that Stochastic BP is having difficulty deciding how to as-

sign disparities in these regions, producing small blobs of random disparities

rather than one uniform disparity estimate throughout. This is the difficulty

hinted at by the shallow decreasing energy plots in Figure 2.9. Looking back

at the Tsukuba source images, we see that these regions correspond with

60

(a) Sum-Product BP. Iter=2. (b) K-Projected BP, K = 1. Iter=4.

(c) Zoom BP, K = 1. Iter=3. (d) Stochastic BP 2. Iter=7.

(e) Stochastic BP 0/1. Iter=7.

Figure 2.13: Comparison of results given same computation time.
Computation time is 6.3 seconds, equal to 2 iterations of Sum-Product.
SBP0 did not complete its precomputation by this time. Also included in
(e) is the SBP0 result after the same number of iterations as SBP2, at 20.3
seconds.

61

(a) Sum-Product BP. Iter=10. (b) K-Projected BP, K = 1. Iter=29.

(c) Zoom BP, K = 1. Iter=23. (d) Stochastic BP 2. Iter=32.

(e) Stochastic BP 0/1. Iter=11. (f) Stochastic BP 0/1. Iter=32.

Figure 2.14: Comparison of results given same computation time.
Computation time is 24.6 seconds, equal to 10 iterations of Sum-Product.
Also included in (f) is the SBP0 result after the same number of iterations
as SBP2, at 45.3 seconds.

62

(a) Sum-Product BP. (b) K-Projected BP, K = 1.

(c) Zoom BP, K = 1. (d) Stochastic BP 2.

(e) Stochastic BP 0/1.

Figure 2.15: Comparison of results after 1000 iterations.

63

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

F
ra

ct
io

n
of

st
ep

in
b
in

Iteration Number

Distribution of Step Components

Figure 2.16: Fraction of the squared Euclidean norm of the step size δ̃t(k)
for the first 15 iterations of Sum-Product.

broad homogeneous regions that lack significant texture. Essentially, due to

the low information content of randomly sampled messages, Stochastic BP

has difficulty propagating information over significant distances in the graph.

This effect is particularly evident in Figure 2.15, where all of the algorithms

have run for 1000 iterations. Even after so many iterations, Stochastic BP 0

and Stochastic BP 2 are both unable to smooth out the homogeneous regions

to a single disparity estimate, whereas Sum-Product, K-Projected BP, and

Zoom BP have all been able to accomplish this smoothing with far fewer

iterations. This effect is much less apparent with the Cones images, because

there is sufficient texture throughout the entirety of the scene, allowing the

algorithms to settle on a choice of disparity based only on the immediately

surrounding image data.

2.6.4 Experimental Step Sizes for Fixed Subset Size

In our final experiment, we explore how far the K-Projected BP update

would be from a full Sum-Product BP update as a function of the subset size

parameter K. Figure 2.16 gives an indication of how sufficient a given value

of K is for approaching the full Sum-Product BP update. This experiment

64

uses the graph defined for the Cones stereo images. Specifically, for t ≥ 1,

define

δt(k) =
∑
(v,f)

[
sort↘

(
µtv→f − µt−1

v→f
)]2
k
,

where sort↘(·) sorts the elements of the argument in descending order. Note

that δt(k) is decreasing in k. Then, for example, we have that

∥∥Mt
V→F −Mt−1

V→F
∥∥2

2
=
∑
k

δt(k),

whereMt
V→F is the global state of Sum-Product at time t. Now, let’s define

KM̂t
V→F = UK(G(F (Mt−1

V→F)),Mt−1
V→F),

which is the result of applying an iteration of K-Projected BP with parameter

K to the Sum-Product state Mt−1
V→F . Then we have that∥∥∥KM̂t

V→F −Mt−1
V→F

∥∥∥2

2
=
∑
k≤K

δt(k),

as well as ∥∥∥KM̂t
V→F −Mt

V→F

∥∥∥2

2
=
∑
k>K

δt(k).

Therefore, if δt(k) is small k > K, then we know that the K-Projected BP

update must be close to the full Sum-Product BP update. We see this in

Figure 2.16, where we plot

δ̃t(k) ,
δt(k)∑
i δ
t(i)

for iterations 1 through 15 of Sum-Product. In fact, it is clear that K = 1

is sufficient for K-Projected BP to be quite close to a Sum-Product BP

iteration, since we see that, after the first iteration, δ̃t(1) is very close to 1,

but δ̃t(k) is quite small for k > 1.

65

2.7 Conclusion

Motivated in part by the strict low power requirements of distributed sensor

networks, in this chapter we have considered alternatives to Sum-Product

belief propagation, with special consideration for increased efficiency of both

computation and communication. We began our development with a gener-

alization and simplification of the Stochastic BP algorithm from [3]. We have

also proposed Projected belief propagation algorithms that provide gains in

computational and communications efficiency, while avoiding the slow con-

vergence rate drawback of Stochastic BP. We provide theoretical results prov-

ing that Projected BP converges exponentially quickly under certain condi-

tions in loopy factor graphs, and that it converges in a factor tree to the

unique Sum-Product fixed point in a finite number of iterations. We have

also presented Zoom BP, which has even greater communications efficiency.

Finally, we have given a number of experimental results demonstrating the

strengths and weaknesses of the various algorithms in this Sum-Product fam-

ily.

We have primarily focused on distinct innovations developed for belief

propagation. This includes the means of simplifying and generalizing Stochas-

tic BP, the method for reducing message size and the corresponding reduc-

tion in computational complexity of the updates in Projected BP, and the

method for utilizing discrete channels used by Zoom BP. However, it is cer-

tainly possible to mix these methods with other known methods, or come up

with different ways of using our methods. For example, the dynamic coding

and decoding schemes could be used selectively on a subset of edges and

with varying levels of quantization in a distributed network where certain

node links have higher bandwidth than others. Some edges could use the

coding and decoding mechanisms, while others use Stochastic BP updates

or Projected BP updates. These methods could also be mixed with alter-

native message passing schedules. For example, combining the methods of

K-Projected BP with an update schedule like Residual BP [2] could lead to

incredible increases in the performance of belief propagation in large loopy

graphs with high variable cardinality.

It would be interesting to see the results of mixing methods in various ways

for different applications. It would also be interesting to examine some other

applications where the benefits of the methods might become much more

66

evident. For example, image denoising and the estimation of optical flow in

images are applications that potentially have high variable cardinalities in

the hundreds or thousands. Stereo image matching in high resolution images

would also have higher cardinality disparity variables.

Finally, understanding how all of the belief propagation algorithms im-

pact energy consumption would help in the design of systems that extract

the greatest benefit from our algorithms. For example, if our methods are

to be implemented in an integrated circuit, we would want to model energy

consumption versus algorithm performance for the possible algorithm pa-

rameters, computational element energy requirements, supply voltages, and

circuit speeds. If the implementation is in a distributed sensor network, this

energy consumption model would also include the energy and delay costs

associated with the communication of messages between network nodes.

67

CHAPTER 3

FACTOR GRAPHS FOR UNIVERSAL
PORTFOLIOS UNDER TRANSACTION

COSTS

3.1 Introduction

Sequential decisions and the sequential investment problem have been ex-

tensively studied in signal processing [34–38], computer science [39–41], fi-

nance [42–44], information theory [45–47], game theory [48, 49], and other

areas. Furthermore, it has been shown [1] that factor graphs are a versatile

tool for representing and extending the functionality of many existing al-

gorithms. We consider the problem of constructing computationally feasible

portfolio algorithms for investing in a stock market where we must pay trans-

action costs in order to adjust the allocation of wealth in our portfolio. We

show that factor graphs can be used to efficiently account for these costs.1

One framework for studying investment strategies under penalty of such

costs consists of the following market model and investment. We model the

market as a sequence of price relative vectors xn = x[1], . . . ,x[n], x[t] =

(x1[t], ..., xm[t])T ∈ Rm
+ , where Rm

+ is the positive orthant. The jth entry xj[t]

of the price relative vector x[t] represents the ratio of the opening price of

the jth stock on the (t+ 1)th trading period to the opening price of the same

stock on the tth trading period. The investment at period t is represented by a

portfolio vector b[t] = (b1[t], ..., bm[t])T ∈ Rm
+ with the constraint

∑m
j=1 bj[t] =

1 for all t, such that we consider only long positions in each asset. We refer

to this set as ∆m. Here, each entry bj[t] corresponds to the portion of wealth

invested in stock j during the tth period. Note that it should be possible to

include short sales and margin in our methods, in the manner of [54], but we

consider only long positions in the interest of a simpler presentation.

Under the above setup, the wealth achieved by the sequence of portfolios

1This work has been presented in [50–53], and is reproduced with permission from
IEEE.

68

bn = b[1], . . . ,b[n] in the market xn, without transaction costs, is given by

W (bn; xn) =
∏n

t=1 bT [t]x[t]. However, to include transaction costs in our

market framework, we introduce the function Ct(b1 → b2), representing the

reduction in overall portfolio wealth resulting from switching from portfolio

b1 to portfolio b2. We then have that the wealth achieved by the sequence

of portfolios is given by

Wc(b
n; xn) =

(
n∏
t=1

bT [t]x[t]

)(∏n−1
t=1 Ct(b

′[t]→ b[t+ 1])
)
.

Simply put, the wealth achieved by the sequence of portfolios consists of fac-

tors bT [t]x[t] for the wealth change for each investment period, and additional

penalty factors Ct(b
′[t]→ b[t+ 1]) ≤ 1 incurred for rebalancing between in-

vestment periods. Here, b′[t] is the wealth distribution at the end of period

t with initial distribution b[t]. We may also wish to include the cost of re-

balancing to a new distribution at the end of the final trading period. We

will write this as

Wc(b
n+1; xn) =

n∏
t=1

(
(bT [t]x[t])Ct(b

′[t]→ b[t+ 1])
)
.

We use the model of transaction costs and rebalancing referred to in [40]

with fixed percentage commission c, where cD dollars are paid to the broker

to buy (or sell) D dollars of stock. Finally, each portfolio vector b[t] must

be chosen sequentially, such that the portfolio decision depends only on past

information, such as the previous price relatives x[1], . . . ,x[t−1], and not on

any information from the future. In the case that there is side information,

this will be modeled as a sequence of values yn = y[1], ..., y[n] from a finite

alphabet Y = {1, ..., K}. We assume that the investor is able to base the

decision for investment period t on the value of y[t].

3.1.1 Transaction costs

We use the model of transaction costs and rebalancing referred to in [40]

with a fixed percentage commission, also known as proportional transaction

costs. In particular, we make use of the following three properties of portfolio

rebalancing, as given in [40]:

69

1. The cost of rebalancing from portfolio b1 to portfolio b3 is no more

than the total cost of rebalancing from b1 to b2 and then from b2 to b3.

This is trivially true under any reasonable commissions model and acceptable

rebalancing strategy.

2. The cost, per dollar, of rebalancing from a distribution b1 to the

distribution (1−α)b1+αb2, with 0 ≤ α ≤ 1 and b1,b2 ∈ ∆m, is no more than

αc for some constant 0 ≤ c ≤ 1 that depends only on the commission model.

In particular, the factor by which the wealth of the portfolio is reduced,

assuming commissions are paid for out of the wealth of the portfolio, is no

worse (i.e., no less) than (1 − αc). This parameter c will be used as the

characterizing property of the transaction costs.

3. An investment strategy I that invests an initial fraction α of its money

according to investment strategy I1 and the rest in I2 will achieve at least

α times the wealth I1 would have achieved plus (1− α) times the wealth I2

would have achieved. More precisely, strategy I is defined by the following

portfolio sequence:

bI [t] =
αWc(I1; xt−1)bI1 [t] + (1− α)Wc(I2; xt−1)bI2 [t]

αWc(I1; xt−1) + (1− α)Wc(I2; xt−1)
,

where bI [t] is the portfolio specified by strategy I for investment period t

and Wc(I; xt−1) is the wealth achieved by strategy I on the first t−1 trading

periods, including the cost of rebalancing to portfolio bI [t] in preparation for

investment period t. Note that the bound on the performance of strategy

I will be achieved with equality if the fraction α of the initial investment

is given to an investor following I1, the fraction (1 − α) is given to another

investor following I2, and these two investors independently follow their re-

spective strategies. Strategy I can only do better by allowing these two

investors to trade internally without penalty, which may help reduce the

amount of commission paid. Like property 1, property 3 will hold under any

reasonable commissions model and rebalancing strategy.

A special case when these properties hold is for optimal rebalancing in a

market with commission taken on purchases of stock, proportional to the

amount purchased. However, these properties may hold true more generally

for suboptimal rebalancing procedures, when proportional commissions are

charged on selling of assets, or when such commissions are charged for both

buying and selling portfolio assets. As in [40], our results also apply when

70

there is a cost for both buying and selling stock, as well as other situations

satisfying the commissions properties. As long as there is a value of c such

that property 2 holds true for the combination of commission scheme and

rebalancing strategy, our results will be valid.

3.1.2 Universality

The research described in this chapter is concerned with universal portfolio

strategies, i.e., investment strategies that asymptotically achieve an expo-

nential rate of growth of the wealth of the portfolio that is at least as high

as that of the best strategy from some competition class of causal portfolio

strategies. A significant amount of research has focused specifically on the

goal of deriving such universal portfolios, such as [43], [47], [44], [40], [55],

[38], [35], [56], [41], [39], and [37].

If we define D as the competition class, then we shall say a portfolio algo-

rithm b̂ is universal with respect to D iff for every possible market sequence

xn we have that

lim
n→∞

(
sup
d∈D

1

n
lnW (d; xn)− 1

n
lnW (b̂; xn)

)
≤ 0.

Universality in a setting with transaction costs is defined similarly, where we

replace W (·; ·) with Wc(·; ·). A universal portfolio algorithm may equivalently

be referred to as a portfolio with sublinear regret. In the given investment

setup, the (cumulative) regret is defined as

Rn(b̂;D) = sup
d∈D

lnW (d; xn)− lnW (b̂; xn).

The algorithm producing b̂ has sublinear regret if Rn(b̂;D) < O(n). As

with the definition of universality, we may define regret in a setting with

transaction costs by replacing W (·; ·) with Wc(·; ·).

3.1.3 Overview

In [43], Cover presents a portfolio that is universal with respect to the class

of constant rebalanced portfolios (CRPs). This means that the portfolio algo-

rithm does as well as the best constant rebalanced portfolio (BCRP), where

71

this best CRP is determined with knowledge of the entire sequence of price

relatives. (Of course, the algorithm of [43] does not have access to such

information.) When we say “as well as,” we mean that the amortized re-

gret 1
n
Rn(b̂;D) vanishes as the number of investment periods increases, or

equivalently, that the exponential growth rate of the wealth achieved by the

algorithm 1
n

lnW (b̂; xn) approaches or exceeds that of the BCRP. Cover and

Ordentlich [47] then extend these results to the situation where a finite al-

phabet side information sequence is available to the user. In [55], Kozat and

Singer extend the results of [43] to allow strategies that switch at various

times. However, in [43], [47], and [55], it is assumed that no costs are in-

curred when reapportioning the wealth of the portfolio. Blum and Kalai [40]

address this issue by constructing a sequential portfolio similar to that given

by Cover in [43] that is universal with respect to CRPs in the presence of fixed

percentage transaction costs. Iyengar [57] also proposed a method for incor-

porating transaction costs in a market with two assets that asymptotically

achieves the growth rate of the best so-called interval policy, making use of

similar procedures as [43]. However, there is no method given for incorporat-

ing the use of a side information sequence, for switching strategies, or other

algorithms derived from [43]. In [38], Kozat and Singer do present an algo-

rithm that is universal with respect to switching portfolios under transaction

costs. In this work, we present a portfolio that is universal with respect to

the same class of strategies under transaction costs considered in [38], but

the algorithm is distinct from that given in [38], has a different universal

performance bound, and consistently outperforms the other algorithm in our

simulations. The work presented here is an attempt to combine the insights

of [55], [47], and [40] in order to construct universal portfolio algorithms that

account for transaction costs. Furthermore, we present factor graphs as a

general tool for designing computationally feasible implementations of these

universal algorithms. This research has been presented in [50], [51], [52],

and [53].

We begin the discussion in Section 3.2 by presenting the algorithms of

[43], [40], and [47]. In Section 3.3, we offer a new perspective on [47], and

we show how this allows us to incorporate the insight of [40] to construct a

new portfolio algorithm that takes into account both side information and

transaction costs. We also prove that the performance of the algorithm sat-

isfies a universal bound. In Section 3.4, we briefly discuss the difficulties

72

in directly implementing the portfolio from Section 3.2, and we introduce

the use of factor graphs as a tool for deriving computationally more efficient

implementations of, or approximations to, universal algorithms. In Section

3.5, we introduce a switching algorithm based on the portfolio from [55].

Here, we demonstrate how the techniques from Section 3.3 may be used

to create a switching portfolio for use in a market with transaction costs.

Furthermore, we present a proof for a universal performance bound for this

switching portfolio. In Section 3.6, we demonstrate that the switching port-

folio under transaction costs has structure that can be represented by factor

graphs, and that this structure allows us to significantly reduce the compu-

tational complexity of the switching portfolio from Section 3.5. Finally, in

Section 3.7 we present simulation results comparing our algorithms to other

comparable algorithms, such as those of [47] and [40] for our side information

portfolio, and the algorithms from [55] and [38] for our switching portfolio.

3.2 Preliminaries: Universal Portfolios, Transaction

Costs, and Side Information

3.2.1 Cover’s Universal Portfolio

In [43], Cover considers the class of constant rebalanced portfolio (CRP)

strategies. Such a strategy chooses a particular vector b indicating the de-

sired distribution for the wealth of the portfolio among the given assets, and

it invests in such a way as to ensure that the wealth distribution coincides

with b at the beginning of each trading period, including rebalancing the

distribution of wealth at the beginning of each trading period. It is reason-

able to hope that the best such CRP strategy should do well on a particular

sequence xn of price relative vectors. For example, it can be shown that

if these price relative vectors are random and IID, then the growth optimal

portfolio strategy in the absence of transaction costs is actually a CRP. How-

ever, in [43], Cover does not make any such statistical assumptions on the

sequence of price relative vectors. Rather, it is shown that it is possible to

construct an algorithm that is universal with respect to the class of constant

rebalanced portfolios, as defined in Section 3.1.2.

73

Cover’s universal portfolio from [43] is the following algorithm:

b̂[t] =

∫
b∈∆m

bW (b; xt−1) dµ(b)∫
b∈∆m

W (b; xt−1) dµ(b)
, (3.1)

where we have that

W (b; xt−1) ,
∏t−1

τ=1 bTx[τ],

∆m ,
{

b ∈ Rm
+ :
∑m

j=1 bj[t] = 1
}
,

and the distribution µ(b) over ∆m is either Dirichlet (1, . . . , 1) (the uniform

prior on the simplex) or Dirichlet
(

1
2
, . . . , 1

2

)
. Note that this is a convex com-

bination of all CRP strategies b ∈ ∆m, and each CRP strategy is weighted

proportionally to the wealth W (b; xt−1) that it would have achieved over the

past market sequence.

For Dirichlet (1, . . . , 1), Cover and Ordentlich [47] show that the following

universal bound is achieved:

sup
b∈∆m

1

n
lnW (b; xn)− 1

n
lnW (b̂; xn) ≤ 1

n
(m− 1) ln (n+ 1).

For the Dirichlet
(

1
2
, . . . , 1

2

)
prior, the following slightly improved bound is

achieved:

sup
b∈∆m

1

n
lnW (b; xn)− 1

n
lnW (b̂; xn) ≤ 1

n

(m− 1)

2
ln (n+ 1) +

1

n
ln (2).

This portfolio algorithm and the given bounds, however, do not take into

account transaction costs.

3.2.2 Universal Portfolio under Transaction Costs

Blum and Kalai [40] offer a solution to the problem of transaction costs with

the following portfolio algorithm:

b̂[t] =

∫
b∈∆m

bWc(b; xt−1) dµ(b)∫
b∈∆m

Wc(b; xt−1) dµ(b)
, (3.2)

74

where we have that

Wc(b; xt−1) ,
t−1∏
τ=1

(
bTx[τ]× Cτ (b′ → b)

)
,

and the distribution µ(b) over ∆m is Dirichlet (1, . . . , 1). Again, the portfolio

algorithm is a convex combination of all CRP strategies, with each weighted

proportionally to the wealth it would have achieved over the past, including

transaction costs. It is shown [40] that the following universal bound is

achieved:

sup
b∈∆m

1

n
lnWc(b; xn)− 1

n
lnWc(b̂; xn) ≤ 1

n
(m− 1) ln (n(1 + c) + 1).

3.2.3 Universal Portfolio with Side Information

Typically, an investor is able to base investment decisions on some side in-

formation. For our purposes, this side information is modeled as a sequence

of values yn = y[1], ..., y[n]. Each y[t] is from a finite alphabet, which we

can take to be Y = {1, ..., K} without loss of generality. We assume that

the investor is able to base the decision for investment period t on the value

of y[t]. In [47], the authors present an adaptation of the algorithm in (3.1)

resulting in a universal portfolio algorithm that is able to make use of the

side information sequence yn. The resulting side information portfolio is the

following:

b̂[t] =

∫
b∈∆m

bW y[t](b; xt−1, yt) dµ(b)∫
b∈∆m

W y[t](b; xt−1, yt) dµ(b)
, (3.3)

where we have that

W y[t](b; xt−1, yt) ,
∏

τ∈T t
y[t]

bTx[τ] (3.4)

and

T ty , {τ ∈ N : τ < t , y[τ] = y}.

The distribution µ(b) over ∆m can be Dirichlet (α, . . . , α) for α = 1 or α = 1
2
.

It should be noted that the algorithm amounts to running independent uni-

versal portfolios of the form in (3.1) on each of the K subsequences of xn,

75

xny , consisting of the price relatives x[t] when y[t] = y. For both of the

distributions µ(b), there is a corresponding universal bound indicating that

the algorithm asymptotically performs as well as the best state-constant re-

balanced portfolio d = {b1, ...,bK} ∈ ∆K
m. A state-constant rebalanced

portfolio is a strategy that uses the same portfolio by whenever y[t] = y. For

Dirichlet (1, . . . , 1), we have that

sup
d∈∆K

m

1

n
lnW (d; xn, yn+1)− 1

n
lnW (b̂; xn, yn+1) ≤ 1

n
K(m− 1) ln (n+ 1),

where we define

W (d; xn, yn+1) =
n∏
τ=1

bTy[τ]x[τ].

For Dirichlet
(

1
2
, . . . , 1

2

)
, we have that

sup
d∈∆K

m

1

n
lnW (d; xn, yn+1)− 1

n
lnW (b̂; xn, yn+1)

≤ 1

n

K(m− 1)

2
ln (n+ 1) +

1

n
K ln (2).

Proving these bounds involves simply applying the results of Section 3.2.1

to each of the subsequences xny for y = 1, ..., K. This is possible because the

cumulative factor of wealth gained over any given subsequence is independent

of all the other subsequences.

3.3 Universal Portfolios with Side Information under

Transaction Costs

The natural extension to the portfolios described in Section 3.2 is to develop

a portfolio algorithm that both uses a given side information sequence and

takes into account transaction costs. However, consider the naive approach

of attempting to take into account both transaction costs and side infor-

mation. This may involve running K independent copies of the algorithm

defined by (3.2), where each copy runs only on the subsequence defined by

a corresponding side information value. This is in direct analogy to the de-

velopment in [47] of the side information universal portfolio introduced in

Section 3.2.3. We simply note that such an algorithm does not effectively

76

account for transaction costs. This is because the cost factors of switching

between subsequences, such that y[t] 6= y[t− 1], are not taken into account.

Furthermore, potentially most of the cost factors that would be taken into

account by (3.2) as it is executed along a subsequence would be meaning-

less, as they will usually not truly correspond with the transitions between

consecutive portfolio assignments. Hence, a more sophisticated method of in-

corporating both transaction costs and side information must be developed.

This is one contribution of our work.

Before presenting our algorithm, we first consider that both algorithms

described by (3.1) and (3.2) may be written in the following way:

Pt(d) =
1

Zt
Pt−1(d)ft−1(d),

b̂[t] = EPt(d)[gt(d)]

(3.5)

for some non-negative factor ft−1(d) and normalizing constant Zt. (We use

the symbol Z whenever it is necessary to normalize to a proper “probabil-

ity” distribution. Its value should be obvious based on the context.) The

variable d represents one from a set D of portfolio strategies, such as con-

stant rebalanced portfolios, and the function gt(·) maps the strategy d to

a portfolio vector b ∈ ∆m. In [43] and [40], we have that D = ∆m (i.e.,

d = b) and gt(·) is the identity function. The distribution Pt(d) is simply

the wealth function W (d; xt−1) or Wc(d; xt−1), possibly multiplied by some

a priori distribution µ(d), and then normalized. Hence, we can take P0(d)

as the uniform distribution, and f0(d) = µ(d). The EPt(d)[·] indicates an

expectation with respect to the distribution Pt(d).

Now, as presented in [47], the algorithm in (3.3) is not of the form of (3.5),

as it involves jumping between the various independently running algorithms

for each side information value. However, we can consider the following

algorithm, using side information yn, which is in the form of (3.5) and is

defined as follows:

Let the portfolio strategy space be

D = ∆K
m = {d = (b1, ...,bK) : bi ∈ ∆m for i = 1, ..., K}. (3.6)

We now define

f0(d) = µ(b1)× . . .× µ(bK), (3.7)

77

where the distribution µ(·) is either the uniform Dirichlet (1, . . . , 1) prior or

the Dirichlet
(

1
2
, . . . , 1

2

)
prior, and P0(d) is the uniform distribution over ∆K

m.

Furthermore, for t ≥ 1, define

ft(d) = bTy[t]x[t]. (3.8)

Finally, with d = (b1, ...,bK), we define

gt(d) = by[t]. (3.9)

All brought together, this definition of portfolio algorithm under (3.5) pro-

duces the following portfolio:

b̂[t] =

∫
d∈D by[t]W (d; xt−1, yt) dµD(d)∫

d∈DW (d; xt−1, yt) dµD(d)
, (3.10)

where we have that

W (d; xt−1, yt) =
t−1∏
τ=1

bTy[τ]x[τ] (3.11)

and

µD(d) =
K∏
y=1

µ(by) .

We note that again, this portfolio is a convex combination of all the portfolio

strategies D, with each weighted proportionally to the wealth it would have

achieved over the past.

Now, computing this algorithm directly can be very expensive, as the ex-

pectation in (3.5) involves evaluating an integral over the potentially high

dimensional space ∆K
m. However, consider reordering the product terms in

(3.11) as follows:

W (d; xt−1, yt) =
K∏
y=1

 ∏
{τ :τ<t,y[τ]=y}

bTy[τ]x[τ]

=

K∏
y=1

∏
τ∈T ty

bTy x[τ]

 .

(3.12)

78

We may then recognize the product in parentheses is the same as (3.4), with

b = by, which gives us

W (d; xt−1, yt) =
K∏
y=1

W y(by; x
t−1, yt)

= W y[t](by[t]; x
t−1, yt)

∏
y 6=y[t]

W y(by; x
t−1, yt).

(3.13)

Hence, (3.10) becomes

b̂[t] =

∫
d∈D by[t]

(
W y[t](by[t]; x

t−1, yt)
∏

y 6=y[t] W
y(by; x

t−1, yt)
)

dµD(d)∫
d∈D

(
W y[t](by[t]; xt−1, yt)

∏
y 6=y[t] W

y(by; xt−1, yt)
)

dµD(d)
.

(3.14)

However, it is possible to write the numerator of (3.14) as ∫
by[t]∈∆m

by[t]W
y[t](by[t]; x

t−1, yt) dµ(by[t])

×

 ∫
by :y 6=y[t]

∏
y 6=y[t]

W y(by; x
t−1, yt) dµ(by : y 6= y[t])

and the denominator as ∫

by[t]∈∆m

W y[t](by[t]; x
t−1, yt) dµ(by[t])

×

 ∫
by :y 6=y[t]

∏
y 6=y[t]

W y(by; x
t−1, yt) dµ(by : y 6= y[t])

 .

This allows the cancellation of the integrals on the right, resulting in

b̂[t] =

∫
b∈∆m

bW y[t](b; xt−1, yt) dµ(b)∫
b∈∆m

W y[t](b; xt−1, yt) dµ(b)
,

which is identical to the side information portfolio given in (3.3). This demon-

strates that the side information portfolio in (3.3) is indeed of the form in

79

(3.5).

The purpose of this exercise is to allow us to extend the side information

portfolio of [47] to the situation with transaction costs by drawing direct

analogy to the insight of [40], as follows: The universal portfolio of [43]

(from (3.1)) is constructed using

ft(b) = bTx[t]. (3.15)

This algorithm is generalized to incorporate transaction costs by modifying

(3.15) to be

ft(b) = bTx[t]× Ct(b′ → b).

Similarly, we can modify (3.8) of the side information portfolio to be

ft(d) = bTy[t]x[t]× Ct(by[t]
′ → by[t+1]). (3.16)

Hence, when we combine the definitions in (3.5), (3.6), (3.7), (3.9), and

(3.16), we arrive at the algorithm we propose that takes into account both

side information and transaction costs. The investment at each period is

given by

b̂[t] =

∫
d∈D by[t]Wc(d; xt−1, yt) dµD(d)∫

d∈DWc(d; xt−1, yt) dµD(d)
. (3.17)

This result is a performance-weighted convex combination of all the portfolio

strategies in the set D = ∆K
m. The wealth terms Wc(d; xt−1, yt) include the

cost of rebalancing in preparation for investment period t. It should be noted

that our algorithm reduces to (3.3) when there are no transaction costs, to

(3.2) when K = 1, and to (3.1) when K = 1 and there are no transaction

costs. In this work, we consider only the use of the uniform distribution for

µD(·).

3.3.1 Universal Performance Bound

The following theorem applies to the portfolio with side information under

transaction costs:

Theorem 1: The wealth achieved by the portfolio algorithm b̂ defined

80

above is such that

sup
d∈D

1

n
lnWc(d; xn, yn+1)− 1

n
lnWc(b̂; xn, yn+1)

≤ 1

n
K(m− 1) ln (n(1 + c) + 1).

The parameter c defines the amount of transaction costs as in [40] and

property 2 from Section 3.1.1. The wealth terms here include the cost of

rebalancing in preparation for investment period n+ 1.

Proof. The proof of Theorem 1 proceeds as follows: Consider two side in-

formation dependent portfolio strategies d and d1 from ∆K
m. Furthermore,

suppose we choose a scalar function α(d) (0 ≤ α(d) ≤ 1 for all d ∈ ∆K
m)

such that d = (1− α(d))d1 + α(d)d2 for some d2 ∈ ∆K
m. The first property

we note is that the two portfolio strategies d and d1 satisfy the following

relationship:

W (d; x[t], y[t]) = bTy[t]x[t]

=
(
(1− α(d))b1

y[t] + α(d)b2
y[t]

)T
x[t]

= (1− α(d))b1
y[t]

T
x[t] + α(d)b2

y[t]
T
x[t]

≥ (1− α(d))W (d1; x[t], y[t]).

The W (d; x[t], y[t]) is the change in portfolio wealth for strategy d for (the

single) trading period t without paying transaction costs.

We now examine the factors by which the wealths of d and d1 change

during a single investment period, including the cost of rebalancing. For any

strategy d, we have that

Wc(d; x[t], y[t], y[t+ 1]) = W (d; x[t], y[t])Ct(by[t]
′ → by[t+1]),

where Wc(d; x[t], y[t], y[t+ 1]) now includes the cost of rebalancing the port-

folio. Here, by[t]
′ is the portfolio distribution at the end of the investment pe-

riod, where at the beginning the distribution was by[t], and Ct(by[t]
′ → by[t+1])

is the cost factor for rebalancing from by[t]
′ to by[t+1].

Furthermore, by making use of the three properties of rebalancing portfo-

81

lios from Section 3.1.1, we have that

Wc(d; x[t], y[t], y[t+ 1])

= W (d; x[t], y[t])Ct(by[t]
′ → by[t+1])

=
(
(1− α(d))W (d1; x[t], y[t]) + α(d)W (d2; x[t], y[t])

)
× Ct(by[t]

′ → by[t+1])

≥ (1− α(d))W (d1; x[t], y[t])Ct(b
1
y[t]
′ → by[t+1])

+ α(d)W (d2; x[t], y[t])Ct(b
2
y[t]
′ → by[t+1]) (3.18)

≥ (1− α(d))W (d1; x[t], y[t])Ct(b
1
y[t]
′ → by[t+1])

≥ (1− α(d))W (d1; x[t], y[t])

× Ct(b1
y[t]
′ → b1

y[t+1])Ct(b
1
y[t+1] → by[t+1]) (3.19)

≥ (1− α(d))W (d1; x[t], y[t])

× Ct(b1
y[t]
′ → b1

y[t+1])(1− α(d)c) (3.20)

= (1− α(d))Wc(d
1; x[t], y[t], y[t+ 1])(1− α(d)c)

≥ (1− α(d))Wc(d
1; x[t], y[t], y[t+ 1])(1− α(d))c

= Wc(d
1; x[t], y[t], y[t+ 1])(1− α(d))1+c.

Note that the inequality in (3.18) follows from property 3, (3.19) follows

from property 1, and (3.20) follows from property 2 of commission costs

from Section 3.1.1. Accumulated over n investment periods, we have that

Wc(d; xn, yn+1) ≥ Wc(d
1; xn, yn+1)(1− α(d))n(1+c), (3.21)

where these expressions for wealth include the cost of rebalancing after the

final investment period.

Now, from property 3 in Section 3.1.1, we can infer that

Wc(b̂; xn, yn+1) ≥
∫

d∈∆K
m

Wc(d; xn, yn+1) dµ(d).

Since the distribution µ(d) is taken to be uniform over ∆K
m, we have that

Wc(b̂; xn, yn+1) ≥ 1

V (∆K
m)

∫
d∈∆K

m

Wc(d; xn, yn+1) dd,

where V (∆K
m) is the volume of the set ∆K

m and the notation
∫

(·) dd indicates a

82

hypersurface integral over the K(m−1) dimensional space ∆K
m. By applying

the inequality in (3.21), we have that

1

V (∆K
m)

∫
d∈∆K

m

Wc(d; xn, yn+1) dd

≥ 1

V (∆K
m)

∫
d∈∆K

m

Wc(d
1; xn, yn+1)(1− α(d))n(1+c) dd

=
Wc(d

1; xn, yn+1)

V (∆K
m)

∫
d∈∆K

m

(1− α(d))n(1+c) dd. (3.22)

We now more carefully consider the choice of the function α(d). One valid

possibility here is to choose α(d) = 1. However, this choice leads to a trivial

bound. Another valid choice is to choose α(d) = ᾱ for the values of d that

admit such a value of α(·), given the constraints, and choose α(d) = 1 for

the rest of ∆K
m. This will give a more meaningful bound. However, in order

the achieve the best possible bound from (3.22), we would like to choose the

smallest possible function α(d). Specifically, we will choose

α(d) = min
{
α : d = (1− α)d1 + αd2 for some d2 ∈ ∆K

m

}
.

We note that the sublevel sets of this particular α(d) are shrunken simplices,

i.e., {d : α(d) ≤ ᾱ} is a simplex of volume V (ᾱ) = V (∆K
m)ᾱK(m−1). Under

this choice of α(d), we turn (3.22) into

Wc(b̂; xn, yn+1) ≥ Wc(d
1; xn, yn+1)

V (∆K
m)

∫ 1

0

(1− α)n(1+c)

(
d

dα
V (α)

)
dα

=
Wc(d

1; xn, yn+1)

V (∆K
m)

V (∆K
m)K(m− 1)

×
∫ 1

0

(1− α)n(1+c)α(K(m−1)−1) dα

= Wc(d
1; xn, yn+1)K(m− 1)

×
∫ 1

0

(1− α)n(1+c)α(K(m−1)−1) dα. (3.23)

It is now possible to simplify this by use of the beta function, which is given

by

B(x, y) ,
∫ 1

0

(1− α)y−1αx−1 dα.

We will be interested in the cases where x ≥ 1 and y ≥ 1, for integer valued

83

x and real valued y. The beta function can also be written in terms of the

gamma function Γ(·), where we have that

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

However, note that Γ(x) = (x − 1)! = x!
x

for integers x ≥ 1. We also have

that

Γ(x+ y) = (x+ y − 1)Γ(x+ y − 1)

= (x+ y − 1)(x+ y − 2)Γ(x+ y − 2)

= ...

=

(
x∏
j=1

(x+ y − j)

)
Γ(x+ y − x)

= Γ(y)

(
x∏
j=1

(y − 1 + j)

)
.

Putting this together, we have that

B(x, y) =
x!Γ(y)

xΓ(y)
(∏x

j=1(y − 1 + j)
)

=
1

x

x!(∏x
j=1(y − 1 + j)

)
=

1

x
(∏x

j=1
y−1+j
j

) .
(3.24)

However, for j ≥ 1, note that

y ≥ 1 =⇒ y − 1 ≥ 0

=⇒ (y − 1)(j − 1) ≥ 0

=⇒ 1− y − j + jy ≥ 0

=⇒ y − 1 + j ≤ jy

=⇒ y − 1 + j

j
≤ y.

84

We also have that 0 < y−1+j
j

, and therefore we have that

x∏
j=1

y − 1 + j

j
≤

x∏
j=1

y = yx.

Combining this inequality with Equation (3.24), we have that

B(x, y) ≥ y−x

x
.

With x = K(m− 1) and y = n(1 + c) + 1, we have that∫ 1

0

(1− α)n(1+c)α(K(m−1)−1) dα =
(n(1 + c) + 1)−K(m−1)

K(m− 1)
.

By substitution into (3.23), we have that

Wc(b̂; xn, yn+1) ≥ Wc(d
1; xn, yn+1)K(m− 1)

× (n(1 + c) + 1)−K(m−1)

K(m− 1)

= Wc(d
1; xn, yn+1)(n(1 + c) + 1)−K(m−1).

Equivalently, we have that

Wc(d
1; xn, yn+1)

Wc(b̂; xn, yn+1)
≤ (n(1 + c) + 1)K(m−1),

or

1

n
lnWc(d

1; xn, yn+1)− 1

n
lnWc(b̂; xn, yn+1)

≤ 1

n
K(m− 1) ln(n(1 + c) + 1).

Since this bound holds for any d1 ∈ ∆K
m, we have that the bound holds for

the best performing d1 ∈ ∆K
m. Hence, we have that

sup
d∈D

1

n
lnWc(d; xn, yn+1)− 1

n
lnWc(b̂; xn, yn+1)

≤ 1

n
K(m− 1) ln (n(1 + c) + 1). �

85

3.4 Computation by Factor Graphs for Portfolios with

Side Information

As presented in the previous section, our portfolio that uses side information

for investing in a market with transaction costs, which is summarized in

(3.17), is exceedingly expensive to compute. In particular, the portfolio under

transaction costs involves the evaluation of the expectation in (3.5), which

requires integration over ∆K
m, and the direct evaluation of this integral is

exponential in K for both storage and computation. For this reason, we

propose using factor graphs and a sum-product algorithm [1] as one method

of approximating our algorithm.

Graphical representations are not new in universal portfolios and universal

prediction. Examples include the transition diagrams used in [38,39,55] and

the tree representations used in [36,37]. However, the authors are not aware

of any previous explicit use of factor graphs and sum-product algorithms for

universal portfolios.

3.4.1 Factor Graph for the Universal Portfolio with Side
Information

We begin this development by demonstrating the factor graph concept on

the instance of the side information portfolio from [47] defined by (3.5)-(3.9).

First, we note that

Pt(d) =
1

Zt

t∏
τ=1

fτ (d)

=
1

Zt

(
K∏
y=1

µ(by)

)(
t−1∏
τ=1

bTy[τ]x[τ]

)
.

Upon regrouping the factors in the same manner as (3.12)-(3.13), we see that

Pt(d) =
1

Zt

K∏
y=1

µ(by)
∏
τ∈T ty

bTy x[τ]

=

1

Zt

K∏
y=1

(
W y(by; x

(t−1), yt)µ(by)
)
.

86

b1 b2 b3 b4 b5

Figure 3.1: Factor graph for portfolio with side information of K = 5.

It is now obvious that Pt(d) may be represented by a factor graph (forest)

where the variable nodes are the portfolio vectors by for y = 1, ..., K. An

example is show in Fig. 3.1, where in the depicted case we have that K = 5.

Note that due to the form of gt(d), we have that b̂[t] = EPt(d)[by[t]]. It is

then clear by inspection of the factor graph that the algorithm reduces to

that of (3.3), where this expectation only needs to be taken with respect to

the following marginal distribution:

Pt(by[t]) =
W y[t](by[t]; x

(t−1), yt)µ(by[t])∫
by[t]∈∆m

W y[t](by[t]; x(t−1), yt) dµ(by[t])
.

3.4.2 Factor Graph for the Universal Portfolio with Side
Information and Transaction Costs

Similar derivations can be used to show that the algorithm we propose in

Section 3.2 results in distributions Pt(d) of the following form:

Pt(d) =
1

Zt

K∏
i=1

(
hi(bi)

K∏
j=i+1

h(i,j)(bi,bj)

)
,

where the factors hi(bi) are further composed of factors either of the form

µ(bi), bTi x, or Cτ (b
′
i → bi), and the factors h(i,j)(bi,bj) are further composed

of factors either of the form Cτ (b
′
i → bj) or Cτ (b

′
j → bi). Hence, we have

that Pt(d) may be represented by such a factor graph as we show in Fig. 3.2,

where in the depicted case we have that K = 5.

In order to make use of the graph, we note that, as in the previous subsec-

tion, our portfolio for an investment period is b̂[t] = EPt(d)[by[t]]. Hence, we

only need to compute the expectation with respect to the marginal distribu-

tion over by[t]. Since the factor graph we have constructed has many cycles

(for K > 2), it is not possible to compute the marginal distribution exactly

87

b1 b2 b3 b4 b5

Figure 3.2: Factor graph for portfolio with side information of K = 5 and
transaction costs.

with message passing. However, we have found through simulations that our

message passing (sum-product) algorithm works well on our data sets.

First of all, we choose the distribution µ(·) to be uniform. We then begin

with the first investment period by initializing all of the messages over the

edges of the graph to be the uniform distribution, i.e., constant functions over

the simplex ∆m. Note that with this initialization the messages correspond

with exact function summaries for the graph of P1(d), up to a constant scale

factor.

Now, let us suppose that we have the factor graph and messages from

the previous distribution Pt−1(d), and that these messages are close to exact

function summaries on Pt−1(d). For Pt(d), we first initialize the messages in

the new factor graph with the messages from Pt−1(d). We should expect that

this is a good initialization because the two factor graphs differ only in 1 or

2 out of the 1
2
K(K+1) function nodes, depending on whether y[t−1] = y[t].

In order to carry out message passing, we begin by queueing the messages

going outward from the 1 or 2 function nodes that differ between Pt−1(d)

and Pt(d). This is a queue of pending message updates. Now that there is

at least one message on the queue, we proceed with a serial message passing

schedule:

1) Begin at the front of the queue.

2) Update the pending message.

3) Suppose the message just updated goes along the edge from node A to

node B. Queue up all of the messages going out of node B, except the one

88

going back to node A. Limit the total queue size to P message passes, or

create some other stopping criterion.

4) If there are more messages on the queue, move on to the next one and

go back to step 2.

In our simulations, we allow a queue size on the order of K2 message

passes. This is natural since there are K2 edges in the graph. In particular,

we have experimentally determined that P = 3K2 gives good results. The

final algorithm has run time and storage complexity polynomial in K per

investment period.

3.5 Universal Switching Portfolios under Transaction

Costs

In this section, we begin development of another portfolio that, like the

portfolio presented in the preceding sections, is based on the methods from

Cover’s universal portfolio [43] and the transaction costs portfolio of Blum

and Kalai [40]. In this case, we are extending the switching portfolio from [35]

so that we can account for transaction costs in a way that is an improvement

over the switching portfolio under transaction costs from [38].

To begin with, we define the set of switching strategies we would like our

algorithm to compete with. First of all, a given switching strategy for a

market sequence consisting of n trading periods will partition the sequence

into a number k ∈ {1, ..., n} of contiguous segments, such as

{x[τ1], ...,x[τ2 − 1]}...{x[τk], ...,x[n]},

with τ1 = 1 and τi < τi+1. We call this a transition path, and note that there

are
n−1∑
k=0

(
n− 1

k

)
= 2n−1 such paths. Next, a given switching strategy must

assign a portfolio for use in each segment. Hence, the switching strategy is

defined by the parameters s = {τ1, ..., τk,b1, ...,bk} ∈ Sn, with each bi ∈ ∆m.

For simplicity, we define dk = [b1, ...,bk] ∈ ∆k
m, and the transition path is

given by T = {τ1, ..., τk}.

89

3.5.1 Algorithm and Bound

In the fashion of previous universal portfolios, we will now specify how we

will distribute our wealth among all the possible switching strategies in Sn,

in order to then “run them in parallel.” To do this, we will first distribute

wealth among the transition paths, then define how the wealth given to a

particular transition path is distributed among the portfolios dk ∈ ∆k
m. To

this end, we use the Krichevsky-Trofimov weighting P (T) [58] to divide the

wealth among the transition paths. This distribution is defined as follows:

P (T) =
k∏
i=1

(
Pτi(τi|τi−1)

τi+1−1∏
t=τi+1

Pt(τi|τi)

)
,

where Pt(j|j) = t−j−.5
t−j and Pt(t|j) = .5

t−j for j = 1, ..., t − 1 and t ≥ 2.

For notational convenience, we have defined τ0 = 0, τk+1 = n + 1, and

Pτ1(τ1|τ0) = P1(1|0) = 1. Within a particular transition path, the assigned

wealth is distributed uniformly over ∆k
m. We will use the notation u(d|T) to

indicate a uniform distribution over a space of appropriate dimension. Let

us denote by µ(s) = P (T)u(d|T) the overall mixed joint distribution over

the set of switching strategies Sn, such that
∫

s
dµ(s) = 1 and the dimension

of d agrees with the number of partitions in T . Then our portfolio is given

in the usual form as

b̂[t] =

∫
s∈Sn bs[t]Wc(s; xt−1) dµ(s)∫

s∈SnWc(s; xt−1) dµ(s)
, (3.25)

where bs[t] is the portfolio that strategy s would assign during trading period

t, and Wc(·) includes the cost of rebalancing in preparation for trading period

t. More specifically, we can write (3.25) as

b̂[t] =

∑
T P (T)

∫
d

b{T ,d}[t]Wc({T ,d}; xt−1) du(d|T)∑
T P (T)

∫
d
Wc({T ,d}; xt−1) du(d|T)

. (3.26)

It is possible to show that the wealth achieved by this portfolio algorithm

under transaction costs satisfies the inequality in the following theorem:

Theorem 2: We are able to construct a sequential portfolio b̂ such that

90

b1 b2 b3 b4 b5

Figure 3.3: Factor graph for a transition path with k = 5 segments and
transaction costs.

the wealth achieved by b̂ satisfies

sup
s∈Dk

1

n
lnWc(s; xn)− 1

n
lnWc(b̂; xn)

≤ 1

n
k(m− 1) ln (n(1 + c) + 1) +

(3k − 2)

2

lnn

n
+O

(
k

n

)
.

Here, Dk is the set of all possible switching strategies that partition the se-

quence of price relatives into k non-empty contiguous segments and assign a

CRP to each segment. The parameter c defines the level of transaction costs

as in [40].

Hence, our algorithm is universal with respect to any particular k. We

note that the algorithm presented in [38] is also universal with respect to the

same class of strategies. However, the algorithm presented here is built from

fundamentally different concepts and has a different performance bound.

3.5.2 Proof of the Bound

First, property 3 of transaction costs in Section 3.1.1 allows us to say that the

wealth achieved by the algorithm is at least as much as the expected achieved

wealth over all switching strategies, with respect to the initial distribution of

wealth:

Wc(b̂; xn) ≥
∑
T

P (T)

∫
dT

Wc(dT ; xn) du(dT |T).

If we choose any single transition path with k partitions of the market se-

quence, then we have that

Wc(b̂; xn) ≥ P (Tk)
∫

dTk

Wc(dTk ; x
n) du(dTk |Tk).

91

By using the steps from the proof of Theorem 1, we have that∫
dTk

Wc(dTk ; x
n) du(dTk |Tk) ≥ Wc(d̄Tk ; x

n)(n(1 + c) + 1)−k(m−1)

for any d̄Tk in ∆k
m and for any transition path Tk with k partitions of the mar-

ket sequence. Furthermore, by use of the Krichevski-Trofimov distribution

over transition paths, we have that

− 1

n
lnP (Tk) ≤

(3k − 2)

2

lnn

n
+O

(
k

n

)
.

Together, this shows that

1

n
lnWc(d̄Tk ; x

n)− 1

n
lnWc(b̂; xn)

≤ 1

n
k(m− 1) ln (n(1 + c) + 1) +

(3k − 2)

2

lnn

n
+O

(
k

n

)
.

Since this bound holds for any transition path Tk with k partitions of the

market sequence and for any d̄Tk in ∆k
m, it must hold for the best transition

path of k partitions and best assignment of portfolios to each segment. Hence,

sup
s∈Dk

1

n
lnWc(s; xn)− 1

n
lnWc(b̂; xn)

≤ 1

n
k(m− 1) ln (n(1 + c) + 1) +

(3k − 2)

2

lnn

n
+O

(
k

n

)
.

3.6 Implementation of the Switching Portfolio

Consider again the specification of our switching algorithm given in (3.26).

Clearly, the direct computation of b̂[t] from this is prohibitively complex,

as it involves 2t−1 integrals over spaces with dimensionality as high as ∆t
m.

However, the structure of W ({T ,d}; xt−1), which can be represented as a

factor graph, and the choice of the Krichevsky-Trofimov weighting allow us

to achieve great reduction in complexity.

92

a

fa(a)fab(a, b)fb(b)

b

c

fbc(b, c)fc(c)

c

gbc(b, c)gc(c)

(a) Graphs overlap at the left.

a

fa(a)fab(a, b)

a

ga(a)gab(a, b)

b

fb(b)fbc(b, c)fc(c)

c

(b) Graphs overlap at the right.

Figure 3.4: (a) Two factor graphs share factors left of the dashed line.
Arrows crossing the dashed line indicate that the same message is sent to
the non-overlapping portions of the graphs. (b) Two factor graphs share
factors right of the dashed line. Messages crossing the dashed line are
summed and sent to the shared factors to complete the message passing.

3.6.1 Simplifying Properties

Consider first the integration of a single term from the numerator (one par-

ticular transition path) of (3.26), i.e.,∫
d∈∆k

m

b{T ,d}[t]Wc({T ,d}; xt−1) dd.

(We are ignoring the distribution u(d|T) for the moment, which essentially

amounts to scaling by some constant.) The key observation to point out here

is that W ({T ,d}; xt−1) factors into an expression of the form

k∏
i=1

fi(bi)
k∏
i=2

Cτi−1(bi−1 → bi). (3.27)

Furthermore, we have that b{T ,d}[t] = bk. Hence, we see that we can use

message passing on a factor graph derived from (3.27) to compute a marginal

function f(bk). In Fig. 3.3, we show such a factor graph where k = 5. Once

we have this marginal function, it is a much simpler matter to compute the

93

following integral: ∫
∆m

bkf(bk) dbk.

However, it is still an overwhelming task to perform message passing on

2t−1 factor graphs during each trading period. Fortunately, there are some

basic simplifications we can utilize in order to avoid redundant calculations,

stemming from the overlap present between many of the graphs. To see how

we use the overlap between graphs, consider that we have the following two

functions:

f(a, b, c) = fa(a)fab(a, b)fb(b)fbc(b, c)fc(c),

g(a, b, c) = ga(a)gab(a, b)gb(b)gbc(b, c)gc(c).

Suppose now that fa = ga, fab = gab, and fb = gb and we would like to

compute the marginal function

h(c) =

∫
b

∫
a

(f(a, b, c) + g(a, b, c)) da db. (3.28)

Rather than making use of message passing on f and g separately, we can

instead factor out the overlapping part, giving us

hb(b) , fb(b)

∫
a

fa(a)fab(a, b) da,

h(c) = fc(c)

∫
b

hb(b)fbc(b, c) db+ gc(c)

∫
b

hb(b)gbc(b, c) db.

This procedure is shown graphically in Fig. 3.4(a). Message passing on the

common factors is performed once, from left to right. This resulting message

is then sent to the parts of the graphs that differ. Finally, the full marginal

can be found by summing the separate marginals.

Suppose instead that fb = gb, fbc = gbc, and fc = gc, and again we would

like to compute h(c) as in (3.28). In this case, we would get

hf (b) ,
∫
a

fa(a)fab(a, b) da,

hg(b) ,
∫
a

ga(a)gab(a, b) da,

h(c) = fc(c)

∫
b

[hh(b) + hg(b)] fb(b)fbc(b, c) db.

94

W 1,1 W 2,1 W 3,1 W 4,1

W 2,2 W 3,2 W 4,2

W 3,3 W 4,3

W 4,4

Figure 3.5: To compute b[t], we have 2t−1 factor graphs folded onto each
other into a transition diagram. In this case, 23 = 8 parallel factor graphs
are compactly represented.

This procedure is shown graphically in Fig. 3.4(b). Message passing from

the left to the right is performed separately at first. Then, upon reaching

the parts of the graphs that are shared, the messages from the differing parts

are combined, and message passing continues as though for a single factor

graph.

By combining such simplifications from the overlap of the 2t−1 factor

graphs needed for the computation of b[t], we find that the graphs from

all of the transition paths can be folded onto each other and compactly rep-

resented by a transition diagram. An example of such a diagram is given in

Fig. 3.5. However, this is not the final simplification. Due to the structure of

transition paths and the Krichevsky-Trofimov weighting, the transition dia-

gram for period t actually contains the transition diagram for trading period

t−1. Hence, it is not necessary to perform all of the message passes through

a new transition diagram for each period. Instead, it is possible to simply

maintain the results from the previous day, then perform the few additional

message passes to complete the new transition diagram.

The following is a more complete description of the algorithm:

1. Initialize:

W 1,1(b) = 1 and t = 1.

95

2. Compute the portfolio for period t:

b̂[t] =
1

Zt

∫
b∈∆m

b
t∑

j=1

W t,j(b) du(b),

where Zt is chosen so the elements of b̂[t] sum to 1.

3. After period t, update for j = 1, ..., t:

W t,j(b)← W t,j(b)(bTx[t]).

4. Update t← t+ 1.

5. Initialize, for j = 1, ..., t− 1:

W t,j(b) = W t−1,j(b)Ct−1(b′ → b)Pt(j|j).

6. Initialize:

W t,t(b) =
t−1∑
j=1

Pt(t|j)
∫

b2∈∆m

W t−1,j(b2)Ct−1(b′2 → b) du(b2).

(We now no longer need W t−1,j, j = 1, ..., t− 1.)

7. Go to step 2.

The Krichevsky-Trofimov weighting comes from the factors

Pt(j|j) =
t− j − .5
t− j

and Pt(t|j) =
.5

t− j

for j = 1, ..., t − 1 and t ≥ 2. The uniform distributions over d for each

transition path comes from u(b) in steps 2 and 6, i.e., the uniform distribution

over ∆m. The complexity that we achieve for calculating a portfolio b̂[t] is

only linear in t, which is a drastic improvement over evaluating (3.26) directly.

96

3.6.2 Proof of Correctness

In order to demonstrate the correctness of the steps 1 through 6 of the algo-

rithm, first suppose we have that

W t,j(b) =
∑

T ∈T {...,j}

P (T)

∫
Wc(...,bkT −1,b; xt−1) du(b1)... du(bkT −1),

(3.29)

where T {..., j} is the set of all transition paths with the last partition starting

at time j, P (T) is the Krichevsky-Trofimov weighting on transition path

T , and Wc(...; x
t−1) is the wealth achieved through day t − 1, including

transaction costs to set up day t. Note that
⋃t
j=1 T {..., j} constitutes the

set of all transition paths. Furthermore, note that W 1,1(b) = 1 satisfies this,

as there is only one transition path to sum over, and there are no variables

to integrate out. Hence, we have that W 1,1(b) = Wc(b; x0), which is defined

to be unity since no strategy could have gained or lost wealth before trading

begins.2

Now considering day t+ 1, we have for j = 1, ..., t that

W t+1,j(b) =
∑

T ∈T {...,j}

P (T)

∫
Wc(...,bkT −1,b; xt) du(b1)... du(bkT −1),

(3.30)

which is simply a reiteration of (3.29) for day t+ 1. However, we can expand

terms to get

P (T) = P (T [1 : t])Pt+1(j|j)

and

Wc(...,bkT −1,b; xt) = Wc(...,bkT −1,b; xt−1)(bTx[t])Ct(b
′ → b).

We have used the notation T [1 : t] to indicate a truncated transition path

that takes only the portion from day 1 to day t. Substituting into (3.30) and

2We assume there are no transaction costs for setting up the initial portfolio b[1].

97

rearranging terms, we get

W t+1,j(b)

= Pt+1(j|j)(bTx[t])Ct(b
′ → b)

×

 ∑
T ∈T {...,j}

P (T [1 : t])

∫
Wc(...,bkT −1,b; xt−1) du(b1)... du(bkT −1)

= Pt+1(j|j)(bTx[t])Ct(b

′ → b)W t,j(b).

The final equality shows that the combined updates of steps 3 and 5 are

correct.

Now, to verify step 6, we have that

W t+1,t+1(b) =
∑

T ∈T {...,t+1}

P (T)

∫
Wc(...,bkT −1,b; xt) du(b1)... du(bkT −1).

We can then break up the sum into a double sum and expand some terms to

get

W t+1,t+1(b)

=
t∑

j=1

∑
T ∈T {...,j,t+1}

P (T [1 : t])Pt+1(t+ 1|j)

×
∫
Wc(...,bkT −1; xt−1)(bTkT −1x[t])Ct(b

′
kT −1 → b) du(b1)... du(bkT −1).

We then rearrange the locations of some of the factors and the inside sum-

mation to get

W t+1,t+1(b)

=
t∑

j=1

Pt+1(t+ 1|j)
∫

bkT −1∈∆m

(bTkT −1x[t])Ct(b
′
kT −1 → b)

×

(∑
T ∈T {...,j,t+1}

P (T [1 : t])

×
∫
Wc(...,bkT −1; xt−1) du(b1)... du(bkT −2)

)
du(bkT −1).

At this point, we recognize the term in parentheses as W t,j(bkT −1) from

98

(3.29), which gives us

W t+1,t+1(b) =
t∑

j=1

Pt+1(t+ 1|j)

×
∫

bkT −1∈∆m

(bTkT −1x[t])Ct(b
′
kT −1 → b)W t,j(bkT −1) du(bkT −1).

This final equality is equivalent to the update in step 6 of the algorithm.

Lastly, we need to show that the computation of the portfolio in step 2 is

correct. To this end, consider from (3.26) that

b̂[t] =
1

Zt

∑
T

P (T)

∫
d

b{T ,d}[t]Wc({T ,d}; xt−1) du(d|T)

We can rewrite this as

b̂[t] =
1

Zt

∑
T

P (T)

∫
bkTWc(b1, ...,bkT ; xt−1) du(b1)... du(bkT).

We can then move the bkT outside of all but the final integral to get

b̂[t] =
1

Zt

∑
T

P (T)

×
∫

bkT

bkT

(∫
Wc(b1, ...,bkT ; xt−1) du(b1)... du(bkT −1)

)
du(bkT).

Since bkT is only a dummy variable used for the integration, we can replace

it by b to get

b̂[t] =
1

Zt

∑
T

P (T)

×
∫

b

b

(∫
Wc(b1, ...,bkT −1,b; xt−1) du(b1)... du(bkT −1)

)
du(b),

which removes the dependence on the transition path, and allows us to rear-

range the equation to get

b̂[t] =
1

Zt

∫
b

b
∑
T

P (T)

×
(∫

Wc(b1, ...,bkT −1,b; xt−1) du(b1)... du(bkT −1)

)
du(b).

99

Furthermore, we can split up the sum over transition paths into a double

sum to get

b̂[t] =
1

Zt

∫
b

b
t∑

j=1

[∑
T ∈T {...,j}

P (T)

×
(∫

Wc(b1, ...,bkT −1,b; xt−1) du(b1)... du(bkT −1)

)]
du(b).

We can then recognize the term in the square brackets as the expression in

(3.29), which finally gives us step 2 of the algorithm:

b̂[t] =
1

Zt

∫
b∈∆m

b
t∑

j=1

W t,j(b) du(b).

3.7 Simulation Results

In this section, we examine results from simulations of our factor graph

portfolio algorithms, and compare our algorithms with other portfolio al-

gorithms. We use two separate data sets. The first, SET1, consists of his-

torical stock prices collected from 34 stocks3 in the New York Stock Ex-

change over a 22 year period until 1985.4 This is the same data set used

in [35], [39], [40], [43], [44], and others. The other data set, SET2, consists

of data from 1996 until 2011 for 30 stocks from the S&P 500.

3.7.1 Simulation of the Side Information Portfolio

We first compare our portfolio with side information under transaction costs

that uses the factor graph approximation (Side-Costs) to the algorithms

of [47] (Cover-Side) and [40] (Blum). The simulations consist of portfolios

containing m = 2 stocks and K = 4. The side information is formed by

quantizing the price relative space x[t − 1], i.e., y[t] = q(x[t − 1]) where we

3We have excluded the anomalous Kin-Ark data set from our simulations.
4We thank Dr. Erik Ordentlich for providing us with this historical data.

100

T
er

m
in

al
W

ea
lt

h

Transaction Costs

Side-Costs
Cover-Side
Blum

0 0.002 0.004 0.006 0.008 0.010
0

5

10

15

20

25

30

(a) SET1 Simulations.

T
er

m
in

al
W

ea
lt

h

Transaction Costs

Side-Costs
Cover-Side
Blum

0 0.001 0.002 0.003 0.004 0.005
0

1

2

3

4

5

6

7

(b) SET2 Simulations.

Figure 3.6: Terminal achieved wealth (averaged over all stock pairs) versus
transaction costs c.

have that

q(x) =

1

2

3

4

if

x1 ≥ 1 and x2 ≥ 1

x1 ≥ 1 and x2 < 1

x1 < 1 and x2 ≥ 1

x1 < 1 and x2 < 1

,

and we arbitrarily choose y[1] = 1. Each price relative represents one trading

day.

In Fig. 3.6(a), we show results comparing the terminal wealths after the

full 22 years of SET1, with 1 unit initially invested, of the three algorithms as

a function of the parameter c of transaction costs. In particular, these termi-

nal wealths are the averages of final achieved wealth for all
(

34
2

)
= 34×33

2
= 561

101

possible two-stock portfolios, and for a range of values for transaction costs.

Similarly, in Fig. 3.6(b), we show the same types of results when the algo-

rithms are used on SET2. In this case, the terminal wealths are the averages

of final achieved wealth for all
(

30
2

)
= 30×29

2
= 435 possible two-stock port-

folios. The graphs shows characteristics common to most of the simulation

runs. For example, our algorithm (“Side-Costs” in the plot) consistently

achieves equal or greater wealth than the side information algorithm of [47]

(“Cover-Side”) under all simulated values of the transaction costs parame-

ter c. More specifically, Cover-Side achieves a terminal wealth that falls off

nearly to zero as c increases, whereas our portfolio’s wealth decreases to a

certain point, and then after that point it essentially achieves the same ter-

minal wealth. This is because the algorithm “learns” that rebalancing the

portfolio, even based on the side information, is too costly, and the algorithm

reverts to a buy-and-hold portfolio.

These figures also show a comparison with the transaction costs portfolio

of [40] (“Blum” in the plot). We point out that, even though Blum performs

consistently better than our algorithm for transaction costs above approxi-

mately c = 0.001 in Fig. 3.6(a), or c = 0.0003 in Fig. 3.6(b), it should be

noted that, while the transaction costs are typically known ahead of time, it

cannot be known a-priori whether the particular combination of stocks and

side information will place us above or below the critical threshold of c that

is observed between our algorithm or Blum having better performance. This

would especially be true for institutional investors, who will typically pay

some fraction of a cent per share in transaction cost. In particular, the per-

formance of Side-Costs is generally no worse than a factor of approximately

3 below that of Blum in the cases where Blum outperforms the algorithm

presented in this work. Furthermore, we note that, in the regime of low

transaction costs, gains from side information are observed even though we

only used the most basic possible side information source. Countless other

sources of information could conceivably be quantized for use with the algo-

rithm, such as trading volume, online news articles, or even opinions from

human experts, and for a well chosen side information sequence, it may be

possible for our algorithm to achieve wealth that is orders of magnitude above

the portfolio of [40].

102

3.7.2 Simulation of the Switching Portfolio

We now compare our switching portfolio that takes into account transaction

costs (Switch-Costs), with the switching portfolio from [38] that also takes

transaction costs into account (Switch-Kozat), and the switching portfolio

from [35] that does not account for such costs (Switch-Plain). In Fig. 3.7(a),

we show the results of these simulations on SET1 with transaction costs of

10%. It consists of the wealth achieved by the end of the 22 years for each

of 561× 3 = 1683 separate algorithm runs. Transactions to reapportion the

portfolio wealth occur only once per trading day. Each of these simulation

runs is a two-stock portfolio, hence the 561 =
(

34
2

)
, for the three algorithms

being compared. The vertical axis indicates the wealth achieved by the end

of the 22 year period per dollar of initial capital. The horizontal axis simply

enumerates the set of two-stock portfolios, which have been sorted according

to the wealth achieved by Switch-Kozat from [38]. (Note that such a sorting

will result in a smoother curve for the algorithm from [38].) It can be seen

that our algorithm consistently outperforms the other two algorithms in the

given situation, since the values of final wealth are uniformly greater than the

wealths from the other algorithms. Of course, transaction costs of 10% are

unreasonably high. However, we expect that this degree of separation in the

performance of the algorithms would happen at more reasonable values of

transaction costs with trading occurring more frequently than once per day.

For comparison, we performed this experiment with 5% transaction costs,

and show these results in Fig. 3.7(b). Again we see that our algorithm fairly

consistently outperforms the others, though only by a smaller margin. With

the newer data set SET2, we performed essentially the same experiments,

this time at 5% transaction costs in Fig. 3.8(a) and 1% in Fig. 3.8(b). The

results in Fig. 3.8(a) show that the difference between the algorithms is less

than in Fig. 3.7(b), though we still have that our algorithm is usually the best

performer, followed by Switch-Kozat, and then Switch-Plain at the bottom.

Finally, Fig. 3.8(b) shows that the algorithms perform nearly identically for

smaller values of transaction costs. Hence, in the great majority of cases, we

stand only to gain by incorporating our method of accounting for transaction

costs.

We believe these results can be explained by considering the times when

transaction costs are taken into account in each algorithm. First of all, the

103

T
er

m
in

al
W

ea
lt

h

Portfolio Number

Switch-Costs
Switch-Kozat
Switch-Plain

0 100 200 300 400 500

0.1

1

10

(a) 10% transaction costs.

T
er

m
in

al
W

ea
lt

h

Portfolio Number

Switch-Costs
Switch-Kozat
Switch-Plain

0 100 200 300 400 500

1

10

(b) 5% transaction costs.

Figure 3.7: Simulations at with SET1. Portfolio final wealth for 561
different stock pairings, comparing three algorithms. In both, the top curve
is the portfolio presented here (Switch-Costs). The middle curve is the
portfolio from [38] (Switch-Kozat). The bottom curve is the switching
portfolio ignoring transaction costs from [35] (Switch-Plain).

104

T
er

m
in

al
W

ea
lt

h

Portfolio Number

Switch-Costs
Switch-Kozat
Switch-Plain

0 50 100 150 200 250 300 350 400
0.1

1

10

(a) 5% transaction costs.

T
er

m
in

al
W

ea
lt

h

Portfolio Number

Switch-Costs
Switch-Kozat
Switch-Plain

0 50 100 150 200 250 300 350 400
0.1

1

10

100

(b) 1% transaction costs.

Figure 3.8: Simulations with SET2. Portfolio final wealth for 435 different
stock pairings, comparing three algorithms. In (a), the top curve is the
portfolio presented here (Switch-Costs). The middle curve is the portfolio
from [38] (Switch-Kozat). The bottom curve is the switching portfolio
ignoring transaction costs from [35] (Switch-Plain).

105

portfolio from [35] performs the worst because transaction costs are never

taken into account. The portfolio from [38] does somewhat better because

some transaction costs are taken into account. However, only the costs of

rebalancing within a partition of a transition path are considered. Our port-

folio performs the best because it considers both the costs of rebalancing

within a partition of a transition path as well as the cost of jumping to a

new partition. Finally, the algorithms have nearly equal performance for

small values of transaction costs because they actually converge to the same

algorithm, Switch-Plain, as the transaction costs vanish.

3.8 Conclusion

In this work, we consider the problem of sequentially investing in a stock

market where we must pay a fixed percentage commission on every trans-

action. By generalizing the formulations of the algorithms of Cover [43],

Cover and Ordentlich [47], Blum and Kalai [40], and Kozat and Singer [55],

we have shown that the key insights of these algorithms can be combined

to construct more sophisticated universal portfolio algorithms for a stock

market with transaction costs.

We have also introduced the use of factor graphs for the design of universal

portfolio algorithms. In particular, we first constructed a universal portfolio

generalizing the portfolio of [47]. This new portfolio is designed to be used

in a market with side information, where we additionally have a penalty for

making adjustments to our portfolio. In this case, factor graphs allow the

algorithm to be approximated in a more efficient way, as compared to direct

evaluation of the relevant integrals.

We then construct another universal portfolio that builds on the switching

portfolio results from [55] and improves on results on switching portfolios

under transaction costs from [38]. Again, we show that representing the al-

gorithm with factor graphs reveals that various computational simplifications

can be made.

We believe that there may be the potential to make our methods and

algorithms even more computationally efficient. For example, the algorithms

presented here still have computational complexity that is exponential in the

number of stocks used for the portfolio. Kalai and Vempala [59] present

106

a randomized version of the basic universal portfolio from [43] that gives

hope for finding techniques to apply to our algorithms to give them better

computational properties when more stocks are used. However, we are not

able to directly make use of their results to simplify our algorithms further.

As mentioned in the conclusion of [59], their results require the log-concavity

of certain wealth related functions, and hence do not extend even to the

portfolio from [40], where the only addition is the consideration of transaction

costs.

107

CHAPTER 4

COOPERATIVE ESTIMATION IN
HETEROGENEOUS POPULATIONS

4.1 Introduction

The problem of distributed estimation within a network of agents has been

extensively studied. This includes such topics as gossip algorithms [9, 60,

61], consensus [62–64], distributed adaptation and estimation [65–68], and

others. Related to these is sequential learning or estimation, which includes

least mean squares, recursive least squares, Kalman filters [69], stochastic

approximation [70], etc. In this chapter, we contribute to these research

areas by considering the problem of distributed estimation within a network

of heterogeneous agents.1 Specifically, we consider populations of agents,

each of which is trying to learn the parameters of a model for observed data,

but these parameters are only consistent (i.e., the optimal model parameters

are the same for all agents) within subpopulations of the whole.

We begin with a simplified framework for studying the problem of hetero-

geneous populations. In particular, we consider a population of N agents,

indexed i ∈ {1, ..., N}. At each time instant t ∈ {1, 2, ...}, agent i makes an

observation xi(t) ∈ {0, 1} drawn according to a Bernoulli distribution with

parameter pi. The observations xi(t) are independent random variables for all

i and all t. Furthermore, we suppose that there is a partitioning of the popula-

tion of agents into a number of subpopulations, i.e., G1∪...∪GK = {1, ..., N},
such that pi = Pj if and only if i ∈ Gj. We let G(i) denote the subpopulation

that agent i belongs to. Lastly, the agents are connected to each other in

a network given by adjacency matrix A, such that Ai,j = 1 if nodes i and

j are connected, and zero otherwise. Typically, we have Ai,i = 1 for each

agent i, and A = AT . From this adjacency matrix, we can also determine

1Portions of this work have been presented in [71,72], and are reproduced with permis-
sion from IEEE.

108

the neighborhood Ni for each agent i. Since Ai,i = 1, we have that i ∈ Ni.
In [65] and [66], the authors study the problem of distributed parameter

estimation using a diffusion protocol for cooperation. In [67], the authors

study the problem of distributed parameter estimation for linear state-space

models. However, in these works it is assumed that the underlying model

parameters woi to be estimated by each agent i are identical, i.e., woi = wo for

all i. However, it is conceivable that the population of agents actually consists

of a number of subgroups, such that the model parameters to be estimated

are the same within a group, but different between different groups. This is

the problem we study in this chapter.

In Section 4.2, we consider the cooperative estimation of the parameters

of sequences of Bernoulli random variables. First we examine the situation

of homogeneous populations, where all observed Bernoulli random variables

are independent and identically distributed. We then extend the coopera-

tive estimation algorithm to the setting where there are a finite number of

subpopulations with different parameters, but the same parameter within a

subpopulation. In Section 4.3, we present some experimental results on our

cooperative algorithm. In Section 4.4, we attempt to formulate an approxi-

mation of the squared estimation error as a function of time for the cooper-

ative algorithm in a heterogeneous network. In Section 4.5, we provide more

experimental results comparing the estimation error approximation to the

observed estimation error in a number of settings. In Section 4.6, we propose

how the method for heterogeneous populations can be extended to other co-

operative algorithms, such as diffusion least mean squares [65]. Finally, we

conclude in Section 4.7 and provide some potential research directions.

4.2 Bernoulli Populations

As mentioned, our initial goal is to have each agent i in a population esti-

mate the parameter pi of the IID Bernoulli random variables xi(t) that it

successively observes. We would also like for these estimates to be formed in

a cooperative fashion, with the hopes of reducing the number of time steps

needed for a sufficiently accurate estimate. We begin by first considering

how this would be done in a homogeneous population of agents, where each

agent observes IID Bernoulli random variables with the same parameter P .

109

P

P

P

P

P

P
P

P

P

P

P

Figure 4.1: A homogeneous population of Bernoulli agents.

This situation is depicted in Fig. 4.1.

4.2.1 Sequential Algorithm from Gossip

Suppose we have only one observation per agent within the homogeneous

population, i.e., xi(1) for i ∈ {1, ..., N}. Then the maximum likelihood

estimate of P can be found as 1
N

∑
i xi(1). The agents can form estimates of

this average in a distributed manner by using, e.g., local convex combinations

as discussed in [61]. This can be expressed as the following:

p̂(t+ 1) = D(t+ 1)p̂(t),

where p̂(t) = [pi(t), ..., pN(t)]T is a vector consisting of the estimates for

each agent, and p̂(1) , D(1)[xi(1), ..., xN(1)]T = D(1)x(1). Furthermore,

D(t) ∈ RN×N is a matrix such that D(t)1N×1 = 1N×1 and 0 ≤ Di,j(t) ≤ 1,

i.e., each entry in D(t) is in the range [0, 1]. Commonly, the condition that

DT (t)1N×1 = 1N×1 is also given, but we require this for only some of our

results. It will be made clear in the following whether we are using this

condition. Finally, since the agents are only able to communicate with each

other over the network edges, we have that Di,j(t) is equal to 0 if Ai,j = 0.

Hence, we have that

p̂(t) =

(
t∏

τ=1

D(τ)

)
p̂(1) =

(
t∏

τ=1

D(τ)

)
x(1).

110

Now, if instead each agent receives an observation of a Bernoulli random

variable at the start of each iteration, we may employ the above procedure

for each of the observation vectors x(t) and combine them as follows:

p̂(t) =
1

t

t∑
j=1

(
t∏

τ=j

D(τ)

)
x(j).

However, we note that

p̂(t) =
1

t

t−1∑
j=1

(
t∏

τ=j

D(τ)

)
x(j) +

1

t
D(t)x(t)

=
t− 1

t
D(t)

1

t− 1

t−1∑
j=1

(
t−1∏
τ=j

D(τ)

)
x(j) +

1

t
D(t)x(t)

=
t− 1

t
D(t)p̂(t− 1) +

1

t
D(t)x(t)

= D(t)

(
t− 1

t
p̂(t− 1) +

1

t
x(t)

)
. (4.1)

Hence, the computation of p̂(t) may be performed in a sequential manner

using a simple distributed update.

We now prove that for any ε > 0, limt→∞ Pr [|p̂i(t)− P | ≥ ε] = 0 for each

agent i. To do this, we first note that

E [p̂(t)] = E

[
1

t

t∑
j=1

(
t∏

τ=j

D(τ)

)
x(j)

]

=
1

t

t∑
j=1

(
t∏

τ=j

D(τ)

)
E [x(j)]

=
1

t

t∑
j=1

(
t∏

τ=j

D(τ)

)
P1N×1

=
P

t

t∑
j=1

(
t∏

τ=j

D(τ)

)
1N×1

=
P

t

t∑
j=1

1N×1

= P1N×1.

Thus, we have that E[p̂i(t)] = P for each agent i. This can also be shown by

111

induction as follows: First, suppose E [p̂(t− 1)] = P1N×1. Then

E [p̂(t)] = E

[
D(t)

(
t− 1

t
p̂(t− 1) +

1

t
x(t)

)]
= D(t)

t− 1

t
E [p̂(t− 1)] + D(t)

1

t
E [x(t)]

= P1N×1.

Furthermore, note that

E [p̂(1)] = E [Dx(1)]

= DE [x(1)]

= DP1N×1

= P1N×1.

Thus, by induction, we have that E[p̂i(t)] = P for each agent i.

We now consider the covariance of p̂(t):

cov [p̂(t)] = cov

[
1

t

t∑
j=1

(
t∏

τ=j

D(τ)

)
x(j)

]

=
1

t2

t∑
j=1

cov

[(
t∏

τ=j

D(τ)

)
x(j)

]

=
1

t2

t∑
j=1

(
t∏

τ=j

D(τ)

)
cov [x(j)]

(
t∏

τ=j

D(τ)

)T

=
1

t2

t∑
j=1

(
t∏

τ=j

D(τ)

)
(P (1− P)I)

(
t∏

τ=j

D(τ)

)T

=
P (1− P)

t2

t∑
j=1

(
t∏

τ=j

D(τ)

)(
t∏

τ=j

D(τ)

)T

.

Now consider the diagonal elements of this covariance matrix, i.e., the vari-

ances of each p̂i(t). Let us define the row vector

Ri(j, t) = ith row of
t∏

τ=j

D(τ).

112

Then we have that

var [p̂i(t)] =
P (1− P)

t2

t∑
j=1

Ri(j, t)Ri(j, t)
T .

Since D(t)1N×1 = 1N×1, we have that Ri(j, t)1
N×1 = 1. Since 0 ≤ Di,j(t) ≤

1, we have that each entry of Ri(j, t) is in the range [0, 1]. Therefore,

Ri(j, t)Ri(j, t)
T ≤ Ri(j, t)1

N×1 = 1. Thus, we have that

var [p̂i(t)] ≤
P (1− P)

t2

t∑
j=1

1

=
P (1− P)

t2
× t

=
P (1− P)

t

≤ 1

4t
.

Now, according to Chebyshev’s inequality, we have that

Pr [|p̂i(t)− P | ≥ ασ] ≤ 1

α2
,

where α > 0 and σ2 = var[p̂i(t)]. If we substitute α = ε
σ
, we get

Pr [|p̂i(t)− P | ≥ ε] ≤ var[p̂i(t)]

ε2
≤ 1

4tε2
.

Hence, we have that for any ε > 0, limt→∞ Pr [|p̂i(t)− P | ≥ ε] = 0 for each

agent i, which means that each agent’s estimate p̂i(t) of the Bernoulli pa-

rameter P converges to P in probability. Note that for these results we did

not require the condition that DT (t)1N×1 = 1N×1.

4.2.2 Sequential Algorithm from Stochastic Approximation

We may also create an algorithm using the concepts from stochastic ap-

proximation [70]. Recall that a basic form of the Robbins-Monro stochastic

approximation algorithm takes the following form:

ŵ(t) = ŵ(t− 1)− αtYt(ŵ(t− 1)),

113

where ŵ(t) is the estimate at iteration t for the solution to M(w) = 0, Yt

is a stochastic function such that M(w) = E[Yt(w)], and αt is a step size

parameter satisfying
∑

t α
2
t < ∞ and

∑
t αt = ∞. We will require that

M(w) < 0 for w < wo and M(w) > 0 for w > wo for some wo. The

goal in using this algorithm is to have ŵ(t) converge to the root wo of the

deterministic function M(w).

In our case, we can choose ŵ(t) = p̂i(t) and Yt(ŵ(t)) = Yt(p̂i(t)) = p̂i(t)−
xi(t). Note that M(p̂i(t)) = p̂i(t) − pi, such that M(p̂i(t)) is an increasing

function with a root at pi. When written in a vector for a population of

agents, this leaves us with the update

p̂(t) = p̂(t− 1)− αt(p̂(t− 1)− x(t)).

In order to make this a cooperative algorithm among the agents in a network,

we may include a diffusion step to get the following:

p̃(t) = p̂(t− 1)− αt(p̂(t− 1)− x(t))

p̂(t) = D(t)p̃(t),

which can be written as

p̂(t) = D(t) ((1− αt)p̂(t− 1) + αtx(t)) .

If we choose αt = 1
t
, this gives us exactly the algorithm presented in Eq.

(4.1) of the previous subsection.

4.2.3 Convergence Speed Analysis

In 4.2.1, we showed that the estimates of all the agents converge to P (in

probability). However, there was no discussion of whether the rate of con-

vergence is better than, e.g., noncooperative estimation or how the rate com-

pares to a centralized maximum likelihood estimate. We will now provide

results relating to these issues.

We will now consider more closely the variance of p̂i(t). (Since E [p̂i(t)] =

P , this variance is equal to the expected squared estimation error.) For

simplicity, assume that we have a time invariant mixing matrix D(t) = D.

114

Furthermore, assume that for some positive constant C and 0 ≤ λ < 1, we

have that Dt
i,j ≤ 1

N
+ Cλt for all i, j, and t. The notation Dt

i,j indicates

the element of matrix Dt at row i and column j. This would be true, for

example, if D is a real symmetric doubly stochastic irreducible matrix, such

that the unique stationary distribution is uniform.

To consider var [p̂i(t)], we note that

p̂(t) =
1

t

t∑
j=1

Dt−j+1x(j). (4.2)

Therefore, we have that

p̂i(t) =
1

t

t∑
j=1

d
(t−j+1)
i x(j), (4.3)

where d
(t−j+1)
i is the ith row of the matrix Dt−j+1. We can then conclude

that

var [p̂i(t)] = var

[
1

t

t∑
j=1

d
(t−j+1)
i x(j)

]

=
1

t2
var

[
t∑

j=1

d
(t−j+1)
i x(j)

]

=
1

t2

t∑
j=1

var
[
d

(t−j+1)
i x(j)

]
=

1

t2

t∑
j=1

N∑
k=1

var
[[

d
(t−j+1)
i

]
k
xk(j)

]
=

1

t2

t∑
j=1

N∑
k=1

[
d

(t−j+1)
i

]2

k
var [xk(j)]

=
P (1− P)

t2

t∑
j=1

N∑
k=1

[
d

(t−j+1)
i

]2

k

≤ P (1− P)

t2

t∑
j=1

N∑
k=1

(
1

N
+ Cλt−j+1

)2

=
P (1− P)

t2

t∑
j=1

N∑
k=1

(
1

N2
+

2Cλt−j+1

N
+ C2λ2(t−j+1)

)

115

P1

P2

P2

P1

P1

P2
P1

P1

P2

P2

P1

Figure 4.2: A heterogeneous population of Bernoulli agents. Cooperation
over the solid green edges is helpful. Cooperation over the dashed red edges
is detrimental.

=
P (1− P)

t2

t∑
j=1

(
1

N
+ 2Cλt−j+1 +NC2λ2(t−j+1)

)

=
P (1− P)

Nt
+
P (1− P)

t2

t∑
j=1

(
2Cλt−j+1 +NC2λ2(t−j+1)

)
=
P (1− P)

Nt
+
CP (1− P)

t2

t∑
j=1

(
2λj +NCλ2j

)
≤ P (1− P)

Nt
+
CP (1− P)

t2

∞∑
j=1

(
2λj +NCλ2j

)
=
P (1− P)

Nt
+
CP (1− P)

t2

(
2λ

(1− λ)
+

NCλ2

(1− λ2)

)
.

In particular, we note that the rate is dominated by P (1−P)
Nt

. This is impor-

tant because P (1−P)
Nt

is the expected squared error for a centralized maximum

likelihood estimate of the Bernoulli parameter, based on all of the observa-

tions from the N agents over t time instants. In other words, the distributed

cooperative estimation suffers a small, asymptotically negligible regret with

respect to centralized estimation.

4.2.4 Heterogeneous Bernoulli Populations

So far we have only discussed homogeneous populations, but we are interested

in the situation where there are various subgroups observing different types of

116

sources, as shown in Fig. 4.2. Our method for adapting the algorithm to this

setting involves having each agent compute an estimate of the parameter

pi based on only its own observations. This will be written as p`i(t). In

particular, this is taken to be

p`i(t) =

{
1
2

if t = 0
1
t

∑t
τ=1 xi(τ) if t > 0.

We can then choose the elements of D(t) according to a number of different

rules. For example, we may choose:

Di,j(t) =

{
0 if |p`i − p`j| ≥ γt or Ai,j = 0
1

|Ñi(t)|
if |p`i − p`j| < γt and Ai,j = 1,

(4.4)

where γt is a threshold for cooperation between agents and |Ñi(t)| is the

number of agents in the neighborhood Ni of agent i (corresponding to the

elements in row i of the adjacency matrix A that equal 1) who satisfy the

condition |p`i − p`j| < γt. Note that this generates a row stochastic matrix

D(t), such that D(t)1N×1 = 1N×1. Another rule, which generates a doubly

stochastic D(t) is the following:

Di,j(t) =

1
max{|Ñi(t)|,|Ñj(t)|}

if

|p`i − p`j| < γt

i 6= j

and Ai,j = 1

0 if

{
|p`i − p`j| ≥ γt

or Ai,j = 0

1−
∑

k 6=i Di,k(t) if i = j

.

Therefore, D(t) is essentially a time varying Metropolis weight matrix, as

in [73].

It is possible to show that if we choose γt = Ctδ for some positive constant

C and −1
2
< δ < 0, the subpopulations will be correctly differentiated and

each agent’s estimate p̂i(t) will converge to the true parameter of the model

of its observations. More precisely, we mean that

lim
t→∞

Pr[Di,j(t) > 0] =

{
1 if G(j) = G(i) and Ai,j = 1

0 else

117

and

lim
t→∞

Pr[|p̂i(t)− pi| ≥ ε] = 0 ∀ε > 0,∀i ∈ {1, ..., N}.

As in the case with a homogeneous population, proving these results involves

arguments related to the law of large numbers.

4.3 Simulations: Heterogeneous Populations

To test our algorithm for Bernoulli heterogeneous populations, we randomly

place N agents for each of 2 subpopulations within a 1 unit by 1 unit square.

For N = 10, we connect agents if they are within 0.5 unit of each other, and

we have that P1 = 0.45 and P2 = 0.55. For N = 100, we connect agents

if they are within 0.25 unit of each other, and we have that P1 = 0.35 and

P2 = 0.65. For N = 1000, we connect agents if they are within 0.1 unit

of each other, and we have that P1 = 0.25 and P2 = 0.75. In all cases, we

let γt = Ctδ = t−0.4. We use the Metropolis weight matrix as the diffusion

weights. Finally, we have averaged the squared estimation error over 100

differently seeded networks and observation sequences.

Figure 4.3 shows the results of these experiments. In all cases, we see that

cooperative estimation error decreases to a certain level of squared error,

and remains at this level for a number of iterations. After this, the squared

error decreases with a trend of O(t−2) until it approaches the squared error

of centralized maximum likelihood estimation within each subpopulation.

What is happening in these experiments is that the subpopulations are

initially mixing estimates between each other, due to high values of γt. As

they mix their estimates together, the estimates held by the agents converge

toward the global average of the observations in the network, rather than the

average of the observations separately among the subpopulations. However,

since γt is decreasing, eventually the between-subpopulation connections be-

come disconnected, allowing the agents of the subpopulations to collaborate

correctly only with other agents in the subpopulation. This will be explored

further in the following section.

118

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−8

10
−6

10
−4

10
−2

10
0

Alone − Predicted
Alone − Experiment
Centralized − Predicted
Cooperative − Experiment

S
q
u

ar
ed

E
st

im
at

io
n

E
rr

or

Iteration Number

Squared Estimation Error vs. Iterations

(a) N = 10.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−8

10
−6

10
−4

10
−2

10
0

Alone − Predicted
Alone − Experiment
Centralized − Predicted
Cooperative − Experiment

S
q
u

ar
ed

E
st

im
at

io
n

E
rr

or

Iteration Number

Squared Estimation Error vs. Iterations

(b) N = 100.

10
0

10
1

10
2

10
3

10
4

10
5

10
−8

10
−6

10
−4

10
−2

10
0

Alone − Predicted
Alone − Experiment
Centralized − Predicted
Cooperative − Experiment

S
q
u

ar
ed

E
st

im
at

io
n

E
rr

or

Iteration Number

Squared Estimation Error vs. Iterations

(c) N = 1000.

Figure 4.3: Experiments with two Bernoulli populations. The plots include
comparisons of noncooperative estimation, centralized estimation with full
knowledge of subpopulation identity, and cooperative estimation using our
technique.

119

4.4 Time to Disconnect

We will now study the convergence properties of the distributed algorithm

for heterogeneous populations. To this end, we will attempt to approximate

the expected squared error. Specifically, we will consider the case where we

choose γt = Ctδ such that γ1 is large enough that all of the agents will ini-

tially collaborate with all of their neighbors. What will happen is that the

estimates of all of the agents will converge to the neighborhood of the global

mean parameter, and the expected squared error will remain approximately

constant for some time. At some point, the subpopulations will disconnect

from each other, as a result of the private estimates improving and the col-

laboration radius γt becoming more selective (smaller). We will call this the

time to disconnect and represent it by t∗. After the time t∗, the subpopu-

lations quickly disconnect from each other, and the expected squared error

gradually converges to that of the centralized maximum likelihood estimate

within connected subsets of the subpopulations. This is the behavior we

observed in Figure 4.3.

To approximate the time to disconnect, we will use basic methods from

large deviations theory. In particular, we would like to approximate the time

when an edge between agents of different subpopulations (a “bad link”) has

a low probability of being used for collaboration.

We will begin by recalling a basic large deviation result for sums of inde-

pendent and identically distributed (IID) random variables. Let X,X1, X2, ...

be IID random variables and that their common moment generating func-

tion M(θ) , E[eθX] < ∞ in some neighborhood B0 of θ = 0. Furthermore,

suppose that the supremum,

I(x) , sup
θ

[θx− logM(θ)] ,

is obtained for some θ in the interior of B0. Now choose some x > E[X].

Then for each ε > 0, there is some N such that for all n > N , we have that

−n(I(x) + ε) ≤ log P

(
1

n

n∑
i=1

Xi ≥ x

)
≤ −nI(x).

Now, consider a scenario with two subpopulations, with Bernoulli parame-

ters Pi and Pj > Pi. The probability of collaboration on the bad edge between

120

connected agents i with parameter Pi and j with Pj is P[|p`i − p`j| < γt],

which can be approximated using large deviations. Specifically, we note

that p`i − p`j = 1
t

∑
τ (xi(τ)− xj(τ)). Define the random variables Xt =

xi(t) − xj(t). Then we see that p`i − p`j = 1
t

∑
τ Xτ We will approximate

P[|p`i − p`j| < γt] as P[p`i − p`j > −γt] for −γt > E[p`i − p`j] = E[X] = Pi − Pj.
Applying the large deviations result above, we have that

P̃(t) , e−tI(−γt) ≈ P[p`i − p`j > −γt],

where I(x) is the large deviations rate function, given by

I(x) = xθ(x)− log
(
ae−θ(x) + b+ ceθ(x)

)
.

Here, we have that a = (1−P1)P2, b = P1P2+(1−P1)(1−P2), c = P1(1−P2),

and

eθ(x) =
bx+

√
b2x2 + 4ac(1− x2)

2c(1− x)
.

Now, we are interested in the time when edges disconnect, which is when

P̃(t) = e−tI(−γt) becomes small. This transition occurs around the time that

the −tI(−γt) reaches −1. Hence, we choose t∗ such that t∗I(−γt∗) = 1 and

γt∗ < |P1−P2|. At this point, we will simply note that this does not take into

account the number of edges that connect agents of different groups. Many

edges should increase the time to disconnect, so the estimate of t∗ presented

here should be somewhat too early.

To approximate the convergence behavior after the disconnect time, we

assume that the estimates converged to the global average of the parameters.

We will also assume that the subgroups have completely disconnected from

each other, the agents within subgroups are connected by some path, and

that the mixing time is instantaneous. Then the expected squared error

within the group associated with P1 after t∗ is approximately given by

E

(t∗N(P1 + d) +
∑t

τ=t∗+1

∑N
i=1 xi(τ)

Nt
− P1

)2
 ,

where d = P2−P1

2
is the estimated error right before the subgroups disconnect

and the agents 1, ..., N belong to subgroup P1. It can be shown that this

121

leads us to

E[(p̂i(t)− P1)2] ≈ P1(1− P1)

Nt
+
d2t∗2 − 1

N
t∗P1(1− P1)

t2
.

Again, as in the homogeneous case, we see that the convergence is dominated

by P1(1−P1)
Nt

, and therefore the convergence rate is nearly as good as centralized

maximum likelihood within the subpopulation.

4.5 Simulations: Time to Disconnect

We now revisit the experiments from Section 4.3 in order to examine the qual-

ity of our approximation to the expected squared error of the heterogeneous

cooperative algorithm. These results are given in Figure 4.4. In the case

where N = 10, our approximation of the time to disconnect is t∗ = 879.6. In

the case where N = 100, we have the approximation that t∗ = 69.0. Finally,

for N = 1000, our approximation is t∗ = 20.2. There are two things we can

notice from these experiments. First, it indeed appears that the approxima-

tion method produces a value for t∗ that is somewhat earlier than reality.

Second, we see that the approximation of the error level before the stopping

time is a little bit pessimistic. This is particularly evident in the N = 100

and N = 1000 cases.

4.6 Least Mean Squares Filter Populations

Our method of extending a distributed adaptive algorithm to heterogeneous

populations can easily be used in settings beyond Bernoulli parameter estima-

tion. For example, consider a version of the diffusion LMS algorithm [65] with

a decreasing, rather than fixed, step size. In this case, we are trying to form

estimates ψ̂i(t) that converge to a vector woi which solves minw E‖di−wTxi‖2,

where observations of the random variables di ∈ R and xi ∈ RK are made

for each time t ∈ {1, 2, ...}.
Recall that the cooperative algorithm for a homogeneous population would

involve an update from observations, where we have that

φ̂i(t) = ψ̂i(t− 1) + αt

(
di(t)− ψ̂i(t− 1)Txi(t)

)
xi(t),

122

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−8

10
−6

10
−4

10
−2

10
0

Alone − Predicted
Alone − Experiment
Centralized − Predicted
Cooperative − Experiment
Cooperative − Predicted

S
q
u

ar
ed

E
st

im
at

io
n

E
rr

or

Iteration Number

Squared Estimation Error vs. Iterations

t∗ = 879.6
���

d2@@I

(a) N = 10.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−8

10
−6

10
−4

10
−2

10
0

Alone − Predicted
Alone − Experiment
Centralized − Predicted
Cooperative − Experiment
Cooperative − Predicted

S
q
u

ar
ed

E
st

im
at

io
n

E
rr

or

Iteration Number

Squared Estimation Error vs. Iterations

t∗ = 69.0
���

d2@@I

(b) N = 100.

10
0

10
1

10
2

10
3

10
4

10
5

10
−8

10
−6

10
−4

10
−2

10
0

Alone − Predicted
Alone − Experiment
Centralized − Predicted
Cooperative − Experiment
Cooperative − Predicted

S
q
u

ar
ed

E
st

im
at

io
n

E
rr

or

Iteration Number

Squared Estimation Error vs. Iterations

t∗ = 20.2
���

d2@@I

(c) N = 1000.

Figure 4.4: Experiments with two Bernoulli populations. The black curve is
the approximation to the squared error described in Section 4.4.

123

followed by a local mixing of estimates, such that

ψ̂i(t) = fi

(
φ̂`(t); ` ∈ Ni

)
,

where φ̂i(t) is a temporary variable, fi(·) is the local combining function,

typically a convex combination of estimates within the neighborhood Ni of

agent i, αt is the step size, and the observations at time t are di(t) and

xi(t). However, in order to use our previous concepts to extend to use in

heterogeneous populations, we would keep a local (noncooperative) estimate

ψ̃i(t) = ψ̃i(t− 1) + αt

(
di(t)− ψ̃i(t− 1)Txi(t)

)
xi(t),

and then determine the local combining functions fi,t(·) with a procedure

equivalent to the determination of Di,j(t) in Equations (4.4) and (4.2.4).

4.7 Conclusion

In this chapter, we considered the problem of cooperative distributed estima-

tion within a network of heterogeneous agents. We began with a simplified

framework consisting of a network of agents observing streams of Bernoulli

random variables, and the goal is for each agent to estimate the parame-

ter of the observed Bernoulli distributions. We provided an algorithm for

a homogeneous population of such Bernoulli agents, and showed that the

cooperative estimates converge in probability to the correct Bernoulli pa-

rameters. We then extended this to the situation where there are a number

of subpopulations, within which the Bernoulli parameter is shared. We pro-

vide a technique for approximating the behavior of the estimation error as a

function of number of iterations. We briefly note that the technique for deal-

ing with heterogeneous populations can be used in other settings, such as in

heterogeneous least mean square filter populations. Finally, we present some

simulations of our algorithm comparing it to both noncooperative estimation

and centralized estimation in a network of Bernoulli agents.

There are many directions that could be taken from here. First of all, we

could consider the consequence of knowing the number of subpopulations or

knowing the minimum distance between the underlying optimal subpopula-

tion parameter values. For a more adaptive algorithm, rather than asymp-

124

totic, we could consider an algorithm with fixed, rather than decreasing, step

size, in order to accommodate time varying underlying model parameters. It

would also be interesting to consider the types of messages that would be sent

over communication links. In our case, we sent essentially infinite precision

estimates, both cooperative and noncooperative, over the links, but restrict-

ing this communication to only the cooperative estimate could be considered,

or we may even consider sending only resampled symbols as is done in [28].

125

CHAPTER 5

ADCs, SGCs, AND SYSTEM METRICS

5.1 Introduction

Digital communication is the process of sending digital data, in the form of

bits, from one location, the transmitter, to another, the receiver. Regardless

of the origins of the data, the goal of the communication link is to reliably

receive all of the data that was sent, or to do so with a bit error proba-

bility (BER) that is as small as possible. To achieve this task, the process

of inserting redundancy into the data, in the form of forward error correc-

tion, converting the binary digital data into a waveform for transmission, and

subsequent detection and estimation of the transmitted data is undertaken

focusing on this system-relevant metric of performance, namely the bit error

rate of the link. While the use of a system-relevant metric for link-level algo-

rithm and architectural designs makes sense, many of the critical components

in such designs including circuit and system components are often designed

using waveform-centric metrics, such as signal to noise plus distortion ratio,

or the total harmonic distortion [74], which consider distortion caused to a

sinusoidal input, when the input is reconstructed from its acquired samples,

in the case of an analog-to-digital converter.

Initial work using analog-to-digital converter (ADC)-based receivers for

10Gb/s wireline and optical transceivers leveraged the power of DSP-based

back-ends making use of modest resolution ADCs [75,76] for subsequent data

detection. As rates scale and resolution becomes more challenging, digital

calibration has been increasingly employed [77], again focusing on minimizing

converter nonlinearities due to ladder offsets or gain and phase mismatches

in time-interleaved ADCs [78]. Rather than calibrating the ADC to im-

prove such waveform-centric metrics, a flash converter structure was consid-

ered in [74] in which the sampling and reconstruction levels for the ADC

126

are adjusted to minimize the link BER, resulting in dramatically improved

link BER performance for ISI-dominated links, in the low resolution regime

typical for the 10Gb/s-100Gb/s range. The information-theoretic capacity

(maximum achievable rate with vanishing error probability) of a digital com-

munication link comprising an additive white Gaussian noise channel followed

by a low-resolution quantizer was studied in [79–81], along with strategies

for reducing converter resolution while maintaining link performance. In [82],

mutual information was used to guide the design of achievable-rate optimal

nonuniform quantizers for communication links, again demonstrating that,

while SNDR and THD would degrade, achievable rate optimal designs have

markedly non-uniform comparator thresholds.

Some of the challenges in the design of time-interleaved ADCs are in main-

taining constant gain and sampling phase across the branches, requiring con-

siderable calibration and processing circuitry [75]. Similar challenges arise in

flash architectures, maintaining uniformly increasing offsets across compara-

tor ladders, while maintaining uniform gain and bandwidth characteristics,

again, focusing calibration on waveform-centric metrics. However, for a digi-

tal communication link, valuable resources (such as power or chip area) might

be better spent minimizing the overall link bit error rate, or maximizing the

information capacity of the link.

We therefore propose moving away from ADCs, which have become the

most power-hungry, sensitive component in the front-end of a communication

link, by abandoning the goal of analog-to-digital conversion altogether.1 In-

stead, we propose to replace the tangentially relevant waveform-centric ADC

metrics with the true system-level goal of the analog front-end in a communi-

cation link: to acquire statistics from the received signal waveforms that are

sufficient for the problem of detecting the data that was transmitted. Rather

than focusing on whether or not the waveform with all of its temporal prop-

erties are preserved by sampling, we focus on the development of a “Statistics

Gathering Converter” or (SGC) whose primary role is to gather statistics for

subsequent processing that will attempt to recover the transmitted data with

low error probability. It is our hope that such architectures can be consid-

erably less complex, require substantially lower power for operation, and be

made less sensitive to circuit nonidealities, by focusing on simply preserving

1Portions of this work have been presented in [83–86], and are reproduced with per-
mission from IEEE.

127

x[n]
D/C

T, p(t)

wc(t)

y[n]
x1(t) x2(t)

Front-End

Figure 5.1: Basic model of a communication system.

the information content of the gathered statistics, rather than maintaining

waveform integrity.

In Section 5.2, we give a mathematical model for SGCs. In Section 5.3,

we present the mutual information rate, linear minimum mean squared error,

and bit error rate system level metrics for the unquantized systems described

in Section 5.2. In Section 5.4, we provide some computational methods for

efficiently approximating the system metrics. In Section 5.5, we shift focus

to a quantized version of the SGC, and then proceed to describe the mutual

information rate and bit error rate metrics in Section 5.6. In Section 5.7, we

provide some simulations examining the performance of SGCs and ADCs on

system level metrics and standard ADC metrics. In Section 5.8, we discuss

the design of receiver algorithms that take into account the potentially non-

standard architectures of SGCs. In Section 5.9, we explore the sensitivity of

and SGC architecture to the variation of certain circuit parameters. Finally,

we conclude with Section 5.10 and give some potential directions for future

research.

5.2 Unquantized System Model

In this work, we model the communication system as in Figure 5.1. This is a

simple digital communication link with a pulse amplitude modulation (PAM)

transmitter and a data converter front-end to the receiver. The sequence of

transmitted symbols, x[n] ∈ R, is modulated onto the channel through the

128

D/C converter, such that the transmitter output is

x1(t) =
∞∑

i=−∞

x[i]p(t− iT). (5.1)

Hence, we transmit at a rate of one symbol every T seconds, or 1/T symbols

per second. Without loss of generality, the dispersive effects of the communi-

cation channel are lumped within the modulator pulse shape p(t). Additive

channel noise is modeled by the zero mean wide sense stationary Gaussian

process wc(t). The signal x2(t) = x1(t) + wc(t) is received by the converter

at the front-end of the receiver.

In a typical front-end converter, there will be a simple periodic sampler,

such that the converter output samples consist of y[n] = x2(nS) + wth(nS),

where the converter samples the input signal every S seconds, and incurs

some noise. This noise may consist of thermal noise, aperture jitter, or

comparator ambiguity, which we lump into a single noise term [87]. We

assume that each sample wth(nS) is independent of the others and zero mean

IID Gaussian distributed.

In this work, we will compare the standard front-end with converters of

the form shown in Figure 5.2, which we will refer to as statistics gather-

ing converters (SGCs). We begin with the situation where the observa-

tions y[n] are not quantized. In this front-end, we model M receive filters,

h0(t), ..., hM−1(t). Noise wth,k(t) is then added to the output of filter hk(t),

and each of these signals is sampled every S seconds. Note that the filters

hk(t) and additive noise may model any non-idealities in the behavior of the

sampler. Also note that, with this front-end, we will gatherM/S observations

per second, as opposed to 1/S samples per second as with the classical ADC

front-end. Again, we assume that each wth,k(nS) is independent for all k and

n and zero mean IID Gaussian distributed. Note that this is a quite general

model for data converters, with the possibility of representing many different

types of converter architectures, such as standard ADCs, time-interleaved

ADCs, and delay-line based converter architectures considered later in this

chapter.

For the purpose of analysis, it is convenient to work with equivalent discrete

time models of the communication system. Note that the entire system

129

x2(t)

h0(t)

h1(t)

hM−1(t)

wth,0(t)

wth,1(t)

wth,M−1(t)

C/D

C/D

C/D

y0

y1

yM−1

S

S

S

y0

y1
...

yM−1

 y

Figure 5.2: A statistics gathering front-end, consisting of a bank of filters
whose outputs are sampled with a period of S.

described above is linear. As such, we will determine a matrix A such that

y = Ax + wch + wth

= Ax + v,

where x = [x[0], x[1], x[2], ...]T is an entire sequence of transmitted data sym-

bols, wch is the noise component introduced by the channel, wth is the noise

component introduced by the circuit (thermal noise, aperture jitter, or com-

parator ambiguity), and y is the entire sequence of observations. Of course,

the number of elements of y must be approximately MT/S times the size of

x, or larger, in order to reliably estimate the full transmitted data sequence.

For convenience, we have defined v = wch + wth.

130

For the front-end of Figure 5.2, let

y = ΠM

y0

y1

...

yM−1

 ,

where each yk is a vector of observations taken from filter hk(t), each yk has

the same number of elements, and ΠM is a permutation matrix that inter-

leaves the elements of each yk. Specifically, let the notation [M]i,j indicate

the element in the ith row and jth column of a matrix M, where the top left

element has indices i = j = 0. Also, let Γ be the number of elements in each

yk, such that y has MΓ elements. Then we have that

[ΠM]i,j =

1 if

⌊
i
M

⌋
= mod (j,Γ)

and⌊
j
Γ

⌋
= mod (i,M)

0 else

,

where we have that the notation bfc indicates the largest integer not greater

than f , and mod (f, g) = f − g
⌊
f
g

⌋
. Hence, we have that

y = [y0[0], ..., yM−1[0], y0[1], ..., yM−1[1], y0[2], ..., yM−1[2], · · ·]T .

Note that computing the permutation y = ΠM ŷ for column vector ŷ would

be equivalent to the following MATLAB command:

y = reshape(reshape(ŷ,M,[])’,[],1);.

Now, define qk(t) = (p ∗ hk)(t), i.e., the aggregate pulse shape from in-

put symbol to the output of filter hk(t). We use the notation (f ∗ g)(t) =∫∞
−∞ f(τ)g(t− τ)dτ to indicate convolution. Then each yk is given by

yk =

yk[0]

yk[1]

yk[2]
...

 = Akx + wch,k + wth,k,

131

where we have that [Ak]i,j = qk (iS − jT), i.e.,

Ak =

qk(0S − 0T) qk(0S − 1T) qk(0S − 2T) · · ·
qk(1S − 0T) qk(1S − 1T) qk(1S − 2T) · · ·
qk(2S − 0T) qk(2S − 1T) qk(2S − 2T) · · ·

...
...

...
. . .

 . (5.2)

Therefore we have that A from Eq. (5.2) is given by

A = ΠM

A0

A1

...

AM−1

 .

We now need to specify stochastic properties of the communications sys-

tem. First of all, we assume that the data symbols x[n] are IID with zero

mean and unit variance, i.e., E[xxH] , Rx = I. The notation xH indi-

cates complex conjugate transposition for a vector or matrix. Next, note

that previous assumptions readily let us conclude that the noise compo-

nents wch and wth are zero mean Gaussian. We have also assumed that

E[wthw
H
th] , Rwth

= σ2
thI, where σ2

th is the noise variance and I is a properly

sized identity matrix. We now wish to find an expression for E[wchw
H
ch].

Since we have that

wch = ΠM

wch,0

...

wch,M−1

 ,
we can see that

E[wchw
H
ch] , Rwch

= ΠM

Σ0,0 Σ0,1 ... Σ0,M−1

Σ1,0 Σ1,1 ... Σ1,M−1

...
...

. . .
...

ΣM−1,0 ΣM−1,1 ... ΣM−1,M−1

ΠH
M .

For this, we have defined Σi,j = E[wch,iw
H
ch,j]. It is furthermore straightfor-

132

ward to show that

Σi,j =

Ri,j(0S) Ri,j(−1S) Ri,j(−2S) ...

Ri,j(1S) Ri,j(0S) Ri,j(−1S) ...

Ri,j(2S) Ri,j(1S) Ri,j(0S) ...
...

...
...

. . .

 ,

where we have that Rij(t) is the cross-correlation between the channel noise

that is filtered and observed at the output from filter hi(t) and from filter

hj(t). Note that Rij(t) = (Rwc ∗ hi ∗ h̃j)(t), where Rwc(t) is the autocorrela-

tion of the channel noise process and h̃j(t) = h∗j(−t), i.e., the time reversed

complex conjugate of the impulse response hj(t). (Note, however, that we

consider only real valued systems, so that h∗j(t) = hj(t).) Finally, we have

that Rv = Rwch
+ Rwth

.

5.3 Metrics for Unquantized Systems

In this section, we present three metrics that we will use to compare data

converter architectures. These are input to output mutual information per

input symbol (MI), linear minimum mean square error (LMMSE), and bit

error rate (BER). Before giving the definition of the mutual information

metric, let us first write the linear input-output relationship so that the

input data size is given explicitly:

y(N) = A(N)x(N) + v(N).

Then, the mutual information metric, given in bits per input symbol, is

defined as

C(A,v) = lim
N→∞

1

2N

log2

∣∣∣A(N)Rx(N)
AH

(N) + Rv(N)

∣∣∣∣∣∣Rv(N)

∣∣∣
 , (5.3)

if the limit exists, for any multivariate Gaussian distributed input sequence.

When we compute this mutual information metric, we do so under the as-

sumption of Gaussian IID distributed input symbols with zero mean and

unit variance, such that Rx(N)
= I. Recall that we have already specified

133

that the noise component of the observations is jointly Gaussian distributed.

The objective of design based on mutual information would typically be to

maximize the value of C(A,v).

The next metric, LMMSE, is given by the following:

D(A,v) =

lim
N→∞

1

N
tr
(
Rx(N)

−Rx(N)
AH

(N)R
−1
y(N)

A(N)Rx(N)

)
,

where we have that

Ry(N)
= A(N)Rx(N)

AH
(N) + Rv(N)

,

and the notation tr(·) indicates the matrix trace. Note that the expression

may be simplified since we have previously defined Rx(N)
= I. This expression

can be used for arbitrary zero mean unit variance IID input distributions.

The objective of design based on LMMSE would typically be to minimize

the value of D(A,v).

The final metric we consider is bit error rate (BER), which will be de-

noted pe(A,v). The assumption when we use this metric is that the in-

put symbols x[n] are chosen from the finite alphabet {−1,+1} with equal

probability. Hence, we again have a zero mean unit variance input distri-

bution. We define the BER as the average probability of detection error

from the LMMSE estimate of the input symbols. We use the LMMSE es-

timator due to the tractability of the resultant expressions. Let Q(x) =

Pr[X > x], where X is a zero mean unit variance Gaussian random variable.

Let x̂(N) = {x̂[0], x̂[1], ..., x̂[N − 1]} be the LMMSE estimate of x(N). De-

fine H(N) = AH
(N)R

−1
y(N)

. Then we have that E[x̂(N)|x(N)] = H(N)A(N)x(N)

and Rx̂(N)|x(N)
= H(N)Rv(N)

HH
(N). Finally, this gives us the (LMMSE) BER

metric as

pe(A,v) = lim
N→∞

Ex(N)

[
1

N

N−1∑
i=0

Q

(
x[i]E[x̂[i]|x(N)]

σ(N)[i]

)]
,

where (σ(N)[i])
2 are the diagonal elements of Rx̂(N)|x(N)

. The objective of

design based on bit error rate could be to minimize the value of pe(A,v)

or to achieve a given pe(A,v) while optimizing other system characteristics

such as power consumption, circuit area, etc.

134

All of these metrics can be closely approximated by evaluating the expres-

sion inside the limit using a suitably large block size N . However, achieving a

sufficient level of accuracy in the approximation may require the use of large

blocks, which may become computationally prohibitive. In the next section,

we will examine computationally efficient ways of approximating the metrics.

As a final comment, we note that exact a priori knowledge of the aggregate

pulse shapes qk(t) at the receiver is not necessary, since we may train an

adaptive equalizer to arbitrary precision using an asymptotically negligible

amount of training symbols. Of course, this equalizer must exploit the par-

ticular MIMO-like structure of the SGC architecture in order to approach

the performance indicated by the system metrics.

5.4 Efficient Computation of System Metrics

As mentioned, it is possible to compute approximations to the system metrics

by taking large block sizes and computing the expressions directly. However,

there are many cases where this could be prohibitive. For example, if a

converter design is being optimized with respect to a number of parameters,

the optimization procedure may require many evaluations of the metric under

different values of the parameters. As such, we would like to find a way to

compute the metrics quickly.

We will begin by presenting some fundamental methods. First, consider

the following result on the limits of determinants of block Toeplitz matrices

[88,89]:

Let ϕ[t] be a square matrix for each −K < t < K. Let TK [ϕ] be the block

Toeplitz matrix constructed as follows:

TK [ϕ] =

ϕ[0] ϕ[−1] ϕ[−2] · · · ϕ[1−K]

ϕ[+1] ϕ[0] ϕ[−1] · · · ϕ[2−K]

ϕ[+2] ϕ[+1] ϕ[0] · · · ϕ[3−K]
...

...
...

. . .
...

ϕ[K − 1] ϕ[K − 2] ϕ[K − 3] · · · ϕ[0]

.

Let DK [ϕ] be the determinant of TK [ϕ], i.e., DK [ϕ] = |TK [ϕ]|. Finally, for

135

z ∈ C and |z| = 1, let

ϕ(z) ,
∞∑

t=−∞

ϕ[t]zt. (5.4)

Then, if ϕ(z) is continuous and positive definite for |z| = 1, we have that

lim
K→∞

1

K
log(DK [ϕ]) =

1

2π

∫ 2π

0

log
∣∣ϕ(eiθ)

∣∣ dθ.
Here, we use i ,

√
−1. Of course, simply by applying a scale factor of 1

log 2
,

we have that

lim
K→∞

1

K
log2(DK [ϕ]) =

1

2π

∫ 2π

0

log2

∣∣ϕ(eiθ)
∣∣ dθ.

Next, we will consider a generalization of standard linear time invariant

systems. In the standard case, we may have (real or complex) scalar-valued

discrete time signals a[t] and b[t], which may be convolved to produce c[t] =

(a ∗ b)[t], where we have that

c[t] = (a ∗ b)[t] =
∞∑

τ=−∞

a[τ]b[t− τ]. (5.5)

Let a(θ) be the discrete time Fourier transfom (DTFT) of a[t], and b(θ)

be the DTFT of b[t]. For any signal x[t], the DTFT of x[t] is defined as

x(θ) =
∞∑

t=−∞

e−iθtx[t].

It is known that the DTFT of c[t] is simply given as c(θ) = a(θ)b(θ). Note

that this convolution is commutative for scalar valued sequences.

Similarly, let aK [ω] be the length 2K+1 discrete Fourier transform (DFT)

of aK [t], where aK [t] is defined as the length 2K + 1 truncation of a[t], such

that aK [t] = a[t] for t = −K, ...,K. For notational convenience, we let

aK [t+ 2K+ 1] = aK [t] for all t, such that the signal is periodic with a period

of 2K + 1 elements. Define bK [ω] and bK [t] similarly. For any signal x[t], we

will define the length 2K + 1 DFT of x[t] as

xK [ω] =
K∑

t=−K

exp

(
−i2πωt
2K + 1

)
xK [t].

136

We will take ω = −K, ...,K. We will also define cK [t], the length 2K + 1

circular convolution of aK [t] and bK [t], as

cK [t] = (aK ∗ bK)[t] =
K∑

τ=−K

aK [τ]bK [t− τ],

where t = −K, ...,K. Note that t − τ may extend outside of the range

{−K, ...,K}, but the periodic definition of bK ensures that the convolu-

tion wraps around properly. Similar to the DTFT, we have that cK [ω] =

aK [ω]bK [ω].

We now generalize to (real or complex) matrix-valued sequences. Let A[t]

be a sequence of matrices, where A[t] ∈ CL×M , and similarly B[t] is a se-

quence of matrices where B[t] ∈ CM×N . Let C[t] = (A ∗ B)[t] be the convo-

lution of these sequences, where this convolution is defined as follows:

C[t] = (A ∗B)[t] =
∞∑

τ=−∞

A[τ]B[t− τ].

Note that this is a straightforward generalization of the convolution defini-

tion in Equation (5.5), except that this is now no longer commutative in

general. Of course, we have that C[t] ∈ CL×N . The length 2K + 1 truncated

circular convolution is defined similarly as above. We let AK [t] = A[t] for

t ∈ {−K, ...,K} and AK [t] = AK [t + 2K + 1] for all t. BK [t] is defined sim-

ilarly. Finally we have that the circular convolution of AK and BK is given

as

CK [t] = (AK ∗BK)[t] =
K∑

τ=−K

AK [τ]BK [t− τ],

where t = −K, ...,K.

Now, define the DTFT of a matrix sequence X[t] as

X(θ) =
∞∑

t=−∞

e−iθtX[t].

Also, define the DFT of a length 2K+1 truncation of X[t], for t = −K, ...,K,

as

XK [ω] =
K∑

t=−K

exp

(
−i2πωt
2K + 1

)
XK [t]. (5.6)

137

Then, just as in the scalar case, we have that C(θ) = A(θ)B(θ) and CK [ω] =

AK [ω]BK [ω]. Again, it is clear that this operation is commutative only in

special cases, where scalar sequences are an example of such a special case.

Below, we will also reference the inverse DFT of a sequence XK [ω]. This

inverse transform is given as follows:

XK [t] =
1

2K + 1

K∑
ω=−K

exp

(
i2πωt

2K + 1

)
XK [ω],

where t = −K, ...,K.

Now, consider block-wise defined matrices AK ∈ CKL×KM and BK ∈
CKM×KN , where we have that

AK =

A[0] A[−1] A[−2] · · · A[1−K]

A[1] A[0] A[−1] · · · A[2−K]

A[2] A[1] A[0] · · · A[3−K]
...

...
...

. . .
...

A[K − 1] A[K − 2] A[K − 3] · · · A[0]

and

BK =

B[0] B[−1] B[−2] · · · B[1−K]

B[1] B[0] B[−1] · · · B[2−K]

B[2] B[1] B[0] · · · B[3−K]
...

...
...

. . .
...

B[K − 1] B[K − 2] B[K − 3] · · · B[0]

.

We note that the matrix product CK = AKBK does not generally have

a similar block-wise structure. However, the product CK = AKBK may

approximately have such a block-wise structure, such as when K is large,

and when A[t] and B[t] have a finite support around t = 0. In particular, the

sequence that describes the approximate block-wise structure of the matrix

CK is simply the convolution C[t] = (A ∗ B)[t]. This sequence C[t] may be

approximated by computing the circular convolution CK [t] = (AK ∗ BK)[t]

for some sufficiently large K, and this may be accomplished utilizing the

matrix sequence DFT and inverse DFT described above. Furthermore, in

138

some instances we may be interested only in the quantity

lim
K→∞

1

KN
tr (AKBK) ,

where A[t] ∈ CN×M and B[t] ∈ CM×N . Note that the product CK = AKBK ,

in this case, has size KN × KN , such that the given quantity is simply

an average over the diagonal elements. If we believe that CK is sufficiently

well approximated by a block-wise structured matrix defined by the sequence

C[t] = (A ∗B)[t], where C[t] ∈ CN×N , then we may write that

lim
K→∞

1

KN
tr (AKBK) ≈ 1

N
tr (C[0]) .

We conjecture that this approximation is exact in certain cases, such as

when the sequences A[t] and B[t] have finite support. Now, if we have the

sequences A[t] and B[t], and wish to compute limK→∞
1
KN

tr (AKBK), it is

likely simplest to form our approximation using

C[0] ≈
τ̄∑

τ=−τ̄

A[τ]B[−τ],

where τ̄ is chosen sufficiently large. On the other hand, we may instead want

to compute the following:

lim
K→∞

1

KN
tr
(
A1
K × A2

K × · · · × AJK
)
,

where the product of J matrices A1
K to AJK is a square matrix of size KN ×

KN , and the component blocks of each AjK have compatible dimensions with

respect to the matrix product. If this is the case, it is likely to be compu-

tationally advantageous to employ a frequency domain method, utilizing the

DFT defined above.

A final conjecture that we will use without proof is that, if A−1
K exists, AK

is approximately block Toeplitz with blocks of size L× L, and the sequence

of matrices A[t] satisfies some condition such as finite support, then A−1
K is

also approximately block Toeplitz with blocks of size L × L. Furthermore,

the DTFT of the sequence of matrices associated with approximate block

Toeplitz structure of A−1
K is equal to (A(θ))−1.

We would now like to use the above relationships to approximate the mu-

139

tual information expression in Equation (5.3). To do so, note that

C(A,v) = lim
N→∞

1

2N

log2

∣∣∣A(N)A
H
(N) + Rv(N)

∣∣∣∣∣∣Rv(N)

∣∣∣

=
1

2

(
lim
N→∞

1

N
log2

∣∣∣A(N)A
H
(N) + Rv(N)

∣∣∣− lim
N→∞

1

N
log2

∣∣∣Rv(N)

∣∣∣) .
Now, suppose that T

S
is a rational number, and the numbers LS and LT

are the smallest positive integers such that LSS = LTT . Also, suppose

that the number of rows of A(N) is some multiple of LSM , and likewise

for Rv(N)
. Then the matrices A(N),k from Equation (5.2) are composed of

repeating rectangular blocks of size LS×LT in a Toeplitz-like fashion, which

implies that the matrix A(N) is composed of repeating rectangular blocks

of size LSM × LT . This in turn implies that the matrix product A(N)A
H
(N)

is approximately block Toeplitz with blocks of size LSM × LSM . Note also

that the covariance matrix Rv(N)
is block Toeplitz with blocks of size M×M ,

which furthermore implies, by grouping smaller blocks into large blocks, that

Rv(N)
is block Toeplitz with blocks of size LSM × LSM . Specifically, let

ϕR[t] be the component blocks of Rv(N)
and let ϕA[t] be the (approximate)

component blocks of A(N)A
H
(N), with all mentioned blocks being size LSM ×

LSM . Then, for 0 ≤ i, j < LSM , we have that

[
ϕR[t]

]
i,j

=

{
Rı̂,̂(tS) + σ2

th if i− j = t = 0

Rı̂,̂(tS) else
,

where ı̂ , mod (i,M), ̂ , mod (j,M), and Rı̂,̂(·) is the cross correlation

defined above.

In order to specify the matrices ϕA[t], we first define the following discrete

time matrix sequence ρA[t] that describes the block-wise structure of A(N):

[
ρA[t]

]
i,j

=

{
[A](i+tLSM),j if t ≥ 0

[A]i,(j−tLT) if t < 0
, (5.7)

where 0 ≤ i < LSM , 0 ≤ j < LT , and t ∈ Z. Then the sequence ϕA[t] that

describes the approximate block Toeplitz structure of A(N)A
H
(N) is simply

ϕA[t] = (ρA ∗ ρ̃A)[t],

140

where we define ρ̃A[t] = (ρA[−t])H , i.e., the time reversed Hermitian trans-

pose of ρA. Furthermore, define ρA(θ) as the DTFT of the matrix sequence

ρA[t], and note that ϕA(eiθ) and ϕR(eiθ), defined as in Equation (5.4), are

simply the reverse of the discrete time Fourier transforms of the sequences

ϕA[t] and ϕR[t], as a function of θ. This leads us to conclude that

ϕA(eiθ) = ρA(−θ)
(
ρA(−θ)

)H
,

which further implies that ϕA(eiθ) is non-negative definite. By similar ar-

guments, we can conclude that ϕR(eiθ) is positive definite, where a non-

zero thermal noise component σ2
th > 0 ensures strictly positive definiteness.

Hence, assuming that we have LT input symbols for every block of LSM

observations, we have that

C(A,v) =
1

2LT

(
lim
N→∞

LT
N

log2

∣∣∣A(N)A
H
(N) + Rv(N)

∣∣∣
− lim

N→∞

LT
N

log2

∣∣∣Rv(N)

∣∣∣)
≈ 1

2LT

(
1

2π

∫ 2π

0

log2

∣∣ϕA(eiθ) + ϕR(eiθ)
∣∣ dθ

− 1

2π

∫ 2π

0

log2

∣∣ϕR(eiθ)
∣∣ dθ) .

Note that we indicate an approximation here, since A(N)A
H
(N) is not truly

block Toeplitz. We speculate, however, that equality indeed holds in the limit

as the number of transmitted symbols N goes to infinity. We then conclude

that

C(A,v) ≈ 1

2LT

(
1

2π

∫ 2π

0

log2

∣∣ϕA(eiθ) + ϕR(eiθ)
∣∣

|ϕR(eiθ)|
dθ

)
. (5.8)

Note that both
∣∣ϕA(eiθ) + ϕR(eiθ)

∣∣ and
∣∣ϕR(eiθ)

∣∣ are positive real values for

every θ, and
∣∣ϕA(eiθ) + ϕR(eiθ)

∣∣ > ∣∣ϕR(eiθ)
∣∣, so that the log of the ratio is

positive for all θ. Furthermore, the expression within parentheses in Equation

(5.8) is simply the average of the integrand over θ. This average can be

approximated using the Fast Fourier Transform (FFT).

To this end, let ϕAK [ω] and ϕRK [ω] indicate the Discrete Fourier Transforms

(DFT) of truncated portions of the sequences ϕA[t] and ϕR[t], as defined

in Equation (5.6). Then we will approximate the mutual information by

141

choosing some sufficiently large K and computing

C(A,v) ≈ 1

2LT

(
1

2K + 1

K∑
ω=−K

log2

∣∣ϕAK [ω] + ϕRK [ω]
∣∣

|ϕRK [ω]|

)
.

Next, we consider the computation of the LMMSE system metric. We will

simplify under the assumption that Rx(N)
is identity. We then have that

Ry(N)
= A(N)A

H
(N) + Rv(N)

.

Therefore, we have that

D(A,v) = 1− lim
N→∞

1

N
tr
(
AH

(N)R
−1
y(N)

A(N)

)
= 1− lim

N→∞

1

N
tr
(
R−1

y(N)
A(N)A

H
(N)

)
= 1− lim

N→∞

1

N
tr

((
A(N)A

H
(N) + Rv(N)

)−1

A(N)A
H
(N)

)
.

(5.9)

As before, we have that A(N)A
H
(N) is approximately block Toeplitz, composed

of blocks of size LSM × LSM , and Rv(N)
is block Toeplitz with blocks of

the same size. As such, R−1
y(N)

is approximately block Toeplitz, again with

blocks of size LSM × LSM , and hence the whole argument of the trace is

approximately block Toeplitz with blocks of size LSM × LSM . The whole

expression is then simply one minus the average of the diagonal elements of

the argument to the trace. Due to the approximately block Toeplitz property,

we can approximate the average over the whole diagonal as simply the average

over the diagonal of a single LSM × LSM block from the diagonal.

Thus, we would like to compute the LSM × LSM block that defines the

diagonal of R−1
y(N)

A(N)A
H
(N). This can be approximated by simply taking the

t = 0 (matrix) element from the inverse DFT of
(
ϕAK [ω] + ϕRK [ω]

)−1
ϕAK [ω].

This element is given as

1

2K + 1

K∑
ω=−K

(
ϕAK [ω] + ϕRK [ω]

)−1
ϕAK [ω]. (5.10)

From this, the approximation of the LMMSE metric, using the FFT, is the

142

following:

D(A,v) ≈ 1− 1

LSM
tr

(
1

2K + 1

K∑
ω=−K

(
ϕAK [ω] + ϕRK [ω]

)−1
ϕAK [ω]

)
.

This can be simplified, such that the final approximation is the following:

D(A,v) ≈ 1− 1

LSM(2K + 1)

K∑
ω=−K

tr
((
ϕAK [ω] + ϕRK [ω]

)−1
ϕAK [ω]

)
.

As with the mutual information metric, K should be chosen to be sufficiently

large.

Finally, we can also use frequency domain methods for approximating the

BER system metric. Recall that the BER metric is defined as

pe(A,v) = lim
N→∞

Ex(N)

[
1

N

N∑
i=1

Q

(
x[i]E[x̂[i]|x(N)]

σ(N)[i]

)]
,

where x̂(N) = {x̂[0], x̂[1], ..., x̂[N − 1]} is the LMMSE estimate of the se-

quence of input symbols x(N) = {x[0], x[1], ..., x[N − 1]}, H(N) = AH
(N)R

−1
y(N)

is the LMMSE linear estimator at the receiver, E[x̂(N)|x(N)] = H(N)A(N)x(N)

is the conditional expectation of the symbol estimates, given the symbols,

Rx̂(N)|x(N)
= H(N)Rv(N)

HH
(N) is the covariance of x̂(N) given x(N), and (σ(N)[i])

2

are the diagonal elements of Rx̂(N)|x(N)
. Our approximation method for the

BER metric involves “filtering” a generated symbol sequence x(N) with the

matrix H(N)A(N) to produce E[x̂[i]|x(N)], as well as determining the ele-

ments on the main diagonal of Rx̂(N)|x(N)
. The fact that both H(N)A(N) and

Rx̂(N)|x(N)
are approximately block Toeplitz with blocks of size LT ×LT , and

that the matrices used to construct them also have block-wise structure, will

allow us to use frequency domain methods in our metric approximations.

The derivation of our computational method proceeds as follows: First,

recall that the matrix sequence ρA[t] is simply the sequence of (possibly non-

square) matrices that compose the channel matrix A. Note that we do not

refer to the matrix A as block Toeplitz, since this designation is only for

matrices composed of square blocks. We will compute ρAK [ω] as the length

143

2K + 1 DFT of a subsequence of ρA[t], as in Equation (5.6), such that

ρAK [ω] =
K∑

t=−K

exp

(
−i2πωt
2K + 1

)
ρA[t].

We will also compute the following DFT sequences:

ϕy
K [ω] = ϕAK [ω] + ϕRK [ω]

ϕRx̂
K [ω] =

(
ρAK [ω]

)H
(ϕy

K [ω])
−1
ϕRK [ω] (ϕy

K [ω])
−1
ρAK [ω]

ϕEx̂
K [ω] =

(
ρAK [ω]

)H
(ϕy

K [ω])
−1
ρAK [ω].

Note that these operations are directly analogous to the corresponding ma-

trix operations, where the multiplication of large matrices turns into small

multiplications separately for each “frequency” parameter ω, and these op-

erations follow from our previous discussion on sequences of matrices, their

frequency domain representations, convolution, and large block-wise struc-

tured matrices.

From this, we can compute the sequence of standard deviations σ[j], such

that

σ[j] =

√√√√ 1

2K + 1

K∑
ω=−K

[
ϕRx̂
K [ω]

]
j,j

for 0 ≤ j < LT . Note that this computation parallels the construction

in Equation (5.10), since, in both cases, we are interested in the diagonal

elements of some large matrix. In this case, the values (σ[j])2 for each j

correspond with the diagonal elements of Rx̂(N)|x(N)
. Again, as with the

matrix R−1
y(N)

A(N)A
H
(N) that results in Equation (5.10), the matrix Rx̂(N)|x(N)

approximately has a block Toeplitz structure, which leads to this expression

for the elements on the main diagonal.

We now need an efficient method for “filtering” a generated symbol se-

quence x(N) with the matrix H(N)A(N) to produce E[x̂(N)|x(N)]. This involves

computing a sequence of matrices ΛEx̂
K [t] as the inverse DFT of ϕEx̂

K [ω], such

that

ΛEx̂
K [t] =

1

2K + 1

K∑
ω=−K

exp

(
i2πωt

2K + 1

)
ϕEx̂
K [ω],

where −K ≤ t ≤ K. This sequence of matrices approximates a subsequence

of the matrices that compose the blocks of H(N)A(N)—the matrix used for

144

computing E[x̂(N)|x(N)] from a sequence of transmitted symbols. Now, let

x[t] be a sequence of random length LT column vectors for −K ≤ t ≤ K

such that each [x[t]]i is IID Rademacher distributed, i.e., P ([x[t]]i = −1) =

P ([x[t]]i = +1) = 1
2
. Then we have that

pe(A,v) ≈ Ex[·]

[
1

LT

LT∑
i=1

Q

(
[x[0]]i
σ[i]

[
K∑

t=−K

ΛEx̂
K [t]x[0− t]

]
i

)]
. (5.11)

Note the filtering operation that occurs in the inner summation, which cor-

responds with the approximation of E[x̂(N)|x(N)]. Approximating the ex-

pectation in Equation (5.11) is accomplished by convolution of the matrix

sequence ΛEx̂
K [t] with the length Lx (possibly much larger than 2K + 1) ran-

dom symbol sequence x[t], multiplication of each resultant value with the

corresponding
[x[t]]i
σ[i]

value, followed by application of the Q(·) function, and

finally averaging all of the Q values. More precisely, define the convolution

sequence x̂[t] as follows:

x̂[t] =
K∑

τ=−K

ΛEx̂
K [τ]x[t− τ].

Then, for some large simulation length Lx, we have that

pe(A,v) ≈ 1

LTLx

LT∑
i=1

Lx∑
t=1

Q

(
[x[t]]i [x̂[t]]i

σ[i]

)
.

Finally, we will note that it may be possible to reduce the variance of this es-

timate by generating binary De Bruijn sequences for x[t], rather than simply

randomly generating the sequence of transmitted symbols, and then comput-

ing x̂[t] using a cyclic convolution.

5.5 Quantized System Model

We will now consider communication systems with quantization. This will

involve a system model similar to the one presented in Section 5.2, but with

some notable differences. First, we will assume that there is no noise in-

troduced in the channel. The noise introduced before sampling will remain,

145

however. The reason for removing the channel component of the noise is

to ensure that the noise components for each observation are independent,

which will simplify our analysis. The other modification is that we will ap-

ply scalar quantization to the output of each sampler in the SGC model.

Specifically, for each SGC branch we have a function dk(y) that maps a real

number y ∈ R to a quantization value dk(y) ∈ {0, ..., Dk − 1}. Furthermore,

we will assume that there are quantization thresholds `k[j], with 0 ≤ j ≤ Dk,

`k[j] < `k[j + 1], `k[0] = −∞, and `k[Dk] =∞, such that

dk(y) = j such that `k[j] < y ≤ `k[j + 1].

We allow the levels `k[j] and the quantization set sizes Dk to be different on

each SGC branch.

It will now be more convenient to work with a multiple input, multiple

output mathematical model of the system. First, define the sequence of

transmitted symbols x[t] such that

[x[t]]i = x[LT t+ i],

where 0 ≤ i < LT . In words, we group the input symbols x[·] into groups of

size LT . Next, define the unquantized observation sequence y[t] such that

[y[t]]i = ymod(i,M)

[
LSt+

⌊
i

M

⌋]
= [y](LSMt+i) .

In words, we group the observations y into groups of size LSM . We do the

same with the thermal noise component wth when we define the sequence

wth[t], such that

[wth[t]]i = [wth](LSMt+i) .

Finally, we define the quantized observation sequence z[t] obtained by apply-

ing a vector quantization function on the observation vectors y[t]. Specifi-

cally, we have that

z[t] = d(y[t]),

where [d(y[t])]i = di([y[t]]i). Then, using the definition of ρA[t] from Equa-

146

tion (5.7), we have that

z[t] = d

(
w[t] +

∞∑
k=−∞

ρA[k]x[t− k]

)
.

We will furthermore assume that the sequence of channel matrices ρA[t] is

causal with finite support, such that ρA[t] = 0 for t /∈ {0, ..., Lρ − 1}. Then

we have that

z[t] = d

(
w[t] +

Lρ−1∑
k=0

ρA[k]x[t− k]

)
. (5.12)

5.6 Metrics for Quantized Systems

We will now consider bit error rate (BER) and mutual information (MI) as

system level metrics for systems that can be modeled as in Equation (5.12).

We begin with the BER metric. In this case, we assume that each symbol

vector x[t] will be estimated based on a window of quantized observations

z[τ], with t+ τs ≤ τ < t+ τe. We also assume that the transmitted symbols

are [x[t]]i ∈ {−1,+1} with equal probability. Then we have that our symbol

estimates x̂[t] are given by some decision function ∆(·), i.e.,

x̂[t] = ∆(z[t+ τs], ..., z[t+ τe − 1]),

or, equivalently,

[x̂[t]]i = ∆i(z[t+ τs], ..., z[t+ τe − 1]),

for 0 ≤ i < LT . For shorthand, we will define

Z[t] = {z[t+ τs], ..., z[t+ τe − 1]}.

Then we have that [x̂[t]]i = ∆i(Z[t]). Now, this decision function ∆(·) could

take many forms. For example, [74, 90] considered linear equalizers by map-

ping the quantized values [z[t]]i to representative real values between the cor-

responding quantization levels. Here, we will assume that each ∆i(·) takes

the form of the BER optimal decision rule, given the window of observations.

To derive the method of computing the BER pe(∆) of the optimal decision

147

rule, first note that

pe(∆) =
1

LT

LT−1∑
i=0

P ([x̂[t]]i 6= [x[t]]i)

=
1

LT

LT−1∑
i=0

P (∆i(Z[t]) 6= [x[t]]i)

=
1

LT

LT−1∑
i=0

P (∆i(Z[0]) 6= [x[0]]i) . (5.13)

Of course, we have that

P (∆i(Z[0]) 6= [x[0]]i) =
∑
Z[0]

P (∆i(Z[0]) 6= [x[0]]i |Z[0]) P (Z[0])

=
∑
Z[0]

min
b

P ([x[0]]i = b|Z[0]) P (Z[0]) , (5.14)

where the minimization is the result of using the BER optimal decision rule.

Now, define X[t] = {x[t + τs + 1 − Lρ], ...,x[t + τe − 1]}, and assume that

0 ∈ {τs + 1− Lρ, ..., τe − 1}. Then we have that

P (Z[0]) =
∑
x[·]

P (Z[0],x[·])

=
∑
X[0]

P (Z[0],X[0])

=
∑

X[0]:[x[0]]i=−1

P (Z[0],X[0])

︸ ︷︷ ︸
=P(Z[0],[x[0]]i=−1)

+
∑

X[0]:[x[0]]i=+1

P (Z[0],X[0])

︸ ︷︷ ︸
=P(Z[0],[x[0]]i=+1)

(5.15)

Now, define the sequence ys[t] as follows:

ys[t] =

Lρ−1∑
k=0

ρA[k]x[t− k].

Specifically, this is the noise-free component of the signal received at the

data converter. If we define Ys[t] = {ys[t+ τs], ...,ys[t+ τe − 1]} and Y[t] =

{y[t+τs], ...,y[t+τe−1]}, then we see that P (Y[t]|X[t]) is a jointly Gaussian

distribution with a mean of Ys[t] (a deterministic function of X[t]) and a

covariance of σ2
thI, where I is an appropriately sized identity matrix. This

148

allows us to conclude that

P (Z[0],X[0])

= P (X[0]) P (Z[0]|X[0])

= 2−LT (τe−τs+Lρ−1)P (Z[0]|Ys[0]) , (5.16)

where we have that

P (Z[0]|Ys[0])

=

(τe−1)∏
τ=τs

(LSM−1)∏
i=0

[
Q

(
`mod(i,M)[[z[τ]]i]− [ys[τ]]i

σth

)
−Q

(
`mod(i,M)[[z[τ]]i + 1]− [ys[τ]]i

σth

)]
. (5.17)

Now, going back to Equation (5.14), note that

P ([x[0]]i = b|Z[0]) =
P (Z[0], [x[0]]i = b)

P (Z[0])
.

However, from Equation (5.15), we have that

P (Z[0]) = P ([x[0]]i = −1,Z[0]) + P ([x[0]]i = +1,Z[0]) , (5.18)

which then lets us conclude that

P ([x[0]]i = b|Z[0]) =
P (Z[0], [x[0]]i = b)

P (Z[0], [x[0]]i = −1) + P (Z[0], [x[0]]i = +1)
. (5.19)

Then, the full procedure for computing the BER metric pe(∆) is as fol-

lows: Compute, Equation (5.13). This involves the computation of each

P (∆i(Z[0]) 6= [x[0]]i). These are computed as in Equation (5.14). This fur-

thermore requires P ([x[0]]i = b|Z[0]) and P (Z[0]). The latter is computed as

in Equation (5.18), whereas the former is computed as in Equation (5.19). Fi-

nally, both of these calculations rely on P (Z[0], [x[0]]i = b) for b ∈ {−1,+1},
and these are computed as in Equations (5.15), (5.16), and (5.17).

We will now examine a mutual information metric for these quantized SGC

149

communication systems. Specifically, we are interested in

I(X; Z) = lim
n→∞

1

nLT
I(Xn; Zn)

= lim
n→∞

1

nLT
I(x[0], ...,x[n− 1]; z[0], ..., z[n− 1]). (5.20)

Here, we have that

Xn = {x[0],x[1], ...,x[n− 1]}

and

Zn = {z[0], z[1], ..., z[n− 1]}.

In order to approximate this mutual information metric, we will begin with

the simulation-based method given in [91]. This simulation-based method

is one for approximating the mutual information rate, e.g., bits per input

symbol, in finite-state source/channel models. In such a model, we have that

the sequences Xn and Zn, as well as a state sequence

Sn = {s[−1], s[0], s[1], ..., s[n− 1]},

are related to each other according to a chain-structured probabilistic graph-

ical model, such that

P(Xn,Zn,Sn) = P(s[−1])
n−1∏
t=0

P(x[t], z[t], s[t]|s[t− 1]). (5.21)

It is assumed that the transition probability P(x[t], z[t], s[t]|s[t− 1]) is inde-

pendent of t, and that P(s[t]|s[−1]) > 0 for all s[−1] and s[t] for all sufficiently

large t. These conditions ensure that the random process is ergodic, and that

the approximation method is valid. We will actually assume more structure

in our work. Specifically, we will assume that

P(x[t], z[t], s[t]|s[t− 1]) (5.22)

= P(x[t]|s[t− 1])P(s[t]|x[t], s[t− 1])P(z[t]|s[t],x[t], s[t− 1]). (5.23)

= P(x[t])P(s[t]|x[t], s[t− 1])P(z[t]|s[t]). (5.24)

That (5.23) is equal to (5.22) follows from the rules of conditional probabil-

150

ity and is always true. The expression in (5.24) follows by making certain

assumptions of conditional independence.

For the quantizing SGC modeled by Equation (5.12), we have that x[t]

and z[t] are the same as defined for that model, and

s[t] = {x[t],x[t− 1], ...,x[t− Lρ + 1]}.

The symbol distribution P(x[t]) is uniform on all values of x[t], the transition

probability P(s[t]|x[t], s[t− 1]) is a deterministic function of x[t] and s[t− 1],

and the observation condition probability P(z[t]|s[t]) is apparent in Equation

(5.12), and involves calculations similar to Equation (5.17).

The estimation procedure is simple. First, generate long sequences Xn, Zn,

and Sn according to the model in Equation (5.21). Next, compute P(Xn),

P(Zn), and P(Xn,Zn) for the generated sequences. This can be done by using

the BCJR algorithm [92], which is equivalent to the Sum-Product algorithm

on the factor graph specified by the chain-structured probabilistic graphical

model. In some cases, these quantities may be found exactly, such as if x[t]

are IID random vectors (as with our quantizing SGC), or if the conditional

entropy h(Zn|Xn) is known analytically. Finally, we conclude with

Î(X; Z) =
1

nLT
(log P(Xn,Zn)− log P(Xn)− log P(Zn)) (5.25)

=
1

nLT
(log P(Xn,Zn)− log P(Zn))− h(x[t])

LT
. (5.26)

Of course, whether Equation (5.25) or (5.26), or some other related expres-

sion, is used for the final estimate depends on which quantities can be com-

puted directly, without simulation. In our case, where Equation (5.24) is

satisfied, the algorithm for computing Î(X; Z) proceeds as in Algorithm 5.1.

Now, when the mentioned conditions for validity of the algorithm are met,

Algorithm 5.1 is guaranteed to converge to the true mutual information rate

in the limit of n. However, note that this estimate depends on the randomly

generated samples x̂, ŝ, and ẑ. In particular, consider drawing ẑ ∼ P(z[t]|ŝ).

If P(z[t]|ŝ) is strongly peaked around a particular z[t] for every ŝ, then we

will need many draws from this distribution to have a representative drawing

from the distribution (which includes a proportionate number of the low

probability events), and likewise to have good estimates of hZ and hXZ. This

151

Algorithm 5.1: Mutual Information Rate Approximation from [91].

Data: P(s[−1]), P(x[t]), P(s[t]|x[t], s[t− 1]), P(z[t]|s[t]), n
Result: Î = estimated mutual information rate

1 Generate ŝprev ∼ P(s[−1]);
/* Initial beliefs */

2 Initialize PZ(s)← P(s[−1] = s) and PXZ(s)← P(s[−1] = s);
3 Initialize hZ ← 0 and hXZ ← 0;
4 for t = 0, ..., n− 1 do

/* Randomly generate next set of values */

5 Generate x̂ ∼ P(x[t]);
6 Generate ŝ ∼ P(s[t]|x̂, ŝprev);
7 Generate ẑ ∼ P(z[t]|ŝ);

/* Forward Sum-Product message passing, update beliefs */

8 Compute P̂Z(s̃) =
∑

x

∑
s PZ(s)P(x)P(s̃|x, s);

9 Compute P̌Z(s̃) = P̂Z(s̃)P(ẑ|s̃);

10 Compute αZ =
∑

s P̌Z(s);

11 Update PZ(s)← 1
αZ

P̌Z(s);
/* Update sequence entropy */

12 Update hZ ← hZ − log2(αZ);
/* Forward Sum-Product message passing, update beliefs */

13 Compute P̂XZ(s̃) =
∑

s PXZ(s)P(x̂)P(s̃|x̂, s);

14 Compute P̌XZ(s̃) = P̂XZ(s̃)P(ẑ|s̃);

15 Compute αXZ =
∑

s P̌XZ(s);

16 Update PXZ(s)← 1
αXZ

P̌XZ(s);
/* Update sequence entropy */

17 Update hXZ ← hXZ − log2(αXZ);

18 end
/* Analytic computation of symbol entropy rate */

19 Initialize hX ← −
∑

x P(x) log2 P(x);

20 return Î ← 1
LT
hX + 1

nLT
(hZ − hXZ);

is particularly of concern for our SGC application, because if it is not the case

that P(z[t]|ŝ) is strongly peaked, then we are wasting converter resolution

and consequently needlessly consuming energy. This motivates us to explore

improving on Algorithm 5.1.

Algorithm 5.2 is a modification of Algorithm 5.1 that provides improved

approximation results in many circumstances. Essentially, rather than simply

computing the entropy updates for hZ (line 12) and hXZ (line 17) based on

the drawn value of ẑ, we compute the expected update to each of these

values with respect to the distribution from which ẑ is drawn. At this point,

152

Algorithm 5.2: Improved Mutual Information Rate Approximation.

Data: P(s[−1]), P(x[t]), P(s[t]|x[t], s[t− 1]), P(z[t]|s[t]), n
Result: Î = estimated mutual information rate

1 Generate ŝprev ∼ P(s[−1]);
/* Initial beliefs */

2 Initialize PZ(s)← P(s[−1] = s) and PXZ(s)← P(s[−1] = s);
3 Initialize hZ ← 0 and hXZ ← 0;
4 for t = 0, ..., n− 1 do

/* Randomly generate next set of values */

5 Generate x̂ ∼ P(x[t]);
6 Generate ŝ ∼ P(s[t]|x̂, ŝprev);
7 Generate ẑ ∼ P(z[t]|ŝ);

/* Forward Sum-Product message passing, update beliefs */

8 Compute P̂Z(s̃) =
∑

x

∑
s PZ(s)P(x)P(s̃|x, s);

9 Compute P̌Z(s̃) = P̂Z(s̃)P(ẑ|s̃);

10 Compute αZ =
∑

s P̌Z(s);

11 Update PZ(s)← 1
αZ

P̌Z(s);
/* Update sequence entropy */

12 Update hZ ← hZ −
(∑

z̃ P(z̃|ŝ) log2

(∑
s̃ P̂Z(s̃)P(z̃|s̃)

))
;

/* Forward Sum-Product message passing, update beliefs */

13 Compute P̂XZ(s̃) =
∑

s PXZ(s)P(x̂)P(s̃|x̂, s);

14 Compute P̌XZ(s̃) = P̂XZ(s̃)P(ẑ|s̃);

15 Compute αXZ =
∑

s P̌XZ(s);

16 Update PXZ(s)← 1
αXZ

P̌XZ(s);
/* Update sequence entropy */

17 Update hXZ ← hXZ −
(∑

z̃ P(z̃|ŝ) log2

(∑
s̃ P̂XZ(s̃)P(z̃|s̃)

))
;

18 end
/* Analytic computation of symbol entropy rate */

19 Initialize hX ← −
∑

x P(x) log2 P(x);

20 return Î ← 1
LT
hX + 1

nLT
(hZ − hXZ);

we will simply note that it is possible to extend this concept, such that

the updates of hZ and hXZ start from a point even earlier in the generated

random process sequence. We show in Algorithm 5.2 the method that uses

the expectation of log2(α) with respect to only the sampling of ẑ, but we

could extend this expectation to also average over the possible draws of ŝ,

x̂, or even draws from previous iterations of the for loop. As we take more

draws going backwards in the sequence into account in this expectation, the

computational complexity of the entropy updates grows exponentially, but up

153

to a point this is compensated by the corresponding decrease in the sequence

length required to achieve a certain level of accuracy.

The authors of [91] state that it is generally impractical with Algorithm 5.1

to realize more than a couple digits of accuracy in the mutual information es-

timate. This becomes particularly pronounced when the mutual information

rate is close to the entropy rate of the source process x[t], or equivalently,

when 1
nLT

(hZ − hXZ) is small, which is the case when P(z[t]|ŝ) is strongly

peaked. In these cases, Algorithm 5.2 provides significantly more accurate

estimates of 1
nLT

(hZ − hXZ) using far shorter simulation lengths n.

5.7 Converter Performance: System Level versus

Traditional Metrics

In this section, we present results of evaluating various data converter archi-

tectures under both system level metrics and traditional ADC metrics. We

begin by studying time-interleaved analog-to-digital converters (TIADCs),

showing that the conventional wisdom from the traditional metrics for the

design of these converters is misleading for the design of communications

specific TIADCs. We then make similar conclusions for a statistics gathering

converter (SGC) utilizing a delay-line architecture. The goal of this section is

to motivate the use of the information-based system-level metrics for the de-

sign of communication system data converters, as opposed to the traditional

waveform-centric metrics.

5.7.1 Time-Interleaved Analog-to-Digital Converter

Input/Output Mutual Information

We begin with TIADCs, which can be thought of as a special case of SGCs.

We show a model of a TIADC in Figure 5.3. In this section, we do not include

quantization. Of course, as with non-quantizing SGCs in general, the full

TIADC communication system has a linear input-output relationship. More

specifically, consider a finite vector of symbols x = (x[0], ..., x[N − 1])T and

an observation vector y = (y[0], ..., y[L − 1]). It is possible to relate these

154

b[n]
D/C

T, p(t)

h(t)

wc(t)

r(t)

e−jω∆0

e−jω∆1

e−jω∆M−1

wt,1(t)

wt,2(t)

wt,M(t)

C/D

S

↑M

z−1C/D

C/D

S

S

↑M

↑M z1−M

y[n]

channel
receive
filter

Figure 5.3: An M -fold time-interleaved receiver structure.

input and output vectors according to the relation

y = A(D)x + wth + wch. (5.27)

In (5.27), A(D) is a channel matrix that depends on the relative sampling

time delays of the ADC branches, D = (∆0, ...,∆M−1)T , wth is a vector of

stationary independent Gaussian noise samples that arise from the bandlim-

ited sampling (due to the integration time of the sample and hold circuitry)

of wt,j(t), and wch is a vector of noise samples that arise from sampling the

output of the receive shaping filter due to the channel noise, wc(t). The

matrix A(D) is derived from the channel model as follows. First, we define

the aggregate pulse shape as the three-fold convolution q(t) = (p ∗ h ∗ r)(t).
Now, we define the vector q(V) as [q(V)]i = q([V]i), where V is a vector of

times. Then we have that

A(D) =

q(D) q(D−T) ... q(D−(N−1)T)

q(S+D) q(S+D−T) ... q(S+D− (N−1)T)

q(2S+D) q(2S+D−T) ... q(2S+D−(N−1)T)
...

...
...

...

 . (5.28)

When we add (subtract) a scalar to (from) a vector, we mean that the scalar

value should be added to (subtracted from) each element in the vector. The

quantity 1
S

in (5.28) corresponds with the sampling rate of a single branch of

the time-interleaved ADC. To characterize the noise, we assume that each of

155

the noise sources is an independent Gaussian random processes. For the ther-

mal noise component, we have that the noise covariance matrix is σ2
thIL×L.

In order to derive the covariance matrix of the channel noise, using the vector

of delays D = (∆1, ...,∆M)T and the vector 1n×m, the n×m matrix of ones,

we define the matrix TD of pairwise time differences as

TD = D11×M − 1M×1D
T .

Let σ2
chR(τ) be the autocorrelation function of the filtered channel noise,

normalized such that R(0) = 1. We now construct a block Toeplitz matrix

T ∈ <L×L of time differences as

T=

TD TD−S1M×M TD−2S1M×M · · ·

TD+S1M×M TD TD−S1M×M · · ·
TD+2S1M×M TD+S1M×M TD · · ·

...
...

...
. . .

 .

Then the channel noise covariance matrix is given by E{wchw
T
ch} = σ2

chR(T),

where the autocorrelation is evaluated element-wise on the matrix T . Finally,

since the channel noise and thermal noise processes are assumed independent,

we have that the composite noise covariance is given by Rv(N)
(D) = σ2

thIL×L+

σ2
chR(T), where Rv(N)

(D) = E{(wch + wth)(wch + wth)T}.
In order to gain some insight into the potential effects of different values of

D on the effectiveness of the ADC samples for communication, we examine

the input to output mutual information, per channel use, as a function of

the delays D. As such, we investigate the following:

C(D) , lim
N→∞

1

N
I(bN ; yL), if the limit exists.

In Equation (5.7.1), it is implicit that the observation vector yL depends on

the particular choice of D, and the number of observations depends on the

number of symbols. As in Section 5.3, we assume that the distribution of

input symbols is fixed such that each symbol is an independent Gaussian

random value with mean zero and unit variance. As in Equation (5.3), we

156

Figure 5.4: C(D) for symbol-rate sampling at SNR = 10 and 0% channel
noise.

have that

C(D) = lim
N→∞

1

2N

log2

∣∣∣A(D)A(D)H + Rv(N)
(D)

∣∣∣∣∣∣Rv(N)
(D)

∣∣∣
 ,

which can be approximated using any of the methods discussed in previous

sections.

Based on our model of the time-interleaved analog-to-digital converter,

there are three natural symmetry properties that we expect to observe for

C(D). We will refer to these as permutation symmetry, symbol phase sym-

metry, and branch phase symmetry. Permutation symmetry means that

C(D) = C(PπD), where π is any permutation, and Pπ is the corresponding

permutation matrix. Symbol phase symmetry means that C(D) = C(D+T).

Finally, branch phase symmetry means that C(D) = C(D + Sei) for any i,

where ei is an M × 1 vector with 1 in the ith position and 0 in every other

position.

Figure 5.4 shows a basic situation for a two-channel time-interleaved ADC

in which there is only circuit noise and the signal to noise ratio is 10dB.

157

As of 1999, the overall circuit noise-induced SNR due to input referred-

thermal noise, aperture jitter due to uncertainty in the sampling time, and

comparator ambiguity due to regeneration time constants from the integrated

circuit fabric, was around 20dB for converters in the 10Gs/s regime and would

be around 10dB for converters near 40Gs/s [87]. The horizontal axis of the

upper subplot is ∆0 and the vertical axis of the upper subplot is ∆1. The

setup uses values of T = 1 and S = 2. Hence, this is a symbol-rate sampling

converter. We note that the points of maximum mutual information (per

input symbol) lie on the diagonals where |∆0 − ∆1| = 1, i.e., the optimal

sampling scheme is equispaced sampling, i.e. one sample every T = 1 second.

We can also observe the symmetries mentioned. Permutation symmetry is

evident in the reflection symmetry across the ∆0 = ∆1 diagonal. Symbol

phase symmetry is also evident, i.e., C(D) = C(D + 1). Branch phase

symmetry is evident in the appearance of periodic boundary conditions in the

figures. Furthermore, these symmetries, in combination, result in reflection

symmetry across the ∆0 = ∆1 ± 1 diagonals. The lower left subplot shows

the function q(t) for this channel, as defined above. The lower right subplot

shows the eye diagram for the channel, as derived from q(t), as well as the

optimal sampling points.

Figure 5.5 shows a similar situation to Figure 5.4, where the difference is

that we now have 99% of the noise power coming from noise sources in the

channel. Again, the optimal sampling scheme, with respect to the choice

of ADC branch delays, is equispaced sampling. The same symmetry prop-

erties observed in Figure 5.4 are also visible. What we note here is that

while equispaced samples seem to be the optimal choice within our setup for

symbol-rate sampling—irrespective of the choice of channel, SNR, or how

much of the noise power is due to channel sources versus circuit noise—we

lose very little by imprecisely choosing the ADC branch delays. In fact, by

allowing the branch delays to be off by up to plus or minus 10% of a symbol

period, we only decrease our achievable data rate by approximately 2% or

3% in the worst case.

Figures 5.6 and 5.7 show a setup with oversampling by a factor of 2. The

channel is the same as that used to produce Figures 5.4 and 5.5; we set

SNR = 10dB, and T = 1. However, corresponding with the oversampling

setup, we have that S = 1. Figure 5.6 visualizes C(D) where all of the noise

power comes from circuit sources. We observe the symmetries in these figures

158

Figure 5.5: C(D) for symbol-rate sampling at SNR = 10 and 99% channel
noise.

as well. However, in this case the sample phase symmetry is redundant,

since the branch phase symmetry accounts for it when S = T . Of particular

interest is that the value of D that maximizes C(D) in this case is on the

diagonal where ∆1 = ∆2, which is contrary to the conventional wisdom that

the samples should be equispaced.

Now, Figure 5.7 illustrates a channel noise dominated case, where 90% of

the noise power comes from the channel. Here, we see that the optimal D is

neither on the equispaced sampling diagonal nor on the simultaneous samples

diagonal, as in Figure 5.6, where ∆1 = ∆2. Note that when there is no circuit

noise present, due to the root-raised cosine filter, an oversampling converter

that takes two samples per symbol period contains sufficient information

to completely reconstruct the analog output of the channel (including the

channel noise). In this limit, the mutual information becomes uniform as a

function of the delays, for all pairs (∆1,∆2) such that ∆1 6= ∆2.

159

Figure 5.6: C(D) for oversampling by a factor of 2 at SNR = 10 and 0%
channel noise.

Figure 5.7: C(D) for oversampling by a factor of 2 at SNR = 10 and 90%
channel noise.

160

x1(t)

+

−

wc(t)
+−

y1(t) y2(t) y3(t) y4(t) y5(t)

Rch

Cch

R1 R1 R1 R1L L L L

R2 R2 R2 R2 Rend

C C C C

Figure 5.8: A transmitter and channel connected to a statistics gathering
front-end, consisting of a delay line with five taps that may connect to
samplers.

0 5 10 15 20 25
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Aggregate pulse shapes at passive network outputs

t (seconds)

pu
ls

e
am

pl
itu

de
 (

vo
lts

)

Figure 5.9: Aggregate pulse shapes qj(t) with T = 2s, as observed at
outputs y1(t) (magenta, leftmost) to y5(t) (blue, rightmost).

5.7.2 Delay-Line Statistics Gathering Converter

Circuit Models

The particular communication system we will consider here utilizes a delay-

line SGC front-end architecture, and is shown in Figure 5.8. Here, we have

a transmitter that generates the voltage signal x1(t). This is connected

to a channel consisting of an RC low pass filter, where we have chosen

RchCch = 0.1s for our simulations. The noise signal wc(t) is added to the

output of the channel to produce x2(t), which is the input to the front-end.

The front-end has an input buffer to isolate the dynamics of the passive

delay-line from that of the channel. This buffer feeds a chain of resistors, in-

161

10
−2

10
−1

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

3.5

4
Mutual Information per Gaussian input symbol

SNR

in
fo

rm
at

io
n

ra
te

 (
bi

ts
 p

er
 in

pu
t s

ym
bo

l)

Figure 5.10: Mutual information versus SNR for a system taking outputs
y1(t), y3(t), and y5(t) (upper curve, blue), compared with baudrate
sampling classical ADC (lower curve, green). This uses T = 2s and S = 6s.
The delay-line statistics gatherer outperforms the ADC.

ductors, and capacitors. We use R1 = R2 = 0.01Ω, L = 0.7H, and C = 1.0F,

chosen such that the delay per section is approximately 1s. An additional

terminating resistor is at the end of the chain with Rend = 1.0Ω. The obser-

vations used for the recovery of the transmitted data come from sampling a

subset of the outputs from the delay-line, indicated by yj(t) in Figure 5.8,

j = 1, ..., 5. Each of the chosen outputs is sampled simultaneously once every

S seconds.

We apply the assumptions discussed in Section 5.3 about the input distri-

bution, depending on which metric we are using to evaluate a communication

architecture. We model the noise as having the following autocorrelation

function:

Rwc(t) = σ2
ch exp

(
−|t|
RchCch

)
,

which corresponds with white noise that has been filtered by the channel.

In our simulations, we compare statistics gathering front-ends to tradi-

tional ADC front-ends. ADC front-ends are simply modeled as sampling the

signal y1(t) in Figure 5.8. (Note that the delay-line has no effect on the sig-

nal y1(t).) To make fair comparisons between the different front-ends, we fix

the analog channel noise autocorrelation and the discrete time thermal noise

162

10
−2

10
−1

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

LMMSE

SNR

LM
M

S
E

Figure 5.11: LMMSE versus SNR for a system taking outputs y1(t), y3(t),
and y5(t) (lower curve, blue), compared with baudrate sampling classical
ADC (upper curve, green). This uses T = 2s and S = 6s. The delay-line
statistics gatherer outperforms the ADC.

variance, and we define the SNR as

SNR =
E[x[i]2]

Rwc(0) + σ2
th

=
1

σ2
ch + σ2

th

. (5.29)

This is necessary because, in the discrete time model, the statistics of the

component of noise coming from the channel depends on the model of the

front-end, even for the same model for everything before the front-end. Com-

parisons should be made between different front-ends applied to the same

channel model. For now, we also only draw comparisons where the number

of samples generated per second is the same. For example, we may consider

a situation with a symbol period of T = 4s and a twice baud ADC sampling

once every S = 2s. This could be compared with a delay-line front-end that

takes three simultaneous samples from signals y1(t), y3(t), and y5(t) once

every S = 6s. Thus, the average sampling rate in both cases is one sample

every two seconds.

163

10
−2

10
−1

10
0

10
1

10
2

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

BER, {−1,1} input symbols.

SNR

B
E

R

Figure 5.12: Bit error rate versus SNR for a system taking outputs y1(t),
y3(t), and y5(t) (lower curve, blue), compared with baudrate sampling
classical ADC (upper curve, green). This uses T = 2s and S = 6s. The
delay-line statistics gatherer outperforms the ADC.

Simulation Results

As compared with converters designed for high reconstruction accuracy, con-

verter architectures that allow the introduction of signal distortions can still

preserve relevant statistics about the transmitted signal for the purpose of

data recovery, as measured by the proper system level metrics, and can even

improve the performance in this task, while simultaneously removing the

need for precise fabrication and calibration. It is the goal of this section to

demonstrate this by comparing a system using the described delay line SGC

with a comparable design utilizing a classical ADC.

In this set of simulations, we let the symbol period be T = 2s. Symbols

are modulated onto the channel as specified by Equation (5.1). Aggregate

pulse shapes from each of the five delay line outputs are shown in Figure 5.9.

For the SGC, we take only outputs y1(t), y3(t), and y5(t).

We first look at the performance of the SGC versus that of a classical

ADC as a function of SNR. We have the converter sample these signals when

t = 6n+ δ for integer values of n and δ = 1s. We compare this with an ADC

that takes samples when t = 2n+ δ. We choose σ2
ch = σ2

th and vary the SNR

as defined in Equation (5.29) from 0.01 up to 100. What we observe is that

the SGC outperforms the ADC front-end over the range of SNR values for

164

0 0.5 1 1.5 2 2.5 3 3.5 4
1

1.2

1.4

1.6

1.8

2

2.2

2.4
Mutual Information per Gaussian input symbol

Synchronization time (seconds)

in
fo

rm
at

io
n

ra
te

 (
bi

ts
 p

er
 in

pu
t s

ym
bo

l)

Figure 5.13: Mutual information versus synchronization point for a system
taking outputs y1(t), y3(t), and y5(t) (solid curve, blue), compared with
baudrate sampling classical ADC (dashed curve, red). This uses T = 2s and
S = 6s. SNR = 10.

each of the three metrics. These results are shown in Figures 5.10, 5.11, and

5.12.

We next compare SGC versus ADC performance for a fixed SNR = 10,

with σ2
ch = σ2

th = 0.05, and examine the performance of the front-ends as the

sampling parameter δ is varied in the range (0, T). These results are shown

in Figures 5.13, 5.14, and 5.15. In these figures, we plot the system metric

versus sampling parameter δ over two sample periods to highlight the fact

that these metrics are periodic with respect to the sampling period. What

we observe is that, in this particular setup, there is a wide range of δ for

which the SGC outperforms the optimal value of δ for an ADC. This can

also tell us something about what happens if there is timing uncertainty in

the converters. For example, suppose that there is a jitter on the sampling

times that is random and slowly time varying. In this case, the performance

with respect to a metric of the front-end with jitter will be Eδ[M(A,v|δ)],
where M(A,v|δ) is any of the three discussed metrics, conditional on a

particular value of the timing offset δ. Depending on the distribution on δ,

this example SGC architecture can perform favorably to an ADC in all three

metrics.

Finally, we briefly examine the performance of the SGC architecture ac-

165

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−2

10
−1

10
0

LMMSE

Synchronization time (seconds)

LM
M

S
E

Figure 5.14: Linear minimum mean square estimation error versus
synchronization point for a system taking outputs y1(t), y3(t), and y5(t)
(solid curve, blue), compared with baudrate sampling classical ADC
(dashed curve, red). This uses T = 2s and S = 6s. SNR = 10.

Fraction of Nyquist SFDR (dB) −THD (dB)
0.1 25.7324 23.3989
0.2 22.0213 20.1997
0.5 14.6129 12.6588
0.8 19.1103 16.8946
0.9 18.0881 15.1638

Table 5.1: SFDR and THD for an SGC using outputs y1(t), y3(t), and y5(t)
with T = 2s and S = 6s.

cording to the waveform-centric metrics SFDR and THD. These results are

given in Table 5.1. As compared with most ADCs referenced in [93], the SGC

appears to have terrible performance. However, as indicated by the perfor-

mance on system metrics, this SGC can even outperform an ideal ADC for

communications. This should be expected since the waveform-centric metrics

implicitly assume that the sequence given by the converter consists of equis-

paced (in time) samples. While the delay-line SGC somewhat approximates

this, other SGCs may give samples with no such sequential-in-time interpre-

tation while retaining the desired level of communication performance.

166

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−4

10
−3

10
−2

10
−1

BER, {−1,1} input symbols.

Synchronization time (seconds)

B
E

R

Figure 5.15: Bit error rate versus synchronization point for a system taking
outputs y1(t), y3(t), and y5(t) (solid curve, blue), compared with baudrate
sampling classical ADC (dashed curve, red). This uses T = 2s and S = 6s.
SNR = 10.

5.8 Receiver Design with Statistics Gathering

Converters

We first examine the relevance of the LMMSE and BER system level metrics

for the design of practical systems. This is important because the metrics as-

sume linear detectors of unbounded complexity, whereas applications require

finite, and often low, complexity. We compare the performance indicated

by the system metrics with that achieved by carefully designed low com-

plexity equalizers. Specifically, in this set of analyses the SGC equalizer

consists of three filters, each with 11 taps. Let {y1[3i]}, {y3[3i − 1]} and

{y5[3i − 2]} for integers i be the sequences of outputs from the respective

delay line taps 1, 3, and 5. Then the full interleaved observation sequence

is {..., y[0], y[1], ...} = {..., y1[0], y5[1], y3[2], y1[3], y5[4], ...}. To estimate sym-

bol x[i], we use filter hmod(i,3) to get the estimate x̂[i] = h>mod(i,3)y[i], where

y[i] = (y[i − 5], ..., y[i + 5])>. In this work, we use a simple LMS update

with a step size parameter µ to independently adapt each of the estimation

filters. The need for the three separate estimation filters arises because the

characteristics of the observation vector y[i] are similar to those of y[i+ 3j]

for integer values j, but potentially quite different from y[i + 3j + 1] and

167

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.05

0.1

0.15

0.2

0.25

0.3

Synchronization time (seconds)

M
S

E

LMMSE Metric vs. Measured MSE

SGC, LMMSE metric
ADC, LMMSE metric
SGC, measured MSE
ADC, measured MSE

Figure 5.16: LMMSE Metric and measured MSE vs. sync time.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
10

−4

10
−3

10
−2

10
−1

Synchronization time (seconds)

B
E

R

BER Metric vs. Measured BER

SGC, BER metric
ADC, BER metric
SGC, measured BER
ADC, measured BER

Figure 5.17: BER Metric and measured BER vs. sync time.

y[i+ 3j+ 2]. This can be seen in the channel matrix A. For a baud-sampled

system using an ADC, A will have a Toeplitz structure, but in a system us-

ing our SGC (with the outputs arranged in a vector as {y[i]} is here), it will

instead have a blockwise Toeplitz structure. The width of the blocks com-

posing A determines the number of separate estimation filters to maintain

and adapt.

Figures 5.16 and 5.17 show how our system level metrics compare with the

actual performance of a communication system utilizing either an SGC or

ADC with postprocessing of the observations by appropriate low complexity

equalizers. On the horizontal axis, we have the synchronization time of the

samplers (both ADC and SGC), with the center of the eye being at odd

integer times 2i + 1. The thick lines in both figures are for the SGC, thin

for the ADC. The dashed lines are for the value of the system level metric

achieved for the particular synchronization time, whereas the solid lines are

168

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.065

0.07

0.075

0.08

0.085

0.09

0.095

Deviation from Nominal Parameters

M
S

E

Mean Square Error, {−1,1} Input Symbols.

SGC MSE Realization
Average Measured ADC MSE

Figure 5.18: MSE of realizations of SGCs under process variation.
Standard Deviation = 0.05.

for the measured MSE and BER of a communication system utilizing the

respective data converter with the appropriate equalization method. For

measuring the MSE and BER of the SGC systems, we trained the length

11 specialized LMS equalizer with parameter µ = 0.01 on 30000 symbols

and measured the MSE and BER on 2e7 subsequent symbols. For ADC

systems, we do the same, but with a standard LMS equalizer. The figures

show that the measured performance achieved by systems with constrained

complexity is quite similar to the theoretical performance indicated by the

system level metrics. In particular, the system level metrics correctly indicate

that a system utilizing an SGC has the potential to outperform one with an

ADC. Furthermore, the system level metrics and the corresponding measured

performance have the same qualitative characteristics.

5.9 Robustness of System Metric Performance under

Parameter Variation

In this set of simulations, we show that the communications performance of

the SGC front-end, when paired with the described low complexity adap-

tive equalizer, is still able to beat the performance of the ideal ADC under

significant levels of deviation from the nominal circuit parameters. In par-

ticular, recall that we have four each of capacitors and inductors in the SGC

with nominal values L = 0.7H and C = 1.0F. We model process variation

in the circuit by letting the true circuit parameter be Gaussian distributed

169

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
2

3

4

5

6

7

8

9

10
x 10

−4

Deviation from Nominal Parameters

B
E

R

Bit Error Rate, {−1,1} Input Symbols.

SGC BER Realization
Average Measured ADC BER

Figure 5.19: BER of realizations of SGCs under process variation.
Standard Deviation = 0.05.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Deviation from Nominal Parameters

M
S

E

Mean Square Error, {−1,1} Input Symbols.

SGC MSE Realization
Average Measured ADC MSE

Figure 5.20: MSE of realizations of SGCs under process variation.
Standard Deviation = 0.10.

with the nominal value as mean, and standard deviation of 0.05 or 0.10 (H

or F). Figures 5.18 and 5.19 show the results of 2800 random instances of

the SGC system for standard deviation of 0.05, where we train the length 11

specialized LMS equalizer with parameter µ = 0.01 on 30000 symbols and

measure the MSE and BER on 2e7 subsequent symbols. Each point in the

plots represents the measured MSE / BER versus the norm of the deviation

from the nominal parameters, i.e. |P − P̄ |2, where P is the vector of 8 circuit

parameters and P̄ is the vector of 8 nominal values. The dashed lines indi-

cate the performance level of the system when using a classical ADC. It is

clear that the performance is robust to the parameter variation, and remains

better than the ADC in all cases. Similar results hold when the standard

deviation of the parameters is doubled to 0.1, as shown in Figures 5.20 and

5.21, with a small number of instances (5 out of 1000 points for both MSE

170

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
2

3

4

5

6

7

8

9

10
x 10

−4

Deviation from Nominal Parameters

B
E

R

Bit Error Rate, {−1,1} Input Symbols.

SGC BER Realization
Average Measured ADC BER

Figure 5.21: BER of realizations of SGCs under process variation.
Standard Deviation = 0.10.

and BER) with high deviation from the nominal parameters having worse

performance than the ADC.

5.10 Conclusion

In this chapter, we have taken a holistic view on the design of communications

systems, and we have brought into question the usual methods of designing

and evaluating the performance of data converters. In this work, we propose

that the typical performance metrics used to design ADCs, such as THD and

SFDR, should be thrown out. In their place, we propose considering metrics

that are directly aligned with the system level goal of reliable information

transfer. We also propose shifting to the idea of creating Statistics Gathering

Converters (SGCs) instead of Analog to Digital Converters (ADCs), where

we may consider certain design choices that would not be considered viable

possibilities from the typical ADC perspective. We have given a general

mathematical framework for these SGCs, as well as a number of metrics to

be used for validating their designs: Mutual Information Rate (MI), Linear

Minimum Mean Squared Error (LMMSE), and Bit Error Rate (BER) for

unquantized systems, and MI and BER for quantized systems. We have

furthermore given computational methods for evaluating these metrics on

proposed designs. Finally, we have presented evidence from simulations that

shows the potential for SGCs to outperform the classical ADCs in a number

of scenarios, and discussed the design choices for receiver algorithms that are

171

necessary in order to fully realize these potential gains.

There is certainly more work that could be done. For instance, there are

many conceivable SGC architectures that could be envisioned that are very

different from classical ADCs. It would be interesting to examine a number

of architectures, optimize them with respect to the system metrics, and com-

pare them with the communication performance or energy consumption of a

standard ADC receiver design. Work in this direction has already been done

by optimizing the quantization levels of an ADC with respect to the BER

metric [74, 90], but there are many other parameters that could be tuned in

these converter designs.

172

REFERENCES

[1] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Transactions on Information The-
ory, vol. 47, no. 2, pp. 498–519, February 2001.

[2] G. Elidan, I. McGraw, and D. Koller, “Residual belief propagation: In-
formed scheduling for asynchronous message passing,” in Proceedings of
the 22nd Conference on Uncertainty in Artificial Intelligence, 2006.

[3] N. Noorshams and M. Wainwright, “Stochastic belief propagation: A
low-complexity alternative to the sum-product algorithm,” IEEE Trans-
actions on Information Theory, vol. 59, no. 4, pp. 1981–2000, April 2013.

[4] M. Çetin, L. Chen, J. W. Fisher III, A. T. Ihler, R. L. Moses, M. J.
Wainwright, and A. S. Willsky, “Distributed fusion in sensor networks,”
IEEE Signal Processing Magazine, vol. 23, no. 4, pp. 42–55, July 2006.

[5] L. Varshney, “Performance of LDPC codes under faulty iterative de-
coding,” IEEE Transactions on Information Theory, vol. 57, no. 7, pp.
4427–4444, July 2011.

[6] S. M. S. Tabatabaei Yazdi, H. Cho, and L. Dolecek, “Gallager B decoder
on noisy hardware,” IEEE Transactions on Communications, vol. 61,
no. 5, pp. 1660–1673, May 2013.

[7] J. Choi, E. P. Kim, R. A. Rutenbar, and N. R. Shanbhag, “Error re-
silient MRF message passing architecture for stereo matching,” in IEEE
Workshop on Signal Processing Systems, 2013.

[8] A. T. Ihler, J. W. Fisher III, and A. S. Willsky, “Loopy belief propa-
gation: Convergence and effects of message errors,” Journal of Machine
Learning Research, vol. 6, pp. 905–936, May 2005.

[9] A. Dimakis, S. Kar, J. Moura, M. Rabbat, and A. Scaglione, “Gossip
algorithms for distributed signal processing,” Proceedings of the IEEE,
vol. 98, no. 11, pp. 1847–1864, November 2010.

[10] A. Kashyap, T. Başar, and R. Srikant, “Quantized consensus,” Auto-
matica, vol. 43, no. 7, p. 11921203, 2007.

173

[11] J. Lavaei and R. M. Murray, “On quantized consensus by means of gossip
algorithm - part I: Convergence proof,” in Proceedings of the American
Control Conference, June 2009, p. 394401.

[12] J. Lavaei and R. M. Murray, “On quantized consensus by means of gossip
algorithm - part II: Convergence time,” in Proceedings of the American
Control Conference, June 2009, p. 29582965.

[13] F. Benezit, P. Thiran, and M. Vetterli, “Interval consensus: From quan-
tized gossip to voting,” in Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP), 2009,
pp. 3661–3664.

[14] R. Carli, F. Fagnani, P. Frasca, and S. Zampieri, “Gossip consensus
algorithms via quantized communication,” Automatica, vol. 46, pp. 70–
80, 2010.

[15] R. Carli, F. Bullo, and S. Zampieri, “Quantized average consensus via
dynamic coding/decoding schemes,” International Journal of Robust
and Nonlinear Control, vol. 20, pp. 156–175, 2010.

[16] T. C. Aysal, M. J. Coates, and M. G. Rabbat, “Distributed average
consensus with dithered quantization,” IEEE Transactions on Signal
Processing, vol. 56, no. 10, pp. 4905–4918, October 2008.

[17] T. C. Aysal, M. Coates, and M. Rabbat, “Distributed average consen-
sus using probabilistic quantization,” in Proceedings of the 14th IEEE
Workshop on Statistical Signal Processing, August 2007, pp. 640–644.

[18] R. Carli, G. Como, P. Frasca, and F. Garin, “Distributed averaging on
digital noisy networks,” in Proceedings of the Information Theory and
Applications Workshop (ITA), February 2011, pp. 1–9.

[19] S. Kar and J. M. F. Moura, “Distributed consensus algorithms in sensor
networks: Quantized data and random link failures,” IEEE Transactions
on Signal Processing, vol. 58, no. 3, pp. 1383–1400, March 2010.

[20] V. Saligrama and D. A. Castanon, “Reliable distributed estimation with
intermittent communications,” in Proceedings of the 45th IEEE Confer-
ence on Decision and Control, December 2006, pp. 6763–6768.

[21] S. Patterson and B. Bamieh, “Distributed consensus with link failures as
a structured stochastic uncertainty problem,” in Proceedings of the 46th
Annual Allerton Conference on Communication, Control, and Compu-
tation, 2008, pp. 623–627.

174

[22] S. Kar and J. M. F. Moura, “Distributed consensus algorithms in sen-
sor networks with imperfect communication: Link failures and channel
noise,” IEEE Transactions on Signal Processing, vol. 57, no. 1, pp. 355–
369, January 2009.

[23] R. Carli, G. Como, P. Frasca, and F. Garin, “Distributed averaging on
digital erasure networks,” Automatica, vol. 47, pp. 115–121, 2011.

[24] C. C. Moallemi and B. V. Roy, “Consensus propagation,” IEEE Trans-
actions on Information Theory, vol. 52, no. 11, pp. 4753–4766, November
2006.

[25] H. Kfir and I. Kanter, “Parallel versus sequential updating for belief
propagation decoding,” Physica A, vol. 330, pp. 259–270, November
2003.

[26] J. Goldberger and H. Kfir, “Serial schedules for belief-propagation:
Analysis of convergence time,” IEEE Transactions on Information The-
ory, vol. 54, no. 3, pp. 1316–1319, March 2008.

[27] C. Sutton and A. McCallum, “Improved dynamic schedules for belief
propagation,” in Proceedings of the 23nd Conference on Uncertainty in
Artificial Intelligence, 2007.

[28] A. D. Sarwate and T. Javidi, “Opinion dynamics and distributed learn-
ing of distributions,” in Proceedings of the 49th Annual Allerton Confer-
ence on Communication, Control, and Computation, September 2011.

[29] J. Pearl, Probabilistic Reasoning in Intelligent Systems. San Francisco,
CA: Morgan Kaufman, 1988.

[30] D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps using
structured light,” in IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2003), vol. 1, Madison, WI,
June 2003, pp. 195–202.

[31] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” International Journal of
Computer Vision, vol. 47, no. 1/2/3, pp. 7–42, April-June 2002.

[32] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Generalized belief prop-
agation,” in Advances in Neural Information Processing Systems, T. K.
Leen, T. G. Dietterich, and V. Tresp, Eds., vol. 13. Cambridge, MA:
MIT Press, 2001.

[33] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Constructing free-energy
approximations and generalized belief propagation algorithms,” IEEE
Transactions on Information Theory, vol. 51, no. 7, pp. 2282–2312, July
2005.

175

[34] A. C. Singer and M. Feder, “Universal linear prediction by model order
weighting,” IEEE Transactions on Signal Processing, vol. 47, no. 10, pp.
2685–2699, October 1999.

[35] S. S. Kozat and A. C. Singer, “Switching strategies for sequential de-
cision problems with multiplicative loss with application to portfolios,”
IEEE Transactions on Signal Processing, vol. 57, no. 6, pp. 2192–2208,
June 2009.

[36] S. S. Kozat, A. C. Singer, and G. C. Zeitler, “Universal piecewise linear
prediction via context trees,” IEEE Transactions on Signal Processing,
vol. 55, no. 7, pp. 3730–3745, July 2007.

[37] S. S. Kozat, A. C. Singer, and A. J. Bean, “Universal portfolios via
context trees,” in IEEE International Conference on Acoustics, Speech
and Signal Processing, 2008, pp. 2093 – 2096.

[38] S. S. Kozat and A. C. Singer, “Universal switching portfolios under
transaction costs,” in IEEE International Conference on Acoustics,
Speech and Signal Processing, 2008, pp. 5404 – 5407.

[39] Y. Singer, “Switching portfolios,” in Proceedings of the 14th Conference
on Uncertainty in Artificial Intelligence, 1998, pp. 1498–1519.

[40] A. Blum and A. Kalai, “Universal portfolios with and without transac-
tion costs,” Machine Learning, vol. 35, no. 3, pp. 193–205, June 1999.

[41] A. Agarwal, E. Hazan, S. Kale, and R. E. Schapire, “Algorithms for
portfolio management based on the Newton method,” in Proceedings of
the 23rd International Conference on Machine Learning, 2006, pp. 9–16.

[42] H. Markowitz, “Portfolio selection,” The Journal of Finance, vol. 7,
no. 1, pp. 77–91, March 1952.

[43] T. M. Cover, “Universal portfolios,” Mathematical Finance, vol. 1, no. 1,
pp. 1–29, January 1991.

[44] D. P. Helmbold, R. E. Schapire, Y. Singer, and M. K. Warmuth, “Online
portfolio selection using multiplicative updates,” Mathematical Finance,
vol. 8, no. 4, pp. 325–347, October 1998.

[45] M. Feder, N. Merhav, and M. Gutman, “Universal prediction of indi-
vidual sequences,” IEEE Transactions on Information Theory, vol. 38,
no. 4, pp. 1258–1270, July 1992.

[46] N. Littlestone and M. K. Warmuth, “The weighted majority algorithm,”
Information and Computation, vol. 108, no. 2, pp. 212–261, February
1994.

176

[47] T. M. Cover and E. Ordentlich, “Universal portfolios with side infor-
mation,” IEEE Transactions on Information Theory, vol. 42, no. 2, pp.
348–363, March 1996.

[48] R. Bell and T. M. Cover, “Game theoretic optimal portfolios,” Manage-
ment Science, vol. 34, no. 6, pp. 724–733, June 1988.

[49] D. P. Foster and R. Vohra, “Regret in the on-line decision problem,”
Games and Economic Behavior, vol. 29, no. 1-2, pp. 7–35, October 1999.

[50] A. J. Bean and A. C. Singer, “Factor graphs for universal portfolios,”
in 2009 Conference Record of the Forty-Third Asilomar Conference on
Signals, Systems and Computers, 2009, pp. 1375 – 1379.

[51] A. J. Bean and A. C. Singer, “Universal switching and side information
portfolios under transaction costs using factor graphs,” in IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing, 2010,
pp. 1986 – 1989.

[52] A. J. Bean and A. C. Singer, “Factor graph switching portfolios un-
der transaction costs,” in IEEE International Conference on Acoustics,
Speech and Signal Processing, 2011, pp. 5748 – 5751.

[53] A. J. Bean and A. C. Singer, “Universal switching and side information
portfolios under transaction costs using factor graphs,” IEEE Journal of
Selected Topics in Signal Processing, vol. 6, no. 4, pp. 351–365, August
2012.

[54] T. M. Cover and E. Ordentlich, “Universal portfolios with short sales
and margin,” in Proceedings of the 1998 IEEE International Symposium
on Information Theory, August 1998, p. 174.

[55] S. S. Kozat and A. C. Singer, “Universal constant rebalanced portfolios
with switching,” in IEEE International Conference on Acoustics, Speech
and Signal Processing, 2007, pp. 1129 – 1132.

[56] G. Stoltz and G. Lugosi, “Internal regret in online portfolio selection,”
Machine Learning, vol. 59, no. 1-2, pp. 125–159, May 2005.

[57] G. Iyengar, “Universal investment in markets with transaction costs,”
Mathematcal Finance, vol. 15, no. 2, pp. 359–371, April 2005.

[58] R. E. Krichevsky and V. K. Trofimov, “The performance of universal
encoding,” IEEE Transactions on Information Theory, vol. 27, no. 2,
pp. 199–207, March 1981.

[59] A. Kalai and S. Vempala, “Efficient algorithms for universal portfolios,”
Journal of Machine Learning Research, vol. 3, pp. 423–440, November
2002.

177

[60] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip,”
IEEE Transactions on Information Theory, vol. 52, no. 6, pp. 2508–
2530, June 2006.

[61] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
in Proceedings of the 42nd IEEE Conference on Decision and Control,
vol. 5, December 2003, pp. 4997–5002.

[62] M. H. Degroot, “Reaching a consensus,” Journal of the American Sta-
tistical Association, vol. 69, no. 345, pp. 118–121, March 1974.

[63] J. Tsitsiklis, “Problems in decentralized decision making and com-
putation,” Ph.D. dissertation, Massachusetts Institute of Technology,
November 1984.

[64] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Transactions on Automatic Control, vol. AC-31, no. 9, pp. 803–812,
September 1986.

[65] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adap-
tive networks: Formulation and performance analysis,” IEEE Transac-
tions on Signal Processing, vol. 56, no. 7, pp. 3122–3166, July 2008.

[66] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, “Diffusion recursive
least-squares for distributed estimation over adaptive networks,” IEEE
Transactions on Signal Processing, vol. 56, no. 5, pp. 1865–1877, May
2008.

[67] S. Ram, V. V. Veeravalli, and A. Nedić, “Distributed and recursive pa-
rameter estimation in parametrized linear state-space models,” IEEE
Transactions on Automatic Control, vol. 55, no. 2, pp. 488–492, Febru-
ary 2010.

[68] S. Kirti and A. Scaglione, “Scalable distributed Kalman filtering through
consensus,” in IEEE International Conference on Acoustics, Speech, and
Signal Processing, April 2008, pp. 2725–2728.

[69] A. H. Sayed, Fundamentals of Adaptive Filtering. Hoboken, NJ: Wiley-
Interscience, 2003.

[70] H. Robbins and S. Monro, “A stochastic approximation method,” An-
nals of Mathematical Statistics, vol. 22, no. 3, pp. 400–407, 1951.

[71] A. Bean and A. Singer, “Cooperative estimation in heterogeneous pop-
ulations,” in 2011 Conference Record of the Forty Fifth Asilomar Con-
ference on Signals, Systems and Computers (ASILOMAR), November
2011, pp. 696–699.

178

[72] A. Bean, P. Kairouz, and A. Singer, “Convergence rates for coopera-
tion in heterogeneous populations,” in 2012 Conference Record of the
Forty Fifth Asilomar Conference on Signals, Systems and Computers
(ASILOMAR), November 2012, pp. 531–534.

[73] L. Xiao, S. Boyd, and S. Lall, “Distributed average consensus with time-
varying Metropolis weights,” June 2006, unpublished.

[74] M. Lu, N. Shanbhag, and A. Singer, “BER-optimal analog-to-digital
converters for communication links,” in Proceedings of the IEEE Inter-
national Symposium on Circuits and Systems, 2010, pp. 1029–1032.

[75] A. Nazemi et al., “A 10.3GS/s 6bit (5.1 ENOB at nyquist) time-
interleaved/pipelined ADC using open-loop amplifiers and digital cal-
ibration in 90nm CMOS,” in 2008 Symposium on VLSI Circuits, Tech-
nical Digest of Papers, 2008, pp. 18–19.

[76] H. M. Bae, J. Ashbrook, J. Park, N. Shanbhag, A. Singer, and S. Chopra,
“An MLSE receiver for electronic-dispersion compensation of OC-192
links,” Journal of Solid-State Circuits, vol. 41, no. 11, pp. 2541–2554,
November 2006.

[77] P. Nikaeen and B. Murmann, “Digital compensation of dynamic ac-
quisition errors at the front-end of high-performance A/D converters,”
IEEE Journal of Selected Topics in Signal Processing, vol. 3, no. 3, pp.
499–508, 2009.

[78] C. Grace, P. J. Hurst, and S. H. Lewis, “A 12b 80MS/s pipelined ADC
with bootstrapped digital calibration,” in IEEE International Solid-
State Circuits Conference (ISSCC) Digest of Technical Papers, February
2004, pp. 460–461.

[79] J. Singh, O. Dabeer, and U. Madhow, “Communication limits with low
precision analog-to-digital conversion at the receiver,” in Proceedings of
the IEEE International Conference on Communications (ICC), 2007.

[80] J. Singh, O. Dabeer, and U. Madhow, “Capacity of the discrete-time
AWGN channel under output quantization,” in Proceedings of the IEEE
International Symposium on Information Theory (ISIT), 2008.

[81] O. Dabeer, J. Singh, and U. Madhow, “On the limits of communication
performance with one-bit analog-to-digital conversion,” in Proceedings
of the IEEE Workshop on Signal Processing Advances in Wireless Com-
munications (SPAWC), 2006.

[82] G. Zeitler, A. Singer, and G. Kramer, “Low-precision A/D conversion
for maximum information rate in channels with memory,” IEEE Trans-
actions on Communications, vol. 60, no. 9, pp. 2511–2521, September
2012.

179

[83] A. Singer, A. J. Bean, and J. W. Choi, “Mutual information and time-
interleaved analog-to-digital conversion,” in Information Theory and
Applications Workshop, 2010, pp. 1–5.

[84] A. J. Bean and A. Singer, “A deflection criterion for time-interleaved
analog-to-digital converters,” in Proceedings of the IEEE International
Symposium on Circuits and Systems, May 2011, pp. 265–268.

[85] A. J. Bean and A. C. Singer, “The SGC: A simple architecture for gath-
ering statistics in communication links,” in IEEE Workshop on Signal
Processing Systems, 2013.

[86] A. J. Bean and A. Singer, “Statistics gathering converters: System level
metrics, simulated performance, and process variation robustness,” in
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, May 2014, pp. 8365–8369.

[87] R. Walden, “Analog-to-digital converter survey and analysis,” IEEE
Journal on Selected Areas in Communications, vol. 17, no. 4, pp. 539–
550, April 1999.

[88] H. Widom, “Asymptotic behavior of block Toeplitz matrices and deter-
minants,” Advances in Mathematics, vol. 13, no. 3, pp. 284–322, July
1974.

[89] H. Widom, “Asymptotic behavior of block Toeplitz matrices and deter-
minants. II,” Advances in Mathematics, vol. 21, no. 1, pp. 1–29, July
1976.

[90] R. Narasimha, M. Lu, N. Shanbhag, and A. Singer, “BER-optimal
analog-to-digital converters for communication links,” IEEE Transac-
tions on Signal Processing, vol. 60, no. 7, pp. 3683–3691, July 2012.

[91] D. M. Arnold, H.-A. Loeliger, P. O. Vontobel, A. Kavčić, and W. Zeng,
“Simulation-based computation of information rates for channels with
memory,” IEEE Transactions on Information Theory, vol. 52, no. 8, pp.
3498–3508, August 2006.

[92] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Transactions on Infor-
mation Theory, vol. 20, no. 2, pp. 284–287, March 1974.

[93] B. Murmann, “ADC performance survey 1997-2013,” [Online]. Avail-
able: http://www.stanford.edu/ murmann/adcsurvey.html.

180

