
c© 2015 Mayank Pundir

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158301863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ZORRO: ZERO-COST REACTIVE FAILURE RECOVERY
IN DISTRIBUTED GRAPH PROCESSING

BY

MAYANK PUNDIR

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Advisers:

Professor Roy H. Campbell
Associate Professor Indranil Gupta

ABSTRACT

Distributed graph processing frameworks have become increasingly popular for
processing large graphs. However, existing frameworks either lack the ability to
recovery from failures or support proactive recovery methods. Proactive recovery
methods like checkpointing incur high overheads during failure-free execution
making failure recovery an expensive operation.

Our hypothesis is that reactive recovery of failures in graph processing that pro-

vides a zero-overhead alternative to expensive proactive failure recovery mecha-

nisms is feasible, novel and useful. We support the hypothesis with Zorro, a recov-
ery protocol that reactively recovers from machine failures. Zorro utilizes vertex
replication inherent in existing graph processing frameworks to collectively re-
build the state of failed servers. Surviving servers transfer the states of inherently
replicated vertices back to replacement servers, which rebuild their state using the
received values. This fast recovery mechanism prioritizes high degree vertices en-
suring high accuracy of graph processing applications. We have implemented our
approach in two existing distributed graph processing frameworks: LFGraph and
PowerGraph. Experiments using graph applications on real-world graphs show
that Zorro is able to recover between 87-92% graph state when half the cluster
fails and maintains at least 97% accuracy in all experimental failure scenarios.

ii

To my parents and brother, for their love and support.

iii

ACKNOWLEDGMENTS

I would like to thank my advisers Professor Roy H. Campbell and Associate Pro-
fessor Indranil Gupta for their invaluable support and advice during my Masters
degree. They helped ensure that I had all the resources and guidance I needed to
complete my projects. I would like to thank Luke Leslie who collaborated with
me on this project. I would like to acknowledge the guidance provided by Systems
Research Group and Distributed Protocols Research Group students like Cristina
Abad, Faraz Faghri, Muntasir Rahman and Mainak Ghosh. Finally, I would like to
thank my family and friends for their love and support. My research assistantship
during my Masters degree was funded by an NSF grant.

iv

TABLE OF CONTENTS

Chapter 1 INTRODUCTION . 1
1.1 Contributions . 2

Chapter 2 RELATED WORK . 4
2.1 Distributed Graph Processing Frameworks 4
2.2 Failure Recovery in Graph Processing 5
2.3 Failure Recovery in Related Systems 8

Chapter 3 BACKGROUND . 9
3.1 Gather-Apply-Scatter Model . 9
3.2 Distributed Graph Processing Frameworks 11

Chapter 4 MOTIVATION . 13
4.1 Limitations of Proactive Approaches 13
4.2 Reactive Failure Recovery . 16

Chapter 5 ZORRO PROTOCOL DESIGN 19
5.1 Systems Assumptions . 19
5.2 Framework Classification . 20
5.3 Zorro Failure Recovery Protocol 23
5.4 Analyzing Reactive Recovery . 26

Chapter 6 IMPLEMENTATION DETAILS 29
6.1 LFGraph . 29
6.2 PowerGraph . 32

Chapter 7 EVALUATION . 35
7.1 Experimental Setup . 35
7.2 Applications . 36
7.3 Recovery Time . 45
7.4 Communication Overhead . 46

Chapter 8 FUTURE WORK . 48

Chapter 9 CONCLUSION . 49

BIBLIOGRAPHY . 50

v

Chapter 1

INTRODUCTION

Large graphs derived from online social networks [31], search engines [10, 9] and
biological networks [11] have made centralized methods of graph processing in-
adequate. Today, graphs consisting of trillions of edges are common in the Indus-
try [16]. As graphs continue to grow, distributed graph processing is employed to
extract valuable information. Google’s Pregel [38] was one of the first distributed
computation paradigms for processing large graphs. Subsequently, frameworks
such as GraphLab [33], PowerGraph [23], LFGraph [26], GraphX [24], Pega-
sus [30] and GPS [46] have progressed the field of distributed graph processing.

To process large graphs, these distributed graph processing frameworks often
run on clusters consisting of hundreds or even thousands of servers [38]. As
the scale of distributed graph processing grows, failure recovery is increasingly
needed. The most common failure recovery mechanisms in graph processing
are proactive in nature i.e., they prepare for failures during failure-free execu-
tion. Pregel [38], Piccolo [42], Graph Processing System (GPS) [46], Distributed
GraphLab [33] and PowerGraph [23] all use proactive checkpoint-based failure
recovery mechanisms. Periodically, the framework saves a global snapshot of the
system on reliable storage. After failures, the most recent snapshot is used to re-
build the last persisted graph state, from which processing resumes. Checkpoint-
based recovery mechanisms incur a high overhead in planning for future failures
during failure-free execution. For example, determining and saving a snapshot of
application state on real world graphs partitioned across 16 servers increases the
execution time of one iteration of PageRank application by 8−31 times as shown
in Figure 1.1

More recently, a replication based proactive failure recovery mechanism [55]
has been proposed wherein K+1 replicas of each vertex are maintained to tolerate
a K server failure. Even though this forced replication mechanism uses inherently
created replicas, it incurs a constant overhead of updating the additional replicas
in each iteration.

1

 0
 5

 10
 15
 20
 25
 30
 35

CA-Road Twitter UK-WebSl
ow
do
wn
 F
ac

to
r

Graph Dataset

SSD HDD

Figure 1.1: Overhead of determining and saving PageRank application state
checkpoint on 16 servers (each with an SSD), using the graph datasets in Table
1.1.

Dataset Vertex Count Edge Count
Road Network (CA) [6] 1.96 M 2.76 M
Twitter [31] 41.65 M 1.47 B
UK Web Graph [10] [9] 105.9 M 3.74 B

Table 1.1: Graph datasets.

In this thesis, we argue that failure recovery mechanisms in graph process-
ing that incur an overhead during failure-free execution are unnecessary. To this
end, we introduce Zorro - a Zero-COst Reactive RecOvery protocol for distributed
graph processing frameworks. Zorro does not prepare for server failures and
hence, incurs no overhead during failure-free execution. When failures occur,
it exploits vertex replication inherent in distributed graph processing frameworks
to collectively rebuild the state of failed servers. Surviving servers transfer the
states of inherently replicated vertices back to replacement servers which rebuild
their state using the received states. This fast recovery mechanism prioritizes high
degree vertices ensuring high accuracy of graph processing applications.

1.1 Contributions

Our hypothesis is that reactive recovery of failures in graph processing that pro-

vides a zero-overhead alternative to expensive proactive failure recovery mecha-

2

nisms is novel, feasible and useful.
We support the hypothesis using the following:

• Reactive recovery is novel: Existing graph processing frameworks either
lack failure recovery or utilize expensive proactive recovery mechanisms
like checkpointing and replication. To the best of our knowledge, we are
the first to explore reactive failure recovery in distributed graph processing
frameworks. We discuss related work in Chapter 2.

• Reactive recovery is feasible: We show that reactive recovery is feasible
by implementing Zorro in two popular distributed graph processing frame-
works: LFGraph [26] and PowerGraph [23]. We further discuss the moti-
vation and feasibility of Zorro in Chapter 4.

• Reactive recovery is useful: We show that Zorro reactive recovery mecha-
nism provides a fast, cheap and accurate alternative to expensive proactive
recovery mechanisms. We show that recovery with Zorro is fast and takes
less than the time taken by an iteration of graph processing applications.
We show that Zorro results in accurate recovery with popular graph pro-
cessing applications exhibiting more than 97% accuracy even with half of
the cluster servers failing. We discuss detailed experimental evaluation in
Chapter 7.

The rest of the thesis is organized as follows: In Chapter 2 we discuss related
work and compare Zorro with existing literature. In Chapter 3, we present back-
ground of distributed graph processing. In Chapter 4, we motivate reactive recov-
ery in graph processing. In Chapter 5, we discuss the design of Zorro reactive
recovery protocol. In Chapter 6, we classify distributed graph processing frame-
works intro two categories and discuss the implementation of Zorro in each cat-
egory. In Chapter 7, we experimentally evaluate the implementation of Zorro in
distributed graph processing frameworks using real-world graph and applications.
We discuss directions for future work in Chapter 8. Finally, we conclude the thesis
in Chapter 9.

3

Chapter 2

RELATED WORK

In this thesis, we have studied failure recovery in distributed graph processing
frameworks. In this chapter, we discuss existing graph processing frameworks
and their recovery mechanisms.

2.1 Distributed Graph Processing Frameworks

Distributed processing of large graphs began with the advent of data-parallel para-
digms such as MapReduce [19]. Such paradigms enabled processing large datasets
without the users being aware of the distributed nature of computation. The
MapReduce paradigm and its open-source implementation Hadoop [3] utilize data
partitioned across a distributed file system [50] [22] using a series of Map, Shuffle
Reduce task. The MapReduce paradigm enabled the execution of graph process-
ing applications such as PageRank [12], single-source shortest paths, connected
components, label propagation, etc. For example, [43] discusses scalable methods
of performing graph processing with the MapReduce paradigm.

However, the research community realized the inflexibility of the MapReduce
paradigm for graph processing [36] which led to paradigms customized for graph
processing. To this end, Pregel [38], a vertex-centric abstraction suitable for dis-
tributed processing of large graphs was proposed by Google.

Pregel and its open source implementations Piccolo [42] and Giraph [1] provide
a vertex-centric abstraction for graph processing where a user-defined program is
executed at vertices in parallel. The vertex-centric program follows the Gather-
Scatter-Apply model whereby it executes the stages of Gather, Apply and Scatter.
In the Gather phase, a vertex aggregates values from incoming neighbors. In the
Apply phase, it processes the aggregated value to update its own value and in the
Scatter phase, the result of processing is transferred to outgoing neighbors.

Graph Processing System [46] is an extension of the Pregel model with op-

4

timizations such as dynamic re-partitioning of vertices to reduce communica-
tion costs during the Scatter phase. To further reduce the communication costs
in the Pregel model, GraphLab [34] and Distributed GraphLab‘[33] were intro-
duced. GraphLab reduces the communication cost by replicating vertices on
servers that need them for the Gather phase. These replicas are called Ghost ver-
tices and are updated after each iteration by the master replica. PowerGraph [23],
GraphLab’s successor reduces the computation cost by distributing the computa-
tion load across these replicas. This is particularly useful for power-law graphs [7]
where vertices may have arbitrarily large degrees. After each iteration, the mir-
rored replicas send the values of their partial computation to the master replica
which aggregates them and transfers the aggregate value back to the mirrored
replicas. LFGraph [26] further reduces the computation and communication cost
for the Gather-Apply-Scatter model of graph processing. PowerLyra [15] provides
an extension to PowerGraph for handling low-degree and high-degree vertices
separately to better handle graphs with power-law distribution. In LFGraph [26],
vertices are mirrored only at their outgoing neighbors on remote servers reducing
communication cost to update the mirrors.

More recently, a Resilient Distributed Datasets (RDDs) abstraction of data-
parallel processing was proposed in Spark [58] [59] [5] which is used by the
graph processing framework GraphX [24] [2]. An RDD is an in-memory, read-
only dataset which can be built either from data stored on persistent storage such
as disks or from other RDDs. Each RDD maintains the sequence of operations
required to build it in the form of a lineage graph. Different combinations of oper-
ations provided by the RDD abstraction (such as map, join and filter) to transform
one RDD to another enable distributed graph processing in GraphX. In addition
to graph processing, GraphX also provides the operations performed by a general
data-flow system such as graph loading and graph analytics.

2.2 Failure Recovery in Graph Processing

To the best of our knowledge, we are the first to explore reactive failure recovery
in distributed graph processing frameworks.

In the MapReduce paradigm, tasks being executed at workers are monitored by
a master. The master receives regular progress reports from workers in the form
of heartbeats. In the absence of heartbeats from a task, the master considers the

5

task failed and initiates a new copy of the task on a different server. Additionally,
the master measures the progress of Map tasks and spawns backup copies of slow
or straggler tasks. This process of mitigating straggler tasks is called speculative
execution [19]. Fault tolerance using re-execution of tasks and speculative exe-
cution are possible in MapReduce because of the independence among different
Map tasks. Re-execution of tasks is not possible in specialized graph processing
frameworks because of dependence among tasks being executed across servers.
The Gather-Apply-Scatter phases of graph processing need to be performed si-
multaneously at all servers. Even with asynchronous computation models defined
in GraphLab [33] and PowerGraph [23], tasks being executed by a server have a
strong dependency on the in-memory graph state.

In specialized graph processing frameworks, two proactive recovery techniques
are prominent: (i) Replication-based recovery and (ii) Checkpointing-based re-
covery.

Imitator [55] has a similar goal as Zorro of reconstructing graph state from
surviving servers. However, it utilizes vertex replication mechanism to ensure that
each vertex has at least K + 1 replicas to tolerate a K server failure. The vertex
replication mechanism is optimized by using the replicas that are already created
on remote servers by the computation model in Hama [4]. This forced replication
mechanism incurs a constant overhead of updating the additional replicas in each
iteration. Additionally, the replication mechanism requires setting the value of K

which may be hard as failures are unpredictable.
Checkpoint-based recovery is the most common failure recovery mechanism in

distributed graph processing frameworks. Pregel [38], Piccolo [42], Graph Pro-
cessing System [46], Distributed GraphLab [33] and PowerGraph [23] all provide
failure recovery using checkpoint-based mechanisms.

In Pregel [38], workers checkpoint the state of vertex and edge values as well as
the received messages from incoming neighbors. Additionally, the master check-
points the state of global aggregators. Pregel uses a heartbeating mechanism for
worker membership maintenance wherein worker failures by the absence of heart-
beats. The master process reassigns partitions that failed servers were process-
ing to either remaining servers or replacement servers. The authors in [38] also
propose a confined recovery mechanism wherein workers checkpoint the state of
outgoing messages in addition to vertex and edge values and received messages.
Checkpointing of outgoing messages reduces the recovery cost by ensuring that
only the replacement servers need to repeat the lost iterations. However, the au-

6

thors do not evaluate the overhead involved in checkpointing or during failure
recovery.

Piccolo [42], an open-source implementation of Pregel uses checkpointing along
with user-assistance to recover from failures. At periodic intervals, it uses the
Chandy-Lamport snapshot algorithm [14] to determine a global snapshot of the
system which is then checkpointed. The user needs to assist the process by check-
pointing the program information. In addition to original Chandy-Lamport snap-
shot algorithm based checkpointing, Distributed GraphLab [33] also proposes an
asynchronous variant of the algorithm suitable for GraphLab’s asynchronous com-
putation mode. The graph processing application may proceed along with the
snapshot algorithm which masks the cost of checkpointing. However, after fail-
ures, some iterations may need to be repeated which increases the recovery cost
significantly.

The authors in [49] propose a partition-based recovery (PBR) mechanism that
achieves faster recovery than traditional checkpoint-based mechanisms. It does so
by generating a recovery plan to parallelize and partition the recovery task among
surviving servers with the aim of greedily optimizing the computation and com-
munication cost of rebuilding the lost state. The authors claim that the proposed
recovery mechanism is the first in distributed graph processing frameworks to
handle cascading failures. It does so by initiating a new recovery plan considering
the most recent cluster state.

All proactive recovery mechanisms incur a constant overhead even during failure-
free execution of graph processing frameworks. The authors of GraphX [24] state
that checkpointing in distributed graph processing and data-flow systems is so
expensive that users never turn it on. The authors of Distributed GraphLab [33]
state that checkpoint-based failure recovery makes users explicitly balance failure
recovery costs against restarting computation. Zorro adopts the stance that it is
unnecessary to incur this overhead by showing that it is possible to recovery a
large percentage of the graph (87− 92%) even with half of the servers failing in
a cluster without incurring any overhead during failure-free execution. Addition-
ally, Zorro recovers from arbitrary number of independent and cascading server
failures with over 97% accuracy for graph processing applications. To summarize,
Zorro makes recovery from failures reactive, cheap and simple.

To reduce dependence on checkpointing, GraphX [58] uses lineage graph-based
recovery provided by the Resilient Distributed Datasets (RDDs) abstraction pro-
vided by Spark [58]. An RDD stores the sequence of transformations that were

7

used to create it and replays the transformations on the input data which present on
persisted storage. However, even with the fast reconstruction of RDDs the execu-
tion time with one server failure (out of 16) incurs an overhead of 36% [24] while
performing PageRank using the UK web graph [9] [10]. Additionally, lineage-
based recovery may require checkpoints to reduce the size of lineage graphs.

2.3 Failure Recovery in Related Systems

The authors in [47] propose an optimistic failure recover mechanism for iterative
data-flow systems such as Stratosphere [21]. They claim that the processing state
in such systems can reach a consistent state even after failures using “algorith-
mic compensation” functions. The system allows users to specify a “compensate”
function appropriate for the distributed application. They show that such functions
exist for three categories of applications involving link exploration (e.g. central-
ity computation), path exploration (e.g. shortest paths computation) and matrix
factorization.

RAMCloud [41], an in-memory storage framework distributes data replicas
across servers. After failures, RAMCloud proposes fast recovery by enabling
surviving servers to participate in the state reconstruction of the failed servers in
parallel.

There has been a lot of research in the field of failure recovery [20, 13]. Opti-
mistic failure recovery has also been explored in distributed systems [53, 29, 51, 8]
and large networks [35]. However, most of the optimistic failure recovery mech-
anisms use checkpointing. Even though checkpoint-based mechanisms have been
very effective in storage systems [22] [44] and virtualization systems [17] [40],
they incur high overheads in distributed graph processing.

8

Chapter 3

BACKGROUND

Distributed processing becomes a necessity for graphs consisting of billions of
vertices and trillions of edges [16]. The MapReduce [19] distributed data pro-
cessing paradigm and its open source implementation [3] enabled processing of
large datasets without users worrying about the distributed nature of computation.
MapReduce performs a specified data processing job using map, shuffle and re-
duce tasks. Map tasks process the input data in parallel to create intermediate
key-value pairs, while reduce tasks process values aggregated on keys by shuffle
tasks. Even though the MapReduce paradigm proved very successful for batch
processing of large datasets [18], it often proved too rigid and inefficient for large
scale graph processing [38] [36]. In this chapter, we provide background of dis-
tributed graph processing frameworks and failure recovery mechanisms employed
by them.

3.1 Gather-Apply-Scatter Model

To eliminate the inefficiencies of graph processing using general data process-
ing paradigms like MapReduce, Google proposed Pregel [38], one of the first
distributed processing frameworks built for efficiently processing large graphs.
Pregel utilizes a vertex-centric graph processing paradigm within the Gather-Apply
-Scatter decomposition, wherein graph processing is divided into iterations of
a user-defined program (called vertex-program) executed in parallel at vertices.
Within each iteration, a vertex program performs three phases shown in Figure
3.1:

• Gather: In the gather phase, a vertex collects values form its incoming
neighbors (step 1 in Figure 3.1(a)).

• Apply: In the apply phase, a vertex processes the values collected in the

9

(a) Gather (Step 1), Apply (Step
2) and Scatter (Step 3) on an ex-
ample graph.

(b) Phases in synchronous
Gather-Apply-Scatter (GAS)
graph processing model.

Figure 3.1: Gather-Apply-Scatter model of distributed graph processing.

gather phase and modifies its own value based on the processing (step 2 in
Figure 3.1(a)). The actual processing depends on the user-defined vertex
program.

• Scatter: In the scatter phase, a vertex transfers the result of processing to its
outgoing neighbors (step 3 in Figure 3.1(a)).

Consider an example using the single-source shortest paths (SSSP) graph pro-
cessing application. SSSP computes the distance to every vertex in the graph
from a user-specified source vertex. In the first iteration, vertices do not gather
any values and instead perform an initialization step. The initialization assigns 0
to the source vertex and infinity to the remaining (non-source) vertices. Vertex
values are then transferred to outgoing neighbors, combined with the weight of
connecting edges if edges are associated with weights. In subsequent iterations,
each vertex collects values from incoming neighbors in the gather phase, and then
updates its current value as the minimum value from the collected messages in
the apply phase. The updated value therefore represents the vertex’s current min-
imum distance from the source vertex. If the value of a vertex is changed in this
iteration, it performs the scatter phase by transferring its own value (plus the edge
weight of its outgoing edges) to the local outgoing neighbors. This iterative pro-
cess converges when no vertex undergoes an update. Any vertices that still have
infinity as their associated value are not reachable from the source.

Figure 3.1 shows the stages involved in a synchronous GAS model. The graph
is first partitioned across the cluster servers. The graph processing application

10

then proceeds in iterations. In each iteration, vertices gather values from incoming
neighbors, process and apply the values, and then scatter the results to their outgo-
ing neighbors. More recently, an edge-centric graph processing paradigm [45] has
been proposed. In edge centric iterations [45], edges gather values from source
vertices and scatter to target vertices. In the Gather-Apply-Scatter model, the val-
ues associated with vertices and/or edges collectively form the graph state. In the
rest of this thesis, we will use the terms state and value interchangeably.

In the synchronous GAS decomposition, the gather, apply and scatter stages in
each iteration are synchronized using barriers to ensure that all servers execute
these stages simultaneously. GraphLab [34] [33] and PowerGraph [23] also pro-
vide an asynchronous computation model which may benefit iterative machine
learning applications such as Alternating Least Squares (ALS) [27] and Gradient
Descent [56].

3.2 Distributed Graph Processing Frameworks

Graph Processing System [22], GraphLab [34] [33], PowerGraph [23] and LF-
Graph [26] have all extended the original distributed graph processing paradigm
introduced by Pregel [38]. In this section, we discuss the computation and com-
munication models used in popular distributed graph processing frameworks.

In Pregel’s communication model, a server transfers all messages sent by local
vertices to neighboring vertices on remote servers. This action may require trans-
ferring multiple copies of a message to a remote server if multiple neighbors of a
vertex reside on that server. To reduce the communication overhead by removing
such redundancy, GraphLab [33] introduced the concept of ghost vertices. After
partitioning vertices across servers, GraphLab creates these ghost vertices on each
server for neighbors of its local vertices. These ghost vertices are updated after
each iteration.

The authors of PowerGraph [23] observed that performing computation on a
vertex requires collecting values from neighbors, which may be very expensive
for high-degree vertices prominent in power-law graphs [52]. To this end, Pow-
erGraph proposes partitioning edges across servers where each edge is assigned
to exactly one server. For vertices having edges on multiple servers, one of the
copies is labeled as the master while others as mirrors. Mirrors help reduce the
computation load on the master replica. In each iteration, the master and the mir-

11

rors of each vertex perform partial computation based on the neighbors available
at their respective servers. After each iteration, all mirrors transfer their values to
the master which combines the values and transfers the combined result back to
the mirrors.

LFGraph [26] reduces the computation and communication load in distributed
graph processing even further. LFGraph utilizes cheap hash-based partitioning
of vertices across servers to reduce total execution time. Each vertex maintains
its set of incoming neighbors while each server maintains the updated values of
incoming neighbors of its local vertices. In each iteration, each vertex uses values
of its incoming neighbor vertices stored locally to update its current state. Each
server then transfers the updated values of its local vertices to servers containing
their outgoing neighbors. Before iterations start, each server builds a subscribe list
for every other server in the cluster. The subscribe list for a remote server contains
vertices whose updated values are required from the remote server. Based on these
subscriptions, each server builds a publish list for every other server. This publish
list is used to transfer updated vertex values to outgoing neighbors on remote
servers.

Apart from these frameworks, graph processing frameworks like X-Stream [45],
GraphChi [32] and LLAMA [37] are centralized and out of the scope of this thesis.
GraphX [24] is a dataflow framework which performs graph processing using Re-
silient Distributed Datasets (RDDs) abstraction provided by Spark [58]. An RDD
is an in-memory, read-only dataset which can be built either from data stored on
persistent storage such as disks or solid state drives or from other RDDs. The
RDD abstraction provides a set of operations such as map, join, filter and so on
to transform one RDD to another. Different combinations of these operations are
used in GraphX to enable distributed graph processing. In addition to graph pro-
cessing, GraphX also provides the operations performed by a general data-flow
system such as graph loading and graph analytics.

12

Chapter 4

MOTIVATION

We define failure recovery in distributed graph processing systems as the recovery
of the graph state from the iteration on which failures occurred. In an ideal sce-
nario, failure recovery mechanisms in distributed graph processing frameworks
should exhibit the following three characteristics:

• Complete failure recovery: A failure recovery mechanism should be able
to recover the entire state of graph processing application after failures and
maintain complete accuracy of results.

• Zero-overhead failure recovery: A failure recovery mechanism should not
incur any overhead preparing for failures during failure-free execution.

• Fast failure recovery: A failure recovery mechanism should be able to
recover from any number of failures quickly.

It is difficult for a failure recovery mechanism to exhibit all three characteristics;
it must choose one out of costless failure recovery and complete failure recovery.
This is because, after server failures, the in-memory state of the graph application
will be lost if not persisted. On the other hand, if the in-memory state of the graph
application is persisted, it will incur an overhead during failure-free execution.

4.1 Limitations of Proactive Approaches

Existing failure recovery mechanisms in distributed graph processing are proac-
tive in nature and can be classified into the following two categories: (i) Check-
point -based recovery mechanisms, and (ii) Replication-based recovery mecha-
nisms. Both categories of proactive failure recovery mechanisms prefer complete
failure recovery over costless failure recovery.

13

(a) Proactive checkpointing-based failure recovery in dis-
tributed graph processing.

(b) Reactive replication-based failure recovery in dis-
tributed graph processing.

Figure 4.1: Proactive vs. reactive failure recovery in distributed graph processing.

4.1.1 Checkpoint-based recovery mechanisms

Checkpoint-based failure recovery mechanisms are most common in distributed
graph processing frameworks. Pregel [38], Piccolo [42], Graph Processing Sys-
tem [46], Distributed GraphLab [33] and PowerGraph [23] all use checkpoint-
based failure recovery mechanisms. An example checkpoint-based failure recov-
ery mechanism is shown in Figure 4.1(a). These mechanisms periodically check-
point a snapshot of the graph state. After failures, computation resumes by loading
the previously saved checkpoint. Even though these mechanisms achieve com-
plete recovery, the processes of snapshot determination and checkpointing incur
high overhead during failure-free execution, violating the costless failure recovery
characteristic of an ideal mechanism.

Checkpoint-based failure recovery mechanisms have been successful in storage
systems [22] [44] and virtualization systems [17] [40]. However, we argue that
they incur unnecessary overhead for distributed graph processing applications be-

14

cause of a trade-off that is difficult to address. If the checkpoint interval is low,
most of the checkpoints will not be used because of low Mean Time Between Fail-
ures (MTBF). For example, in a cluster of 16 servers, assuming that the MTBF of
a single server is 360 days, the MTBF of any server may be as high as 22 days.
In fact, even in a cluster of 1024 servers, the MTBF of any server may be as high
as 8 hours. On the other hand, if the checkpoint interval is high, it is likely that a
checkpoint is not available for the failed graph application execution. For exam-
ple, it takes 493.81 seconds for PageRank application in PowerGraph to create a
checkpoint of the UK Web graph [9] [10] on 16 servers each containing a solid
state drive.

The optimum checkpoint interval [57], assuming the MTBF for a single sever to
be 360 days, in a cluster of 16 servers should be 12 hours. However, the execution
time of a graph processing application is usually much lower (average iteration
time of PageRank application is 22 seconds in the same scenario). In fact, the
users of distributed graph processing frameworks usually turn off checkpointing
due to the associated overhead during failure-free execution [24].

4.1.2 Replication-based recovery mechanisms

A replication-based recovery mechanism [55] has been recently proposed. It cre-
ates K+1 replicas of the vertex graph state and maintains consistency between all
replicas to tolerate a failure of up to K servers. The vertex replication mechanism
is optimized by using the replicas that are already created on remote servers by the
computation model in Hama [4]. Like checkpoint-based recovery, this replication-
based recovery mechanism gives preference to complete recovery over costless
recovery. The forced replication incurs an overhead in updating the replicas in
each iteration to maintain consistency between all replicas. The overhead is de-
pendent on the value of K which may need to be increased with the increase in the
cluster size due an increased probability of failures. Additionally, the replication
mechanism requires setting the value of K which may be difficult as failures are
unpredictable.

15

4.2 Reactive Failure Recovery

Zorro, a reactive failure recovery mechanism, gives preference to zero-overhead
recovery over complete recovery. An example reactive failure recovery mecha-
nism is shown in Figure 4.1(b). Zorro does not prepare for failures and incurs
zero overhead during failure-free execution. When failures occur, it utilizes graph
state inherently replicated in distributed graph processing frameworks at surviving
servers to rebuild the state of failed servers. Graph state is replicated in distributed
graph processing frameworks in the following forms:

• Messages: Servers maintain messages received from incoming neighbors
present on remote servers from which the state of incoming neighbors can
be derived. For example, Pregel [38] and its open source implementations
Giraph [1] and Piccolo [42].

• Shadows: Servers maintain shadow copies of incoming neighbors present
on remote servers from which the state of the incoming neighbors can be
derived. For example, LFGraph [26].

• Mirrors: Servers maintain mirrored copies of both incoming and outgoing
neighbors present on remote servers from which their sate can be derived.
For example, distributed GraphLab [33] and PowerGraph [23].

As Zorro prefers zero-overhead recovery over complete recovery, a fraction of
the most recent graph state is lost in recovering from failures. The fraction of the
graph state that is recovered by Zorro depends on the following:

• Structure of the graph used for executing graph processing applications.

• Partitioning function used for initial graph partitioning across cluster servers.

• Graph computation and communication model used by the framework which
determines the graph state that is replicated across servers.

Figure 4.2 shows the percentage of recoverable state with Zorro in existing
distributed graph processing frameworks assuming hash-based graph partitioning.
As shown in the figure, Zorro is able to recover more than 95% of the graph state
even with a quarter of the servers failing and more than 87% of the graph state
even with half of the servers failing. Additionally, the Figure shows that Zorro

16

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16V
e
r
t
i
c
e
s

R
e
c
o
v
e
r
a
b
l
e

Number of Failed Servers

UK Web Graph
Twitter

Road Network CA

(a) LFGraph/Giraph/Hama

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16V
e
r
t
i
c
e
s

R
e
c
o
v
e
r
a
b
l
e

Number of Failed Servers

UK Web Graph
Twitter

Road Network CA

(b) PowerGraph

Figure 4.2: Percentage of recovered state in distributed graph processing
frameworks as a function of the number of failed servers for graph datasets in
Table 1.1.

recovers a high percentage of graph state for both power-law graphs (UK Web
Graph [9] [10] and Twitter [31]) and exponential graphs (Road network CA [6]).

By performing reactive recovery using this inherently replicated state, Zorro
exhibits the following characteristics:

• Zero-overhead recovery: Zorro does not incur any cost during failure-free
execution.

• Fast recovery: Zorro transfers state replicated at surviving servers to re-
build the state of failed servers. This transfer occurs concurrently with graph
loading at replacement servers, leading to extremely fast (often sub-second)
recovery. We discuss more implementation details in Chapter 6.

• Highly accurate recovery: Zorro incurs a slight loss of the graph state after
failures. The probability of recovering the state of a vertex after failures
increases exponentially as its neighbor count increases or as the number
of failed servers decreases. This allows Zorro to recover more than 95%
of the graph state even with a quarter of the servers failing and more than
87% of the graph state even with half of the servers failing in a cluster of
16 servers. In Chapter 7, we show that graph applications maintain at least
97% accuracy even with a half of the servers failing.

• Scalable recovery: The fraction of the graph state recovered by Zorro de-
pends on the number of failed servers and not on the total number of servers.

17

This allows Zorro to scale independent of the total number of servers in the
cluster.

18

Chapter 5

ZORRO PROTOCOL DESIGN

In this Chapter, we present the design of Zorro reactive recovery protocol. We
state the systems assumptions and discuss the workflow of graph processing frame-
works equipped with Zorro reactive failure recovery.

5.1 Systems Assumptions

In this section, we state Zorro’s systems assumptions before discussing Zorro fail-
ure recovery protocol.

5.1.1 Synchronous GAS Model

Zorro assumes a synchronous Gather-Apply-Scatter (GAS) graph processing mo-
del. Most popular frameworks such as PowerGraph [23], GraphLab [34], LF-
Graph [26] and Giraph [1] support this processing model. In Chapter 3, we
discussed the synchronous Gather-Apply-Scatter model. Here, we give a brief
overview.

Figure 3.1 shows the phases involved in a synchronous GAS model. The graph
is first partitioned across the cluster servers. The graph processing application,
then proceeds in iterations. In each iteration, vertices gather values from in-
coming neighbors, process and apply the values and scatter the results to their
outgoing neighbors. In this model, graph state constitutes the values associated
with the vertices of the graph. We use the terms graph state and vertex values
interchangeably. In the synchronous GAS model, the gather, apply and scatter
stages in each iteration are synchronized using a barrier to ensure that all servers
execute these stages simultaneously. More recently an asynchronous graph pro-
cessing model [23] has also gained popularity. We leave extending Zorro reactive
recovery for asynchronous models as future work.

19

5.1.2 Failures and Replacements

Zorro assumes crash-stop failures with replacements where any server can crash
at any time, even during recovering from other failures. Zorro assumes that each
crashed server is replaced for computation to proceed. The assumption of each
failed server getting replaced can be avoided by supporting elasticity techniques
in graph processing where graph partitions are modified on the fly to compensate
for failed servers. We leave extending Zorro for such a scenario as future work.

5.2 Framework Classification

In this Section, we classify popular distributed graph processing frameworks into
two categories based on the inherent vertex replication in their computation and
communication model. In subsequent sections, we discuss Zorro recovery proto-
col in these categories of frameworks.

5.2.1 Out-neighbor Replication

In frameworks belonging to out-neighbor replication category, the state of vertices
local to a server is replicated at remote servers hosting their outgoing neighbors.
Graph processing frameworks LFGraph [26], Giraph [1] and Hama [4] belong
to this category. For example, consider the case shown in Figure 5.1(b) wherein
the example graph shown in Figure 5.1(a) is partitioned across servers using con-
sistent hashing of vertices. Original vertices are shown with solid circles while
replicated vertices with dashed circles. In the Figure, the state of vertex V2 hosted
on server S2 is maintained at server S3. Similarly, the state of vertex V1 hosted on
server S1 is maintained at servers S2 and S3, and the state of vertex V4 also hosted
on server S1 is maintained at server S2.

These frameworks can be further classified into two categories based on the
form in which the state of vertices is replicated at servers hosting outgoing neigh-
bors:

Message-based out-neighbor replication frameworks: Graph processing frame-
works Giraph [1] and Hama [4] belong to this category. In these frameworks,
vertices are partitioned across servers where each vertex is assigned to exactly
one server. Each vertex maintains its outgoing edges and buffered messages re-

20

(a) Example graph.

(b) Out-neighbor vertex replication in LF-
Graph and Hama.

(c) All-neighbor vertex replication in Power-
Graph.

Figure 5.1: Vertex replication for a graph partitioned across three servers using
hash-based partitioning.

ceived in the previous iteration. In each iteration, a vertex receives messages from
incoming neighbors, processes the messages to update its state, and finally sends
updates to its outgoing neighbors. Servers are responsible for passing received
messages to the appropriate vertices. In these frameworks, the state of vertices
local to a server is replicated at remote servers hosting their outgoing neighbors
in the form of messages delivered to them for the correct execution of the apply
phase in the GAS model. On failures, graph state derived from buffered messages
is transferred to replacement servers.

Shadow-based out-neighbor replication frameworks: Graph processing frame-
work LFGraph [26] belongs to this category. Like message-based frameworks,
vertices are partitioned across servers where each vertex is assigned to exactly
one server. Each vertex maintains its incoming neighbors while each server main-
tains shadows of incoming neighbors of its local vertices. In each iteration, a
vertex utilizes state of its incoming neighbor vertices to update its current state.

21

Each server then transfers the updated states of its local vertices to servers con-
taining their outgoing neighbors. In these frameworks, the state of vertices local
to a server is replicated at remote servers hosting their outgoing neighbors in the
form of shadows created on them for the correct execution of the apply phase in
the GAS model. On failures, graph state derived from these shadows is transferred
to replacement servers.

5.2.2 All-neighbor Replication

The frameworks in this category maintain the state of both incoming and outgo-
ing neighbors either in the form of ghosts in GraphLab [33] or mirrors in Pow-
erGraph [23]. We only discuss the case in PowerGraph because it is GraphLab’s
successor.

In PowerGraph, edges are partitioned across servers where each edge is as-
signed to exactly one server. For vertices having edges on multiple servers, one
of the copies is labeled as the master while others as mirrors. In each iteration,
the mirrors and the master of each vertex perform partial computation based on
the neighbors available at their respective servers. After each iteration, all mirrors
transfer their values to the master which combines the values and transfers the
combined value back to the mirrors. In these frameworks, graph state is replicated
at servers in the form of vertex mirrors of both incoming and outgoing neighbors
on remote servers. On failures, graph state derived from these mirrors is trans-
ferred to replacement servers.

For example, consider the case shown in Figure 5.1(c) wherein the example
graph shown in Figure 5.1(a) is partitioned across servers using consistent hashing
of edges. Master vertices are shown with solid lines while mirrored vertices with
dashed lines. Server S1 maintains replicas of outgoing neighbors V1 and V2 on
remote servers of its local vertex V4. Similarly, server S2 maintains replicas of
incoming neighbor V1 and outgoing neighbor V3 on remote servers of its local
vertex V2.

Apart from these categories, graph processing frameworks such as X-Stream
[45], GraphChi [32] and LLAMA [37] are centralized and do not benefit from
Zorro reactive recovery. We also exclude GraphX [24] which utilizes the lineage-
based failure recovery mechanism of the underlying system (Spark [58]).

22

5.3 Zorro Failure Recovery Protocol

Zorro, a reactive failure recovery mechanism, gives preference to costless recov-
ery over complete recovery. Zorro does not prepare for failures and incurs zero
overhead during failure-free execution. When failures occur, it utilizes vertex
state inherently replicated in distributed graph processing frameworks at surviv-
ing servers to rebuild the state of failed servers.

The execution flow of distributed graph processing during failure recovery us-
ing Zorro is shown in Figure 5.2. In the discussion below, we number the events
according to their labels in the figure. Zorro performs failure recovery in three
phases:

• Replace Phase: Zorro recovery protocol utilizes a membership mainte-
nance service (indicated by MS in Figure 5.2) such as Zookeeper [28] to
maintain the list of member servers. During the replace phase, the failure of
failed servers is identified (1) and the surviving servers are informed about
the failed servers using a leave callback (leave cb) (2). On receiving the
callback, surviving servers suspend their ongoing graph processing and wait
for the failed servers to get replaced and perform pre-processing steps such
as graph loading. After the failed server gets replaced and joins the cluster
(3), all servers are informed about the newly joined servers by the MS using
a join callback (join cb) (4).

Relying on a membership maintenance service is not considered an over-
head during failure-free execution as existing frameworks already include
a membership maintenance service such as ZooKeeper or a heartbeating
mechanism.

• Rebuild Phase: In the rebuild phase, replacement servers rebuild their local
state using the state replicated at and transferred by surviving servers. In
Figure 5.2), on receiving the join callback, surviving servers transfer (using
send state) replicated state of vertices hosted on replacement servers (5).
The replacement servers acknowledge the completion of state transfer using
a send callback (send cb) (8).

• Resume Phase: In the resume phase, all servers resume the graph process-
ing application from the iteration at which failures occurred. Zorro utilizes

23

Figure 5.2: Zorro reactive recovery protocol timeline.

the membership maintenance service (MS) to store the most recent iteration
number.

In LFGraph (Figure 5.1(b)), after the failure of server S1, the state of vertex V1

replicated at servers S2 and S3 and that of V4 replicated at server S2 are transferred
to the replacement server. In this case, the replacement server recovers the values
of both vertices V1 and V4 assigned to it. In PowerGraph(Figure 5.1(c)), after
the failure of server S2, the state of vertices V2 replicated at server S1 and that of
vertices V1 and V3 present at server S3 are transferred to the replacement server. In

24

this case, the replacement server recovers the value of its master vertex V2 as well
as its mirrored vertices V1 and V3.

5.3.1 Rebuild Phase

The replacement servers build the state of the graph partitions assigned to them
using the received state from surviving servers. Additionally, the replacement
servers build the state that requires replication on them for the framework’s com-
putation and communication model. This replicated state can then assist in the
recovery of future failures. For example, in LFGraph, surviving servers transfer
the state replicated on them in the form of shadows as well as their own state that
will be replicated at the replacement servers. In PowerGraph, surviving servers
transfer the state of vertices that either have the master or a mirror on the replace-
ment servers. We discuss application specific optimizations during the rebuild
phase in Chapter 6.

Zorro may not be able to recover the state of some vertices on the replacement
servers. The state of vertices having no replicated state on any of the surviv-
ing servers are lost. For the case shown in Figure 5.1(b), Zorro cannot recover
the state of vertex V3 after the failure of server S3. Similarly, in Figure 5.1(c),
Zorro cannot recover the state of vertex V2 is both servers S1 and S2 fail. For
the vertices whose state is not recovered, Zorro performs application specific ini-
tialization. For example, in PageRank application, the value associated with the
vertices whose values could not be recovered by Zorro are initialized to the value
of 1. Users may want to re-initialize vertices whose state could not be recov-
ered using their own functions. We leave extending Zorro to allow a user-defined
re-initialization function as future work.

Some graph processing applications in PowerGraph maintain graph state at
edges, in addition to vertex state. The edge states often represent static edge
weights which are rebuilt during graph loading. In the case of dynamic edge
states, the state of an edge can be obtained from the state of its source and/or
target vertices.

25

5.3.2 Cascading Failures

Cascading failures are those failures that occur while the system is recovering
from a previous failure. The strength of Zorro is that recovery of a replacement
server is independent of the recovery of other replacement servers and can be
performed in parallel for all replacement servers. This enables Zorro to handle
cascading failures trivially. In addition, existing replacement servers assist in the
recovery of newly failed servers by sending back any state that they may have
received during recovery.

We show the execution flow of graph processing frameworks during recovery
from cascading failures in Figure 5.2. As the cluster is recovering from the failure
of server S3, server S2 fails. The failure of server S2 is detected by the membership
maintenance service (MS) (6) and the surviving servers are informed about the
failure using a callback (leave cb) (7). The failure of server S2 does not interfere
with the recovery of server S3. The replacement server of S3 participates in the
recovery by transferring any state it may have received from server S2 when it was
alive back to the replacement server of S2 (11). After the transfer of replicated
state from server S1 to server S2 and from server S3 to S2 gets completed, the
replacement server acknowledges transfer completion (12).

For example, in Figure 5.1(b) we consider the case where the framework is
recovering from the failure of server S1 and server S2 crashes. The recovery of
server S1 involves sending the state of vertex V1 from servers S3 and S2 and vertex
V4 from server S2. If server S2 fails, the recovery of S1 from server S2 is un-
affected. Similarly, in Figure 5.1(c) we consider the case where the framework
is recovering from the failure of server S3 and server S1 crashes. The recovery
of server S3 involves sending the state of vertex V1 from servers S2 and S3 and
vertex V3 from server S2. If server S1 fails, the recovery of S3 from server S2 is
unaffected. This independence of recovery for each failed server allows Zorro to
recover from cascading failures efficiently.

5.4 Analyzing Reactive Recovery

In this section, we theoretically analyze the probability of recovering a vertex with
Zorro reactive recovery.

We define recovery neighbors as the neighbors of a vertex that enable replica-

26

tion of the vertex and hence, enable its recovery. Let us denote the set of recovery
neighbors for a vertex v as N(v). For the two classes of frameworks, the set of
recovery neighbors is defined as follows:

• Out-neighbor Replication Frameworks: In these frameworks, the state of
vertices local to a server is replicated at remote servers hosting their outgo-
ing neighbors. Hence, for a vertex v, its state is replicated at remote servers
hosting its out-neighbors. Hence, the number of recovery neighbors for
this class of frameworks is equal to the number of outgoing-neighbors i.e.,
N(v) = O(v), where O(v) is the outgoing neighbors of vertex v.

• All-neighbor Replication Frameworks: In these frameworks, servers main-
tain the state of both incoming and outgoing neighbors present on remote
serves. Hence, for a vertex v, its state is replicated at remote servers host-
ing its in or out-neighbors. Hence, the number of recovery neighbors for
this class of frameworks is equal to the number of incoming and outgoing-
neighbors i.e., N(v) = I(v)+O(v), where I(v) is the incoming neighbors
and O(v) is the outgoing neighbors of vertex v. PowerGraph is a special
case of all-neighbor replication frameworks where due to edge partitioning,
N(v) = I(v)+O(v)− 1. This is because at least one neighbor of vertex v

belongs on the same server as v.

Next, we analyze the probability of recovering a vertex by virtue of its recovery
neighbors being present on at least one of the surviving servers. We consider a
scenario where f number of servers fail in a cluster of size m. For the simplicity
of the analysis, we assume that the vertices are partitioned across servers using
consistent hashing. The probability, P(vi) of recovering a vertex vi after failures
is given by:

P(vi) =

(
1−
(

f
m

)|N(vi)|
)

(5.1)

We can also quantify the expected number of vertices that can be recovered by
Zorro using Equation 5.1. Let us denote the set of vertices that were present on
the set of failed servers by Vf . Let Vr be the set of vertices that can be recovered
by Zorro, then the expected value of the set Vr is given by:

E [Vr] = ∑
vi∈V f

(
1−
(

f
m

)|N(vi)|
)

(5.2)

27

Equation 5.2 shows that the probability of recovering the state of a vertex after
failures increases exponentially as its neighbor count increases or as the number
of failed servers decreases.

28

Chapter 6

IMPLEMENTATION DETAILS

We implement and evaluate Zorro reactive recovery protocol in exemplar frame-
works from the two categories: LFGraph [26] from Out-neighbor replication cat-
egory and PowerGraph [23] from All-neighbor replication category.

6.1 LFGraph

LFGraph is an example of shadow-based out-neighbor replication frameworks.
Servers in LFGraph maintain shadows of incoming neighbors on remote servers.

Before iterations start, each server builds a subscribe list for each remote server
containing vertices whose state is required from the remote server for the gather
phase. Shadow copies of the vertices present in the server’s subscription lists
are created. Based on these subscriptions, each server builds a publish list for
every remote server. The publish list is used to transfer vertex states to outgoing
neighbors on remote servers and update the shadow copies.

These values are stored on remote servers as shadows. For the case shown in
Figure 5.1(b), server S1 has vertex V1 in the publish list for servers S2 and S3 and
vertex V4 in the publish list for server S2. Similarly, server S2 has vertex V2 in the
publish list for server S3 while its publish list for server S1 is empty. Finally, the
publish lists of server S3 are empty for both servers S1 and S2.

In the gather phase, each vertex iterates over its incoming neighbor state repli-
cated locally as shadows, processes them and modifies its own state based on the
processing. This state is then transferred to outgoing neighbors using the publish
lists in the scatter phase to update remote shadows. The scatter phase at the end of
each iteration ensures that the shadows at each server reflect the latest changes. In
LFGraph, each server maintains two copies of its local vertices: an original copy
and a backup copy. During the apply phase, updates are made to the original copy
which are then merged into the backup copy at the end of apply phase.

29

We implement Zorro in LFGraph by modifying the computation worker and
communication worker classes within the JobServer. The three stages of Zorro
reactive recovery in LFGraph are summarized below:

1. Replace: LFGraph uses ZooKeeper [28] to identify server failures. On
failures, Zookeeper issues a leave callback to all surviving servers. On re-
ceiving the leave callback, the surviving servers suspend their iteration, save
the iteration number in Zookeeper and wait at a barrier for failed servers to
get replaced. As replacement servers join the cluster after loading their re-
spective graph partitions, Zookeeper issues a join callback to all surviving
servers.

2. Rebuild: The graph state maintained at each server as the shadows of in-
coming neighbors is used to re-build the state of failed servers. On receiving
a join callback, each surviving server initiates the rebuild process for the re-
placement server. The rebuild process transfers two sets of vertices to the
replacement server:

• Shadow vertices on surviving server having their master copies on
the failed server. These vertices constitute the incoming neighbors
of the surviving server’s local vertices present on the failed server i.e.,
vertices present in the surviving server’s subscribe list for the failed
server. These vertices build the publish list at the replacement server
for the sender surviving server.

• Master vertices on surviving server having their shadows on the failed
server. These vertices constitute the incoming neighbors of the failed
server’s local vertices present on the surviving server i.e., vertices
present in the surviving server’s publish list for the failed server. These
vertices build the subscribe list at the replacement server for the sender
surviving server.

The transfer of graph state from surviving to replacement servers ensures
that the publish and subscribe lists at replacement servers get re-built for all
surviving servers. As such, the publish-subscribe phase needs to be repeated
only among replacement servers. LFGraph stores original and backup ver-
tex copies separately. This allows sending the two sets of vertices in parallel
to replacement servers.

30

3. Resume: Servers resume computation from the start of the last iteration
before failure. This iteration number is saved by surviving servers with
ZooKeeper. For correctness of computation after recovering from failures,
each server operates on the most recent states of the incoming neighbors of
its local vertex set. A server receives the states of the incoming neighbors
of its local vertex set as part of the replicated state during rebuild phase.
Additionally, Zorro performs an additional partial scatter among replace-
ment servers to ensure that each vertex works on the most recent states on
its incoming neighbors.

6.1.1 Correctness

We discuss failures during phases of the Gather-Apply-Scatter model in LFGraph
and the correctness of our approach in handling these failures.

In the gather phase, vertices iterate over incoming neighbors present on the
local server as shadows. Zorro handles failures during the gather phase as servers
resume the iteration from beginning after recovery.

In the apply phase, vertices process the states of incoming neighbors collected
in the gather phase to update their own state. As mentioned before, each server
maintains two copies of its local vertices: an original copy and a backup copy.
The updated state after apply phase is written to the original copy by default. The
updates to the original copy are merged with the backup copy after all vertices
have finished the apply phase. Zorro handles failures during the apply phase by
transferring vertex states from backup copies during recovery which are updated
only if all servers have finished the apply phase. This ensures that the backup
copies do not reflect any changes of the apply phase if failures occur during the
apply phase. Essentially, Zorro merges vertex state copies after Scatter, rather
than between Apply and Scatter as in vanilla LFGraph.

In the scatter phase, updated states of vertices are transferred to remote servers
hosting outgoing neighbors using publish lists. Zorro handles failures during the
scatter phase by receiving all updated values from incoming neighbors before
updating the remote value store by creating a copy of the remote value store in
the background during the Apply phase. This results in an average per-iteration
overhead of just 0.8%. This is the only instance of overhead incurred by Zorro.

31

6.2 PowerGraph

PowerGraph is an example of all-neighbor replication frameworks. Servers in
PowerGraph maintain mirrors of both incoming and outgoing neighbors on remote
servers.

In PowerGraph, edges are partitioned across servers where each edge is as-
signed to exactly one server. For vertices having edges on multiple servers, one of
the copies is labeled as the master while others as mirrors. For the case shown in
Figure 5.1(c), the edges (V4,V1) and (V4,V2) are assigned to server S1, (V1,V2) and
V2,V3 to server S2 and (V1,V3) to server S3. Vertices V1, V2 and V2 span multiple
servers and hence, have mirrors. We represent the master vertex copies with solid
circles and mirror vertex copies with dashed circles. Vertex V2 has its master at
server S2 while a mirror at server S1, vertex V3 has master at S3 and mirror at S2

while V1 has master at S3 and mirrors at S1 and S2.
The mirrors on remote servers provide the replication required by Zorro to re-

cover from failures. In each iteration, the mirrors and the master of each vertex
perform partial computation based on the neighbors available at their respective
servers. After each iteration, all mirrors transfer their values to the master which
combines the values and transfers the combined value back to the mirrors. Such
a design distributed the computation load at a vertex due to a large degree across
the master and mirrors. This optimization is aimed at power-law graphs wherein
vertices may have arbitrarily large degrees.

We implement Zorro in PowerGraph by modifying the synchronous engine

class which implements synchronous Gather-Apply-Scatter model. We also mod-
ify the local graph class which provides data structures for the representation
of the local graph on each server.

1. Replace: As with LFGraph, PowerGraph identifies failures using ZooKee-
per. After failures, survivors retain the local graph state while terminating
the synchronous engine.

2. Rebuild: The graph state maintained at each server as the mirrors and mas-
ters of vertices present on the failed servers is used to re-build their state.
After failures, all servers load their respective graph partitions and trans-
fer the edges previously held by failed servers to the replacement servers.
The servers join the cluster after loading graph partitions by contacting
Zookeeper which issues join callbacks to broadcast the join operation.

32

On receiving a join callback, each surviving server initiates the rebuild pro-
cess for the replacement server. Surviving servers iterate over local masters
and mirrors and transfer the state of vertices that have either a master or
a mirror on the replacement servers. This is possible as each vertex copy
maintains the set of servers where it is present either as the master or mir-
rors. The replacement servers update their graph state with the received
vertex states.

Each vertex copy maintaining its set of hosting servers allows an optimiza-
tion to reduce the network costs during recovery. Only one of the surviving
servers need to transfer the state of a vertex held by the replacement servers
either as the master or mirrors. Zorro achieves this using the following
check for each vertex:

procid == argmin
p∈PS(v)

|p.procid− (v.id % |S|) | (6.1)

,where procid is the process id of the server, PS(v) is the set of surviving
servers that hold vertex v either as the master or a mirror and S is the set
of all servers in the cluster. This optimization ensures that only a single
surviving server is responsible for transferring the state of a vertex required
by the replacement servers.

The above mentioned optimization requires handling cascading failures dif-
ferently in PowerGraph. Cascading failures require that the recovery of
failed servers is not affected by more servers failing during the recovery.
This may require surviving servers to make multiple iterations over their
local vertices as they may become responsible for transferring the state of
vertices due to failures during the recovery process.

3. Resume: Servers resume computation from the start of the last iteration
before failure. This iteration number is saved by surviving servers with
ZooKeeper. For correctness of computation after recovering from failures,
each server requires knowledge of the vertices active in the current iteration
and the messages that they should work on from their incoming neighbors.
To ensure this, Zorro performs an additional partial scatter where mirror
and master vertices scatter to their local neighbors. This scatter is local
and incurs no network overhead as vertices only need to signal their local
neighbors in PowerGraph.

33

6.2.1 Correctness

We discuss failures during phases of the Gather-Apply-Scatter model in Power-
Graph and the correctness of our approach in handling these failures.

In the gather phase, the mirrors and the master perform partial computation
using the neighbors available locally on the their respective servers. The partial
computation results are stored in accumulators. Zorro handles failures during the
gather phase trivially as all servers terminate their ongoing computation and the
state of accumulators does not affect vertex states.

In the apply phase, partial results from mirrors are transferred to the master
which aggregates them and transfers the result back to mirrors to synchronize
their values. Zorro handles failures during the apply phase by ensuring that all
masters receive all partial results from their respective mirrors before updating
their states.

In the scatter phase, vertices signal their neighbors is their state gets updated.
Zorro handles failures during the scatter phase by performing a partial scatter after
recovery.

34

Chapter 7

EVALUATION

In this Chapter, we experimentally evaluate Zorro reactive recovery protocol. We
have implemented Zorro in LFGraph [26], an in-neighbor replication framework
and PowerGraph [23], an all-neighbor replication framework. Our evaluation
goals for each framework are as follows:

• Evaluate the accuracy of graph applications with varying number of failed
servers

• Evaluate the accuracy of graph applications with varying iteration number
at which failures occur.

• Evaluate the time take by Zorro to recover from failures with varying num-
ber of failed servers.

• Evaluate the network overhead incurred by Zorro during recovery.

7.1 Experimental Setup

We perform our experiments on a cluster consisting of 16 servers. Each server
contains 16 Intel Xeon E5620 processors and 64 GB RAM. The servers are con-
nected to each other using a 1 Gbps network.

We use the following three graph datasets for our experiments:

• Road Network (CA): The graph representing California road network [6].
It is an exponential graph containing 1.96 M vertices and 2.76 M edges.

• Twitter: The graph representing follower-followee relationship between
Twitter users [31]. It is a power-law graph containing 41.65 M vertices and
1.47 B edges.

35

• UK Web: The graph representing UK webpages and links between them. It
is a power-law graph containing 105.9 M vertices and 3.74 B edges.

We introduce failures at random servers by terminating the graph processing
framework processes within a given iteration. In our experiments, we run graph
applications for a fixed number of iterations and not wait for convergence after
failures. For example, if PageRank application fails at iteration 5 when being
executed for 10 iterations, the application, after recovery, resumes from iteration
5 and terminates at iteration 10 irrespective of convergence. This allows us to
evaluate the accuracy with Zorro reactive recovery protocol correctly. For each
experiment, we report the average over three trials.

7.2 Applications

We evaluate Zorro reactive recovery using two popular graph processing appli-
cations: PageRank [12], Single-Source Shortest Paths (SSSP) [38], Connected
Components (CC) [46] and K-core [48].

7.2.1 PageRank

PageRank [12] computes the rank of each page iteratively based on the ranks
of each incoming neighbors. Pregel [38] introduced a vertex-centric PageRank
which has been adopted in all distributed graph processing frameworks [23] [26]
[1] [4] [42].

Metrics

Let Pk
o be the original top-k pages based on their PageRank values. Let Pk

n be the
top-k pages after recovery from failures using Zorro. We evaluate the accuracy of
PageRank application using the top-k pages based on their PageRank values using
the following metrics used in [39]:

• Top-k Lost (TL): This metric measures the fraction of the top-k vertices
lost due to failures. Mathematically, PageRank top-k lost is represented as
|Po\Pn|
|Po| .

36

0.000

0.005

0.010

0.015

0.020

0.025

0.030

 1 2 3 4 5 6 7 8

I
n
a
c
c
u
r
a
c
y

Number of Failed Servers

UK: ML
UK: TL

Twitter: ML
Twitter: TL

(a) PowerGraph

0.000

0.005

0.010

0.015

0.020

0.025

0.030

 1 2 3 4 5 6 7 8

I
n
a
c
c
u
r
a
c
y

Number of Failed Servers

UK: ML
UK: TL

Twitter: ML
Twitter: TL

(b) LFGraph

Figure 7.1: PageRank inaccuracy as a function of the number of failures. Servers
are failed randomly at the fifth (out of 10) iteration.

• Mass Lost: This metric measures the fraction of PageRank scores lost by
the application after recovering from failures. Mathematically, PageRank
mass lost is represented as ∑e∈Po\Pn Rank(e)/∑e∈Po Rank(e)

Results

We evaluate the accuracy obtained with Zorro reactive recovery by varying the
number of failed servers and by varying the iteration at which failure occurs.

Figure 7.1(a) shows the accuracy of PageRank application on PowerGraph with
varying number of failures recovered using Zorro. PowerGraph incurs no accu-
racy loss on the Twitter graph, and no accuracy loss on the UK Web graph for
fewer than 6 server failures out of 16. Even with half of the servers failing, the
accuracy loss in PowerGraph with the UK Web graph is only 2% of the intersec-
tion (i.e., two of the top-100 ranked vertices are not present in the results after
recovering from failures), and less than 1.5% mass retained.

Figure 7.1(b) shows the accuracy of PageRank application on LFGraoh with
varying number of failures recovered using Zorro. LFGraph, even with a less
favorable replication model, exhibits no accuracy loss with the Twitter graph for
fewer than 8 server failures out of 16. Even with half of the servers failing, the
accuracy loss is at most 1% with Twitter graph and 3% with UK Web graph.

Since LFGraph exhibits out-neighbor replication, the accuracy loss with LF-
Graph is higher than with PowerGraph. In out-neighbor replication, only the
out-neighbors of vertices are replicated at remote servers whereas in all-neighbor

37

0.000

0.005

0.010

0.015

0.020

0.025

0.030

 0 1 2 3 4 5 6 7 8 9

I
n
a
c
c
u
r
a
c
y

Failure Iteration

UK: ML
UK: TL

Twitter: ML
Twitter: TL

(a) PowerGraph

0.000

0.005

0.010

0.015

0.020

0.025

0.030

 0 1 2 3 4 5 6 7 8 9

I
n
a
c
c
u
r
a
c
y

Failure Iteration

UK: ML
UK: TL

Twitter: ML
Twitter: TL

(b) LFGraph

Figure 7.2: PageRank inaccuracy as a function of the iteration at which a quarter
of the servers (4) fail.

replication (exhibited by PowerGraph), both in- and out-neighbors are replicated
at remote servers. In LFGraph, the vertices which are lost from top-100 results
are only those which have no out-neighbors and, hence, no replicas on remote
servers. We expect very few vertices to have zero out-degrees contributing to high
accuracy results even in LFGraph.

Next, we present accuracy results by varying the failure iteration (out of 10 iter-
ations) and fixing the number of failures at 4 out of 16 servers. Figure 7.2(a) shows
the accuracy of PageRank application on PowerGraph with varying the iteration
at which failures occur. PowerGraph incurs no accuracy loss on the Twitter graph
for failures occurring before iteration 8, and no accuracy loss on the UK Web
graph. Even with a quarter of the servers failing on the last iteration, PowerGraph
incurs 1% accuracy loss.

Figure 7.2(b) shows the accuracy of PageRank application on LFGraph with
varying the iteration at which failures occur. LFGraph incurs no accuracy loss
with both Twitter and UK Web graphs for failures occurring before iteration 9.
Even with a quarter of the servers failing at the last iteration, the accuracy loss
in LFGraph is at most 3% with the UK Web graph and less than 2.5% with the
Twitter graph..

As failures occur at later iterations, loss of accuracy increases because those
vertices whose value could not be recovered after failures are not able to re-
converge within the remaining iterations. Note that, in our experiments, we fix
the number of iterations and do not increase the number of iterations even after
failures.

38

0.0000

0.0002

0.0004

0.0006

0.0008

 1 2 3 4 5 6 7 8

I
n
a
c
c
u
r
a
c
y

Number of Failed Servers

UK: AD
UK: PL

Twitter: AD
Twitter: PL
CA Road: AD
CA Road: PL

(a) PowerGraph

0.0000

0.0002

0.0004

0.0006

0.0008

 1 2 3 4 5 6 7 8

I
n
a
c
c
u
r
a
c
y

Number of Failed Servers

UK: AD
UK: PL

Twitter: AD
Twitter: PL
CA Road: AD
CA Road: PL

(b) LFGraph

Figure 7.3: SSSP inaccuracy as a function of the number of failures. Servers are
failed randomly at the fifth (out of 10) iteration.

7.2.2 Single-Source Shortest Paths (SSSP)

Single-source shortest paths application computes the lengths of shortest paths
from a user-defined source vertex to every vertex in the graph. For our experi-
ments, we use the vertex with the maximum degree as the source.

Metrics

We evaluate the accuracy of SSSP application using the following metrics:

• Average Difference (AD): This metric measures the average normalized dif-
ference in the shortest path lengths of vertices [25]. Mathematically, it is
represented as 1

|V |∑v∈V (ssspn
v− ssspo

v)/ssspo
v , where V is the set of vertices

in the graph, ssspo
v is the actual shortest path length from source to vertex v,

and ssspn
v is the shortest path length after recovering from failures. Average

difference does not include vertices for which SSSP application could not
determine a path after failures but a path actually exists. These vertices are
measured using the fraction of paths lost metric.

• Fraction of Paths Lost (PL): This metric measures the fraction of vertices
which are actually reachable from the given source vertex but SSSP appli-
cation could not find a path to them after recovering from failures.

39

0.00000
0.00005
0.00010
0.00015
0.00020
0.00025
0.00030

0 2 4 6 8 10 12 14

I
n
a
c
c
u
r
a
c
y

Failure Iteration

UK: AD
UK: PL

Twitter: AD
Twitter: PL
CA Road: AD
CA Road: PL

(a) PowerGraph

0.00000
0.00005
0.00010
0.00015
0.00020
0.00025
0.00030

0 2 4 6 8 10 12 14

I
n
a
c
c
u
r
a
c
y

Failure Iteration

UK: AD
UK: PL

Twitter: AD
Twitter: PL
CA Road: AD
CA Road: PL

(b) LFGraph

Figure 7.4: SSSP inaccuracy as a function of the iteration at which a quarter of
the servers (4) fail.

Results

We evaluate the accuracy obtained with Zorro reactive recovery by varying the
number of failed servers and by varying the iteration at which failure occurs.

Figure 7.3(a) shows the accuracy of SSSP application on PowerGraph with
varying number of failures recovered using Zorro. PowerGraph incurs no accu-
racy loss on the Twitter and the graph of California road network (CA Road), and
no accuracy loss on the UK Web graph for fewer than 8 (out of 16) server failures.
Even with half of the servers failing with the UK Web Graph, PowerGraph incurs
no average difference and negligible paths lost (3.6×10−4% of the total).

Figure 7.3(b) shows the accuracy of SSSP application on LFGraph with varying
number of failures recovered using Zorro. LFGraph exhibits no accuracy loss with
the Twitter graph and the CA road graph. For the UK Web graph, LFGraph incurs
no average difference and only 0.06% paths lost even with half of the servers
failing.

The accuracy loss with PowerGraph is lower than that with LFGraph due to the
different replication models.

Next, we present accuracy results by varying the iteration at which failures oc-
cur (out of 15 total) and fixing the number of failures at 4 out of 16 servers. Figure
7.4(a) shows the accuracy of SSSP application on PowerGraph with varying the
iteration at which failures occur. PowerGraph again incurs no accuracy loss on
the CA road graph. With Twitter graph, it exhibits no accuracy loss for failures
occurring before iteration 14 and even with a quarter of the servers failing on the

40

last iteration, only 0.24% paths are lost. With UK Web graph, it incurs no accu-
racy loss for failures occurring before iteration 11 and even with a quarter of the
servers failing on the last iteration, accuracy loss is negligible (0.0013% paths lost
and 0.0025%).

Figure 7.4(b) shows the accuracy of SSSP application on LFGraph with varying
the iteration at which failures occur. LFGraph exhibits no accuracy loss with the
CA road graph. With the Twitter graph, it incurs no accuracy loss for failures
occurring before iteration 14 and even with a quarter of the servers failing on the
last iteration, accuracy loss is negligible (0.005% paths lost). With the UK Web
graph, it incurs at most 0.02% paths lost.

As failures occur at later iterations, inaccuracy increases as vertices whose val-
ues could not be recovered after failures are not able to re-converge within the
remaining iterations.

7.2.3 Connected Components (CC)

Connected Components application implements the label propagation algorithm
wherein vertices propagate their component labels. We use weak connected com-
ponents algorithm popular in distributed graph processing systems [38] where the
label of a component is the minimum vertex ID among its member vertices. We
evaluate Zorro’s inaccuracy after failures while running CC with 10 iterations on
all three graphs. For LFGraph, we use undirected versions of Twitter and UK Web
graphs for this set of experiments.

Metrics

We evaluate the accuracy of CC application using the following metric:

• Incorrect Labels (IL): The fraction of vertices which have a different label
(i.e., component) than the original result. This metric evaluates the inaccu-
racy incurred by the algorithm in determining connected components after
failures.

41

0.000

0.005

0.010

0.015

0.020

0.025

 1 2 3 4 5 6 7 8

I
n
a
c
c
u
r
a
c
y

Number of Failed Servers

UK: IL
Twitter: IL
CA Road: IL

(a) PowerGraph

0.000

0.005

0.010

0.015

0.020

0.025

 1 2 3 4 5 6 7 8

I
n
a
c
c
u
r
a
c
y

Number of Failed Servers

UK: IL
Twitter: IL
CA Road: IL

(b) LFGraph

Figure 7.5: CC inaccuracy as a function of the number of failures. Servers are
failed randomly at the fifth (out of 10) iteration.

0.00

0.002

0.004

0.006

0.008

 0 1 2 3 4 5 6 7 8 9

I
n
a
c
c
u
r
a
c
y

Failure Iteration

UK: IL
Twitter: IL
CA Road: IL

(a) PowerGraph

0.00

0.002

0.004

0.006

0.008

 0 1 2 3 4 5 6 7 8 9

I
n
a
c
c
u
r
a
c
y

Failure Iteration

UK: IL
Twitter: IL
CA Road: IL

(b) LFGraph

Figure 7.6: CC inaccuracy as a function of the iteration at which a quarter of the
servers (4) fail.

Results

We evaluate the accuracy obtained with Zorro reactive recovery by varying the
number of failed servers and by varying the iteration at which failure occurs.

Figure 7.5(a) shows the accuracy of CC application on PowerGraph with vary-
ing the number of failures. PowerGraph incurs negligible accuracy loss for the
UK Web and Twitter graphs even with half of the servers failing (at most 0.02%
and 2.4× 10−6% with UK Web and Twitter respectively). With CA road graph,
it incurs an accuracy loss of 1.57% with 8 servers failing while only 0.13% with
4 servers failing. The accuracy loss is higher in CA road network because of its
high diameter where vertices take much longer to converge.

42

Figure 7.5(b) shows the accuracy of CC application on LFGraph with varying
the number of failures. LFGraph incurs negligible accuracy loss (2.4× 10−5%)
for the Twitter graph even with half of the servers failing. With 8 servers failing,
the accuracy loss with UK Web graph is 0.77% and with CA road graph, it is
2.15%.

Next, we present accuracy results by varying the iteration at which failures
occur (out of 10 total) and fixing the number of failures at 4 out of 16 servers.
Figure 7.6(a) shows the accuracy of CC application on PowerGraph with varying
the iteration at which failures occur. PowerGraph incurs negligible accuracy loss
for the UK Web and Twitter graphs even with failures occurring at the last iteration
(at most 0.0015% and 2.86×10−4% with UK Web and Twitter respectively). With
CA road graph, it incurs an accuracy loss of 0.17% with 8 servers failing while
only 0.13% with 4 servers failing.

Figure 7.6(b) shows the accuracy of CC application on LFGraph with varying
the iteration at which failures occur. LFGraph incurs negligible accuracy loss
(0.005%) for the Twitter graph even with half of the servers failing. With 8 servers
failing, the accuracy loss with UK Web graph is 0.67% and with CA road graph,
it is 0.57%.

7.2.4 K-core

K-core application [48] identifies sub-graphs within a given graph such that ver-
tices in the induced sub-graphs have at least k neighbors. We evaluate Zorro’s
inaccuracy after failures while running k-core decomposition with 10 iterations
on all three graphs. For LFGraph, we use undirected versions of Twitter and UK
Web graphs for this set of experiments.

Metrics

We evaluate the accuracy of k-core application using the following metric:

• Incorrect Labels (IL): The fraction of vertices which have a different label
(i.e., k-core membership) than the original result. This metric evaluates the
inaccuracy incurred by the algorithm in determining k-core membership
after failures.

43

0.000

0.004

0.008

0.012

 1 2 3 4 5 6 7 8

I
n
a
c
c
u
r
a
c
y

Number of Failed Servers

UK: IL
Twitter: IL
CA Road: IL

(a) PowerGraph

0.000

0.004

0.008

0.012

 1 2 3 4 5 6 7 8

I
n
a
c
c
u
r
a
c
y

Number of Failed Servers

UK: IL
Twitter: IL
CA Road: IL

(b) LFGraph

Figure 7.7: K-Core inaccuracy vs. the number of failures. Servers are failed
randomly at the fifth (out of 10) iteration.

Results

We evaluate the accuracy obtained with Zorro reactive recovery by varying the
number of failed servers and by varying the iteration at which failure occurs.

First, we present results by varying the number of failed servers. Figure 7.7(a)
shows the accuracy of k-core application on PowerGraph with varying the number
of failures. PowerGraph incurs no accuracy loss for the Twitter graph. Even with 8
servers failing, it incurs negligible accuracy loss with the UK Web (6.03×10−4%)
and CA road graph (0.0047%).

Figure 7.7(b) shows the accuracy of k-core application on LFGraph with vary-
ing the number of failures. LFGraph incurs 5.58×10−4% accuracy loss with the
UK Web graph, 3.05×10−4% with the Twitter graph and 1.39% with the CA road
graph with half of the servers failing.

Next, we present results by varying the iteration at which failures occur. Fig-
ure 7.8(a) shows the accuracy of k-core application on PowerGraph with varying
the iteration at which failures occur. PowerGraph incurs negligible accuracy loss
for all three graphs even with failures occurring on the last iteration (0.0015% for
UK Web, 5.52×10−5% for Twitter and 0.0053% for CA road).

Figure 7.8(b) shows the accuracy of k-core application on LFGraph with vary-
ing the iteration at which failures occur. LFGraph incurs negligible accuracy loss
for all three graphs even with failures occurring on the last iteration (0.0026% for
UK Web, 6.2×10−4% for Twitter and 0.017% for CA road).

44

0.00000

0.00004

0.00008

0.00012

0.00016

0.00020

 0 1 2 3 4 5 6 7 8 9

I
n
a
c
c
u
r
a
c
y

Failure Iteration

UK: IL
Twitter: IL
CA Road: IL

(a) PowerGraph

0.00000

0.00004

0.00008

0.00012

0.00016

0.00020

 0 1 2 3 4 5 6 7 8 9

I
n
a
c
c
u
r
a
c
y

Failure Iteration

UK: IL
Twitter: IL
CA Road: IL

(b) LFGraph

Figure 7.8: K-Core inaccuracy as a function of the iteration at which a quarter of
the servers (4) fail.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

 1 2 3 4 5 6 7 8

R
e
c
o
v
e
r
y

T
i
m
e

(
s
)

Number of Failures

UK Web

Twitter

(a) PowerGraph.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

 1 2 3 4 5 6 7 8

R
e
c
o
v
e
r
y

T
i
m
e

(
s
)

Number of Failures

UK Web

Twitter

(b) LFGraph.

Figure 7.9: Recovery time as a function the number of failures.

7.3 Recovery Time

In this experiment, we evaluate the recovery time incurred by graph processing
applications with Zorro reactive failure recovery. Figure 7.9(a) and Figure 7.9(b)
shows recovery time as a function of the number of failed servers in PowerGraph
and LFGraph. For PowerGraph, we observe that the recovery time does not vary
significantly with the number of failed servers demonstrating the scalability of the
protocol with the number of failed servers. For LFGraph, we observe a linear
increase in recovery time as the number of failed servers increases. This is be-
cause of the partial scatter phase that needs to be performed after recovery among
replacement servers. For both frameworks, the recovery time with the UK Web

45

0.00

0.02

0.04

0.06

0.08

0.10

 1 2 3 4 5 6 7 8

Re
la
ti
ve
 O
ve
rh
ea
d

Number of Failed Servers

UK Web
Twitter
CA Road

(a) PowerGraph.

0.00

0.02

0.04

0.06

0.08

0.10

 1 2 3 4 5 6 7 8

Re
la
ti
ve
 O
ve
rh
ea
d

Number of Failed Servers

UK Web
Twitter
CA Road

(b) LFGraph.

Figure 7.10: Ratio of bytes transferred over 10 iterations of SSSP to bytes
transferred during failure recovery by Zorro as a function the number of failures.

graph is more than that with the Twitter graph because of its larger size. More
graph state is transferred over the network with the UK Web graph than with
the Twitter graph. Most importantly, the recovery time in both PowerGraph and
LFGraph is less than the average iteration time. The average iteration time in
PowerGraph is 11.7 seconds with the Twitter graph and 22 seconds with the UK
Web graph while in LFGraph it is 2 seconds with the Twitter graph and 6 seconds
with the UK Web graph.

The low recovery times with Zorro reactive recovery protocol are because of
the ability of servers to load graph partitions while receiving replicated state from
surviving servers in parallel. This requires to store the state transferred by surviv-
ing servers in a temporary datastore before merging it with the loaded graph. The
low recovery times demonstrate the ability of Zorro reactive recovery protocol to
enable quick recovery.

7.4 Communication Overhead

In this section, we evaluate the network communication overhead incurred by
Zorro recovery protocol. Figure 7.10 shows the ratio of the bytes transferred dur-
ing recovery with Zorro to the total bytes transferred during failure-free execution
of 10 iterations of PageRank application. This relative network overhead in Pow-
erGraph (Figure 7.10(a)) is at most 2% while it is at most 9.15% in LFGraph
with half of the servers failing. The relative overhead is smaller in PowerGraph

46

than LFGraph because of the rebuild optimization possible in PowerGraph model
where in only a single surviving server is responsible for transferring the state
of a vertex required by the replacement servers. This is achieved by using the
following check for each vertex:

procid == argmin
p∈PS(v)

|p.procid− (v.id % |S|) | (7.1)

,where procid is the process id of the server, PS(v) is the set of surviving servers
that hold vertex v either as the master or a mirror and S is the set of all servers in
the cluster.

This optimization is not possible in LFGraph as the locations of the replicas of
a vertex are not available.

47

Chapter 8

FUTURE WORK

Distributed GraphLab [33] and PowerGraph [23] provide an asynchronous com-
putation model. Asynchronous computation may benefit iterative machine learn-
ing applications like Alternating Least Squares (ALS) [27]. One immediate direc-
tion for future work is the application of Zorro reactive recovery protocol for asyn-
chronous computation in PowerGraph. Another important direction is to study the
feasibility of Zorro-based failure recovery in GraphX [24] to assist its default re-
covery using the lineage graph. Yet another direction of future work is to study
the application of Zorro for applications that use delta-updates between iterations.

In the current design, Zorro assumes that all failed servers are replaced before
graph processing continues. Studying elasticity techniques to enable the frame-
work to scale-out/in graph computation on failures depending depending upon the
availability of replacement servers is an important future direction. After failures,
different applications may require different initialization functions for the vertices
whose state could not be recovered. To this end, a graph processing framework
could allow users to define a re-initialization function based on their needs. On
a theoretical side, it is important to study the roles different vertices play in the
convergence of graph applications. The studied properties can be used to enhance
reactive recovery mechanisms in distributed graph processing frameworks.

Finally, reactive failure recovery mechanisms offer a cheap and effective alter-
native to expensive proactive recovery mechanisms. Studying their application
in other distributed data processing frameworks like stream processing frame-
works [54] [60] is an important future direction.

48

Chapter 9

CONCLUSION

In this thesis, we have shown that reactive failure recovery mechanisms provide a
cheap, useful and accurate alternative to proactive recovery mechanisms. We pre-
sented Zorro, a zero cost reactive recovery protocol which recovers from any num-
ber of independent and cascading failures in distributed graph processing frame-
works. By allowing replacement servers to rebuild their state using inherently
replicated state in distributed graph processing, Zorro enables failure recovery
which maintains very high levels of accuracy.

49

BIBLIOGRAPHY

[1] Apache Giraph. http://giraph.apache.org/.

[2] Apache GraphX. https://spark.apache.org/graphx/.

[3] Apache Hadoop. https://hadoop.apache.org/.

[4] Apache Hama. https://hama.apache.org/.

[5] Apache Spark. https://spark.apache.org.

[6] Stanford Network Analysis Project. http://snap.stanford.edu/.

[7] A.-L. Barabsi and R. Albert. Emergence of Scaling in Random Networks.
In Science, 1999.

[8] B. Bhargava and S.-R. Lian. Independent Checkpointing and Concurrent
Rollback for Recovery in Distributed Systems-An Optimistic Approach.

[9] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered Label Propagation:
A MultiResolution Coordinate-Free Ordering for Compressing Social Net-
works. In Proceedings of the International Conference on World Wide Web
(WWW). ACM, 2011.

[10] P. Boldi and S. Vigna. The WebGraph Framework I: Compression Tech-
niques. In Proceedings of the International World Wide Web Conference
(WWW). ACM, 2004.

[11] M. Bota, H.-W. Dong, and L. W. Swanson. From gene networks to brain
networks. In Nature neuroscience, 2003.

[12] S. Brin and L. Page. The Anatomy of a Large-scale Hypertextual Web Search
Engine. In Computer networks and ISDN systems, 1998.

[13] R. H. Campbell and B. Randell. Error Recovery in Asynchronous Systems.
Transactions on Software Engineering, 1986.

[14] K. M. Chandy and L. Lamport. Distributed Snapshots: Determining Global
States of Distributed Systems. In Transactions on Computer Systems
(TOCS). ACM, 1985.

50

[15] R. Chen, J. Shi, Y. Chen, H. Guan, B. Zang, and H. Chen. Powerlyra: Dif-
ferentiated Graph Computation and Partitioning on Skewed Graphs. In Pro-
ceedings of the European Conference on Computer Systems (EuroSys), 2015.

[16] A. Ching. Scaling apache giraph to a trillion edges. Facebook Engineering
blog, 2013.

[17] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live Migration of Virtual Machines. In Proceedings of
the Symposium on Networked Systems Design and Implementation (NSDI).
USENIX, 2005.

[18] J. Dean. Experiences with mapreduce, an abstraction for large-scale compu-
tation. In PACT, 2006.

[19] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In Communications of the ACM. ACM, 2008.

[20] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A Survey of
Rollback-recovery Protocols in Message-passing Systems. ACM Computing
Surveys (CSUR), 2002.

[21] S. Ewen, S. Schelter, K. Tzoumas, D. Warneke, and V. Markl. Iterative Par-
allel Data Processing with Stratosphere: An Inside Look. In Proceedings of
International Conference on Management of Data (SIGMOD). ACM, 2013.

[22] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System. In
SIGOPS operating systems review. ACM, 2003.

[23] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. PowerGraph:
Distributed Graph-Parallel Computation on Natural Graphs. In Proceedings
of Symposium on Operating Systems Design and Implementation (OSDI).
USENIX, 2012.

[24] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Sto-
ica. Graphx: Graph Processing in a Distributed Dataflow Framework. In
Proceedings of Symposium on Operating Systems Design and Implementa-
tion (OSDI). USENIX, 2014.

[25] A. Gubichev, S. Bedathur, S. Seufert, and G. Weikum. Fast and Accurate
Estimation of Shortest Paths in Large Graphs. In Proceedings of the Inter-
national Conference on Information and Knowledge Management (CIKM).
ACM, 2010.

[26] I. Hoque and I. Gupta. LFGraph: Simple and Fast Distributed Graph Analyt-
ics. In Proceedings of Conference on Timely Results In Operating Systems
(TRIOS). ACM, 2013.

51

[27] Y. Hu, Y. Koren, and C. Volinsky. Collaborative Filtering for Implicit Feed-
back Datasets. In Proceedings of the International Conference on Data Min-
ing (ICDM). IEEE, 2008.

[28] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper: Wait-free Coor-
dination for Internet-scale Systems. In Proceedings of the Annual Technical
Conference (ATC). USENIX, 2010.

[29] D. B. Johnson and W. Zwaenepoel. Recovery in Distributed Systems using
Asynchronous Message Logging and Checkpointing. In Proceedings of the
Symposium on Principles of Distributed Computing (PODC). ACM, 1988.

[30] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus: A peta-scale graph
mining system implementation and observations. In Proceedings of the In-
ternational Conference on Data Mining (ICDM). IEEE, 2009.

[31] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a Social Network
or a News Media? In Proceedings of International Conference on World
Wide Web (WWW). ACM, 2010.

[32] A. Kyrola, G. E. Blelloch, and C. Guestrin. GraphChi: Large-Scale Graph
Computation on Just a PC. In Proceedings of Symposium on Operating
Systems Design and Implementation (OSDI). ACM, 2012.

[33] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Heller-
stein. Distributed GraphLab: A Framework for Machine Learning and Data
Mining in the Cloud. Proceedings of VLDB Endowment, 2012.

[34] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Heller-
stein. GraphLab: A New Parallel Framework for Machine Learning. In
Conference on Uncertainty in Artificial Intelligence (UAI), 2010.

[35] A. Lowry, J. R. Russell, and A. P. Goldberg. Optimistic Failure Recovery
for Very Large Networks. In Proceedings of the Symposium on Reliable
Distributed Systems. IEEE, 1991.

[36] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry. Challenges in par-
allel graph processing. In Parallel Processing Letters, 2007.

[37] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer. LLAMA: Efficient
Graph Analytics Using Large Multiversioned Arrays. 2015.

[38] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: A System for Large-Scale Graph Processing. In Pro-
ceedings of International Conference on Management of Data (SIGMOD).
ACM, 2010.

52

[39] I. Mitliagkas, M. Borokhovich, A. G. Dimakis, and C. Caramanis.
FrogWild!–Fast PageRank Approximations on Graph Engines. In NIPS
Workshop on Distributed Machine Learning and Matrix Computations,
2014.

[40] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott. Proactive Fault
Tolerance for HPC with Xen Virtualization. In Proceedings of the Interna-
tional conference on Supercomputing (SC). ACM, 2007.

[41] D. Ongaro, S. M. Rumble, R. Stutsman, and J. Ousterhout. Fast crash re-
covery in RAMCloud. In Proceedings of Symposium on Operating Systems
Principles (SOSP). ACM, 2011.

[42] R. Power and J. Li. Piccolo: Building Fast, Distributed Programs with Par-
titioned Tables. In Proceedings of the Symposium on Operating Systems
Design and Implementation (OSDI), 2010.

[43] L. Qin, J. X. Yu, L. Chang, H. Cheng, C. Zhang, and X. Lin. Scalable
big graph processing in mapreduce. In Proceedings of the International
Conference on Management of Data (SIGMOD). ACM, 2014.

[44] M. Rosenblum and J. K. Ousterhout. The design and implementation of
a log-structured file system. In ACM Transactions on Computer Systems
(TOCS). ACM, 1992.

[45] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-stream: Edge-centric graph
processing using streaming partitions. In Proceedings of Symposium on Op-
erating Systems Principles (SOSP). ACM, 2013.

[46] S. Salihoglu and J. Widom. GPS: A Graph Processing System. In Pro-
ceedings of International Conference on Scientific and Statistical Database
Management. ACM, 2013.

[47] S. Schelter, S. Ewen, K. Tzoumas, and V. Markl. All Roads lead to Rome:
Optimistic Recovery for Distributed Iterative Data Processing. In Proceed-
ings of International Conference on Information and Knowledge Manage-
ment (CIKM). ACM, 2013.

[48] S. B. Seidman. Network structure and minimum degree. Social networks,
1983.

[49] Y. Shen, G. Chen, H. V. Jagadish, W. Lu, B. C. Ooi, and B. M. Tudor. Fast
Failure Recovery in Distributed Graph Processing Systems. In Proceedings
of the VLDB Endowment, 2015.

[50] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop Distributed
File System. In Proceedings IEEE Symposium on Mass Storage Systems and
Technologies (MSST), 2010.

53

[51] S. W. Smith, D. B. Johnson, and J. Tygar. Completely Asynchronous Op-
timistic Recovery with Minimal Rollbacks. In Proceedings of the Interna-
tional Symposium on Fault-Tolerant Computing. IEEE, 1995.

[52] S. H. Strogatz. Exploring Complex Networks. Nature, 410, 2001.

[53] R. Strom and S. Yemini. Optimistic Recovery in Distributed Systems. ACM
Transactions on Computer Systems (TOCS), 1985.

[54] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni,
J. Jackson, K. Gade, M. Fu, J. Donham, et al. Storm @ Twitter. In Proceed-
ings of the International Conference on Management of Data (SIGMOD).
ACM, 2014.

[55] P. Wang, K. Zhang, R. Chen, H. Chen, and H. Guan. Replication-based
Fault-tolerance for Large-scale Graph Processing. In International Confer-
ence on Dependable Systems and Networks (DSN). IEEE, 2014.

[56] J. Ye, J.-H. Chow, J. Chen, and Z. Zheng. Stochastic Gradient Boosted Dis-
tributed Decision Trees. In Proceedings of the Conference on Information
and Knowledge Management (CIKM). ACM, 2009.

[57] J. W. Young. A First Order Approximation to the Optimum Checkpoint
Interval. In Communications of the ACM. ACM, 1974.

[58] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient Distributed Datasets: A Fault-
tolerant Abstraction for In-memory Cluster Computing. In Proceedings
of Conference on Networked Systems Design and Implementation(NSDI).
USENIX, 2012.

[59] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:
Cluster Computing with Working Sets. In Proceedings of Conference on Hot
topics in Cloud Computing. USENIX, 2010.

[60] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Discretized
Streams: Fault-tolerant Streaming Computation at Scale. In Proceedings of
the Symposium on Operating Systems Principles (SOSP). ACM, 2013.

54

