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Abstract

Magnetic resonance imaging (MRI) is a uniquely flexible tool for imaging the heart, as it

has the potential to perform a significant number of structural and functional cardiovascular

assessments. However, the low imaging speed of MRI has limited its clinical application.

The assessments that are currently performed in a clinical setting are typically done using

gated methodologies, which are complicated by respiration and fail for patients with cardiac

arrhythmias. This dissertation describes a subspace approach to accelerate cardiovascular

MRI, freeing cardiac MRI from gating techniques and enabling whole-heart 3D dynamic

imaging for multiple simultaneous assessments.

This imaging approach comprises developments in image modeling, data acquisition, and

image reconstruction. A spatiotemporal image model is designed to represent the particular

subspace structure of cardiovascular images. The data acquisition development is composed

of: a) a sampling strategy which allows integration of the subspace model, parallel imaging,

and sparse modeling; b) a novel pulse sequence implementing “self-navigation” for collect-

ing both auxiliary data (for temporal subspace estimation) and imaging data after every

excitation; and c) k-space trajectory evaluation and design, replacing Cartesian trajectories

which are highly sensitive to readout direction. The image reconstruction work centers on

the integration of the subspace model, sensitivity encoding (for parallel imaging), and sparse

modeling into one optimization problem; evaluations of strategies for regularizing the im-

age model, adaptively enforcing model order, and for estimating sensitivity maps are also

included.
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The approach is evaluated through simulations on numerical cardiac phantoms and in

vivo experiments in human, rat, and mouse subjects. Multiple cardiovascular applications

are demonstrated: cine imaging, first-pass myocardial perfusion imaging, late gadolinium en-

hancement imaging, extracellular volume fraction mapping, and labeled immune cell imaging.

Experimental results include human cine images up to 22 fps and 1.0 mm × 1.0 mm spatial

resolution, mouse cine images up to 97 fps and 0.12 mm × 0.12 mm spatial resolution, rat im-

ages at 74 fps and 0.31 mm × 0.31 mm × 1.0 mm spatial resolution (capturing wall motion,

first-pass myocardial perfusion, and late gadolinium enhancement in a single scan), multi-

contrast rat images (for extracellular volume fraction mapping) up to 50 fps and 0.42 mm

× 0.42 mm × 1.0 mm spatial resolution, and rat images at 98 fps and 0.16 mm × 0.16 mm

spatial resolution (depicting labeled immune cells).

The end result is an imaging approach capable of ungated, whole-heart 3D cardiovascular

MRI in high spatiotemporal resolution. Images can be obtained even for patients with

irregular heartbeats, and both cardiac motion and aperiodic contrast dynamics can be imaged

in a single scan. These capabilities should enhance the utility of cardiovascular MRI, allowing

comprehensive evaluation of the heart.
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Chapter 1

Introduction

1.1 Problem statement

Fourier-encoded magnetic resonance (MR) data from a spatiotemporal cardiovascular image

ρ(r, t) can be expressed as

dq(k, t) =

∫
r

Sq(r)ρ(r, t) exp(−i2πk · r) dr, (1.1)

where dq(k, t) is the (k, t)-space signal collected from the qth receiver coil with sensitivity

Sq(r). The nature of MR data acquisition prevents simultaneous sampling at multiple k-

space locations: time is required to traverse k-space, precluding dense sampling of (k, t)-space

at the (k, t) Nyquist rate. The associated challenge in acquiring high spatial resolution

images quickly enough to resolve the motion of the heart is compounded by the curse of

dimensionality, and leads to a difficult balance between:

• Temporal resolution/frame rate

• Spatial resolution

Some of the text in this chapter has been previously published in [1] and is copyright of the IEEE. Personal
use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or
to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
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• Spatial dimensionality/spatial coverage

• Number of image contrasts

• Signal-to-noise ratio

The tradeoffs involved make time-resolved cardiovascular magnetic resonance imaging (MRI)

of the heart in three spatial dimensions and/or with multiple contrasts particularly challeng-

ing.

The work in this dissertation is focused on developing a subspace approach to accelerate

cardiovascular MRI. This approach involves a spatiotemporal image model exploiting the

particular subspace structure of cardiovascular images; data acquisition strategies appro-

priate for integration of this subspace model, parallel imaging, and sparse modeling; and

specialized image reconstruction integrating these three components. Results are presented

for human, rat, and mouse subjects, including 3D imaging with multiple contrasts.

1.2 Motivation

Cardiovascular diseases are the leading cause of death worldwide, accounting for an esti-

mated 30% of all deaths. Efforts to address cardiovascular diseases with technology can

be traced back nearly 200 years to the invention of the stethoscope in 1816. The many

successful technological advances since then have significantly transformed the detection, di-

agnosis, and treatment of cardiovascular diseases over the last two centuries. Cardiovascular

imaging technology has enabled measurement and visualization of the structure and function

of the beating heart and has become an indispensable part of cardiac health care. Several

noninvasive cardiac imaging modalities are currently available to cardiologists, including

echocardiography [2], X-ray computed tomography [3], positron emission tomography [4],

single photon emission computed tomography [5], and magnetic resonance imaging [6]. Be-
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cause of the particular properties of the nuclear magnetic resonance (NMR) phenomenon,

MRI has a unique potential to allow multiple comprehensive cardiac assessments in a single

integrated examination [7], such as measurement of blood flow and cardiac wall motion,

assessment of tissue properties, etc. [8].

The applications of MRI in cardiovascular diagnosis are significant and numerous. MRI is

the preferred modality for cardiac assessments including, but not limited to, detection and

assessment of acute and chronic myocardial infarction, myocardial viability, cardiac cham-

ber anatomy and function, evaluation of congenital heart disease, pulmonary regurgitation,

pulmonary artery anatomy and flow, most anomalies of the arteries, and quantification of

left ventricular and right ventricular function, mass, and volumes [9]. However, the conven-

tional electrocardiogram (ECG)–gated techniques to perform these assessments require that

the heart is in normal sinus rhythm and that patients hold their breath during imaging.

As a result, these techniques are not effective for the large number of cardiac patients who

are unable to perform breath-holding or who have cardiac arrhythmias; nor can they image

the aperiodic contrast agent dynamics central to applications such as first-pass myocardial

perfusion imaging.

Accelerating cardiovascular MRI opens many doors: higher image dimensionality, more

spatial coverage, higher spatial resolution, freedom from ECG and respiratory control, the

ability to image irregular heartbeats, more time to collect multiple contrasts for quantitative

imaging, and the ability to image both cardiac motion and aperiodic contrast dynamics in a

single scan. These developments would bring MRI one step closer to achieving its potential

as the premier all-around imaging modality for cardiologists.

1.3 Overview of contributions

The main contributions in this dissertation are:

3



• An image model which represents the particular subspace structure of cardiovascular

images

• A data acquisition strategy consisting of pulse sequence design, a novel k-space trajec-

tory, and a sampling scheme appropriate for integrating the subspace model, parallel

imaging, and sparse modeling

• Image reconstruction integrating the subspace model, sensitivity encoding, and sparse

modeling

• Demonstration and evaluation of the approach on multiple cardiac applications in both

human and small rodent subjects

The end result is an imaging method capable of performing whole-heart 3D cardiovascular

MRI with enough speed to simultaneously image cardiac motion, respiratory motion, contrast

agent dynamics, etc., all without the use of an ECG signal for triggering or gating. The

resulting images allow comprehensive evaluation of the heart through the visualization and

measurement of numerous cardiac structures and functions, even in subjects with irregular

heartbeats (i.e., in subjects with cardiac arrhythmias) or with heart rates above 400 bpm

(e.g., in small rodents).

1.4 Organization of the dissertation

The remainder of this dissertation is organized as follows.

Chapter 2 contains background on MRI, comprising a classical treatment of MR physics,

signal detection, spatial encoding, image reconstruction, and image contrast. The chapter

also includes brief descriptions of three signal processing approaches to accelerated MRI

(low-rank imaging, parallel imaging, and sparse modeling/compressed sensing) and brief

overviews of some cardiovascular MRI applications.

4



Chapter 3 describes a spatiotemporal image model designed to represent the particular

subspace structure of cardiovascular images. This chapter defines subspace error metrics and

includes analyses of a numerical cardiac phantom in the context of the proposed model.

Chapter 4 describes data acquisition approaches specifically designed to allow integration

of: a) the subspace model described in the previous chapter, b) parallel imaging, and c)

sparse modeling. Particular attention is paid to strategies for collecting auxiliary data used

to define the temporal subspace containing the spatiotemporal image. These strategies cover

pulse sequence design, k-space trajectory design, and sampling design.

Chapter 5 describes image reconstruction. The chapter presents an optimization problem

which integrates the subspace model, sensitivity encoding (parallel imaging), and sparse

modeling, and it describes an algorithm for solving the optimization problem. Evaluations

of strategies for regularizing the image model and for estimating sensitivity maps are also

included.

Chapter 6 presents 2D and 3D experimental results using the approach described in the

previous chapters. Results from human, rat, and mouse subjects are included for multiple

cardiac applications: cine imaging, first-pass myocardial perfusion imaging, late gadolin-

ium enhancement imaging, extracellular volume fraction mapping, and labeled immune cell

imaging.

Finally, Chapter 7 offers discussion and conclusions.

5



Chapter 2

Background

2.1 Magnetic resonance imaging

MRI produces images of an object by measuring and spatially localizing NMR signals. The

NMR phenomenon is a quantum mechanical effect experienced by nuclei with nonzero spin

(an intrinsic property of nuclei possessing an odd number of either protons or neutrons) in the

presence of a magnetic field. Although spin is a quantum property, classical vector models

can be used to describe the NMR phenomenon on the macroscopic scale of an MRI voxel

(volume element, the three-dimensional equivalent of a pixel) containing a large ensemble of

nuclei [11].

2.1.1 Nuclear magnetic resonance

The classical vector model conceptualizes a nucleus with nonzero spin as rotating about a

central axis with angular momentum equal to the amount of spin. The rotation of a positively

charged nucleus generates a magnetic field described by the magnetic dipole moment µ (i.e.,

the nuclei function similarly to microscopic bar magnets). The bulk magnetization vector

Some of the text in this chapter has been previously published in [1, 10] and is copyright of the IEEE.
Personal use of this material is permitted. However, permission to reprint/republish this material for adver-
tising or promotional purposes or for creating new collective works for resale or redistribution to servers or
lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
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M =
∑

i µi describes the total field generated by an ensemble of nuclei, the ith nucleus of

which has magnetic moment µi. MRI experiments measure the bulk magnetization M of a

nuclear spin system rather than the individual magnetic moments {µi}i.

In order for M to be nonzero, the {µi}i must sum coherently. At thermal equilibrium and

in absence of an external magnetic field, the {µi}i are randomly oriented, leading to a bulk

magnetization M = 0. However, in the presence of a strong, uniform, and static external

magnetic field (conventionally notated as B0 = B0ẑ, where ẑ is the unit vector pointing in

the z direction), the longitudinal (z) component of µi (denoted as µz,i) takes on a fixed value

according to the energy state of the ith nucleus.

The nuclei have only 2I + 1 possible energy states, where I is the spin quantum number.

Because nuclear spin systems with I = 1
2
(e.g., 1H, 13C, 19F, 23Na, 31P) are the focus of

the majority of MRI experiments, the remainder of our discussion in this section will be

restricted to spin-1
2
systems, which have only two possible energy states: E↑ = −1

2
γℏB0 (the

spin-up state) and E↓ = 1
2
γℏB0 (the spin-down state), where γ is the nucleus-dependent

gyromagnetic ratio (e.g., γ = 2.675×108 rad/s/T for 1H nuclei, corresponding to 42 MHz/T)

and ℏ is Planck’s constant (6.6× 10−34 J·s) over 2π. At thermal equilibrium, the transverse

(x-y) components of each µ (denoted in complex phasor notation as µxy = µx + iµy) are

still incoherent: only the {µz,i}i sum coherently, leading to a bulk magnetization denoted

as M0 = M0
z ẑ. The ratio of spin-up nuclei N↑ to spin-down nuclei N↓ is governed by the

Boltzmann relationship

N↑

N↓
= exp

(
∆E

KTs

)
= exp

(
γℏB0

KTs

)
, (2.1)

corresponding to first-order approximated bulk magnetization value ofM0
z = γ2ℏ2B0Ns

4KTs
, where

K is the Boltzmann constant (1.38× 10−23 J/K), Ts is the absolute temperature of the spin

system, and Ns = N↑ +N↓ is the total number of spins.

7



A second effect of B0 on the spin system is nuclear precession. At thermal equilibrium,

the classical model dictates that µ precesses about B0 according to

dµ
dt

= γµ ×B0ẑ, (2.2)

which describes motion such that µxy(t) = µxy(0) exp(−iγB0t) and µz(t) = µz(0). The

angular frequency of this precession is therefore ω0 = γB0, which is the natural resonance

frequency of the spin system (known as the Larmor frequency).

The behavior of the bulk magnetizationM in the presence of a magnetic fieldB is governed

by the Bloch equation:

dM

dt
= γM×B− Mxx̂+Myŷ

T2
− (Mz −M0

z )ẑ

T1
, (2.3)

where T1 and T2 are relaxation time constants characterizing the speed at which the spin

system returns to thermal equilibrium, typically in the range of 300 to 2000 ms for T1 and

30 to 150 ms for T2. Note that for B = B0 and at thermal equilibrium, Eq. (2.3) reduces

to dM/dt = 0, consistent with the previous description of the bulk magnetization vector as

being static at thermal equilibrium.

One implication of Eq. (2.3) is that in order to induce a measurable Mxy, an additional

time-varying field B1(t) can be applied perpendicular to B0. B1(t) is known as the radiofre-

quency (RF) pulse, and the forced precession of M about B1(t) is referred to as excitation.

From a classical perspective, a nonzero Mxy can be induced by establishing phase coher-

ence between the moments {µxy,i}i, which can be done by exciting the spin system with a

B1(t) that rotates in the same direction and frequency as the {µxy,i}i, i.e., at the resonance

frequency ω0. From a quantum perspective, a nonzero Mxy can be induced by coherently

transitioning the {µi}i from the low-energy (spin-up) state to the high-energy (spin-down)

state. This requires that the energy Erf from B1(t) is equal to ∆E = γℏB0. By Planck’s law,

8



an RF pulse oscillating at frequency ωrf carries energy Erf = ℏωrf , so achieving Erf = ∆E

requires that ωrf = γB0 = ω0.

After the spin system has been excited (i.e., after B1(t) has been turned off and the

total field returns to B = B0), the spin system enters a state known as free precession.

Equation (2.3) dictates that the system will relax according to

Mxy(t) =Mxy(0) exp

(
− t

T2

)
exp(−iγB0t) (2.4)

Mz(t) =M0
z

[
1− exp

(
− t

T1

)]
+Mz(0) exp

(
− t

T1

)
, (2.5)

where Mxy(0) and Mz(0) are the transverse and longitudinal components, respectively, of

M immediately following the removal of B1(t). If the total field instead returns to B =

(B0+∆B)ẑ, for ∆B ≪ B0 such that M0
z is not significantly perturbed, Eq. (2.4) is replaced

by

Mxy(t) =Mxy(0) exp

(
− t

T2

)
exp(−iγ∆Bt) exp(−iγB0t). (2.6)

Equation (2.6) describes exponential decay from T2 relaxation; in practice, spatial inho-

mogeneity of B0 induces phase coherence between magnetic moments, leading to quicker

decay of Mxy(t). This decay can be modeled as approximately exponential with constant

T ∗
2 , resulting in

Mxy(t) =Mxy(0) exp

(
− t

T ∗
2

)
exp(−iγ∆Bt) exp(−iγB0t). (2.7)

Although the effect of field inhomogeneity can be reversed with a second RF pulse generating

a spin echo [12], this process is too slow for the purposes of dynamic cardiovascular imaging,

so we will consider Eq. (2.7) in the rest of this chapter.
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2.1.2 Signal detection

The precessing bulk magnetization M induces a magnetic flux through a receiver coil in the

vicinity of the object, allowing detection of the NMR signal. Faraday’s law of induction

dictates that the voltage V (t) induced in this coil is

V (t) = − ∂

∂t

∫
r

Br(r) ·M(r, t) dr, (2.8)

where Br(r) is the receive field of the detection coil at location r and M(r, t) is the spatio-

temporally varying bulk magnetization vector. Substituting Eq. (2.7) into Eq. (2.8) and

recognizing that Mz(r, t) is slowly varying compared to Mxy(r, t), we obtain

V (t) = −
∫
r

(
− 1

T ∗
2 (r)

− iγ∆B(r)− iγB0

)
B∗

r,xy(r)Mxy(r, 0)

exp

(
− t

T ∗
2 (r)

)
exp(−iγ∆B(r)t) exp(−iγB0t) dr, (2.9)

where ∗ denotes the complex conjugate.1 Further recognizing that γB0 ≫ γ∆B and γB0 ≫

1/T ∗
2 (r), the voltage simplifies to

V (t) =

∫
r

iω0B
∗
r,xy(r)Mxy(r, 0) exp

(
− t

T ∗
2 (r)

)
exp(−iγ∆B(r)t) exp(−iω0t) dr, (2.10)

In practice, V (t) is moved to a low-frequency band through signal demodulation, wherein

V (t) is multiplied by a reference signal and low-pass filtered. Assuming the reference signal

1 Only the real part of Eq. (2.9) is valid. However, the offending imaginary part will cancel out during
the later description of signal demodulation using a reference signal (e.g., 2 exp(iω0t)). In the text, we
keep both the real and imaginary terms of Eq. (2.9) and consider the demodulating signal 2 cos(ω0t), since
low-pass filtering 2 cos(ω0t)s(t) exp(−iω0t) = s(t) + s(t) exp(−2iω0t) and 2 exp(iω0t)Re{s(t) exp(−iω0t)} =
s(t) + s∗(t) exp(2iω0t) both result in the same output s(t).
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is 2 cos(ω0t) = exp(−iω0t) + exp(iω0t), then the signal s(t) before low-pass filtering is:

s(t) =

∫
r

2iω0 cos(ω0t)B
∗
r,xy(r)Mxy(r, 0) exp

(
− t

T ∗
2 (r)

)
exp(−iγ∆B(r)t) exp(−iω0t) dr,

=

∫
r

iω0B
∗
r,xy(r)Mxy(r, 0) exp

(
− t

T ∗
2 (r)

)
exp(−iγ∆B(r)t) exp(−2iω0t)

+ iω0B
∗
r,xy(r)Mxy(r, 0) exp

(
− t

T ∗
2 (r)

)
exp(−iγ∆B(r)t) dr. (2.11)

Low-pass filtering removes the first term, leaving only

s(t) =

∫
r

iω0B
∗
r,xy(r)Mxy(r, 0) exp

(
− t

T ∗
2 (r)

)
exp(−iγ∆B(r)t) dr, (2.12)

which can be digitally sampled.

In most modern MRI scanners, multiple receive coils are used to detect the signal, where

each coil has a different receive field Br(r). For notational simplicity, we can define Sq(r) =

CB∗
r,xy(r) as the sensitivity function for the qth receiver coil, where C is some constant of

proportionality. The signal sq(t) from the qth channel of a system with Q receiver coils is

then

sq(t) =

∫
r

iω0

C
Sq(r)Mxy(r, 0) exp

(
− t

T ∗
2 (r)

)
exp(−iγ∆B(r)t) dr. (2.13)

2.1.3 Spatial encoding

There are numerous ways to perform the spatial encoding necessary to perform MR imaging,

but here we will specifically focus on the use of a spatially varying field ∆B(r)ẑ to encode

spatial location into the resonance frequency. Spatial encoding using gradient fields was

introduced by Paul Lauterbur in [13], and has grown to become the most commonly used

spatial encoding mechanism in MRI. The use of linear gradient fields leads to a popular and

convenient Fourier interpretation [14,15] as follows.
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Consider the linear gradient field described by ∆B(r) = Gxx+Gyy +Gzz. If we define a

vector k(t) as

k(t) =
γ

2π


Gxt

Gyt

Gzt

 , (2.14)

then we can express Eq. (2.13) as

sq(t) =

∫
r

iω0

C
Sq(r)Mxy(r, 0) exp

(
− t

T ∗
2 (r)

)
exp(−i2πk(t) · r) dr. (2.15)

When the signal is measured over a short time period centered on t = TE (the echo time),

the relaxation effect during acquisition is negligible, yielding

dq(k(t)) = sq(t) =

∫
r

Sq(r)ρ(r) exp(−i2πk(t) · r) dr (2.16)

=

∫
r

ρq(r) exp(−i2πk(t) · r) dr, (2.17)

where the image is ρ(r) ∝ Mxy(r, 0) exp(−TE/T ∗
2 (r)) and where ρq(r) = Sq(r)ρ(r). The

relationship between dq(k) and ρq(r) is then that of the Fourier transform, and the signal

sq(t) can be interpreted as measuring ρq(r) in the Fourier domain at spatial frequency k(t).

This relationship also holds when Eq. (2.14) is more generally defined to handle time-varying

gradients Gx(t), Gy(t), and Gz(t):

k(t) =
γ

2π


∫ t

0
Gx(τ) dτ∫ t

0
Gy(τ) dτ∫ t

0
Gz(τ) dτ

 . (2.18)

Equations (2.14) and (2.18) describe Fourier encoding in three spatial dimensions (which

we will refer to as 3D imaging). Alternatively, one spatial dimension can be encoded by
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applying a field gradient during excitation. Transmitting a narrow band RF pulse will then

selectively excite a “slice” of the object, leaving only two additional dimensions to Fourier

encode. We will refer to this slice-selective encoding scheme as 2D imaging.

Equations (2.16) and (2.17) assume that the signal is measured over a window of time

much shorter than the relaxation times of the imaged object. It may therefore initially

appear tempting to use strong, quickly varying gradients to traverse k-space as efficiently as

possible. However, there are hardware limits, physiological implications, and signal-to-noise

ratio (SNR) concerns with large gradient amplitudes and slew rates. Instead, the {dq(k)}Qq=1

are typically read out in short bursts, relying on multiple excitations of the spin system and

multiple readouts to eventually cover k-space. As a result, MRI measurements are fairly

slow, which is a major limitation—especially in the context of cardiovascular imaging.

2.1.4 Fourier image reconstruction

Based on Eq. (2.16) and Eq. (2.17), sampled k-space data {dq(km)}M,Q
m=1,q=1 from Q coils at

sampling locations {km}Mm=1 can be expressed as

dq(km) =

∫
r

Sq(r)ρ(r) exp(−i2πkm · r) dr (2.19)

=

∫
r

ρq(r) exp(−i2πkm · r) dr. (2.20)

The Nyquist–Shannon sampling theorem allows individual reconstruction of each ρq(r) from

sampled k-space data as long as each image is spatially bandlimited and the k-space sampling

interval does not exceed the reciprocal of the bandwidth. Obviously, any real-world objects

being imaged do not have infinite size, so ρ(r), and by extension {ρq(r)}Qq=1, necessarily has

finite spatial support and can fit inside a window having some widths Wx, Wy, and Wz.

Considering a noiseless, one-dimensional case for clarity, the Nyquist–Shannon sampling

theorem implies that a support-limited ρq(x) for which ρq(x) = 0 over |x| > Wx/2 can be
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exactly recovered according to

ρq(x) = ∆k
∞∑

m=−∞

dq(m∆k) exp(i2πm∆kx), |x| < 1

2∆k
, (2.21)

as long as ∆k < 1/Wx. This image is defined over a spatial window of width 1/∆k, referred

to as the field-of-view (FOV). It is important to note that Eq. (2.21) requires knowledge

of {dq(m∆k)}∞m=−∞, which contains a countably infinite number of samples. In practice,

infinite sampling is not achievable: time and gradient amplitude limitations dictate that

dq(k) can only be sampled over a finite window in k-space. Given M samples from k-

locations {m∆k}M/2−1
m=−M/2, we can instead obtain

ρ̂q(x) = ∆k

M/2−1∑
m=−M/2

dq(m∆k) exp(i2πm∆kx), |x| < 1

2∆k
. (2.22)

Equation (2.22) can be interpreted as performing the operations in Eq. (2.21) after re-

placing the unknown samples of {dq(m∆k)}∞m=−∞ with zeros, i.e., after multiplying the

{dq(m∆k)}∞m=−∞ by a rectangular window of width M∆k:

ρ̂q(x) = ∆k
∞∑

m=−∞

dq(m∆k) rect

(
m∆k

M∆k

)
exp(i2πm∆kx), |x| < 1

2∆k
. (2.23)

This yields

ρ̂q(x) = ρq(x) ∗M∆ksinc(M∆kx), (2.24)

where ∗ denotes convolution. The resulting point spread function (PSF) M∆ksinc(M∆kx)

characterizes the imaging system and indicates that ρ̂q(x) exhibits blurring (induced by the

main lobe of the sinc function, which has effective width 1/M∆k = FOV/M) and Gibbs

ringing (induced by the side lobes of the sinc function). The main lobe effective width

∆x = FOV/M is known as the Fourier voxel width, which can be used to define the spatial
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resolution of ρ̂q(x); the results reported in this dissertation employ this definition of spatial

resolution.

It is typical to only calculate ρ̂q(x) at the voxel centers {n∆x}M/2−1
n=−M/2:

ρ̂q(n∆x) = ∆k

M/2−1∑
m=−M/2

dq(m∆k) exp(i2πm/M), n = −M/2,−M/2 + 1, · · · ,M/2− 1,

(2.25)

a form of the inverse discrete Fourier transform (DFT), which results in a digital im-

age {ρ̂q(n∆x)}M/2−1
n=−M/2. This discrete Fourier relationship between {ρ̂q(n∆x)}M/2−1

n=−M/2 and

{dq(m∆k)}M/2−1
m=−M/2 can be conveniently notated in matrix form as dq = F rρ̂q, where dq is

a vector consisting of {dq(km)}Mm=1, F r applies the DFT over each spatial dimension, and

ρ̂q is a vectorized form of the image {ρ̂q(rn)}Mn=1. Equation (2.25) can then be expressed as

ρ̂q = F−1
r dq, the solution to the inverse problem (i.e., ρ̂q = argminρq ∥dq − F rρq∥2, where

the ℓ2-norm ∥x∥2 =
√∑

i |xi|2).

The implications of Eq. (2.22) are that higher spatial resolution and/or increased spatial

coverage require more k-space samples, which in turn take more time to acquire. This

tradeoff between spatial considerations and acquisition time has major consequences for

imaging moving objects such as the heart. These consequences are elucidated by updating

Eqs. (2.19) and Eq. (2.20) to additionally consider the passage of time:

dq(km, tn) =

∫
r

Sq(r)ρ(r, tn) exp(−i2πkm · r) dr (2.26)

=

∫
r

ρq(r, tn) exp(−i2πkm · r) dr, (2.27)

where ρ(r, t) is the spatiotemporally varying image of a moving object, and (k, t)-space

is the sampling domain [16]. It is clear then that the timings of our samples matter in

addition to their locations in k-space, and that the additional time dimension exacerbates

sampling requirements as per the curse of dimensionality. It is impractical to sample at the
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(k, t) Nyquist rate associated with rapid cardiac and respiratory motions, especially when

attempting 3D dynamic imaging. This challenge is the primary problem addressed by this

dissertation.

2.1.5 Image contrast

To obtain Eq. (2.16) from Eq. (2.15), we defined the image ρ(r) ∝Mxy(r, 0) exp(−TE/T ∗
2 (r)).

As a result, the images produced by MRI have signal intensity dependent on the transverse

bulk magnetization immediately after RF excitation as well as the relaxation-induced signal

decay during free precession.

The transverse bulk magnetizationMxy(r, 0) is a function of tissue parameters such as spin

density and relaxation time constants. This function can take many forms depending on the

sequence of RF and gradient pulses used; the ability to choose different pulse sequences and

adjust their parameters is the source of MRI’s uniquely flexible soft-tissue contrast. There

are a great many pulse sequences providing a wide array of contrast options, but here we

will focus on the use of the Fast Low-Angle SHot (FLASH) pulse sequence [17]. The FLASH

sequence results in a post-excitation transverse magnetization of:

Mxy(r, 0) =M0
z (r) sinα

1− exp (−TR/T1(r))
1− cosα exp (−TR/T1(r))

, (2.28)

where TR is the repetition time between RF pulses and α is the flip angle (FA). The flip

angle describes how far M is rotated about B1 during forced precession; it can be calculated

from B1(t) (e.g., α = γB1τp for a rectangular pulse of strength B1 and duration τp). We

then have

ρ(r) ∝M0
z (r) sinα

1− exp (−TR/T1(r))
1− cosα exp (−TR/T1(r))

exp

(
− TE
T ∗
2 (r)

)
. (2.29)

Equations (2.28) and (2.29) assume the spin system has been driven into a steady-state, i.e.,
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that multiple repetitions of the pulse sequence have already been performed.

The parameters α, TR, and TE can be selected to manipulate contrast as appropriate for

the specific imaging application. In cardiovascular imaging, speed considerations typically

dictate a short TR (on the order of 5 ms), but α and TE can be manipulated to emphasize or

de-emphasize T1 and T ∗
2 , respectively. T1-weighting is desirable for most of the applications

considered in this dissertation, with the exception of labeled immune cell imaging, which

employs T ∗
2 -weighting.

Exogenous contrast agents are also available to manipulate the relaxation rates of sur-

rounding tissues, enhancing image contrast. These contrast agents typically consist of para-

magnetic materials which shorten both T1 and T ∗
2 of the surrounding protons, with the T1

effect dominating for (relatively) low paramagnetism (i.e., low magnetic susceptibility) and

the T ∗
2 effect dominating for high paramagnetism (i.e., high magnetic susceptibility). For ex-

ample, contrast agents containing chelated Gd3+ ions can be injected into the bloodstream,

reaching tissues through blood perfusion [18]. The seven unpaired electrons of Gd3+ facil-

itate T1 relaxation (and to a lesser extent, T ∗
2 ) increasing the relaxation rate R1 = 1/T1

proportional to the local concentration of contrast agent. Another injected contrast agent,

particles of superparamagnetic iron oxide (SPIO), exhibits even stronger paramagnetism;

these iron oxide particles locally perturb the magnetic field, shortening T ∗
2 (and to a lesser

extent, T1) of nearby protons [19].

Relaxation time constants can be quantified by fitting the image contrast function to

multiple images collected with different pulse sequence parameters. For example, T1 can be

mapped from FLASH images {ρ̂i(r)}Fi=1 collected with F ≥ 2 different flip angles {αi}Fi=1

and fixed TR and TE. Let f(A, T1) be the vector of functions

fi(A, T1) = A sinαi
1− exp (−TR/T1)

1− cosαi exp (−TR/T1)
. (2.30)
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Maps of T1(r) and A(r) ∝M0
z (r) exp (−TE/T ∗

2 (r)) can be recovered by voxel-by-voxel fitting

of f(A, T1) to each vector vm constructed from elements vm,i = ρ̂i(rm):

{A(rm), T1(rm)} = argmin
A,T1

∥vm − f(A, T1)∥2. (2.31)

The multivariable nonlinear minimization problem in Eq. (2.31) can be simplified by vari-

able projection (VARPRO) [20], which parameterizes the linear elements of f(A, T1) (i.e.,

the amplitude). The vector f can be rewritten as f = Ag(T1), where

gi(T1) = sinαi
1− exp(−TR/T1)

1− cosαi exp(−TR/T1)
. (2.32)

Equation 2.31 can then be expressed as

{A(rm), T1(rm)} = argmin
A,T1

∥vm − Ag(T1)∥2, (2.33)

which can be solved by parameterizing A as

Âm(T1) = argmin
A

∥vm − Ag(T1)∥2 =
g(T1)

Hvm

∥g(T1)∥22
(2.34)

and solving the single-variable nonlinear minimization problem

T1(rm) = argmin
T1

∥vm − Âm(T1)g(T1)∥2. (2.35)

If desired, the solution can be constrained within a range of physically realistic values for T1.
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2.2 Signal processing approaches to accelerated MRI

Because of the speed limitations of MRI, a great deal of work has gone into developing

physics- and hardware-based approaches focused on manipulating nuclear spins for fast data

acquisition (e.g., [21–25]) within the Nyquist–Shannon framework. Fast-scanning technology

is now a relatively mature area of research, giving way to solutions which leverage different

signal processing frameworks for sub-Nyquist imaging within the sampling constraints of

nuclear spin physics. Signal processing approaches to accelerated MRI (e.g., [26–44]) exploit

signal properties beyond spatial bandlimitedness to allow image reconstruction from sparse

(k, t)-space samples. Three complementary approaches to sparse sampling are discussed in

this section: low-rank imaging, parallel imaging, and sparse modeling/compressed sensing.

2.2.1 Low-rank imaging

Low-rank imaging exploits the fact that images in many applications (e.g., in cardiovascu-

lar [10], speech [45], pulmonary [46], and spectroscopic [47] imaging) have a high degree of

correlation and therefore reside in a low-dimensional subspace. It is based on the partial

separability (PS) model [38, 39], which represents dynamic MR images as

ρ(r, t) =
L∑

ℓ=1

ψℓ(r)φℓ(t), (2.36)

where L is the model order and where {ψℓ(r)}Lℓ=1 and {φℓ(t)}Lℓ=1 are some spatial and tempo-

ral functions, respectively. The Lth-order PS model in Eq. (2.36) implies that the Casorati
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matrix

C(ρ) =



ρ(r1, t1) ρ(r1, t2) . . . ρ(r1, tN)

ρ(r2, t1) ρ(r2, t2) . . . ρ(r2, tN)

...
...

. . .
...

ρ(rM , t1) ρ(rM , t2) . . . ρ(rM , tN)


,

which can be constructed for any Cartesian set of arbitrary indices {m}Mm=1 and {n}Nn=1,

has a rank of no more than L [39, 41]. Given Eq. (2.36), the (k, t)-space signal d(k, t) =∫
r
ρ(r, t) exp(−i2πk · r) dr can be expressed as

d(k, t) =

∫
r

L∑
ℓ=1

ψℓ(r)φℓ(t) exp(−i2πk · r) dr (2.37)

d(k, t) =
L∑

ℓ=1

[∫
r

ψℓ(r) exp(−i2πk · r) dr
]
φℓ(t), (2.38)

or more succinctly,

d(k, t) =
L∑

ℓ=1

ψ̃ℓ(k)φℓ(t), (2.39)

where ψ̃ℓ(k) =
∫
r
ψℓ(r) exp(−i2πk · r) dr. Therefore, Lth order partial separability is pre-

served in (k, t)-space, and the (k, t)-space Casorati matrix

C(d) =



d(k1, t1) d(k1, t2) . . . d(k1, tN)

d(k2, t1) d(k2, t2) . . . d(k2, tN)

...
...

. . .
...

d(kM , t1) d(kM , t2) . . . d(kM , tN)


also has rank not exceeding L. Equations (2.36) and (2.39) permit a useful matrix fac-

torization: C(ρ) = ΨΦ and C(d) = Ψ̃Φ, where Ψij = ψj(ri), Ψ̃ij = ψ̃j(ki), and Φij =

φi(tj). Low-rank matrices have fewer real degrees of freedom than full-rank matrices:

when rank(C(d)) = L, the number of real degrees of freedom is reduced from 2MN to
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2(N + M − L)L, providing an avenue for sparse sampling of dynamic images which are

Lth-order partially separable.

It has been observed that dynamic images often exhibit spatiotemporal correlation [27].

When this correlation is very high, as it is in many imaging applications, the family of time

functions at different voxels, {ρ(rm, t)}Mm=1, are linearly dependent, implying that each entry

can be expressed as a linear combination of L < M temporal functions {φℓ(t)}Lℓ=1; similarly,

the family of static images at different times, {ρ(r, tn)}Nn=1 are also linearly dependent, with

each entry expressible as a linear combination of L < N spatial functions {ψℓ(r)}Lℓ=1. In

these cases, the model in Eq. (2.36) clearly applies.

This low-order partial separability of ρ(r, t) or d(k, t) implies that the signal resides in a

low-dimensional subspace. More specifically, in terms of its Casorati matrix representation,

C(d) and C(ρ) belong, in general, to CM×N , but because of their low-rankness induced by

partial separability, they actually reside in an L-dimensional temporal subspace SΦ, spanned

by, for example, {[φℓ(t1), φℓ(t2), . . . , φℓ(tN)]}Lℓ=1. This subspace property enables accelerated

imaging with sparse sampling.

It has been shown that a low-rank C can be recovered by imposing rank constraints [48],

for example by solving the optimization problem

Ĉ(d) = argmin
C(d)

rank(C(d)) s.t. ∥d− U{C(d)}∥2 < ϵ, (2.40)

where the undersampling (or sparse sampling) operator U{·} retains only the entries of C(d)

at the k-space locations {(kj, tj)}Jj=1, where the jth element of the vector d contains the

measured d(kj, tj), and where ϵ specifies some allowable data discrepancy [41]. Low-rank

matrix recovery theory states that an N×N matrix C(d) with rank L can be recovered with

high probability when J ∼ O(NL logN) [48,49].

Matrix completion approaches solving problems such as Eq. (2.40) are tasked with deter-
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mining both the spatial and temporal subspaces ofC(ρ); the reconstruction problem becomes

much simpler and requires even fewer samples when one of these subspaces is already known.

For example, when the temporal subspace SΦ is already known (and therefore an appropri-

ate Φ can be constructed), image reconstruction is instead equivalent to recovery of Ψ from

measured data given Φ [39]:

Ĉ(d) = arg min
C(d)∈SΦ

∥d− U{C(d)}∥22 , (2.41)

or in another form,

Ψ̂ = argmin
Ψ

∥d− U{F rΨΦ}∥22 , (2.42)

where F r applies the DFT over each spatial dimension. Predetermining SΦ fixes many of

the degrees of freedom in C(ρ) and C(d). This explicit-subspace low-rank reconstruction

problem requires only J = ML samples to be well posed. The final reconstructed image is

calculated as Ĉ(ρ) = Ψ̂Φ.

The technical contributions in this dissertation are presented in the context of explicit-

subspace low-rank imaging of the heart, so later sections will cover details such as strategies

for determining SΦ in greater detail.

2.2.2 Parallel imaging

Early approaches to multichannel MRI focused on the SNR benefits of combining the Q

images {ρ̂q(r, t)}Qq=1—each independently reconstructed from Fourier-encoded data sampled

at the Nyquist rate—into the final reconstructed image ρ̂(r, t). Accelerated parallel imaging

approaches instead focus on utilizing the additional encoding power of the {Sq(r)}Qq=1 to

allow reconstruction of ρ̂(r, t) from sub-Nyquist data. It is illuminating to consider parallel

imaging as an application of Papoulis’s multichannel sampling theorem to MRI [50, 51],
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wherein a single image ρ(r, t) is being passed through a bank of filters {Sq(r)}Qq=1, although

this is not the context in which accelerated parallel MRI methods were originally developed

(e.g., [52–58]).

It is well known that, under certain conditions, a bandlimited signal can be exactly re-

covered from sub-Nyquist measurements of the signal from multiple sensors. Consider that

ρ(r, t) is spatially bandlimited to [−W/2,W/2] and that {dq(k, t)}Qq=1 are the outputs from

a bank of Q linear and k-shift-invariant filters {Sq(r)}Qq=1. Papoulis’s multichannel sampling

theorem then states that d(k, t) =
∫
r
ρ(r, t) exp(−i2πk · r) dr—and by extension ρ(r, t)—

can be recovered from samples of {dq(k, t)}Qq=1 taken at rate ∆k̂ = Q/W (i.e., a factor of

Q above the Nyquist rate ∆k = 1/W ) using interpolation kernels {gq(k)}Qq=1 derived from

{Sq(r)}Qq=1 [51]. Considering only one spatial dimension for notational simplicity, this signal

recovery can be expressed as

d(k, t) =

Q∑
q=1

∞∑
m=−∞

dq(mQ∆k, t)gq(k −mQ∆k). (2.43)

The interpolation kernels are defined as

gq(k) =

∫ W/2

−W/2

Gq(x) exp(i2πkx) dx, (2.44)

where the {Gq(x)}Qq=1 are the solutions to S(x)G(x) = Q∆ke, with

S(x) =



S1(x) S2(x) · · · Sq(x)

S1

(
x− W

Q

)
S2

(
x− W

Q

)
· · · Sq

(
x− W

Q

)
...

...
...

S1

(
x− (Q− 1)W

Q

)
S2

(
x− (Q− 1)W

Q

)
· · · Sq

(
x− (Q− 1)W

Q

)


,
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G(x) =



G1(x)

G2(x)

...

GQ(x)


, and e =



1

0

...

0


.

In order to achieve perfect reconstruction, a unique solution must exist for S(x)G(x) =

Q∆ke, implying that each S(x) must be full-rank for
(

W
2
− W

Q

)
< x < W

2
. In other words,

the vectors

{[
Sq(x), Sq

(
x− W

Q

)
, · · · , Sq

(
x− (Q− 1)W

Q

)]T}Q

q=1

must be linearly depen-

dent for every
(

W
2
− W

Q

)
< x < W

2
, a stronger condition than requiring the sensitivity

functions {Sq(x)}Qq=1 to be linearly dependent.

In the situation with known {Sq(r)}Qq=1, ρ̂(r, t) can be recovered in image space, e.g. by

least-squares inversion of Eq. (2.26):

ρ̂ = argmin
ρ

Q∑
q=1

∥dq − UF rSqρ∥22 , (2.45)

where U only retains the input corresponding to (k, t)-space sampling locations {(kj, tj)}Jj=1,

dq is the vector of measured data {dq(kj, tj)}Jj=1, and Sq is a diagonal matrix which multiplies

the image (vectorized as ρ) by Sq(r). Parallel imaging reconstruction methods of this class

are commonly referred to as “image-space” or “SENSE-like” methods, after [55].

When {Sq(r)}Qq=1 are unknown, ρ(r, t) can be recovered using k-space interpolation kernels

analogous to the {gq(k)}Qq=1 defined by Papoulis’s sampling theorem. These kernels are

typically learned from auxiliary data in the form of Nyquist-sampled data in the central

region of k-space. These auxiliary data are commonly referred to as the autocalibration

signal (ACS). Methods of this class are commonly referred to as “k-space” or “GRAPPA-

like” methods, after [58].

Although Papoulis’s multichannel sampling framework permits acceleration factors up to
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Q, measurement noise, ACS requirements, and ill-conditioning of the reconstruction problem

limit the practically achievable acceleration factor. As a result, acceleration factors well

below Q are applied in practice. To achieve greater acceleration, parallel imaging can be

applied jointly alongside complementary acceleration approaches such as low-rank imaging

and compressed sensing.

2.2.3 Compressed sensing

Compressed sensing (CS) [59–63], sometimes called compressive sensing or compressive sam-

pling, exploits the sparsity of signals to enable signal recovery from sub-Nyquist data. This

sparse modeling approach has found useful application in MRI [30, 31] due to the com-

pressibility of natural MR images in certain transform domains (e.g., the wavelet or finite-

difference domains). A vector β is sparse (or compressible) when it has many zero (or

negligible) entries; when β = Tρ is sparse, then the linear transform T{·} applied by T

is said to sparsify the image ρ(r, t). In this scenario, an attractive solution to the image

reconstruction problem is the ρ̂ which results in sparsest β (i.e., the solution for which β has

the fewest nonzero entries) and which fits the measured data to within a tolerance ϵ:

ρ̂ = argmin
ρ

∥Tρ∥0 s.t. ∥d− UF rρ∥2 < ϵ, (2.46)

where ∥ · ∥0 is the ℓ0 pseudonorm returning the number of nonzero entries in the argument

vector, i.e., ∥β∥0 = card({i|βi ̸= 0}).

However, the use of an ℓ0-norm in Eq. (2.46) results in a nonconvex optimization problem

that is difficult to solve. A common surrogate for the ℓ0-norm in Eq. (2.46) is the ℓ1-norm

∥β∥1 =
∑

i |βi|, which has been shown to result in the same (or approximately same) solution
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in many cases [60]:

ρ̂ = argmin
ρ

∥Tρ∥1 s.t. ∥d− UF rρ∥2 < ϵ, (2.47)

or in its unconstrained form,

ρ̂ = argmin
ρ

∥d− UF rρ∥22 + λ ∥Tρ∥1 . (2.48)

An important theoretical result from compressed sensing literature is that when Tρ is

sparse, the performance of image reconstruction according to Eq. (2.48) can be guaranteed

under certain conditions on UF rT
−1. One such condition is that UF rT

−1 obeys the re-

stricted isometry property [64]. However, this property is difficult to verify for large problem

sizes, so this section will instead focus on incoherence [65], which is easier to evaluate.

Because the actual support of β = Tρ̂ is not known beforehand—it is only known to be

sparse—compressed sensing works best when the undersampling artifacts in the minimum-

norm (zero-filled) solution

ρ̂MN = argmin
ρ

∥ρ∥2 s.t. d = UF rρ (2.49)

=F−1
r UTd (2.50)

are incoherent and therefore do not obscure the true support of β (i.e., when the locations of

large values of βMN = Tρ̂MN correspond to the locations of nonzero values of β), preferably

resembling random additive noise.

Incoherence can be measured from the transform point spread functions (TPSFs) that col-

lectively relate βMN and β. Based on Eq. (2.50), we can see that βMN = TF−1
r UTUF rT

−1β.

The operator P = TF−1
r UTUF rT

−1 describes the TPSFs, i.e., Pij describes the contribu-

tion of input βj to output βMN,j. It follows that large off-diagonal elements {Pij}i̸=j risk
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obscuring the true support of β and are undesirable. The metric maxi ̸=j |Pij| is therefore

a useful measure of incoherence and can be used to guide selection of T{·} and sampling

design of U [31]. It has been established that random (k, t)-space sampling typically results

in incoherence alongside many sparsifying transforms (e.g., wavelet, or temporal Fourier),

although other sampling strategies are useful as well [66].

2.3 Cardiovascular MRI applications

This section provides brief overviews of the applications which will be demonstrated through

in vivo experiments in Chapter 6. There are many other applications of cardiovascular MRI

not described here, many of which could also benefit from the accelerated imaging approach

in this dissertation.

2.3.1 Cine imaging

Dynamic cine image sequences depict the structure and function of the heart, including

the mechanical contraction, timing, and extent of wall motion and thickening, as well as

the function of valves [6]. From these images, it is possible to perform a multitude of

cardiac assessments. Global measures such as cardiac mass, blood volume, and ejection

fraction can be measured from time-resolved images at different cardiac phases. Regional

wall motion may be used to determine and localize abnormal tissue function: akinetic regions

of the myocardium can be well visualized, helping to determine the extent of injury to the

myocardium. Functional cine imaging may augment morphological imaging to better assess

complex structural abnormalities and congenital heart defects by visualizing the motion of

the blood and valves. Cine imaging may also be used to assess the mechanical activation of

the heart, which may be important in understanding arrhythmias and in guiding treatment.

The classical cine imaging approach (known as cardiac gating) utilizes data acquired across
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many heartbeats to reconstruct a single representative heartbeat. This operates on the

assumption that each heartbeat is exactly the same, i.e., that the ρ(r, t) is periodic in time.

This is achieved by using the ECG as a reference signal and instructing the subject to hold

his or her breath; the data from multiple heartbeats are then combined to reconstruct a

single representative heartbeat. However, many patients are unable to hold their breath

adequately or have cardiac arrhythmias that violate the assumption of a periodic heartbeat,

leading to poor image quality using gated methods. For this reason, it is often preferable

to use ungated acceleration approaches—such as the one described in this dissertation—

to produce high-spatial-resolution images quickly enough to resolve cardiac and respiratory

motion without resorting to ECG triggering or breath holding.

2.3.2 Late gadolinium enhancement imaging

Late gadolinium enhancement (LGE) imaging is used to assess the viability of myocardial

tissue (i.e., to distinguish irreversibly damaged myocardium from stunned myocardium af-

ter ischemia) [67]. The heart is typically imaged 10 to 20 min after the administration

of gadolinium-based contrast agent into the blood stream. As described in Section 2.1.5,

gadolinium-based contrast agents shorten the spin-lattice relaxation time constant T1, boost-

ing the signal when using T1-weighting and brightening voxels in which the contrast agent is

concentrated. After a period of time following administration of gadolinium, contrast agent

concentration is higher in fibrous scar tissue than in normal myocardium, since the contrast

agent in that tissue washes out at a slower rate. With T1-weighted sequences, the normal

myocardium appears dark and scar tissue appears bright, leading to positive contrast.

Like with cine imaging, it is customary to acquire data over multiple heartbeats using

cardiac gating. This approach presumes that the subject has a stable heart period and is

able to reliably hold their breath, but it is often difficult (or for some unhealthy subjects,

impossible) to fulfill this requirement. Ungated accelerated approaches are therefore desirable
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for LGE imaging as well.

2.3.3 Extracellular volume fraction mapping

Extracellular volume fraction (ECV) mapping is a quantitative extension to LGE based on

quantification of myocardial T1 both before and after administration of contrast agent [68].

While qualitative T1-weighted imaging such as LGE imaging can reveal regional differences

in the T1 of tissue, it is more challenging to detect abnormalities when there is a global shift

in T1. In this instance, there will be no regional differences or spatial contrast observed.

To detect diseases that result in a global abnormality (i.e., a uniform contrast change), it is

required to quantify the actual change in T1 resulting from the injection of contrast agent.

As discussed in Section 2.1.5, it is possible to quantify T1 by collecting multiple images

with different pulse sequence parameters (and therefore different T1-weightings). The T1

values can then be extracted by fitting the appropriate image contrast equation to the

measured images, generating parameter maps. Once T1 maps (and therefore maps of the

spin-lattice relaxation rate R1 = 1/T1) have been acquired, the ECV in myocardial voxels

can be calculated according to

ECV = (1− h)
R1,post −R1,pre

R1,blood,post −R1,blood,pre

, (2.51)

where h is the hematocrit (calculated from a blood sample drawn from the subject), and

R1,blood is the R1 value of blood (estimated from the left ventricular blood pool in the R1

maps) [68].

This objective, quantitative measurement of myocardial tissue properties provides a means

to perform serial measurements which may be used to evaluate the effectiveness of therapies

in the long term. Parametric mapping places additional demands on accelerated imaging to

achieve the desired image quality and spatiotemporal resolution in the presence of motion,
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as even more images are required to be collected.

2.3.4 Myocardial perfusion imaging

First-pass myocardial perfusion imaging measures blood flow through the myocardium by

capturing the wash-in and wash-out of a gadolinium-based contrast agent or other contrast

mechanism [69]. This has potential for myocardial tissue assessment and early detection of

coronary artery disease (among other applications). During wash-in, regions with normal

flow will appear brighter than regions with reduced flow, as the contrast agent reaches

healthy regions first. Perfusion measurements can be extracted from the signal intensity

curve |ρ(rm, t)| for any voxel rm inside the myocardium.

Myocardial perfusion contrast dynamics are transient and therefore aperiodic, precluding

ECG gating as an imaging strategy. Instead, it is common to use the ECG as a reference to

trigger quick acquisition of a low-resolution image each time the heart returns to a certain

phase of the cardiac cycle [70]; cardiac motion is not represented in the resulting images. In

2D imaging with ECG triggering, different slices are triggered at different cardiac phases,

leading to phase mismatches between slices. Volumetric 3D imaging does not have this prob-

lem (and further benefits from the absence of slice gaps and no need for preparation pulses),

but 3D acquisition is very technically challenging, requiring a great deal of acceleration.

2.3.5 Labeled immune cell imaging

Labeled immune cell imaging detects the accumulation of magnetically labeled cells, provid-

ing a powerful tool for biomedical research, cellular medicine, and diagnosis [71]. Immune

cells are involved in many important physiological and pathological conditions in the heart,

such as in atherosclerosis, inflammation, coronary heart disease, and organ rejection, among

others. Macrophages and monocytes can be labeled in circulation by direct intravenous
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injection of biologically compatible SPIO particles; these cells then migrate to the site of

injury, infection, or inflammation.

MRI of SPIO-labeled immune cells can be performed through T ∗
2 -weighted cine imaging.

The SPIO particles induce local magnetic field inhomogeneity, shortening the T ∗
2 of the

surrounding water and providing a mechanism to generate negative image contrast. However,

the late echo time required for T ∗
2 weighting leads to long pulse sequences and inefficient data

acquisition, making the difficult task of free-breathing, ungated cardiac imaging even more

challenging. There is a great need for accelerated cardiac imaging methods, particularly

those which are specifically designed for T ∗
2 -weighted imaging.
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Chapter 3

Spatiotemporal Image Model

3.1 Cardiovascular PS model

The basic PS model assumes that the entire image shares a common temporal subspace of

the same dimension. However, cardiac and non-cardiac anatomy undergo different types

of motion, so the spatiotemporal signal changes can be more efficiently represented by a

regional PS model as:

ρ(r, t) =



L1∑
ℓ=1

ψℓ(r)ϕℓ(t), if r /∈ Ω

L2∑
ℓ=1

ψℓ(r)φℓ(t), if r ∈ Ω

, (3.1)

where {φℓ(t)}L2
ℓ=1 and {ϕℓ(t)}L1

ℓ=1 span the temporal subspace for the cardiac region (Ω)

and the non-cardiac region, respectively [10, 72]. In practice, we may further assume that

span{φℓ(t)}L2
ℓ=1 ⊃ span{ϕℓ(t)}L1

ℓ=1 since any background motion (e.g., respiratory motion) also

Some of the text and figures in this chapter have been previously published in [10] and are copyright of
the IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from
the IEEE.
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affects the cardiac region. Therefore, we can rewrite Eq. (3.1) as

ρ(r, t) =



L1∑
ℓ=1

ψℓ(r)φℓ(t), if r /∈ Ω

L2∑
ℓ=1

ψℓ(r)φℓ(t), if r ∈ Ω

, (3.2)

where it is assumed that L2 ≥ L1. Equation (3.2) implies that {φℓ(t)}L2
ℓ=1 span the entire

temporal subspace for d(k, t) or ρ(r, t), while temporal signal changes in non-cardiac regions

live only in the subspace spanned by {φℓ(t)}L1
ℓ=1. The basic PS model corresponds to L1 = L2.

Given a measured (k, t)-space data set {d(km, tn)}M,N
m=1,n=1, we can express the singular

value decomposition (SVD) of its Casorati matrix C(d) as

C(d) =
L∑

ℓ=1

σℓuℓv
H
ℓ , (3.3)

where σℓ is the ℓth singular value, and where uℓ and vℓ are the ℓth left and right singu-

lar vectors, respectively. Clearly, we have L = L2. The dominant right singular vectors

tend to capture the “low-frequency” (e.g., respiratory) temporal signal changes, while the

less-significant “high-frequency” components represent mainly cardiac signal changes, as il-

lustrated in Figs. 3.1 and 3.2. This can be taken advantage of when constructing the PS

model in Eq. (3.2): a set of temporal basis functions for ρ(r, t) can be defined in the form

φ̂ℓ(tn) = V∗
nℓ (note that the ℓth column of V is equal to vℓ), already partitioned according

to the assumptions in Eq. (3.2).

The SVD of C(ρ) for a numerical cardiac phantom (constructed as described in Sec-

tion 3.2.3) yields further insight into the subspace structure of cardiovascular images. As ℓ

increases, signal in the spatial eigenmaps {uℓ}Lℓ=1 becomes more concentrated in the cardiac

region than in the non-cardiac region. Figure 3.2 shows image representations of |uℓ| and

Re{vℓ} for ℓ = 1, 5, 19 from the cardiac phantom. Each eigenmap contains cardiac signal;
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Figure 3.1: Separation of respiratory and cardiac signal changes in the right singular
vectors of a typical human cardiac MR data set. The Casorati matrix was created from
data measured at a limited number of k-space locations. The figure plots the real parts of
v2 and v18, respectively. Both vectors are complex, but only the real parts are shown for
the purposes of simplicity. As can be seen, v2 contains the low-frequency signal changes
(related to respiratory motion), whereas v18 captures faster cardiac motion.

however, by ℓ = 19, the non-cardiac signal is highly sparse, limited to only a few voxels over

the vasculature.

3.2 Simulation analysis

3.2.1 Error metrics

Before presenting analyses and results, it is useful to establish criteria for evaluating model

and subspace accuracy. Here, the error between the estimated subspace SΦ̂ and the true

subspace SΦ is quantified in terms of Eproj, the error which results from projecting C(ρ)

onto SΦ̂ (i.e., the distance between C(ρ) and SΦ̂), as well as Erec, the error which results

from reconstructing C(ρ) ∈ SΦ̂ from noisy sparse data. Eproj is defined as the normalized
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Figure 3.2: Representations of |uℓ| and Re{vℓ} from C(ρ) for (a) ℓ = 1, (b) ℓ = 5, and (c)
ℓ = 19.
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root-mean-square (NRMS) error of Ĉproj(ρ) = C(ρ)Φ̂
H
Φ̂ = argminX∈SΦ̂

∥C(ρ)−X∥F :

Eproj(Φ̂) =
∥C(ρ)− Ĉproj(ρ)∥F

∥C(ρ)∥F
=

∥C(ρ)(I− Φ̂
H
Φ̂)∥F

∥C(ρ)∥F
.

Erec is the NRMS error of Ĉrec(ρ), the reconstruction from noisy sparse imaging data d =

U{C(ρ)}+ η (where η is the noise vector):

Erec(Φ̂) =
∥C(ρ)− Ĉrec(ρ)∥F

∥C(ρ)∥F
.

Eproj quantifies the optimal reconstruction (in the Frobenius norm sense) of C(ρ) given SΦ̂;

Erec quantifies the error of a practically achievable reconstruction of C(ρ).

3.2.2 Numerical cardiac phantom

The cardiac phantom used for the analyses in this chapter was generated from in vivo human

short axis MR cardiac images and features variable-rate cardiac and respiratory motion. The

images were collected using retrospective ECG and respiratory gating, resulting in images of

a single representative cardiac cycle. These images were looped and time-warped to simulate

a variable-rate heartbeat, and then spatially deformed to simulate variable-rate respiration.

The phantom image sequence contains one complex-valued 200 × 256 frame every 3 ms over

a duration of 30 s.

3.2.3 Subspace structure

This section contains an analysis of subspace structure in a numerical cardiovascular phantom

ρ(r, t). This analysis demonstrates the utility of the model in Eq. (3.2) when combined with

the proposed data acquisition/subspace definition scheme using the SVD of auxiliary data

Dnav to define Φ̂ (as will be detailed in Section 4.1).
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In the following paragraphs, CΩ and CΩ̸ are denoted as the mutually exclusive subma-

trices of C(ρ) which represent the cardiac and non-cardiac regions of the image, respec-

tively. Formally, these submatrices are described as CΩ = [C(ρ)mn]m|rm∈Ω,n=1,2,...,N and

C̸Ω = [C(ρ)mn]m|rm /∈Ω,n=1,2,...,N . The SVDs of CΩ and C̸Ω yield Eckart–Young subspaces [73],

the bases VΩ and V ̸Ω for which would yield the lowest possible projection error for each sub-

matrix:

VH
Ω = argmin

Φ
Eproj,Ω(Φ) = argmin

Φ

∥CΩ(I−ΦHΦ)∥F
∥CΩ∥F

(3.4)

VH
̸Ω = argmin

Φ
Eproj,̸Ω(Φ) = argmin

Φ

∥C̸Ω(I−ΦHΦ)∥F
∥C̸Ω∥F

. (3.5)

Here we compare the approximation errors resulting from different low-rank approxima-

tions of CH
Ω and CH

̸Ω , comparing Eproj,Ω(V
H
Ω ) and Eproj,̸Ω(V

H
̸Ω ) (projection error using the

optimal subspaces) to Eproj,Ω(Φ̂) and Eproj, ̸Ω(Φ̂) (projection error using practically achiev-

able estimated subspaces). The matrix Φ was constructed from the SVD of Dnav, which was

collected using Nd = 5. Figure 3.3 shows the corresponding NRMS error values Eproj as a

function of model order L.

In Fig. 3.3, the error curves from Eckart–Young approximation are an indicator of the

intrinsic rank properties of each region. It is evident that very low-order representations

of the non-cardiac region can match the accuracy of moderately low-order representations

of the cardiac region. Here, a rank-6 approximation of C̸Ω is as accurate as a rank-54

approximation of CΩ (as measured by NRMS error). When compared to the ideal regional

subspaces, there only is a small loss of accuracy associated with use of the suboptimal

estimate Φ̂: the relatively small size of this loss suggests that the intrinsic rank properties of

cardiovascular images can be successfully and practically exploited using the nested subspace

strategy represented in Eq. (3.2) as combined with the proposed data acquisition/subspace

definition scheme using the SVD of Dnav to define Φ̂.
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Figure 3.3: NRMS error of low-rank approximations from projecting the cardiac and
non-cardiac matrices CH

Ω and CH
̸Ω onto different temporal subspaces. In both cases, the

non-cardiac region can be estimated with a low-order model as accurately as the cardiac
region can with a higher-order model.

3.2.4 Model order and cardiac function

This section investigates the basic relationship between model order and cardiac function

as measured by left ventricular (LV) ejection fraction (EF). LVEF measures the volume of

blood ejected in one heartbeat, expressed as a percentage of total LV capacity; it is one of

the most predictive measurements of cardiac risk [74]. Because increased deformation of the

cardiac wall induces greater EF, the following analysis also serves to investigate PS model

order as a function of image deformation distance.

The numerical cardiac phantom described in Section 3.2.2 was regenerated for EF = 25%

(severely reduced), 50% (low end of normal), 75% (high end of normal). Figure 3.4 shows

(a) the end-diastole frame shared across variations, as well as (b-d) the end-systole frames

and (e-g) spatiotemporal slices for each variation of the phantom, in order of ascending EF.

Figure 3.5 shows Eproj(V
H) (i.e., the error curves from Eckart–Young approximation) over

a range of model orders for each of the three scenarios. As might be expected, reduced EF

corresponds to a “simpler” image in the sense that the phantoms with lower EF can be

represented with slightly more accuracy at any given model order. Overall, the error curves
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Figure 3.4: (a) The end-diastole frame shared across variations; the end-systole frames
from the phantom variations with (b) EF = 25%, (c) EF = 50%, and (d) EF = 75%; and
spatiotemporal slices from the phantom variations with (e) EF = 25%, (f) EF = 50%, and
(g) EF = 75%.
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are similar, suggesting that the acceptable range of model orders is relatively stable as a

function of EF.
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Figure 3.5: Error curves for Eckart–Young approximations of phantoms with different EFs.
Phantoms with lower EF can be represented with slightly more accuracy at any given
model order, although overall the error curves are fairly similar.
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Chapter 4

Data Acquisition

4.1 Sampling requirements

The proposed data acquisition scheme is characterized by the collection of two data sets de-

noted as Dnav and Dimg here. For simplicity, we ignore the readout direction of k-space. Dnav

contains data from a few k-space locations at a high temporal rate, and Dimg contains data

from sparse (k, t)-space locations. This scheme is motivated by the signal model in Eq. (3.2):

Dnav can just be navigator data (or training data) used to determine the temporal basis func-

tions {φ̂ℓ(t)}Lℓ=1, and Dimg should contain imaging data with proper contrast-weighting for

determining {ψ̂ℓ(r)}Lℓ=1. Using navigator (or training) data for model estimation in MR

dynamic imaging was introduced in [26], and the idea was later used in several other publi-

cations (e.g., [27, 38–40]).

Let Dnav = {dq(kj,1, tj,1)}J1,Qj=1,q=1. Here {kj,1}J1j=1 covers a few k-space locations to ensure

that the temporal Nyquist condition is satisfied, without being subject to the k-spaceNyquist

constraint or any spatial resolution considerations. In practice, {kj,1}J1j=1 often sample the

central k-space based on signal-to-noise considerations. For each kj,1, we assume that

Some of the text and figures in this chapter have been previously published in [10,75] and are copyright of
the IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from
the IEEE.
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dq(kj,1, t) is measured for t = t1, t2, . . . , tN , and that this sampling rate satisfies the tem-

poral Nyquist condition for the underlying signal. The data in Dnav can be rearranged into

Q Casorati matrices C(dq), for q = 1, 2, . . . , Q. All the C(dq)’s share the same temporal

subspace as ρ(r, t), as the inclusion of time-invariant coil sensitivity weightings {Sq(r)}Qq=1 in

Eq. (2.26) does not alter partial separability of the (k, t)-space data. We can then compute

the SVD of 

C(d1)

C(d2)

...

C(dQ)


=

L∑
ℓ=1

σℓuℓv
H
ℓ (4.1)

and define the temporal basis functions as φ̂ℓ(tn) = V∗
nℓ. Having this set of predefined

temporal basis functions is enormously useful in low-rank modeling [43] because: a) it reduces

the number of degrees-of-freedom in the PS model, b) it simplifies the model-fitting inverse

problem so that only the spatial coefficients {ψ̂ℓ(r)}Lℓ=1 need to be determined, and perhaps

more importantly, c) it improves the quality of the resulting reconstructions.

With {φ̂ℓ(t)}Lℓ=1 being defined, we have a lot of flexibility in acquiring the sparse data

Dimg = {dq(kj,2, tj,2)}J2,Qj=1,q=1; there are numerous ways to obtain sufficient data for determin-

ing the spatial coefficients of the PS model without being subject to the Nyquist constraint

along both k and t. The following practical factors should be considered in deciding the

(k, t)-space sampling locations {(kj,2, tj,2)}J2j=1 in a specific data acquisition scheme.

With sensitivity-encoding using Q receiver coils, we can undersample k-space by a factor

of P ≤ Q according to multichannel sampling theory [51]. In practice, we choose P ≪

Q to avoid the well-known ill-conditioning problem associated with conventional parallel

imaging. In conventional parallel imaging, there is a trade-off between k-space undersampling

and temporal undersampling. By integrating parallel imaging with subspace modeling, the

proposed image reconstruction method avoids this trade-off: temporal undersampling is
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allowed in PS model-based image reconstruction (as discussed in Chapter 5). Therefore, the

proposed method allows more flexibility in placing {(kj,2, tj,2)}J2,Qj=1,q=1 and enables sparser

sampling of (k, t)-space than conventional parallel imaging.

The proposed method can utilize a spatial-spectral sparsity constraint to regularize the PS

model to avoid any potential ill-conditioning problem associated with (k, t)-space undersam-

pling [43]. Sparse modeling is most effective with “incoherent” data acquisition [31]. One

can gain the desired incoherence by sampling (k, t)-space in a randomized order [30]. Simply

put, for a given kj,2, temporal sampling should not be periodic, i.e., tj,2 ̸= j∆t. Details of our

experimental implementation can be found in Section 6.2, including an illustrative example

of a suitable sampling pattern in Fig. 6.1.

4.2 Self-navigation

In applications with very high temporal resolution requirements (e.g., small rodent imag-

ing), we propose to use “self-navigation” for further acceleration [75]. Self-navigated pulse

sequences collect readouts of both Dnav and Dimg within the space of a single TR, eliminating

the need to expend an entire TR to collect navigator data. This is particularly suited for

T ∗
2 -weighted imaging (and therefore SPIO-labeled immune cell imaging), as the late Dimg

echo time required for T ∗
2 -weighted imaging leaves extra room for the navigator signal to

be collected prior to each sparse (i.e., Dimg) imaging echo [76]. In this case, self-navigation

shortens the temporal sampling rate of Dnav from 2TR to TR, thereby doubling the frame

rate of the final reconstructed images from 1/2TR to 1/TR. In this approach, J1 = J2 = J

and tj,2 = (tj,1 +∆TE) ∀j, where ∆TE is the time between navigator and sparse echoes.

One way to accomplish self-navigation is to separate the slice rephase, read dephase,

and phase encode gradient pulses and collect navigator data during slice rephasing and

read dephasing. The slice rephase and read dephase pulses are the same after every RF
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pulse, enabling collection of suitable data for Dnav. In our implementations, we additionally

replace the read dephase pulse with a novel “music note” (�) trajectory [75], which has the

same integral as the typical read dephase pulse (i.e., it ends in the same k-space location).

The 1D trajectory of the typical read dephase pulse has a null space such that it cannot

detect perpendicular translation (as discussed in Section 4.3), so it is preferable to use a

2D navigator such as the music note trajectory or a spiral trajectory. We have designed

and implemented the music note to: a) traverse a high-SNR region of k-space; and b) be

less demanding of gradient hardware than spiral trajectories. We use the same music note

navigator trajectory after each RF pulse, but vary the phase encode pulse to acquire different

Cartesian imaging readouts of Dimg.

Figure 4.1 shows an example of slice-spoiled FLASH pulse sequences implementing (a)

interleaved-pulse navigation and (b) self-navigation. As pictured, our “read dephase” gra-

dient actually traverses the 2D “music note” trajectory illustrated in Fig. 4.1-c. Other

gradient combinations and k-space trajectories could also be used for self-navigation, but

the remainder of this dissertation will consider the implementation represented by Fig. 4.1-b.

When short echo times are desired (e.g., T1-weighted imaging), or when speed require-

ments do not approach 1/TR (e.g., human imaging), it may be useful to use a interleaved-

pulse navigation scheme instead of self-navigation. In this approach, successive readouts of

{dq(k, t)}Qq=1 alternate between Dnav and Dimg such that J1 = J2 = J and tj,2 = (tj,1+TR)∀j,

where TR is the time between readouts. Thus, Dnav contains (k, t)-space data from Nd unique

k-space trajectories sampled in repeating order: kj,2 = k(j−Nd),2 ∀ j > Nd.
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Figure 4.1: Slice-spoiled FLASH sequences illustrating (a) the interleaved-pulse navigation
strategy, (b) the proposed self-navigated strategy, and (c) the music note trajectory
employed for the results in this dissertation. The self-navigated sequence is half the
duration of the interleaved-pulse sequence, doubling the frame rate of the reconstructed
images.
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4.3 Subspace error

Accurate estimation of the subspace SΦ (and thus Φ) is essential for accurate image re-

construction in subspace-constrained imaging. Potential sources of error in the estimated

subspace SΦ̂ are measurement noise and limited k-space coverage of Dnav. Both sources of

error are closely tied to the choice of navigator trajectories (i.e., navigator k-space locations).

Although measurement noise is unavoidable, navigator trajectories can be chosen to traverse

regions of k-space which generally have high SNR (e.g., central k-space). The second source

of error occurs when SΦ nontrivially intersects a null space associated with the chosen nav-

igator trajectory, preventing accurate subspace estimation even under noiseless conditions:

C(Dnav) ∈ SΦ̂ ⊂ SΦ, with dim(SΦ̂) < L.

A simple example of this null space problem arises for any navigator trajectory which is a

line through the k-space origin: here, the navigator data are Fourier-transformed projections

of ρ(r, t), so any translation of ρ(r, t) perpendicular to the navigator direction will have no

effect on Dnav and will therefore go undetected. Figure 4.2 shows the results of projecting a

numerical phantom onto subspaces estimated from horizontal (ky = 0, pictured in Fig. 4.3-a)

and vertical (kx = 0) Cartesian navigators. This phantom depicts a large gray circle which

translates vertically and a small white circle which translates horizontally; additionally, the

two circles live in orthogonal temporal subspaces. The horizontal navigator fails to capture

vertical translation, and the vertical navigator fails to capture horizontal translation.

We address the null space problem by replacing the conventional Cartesian trajectories

with 2D spiral trajectories, the 2D music note trajectory, or 3D cone trajectories. Unlike

the Cartesian trajectories, each of these trajectories has no problem detecting translation

perpendicular to the readout direction; this makes subspace estimation robust to navigator

orientation. The music note trajectory is a practical and efficient stand-in for a spiral tra-

jectory, traversing a high-SNR region of k-space with low gradient slew rates (particularly

46



(a) (b) (c) (d)

Figure 4.2: Demonstration of the null space problem using central Cartesian navigators.
(a) One frame of a numerical phantom and (b) a spatiotemporal slice through the dotted
line. Spatiotemporal slices after projecting the phantom onto the subspace SΦ̂ estimated
from (c) horizontal and (d) vertical Cartesian navigators through the k-space origin. The
vertical translation of the gray circle is not captured by the horizontal navigator, and the
horizontal translational of the white circle is not captured by the vertical navigator.

useful for self-navigation).

4.4 Simulation analysis

We used the numerical cardiac phantom described in Section 3.2.2 to synthesize and compare

different navigator trajectories and the accuracy of the resulting temporal subspaces. We

measured six sets of noisy navigator data using the three trajectories in Fig. 4.3, as well as

those same trajectories rotated clockwise by 90◦. The SVD of the ith noisy navigator data

set yielded each Φ̂i, which were used to define the temporal subspaces.

White complex Gaussian noise with a blood-to-myocardium contrast-to-noise ratio of 10

was added to all simulated data to better represent realistic experimental conditions. For

simulated sparse sampling, U{·} retained only one random k-space line per time frame.

Figure 4.4 depicts an 81 × 81 closeup of the heart from the gold standard ρ(r, t), from

the direct Fourier reconstruction of fully sampled noisy data, and from {Ĉrec,i(ρ)}6i=1, recon-

structed from sparsely sampled noisy data using L1 = 14 and L2 = 32. Error images (scaled

by a factor of 3) are also shown for all reconstructions. Table 4.1 shows the corresponding
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Figure 4.3: Illustrations of the k-space trajectories used for simulations: (a) Cartesian, (b)
spiral, (c) music note.

Table 4.1: NRMS errors {Erec(Φ̂i)}6i=1

Cartesian Spiral Music note

Standard 5.63% 5.70% 5.61%

Rotated 5.90% 5.67% 5.66%

NRMS errors {Erec(Φ̂i)}6i=1. Figure 4.5 shows the NRMS errors for {Eproj(Φ̂i)}6i=1 over a

variety of ranks.

Figures 4.4 and 4.5 demonstrate that the subspace accuracy when using Cartesian nav-

igation is highly dependent on trajectory orientation: rotating the trajectory 90◦ caused a

noticeable degradation in image quality. The spiral and music note trajectories were more

robust to orientation. For both projections and reconstructions, the rotated Cartesian navi-

gator yielded the least accurate results, whereas the music note navigator provided the most

accurate results.
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(a)

(c) (d)

(e) (f)
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(b)

Figure 4.4: A closeup (left) and error image (right, scaled by a factor of 3) from one frame
of (a) the gold standard image ρ(r, t), (b) the direct Fourier reconstruction from fully
sampled noisy data, and (c-h) {Ĉrec,i(ρ)}6i=1 (L1 = 14, L2 = 32) reconstructed from
sparsely sampled noisy data. The navigator data were collected using the (c) Cartesian, (d)
rotated Cartesian, (e) spiral, (f) rotated spiral, (g) music note, and (h) rotated music note
trajectories. Rotation of the Cartesian navigator causes spatiotemporal blurring, with
examples indicated by the arrows. Regardless of rotation, the spiral and music note
navigators yield similar visual quality to the unrotated Cartesian navigator.
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Figure 4.5: NRMS errors {Eproj(Φ̂i)}6i=1 over a range of model orders. Rotating the
Cartesian navigator causes noticeably larger error. The spiral and music note navigators
are robust to rotation, with both music note navigators providing slightly more accuracy
than either of the spiral navigators.
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Chapter 5

Image Reconstruction

5.1 Model fitting equation

Equation (2.36) admits the factorization C(ρ) = ΨΦ, where Ψij = ψj(ri) and Φij = φi(tj).

Given a predetermined Φ̂ estimated from Dnav, we can reconstruct Ĉ(ρ) by solving for Ψ̂.

We do this by solving the following optimization problem:

Ψ̂ = argmin
Ψ

Q∑
q=1

∥∥∥dq − U{FrSqΨΦ̂}
∥∥∥2

2
+ λ1∥R{Ψ}∥1,2 + λ2P (Ψ), (5.1)

where

∥R{Ψ}∥1,2 =
L2∑

ℓ=L1+1

√ ∑
m|rm∈Ω

|ψℓ(rm)|2 +
∑

m|rm /∈Ω

|ψℓ(rm)|

 . (5.2)

The final reconstructed image ρ̂(r, t) is obtained by Ĉ = Ψ̂Φ̂.

The first term of the cost function in Eq. (5.1),
∑Q

q=1 ∥dq − U{FrSqΨΦ̂}∥22, integrates

explicit-subspace low-rank imaging with parallel imaging. The second term, ∥R{Ψ}∥1,2—

where R{Ψ} concatenates the rightmost columns of Ψ (i.e., ψL1+1 through ψL2) and vec(·)

concatenates the columns of the argument matrix—enforces the modeled subspace structure

Some of the text and figures in this chapter have been previously published in [10, 72, 77, 78] and are
copyright of the IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.
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in Eq. (3.2) by promoting group sparsity of {ψℓ(r)}L2
ℓ=L1+1. This group-sparse constraint

is described and evaluated in greater detail later, in Section 5.3. The third term, P (Ψ),

is an optional regularization function enforcing additional image properties to address any

remaining ill-conditioning of the data fitting problem. When P (·) is chosen as a sparsity-

promoting penalty, Eq. (5.1) additionally integrates sparse modeling; when we additionally

consider the case with λ1 = 0 or L1 = L2, Eq. (5.1) can be viewed as integrating the

PS-Sparse model [42, 43] with multicoil reconstruction.

5.2 Choice of P (·)

Here we investigate two choices for P (·). One choice employs an ℓ1 penalty to enforce

spatial-spectral sparsity; another employs an ℓ2 penalty to impose anatomical constraints.

In comparing these two example choices of P (·), we will consider reconstruction error, noise

properties, and image artifacts.

5.2.1 Enforcing spatial-spectral sparsity

It is well established that cardiovascular images have compact spatial-spectral support [28,

29, 79], and can therefore be sparsified by a temporal Fourier transform [31, 33, 35, 44, 80]

(among other transforms [30, 32, 34]). Figure 5.1 shows the utility of T = Ft (i.e., the

temporal Fourier transform) as a sparsifying transform for a spatiotemporal slice from a

cardiac image.

As described in Section 2.2.3, ℓ1-norm penalties can be used to promote sparse solutions, so

the regularization functional P (Ψ) = ∥vec(ΨΦ̂F t)∥1 (where F t applies the temporal Fourier

transform) can be used to promote spatial-spectral sparsity alongside explicit-subspace imag-

ing [42,43]. When evaluating this regularization functional, we will employ randomly ordered

(k, t)-space sampling, as it generally results in a sampling basis UF r which is incoherent
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Figure 5.1: An illustration of spatial-spectral sparsity. Left, a spatial-temporal slice of a
typical cardiac image function, and right, its corresponding spatial-spectral representation.
The image in the spatial-spectral domain is highly sparse (or highly compressible).

with the temporal Fourier transform [42,43].

5.2.2 Enforcing anatomical constraints

When morphological information is already available from a reference image ρref(r) depicting

the same anatomy, it is possible to define P (·) to impose anatomical constraints on the

smoothness of the reconstruction [81]. This controlled smoothing penalizes the formation of

motion artifacts and increases SNR without blurring the edges of the object. In the case of

cardiovascular imaging, ρref(r) can be gleaned from the temporal average of the (k, t)-space

data, removing the need for auxiliary scans or prior information [77].

Specifically, we can define

P (Ψ) =
∑
m

∑
n

∑
i

|wi(rm)∇i {ρ̂(rm, tn)}|2

=
∑
m

∑
n

∑
i

∣∣∣∣∣wi(rm)∇i

{∑
ℓ

ψℓ(rm)φ̂ℓ(tn)

}∣∣∣∣∣
2

, (5.3)

where {rm}m and {tn}n are the spatial and temporal coordinates of the voxel centers, ∇i{·}

is a gradient operator (e.g., the finite difference operator) in the ith spatial direction, wi(r)
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is the penalty weighting function

wi(r) = min

(
1

|∇i{ρref(r)}|
, wmax

)
, (5.4)

and wmax is the maximum allowed penalty value. Note that when the {φℓ(t)}ℓ are orthonor-

mal (as when defined from directly from the SVD), Eq. (5.3) reduces to

P (Ψ) =
∑
m

∑
ℓ

∑
i

|wi(rm)∇i {ψℓ(rm)}|2 , (5.5)

which applies the smoothness penalty directly to the spatial coefficient functions {ψℓ(r)}ℓ.

Equation (5.3) discourages the formation of sharp image features in ρ(r, t) which are not

represented in ρref(r). This helps suppress both noise and motion artifacts in the recon-

struction while protecting image edges from being smoothed. The overall effect is that it

penalizes the formation of image features in ρ(r, t) inversely proportional to their prominence

in ρref(r), excluding when wi(r) = wmax. The use of wmax softens the penalties corresponding

to very smooth areas of ρref(r) and prevents these areas from overinfluencing the final solu-

tion. When Eq. (5.1) is viewed in a quasi-Bayesian context, the definition of the weighting

functions as in Eq. (5.4) may be interpreted as incorporating ρref(r) into the model as a

statistical prior [81].

Practically speaking, ρref(r) is not always available in the form of a priori information.

However, it is both simple and effective to generate ρref(r) from a composite of the measured

data {dq(kj, tj)}J,Qj=1,Q=1. Ideally, ρref(r) should be free from aliasing artifacts and should

exhibit high SNR. There are many methods for reconstructing such images from composite

(k, t)-space data, even when the measured data violates the Nyquist condition [82]. The

results in this section use ρref(r) reconstructed from {d̄q(km)}Qq=1, a weighted sum of the
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(a)

(b) (c)

Figure 5.2: (a) Example reference image ρref(r) (top) and (b-c) the resulting penalty
weighting functions {wi(r)}i. Note that weighting is defined separately for the (b) vertical
and (c) horizontal gradients.

measured data over the time axis:

d̄(km) =

∑
n d(km, tn)∑
n U(km, tn)

, (5.6)

where U(km, tn) is set to 1 for the (k, t)-space locations which were actually sampled (i.e.,

for which (km, tn) ∈ {(kj, tj)}Jj=1); otherwise, U(km, tn) takes the value of 0. The expression∑
n U(km, tn) gives the total number of samples which are collected at km, and Eq. (5.6)

is therefore equivalent to averaging the measured data independently at each km. We can

then obtain ρref(r) by reconstructing {d̄q(km)}Qq=1 by Fourier reconstruction or by parallel

imaging reconstruction methods when appropriate. Figure 5.2 shows an example reference

image ρref(r) and penalty weightings {wi(r)} used in the proposed reconstruction scheme.
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5.2.3 Simulation analysis

5.2.3.1 Separation of artifacts and noise

Nonlinear reconstruction methods do not allow for direct separation of image artifacts and

image noise in the resulting reconstructions. Here, we perform Monte Carlo simulation to

perform this separation instead. Given multiple reconstructions with different noise patterns,

the nth reconstructed image vector ρ̂(n) can be represented as a sum of the true image vector

ρ, an image artifact vector a = E[ρ̂ − ρ] (where E denotes expectation), and an image

noise vector η(n) (i.e., ρ̂(n) = ρ + a + η(n)). We consider a to be the deterministic error

component which represents the systematic reconstruction error (i.e., the spatiotemporally

localized error bias) for a specific input noise distribution and η to be the error component

whose elements are realizations of zero-mean random variables. We perform this analysis for

each input noise distribution in our simulations.

For a set input noise distribution, Monte Carlo simulation of N different reconstructions

{ρ̂(n)}Nn=1 yields an average reconstruction

ρ̂avg =
1

N

N∑
n=1

ρ̂(n) = ρ + a+
1

N

N∑
n=1

η(n), (5.7)

where η(n) is the image noise pattern corresponding to ρ̂(n). Equation (5.7) suggests the

approximations

∥a∥22 ≈ ∥ρ̂avg − ρ∥22 −
1

N
∥η∥22 (5.8)

and

∥η∥22 ≈
1

N − 1

N∑
n=1

∥ρ̂(n) − ρ̂avg∥22. (5.9)
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For large N , a useful estimate of a is the mean reconstruction error function

a ≈ ρ̂avg − ρ, (5.10)

which further yields

η(n) ≈ ρ̂(n) − ρ̂avg. (5.11)

The range of N for which Eqs. (5.10) and (5.11) are useful may be inferred from spatiotempo-

rally varying confidence intervals; however, Eqs. (5.8) and (5.9) suggest the simple guideline

N ≫ max (∥η∥22/∥a∥22, 1).

5.2.3.2 Monte Carlo Results

To demonstrate both the ℓ1 and ℓ2 regularization methods using a realistic gold standard, we

include simulation results using the numerical cardiac phantom described in Section 3.2.2.

Simulations were conducted by sparsely sampling (k, t)-space data from the numerical

phantom. Only one (k, t)-space readout line was collected every 3 ms (the effective TR).

Data acquisition was alternated between Dnav and Dimg over the full duration of the image

sequence. In the ℓ1 case, the order of phase encodings for Dimg was permuted to simulate

a uniform random sampling pattern. In the ℓ2 case, Dimg was collected using sequential

phase encoding (from one end of k-space to the other). In both cases, Dnav was acquired by

repeatedly measuring data from seven lines at the center of k-space.

Three noise levels were considered for each regularization scheme, specifically the noise-

less case and two noisy cases. For the noisy cases, complex Gaussian noise ξ was added

to the (k, t)-space samples. The artifact and noise components of the resulting noisy re-

constructions were separated through Monte Carlo simulation, using a sample size of 10 for

each regularization scheme at each noise level. Regularization parameters were set accord-

ing to the noise level in the data. All reconstructions were performed with model order
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Table 5.1: NRMS values for total reconstruction error, image artifacts, and image noise

Total Error Artifacts Noise

Noiseless
ℓ1 3.34% 3.34% n/a

ℓ2 3.91% 3.91% n/a

Low Noise
ℓ1 3.58% 3.38% 1.17%

ℓ2 4.36% 3.96% 1.82%

High Noise
ℓ1 4.98% 3.68% 3.35%

ℓ2 6.09% 5.04% 3.42%

L1 = L2 = 16.

Figure 5.3 shows reconstructed frames over the 63 × 63 cardiac region. The top row

shows the gold standard plus the appropriate level of noise. The top right image is from the

noiseless gold standard ρ against which all reconstructions were compared. The second row

shows least-squares PS reconstructions (i.e., PS without regularization). The bottom two

rows show PS reconstructions with ℓ1 and ℓ2 regularization. Figure 5.4 shows spatial maps of

the separated artifact (bias) and noise terms at the high input noise level. Each spatial map

depicts RMS values across time. Table 5.1 gives NRMS values for the reconstruction error,

image artifacts, and image noise. The ℓ1 scheme resulted in overall lower reconstruction

error energy, image artifact energy, and image noise variance in all cases.

Because the ℓ2 regularization scheme imposes a spatially weighted smoothness penalty, the

resulting image noise is predictably focused in the areas which correspond to low smooth-

ness penalties. The spatial location of the image noise in the ℓ1-regularized reconstructions

exhibits less structure: that is to say, the image noise is more evenly distributed spatially.

Reconstructions from the ℓ2 scheme shows significantly higher error bias over most spatial

regions when compared to reconstructions from the ℓ1 scheme.

The spatial maps of artifacts and error give a general idea as to the utility of each regular-

ization scheme for different biomedical applications. Although there are some spatial regions
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Figure 5.3: Reconstructions over the 63 × 63 cardiac region. The top row depicts the gold
standard plus noise with appropriate variance. The second row depicts least-squares PS
reconstructions. The bottom two rows depict the PS reconstructions with ℓ1 and ℓ2
regularization.
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Figure 5.4: Spatial maps of artifacts and noise (i.e., RMS values of the bias and noise
across time) for the regularized PS reconstructions corresponding to the high input noise
level. For clarity, the contrast window is 8 times brighter here than the contrast window in
Fig. 5.3
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of the reconstructions over which the ℓ2 solution exhibits both smaller error bias and lower

noise, the cardiac region is generally better represented by the ℓ1 solution.

Overall, the ℓ1 solution is consistently the most accurate in terms of reconstruction er-

ror, image artifacts, and image noise. The ℓ2 solution is much quicker to compute, and the

closed-form linear solution to the ℓ2 optimization problem has the benefit of easier charac-

terizability as compared to the nonlinear ℓ1 optimization problem. When computation time

and resources are freely available, the ℓ1 method will be preferable in most situations. The

ℓ2 method may be preferable when computational efficiency is desired. The remainder of the

results in this dissertation employ the ℓ1 method.

5.3 Group sparsity

The constraint ∥R{Ψ}∥1,2 in Eq. (5.1) promotes group sparsity of {ψℓ(r)}L2
ℓ=L1+1 in order to

enforce the subspace structure in Eq. (3.2). Defining x(i) as the ith group of some vector

x, then the mixed (1,2)-norm is defined as ∥x∥1,2 =
∑

i=1 ∥x(i)∥2 [83, 84]. Equation (5.2)

distributes the higher-order spatial coefficients {ψℓ(r)}L2
ℓ=L1+1 into different groups. For each

L1 < ℓ ≤ L2, each set of cardiac spatial coefficients {ψℓ(rm)}m|rm∈Ω composes a group, as does

each individual non-cardiac spatial coefficient ψℓ(rm), rm /∈ Ω. As a result, the cardiac region

takes on an effective model order up to L2 and each non-cardiac voxel individually takes on

an effective model order of L1 or slightly higher. This grouping promotes a uniformly high

model order over the cardiac region and a spatially varying low model order over the non-

cardiac region, introducing flexibility to the choices of L1 and L2. This flexibility is desirable

for model order selection and region identification in practical applications because: if either

L1 or L2 is chosen too small, then the representational power of the model is reduced, leading

to model bias; if either L1 or L2 is chosen too high, then the model becomes sensitive to

noise and reconstruction quality will be heavily dependent on regularization. Similarly, this
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flexibility also allows imprecise specification of Ω, as voxels incorrectly placed outside Ω

would also be allowed to take on a higher model order. Voxels incorrectly placed inside

Ω will have higher model orders than necessary, but the model overfitting problem would

still be addressed by spatial-spectral sparsity regularization. The group sparsity constraint

reduces these potential pitfalls while still allowing the option to exactly enforce the basic PS

model by using L1 = L2.

5.3.1 Simulation analysis

We have evaluated the proposed image reconstruction method using the same numerical

cardiac phantom. We provide reconstruction examples using the proposed method as well as

sliding window reconstructions (i.e., direct Fourier reconstructions of the sparsely sampled

(k, t)-space data after nearest-neighbor temporal interpolation), and CS model reconstruc-

tions.

In all simulations, we sparsely sampled (k, t)-space data from the numerical phantom. The

sampling pattern was limited to a single (k, t)-space readout line every 3 ms (the effective

TR) to represent real-world sampling conditions. Data were collected with Q = 1, P = 1,

and Nd = 5.

Reconstructions were performed with a variety of parameters. Regularization parameters

were chosen for minimum NRMS reconstruction error Erec after a comprehensive sweep. All

reconstructions have a frame rate of 33 fps, which is equal to the temporal sampling rate of

the navigator data (i.e., 1/2NdTR).

Table 5.2 presents the NRMS reconstruction errors Erec over a range of values for L1 and

L2. Entries where L1 = L2 are denoted by “∗”, and the full-rank (i.e., CS) reconstruction

is denoted by “†”. The smallest overall reconstruction error appears in bold. Model order

combinations where L1 > L2 are inconsistent with the assumption in Eq. (3.2) that L2 ≥ L1

and are therefore grayed out.
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Table 5.2: NRMS reconstruction errors Erec in simulations. “∗” denotes a result where
L1 = L2, and “†” denotes the full-rank (i.e., CS) result. The model order combinations
corresponding to L1 > L2 are grayed out. The smallest reconstruction error appears in
bold.

L1 (Non-cardiac)

16 25 32 64 1000

L
2
(C

ar
d
ia
c)

16 3.67%∗

25 3.37% 3.46%∗

32 3.32% 3.35% 3.42%∗

64 3.35% 3.28% 3.53% 3.81%∗

1000 9.31%†

The left column of Fig. 5.5 depicts 2D spatiotemporal slices from the phantom (i.e., the

gold standard) and the noiseless reconstructions which yielded the smallest NRMS error

Erec for each method. The right column depicts the error image for each reconstruction,

scaled by a factor of 2 for clarity. We can see that the reconstructions with L1 < L2

yielded the most accurate reconstruction (in the NRMS error sense) as well as providing

the most faithful representation of the true cardiovascular dynamics. For each fixed L2, the

minimum-error reconstruction occurs for some L1 < L2. Each of the subspace-constrained

imaging results achieved significantly less error than the full-rank (i.e., CS) method. The

superior performance from using L1 < L2 over that using L1 = L2 can be attributed to the

variable-rank model which better reflects the nature of cardiovascular images. In contrast,

the subspace model with L1 = L2 and the full-rank model do not distinguish between the

different regions of the image, imposing regionally unspecific model assumptions.

Figure 5.6 depicts normalized singular value curves of the cardiac region ĈΩ and the non-

cardiac region Ĉ̸Ω of the proposed reconstruction with L1 = 25 and L2 = 64. The curves

indicate that the constraint ∥R{Ψ}∥1,2 successfully promoted sparsity of the non-cardiac

spatial coefficients indexed above L1 = 25, yielding effective ranks of L2 = 64 for the cardiac
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(e)

(c)

(d)

Reconstruction

(a)

(b)

Error (x2)

Figure 5.5: The (a) gold standard, (b) sliding window reconstruction, and reconstructions
using (c) the full-rank (i.e., CS) model, (d) the proposed model with L1 = L2, and (e) the
proposed model with L1 < L2. The error images are scaled by a factor of 2.
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region and L1 = 25 for the non-cardiac region.
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Figure 5.6: Normalized singular value curves from the cardiac and non-cardiac regions of
the proposed reconstruction with L1 = 25 and L2 = 64. The proposed method successfully
enforced the desired effective ranks.

5.4 Sensitivity map estimation

The sensitivity encoding functions {Sq(r)}Qq=1 must also be known in order to solve Eq. (5.1).

Because these sensitivity encoding functions are assumed to be time-invariant, we propose to

extract them from composite k-space data {d̄q(k)}Qq=1, e.g., time-averaged (k, t)-space data

calculated according to using Eq. (5.6). The sampling schedule {kj, tj} plays a large part in

determining which strategy should be used to extract {Sq(r)}Qq=1 from the measured data.

For example, when {kj}Jj=1 (the set of k-space locations sampled over the course of the

image experiment) satisfies the Nyquist condition, composite images {ρ̄q(r)}Qq=1 can be re-

constructed from {d̄q(k)}Qq=1 via direct Fourier inversion; the sensitivity maps can then

be defined as Sq(r) = ρ̄q(r)/ρref(r), where ρref(r) is a coil reference image produced from

{ρ̄q(r)}Qq=1 by the sum-of-squares algorithm ρref(r) =
√∑Q

q=1 |ρ̄q(r)|2 or by some other

method (e.g., [85–88]).
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When {kj}Jj=1 does not satisfy the Nyquist condition but does satisfy the sampling re-

quirements of autocalibrating parallel imaging methods (e.g., GRAPPA [58], SPIRiT [89]),

then we have the option of using one of these methods to reconstruct full-resolution com-

posite images {ρ̄q(r)}Qq=1 or to instead reconstruct low-resolution composite images from the

autocalibration signal. The first strategy extends the method in [90] to instead produce

full-resolution sensitivity encoding functions; the second strategy can be seen as a variation

of mSENSE [91].

Although coil sensitivities are typically smooth (which would imply that they can be calcu-

lated from low-resolution images), it is commonplace for cardiovascular images to be acquired

with an FOV larger than the heart but smaller than the chest as a whole. This leads to

aliasing of the chest wall (but not the heart) as well as sharp features in the resulting lightly

aliased sensitivity functions [92], violating the assumption of smoothness and ensuring that

reduced-resolution images alone are inadequate for estimating the resulting coil sensitivities.

Figure 5.7 compares the effect of using low-resolution and full-resolution composite images

as we have described above to define the sensitivity maps for such a case. The sensitivity

weighting function changes sharply from high to low sensitivity in the aliased region; these

sharp changes are poorly modeled by the low-resolution sensitivity map and lead to arti-

facts in the reconstruction. As such, the results in the remainder of this dissertation employ

GRAPPA [58] to obtain {Sq(r)}Qq=1 from the time-averaged measured data (unless otherwise

noted), combining the advantages of GRAPPA reconstruction (e.g., robustness to overlap-

ping geometry) with the joint-channel reconstruction of the SENSE [55] inverse problem.

66



(a) (d)

(b) (e)

(c) (f)

Figure 5.7: ρref(r), S4(r), and SENSE reconstruction from {d̄q(k)}Qq=1 using {Sq(r)}Qq=1

when (a-c) low-resolution {ρ̄q(r)}Qq=1 are calculated using mSENSE; (d-f) full-resolution

{ρ̄q(r)}Qq=1 are calculated using GRAPPA. The coil sensitivity changes sharply where there
is aliasing of the chest wall, so the low-resolution sensitivity maps lead to artifacts in the
SENSE reconstruction (as indicated by the arrows).
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5.5 Algorithm

The convex optimization problem in Eq. (5.1) can be solved using an additive half-quadratic

minimization algorithm [93,94] extended to handle (1,2)-norm regularization and combined

with a continuation procedure [95]. This algorithmic approach has previously been shown to

be efficient for similar problems [43], and was used to generate the results in this dissertation.

For simplicity of notation, we define the operator

T{Ψ} =
1

λ

 λ1R{Ψ}

λ2vec(ΨΦ̂F t)

 (5.12)

in order to express the regularization constraints in Eq. (5.1) using an alternative (1,2)-norm

expression with groupings such that

λ∥T{Ψ}∥1,2,alt = λ1∥R{Ψ}∥1,2 + λ2∥vec(ΨΦ̂F t)∥1. (5.13)

Using this simplified notation, Eq. (5.1) becomes

Ψ̂ = argmin
Ψ

Q∑
q=1

∥∥∥dq − U{F rSqΨΦ̂}
∥∥∥2

2
+ λ∥T{Ψ}∥1,2,alt, (5.14)

which is a (1,2)-norm regularized inverse problem.

To solve Eq. (5.14), we employ the approximation ∥x∥1,2,alt ≈
∑

i=1 h[x(i)], where x(i) is

the ith group of x and

h(y) =

 ∥y∥22/2α, ∥y∥2 ≤ α

∥y∥2 − α/2, ∥y∥2 > α

= min
q

1

2α
∥y − q∥22 + ∥q∥2, (5.15)

68



with parameter α > 0 [94, 95]. This function h is both continuous and differentiable. As

α→ 0, we have h[x(i)] → ∥x(i)∥2, which further yields
∑

i=1 h[x(i)] → ∥x∥1,2,alt. The resulting

(1,2,alt)-norm approximation is

∥x∥1,2,alt ≈ min
g

1

2α
∥x− g∥22 + ∥g∥1,2,alt. (5.16)

The value of h(y) in Eq. (5.15) is reached when q is the projection of y onto the 2-norm ball

of radius max{0, ∥y∥2 − α}. Similarly, the approximation in Eq. (5.16) is achieved when g

is the projection of x onto the (1,2,alt)-norm ball of radius max{0, ∥x∥1,2,alt − α} [96].

Substituting Eq. (5.16) into Eq. (5.14), we now have a different optimization problem:

{Ψ̂, ĝ} = arg min
Ψ,g

Q∑
q=1

∥∥∥dq − U{F rSqΨΦ̂}
∥∥∥2

2
+

λ

2α
∥T{Ψ} − g∥22 + λ∥g∥1,2,alt. (5.17)

We can solve Eq. (5.17) through alternating optimization of g andΨ. At the nth iteration, we

fix Ψ as the result from the previous iteration, which we denote as Ψ̂(n−1). The minimization

problem for g(n) then has a cost function in the form of Eq. (5.16):

ĝ(n) = argmin
g

1

2α

∥∥∥T {
Ψ̂

(n−1)
}
− g

∥∥∥2

2
+ ∥g∥1,2,alt. (5.18)

It follows that ĝ(n) is the projection of T{Ψ̂
(n−1)

} onto the (1,2,alt)-norm ball of radius

max{0, ∥T{Ψ̂
(n−1)

}∥1,2,alt − α}. This projection is given by [96]

ĝ
(n)
(i) =


max{0,∥c(i)∥2−α}

∥c(i)∥2
c(i), if ∥c(i)∥2 ̸= 0

0, otherwise
, (5.19)

where c = T{Ψ̂
(n−1)

}.

With a fixed ĝ(n), we then minimize Eq. (5.17) with respect to Ψ. This is the quadratic
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optimization problem

Ψ̂(n) = argmin
Ψ

Q∑
q=1

∥∥∥dq − U{F rSqΨΦ̂}
∥∥∥2

2
+

λ

2α
∥T{Ψ} − ĝ(n)∥22, (5.20)

which we solve by the conjugate gradient method with initial guess Ψ̂(n−1).

Alternating optimization of Eq. (5.17) using the described procedure globally converges

to the solution [95]

Ψ̂ = argmin
Ψ

Q∑
q=1

∥∥∥dq − U{FrSqΨΦ̂}
∥∥∥2

2
+ λ

∑
i=1

h[T{Ψ}(i)]. (5.21)

The alternating minimization steps are each straightforward to compute: as the closed-form

solution to Eq. (5.18) is given by Eq. (5.19), and Eq. (5.20) can be efficiently solved using the

conjugate gradient method (the closed-form solution generally requires inversion of matrices

too large for direct computation).

The solution in Eq. (5.21) approximates the solution in Eq. (5.14) with increasing accuracy

as α → 0. Convergence generally requires fewer iterations for higher values of α [94], so we

combine the above alternating minimization algorithm with a continuation procedure [42,95].

In this procedure, a large initial α is used to solve Eq. (5.21), after which the resulting Ψ̂

is used as an initial guess to solve Eq. (5.21) with a smaller value of α. This process is

repeated until α is small enough that Eq. (5.21) closely approximates Eq. (5.14). Alternating

optimization with this continuation procedure converges globally to the solution in Eq. (5.21)

corresponding to the final value of α [95].
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Chapter 6

Experimental Results

6.1 Relative resolution and speed metrics

Spatial resolution and imaging speed will be reported in absolute terms as the Fourier pixel

width in mm and as the temporal sampling rate of the navigator data in frames per second

(fps), respectively. However, because the results in this chapter include images from rodent

(i.e., rat and mouse) studies in addition to human studies, relative metrics normalized to

the typical heart size and heart rate of each species will also be reported, facilitating com-

parison between images of different species. Here we establish standardized relative units

of: a) spatial resolution in myocardial units (mu), where 1 mu = the species average normal

thickness of the LV myocardium; and b) frame rate in frames per beat (fpb), where 1 fpb

= the frame rate matching the species average normal resting heart rate. Tables 6.1 and

6.2 report the reference values and conversion factors employed for reporting resolution and

speed in relative units.

Some of the text and figures in this chapter have been previously published in [10, 75, 76] and are
copyright of the IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.
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Table 6.1: Relative spatial resolution units and conversion factors from absolute to relative
units.

Reference LV myocardial thickness Conversion factor

Human 5.8 mm [97] 0.17 mu/mm

Rat 1.3 mm [98] 0.77 mu/mm

Mouse 0.67 mm [99] 1.5 mu/mm

Table 6.2: Relative frame rate units and conversion factors from absolute to relative units.

Reference heart rate Conversion factor

Human 75 bpm [100] 0.80 fpb/fps

Rat 400 bpm [101] 0.15 fpb/fps

Mouse 475 bpm [102] 0.13 fpb/fps

6.2 Implementation

All data for subspace-constrained imaging were collected according to the strategy outlined

in Chapter 4. For Dimg, each ky,j,2 was drawn from a set consisting of a) NACS central ky-

space locations with a sampling rate ∆ky satisfying the Nyquist condition, and b) additional

ky-space locations at the sampling rate P∆ky. The readout direction is considered to be

kx by convention, and no k-space undersampling was performed in the kz direction. We

produced the sampling schedule {(kj,2, tj,2)}J2,Qj=1,q=1 from successive random permutations of

the resulting (ky, kz)-space locations. The various implementations of Dnav will be specified

for each set of results. Figure 6.1 illustrates a representative sampling pattern. All subspace-

constrained imaging reconstructions were performed according to Eq. (5.1).

Experimental results include both human and animal subjects. All human experiments

were approved by the local Institutional Review Board, and all subjects gave informed con-

sent prior to scanning. All animals received humane care in compliance with the Guide for

the Care and Use of Laboratory Animals published by the National Academy of Science [103],
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(c)
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t

TR

Figure 6.1: Illustrative example of the sampling patterns implemented throughout this
chapter. Subfigure (a) depicts the (k, t)-space sampling patterns for Dnav (outlined circles)
and Dimg (filled circles) for 2D imaging using interleaved-pulse navigation and parameters
Nd = 3, NACS = 9, and P = 4. Subfigures (b) and (c) depict the k-space sampling locations
{kj,1}J1j=1 and {kj,2}J2j=1, respectively.

and the animal protocol was approved by the Carnegie Mellon University Institutional Ani-

mal Care and Use Committee.

6.3 Cine imaging

6.3.1 Data acquisition comparison

6.3.1.1 Rat subjects

To compare subspace estimation schemes in vivo in rats, we implemented different navigator

schemes using customized FLASH pulse sequences. We modified the interleaved-pulse navi-

gation strategy (Fig. 4.1-a) to use spiral navigators, and we performed self-navigation using

a music note navigator. (Fig. 4.1-b). Both experiments used Cartesian trajectories to col-

lect Dimg. For reference, we also acquired 2D gated cine images using the Bruker IntraGate

technique (Bruker BioSpin MRI, Ettlingen, Germany).
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Experiments were conducted on a Bruker Avance AV1 4.7 T scanner equipped with a

B-GA12 gradient set capable of 400 mT/m maximum gradient strength and a 4-channel

array coil. Imaging data were collected with FA = 18◦, FOV = 40 mm × 40 mm, matrix

size = 256 × 256, spatial resolution = 0.16 mm × 0.16 mm (0.12 mu × 0.12 mu), slice

thickness = 2 mm (1.5 mu), and imaging time = 5 min. Parallel acceleration was performed

with NACS = 32 and P = 2. The timing parameters for each imaging method were se-

lected for maximum speed: the Cartesian- and spiral-navigated images were collected with

TE = 3.0 ms and TR = 6.8 ms, for a frame rate of 74 fps (11 fpb); the self-navigated images

were collected with TE = 4.9 ms and TR = 10.5 ms, for a frame rate of 95 fps (14 fpb);

and the IntraGate images were collected with TE = 3.6 ms, TR = 7.3 ms, and 10 frames per

cardiac cycle (analogous to 67 fps and 10 fpb). The animals used in the comparison study

were Brown Norway (BN) rats. All data for subspace-constrained imaging were collected

continually with neither ECG gating/triggering nor breath holding. Low-rank images were

reconstructed with L1 = 16, L2 = 24 and shared regularization parameters.

Figure 6.2 shows representative images and spatiotemporal slices from each method. The

IntraGate method only reconstructs a single representative cardiac cycle rather than “real-

time” images; this cycle is repeated here to depict two cardiac cycles. The spiral-navigated

images have a slightly higher frame rate than the gated images, and the self-navigated images

are faster still, reaching 95 fps (14 fpb).

6.3.2 Image reconstruction comparison

6.3.2.1 Human subjects

We demonstrate the proposed approach in vivo in human subjects. We implemented the

data acquisition scheme on a Siemens TRIO 3 T scanner using a customized FLASH pulse

sequence and interleaved-pulse navigation. Typical imaging parameters were as follows:
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(a)

(b)

(c)

Figure 6.2: (a) Bruker IntraGate frame and a spatiotemporal slice through the dotted line,
followed by frames and spatiotemporal slices of subspace-constrained images using (b)
interleaved-pulse navigation with a spiral navigator trajectory, and (c) self-navigation with
a music note trajectory. Gated scans reconstruct only a single representative cardiac cycle,
so the same cycle is shown twice in (a). The spiral-navigated images have a slightly higher
frame rate than the gated images, without the experimental burdens and sensitivities to
arrhythmia and respiration associated with gated imaging. The self-navigated images share
these benefits and are faster still, reaching 95 fps (14 fpb).
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TR = 4.6 ms, TE = 2.5 ms, FA = 18◦, FOV = 328 mm × 350 mm, matrix size 330 × 352, in-

plane spatial resolution = 1.0 mm × 1.0 mm (0.17 mu × 0.17 mu), slice thickness = 6.0 mm

(1.0 mu), Q = 12, Nd = 5, NACS = 42, and P = 3. The total acquisition time was 3

minutes. All data were collected continually with neither ECG gating nor breath holding. We

reconstructed the sparsely sampled (k, t)-space data according to the proposed model with

L1 = 16 and L2 = 48, the proposed model with L1 = L2 = 48, and the full-rank (i.e., CS)

model. All regularization parameters λ1 and λ2 were set according to Morozov’s discrepancy

principle [104]. Specifically, the data discrepancy of our reconstructions matches the expected

discrepancy of a perfect, noiseless reconstruction:
∑Q

q=1 ∥dq − U{F rSqΨ̂Φ̂}∥22 = QJσ2,

where J is the number of measured samples per channel and σ2 is the variance of the

measurement noise. A data discrepancy
∑Q

q=1 ∥dq − U{F rSqΨ̂Φ̂}∥22 ≪ QJσ2 is associated

with overfitting of noise, and a data discrepancy
∑Q

q=1 ∥dq − U{F rSqΨ̂Φ̂}∥22 ≫ QJσ2 is

associated with model bias. We estimated σ2 from our outermost k-space data, which have

a low signal-to-noise ratio. Figure 6.3 depicts an end-diastolic frame from the reconstruction

with L1 = 16 and L2 = 48 as well as spatiotemporal slices through the left ventricle from all

reconstructions. The frame rate of all reconstructions is 22 fps (17 fpb).

A similar experimental procedure was used to demonstrate the effectiveness of the pro-

posed approach in human subjects with cardiac arrhythmias. The imaging protocol re-

mained the same, with specific imaging parameters as follows: TR = 4.3 ms, TE = 2.5 ms,

FA = 18◦, FOV = 286 mm × 340 mm, matrix size = 130 × 192, in-plane spatial resolu-

tion = 2.2 mm × 1.8 mm (0.38 mu × 0.31 mu), slice thickness = 7.0 mm (1.2 mu), Q = 12,

Nd = 5, NACS = 32, and P = 3. The total acquisition time was 2 minutes. We performed

reconstruction according to the proposed model with L1 = 15 and L2 = 64, the proposed

model with L1 = L2 = 64, and the full-rank (i.e., CS) model. All regularization parameters

λ1 and λ2 were set according to Morozov’s discrepancy principle. Figure 6.4 depicts an end-

diastolic frame from the reconstruction with L1 = 15 and L2 = 64 as well as spatiotemporal
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(b) (c)

(a)

Figure 6.3: End-diastolic cardiac frame and spatiotemporal slices from human experimental
results using (a) the full-rank (i.e., CS) model, (b) the proposed model with L1 = L2, and
(c) the proposed model with L1 < L2.
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slices through the left ventricle from all reconstructions. The frame rate of all reconstructions

is 23 fps (19 fpb).

(c) (b)

(a)

Figure 6.4: End-diastolic cardiac frame and spatiotemporal slices from arrhythmic human
experimental results using (a) the full-rank (i.e., CS) model, (b) the proposed model with
L1 = L2, and (c) the proposed model with L1 < L2.

6.3.3 Spatiotemporal resolution demonstration

6.3.3.1 Mouse subjects

Mouse imaging is a particularly challenging application of cardiac MRI due to very high

spatial and temporal resolution requirements. Mice have even smaller hearts and higher heart
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rates than do rats, making ungated, free-breathing cardiac imaging particularly difficult to

perform. Here we employ self-navigation to image myocardial wall motion in mice at 0.12 mm

× 0.12 mm (0.18 mu × 0.18 mu) spatial resolution with a frame rate of 97 fps (12 fpb).

Experiments were conducted on a Bruker Avance III 7 T scanner equipped with a B-

GA12S32 gradient set capable of 480 mT/m maximum gradient strength and a quadrature

surface coil. A customized FLASH pulse sequence with self-navigation was employed to

collect imaging data with FA = 18◦, FOV = 30 mm × 30 mm, matrix size = 256 × 256,

slice thickness = 1 mm (1.5 mu), and imaging time = 11 min. No parallel acceleration

was performed. Images were collected with TE = 5.1 ms and TR = 10.3 ms. Data were

collected continually with neither ECG gating/triggering nor breath holding. Images were

reconstructed with L1 = 16 and L2 = 24. Figure 6.5 shows a representative frame and

spatiotemporal slice from a mouse subject.

Figure 6.5: Single frame and spatiotemporal slice of a mouse heart using music note
self-navigation. At 0.12 mm × 0.12 mm spatial resolution (0.18 mu × 0.18 mu) and 97 fps
(12 fpb), these images show the capability of self-navigated imaging
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6.4 Myocardial perfusion imaging

6.4.1 Acute transplant rejection

6.4.1.1 2D rat imaging

The ability to assess organ rejection is crucial to the survival of heart transplant recipients.

The current clinical standard for detection of acute rejection is endomyocardial biopsy, an

invasive procedure that can lead to significant complications and/or missed diagnoses [105].

Cardiovascular MRI has shown promise for noninvasive assessment of the immune response

in transplanted hearts [106], but like many other cardiac MRI applications suffers from low

imaging speeds. Here we demonstrate integrated anatomical (i.e., EF) and functional (i.e.,

first-pass myocardial perfusion) assessments of in vivo transplanted rat hearts from a single

scan.

Allograft heart and lung transplants were performed from male Dark Agouti to male BN

rats, with each recipient gaining an additional heart and lung in the abdomen while the native

organs supported life. The allograft hearts underwent different degrees of rejection over time,

experiencing moderate rejection on post-operational day (POD) 5; by POD 7, the majority of

the allograft hearts had become severely rejected. In vivo MRI scans were performed on POD

5 and POD 7 for longitudinal monitoring of rejection on the same animals. Ungated images of

cardiac motion, respiratory motion, and first-pass myocardial perfusion were acquired on the

Bruker Avance III 7 T scanner described in Section 6.3.3.1 using a customized FLASH pulse

sequence with interleaved-pulse navigation. The images were collected with the following

parameters: TR = 10.4 ms, TE = 2.7 ms, FOV = 40 mm × 40 mm, matrix size = 256

× 256 ×, in-plane spatial resolution = 0.16 mm × 0.16 mm (0.12 mu × 0.12 mu), slice

thickness = 2 mm (1.5 mu), Q = 1, Nd = 1, and P = 1. The total acquisition time was 6

minutes. All data were collected continually with neither ECG gating/triggering nor breath
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holding. Dynamic contrast enhancement for first-pass myocardial perfusion imaging was

performed by injecting a 0.2 mmol/kg bolus of gadolinium contrast agent into each subject

after the start of data acquisition. The resulting frame rate of each reconstruction was equal

to 48 fps (7 fpb). No gating, triggering, or breath holding was used.

Figure 6.6 shows typical anatomical results from POD 5 and POD 7 for the same subject.

Snapshots from end-diastolic cardiac phases are pictured, as well as spatiotemporal slices

through the dotted lines. EF was relatively low by POD 5 and virtually zero by POD 7,

strongly indicating acute rejection of the transplanted heart; the heart rate also declined.

Figure 6.7 depicts baseline-corrected myocardial perfusion curves from POD 7, taken from

the same scan depicted in 6.6. A large perfusion defect is apparent across the mid-ventricular

inferior, inferolateral, and anterolateral myocardial segments.

3.6 s

(a) (b)

3.8 s

Figure 6.6: End-diastolic cardiac frames and spatiotemporal slices from post-operational
days (a) POD 5 and (b) POD 7. The later scan shows large reductions in EF and heart
rate.
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Figure 6.7: Baseline-corrected signal intensity curves from six mid-ventricular myocardial
segments on POD 7. Severe hypoperfusion is evident in the inferior, inferolateral, and
anterolateral segments.

6.4.2 Acute myocardial infarction

6.4.2.1 3D rat imaging

To demonstrate the proposed approach in vivo in rats, we implemented the data acquisi-

tion scheme on the Bruker Avance AV1 4.7 T scanner described in Section 6.3.1.1 using a

customized FLASH pulse sequence with interleaved-pulse navigation. The images were col-

lected with the following parameters: TR = 7.5 ms, TE = 2.4 ms, FA = 18◦, FOV = 40 mm

× 40 mm × 40 mm, matrix size = 62 × 62 × 128, spatial resolution = 0.65 mm × 0.65 mm

× 0.31 mm (0.50 mu × 0.50 mu × 0.24 mu), Q = 4, Nd = 1, and P = 1. The total

acquisition time was 24 minutes. All data were collected continually with neither ECG gat-

ing/triggering nor breath holding. Dynamic contrast enhancement for first-pass myocardial

perfusion imaging was performed by injecting a 0.2 mmol/kg bolus of gadolinium contrast

agent into each subject after the start of data acquisition. The animals used in the study

were BN rats with and without acute myocardial infarction induced by ligation of the left

anterior descending (LAD) coronary artery.
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We reconstructed the sparsely sampled (k, t)-space data according to the proposed model

with L1 = 15 and L2 = 48 and the proposed model with L1 = L2 = 48. The full-rank (i.e.,

CS) solution was not computed due to memory constraints. All regularization parameters

λ1 and λ2 were set according to Morozov’s discrepancy principle. Figure 6.8 depicts end-

systolic frames from the reconstruction with L1 = 15 and L2 = 48 as well as spatiotemporal

slices from each reconstruction. The frame rate of all reconstructions is 67 fps (10 fpb).

Figure 6.9 depicts baseline-corrected signal intensity curves from the four apical segments of

the myocardium in rats with and without ligation of the LAD coronary artery [107].

6.4.3 Ischemic reperfusion injury

6.4.3.1 3D rat imaging

Here we demonstrate integrated whole-heart 3D imaging of myocardial wall motion, first-pass

perfusion, and LGE using interleaved-pulse navigation with a cone navigator trajectory.

For this application, we employed a rodent ischemic reperfusion injury (IRI) animal model

using male BN rats. For IRI experiments, rats had a 45 min transient left circumflex (LCx)

coronary artery occlusion followed by re-perfusion. For control rats, no coronary artery

occlusion was performed. Contrast enhancement was performed in all subjects by injecting a

0.2 mmol/kg bolus of gadolinium contrast agent 5 minutes after the start of data acquisition.

For reference, the 2D IntraGate method was used to image a mid-ventricular slice before and

after each 3D imaging experiment.

Experiments were conducted on the Bruker Avance AV1 4.7 T scanner described in Sec-

tion 6.3.1.1. 3D imaging data were collected with FA = 10◦, FOV = 40 mm × 40 mm ×

24 mm, matrix size = 128 × 128 × 24, spatial resolution = 0.31 mm × 0.31 mm × 1.0 mm

(0.24 mu × 0.24 mu × 0.77 mu), NACS = 24, P = 2, TE = 2.5 ms, and TR = 6.8 ms,

for a frame rate of 74 fps (11 fpb). At 16 minutes, imaging time was short enough to re-
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(b)
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Figure 6.8: End-systolic cardiac frames and spatiotemporal slices from experimental results
in rats using (a) the proposed model L1 = L2, and (b) the proposed model with L1 < L2.
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Figure 6.9: Baseline-corrected signal intensity curves from apical segments of the
myocardium in (a) a healthy rat, and (b) a rat with a ligated LAD coronary artery.

main practical and long enough to collect both first-pass and delayed myocardial perfusion

images. All data for subspace-constrained imaging were collected continually with neither

ECG gating/triggering nor breath holding, using interleaved-pulse navigation. 3D subspace-

constrained images were reconstructed with L1 = L2 = 24. IntraGate images were collected

using the same parameters as the IntraGate images in Section 6.3.1.1.

Figure 6.10 shows pre- and post-contrast images of an IRI subject on the day of surgery.

The figure shows both 2D IntraGate and 3D cone-navigated subspace-constrained images in

order to compare the extent of the perfusion defect imaged by both methods. Figure 6.11

shows bullseye plots depicting time to peak concentration (TPC) of the first pass of contrast

agent through the myocardium of a) a control subject, and b) the same IRI subject as

in Fig. 6.10. The bullseye plots conform to the American Heart Association 17-segment

standard [108].
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Figure 6.11: 17-segment bullseye plots showing time to peak concentration (TPC) for: (a)
a control rat; (b) a rat with IRI (the same rat shown in Fig. 6.10). The TPC measurements
in (b) indicate extensive myocardial damage compared to (a), especially in the apical
anterior, mid-ventricular anterior, mid-ventricular anterolateral, and apical lateral
segments, consistent with the LGE images in Fig. 6.10

6.5 Extracellular volume fraction mapping

6.5.1 Modeling multiple contrasts

The image contrast equations for many fast imaging sequences (e.g., FLASH) assume that

the system has been driven into a steady state after multiple RF pulses. It is therefore

impossible to quickly cycle through different contrasts using these sequences, so multiple

contrasts must be collected asynchronously instead. Using FLASH imaging, we are therefore

concerned with the matrix of H image sequences {ρh(r, t)}Hh=1 (each with different image

contrast) concatenated along the time dimension:

Cmult =

[
C(ρ1) C(ρ2) · · · C(ρH)

]
. (6.1)

A trivial extension of explicit-subspace low-rank imaging for multiple asynchronous con-

trasts could independently model each ρh(r, t) as being Lth-order partially separable, with
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M ×N Casorati matrix representation C(ρh) = ΨhΦh. This would induce the structure

Cmult =

[
Ψ1Φ1 Ψ2Φ2 · · · ΨHΦH

]
=

[
Ψ1 Ψ2 · · · ΨH

]


Φ1 0 · · · 0

0 Φ2 · · · 0

...
. . .

...

0 0 · · · ΦH


, (6.2)

which implies that rank(Cmult) ≤ HL. Image reconstruction could then be performed by: a)

determining each Φh ∈ CL×N from the L most significant right singular vectors of C(Dnav,h);

and b) determining the MHL unknowns in {Ψh ∈ CM×L}Hh=1 by reconstructing each Ψh

from Dimg,h.

However, the above approach neglects the strong correlation between images of different

contrasts [109, 110]. This correlation implies that {C(ρh)}Hh=1 belong to a shared spatial

subspace of dimension K < HL, and that the matrix Cmult can instead be modeled as

Cmult = Ψmult

[
Φ1 Φ2 · · · ΦH

]
, (6.3)

with rank(Cmult) ≤ K < HL. Image reconstruction can then be performed by: a) jointly

determining [Φ1 Φ2 · · · ΦH ] ∈ CK×HN from the K most significant right singular vectors

of [C(Dnav,1) C(Dnav,2) · · · C(Dnav,H)]; and b) determining the MK < MHL unknowns

in Φmult ∈ CM×K by reconstructing Φmult from {Dimg,h}Hh=1. We will compare approaches

employing the individual and joint models for ECV mapping via variable-angle FLASH T1

mapping.

88



6.5.2 Results

6.5.2.1 3D rat imaging

For this application, we employed a rodent IRI animal model using male BN rats. Rats had a

45 min transient LCx coronary artery occlusion followed by re-perfusion. Data were collected

on the Bruker Avance AV1 4.7 T scanner described in Section 6.3.1.1. Imaging data with

four successive image contrasts (FA = 3◦, 19◦, 22◦, 28◦) were collected using a FLASH pulse

sequence. A 0.2 mmol/kg bolus of gadolinium contrast agent was then administered, followed

by a repeat of the previous four-contrast imaging protocol during the gadolinium steady-

state. Each of theH = 8 individual datasets were collected with 3D encoding, FOV = 40 mm

× 40 mm × 24 mm, matrix size = 96 × 96 × 24, spatial resolution = 0.42 mm × 0.42 mm

× 1.0 mm (0.32 mu × 0.32 mu × 0.77 mu), NACS = 24, P = 2, TE = 2.5 ms, TR = 10 ms

(for a frame rate of 50 fps = 8 fpb) and imaging time = 10 minutes. All data were collected

continually with neither ECG gating/triggering nor breath holding, using interleaved-pulse

cone navigation.

Figure 6.12 compares the NRMS error of low-rank approximations of Dnav using the in-

dividual structure of Eq. 6.2 to the error using the joint subspace structure of Eq. 6.3.

Collecting H = 8 individual rank-L Eckart–Young approximations of each Dnav,h results in

a total model order 8L, as compared to a total model order K for the rank-K joint Eckart–

Young approximation of Dnav. As expected, the joint model can more accurately represent

the data for any given total model order.

We compared the image quality of individual and joint reconstruction, selecting model

orders for the individual case based on the singular values of each C(Dnav,h), and for the

joint case based on the singular values of [C(Dnav,1) C(Dnav,2) · · · C(Dnav,H)]. The same

singular value cutoff was used to compare cases: σℓ/σ1 = 0.002, resulting in model orders

L = 23 and K = 28. Figure 6.13 shows one slice from a post-contrast frame of the image
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Figure 6.12: NRMS error of low-rank approximations of Dnav, employing either the
individual subspace structure of Eq. 6.2 or the joint subspace structure of Eq. 6.3. The
collection of H = 8 individual rank-L Eckart–Young approximations of each Dnav,h

corresponds to total model order 8L; the rank-K joint Eckart–Young approximation of
Dnav corresponds to total model order K. The data can be far more efficiently represented
using the joint model.

with FA = 28◦, reconstructed (a) individually and (b) jointly alongside other contrasts. The

individually reconstructed image suffers from motion and aliasing artifacts, a byproduct of

the shorter scan time (per contrast) and longer TR (for increased T1 weighting) as compared

to other 3D results in this chapter. The image quality of the joint reconstruction is clearly

superior.

After joint reconstruction of all eight images, a correlation analysis of the temporal basis

functions {φℓ}Kℓ=1 extracted synchronized respiratory cycles. We then solved Eq. (2.35) by a

direct search method [111] to obtain T1 at each voxel both before and after administration

of contrast agent; amplitude values were calculated according to Eq. (2.34), and ECV was

calculated according to Eq. (2.51). Figure 6.14 shows a slice from the 3D fitted amplitude

and R1 maps, pre- and post-contrast, as well as LV myocardial ECV overlaid on an amplitude

map. The region of elevated ECV clearly indicates the reperfusion injury.
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(a) (b)

Figure 6.13: Slice from a post-contrast frame (FA = 28◦), reconstructed either (a)
individually or (b) jointly with the images of other contrasts. The individually
reconstructed image suffers from motion and aliasing artifacts; joint reconstruction offers a
noticeable improvement in image quality.

6.6 Labeled cell imaging

6.6.1 Data acquisition comparison

6.6.1.1 Rat subjects

To demonstrate the increased speed offered by self-navigation specifically for T ∗
2 -weighted

imaging, we have compared navigation strategies for cardiac imaging of healthy BN rats. We

implemented both customized FLASH pulse sequences shown in Fig. 4.1: the interleaved-

pulse navigation strategy in Fig. 4.1-a and the music note self-navigation strategy in Fig. 4.1-

b. Imaging data were collected using FOV = 40 mm × 40 mm, matrix size = 256 × 256,

spatial resolution = 0.16 mm × 0.16 mm (0.12 mu × 0.12 mu), slice thickness = 2 mm

(1.5 mu), and imaging time = 5 min. Parallel acceleration was performed with NACS = 32

and P = 2. Typical timing parameters were TR = 10.5 ms, TE = 5.0 ms, resulting in a frame

rate of 48 fps (7 fpb) for interleaved-pulse navigation and a frame rate of 95 fps (14 fpb) for

self-navigation. All data were collected continually with neither ECG gating/triggering nor
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Figure 6.14: Slice from 3D fitted amplitude maps (a) pre-contrast and (b) post-contrast,
slice from 3D R1 maps (c) pre-contrast and (d) post-contrast, and (e) ECV map of the LV
myocardium overlaid on an amplitude map. Elevated ECV measurements indicate the
reperfusion injury.
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breath holding on the Bruker Avance AV1 4.7 T scanner described in Section 6.3.1.1. Images

were reconstructed using L1 = 16 and L2 = 24, with regularization parameters set according

to Morozov’s discrepancy principle. Figure 6.15 depicts spatiotemporal slices through the

heart using (a) interleaved-pulse navigation, and (b) self-navigation. The self-navigated slice

has double the frame rate and is noticeably sharper than that acquired with interleaved-pulse

navigation.

(a)

y

t

(b)

Figure 6.15: Spatiotemporal slices over the heart, using (a) interleaved-pulse navigation at
48 fps (7 fpb) and (b) self-navigation at 95 fps (14 fpb). The self-navigated slice is
noticeably sharper due to the higher frame rate.

6.6.2 Demonstration

6.6.2.1 Rat subjects

In order to image the infiltration of micron-sized particles of iron oxide (MPIO)–labeled

macrophages in the heart, we employed an IRI model in BN rats. IRI was induced by a

45 minute transient occlusion of the left circumflex coronary artery followed by reperfusion,

resulting in inflammation of the affected myocardial tissue. Macrophages and monocytes
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were labeled in circulation by intravenous administration of MPIO particles at least one

day before imaging [112, 113]. We evaluated macrophage infiltration in vivo through T ∗
2 -

weighted MRI using self-navigated subspace-constrained imaging. To highlight the utility of

imaging MPIO-labeled immune cells, we also performed T1-weighted LGE imaging, which

is ubiquitous in cardiac MRI examinations [67]. After the conclusion of in vivo imaging,

the hearts were excised and fixed in 4% paraformaldehye solution overnight and stored in

phosphate buffered saline. T ∗
2 maps were then obtained using ex vivo MRI.

For in vivo T ∗
2 -weighted imaging, data were collected using TR = 10.2 ms, TE = 5.1 ms,

FOV = 40 mm × 40 mm, matrix size = 256 × 256, spatial resolution = 0.16 mm × 0.16 mm

(0.12 mu × 0.12 mu), slice thickness = 1 mm (0.8 mu), imaging time = 10 min, NACS = 32,

and P = 2. All data were collected continually with neither ECG gating/triggering nor

breath holding using the Bruker Avance AV1 4.7 T scanner described in Section 6.3.1.1.

Reconstructions were performed as in Section 6.6.1.1. The frame rate of the resulting images

was 98 fps (15 fpb).

Ex vivo scans were performed on a Bruker Avance 11.7 T scanner with a single-channel

volume coil using a multislice multiecho sequence with TR = 1 s, TE = 8 ms, 16 ms, 24 ms,

. . . , 64 ms (echoes = 8, echo spacing = 8 ms), FOV = 12.5 mm × 12.5 mm, matrix

size =128 × 128, spatial resolution = 0.10 mm × 0.10 mm (0.075 mu × 0.075 mu), and

slice thickness = 2 mm (1.5 mu).

Figure 6.16 shows (a) a self-navigated in vivo T ∗
2 -weighted short-axis slice from a rat with

IRI on POD 4, as well as (b) a T ∗
2 map computed from ex vivo MRI. Dark patches are

visible in the in vivo image and corroborated by the ex vivo T ∗
2 map, indicating macrophage

accumulation to the myocardial region affected by the artery ligation. The self-navigated

in vivo image sequence further revealed myocardial akinesis in the region surrounding the

inflamed tissue, consistent with injury to that location.
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Figure 6.16: MPIO-labeled cell imaging of a short-axis slice on a rat with IRI (POD 4)
using (a) self-navigated in vivo T ∗

2 -weighted imaging, and (b) ex vivo T ∗
2 -mapping. The

dark patches of myocardial tissue visible in the in vivo image indicate macrophage
accumulation and are corroborated by the ex vivo T ∗

2 map.

6.6.3 Contrast mechanism comparison

6.6.3.1 Rat subjects

For LGE imaging, the Bruker IntraGate method was used to acquire retrospectively gated

T1-weighted images 10 minutes after the introduction of a 0.1 mmol/kg bolus of gadolinium-

based contrast agent. LGE imaging data were collected using TR = 5.6 ms, TE = 3.1 ms,

FOV = 40 mm × 40 mm, matrix size = 128 × 128, spatial resolution = 0.31 mm × 0.31 mm

(0.24 mu × 0.24 mu), slice thickness = 1 mm (0.8 mu), and imaging time = 10 min. Images

were acquired using the Bruker Avance AV1 4.7 T scanner described in Section 6.3.1.1.

Figure 6.17 shows an LGE image from the same subject as in Fig. 6.16. The image shows

no gadolinium contrast enhancement in the myocardium, indicating that the myocardium is

still viable; the only indication of the injury was myocardial akinesis (observed in this image

sequence just as in the self-navigated T ∗
2 -weighted images). The lack of late gadolinium en-
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hancement in Fig. 6.16 highlights the difference between MPIO-labeled immune cell imaging

and LGE imaging, demonstrating the value of imaging macrophage accumulation.

Figure 6.17: Gated LGE imaging of the same subject. Despite the reperfusion injury, no
gadolinium contrast enhancement is visible in the myocardium, highlighting the difference
between MPIO and other contrast mechanisms such as gadolinium-based agents.
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Chapter 7

Discussion and Conclusions

7.1 Cine imaging

Each set of images in Figure 6.2 depicts the same myocardial wall motion at different frame

rates. The subspace-constrained images are free of the experimental burdens and sensitivities

to arrhythmia which are characteristic of ECG-gated images. Additionally, the subspace-

constrained images capture respiratory motion (the IntraGate images were created using

retrospective respiratory gating) and depict the entire image sequence (as opposed to a

single representative cardiac cycle). Each of the subspace approaches reconstructed more

cardiac phases per cycle than the IntraGate method, with the self-navigated images having

the highest frame rate (95 fps = 14 fpb).

The primary tradeoff of the speed boost from self-navigation is a later minimum echo time;

however, the signal gain from a longer repetition time may offset the signal loss from the

later echo time, depending on the T1 and T
∗
2 values of the tissue being imaged. Indeed, when

compared to Fig. 6.2-b, the self-navigated images in Fig. 6.2-c have increased T ∗
2 -weighting

due to the later echo time but higher overall SNR due to the longer repetition time. The

Some of the text and figures in this chapter have been previously published in [10, 75, 76] and are
copyright of the IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.
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importance of this tradeoff is application-dependent: for T ∗
2 -weighted imaging applications

such as labeled cell imaging, an even later echo time is desired, and the tradeoff disappears

entirely.

In Figs. 6.3 and 6.4, the results using L1 < L2 show clear improvement over the results

using L1 = L2 and the full-rank (i.e., CS) methods. The reconstructions with L1 < L2

clearly depict the cardiac and respiratory cycles without the blurring seen in the other

reconstructions. All three reconstructions fit the data to the same degree, but the model

with L1 < L2 is the most flexible: it exhibits the least model bias and captures more subtle

temporal variations than do the other models. The other reconstructions show a clear model

bias, relying far more heavily on (r, f)-space sparse regularization than did the model with

L1 < L2.

Figure 6.5 demonstrates the effectiveness of the approach for ungated, free-breathing imag-

ing given particularly high spatial and temporal resolution requirements, successfully imaging

mouse hearts at 97 fps (12 fpb) with an in-plane spatial resolution of 0.12 mm (0.18 mu).

7.2 Myocardial perfusion imaging

In Fig. 6.8, the proposed image reconstruction method with L1 < L2 shows some improve-

ment over the proposed method with L1 = L2, although the differences between the recon-

structions are less obvious than in the human case. As in the human case, all reconstructions

match the measured data to the same degree. The images from the proposed method with

L1 < L2 are sharper and show slightly less model bias than the images from the pro-

posed method with L1 = L2. The increased similarity between the two reconstructions can

be partly attributed to the increased reliance of the proposed method with L1 < L2 on

the (r, f)-space sparse regularization term for more highly undersampled scenarios such as

whole-heart 3D imaging. The subspace model allows storage of C(ρ) in the factored form
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ΨΦ, allowing memory-efficient computation even in high-dimensional cases for which C(ρ)

cannot be stored in memory. The CS method requires the full C(ρ) to be stored at each

iteration, and was therefore not computed due to memory limitations.

In Fig. 6.9, hypoperfusion is apparent in the apical and septal segments, both of which

are associated with LAD blood supply [114]; the ligated artery was identifiable using the

proposed method.

In Fig. 6.10-a,b, the extent of the in-plane LGE perfusion defect matches in the 2D In-

traGate reference images and the corresponding slice from the 3D images. The defect is

specifically seen in the mid-ventricular anterior and anterolateral myocardial segments. The

contrast weighting of the 2D and 3D images are different due to the differences between

slice excitation and slab excitation; here, the 3D images have a better contrast enhancement

ratio. The additional benefit of 3D imaging can be seen in Fig. 6.10-c, which shows how far

the perfusion defect extends along the anterior and lateral walls of the myocardium towards

the apex.

The first-pass perfusion measurements in Fig. 6.11-b indicate extensive myocardial damage

when compared to the control rat in Fig. 6.11-a. This is clearest in the apical anterior,

mid-ventricular anterior, mid-ventricular anterolateral, and apical lateral segments, which is

consistent with the LGE images in Fig. 6.10.

7.3 Extracellular volume fraction mapping

Figure 6.14 shows the ability of jointly modeled explicit-subspace imaging to generate the

3D T1 maps appropriate for ECV calculation without requiring ECG or respiratory control.

Elevated ECV values were apparent in the anterior, anterolateral, and apical myocardial

segments, consistent with interruption in the LCx blood supply. This demonstrates that

ECV measurement using 3D explicit-subspace imaging is a potentially powerful tool for
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myocardial tissue characterization.

However, it may ultimately be desirable to use a pulse sequence other than FLASH, which

has the following major limitations in the context of dynamic T1 mapping. First, the FLASH

contrast equation assumes that the system has reached a steady-state after many RF pulses.

The time required to reach steady-state precludes quick cycling between contrasts. Different

contrasts are instead collected asynchronously, requiring an extra analysis step to extract

matching cardiac cycles for T1 fitting. Second, T1 fitting requires knowledge of the flip angles

{αi}Fi=1, each of which is a function of the RF pulse B1(r, t) used for excitation. A number of

practical issues lead to uncertainty in the true values of {αi}Fi=1, including B1 inhomogeneity,

non-rectangular excitation profiles (especially troublesome for 2D imaging), and nonlinearity

of the flip angle as a function of transmit power.

Several other pulse sequences for T1 mapping of the myocardium are available as an alter-

native to FLASH (e.g., [115–119]). These sequences allow synchronous/interleaved contrasts;

furthermore, they are robust to B1 inhomogeneity, as they rely on variable timings rather

than variable flip angles. Because the contrasts are synchronous, joint modeling of differ-

ent contrasts could potentially be performed through the extension of low-rank modeling to

low-rank tensor modeling [120,121].

7.4 Labeled cell imaging

Figure 6.15 reveals the accelerated frame rate provided by self-navigation. The efficiency of

the self-navigated pulse sequence offers an immediate two-fold increase in imaging speed with-

out affecting image contrast weighting, thereby enabling high-speed, free-breathing MPIO-

labeled cell imaging without ECG or respiratory gating.

Figure 6.16 demonstrates the feasibility of self-navigated T ∗
2 MPIO-labeled cell imaging.

The method is capable of producing high-resolution images which indicate macrophage in-
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filtration through negative contrast, allowing noninvasive identification of inflamed tissue.

Coupled with the akinesis at the site of the negative contrast (revealed by the in vivo images),

the high level of agreement between Figs. 6.16-a and 6.16-b confirms that the dark patches

imaged in vivo indeed arise from shortened T ∗
2 due to the accumulation of MPIO-labeled

macrophages.

T ∗
2 -weighted imaging with SPIO labeling provides complementary information to other

contrast weightings and contrast agents, as evidenced by Fig. 6.17. LGE imaging, which is

performed far more commonly than SPIO-labeled cell imaging, is the clinical gold standard

for assessing myocardial viability. As such, LGE does not indicate minor injuries which cause

inflammation, only injuries that irreversibly damage the myocardium. The lack of gadolinium

contrast enhancement in Fig. 6.17 underscores the utility of SPIO as a contrast agent. Even

though the entire myocardium is viable (as demonstrated by the lack of gadolinium contrast

enhancement), the tissue is still inflamed, which cannot be inferred from the LGE images

alone.

7.5 Conclusions

Cardiovascular MRI can be significantly accelerated by leveraging explicit-subspace low-

rank imaging, particularly when integrated with parallel imaging and sparse modeling. This

dissertation has described a novel approach to integrate these three approaches. We have

shown that non-Cartesian navigation makes subspace estimation robust to navigator orien-

tation and that the data acquisition speed of subspace-constrained imaging can be further

improved using self-navigated pulse sequences which collect both navigator and imaging data

within the same TR interval. These properties of the proposed data acquisition scheme have

been validated using both simulation and in vivo cardiac imaging data.

This explicit-subspace approach has been shown to achieve imaging speeds high enough
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to represent cardiac and respiratory motion without the need for gating or triggering. Very

high imaging speeds are even achievable in 3D: for example, speeds of up to 74 fps (11 fpb)

at 0.31 mm × 0.31 mm × 1.0 mm (0.24 mu × 0.24 mu × 0.77 mu) spatial resolution

were demonstrated in rats, depicting cardiac motion, respiratory motion, and contrast agent

dynamics in a single experiment. Images with multiple contrasts can be jointly modeled,

such as in the case of 3D T1 mapping for ECV measurements.

We have also demonstrated T ∗
2 -weighted imaging of inflamed myocardial tissue at 0.16 mm

(0.12 mu) in-plane spatial resolution and 98 fps (15 fpb) using self-navigation. Use of the self-

navigated pulse sequence doubles the imaging speed as compared to interleaved-pulse nav-

igation, accelerating SPIO-labeled cell imaging. Using self-navigated T ∗
2 -weighted imaging,

we have observed macrophage accumulation in vivo without the use of cardiac or respiratory

gating. Our noninvasive method for assessment of SPIO-labeled macrophage accumulation

(corroborated by ex vivo T ∗
2 maps and observed regional myocardial akinesis) identified

reperfusion injury where gadolinium contrast enhancement could not.

This dissertation presented an approach to accelerated MRI exploiting mathematical signal

properties of cardiovascular images, allowing comprehensive evaluation of the heart through

the visualization and measurement of cardiac structures and functions in very high spatial

and temporal resolution. Looking forward, even greater advances may be achievable by ad-

ditionally incorporating physics, physiology, computational modeling, and machine learning.

Synergistic integration of computational modeling and imaging could leverage physical and

physiological properties of the heart, blood, and vasculature to reconstruct images from even

less MR data; machine learning techniques could be used to directly populate computational

models from (k, t)-space data. Furthermore, a growing emphasis on quantitation will allow

for more reproducible, objective diagnoses. These developments would not only enhance

the capability of cardiovascular MRI but also transform biomedical imaging and its role in

medicine.
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