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Abstract

“Predictive Design Analytics” proposed by this dissertation is a new paradigm to enable design engineers to extract

important patterns from large-scale data characterized by four dimensions (volume, variety, velocity and veracity),

and combine the extracted knowledge and its trend with complex systems optimization for various design decision

making problems such as economical life cycle design, product family design and sustainable design. The goal of

this research is the development of predictive design analytics methods for optimal systems design: Demand Trend

Mining, Continuous Preference Trend Mining, Predictive Data-Driven Product Family Design, and Predictive Usage

Mining for Life Cycle Assessment. To the best of the author’s knowledge, this is one of the first attempts to provide

a systematic framework of predictive analytics for design, which comprises data preprocessing, data representation,

predictive analytics algorithms, mathematical formulation of design problems, and design decision making.

Demand trend mining (DTM) is developed to link pre-life (design and manufacturing) and end-of-life (remanu-

facturing and recycling) stages of a product for the improvement of initial product design. In order to capture hidden

and upcoming trends of product demand, the algorithm combines three different models: decision tree for large-scale

data, discrete choice analysis for demand modeling, and automatic time series forecasting for trend analysis. DTM

dynamically reveals design attribute patterns that affect demands. A new design framework, Predictive Life Cycle

Design (PLCD), is formulated, which connects DTM and optimal product design. The DTM algorithm interacts with

the optimization-based model to maximize the total profit of a product through its life. For illustration, the developed

model is applied to an example of smart-phone design, assuming that used phones are taken back for remanufacturing

after one year. The result shows that the PLCD framework with the DTM algorithm identifies a more profitable prod-

uct design over a product’s life cycle when compared to traditional design approaches that focus on the pre-life stage

only.

Continuous Preference Trend Mining (CPTM) is developed to generate multiple profit cycles of product design

while addressing some fundamental challenges in previous studies. The CPTM algorithm captures a hidden trend of

customer purchase patterns from accumulated transactional data. Unlike traditional, static data mining algorithms,

the CPTM does not assume stationarity, but dynamically extracts valuable knowledge from customers over time. By

generating trend embedded future data, the CPTM algorithm not only shows higher prediction accuracy in compari-
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son with well-known static models, but also provides essential properties that could not be achieved with previously

proposed models: utilizing historical data selectively, avoiding an over-fitting problem, identifying performance infor-

mation of a constructed model, and allowing a numeric prediction. Furthermore, the formulation of the initial design

problem is proposed, which can reveal an opportunity for multiple profit cycles. This mathematical formulation en-

ables design engineers to optimize product design over multiple life cycles while reflecting customer preferences and

technological obsolescence using the CPTM algorithm. For illustration, the developed framework is applied to an

example of tablet PC design in the leasing market, and the result shows that the determination of optimal design is

achieved over multiple life cycles.

Predictive, data-driven product family design (PDPFD) is proposed as one of the predictive design analytics meth-

ods to address the challenge of determining optimal product family architectures with large-scale customer preference

data. The proposed model expands clustering based data-driven approaches to incorporate a market-driven approach.

The market-driven approach provides a profit model in the near future to determine the optimal position and number

of product architectures among product architecture candidates generated by the k-means clustering algorithm. Unlike

discrete choice analysis models which were used in previous market-driven approaches, a market value prediction

method is proposed as a dynamic model which can capture and reflect the trend of customer preferences. Prediction

intervals provide market uncertainties of the dynamic profit model for product family architecture design. A universal

electric motors design example is used to demonstrate the implementation of the proposed framework with large-scale

data. The comparative study shows that the PDPFD algorithm can generate more profit than pure clustering based

data-driven models, which shows the necessity of combining data-driven and market-driven approaches.

Predictive usage mining for life cycle assessment (PUMLCA) is developed to provide the usage modeling in life

cycle assessment (LCA) which has been rarely discussed despite the magnitude of environmental impact from the

usage stage. The PUMLCA algorithm can serve as an alternative of the conventional constant rate method. By

modeling usage patterns as trend, seasonality, and level from a time series of usage information, predictive LCA can

be conducted in a real time horizon, which can provide more accurate estimation of environmental impact. Large-

scale sensor data of product operation is suggested as a source of data for the proposed method to mine usage patterns

and build a usage model for LCA. The PUMLCA algorithm can provide a similar level of prediction accuracy to the

constant rate method when data is constant, and the higher prediction accuracy when data has complex patterns. In

order to mine important usage patterns more effectively, a new automatic segmentation algorithm is developed based

on the change point analysis. The PUMLCA algorithm can also handle missing and abnormal values from large-scale

sensor data, identify seasonality, formulate a predictive LCA for existing and new machines. Finally, the LCA of

agricultural machinery demonstrates the proposed approach and highlights its benefits and limitations.
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Chapter 1

Introduction

1.1 Prediction, Design and Analytics: Design Engineers in the Era of Big

Data

The advent of modern sensor networks and various types of web devices has brought the era of Big Data in the society

of engineering system design. Even though the term Big Data is usually defined loosely in terms of quantity and

diversity, it has already become essential for business models and decision making processes. Instead of simply storing

data, enterprises now make great efforts to discover facts about customers and product systems from data. Naturally,

design engineers are required to support data-driven decisions for the design of optimal systems not only based on

traditional data but also based on new types of data. Traditional data is usually acquired from controlled environment

with limited number of samples, e.g., survey and design of experiments. Traditional data is stated preference data with

close customer interaction, which is designed to be tested for hypotheses. On the other hand, the new data is collected

from actual behavior of customers, e.g., sales, transactions, reviews, on-line ratings, tweets, wireless sensor data, etc.

The new data is revealed preference data, which is characterized as Big Data.

Throughout this dissertation, the term Big Data will not be used due to the vagueness of its definition. Instead,

large-scale data characterized by 4 Vs [6] (hereinafter large-scale data) will be used in the domain of system design.

The 4 Vs represent volume, variety, velocity and veracity. The volume is the amount of available data. Since data

volumes keep increasing, it is difficult to define how big is really big, and it varies by industry. In terms of raw data

(before preprocessing), between terabytes (1012 bytes) and petabytes (1015 bytes) of data are usually considered as big

nowadays [6]. In system design, if the volume of data after preprocessing is greater than the volume of data obtained

from the traditional controlled environment (hundreds or thousands at most), then it is considered to be big data by

this study. The variety refers to various types of data and data sources. Data can be not only structured but also semi-

structured or unstructured in the forms of on-line reviews, tweets, sensor data, transactional data, clickstreams, search

queries, etc. The velocity represents the speed of data collection. In system design, it is not only the speed of data

generation which is important but also capability to trace changes of underlying data patterns by collecting time series.
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This implies that customers or target systems that generate data change their patterns over time such as preferences and

system characteristics. The veracity denotes the level of reliability and uncertainty. For example, real-time sensor data

can have missing values and abnormal values. With the dimension of velocity, forecasts are frequently required, and

inevitably, forecasts have high variation (dispersion). More importantly, the veracity of data can raise the fundamental

question: the context of data (e.g., clickstreams and search queries can infer the intention of purchase?). Without

careful deliberation and analysis of customer behavior, extracted knowledge can be misleading.

The challenges of the four dimensions of large-scale data in the domain of system design are as follows. First,

methods to handle a large data volume (dimension of volume) are needed with a proper data representation (dimension

of variety). Multicollinearity, a large number of factors, computational burden and non-parametric properties are

possible problems. Second, the change of underlying data patterns (dimension of velocity) should be identified and

addressed in design problems. Instead of assuming steady-state processes, a trend of target information should be

traced and reflected in design if it is necessary. Third, forecasting accompanies prediction intervals and uncertainties

(dimension of veracity). It is important to quantify this uncertainty and support design decisions with the prediction

intervals.

In order to deal with these challenges, design engineers should be equipped with tools from three critical disci-

plines: design (modeling and optimization), analytics (data-driven approaches or data mining), and prediction (time

series modeling and forecasting). Design problems can be formulated using mathematical programming and solved

with optimization techniques. Design analytics (data analytics for design) finds important hidden knowledge from

large-scale data, and the identified knowledge is incorporated in design problems. The capability of prediction allows

design analytics to reflect the trend of target information and to address uncertainties of future events.

1.2 Motivation

Today’s highly competitive market situation and enormous data generation environment from both enterprises and

customers require companies and design engineers’ close adaptation to the changes of customer preferences and

requirements. Business strategies and product planning are now supported by large-scale data from various sources

such as social networks, sensors, clickstreams, etc. In order to accommodate the diversity and variability of customer

preferences, predictive design analytics (PDA) is proposed in this dissertation.

PDA is a new paradigm to enable design engineers to extract knowledge from large-scale, multidimensional,

unstructured, volatile data, and transform the knowledge and its trend into design decision making. The PDA methods

encompass data-driven tools and techniques such as statistics, machine learning, data mining, and time series analysis.

Since design engineers face new challenges, i.e., mining useful patterns from large-scale data and designing optimal
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systems based on them, the PDA methods developed in this dissertation can shed new light on important design

problems for design engineers.

1.3 Research Focus

1.3.1 Goal and Scope

This research aims to develop predictive design analytics (PDA) methods to detect useful patterns from large-scale

data, and combine the extracted knowledge with system optimization for various decision making processes, e.g.,

economical life cycle design, product family design, sustainable design, etc. Figure 1.1 shows the structure of the

overall framework.

Decision making

Predictive design 

analytics
System optimization

• Economical life cycle design

• Product family design

• Sustainable design

max  ( )

. . ( ) , ( )

f

s t ≤ =

x
x

g x 0 h x 0

Figure 1.1: Structure of overall framework

The scope of this study comprises the developments of PDA methods and the formulation of design problems in

various decision making processes while addressing how to overcome the 4 Vs of large-scale data. Figure 1.2 shows

the key techniques to address some issues in large-scale data. Data-driven models or data mining based methods (e.g.,

supervised and unsupervised learning) are proposed to deal with the dimension of volume. A proper data representation

is also discussed depending on design problems and collected data for the dimension of variety. Time series analysis is

used to address the dimension of velocity (i.e., change of underlying patterns). Finally, handling missing and abnormal

values (reliability) and prediction intervals (uncertainty) are discussed for the dimension of veracity. Furthermore,

design problems are formulated to utilize the PDA methods and find the optimal design decisions.
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Volume

Large-scale data with 4 Vs

Variety Velocity Veracity

Data mining Data representation Time series analysis Prediction interval

Optimal System Design

Predictive Design Analytics

Mathematical programming

Decision making

Figure 1.2: 4 Vs and proposed model

Figure 1.3 shows the flow of PDA and the focus area (dotted box). The overall procedure starts from data collec-

tion and storage from various sources such as wireless sensor network system, social networks, Web search engines,

etc. The collected data should be cleaned to remove errors and the proper data representation should be determined.

Depending on the collected data and design purposes, different data/trend mining techniques can be developed to de-

tect valuable patterns or knowledge. Finally, the optimization engine finds optimal solutions based on the extracted

knowledge, system models and constraints. Design decisions can be made based on the optimal solutions and sensi-

tivity analysis. It should be noted that this study mainly focuses on the analysis of data rather than the collection and

storage of data though Chapter 6 provides some basic data cleaning techniques for missing and abnormal data.

1.3.2 Research Questions

This dissertation consists of PDA methods developed for different design decisions with large-scale data. An overview

of the research structure is shown in Figure 1.4. The first part (Chapters 3 through 4) of this dissertation develops PDA

methods for economical life cycle design with multiple life cycles. In order to link pre-life and end-of-life decision

making processes of target products, the first study (Chapter 3) investigates a method to capture hidden and upcoming

trends of customer preferences and product demands from large-scale data.

Specific research questions are as follows:

• How can customer preferences information be captured for the first life and the second life of products?
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Figure 1.3: Research flow and focused area

• What are the factors which can affect the decision making process of economical life cycle design?

• How can the demand of target products be estimated from customer rating (utility) data?

• How is the pre-life and end-of-life combined profit optimization problem formulated mathematically?

The second study (Chapter 4) examines how to improve the algorithm used in the first study while identifying

multiple profit cycles. This leads to the development of a new PDA method and the following research questions are

explored:

• How are continuous class variables allowed in the trend mining algorithm?

• Can over-fitting problems be handled properly?

• Can the performance information of a constructed model be identified?

• How is the multiple life cycles problem formulated with the new algorithm?

The second part (Chapter 5) of this dissertation investigates data-driven and market-driven combined product

family design with large-scale data. Out of the 4 Vs, the dimension of veracity is handled with prediction intervals and

a large volume of data is tested for the dimension of volume. The research questions are as follows:

• What is the data representation to find the relation between product architectures and customer preferences?

• How can a future profit model be formulated and estimated with prediction intervals?

• Can multiple values for common parameters in product family design be realized?
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Demand Trend Mining algorithm

How to capture hidden and upcoming trends for system design? 

How to link pre-life and end-of-life of system design?

• Extracting future preference trees from reman market

• Demand modeling and forecasting

• Formulating a life cycle design problem to optimize life cycle profit

Economical

life cycle design

Predictive Usage Mining for Life Cycle Assessment algorithm

What is the limitation of current LCA approaches? 

Can usage patterns be defined and modeled from sensor data?

• Handling missing and abnormal values from sensor data

• Automatic segmentation algorithm

• Formulating predictive LCA

Continuous Preference Trend Mining algorithm

How to allow continuous class variables in trend mining? 

Can multiple profit cycles be realized?

• Utilizing historical data selectively

• Avoiding an over-fitting problem

• Identifying performance information of a constructed model

• Allowing a numeric prediction

• Formulating a multiple life cycle design problem

Predictive, Data-driven Product Family Design algorithm

How to address uncertainties in prediction? 

Can a large volume of data be processed by the proposed method?

• Regression coefficient based future profit modeling

• Data representation for determining product architectures

• k-means clustering for target setting

• Decision making with prediction intervals

• Handling large-scale data

Multiple

profit cycles design

Product family 

design

Sustainable

design

Figure 1.4: Research structure
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The third part (Chapter 6) of this dissertation investigates usage pattern mining for sustainability of complex

systems design with sensor data. Life cycle assessment is a core part of sustainable design and a new perspective of

usage modeling is provided with large-scale sensor data. The research questions are as follows:

• Can usage patterns be modeled for life cycle assessment?

• What are the techniques for extracting patterns from sensor data?

• What is the formulation for predictive life cycle assessment in a real time horizon?
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1.4 Overall Organization

The overall organization of the dissertation is illustrated in Figure 1.5. Chapter 1 introduces the motivation of predictive

design analytics for design engineers who face large-scale data. The research questions are also provided for each

chapter. Chapter 2 presents a review of the related literature. A survey of predictive analytics and target design areas is

provided. Chapter 3 proposes a demand trend mining algorithm, which includes handling large-scale data, capturing

trend and modeling demand over time. Predictive life cycle design is formulated mathematically so that pre-life and

end-of-life combined profit optimization can be realized. Chapter 4 proposes a continuous preference trend mining

algorithm, which can overcome some limitations of discrete trend mining algorithms. Multiple profit cycles design

is formulated mathematically so that multiple profit cycles can be revealed. Chapter 5 presents a predictive, data-

driven product family design algorithm, which combines data-driven and market-driven approaches. A new product

family design problem is formulated mathematically so that optimal family decisions can be obtained from large-scale

historical data. Chapter 6 proposes a predictive usage mining for life cycle assessment algorithm, which provides a

new perspective of usage modeling in life cycle assessment. An automatic segmentation algorithm is developed for

highly seasonal system data. Chapter 7 summarizes the contributions of this dissertation and discusses future work.
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Sustainable Design
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Chapter 7. Conclusion and Future Work

Figure 1.5: Overall organization of dissertation
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Chapter 2

Literature Review

A survey of relevant studies is presented in this chapter. The review is partitioned into four sections as illustrated in

Figure 2.1.

Chapter 3

Economical Life 

Cycle Design

Section 2.1. Predictive Analytics for Design

Section 2.2. Economical Life Cycle Design

Chapter 4

Multiple Profit 

Cycles Design

Chapter 5

Product Family 

Design

Chapter 6

Sustainable Design

Section 2.3. Product Family Design Section 2.4. Sustainable Design

Figure 2.1: Scope of topics discussed in literature review

2.1 Predictive Analytics for Design

Predictive analytics is emerging as a new area for various businesses with data explosion. Companies such as IBM,

KXEN, SAS, SAP, etc. consider predictive analytics as core tools for optimizing business processes, and universities

such as Northwestern University, UC Irvine, NC state University, Depaul University, etc. have been providing de-

grees and certificates for predictive analytics. Google trends (http://www.google.com/trends) also show an increasing

interest in predictive analytics as shown in Figure 2.2.

Due to the multidisciplinary nature and the expanding scope of predictive analytics, it is difficult to define predic-

tive analytics but some definitions are available in the literature as follows:
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Figure 2.2: Trend of keyword “predictive analytics” (relative scale)

• “Technology that learns from experience (data) to predict the future behavior of individuals in order to drive

better decisions.” [7]

• “A set of business intelligence (BI) technologies that uncovers relationships and patterns within large volumes

of data that can be used to predict behavior and events.” [8]

• “Predictive analytics brings together management, information technology and modeling. It is for today’s data-

intensive world. Predictive analytics is data science, a multidisciplinary skill set essential for success in business,

nonprofit organizations and government.” [9]

Predictive analytics is different from query, reporting, search and visualization tools, which are considered as

traditional BI technologies, in that they are inductive in nature rather than deductive [8]. That is, predictive analytics

mines useful patterns from past events to predict unseen events without any presumption about data. On the other

hand, the traditional BI technologies explore the data based on hypotheses and explain what the data shows. For

example, predictive analytics provides a way to evaluate credit scores, detect fraudulent transactions, classify spam

e-mails, provide behavioral advertising, etc., from large-scale data.

Predictive design analytics in this dissertation has two distinctive features from predictive analytics in the literature:

1) deals with both stationary and non-stationary data and 2) provides a framework to combine the methods of predictive

analytics and optimal system design under various decision making processes. Most studies in the literature use the

term predictive analytics and data mining (also machine learning and knowledge discovery) interchangeably. Actually,

data mining is frequently introduced as main techniques for predictive analytics. However, traditional data mining

techniques cannot be used as predictive models when there are underlying changes of data.

The first distinctive feature of predictive design analytics is a dynamic modeling aspect to deal with changes of data

patterns. In contrast to previous studies, two types of predictions are considered. The first type is the generalization
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of data. For example, without observing all the combinations of attributes (explanatory variables and independent

variables), can class variables (response, output and dependent variables) from an unseen combination be predicted?

Traditional data mining techniques (static machine learning models) mainly focus on this type of prediction with the

implicit assumption of stationarity. That is, underlying patterns stay the same over time, which means predictive

models built in the past can be used in the future. In this case, the data is called cross-sectional data. The second

type of prediction is forecasting future class variables over time. For example, what is the demand of target products

next month? In this case, the data is called a time series. Predictive analytics should consider both types of prediction

depending on the type of data which can be cross-sectional, time-series or mixed one (i.e., time-series cross-sectional

data).

Predictive trend mining (also known as change mining [10, 11] or learning concept drift [12]) is proposed to

consider both types of prediction and work as a core technique for predictive design analytics. Unlike traditional static

data mining models with the assumption of stationarity, the predictive trend mining models are dynamic and adaptive

models that capture trend or change of target information over time.

Böttcher [10] suggested that decision trees can be built based on predicted values of interestingness measure (IM).

IM is a term for “various measures devised for evaluating and ranking discovered patterns produced by the data

mining process” [13]. To trace the trend of IMs, a polynomial regression model was utilized. Tucker and Kim [14]

suggested the adoption of the time series analysis technique, Holt-Winters exponential smoothing model, which is a

more complex modeling technique with time-variant data. Tucker and Kim showed that the trend mining technique can

provide better performance than static data mining models. Support vector machine (SVM) [15] is another data mining

tool that can be used in predictive trend mining. The SVM algorithm learns by example to classify different groups.

Klinkenberg [12] discussed several methods to handle concept drifts based on the SVM algorithm. With concept drifts,

different weighting schemes for historical data are possible, i.e., each data point over an extended period of time can

be removed or utilized based on its age by allocating individual weights. Klinkenberg showed that the performance of

his adaptive techniques outperformed that of simple heuristic approaches such as using all data or the most recent data

in his simulated experiments.

Another important distinctive feature of predictive design analytics is the combination of predictive analytics and

engineering design. To the best of the author’s knowledge, this is one of the first attempts to apply predictive analyt-

ics for system design, and the combination of predictive analytics and engineering design is rarely discussed in the

literature. Tucker and Kim [14] proposed the Preference Trend Mining (PTM) algorithm which can predict upcoming

trends and provide a classification of design attributes as standard, non-standard and obsolete. However, the work

could not be extended to general design problems because the algorithm only allowed discrete class variables and the

values of design attributes were assumed to be fixed. In addition to developing methods of predictive design analytics,
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this study also aims to provide a framework to combine the result of predictive design analytics and optimal system

design.

In summary, predictive design analytics consists of data analytics which analyzes and extracts important patterns

from large-scale data, design analytics which focuses on the data related to the domain of engineering system design,

and predictive analytics which serves as a predictive model for both cross-sectional data and time-series data. In the

following sections, some design areas are explored, which can be improved by predictive design analytics methods.

2.2 Economical Life Cycle Design

Design for life cycle or life cycle design is a design paradigm that enables design engineers to close the loop of a

product life cycle and to manage its life cycles. It focuses on the fact that decisions made at the design stage affect all

phases of a product’s life cycle (i.e., material extraction, manufacturing, usage, and end-of-life recovery and disposal).

Since it is hard to predict the product’s end-of-use state (e.g., life cycle length, product condition, product recovery

decision, preference of remanufactured product, etc.), predictive design analytics can be particularly beneficial for

the area of product life cycle design and recovery by analyzing large-scale data from the users, original equipment

manufacturers (OEMs), markets, and the public over a product’s life. It is critical to link product’s pre-life (design and

manufacturing) and end-of-life for closing the loop of a product life cycle.

Recovery of end-of-life products (especially electronics) has become an urgent problem that requires design engi-

neers’ attention due to multiple reasons. The first reason is the fast growing e-waste stream. The U.S. Environmental

Protection Agency (EPA) estimated that 2.37 million short tons of electronic products were ready for the end-of-life

processes in 2009 [16]. That is almost 50% higher than in 1999, and only 25% of them were gathered for recycling.

The second reason is the fact that electronic products contain toxic and hazardous materials [17]. Lead, mercury,

nickel, and palladium are examples that present negative environmental and human health effects. Reckless land-

fills are not an optimal solution. A third reason for recovering these products is that electronic products also contain

reusable and valuable resources, such as gold, copper, tin, nickel, etc. [17]. Efficient and systematic methods to re-

cover the reusable parts and resources are needed. Fourth, more regulations and responsibilities have been enforced.

The countries in the European Union have already begun adopting product take-back policy (Extended Producer Re-

sponsibility, EPR) since 1991 [18]. The U.S. has also introduced more EPR laws recently compared to 2006 [19].

Fifth, “green consumers” [20] give more pressure to companies regarding their “green” image. Now, consumers’ in-

creased awareness of sustainability is a critical factor in determining the demand of target products. Lastly, product

recovery and recycling are known to reduce fuel consumption and landfill space, and provide substantial benefits to

the environment [21].
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Some OEMs such as Caterpillar, Xerox, and Sony have shown that a proper recovery system of their end-of-life

products not only extends their products’ lives and gives some environmental benefits, but also allows for multiple

profit cycles [22, 23, 24]. These OEMs consider the end-of-life stage as the “re-life” stage and return take-back

components to “same-as-new” condition to customers. The re-life processes or recovery options include reuse, repair,

refurbishment, cannibalization and recycling. By introducing remanufactured products back to the market, companies

can find new profit opportunities and establish environmentally friendly image.

The evidence from these OEMs indicates that the construction of a system for recovery can be a hidden source

of profit. However, many factors should be considered in order to determine the profitability of the recovery system.

Possible sources of uncertainties are the product’s life, the state (product condition) after its life, available quantities

for recovery, the reliability of a remanufactured product, customer preferences, and technological obsolescence.

Moreover, many studies showed that the initial design of a product would determine 70 ∼ 85% of total life cycle

cost and environmental impact [25, 26, 27], so the selection of initial design attributes is very important. Life cycle

design is aimed at proactively dealing with economic and environmental issues during the early design stage when the

potential for affecting results is the greatest. Since little research has been conducted for the economic perspective in

comparison with the matured environmental perspective over entire life cycle [28, 29], the economic side of product

design is investigated in this dissertation, which is called economical life cycle design.

Some researchers [30, 31, 32] have developed a holistic design approach that considers various concerns of all life

cycle stages in an integrated manner. However, a more popular approach has been to develop design principles for

improving a specific life cycle stage. Design for recovery, design for remanufacturing, design for disassembly, and

design for recycling are among the principles of life cycle design. In design for end-of-life, researchers seek to identify

optimal product design to reduce the cost of recovery and/or increase the profit associated with recovery.

Rose et al. [33, 34] suggested a classification scheme for helping designers predict appropriate recovery strategies

for a product, so that the designers can redesign products to move toward a higher level of reuse. Mangun and

Thurston [35] developed a model for designing a product portfolio that incorporated part reuse through refurbishment.

Given multiple market segments with varying requirements for environmental impact, production cost, and reliability,

they attempted to determine the optimal product design for each segment in order to maximize the total utility of

the portfolio. Kwak and Kim [36, 37] introduced a framework for analyzing how product design affects end-of-life

recovery and what architectural characteristics are desirable for higher recovery profit.

One limitation of these previous methods, however, is that the design implications on the pre-life and end-of-life

stages have been considered separately. Product design has been optimized for each of the stages, but not for the

stages together due to the lack of available demand forecasting models. Two exceptions can be found in Zhao and

Thurston [38] and Kwak and Kim [39]. Both developed a mathematical model to determine the optimal product design
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that maximizes the profits from both initial sales and end-of-life recovery. They showed that the total profit can be

maximized when both ends of the product life cycle are considered at the same time. However, the prediction and

reflection of demand trends in the market were not incorporated. Predictive design analytics will capture customer

preferences from historical data and help to maximize the total profit from the entire life cycle of a product.

2.3 Product Family Design

Product family design represents designing “a set of products that share one or more common elements (e.g., com-

ponents, modules, and subsystems)” in order to satisfy various market applications [40]. The product family design

paradigm was successfully implemented by companies such as Sony, Hewlett Packard, Black & Decker, Volkswagen,

and Rolls Royce [41, 40]. One of the important tasks in this complex engineering design problem is the determination

of optimal product family architectures [42]. The product architecture is “the arrangement of functional elements to the

physical building blocks” [43] and works as a target (e.g., performance requirements) of engineering design for prod-

uct variants [42]. The products of interest in this dissertation are products or parts that can be highly shared by many

other products, including universal motors in power tools and home appliances, engines in on and off-road vehicles,

batteries in electronics, etc. These products should satisfy a wide variety of different customers’ requirements.

Recent advances in product family design were discussed in [44] from customer needs, functional requirements,

design parameters, process variables to logistics variables. Basically, there are two approaches in product family

design to utilize a product platform (“the set of parameters and/or features that remain constant” [3]): module-based

and scale-based product family design [45]. Module-based product family design represents building related products

using functional modules from the platform while scale-based product family design represents designing related

products by varying (e.g., stretch or shrink) scaling variables while making common parameters constant. Examples

of both approaches can be found in [45]. This study focuses on multiple-platform scale-based product family design.

The multiple platforms represent multiple values for common parameters. Multiple-platform design was studied using

a heuristic approach with clustering analysis based on sensitivity analysis [46] and an information theoretical approach

[47]. It is shown in this dissertation that a simple clustering algorithm can be used to explore the possibility of multiple

platforms with given common parameters. Some previous works [48, 49, 47] discussed product family design with

unknown common parameters.

In multiple-platform scale-based product family design, product family architecture design is a target setting prob-

lem for product variants [42]. It is also a positioning problem of a product family into different market segments or

clusters of customer preferences [44]. Clustering techniques can be used to find the number of product variants which

encompass the maximum possible customer preferences [44].
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Previous studies mainly focused on two directions. The first direction is the development of commonality indices

which are used to assess success of family design: degree of commonality index [50], total constant commonality index

[51], product line commonality index [52], comprehensive metric for commonality [53], etc. The second direction is

the development of solution techniques for family design problems: generalized reduced gradient [3], sequential linear

programming [48], nonlinear programming [54], genetic algorithm [55], etc. as single-stage, two-stage, and multi-

stage approaches [45, 56, 57].

In order to utilize large-scale data with market uncertainty, two emerging approaches are reviewed. First, data-

driven approaches represent modeling techniques to capture important information and its trend from data. For exam-

ple, customers’ various requirements for a product can be widespread in the space of product design. The objective

is to determine the number and position of product architectures in order to satisfy customers’ requirements. How-

ever, only data-driven approaches might generate geometrically meaningful results. For example, one architecture

can be the optimal solution based on the selected information criterion (model fitting function with penalization of

complex models) but it might end up with an inferior solution from the perspective of markets. With the guidance of

market-driven approaches, data-driven approaches can produce a meaningful result for decision makers. Once archi-

tectures are determined then clusters based on the architectures can be interpreted as market segments. For example,

finite types and models of cars are being manufactured to cover their market segments or different ranges of customer

preferences.

Second, market-driven approaches represent profit modeling techniques, which evaluates product architecture can-

didate sets in terms of profit. When the number of product architectures is increased, the fixed costs, and price that

customers are willing to pay will be increased accordingly. Only market-driven approaches in product family de-

sign relies on information of market segments. If pre-defined market segments are not available or segments can be

changed over time due to the volatility of customer preferences, determining product architectures and their speci-

fications can be a challenging decision making process. Data-driven approaches can be a solution of this issue by

extracting necessary information (i.e., clusters of customer preferences) from data.

Market-Driven Product Family Design

A market-driven approach in product family design aims to integrate market considerations with product family ar-

chitecture design [44]. In order to translate customer requirements into design requirements (including functional

requirements), quality function deployment and its variant techniques were used [41, 44]. Discrete choice analysis

[58, 59, 60] is a popular model in engineering design problems to map design attributes into market share estimation.

de Weck et al. [42] proposed a methodology that determines the optimum number of product platforms to max-

imize product family profitability with simplifying assumptions. The methodology is divided into family level (plat-
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form architecting) and variant level (product optimization) design. First, market segments and corresponding market

leaders should be identified. The number of market segments is set to be the maximum number of product platforms.

Second, the design variable set, objective function, and demand equation for a single market segment needs to be es-

tablished. Since each market segment is assumed to have a unique performance requirement, each segment represents

each platform. Third, product architectures should be optimized for a given performance requirement, and the profit

of the product family can be estimated. de Weck et al. [42] assumed that all the necessary information of the first and

second step is given so that the determination of number of platforms is the only decision variable in the family level

(i.e., no architecture specification).

Kumar et al. [61] developed market-driven product family design, which expands the demand modeling part of de

Weck et al. [42]. First, the methodology starts from the creation of market segments. All the necessary information

such as required performance, price, customer demographics, and competitors are identified. After that, a nested logit

demand model is built. The role of the demand model is to determine the market share of each market segment with

specified product performance, customer demographics, and price. Second, models for product performance and costs

need to be built. These models make trade-offs between cost and performance in the demand model. Third, optimal

product specifications and a number of platforms are identified to maximize the overall profits. Similar to the work of

de Weck et al. [42], product specifications for each segment were given (as different constraints).

These market-driven approaches extend the scope of product family design by introducing a profit model as an

objective function. The number of product family architectures was considered as one of the design variables to

maximize the profit function. However, information about market segments was assumed to be given instead of

derived. Moreover, the profit model based on discrete choice analysis is static, which means a built model in the past

can be used anytime in the future. This study aims to relax the stationarity of profit modeling.

Data-Driven Product Family Design

Agard and Kusiak [62] introduced the possible usage of the data mining based methodologies for product family

design. Given that customer demographics and functional requirements are available, clustering techniques can be

applied to group similar customers so that a representative customer can be identified. Also, functional requirements

can be associated with each other in order to find dependencies using association rule mining techniques. Moon et

al. [63] proposed that data mining techniques can identify a platform with variants and unique modules. Association

rule mining captured associated rules from product functions, and these rules were clustered as modules using fuzzy

c-means clustering. Tucker et al. [64] developed a product family optimization model with ReliefF attribute weighting

and X-means clustering techniques. The X-means clustering gave the number and specifications of architectures, and

the ReliefF provided the importance of each design attribute in the optimization model. Chan et al. [65] proposed
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fuzzy clustering to group customer requirements as market segments. The center points of market segments were used

for the development of product variants.

These studies showed that market segmentation can be realized automatically by clustering techniques instead of

being assumed to be given or resorting to experts’ opinions. However, they did not consider market so it is possible to

have sub-optimal solutions in terms of profit. Moreover, previous studies involved small data sets (e.g., 50 in [65] and

1000 in [64]).

Predictive design analytics provides a data-driven and market driven combined method for product family design,

which can mine important market information from accumulated large-scale data sets without pre-defined market

segments, and capture a trend of customer preferences over time with the consideration of its uncertainty. Since

product family architecture design is a complex and difficult task, predictive design analytics can shed new light on

this problem for design engineers.

2.4 Sustainable Design (Life Cycle Assessment)

In Section 2.2, the basic concepts of design for recovery, design for life cycle, and design for remanufacturing are

introduced with an economic perspective. The original goal of these design methods is to accomplish green, environ-

mentally friendly, sustainable design. For sustainable design, environmental life cycle assessment is an essential tool

to evaluate success of sustainability.

Life cycle assessment (LCA) is an analytical assessment tool to quantify environmental impact of a product or

system [66, 67]. The potential environmental impact can be generated from all the stages of a product, i.e., manufac-

turing, usage, maintenance, and end-of-life. The LCA approach provides a holistic and systematic way to manage data

associated with the target product. With the popularity of sustainable design and environmentally conscious design,

LCA studies have been reported for various materials, electronics, automobiles, and complex systems [29].

The LCA framework [68, 69] consists of goal and scope definition, inventory analysis (LCI, life cycle inventory),

impact assessment (LCIA, life cycle impact assessment), and interpretation. The goal and scope definition is the phase

that defines the purpose, target systems or products, the level of sophistication. The LCI is the phase that defines the

system boundaries and the flow diagrams with unit processes (e.g., extraction of oil, refining, production of electricity,

etc.). The main result from the LCI is the inventory table which quantifies inputs (e.g., raw material, land, energy,

etc.) from and outputs (e.g., pollutants such as CO2, SO2, NOx, etc.) to the environment. The LCIA is the phase that

translates the inventory table into relevant impact categories (e.g., carcinogens, climate change, acidification, etc.) and

quantifies the environmental impact using weighting and normalization. The interpretation is the phase that evaluates

the results from the LCIA and makes recommendations of the LCA study.
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A couple of well-established impact assessment methods were proposed by organizations and researchers, e.g.,

Eco-Indicator series, IPCC (Intergovernmental Panel on Climate Change) Global Warming Potential (GWP) series,

ReCiPe, Ecosystem Damage Potential, etc. Two popular methods are introduced as follows.

Eco-Indicator 99

The Eco-Indicator 99 [2] is designed to provide a single score (points) which can be interpreted as the environmental

impact of a product. Figure 2.3 shows the procedure to calculate the indicator. First, based on the inventory analysis,

inputs (resources and land use) and outputs (emissions) are identified. Second, the items of the constructed inventory

table are classified as proper impact categories and mapped to the three damage categories such as resources, ecosys-

tems and human health. Third, the final indicator is calculated as a single score using the weighted sum of the three

damage categories.

Figure 2.3: Eco-Indicator 99 framework from [2]

Global Warming Potential (IPCC 2007)

The IPCC 2007 method (https://www.ipcc.ch) provides a quantified measure of greenhouse gases’ (e.g., carbon diox-

ide, methane, nitrous oxide, etc.) global warming potential (GWP). Unlike the Eco-Indicator 99, weighting is not

included in this method. Instead, carbon dioxide is used as the reference gas, which has a GWP of one. The IPCC

2007 method provides the conversions of other greenhouse gases based on the reference gas and GWP values are ap-
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plied to units of mass (e.g., kilograms CO2 equivalents). A GWP is calculated over time horizons of 20, 100, and 500

years. For example, the 100 year GWP of nitrous oxide is 298, which represents that the unit amount of nitrous oxide

emitted to air can cause 298 times more greenhouse effect than the unit amount of carbon dioxide over 100 years.

A set of software programs is available to implement LCA studies such as SimaPro (http://www.pre-sustainability.com),

Gabi (http://www.gabi-software.com), openLCA (http://www.openlca.org), Team (http://ecobilan.pwc.fr/en/boite-a-

outils/team.jhtml), GREET (http://greet.es.anl.gov/), etc. They provide an interface to connect environmental databases

and apply the impact assessment methods.

Although the LCA approach is mature and has become a widely used method in various industries, it is usually

static in that time is not considered in the assessment with the implicit assumption of steady-state processes. The

necessity of considering time in LCA was discussed in literature. Reap et al. [70] provided insightful reviews on the

temporal aspects of LCA. Temporal factors such as different rates of emissions over time and seasonal variation of

their impacts can influence the accuracy of LCA. Levasseur et al. [71] showed that the inconsistency in time frames

can affect LCA results significantly. Memary et al. [72] demonstrated that changes of environmental impact over

time are useful information for assessing future technology and options. Collet et al. [73] presented a method to find

the most critical flows of information based on dynamic inventory data (i.e., LCI level) and sensitivity analysis. In

addition to the aspect of time, spatial variation is another contributor that can significantly affect the accuracy of LCA

[70]. Local, regional and continental differences can cause the different result of LCA.

Among the life cycle stages of a product, the manufacturing stage, which is the chosen stage in the majority of

LCA studies, can be considered as a one-time event, i.e., time-independent event. Although the dynamic inventory

approach [73] attempted to relax this (e.g., the impact from material x or process y can be changed over time), the

inventory data is considered constant in this study. On the other hand, the usage stage (with maintenance and end-of-

life stages) is a time-dependent event, which means the lifespan of a product has a large impact on LCA. Many studies

showed that the majority of environmental impact can come from the usage stage over life cycle (e.g., more than 60%

for cars [74], more than 80% for off-load machinery (product of interest in this study) [75], and 80∼90% for some

small electronics [76]).

Even though the importance of the usage modeling has been recognized among LCA researchers and practitioners,

it is rarely discussed in literature. LCA studies in literature usually utilized a constant rate [77, 78, 75, 1, 79] of usage

information (hereinafter constant rate method) with the implicit assumption of steady-state processes (e.g., average

fuel consumption rate in kg/hr, fixed operating hours per month, etc.). This method is simple and easy to apply, but if

data has complex patterns (e.g., trend, seasonality and segments), the prediction accuracy of the constant rate method

can be significantly reduced. The constant rate method only allows us to calculate life cycle impact in a nominal time

horizon, e.g., 10 years as a whole instead from October 2014 to December 2024. This can be an important issue to
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policy makers and manufacturers when they want to estimate the environmental impact of the future.

One exception is Telenko and Seepersad [76] who proposed a usage context modeling technique in LCA using

Bayesian network models. The usage context includes human, situational, and product variables. Based on a pre-

defined probabilistic network of relevant usage patterns (e.g., weather→ usage of electric kettle with probability of x),

a usage profile and its variability can be modeled as a form of distribution. However, in order to apply this approach,

causal relationships among different usage contexts should be known, which is expressed as a probabilistic network.

For example, the usage of agricultural machinery (e.g., crop sprayer, harvester, nutrient applicator, etc.) can be affected

by a various usage context (e.g., weather, soil, experience of farmers, price of fuel and crops, machine deterioration). It

will be difficult to correlate these variables with specific usage information (e.g., diesel fuel consumption and operating

hours). Furthermore, Telenko and Seepersad [76] did not consider time in LCA.

Predictive design analytics can provide a new usage modeling technique from sensor data. Based on large-scale

time-stamped data, target usage information can be modeled and predicted for the LCA of complex systems. Predic-

tive LCA in a real time horizon will estimate the environmental impact of target systems more accurately than the

conventional usage modeling method.

2.5 Discussion

This chapter provides the background of predictive analytics. In the literature, predictive analytics has been getting

more attention and being perceived as a new business intelligence model. Predictive design analytics in this dissertation

emphasizes that proposed predictive trend mining techniques can deal with not only cross-sectional data but also

time-series cross-sectional data while traditional data mining techniques are static and limited to cross-sectional data.

Moreover, it has been rarely discussed on how to apply predictive analytics for design problems. This study also

provides a framework to utilize the result of predictive design analytics in the formulation of design problems. Some

design areas are reviewed and analyzed in order to determine whether predictive design analytics can provide new

opportunities to improve the available design methods. Following chapters will discuss the development of predictive

design analytics methods for those design areas with the four dimensions of large-scale data.
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Chapter 3

Demand Trend Mining for Predictive Life
Cycle Design

In this chapter1, a new demand modeling technique, Demand Trend Mining (DTM), is proposed for Predictive Life

Cycle Design. The first goal of this chapter is the development of the DTM algorithm for predicting future demands.

In order to capture hidden and upcoming trends of product demand, the algorithm combines three different models:

decision tree for large-scale data, discrete choice analysis for demand modeling, and automatic time series forecasting

for trend analysis. DTM dynamically reveals design attribute patterns that affect demands. The second goal is the

new design framework, Predictive Life Cycle Design (PLCD), which connects DTM and data-driven product design.

This new optimization-based model enables a company to optimize its product design by considering the pre-life

(manufacturing) and end-of-life (remanufacturing) stages of a product simultaneously. The DTM algorithm interacts

with the optimization-based model to maximize the total profit of a product. For illustration, the developed model is

applied to an example of smart-phone design, assuming that used phones are taken back for remanufacturing after one

year. The result shows that the PLCD framework with the DTM algorithm identifies a more profitable product design

over a product life cycle when compared to traditional design approaches that focuses on the pre-life stage only.

3.1 Introduction

Product design analytics or data-driven product design is emerging as a promising area by bridging benefits of large-

scale data and product design decisions. With the popularity of social network and web devices, a large volume of data

which has a characteristic of complexity, timeliness, heterogeneity, and lack of structure [82] are being generated every

day. Although the necessity of large-scale data analytics for product design is now being recognized broadly, only a

few researchers have attempted to analyze large-scale data in the context of product and design analytics [83, 14, 84].

This study proposes Demand Trend Mining (DTM) as one of the analysis tools for large-scale data in order to capture

the trend of demand as a function of design attributes. DTM is a dynamic and adaptive model in that it mines the

underlying changes of concept drift from time series data and builds a predictive model based on the changes. The

model shows that it can realize predictive life cycle design which encompasses both the pre-life (i.e., manufacturing)

1Presented in [80] and published in [81].
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and end-of-life (i.e., remanufacturing which is used as an umbrella term for reuse, reconditioning, refurbishment, and

cannibalization. and recycling) stages.

Remanufacturing has been a new profit opportunity for original equipment manufacturers (OEMs). Caterpillar,

Xerox, and Sony are among the OEMs who have successfully taken this new opportunity [22, 23, 24]. In remanufac-

turing, used products are restored to a like-new condition and are given another life in the market. Remanufacturing

can bring larger profits over the lifespan of a product from an initial investment at low additional costs, typically 40%

to 65% less than new product costs because it reutilizes the materials and the value added to a product in its initial

manufacturing [85, 86].

Remanufacturing also enables OEMs to improve their environmental performance. As awareness of environmental

issues increases, pressure from the public and policymakers have prompted OEMs to be responsible for the environ-

mental impacts of their products. OEMs now need to extend their environmental efforts to encompass the entire life

cycle of a product, from cradle (raw material extraction) to grave (end-of-life disposal). By remanufacturing a product,

OEMs can reduce waste and minimize the need for raw material to make new products. It is known that remanufac-

tured products (hereinafter reman product) can save up to 90% of the environmental impact of entirely new products

[87, 24].

In order for successful remanufacturing, design for life cycle (or life cycle design) is key for OEM remanufactur-

ers. Product design determines not only the current profit from the pre-life stage but also the future profit from the

end-of-life stage [88, 36, 38]. Therefore, to maximize the total profit from the entire life cycle of a product, OEM

remanufacturers must optimize their design decisions considering both stages together.

The main challenge in life cycle design is that there is a significant time gap (i.e., usage-life) between the pre-life

and end-of-life stages. As illustrated in Figure 3.1, suppose that the decision maker is at time t preli f e (design stage),

and the selling point of new product is t f irst . In this research, it is assumed that the time gaps between t preli f e and t f irst ,

and teol and tsecond are known. Also, it is assumed that the usage-life is h, remanufacturing will occur at time teol ,

and the remanufactured products will be sold at the market at time tsecond . For instance, the typical usage-life of cell

phones and laptops is known as 1.5 years [89] and 4 years [90], respectively. Considering rapid changes in technology

and customer preferences, such a time gap between pre-life and end-of-life stages implies that life cycle design should

consider and satisfy two sets of customer needs at the same time, i.e., needs for new products at the present and needs

for reman products in the future. Although many demand models have been presented for capturing current demands

at the new-product market (hereinafter new market), very few models are available for forecasting future demands

at the remanufactured-product market (hereinafter reman market). Moreover, little research has been presented that

combines a dynamic demand model with life cycle design, which considers the time gap and transforms a trend of

customer preferences to projected demands.
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Another challenge is uncertainty of returned products in terms of quantity, timing, and condition. Figure 3.1

shows material flow starting from material extraction to part manufacturing, product assembly, recovery and disposal.

The scope of the problem is clearly defined using solid arrows. In this study, recovery options are categorized as

material, part, and product levels. Product level recovery (e.g., reuse and reconditioning) only requires some minor

value-added operations including polishing, cleaning, and lubricating. Part level recovery (e.g., cannibalization and

refurbishment) needs disassembly as well as parts conditioning and change. Material level recovery (e.g., recycling)

is usually conducted by recyclers and raw materials are recovered by shredding and refining. There are three possible

cases that require corporations’ end-of-life decisions: initial returns, returns within warranty period, and take-back

program. The initial returns are caused by changes of purchase decisions in a short period of time. The returns within

warranty period are induced by defects in any time. The focused case, take-back program, aims at boosting sales with

re-purchasing contracts of sold products within specified period. In this case, the amount and condition of returned

products should be considered in a model.
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Figure 3.1: Closing the loop of product life cycle and scope of the problem (solid arrow)

Modeling demand and customer preferences are critical for assessing the profit of a product. Under the framework

of Predictive Life Cycle Design (PLCD), the decision maker should consider two markets at the initial design stage,

i.e., the current market for new products and the future market for reman products. Considering the time gap between

pre-life and end-of-life stages, customer preferences in the two markets are likely to be different. DTM thus aims to

construct two demand models: one for new products and the other for reman products.
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Two widely used demand analysis techniques in product design are discrete choice analysis (DCA) [59, 60] and

conjoint analysis [91, 92]. While both techniques can capture customers choice behavior and model related demands,

they resort to direct customer interactions (e.g., survey) and have a limited capability to use large-scale data due to the

statistical assumptions [93].

Decision tree in data mining is an alternative model for customer preferences in product design. Since the decision

tree algorithm can deal with large-scale massive data, it was proposed to generate product concepts for design engineers

[93, 94]. However, very little research was conducted on demand analysis with the decision tree in the field of product

design and other system design [14, 95].

In order to capture trends of demand, dynamic demand models should be constructed instead of static demand

models. Dynamic models do not assume that demand models that were once built would remain the same over

time. Böttcher [10] suggested that decision tree can be built based on predicted values of interestingness measure

(IM). IM is a term for “various measures devised for evaluating and ranking discovered patterns produced by the

data mining process” [13]. To trace the trend of IMs, a polynomial regression model was utilized. Tucker and Kim

[14] suggested the adoption of the time series analysis technique, Holt-Winters exponential smoothing model, which

is a more complex modeling technique with time-variant data. However, there exist different classes of exponential

smoothing, which means the Holt-Winters model is just one of its family and design engineers should choose right

one among them. At the same time, designers are required to determine many different parameters and initial states

for the Holt-Winters model. The DTM algorithm adopted the Hyndman’s automatic time series forecasting algorithm

[96, 97]. This algorithm includes the automatic optimization process for model selection, parameter setting, and initial

state estimation with the innovations formulation of state space models.

The proposed DTM combines the merits of aforementioned three different models: DCA for demand modeling,

decision tree for large-scale data, and automatic time series forecasting for trend analysis. The decision tree algorithm,

C4.5, models customer preferences from large-scale data, and by formulating a class variable as utility, the resulting

decision tree models can estimate market shares from the DCA, specifically logit choice probability in the multinomial

logit (MNL) model. Automatic time series forecasting provides predicted IMs, and trend reflected demand is estimated

from the target time decision tree.

Table 3.1 provides a summary of MNL and C4.5 [14, 98]. The MNL model starts from a random utility model

where the true utility consists of the observable utility and the unobservable random part. In the MNL model, the

random part is assumed as independent and identically distributed extreme value, and the choice probability is given

by the logit choice probability. The C4.5 algorithm is based on the information theory. Entropy, a measure of disorder

or complexity, is calculated, and the decision tree is built in the direction of minimizing the entropy.

The DTM algorithm which is depicted in Figure 3.2 tackle some challenges systematically: extracting valuable
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Table 3.1: Overview of MNL and C4.5
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knowledge from large-scale data, building a demand model from the mined knowledge, and predicting a target demand

in the future. The requirements for overcoming the challenges include 1) utilization of large-scale data, 2) estimation

of demands, and 3) realization of demand trends over time. In order to fulfill these requirements, the DTM algorithm

utilizes and combines three different models: discrete choice analysis (DCA), decision tree, and automatic time series

forecasting. If t = 1 to t = n data are available and t = h ahead demand is needed, then DTM provides a way to

estimate demand at t = n+ h as shown in Figure 3.2. To combine the DCA and decision tree, a class variable of a

decision tree model is proposed to be expressed as utility. Also the concept of generational difference is adopted for a

prevention of missing values and smooth forecasting in product design.

Using the DTM algorithm, Predictive Life Cycle Design (PLCD) can be finally implemented. The proposed PLCD

framework enables design engineers to optimize target product design by considering the pre-life and end-of-life stages

of a product simultaneously. The identified product design will maximize the total profit over the entire product life

cycle. Figure 3.3 provides an overview of the PLCD framework. The dotted box represents the DTM model. The

remaining components represent the optimal life cycle design or optimization-based model. The framework optimizes

the product attributes as well as the selling prices and production quantities of new and reman products. For illustration,

the developed model is applied to an example of smart-phone design, assuming that the available products from initial

sales of the pre-life will return for remanufacturing after one year of usage, according to a take-back contract.
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Figure 3.2: Demand trend mining algorithm

The rest of this chapter is organized as follows. Section 3.2 describes the detailed steps of overall methodol-

ogy. Section 3.3 presents an illustrative case study of smart-phone design. Section 3.4 concludes the chapter with

suggestions for future research.

3.2 Methodology

This section describes detailed steps for DTM and PLCD. Figure 3.4 shows the overall framework of PLCD which

has two components: DTM and optimal life cycle design. Although the general description of the DTM algorithm is

described in Figure 3.2, Figure 3.4 provides more detailed steps of DTM, especially in the framework of PLCD.

3.2.1 Modeling of Demand Trend

As illustrated in Figure 3.1, suppose that the decision maker is at time t preli f e, and the selling point of new product is

t f irst . It is assumed that the time gaps between t preli f e and t f irst , and teol and tsecond are known. Also, it is assumed that

the usage-life is h, remanufacturing will occur at time teol , and the remanufactured products will be sold at the market

at time tsecond . Thus, the PLCD framework starts from DTM which estimates the market demands at time t f irst and

time tsecond for new and reman products, respectively. The DTM algorithm in Figure 3.2 is divided as 3 Steps in the

following subsections in detailed description. Step 2 covers decision trees and automatic time series prediction, which

are components of Preference Trend Mining. The demand modeling with discrete choice analysis is depicted in Step

3.
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Figure 3.3: Summary of PLCD framework

Step 1: Data Collection

In the first step, two data sets are collected to capture trends of demand in the market. First, the customer preference

data for new products are collected at the current time t preli f e in Figure 3.1. This data is used for capturing market

demand at the pre-life design stage. Second, the historical and the current preference data for reman products are

collected to predict market demand at the end-of-life stage. The preference data from time t1 to t preli f e in the reman

market are used to mine underlying demand trends and estimate the market demand at time tsecond .

Table 3.2 shows the basic data structure with an example of smart-phone design. The data comprises of two parts:

a set of attributes and a class variable. Attributes are product features, and class variables are outputs or responses that

we are interested in. In this research, the degree of customer preference or the customer utility on a discrete scale is

used as the class variable. It can be either stated data from a survey or revealed data from on-line reviews. By having

utility as the class variable, demand modeling is allowed in Step 3. Each attribute has its own levels; for example, the

attribute camera pixel has two different levels, e.g., 8 or 16-MP.

In the case of attributes with significant improvement in their values, it is represented in a relative scale using the

concept of generational difference [99]. The generational difference can be acquired by comparing the generational

gap between the target part and the latest cutting-edge part which corresponds to the maximum generation. For

example, if 16-MP is the latest generation, then the generational difference is 0. If 8-MP is the previous generation,

the generational difference is 1. The advantages of the generational difference include the prevention of missing values
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Figure 3.4: Framework of PLCD

over time and the allowance of forecasting without specific levels so that emerging trends can be captured with various

levels. The original Preference Trend Mining proposed by Tucker and Kim [14], which will be discussed in the next

step, was not intended to deal with various levels, as the algorithm used fixed levels over time.

Table 3.2: Data structure (with example of smart-phone design)

Smart-Phone Attribute Class

New product

Price

Reman product

Price
Screen size Memory Camera Pixel Utility

$199 Y11 $99.5 Y21 2.8″ X11 2 (16GB) X21 1 (8MP) X31 1

$299 Y12 $149.5 Y22 3.5″ X12 1 (32GB) X22 0 (16MP) X32 2

$399 Y13 $199.5 Y23 5.3″ X13 0 (64GB) X23 3

4
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Step 2: Preference Trend Mining

In the second step, the data sets collected in Step 1 are analyzed in order to reveal the link between product attributes

and customer utility. For new and reman products, different analyses are conducted. The data for new products is

analyzed using Quinlan’s C4.5 decision tree algorithm [100] which is a static model. The generated decision tree can

be transformed into a set of decision-tree-based rules, i.e., NewUtility(). Each path of the decision tree expresses a

decision rule and given an attribute combination, the decision-tree-based rule provides an estimate of utility.

The time series data for reman products is analyzed using the revised Preference Trend Mining (PTM) algorithm

adopted by Tucker and Kim [14]. The algorithm generates a predicted decision tree for the future time teol , which can

provide a set of decision rules, i.e., RemanUtility(). Algorithm 1 shows the pseudo code for the revised PTM. ST is the

time series data (from time t1 to t preli f e) for reman products and X is the set of attributes. The revised PTM algorithm

is similar to the C4.5 algorithm in that it builds the decision tree based on the interestingness measure (IM). In both

algorithms, the attribute with the maximum IM becomes the node for branching. The difference is in how to calculate

the IMs.

Unlike the C4.5 algorithm using one aggregated data set, the revised PTM algorithm forecasts the IMs of the future

time from the historical time series data. In Algorithm 1, PTM starts from finding the IMs of all attributes X from

all previous data (line 3). Then, there are processes to predict the IMs at teol using the IMs from t1 to t preli f e and

assign the attribute with the maximum IM as the root node of the tree (line 5). The levels of the attribute then become

branches. For each branch, the same processes are repeated for remaining attributes; i.e., PTM checks which attribute

has the maximum IM at teol and iteratively splits a decision tree until it reaches termination criteria. After identifying

all the leaf nodes, the algorithm returns the predicted decision tree.

Algorithm 1 Preference Trend Mining revised from [14]
1: procedure PTM(ST )
2: while Termination criteria are met do
3: Find IM(X) for ST and Forecast IM(X) at teol

4: If IM(Xi) = MAX IM(X) at teol

5: Then Xi = root node, Xi levels = branches
6: Find IM(X) for ST and Forecast IM(X) at teol given selected branches
7: If IM(Xi′) = MAX IM(X) at teol

8: Then Xi′ = child node, Xi′ levels = branches
9: Repeat 6, 7, 8

10: end while
11: Result class variable = leaf node
12: return Predicted decision tree
13: end procedure

To apply the revised PTM algorithm, three issues should be clarified. First, the decision maker should decide the

IM to use. The IMs that are well known and widely used include Shannon’s entropy, gini index, information gain, and
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gain ratio. Depending on the data and its characteristics, each measure has its own pros and cons [101]. In this study,

the gain ratio was selected following the C4.5 algorithm although the approach can be generalized with the other IMs.

The second issue is about the forecasting engine for the IM prediction. Hyndman’s exponential smoothing [96] and

the Box-Jenkins model [102, 103] are among the most popular and widely-used methods for time series forecasting.

In the Hyndman’s exponential smoothing, the time series data can be decomposed into four components, i.e., trend,

seasonal, cycle, and irregular error. A total of 30 mathematical models are available, and the best model can be

obtained using automatic time series forecasting algorithm [96, 97]. The Box-Jenkins model is another popular option.

It applies an autoregressive moving average (ARMA) or an autoregressive integrated moving average (ARIMA) to fit

the time series data. Exponential smoothing has value in that it is relatively simple and easy to understand though there

is no general consensus about which one has a better prediction accuracy [104, 105]. In this research, Hyndman’s

exponential smoothing model, specifically the automatic time series forecasting method, is chosen as the forecasting

engine.

The difference between the Holt-Winters model in the original PTM algorithm [14] and the automatic time series

forecasting [96, 106] in the DTM algorithm is that the former is just one of exponential smoothing family and requires

many of user inputs, but the latter allows automated model selection, and parameters and initial state estimation among

30 different linear and nonlinear models for design engineers.

Termination criteria in decision-tree generation is another important issue. If all class variables are distributed

homogeneously and no valid split is found, the process can be stopped. If the leaf node is reached and the class

variables are not distributed homogeneously, the path can be removed or the dominant class variable over time can be

selected.

Step 3: Demand Modeling

The decision trees obtained in Step 2 provide two sets of decision rules, NewUtility() and RemanUtility(). The decision

rules give estimates on customer utility that corresponds to a set of design attributes. NewUtility() gives the utility

estimates in the current new market, and RemanUtility() gives the estimates in the future reman market.

Once customer utilities for a specific product and its competing products are given, it is possible to estimate the

market share of each of the products. In this research, logit choice probability of the multinomial logit (MNL) model

[58] is used as shown in Equations (3.1) and (3.2), where l and m are the product choices available in the new and

reman markets, respectively; Yi j is a vector of binary variables representing price related (Y1 j for price of a new product,

Y2 j for price of a reman product) product attributes and their levels; Xi j is a vector of binary variables representing

component related product attributes and their levels; MSnew and MSreman are the sizes of new and reman markets,

respectively; Dnew(Y1 j,Xi j) and Dreman(Y2 j,Xi j) are market demands for new and reman products, respectively .
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Dnew(Y1 j,Xi j) =
exp(NewUtiliy(Y1 j,Xi j)

∑
l
1 exp(NewUtiliyl(Y1 j,Xi j))

MSnew (3.1)

Dreman(Y2 j,Xi j) =
exp(RemanUtiliy(Y2 j,Xi j)

∑
m
1 exp(RemanUtiliyl(Y2 j,Xi j))

MSreman (3.2)

3.2.2 Optimal Life Cycle Design

The optimal life cycle design model is the optimization engine for PLCD. Table 3.3 shows the problem statement of

the optimization model. With the aim to maximize the pre-life and end-of-life profits together, the model identifies

the optimal product design as well as optimal production strategies at the pre-life and the end-of-life stages (i.e., the

quantities and selling prices of new and reman products). The model assumes that the new products sold at time t f irst

are all taken back for recovery after h years at time teol . A certain percentage of the initial selling price, ε ·Pnew, is paid

for the take-back. It is also assumed that the returned end-of-life products are all recovered by either remanufacturing

or recycling. Customer abuse and product reliability can affect the availability of remanufacturable products. Based on

the product condition, only working products are allowed for remanufacturing. During the remanufacturing operation,

no loss in yield or no scrap is assumed. Also, upgrades of parts are not considered. In other words, products are

remanufactured maintaining their initial design from the pre-life stage.

Objective Function

The objective function of the model is given in Equation (3.3). It aims to maximize the total life cycle profit, i.e., sum

of profits from the pre-life and end-of-life stages. Equation (3.4) formulates the total profit from the pre-life stage, i.e.,

the profit from making and selling Qnew units of new products at the current time t preli f e. Equation (3.5) formulates the

total profit from the end-of-life stage. It mainly consists of three parts: cost of taking back Qtakeback units of end-of-life

products, profit from remanufacturing Qreman units of end-of-life products, and profit from recycling Qrecycle units of

products. Since the end-of-life profit occurs at the future time teol , an annual interest rate α is applied to discount the

value.

Maximize f preli f e + f eol (3.3)

f preli f e = (Pnew−Cnew)Qnew (3.4)
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Table 3.3: Optimal life cycle design model

Objective Function Maximize (pre-life profit + end-of-life profit)

Decision Variables
- Product attributes

- Quantity of products to be manufactured and remanufactured

Constraints

- Design attributes uniqueness

- No excess fulfillment of products

- Take-back program

Given Info

- NewUtility() and RemanUtility()

- Manufacturing, remanufacturing and recycling cost, and recycle profit

- Market size for new and reman products, and competing products

- Reusability or reliability of components

Assumptions

- Accumulated preference data are available

- Remanufacturing and recycling are possible recovery options

- No loss in yield in the recovery operation

Type of Problem Mixed Integer Non-Linear Problem

f eol =
1

(1+α)h [(−Ctakeback ·Qtakeback +(Preman ·Qreman−Creman ·Qreman))+(Precycle−Crecycle)Qrecycle] (3.5)

Equations (3.6) and (3.7) represent the prices of new and reman products as a function of the price related decision

variable Yi j. Equations (3.8) through (3.11) formulate the unit processing costs of manufacturing and recovery activ-

ities. In Equations (3.8) and (3.10), both manufacturing and remanufacturing costs are affected by binary decision

variables, Xi j. If product attribute i (i ∈ I) has the level of j ( j ∈ J), Yi j equals 1; otherwise, it equals 0. ε in Equa-

tion (3.9) denotes the take-back cost parameter and Cprivacyprotection represents the cost related to activities of privacy

protection (e.g., data cleaning or scrubbing).
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Pnew = ∑
j

Pnew
1 j ·Y1 j (3.6)

Preman = ∑
j

Preman
2 j ·Y2 j (3.7)

Cnew = ∑
i

∑
j

Cmanu f acturing
i j ·Xi j +C f orwardlogistics (3.8)

Ctakeback = ε ·Pnew +Creverselogistics +Csorting +Cprivacyprotection (3.9)

Creman = ∑
i

∑
j

Creconditioning
i j ·Xi j +C f orwardlogistics (3.10)

Crecycle =Crecycling +C f orwardlogistics (3.11)

Constraints

Equations (3.12) through (3.20) show the constraints of the model. Equation (3.12) imposes that each product attribute

i has an attribute level j. Equation (3.13) constrains the production quantity of new products, Qnew, in such a way that

they are always less than or equal to the demand for them, Dnew(Y1 j,Xi j). As described in the previous section, the

demand is obtained by the decision-tree-based rules from DTM. Similarly, Equation (3.14) constrains the production

quantity of reman products, Qreman.

∑
j

Yi j = 1,∑
j

Xi j = 1,Yi j,Xi j ∈ {0,1} (3.12)

Qnew ≤ Dnew(Y1 j,Xi j) (3.13)

Qreman ≤ Dreman(Y2 j,Xi j) (3.14)

Equation (3.15) formulates that available products from the new products sales at the first-life stage will be taken

back for recovery at the end-of-life stage. ρ denotes the take-back loss parameter due to the customer abuse. Equation

(3.16) constrains that all the returned products are recovered either by remanufacturing or recycling.

Qtakeback = ρ ·Qnew (3.15)

Qtakeback = Qreman +Qrecycle (3.16)

Equation (3.17) refrains Qreman from exceeding the available amount of remanufacturable products, A(teol). Equa-
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tion (3.18) estimates A(teol), where it is determined by the multiplication of Qtakeback and remanufacturability, δ(teol),

i.e., the probability that a product is still reusable and remanufacturable at the end-of-life stage. In Equation (3.19),

δ(teol) is defined as the multiplication of each part’s reliability, γ j(teol), at time teol . Because a part’s reliability differs

by design decisions, δ(teol) is formulated as a function of Xi j. Finally, Equation (3.20) shows the variable conditions

for production quantities.

Qreman ≤ A(teol) (3.17)

A(teol) = Qnew ·δ(teol) (3.18)

δ(teol) = ∏
i
(∑

j
γ j(teol) ·Xi j) (3.19)

Qnew,Qreman ∈ nonnegative integer (3.20)

3.3 Illustrative Example: Smart-Phone Design

3.3.1 Overview

As the waste stream of discarded mobile phones grows rapidly, recovery of used phones has become an important issue

in recent years. Mobile phones are known to have a relatively short life cycle, approximately 1.5 years [89]. In 2009,

the U.S. Environmental Protection Agency (EPA) estimated that Americans discard approximately 129 million mobile

devices every year, of which only 8% are recycled properly [16]. This implies not only an environmental problem but

also a missing profit opportunity. According to the EPA, “recycling one million cell phones can save enough energy

to power more than 185 U.S. households with electricity for a year.” ReCellular, Inc is another testimony of profitable

recovery. According to the Wall Street Journal [85], “ReCellular resold 5.2 million mobile phones in 2010, up from

2.1 million five years earlier, and its revenue was $66 million.”

This section illustrates the PLCD framework with an example of smart-phone design. Suppose that there is an OEM

smart-phone manufacturer that operates a one-year take-back program; they make and sell new products, and after one

year, they take back the products for remanufacturing. For such take-back, it is assumed that the company returns

15% of the new-product price to the customer. To maximize the total profit from manufacturing and remanufacturing,

the company aims to optimize their product design considering changing trends in the market. This section shows

that the PLCD framework with DTM can serve their needs effectively and demonstrates that the company can achieve

greater profit by adopting the model. To be specific, there are five product attributes that the company wants to

optimize: selling prices of new and reman products, screen size, memory size, and camera pixels. Depending on
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which attributes are chosen, the product would have different production costs and reliability, and different profits at

the pre-life and end-of-life stages. Table 3.4 and 3.5 present assumptions on production costs and part reliability for

attribute choices.

Table 3.4: Assumptions about manufacturing and remanufacturing cost

Manufacturing Remanufacturing

Screen Memory Camera Screen Memory Camera

X11
(2.8’’)

X12
(3.5’’)

X13
(5.3’’)

X21
(16GB)

X22
(32GB)

X23
(64GB)

X31
(8MP)

X32
(16MP)

X11
(2.8’’)

X12
(3.5’’)

X13
(5.3’’)

X21
(16GB)

X22
(32GB)

X23
(64GB)

X31
(8MP)

X32
(16MP)

Cost($) 26 36 48 30 38 52 18 38 3.5 3.7 4 2.3 2.5 2.9 3 3.2

Table 3.5: Assumptions about part reliability after one year

Screen Memory Camera Pixel

2.8″ X11 0.95 16GB X21 0.9 8MP X31 0.92

3.5″ X12 0.92 32GB X22 0.9 16MP X32 0.88

5.3″ X13 0.88 64GB X23 0.9

3.3.2 Demand Trend Mining

To apply the DTM algorithm, two sets of customer preference data are required: one for the current new market and

the other for the future reman market. The former is collected at a single time point t preli f e and used for estimating

market demand at time t f irst . The latter, on the other hand, is collected over multiple time points from t1 though t preli f e

and used for capturing future demand at teol . In this study, preference data were artificially generated. A total of 216

samples were simulated for each time point. The data for reman market was simulated as ten time-stamped data with

six-month intervals; in other words, preference data reflecting market trends over the last five years were collected over

ten time points, t1 to t10. Here, t10 represents the current time t preli f e, i.e., t10= t preli f e. Since the time gaps between

t preli f e and t f irst , and teol and tsecond were very short for the simplicity, the historical data was used for the prediction

of demands at t12 with a one-year take-back program.

The data structure was the same as shown in Table 3.2. Each sample represented a specific combination of design

attributes and the corresponding class variable (i.e., customer utility). As discussed in Section 3.2, all variables were

36



defined as discrete variables. Table 3.2 shows design candidates of each variable.

In order to obtain decision rules, NewUtiliy(Y1 j,Xi j) at t preli f e (= t10) and RemanUtiliy(Y2 j,Xi j) at t preli f e+2 (=

t12), the C4.5 and PTM algorithms were applied to the new and reman market data, respectively. Weka 3.6.5 [107]

and R 2.14.0 [108] were used for the decision tree induction and automatic time series forecasting. The resulting rules

are given in Figure 3.5 and 3.6. Each path in Figure 3.5 and 3.6 represents a decision rule for a utility estimation. For

example, in Figure 3.5, one can estimate that if the selling price of a new product is $199, the camera resolution is

8-MP, and the memory is 16-GB, the screen size is 2.8-inch then the corresponding customer’s utility is 2 out of 4.
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Figure 3.5: Decision tree for new product at t preli f e or t10

The decision rules in Figure 3.5 and 3.6 allow estimation of the market share of a specific product. Suppose that

the potential competing products are known as shown in Table 3.6. Then, the decision rules can calculate the utility of

each competing product, which in turn enables to use Equations (3.1) and (3.2) for market share estimation.

3.3.3 Optimal Life Cycle Design

Figures 3.5 and 3.6 provide different rules for utility estimation. In other words, the market demands at the pre-life

and end-of-life stages are different from each other. For example, a smart-phone with a $199 (for reman $199.5) price,

3.5-inch screen, 64-GB memory, and 8-MP camera would generate utility value 3 for new product and 2 for reman

product. This implies that product design optimized based on the pre-life data only would not be optimal from the

end-of-life perspective. To find an optimal product design, the optimal life cycle design model was applied.

In addition to the assumptions in Tables 3.4 through 3.6, the following assumptions were made. The cost of reverse
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Figure 3.6: Decision tree for reman product at teol or t12

logistics, sorting, and data scrubbing is $2 in total and the cost of forward logistics is $1. The size of new market is

100,000 in terms of the total number of buyers, and the size of reman market is 50% of the new market. As shown

in Table 3.5, the remanufacturability, or, reusability rate of a phone is less than 100%, which means that not all the

new products can be remanufactured due to functional damages or poor conditions. The take-back loss parameter is

one, and only working phones with good conditions would be remanufactured while the remainder is recycled. The

recycling profit is $0.621 [109] and the recycling cost is $0.39 per cell phone [110]. Lastly, to discount future profit

from the end-of-life stage, an annual interest rate of 3% is assumed.

To solve the optimization problem, the Excel risk solver platform was used. Table 3.7 shows the optimization

Table 3.6: Assumptions about competitors information

High spec product Mid spec product Low spec product

Attributes

New 

price

Reman

price
Screen Memory Camera

New 

price

Reman

price
Screen Memory Camera

New 

price

Reman

price
Screen Memory Camera

Y13 Y23 X13 X23 X32 Y12 Y22 X12 X22 X31 Y11 Y21 X11 X21 X31

New Utility 3 2 2

Reman Utility 3 3 2
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results (Column PLCD). To maximize the total life cycle profit, a smart-phone should be equipped with 2.8-inch

screen, 64-GB memory, and 16-MP camera. The optimal selling price of the product is $399 at the pre-life stage; the

optimal selling price of the remanufactured version is $149.5. The optimal solution also provides optimal production

and recovery strategies. The quantity of new products to produce should be 36,552 units; after one year, 26,722 units

should be remanufactured, and the rest (9,830 units) recycled. The maximum total profit results in $11,703,000 (in

terms of the value at tsecond).

3.3.4 Discussion

Many traditional design approaches have been focused on maximizing the profit from the pre-life stage only. The

PLCD framework with the DTM algorithm is different from them in that it considers the entire life cycle of a product

and maximizes the total profit from the life cycle. To demonstrate the benefit of the PLCD framework, this section

compares the optimization result of PLCD with those of traditional design approaches. To be specific, two traditional

approaches are considered in this section, i.e., pre-life design without any end-of-life recovery and pre-life design

with end-of-life recovery. Both approaches seek an optimal product design which maximizes the profit from the pre-

life stage; they do not consider how their decision will affect the end-of-life stage. In the latter approach, however,

the OEM conducts recovery at the end-of-life stage and tries to maximize the profit from recovery with additional

optimization. The additional optimization means optimizing the production quantity and price of the reman product

with pre-determined design attributes.

Table 3.7 shows the optimal design and the maximum profit from the traditional approaches. When the pre-life

design is conducted, the product is optimized solely for the new market, and different attributes are chosen as the

optimal: 3.5-inch screen, 32-GB memory, 16-MP camera. The maximum profit that can be achieved by this design is

$10,490,000; if the company conducts recovery at the end-of-life stage (i.e., pre-life design with end-of-life recovery),

the profit is increased by $67,000 to $10,556,000. Compared to PLCD, the pre-life designs bring a greater profit at

the pre-life stage. However, the benefit of PLCD is revealed when the life cycle profit is considered. In Table 3.7, the

profit from PLCD is 10.9% higher than that of the pre-life design with end-of-life recovery.

Previously, the size of the reman market was assumed to be half the size of the new market or MSreman= 0.5*MSnew.

However, as reported by [85] and [89], the reman market is expected to grow more in the future. To see the effect

of an increasing size of reman market and validate the outcome in Table 3.7, a sensitivity analysis is conducted. In

Figure 3.7, β denotes the ratio of MSreman to MSnew. For both PLCD and pre-life design (with recovery) models, the

sensitivity analysis examined how the maximum achievable profit changes as β increases. A different selection of

design attributes and consequent demands and amounts of remanufacturable products (Dreman and A) are attributed for

different gaps in the graph. If β=0, there are no market or demands for the reman products, and no remanufacturing
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Table 3.7: Comparative result between PLCD and pre-life design

PLCD Pre-life Design
Pre-life Design

(+ end-of-life later)

Total profit [$] 11,703,000 10,490,000 10,557,000

Profit for pre-life [$] 10,344,000 10,490,000 10,490,000

Profit for end-of-life [$] 1,359,000 ∙ 67,000

Product

attributes

New product price [$] 399 399 399

Reman product price [$] 149.5 ∙ 99.5

Screen Size [inch] 2.8 3.5 3.5

Memory [GB] 64 32 32

Camera Pixel [MP] 16 16 16

Quantity of Reman product [EA] 26,722 0 26,722

Quantity of Recycled product [EA] 9,830 0 9,830

New product utility 3 3 3

Reman product utility 4 ∙ 4

is conducted; if β = 1, the size of the reman market is the same as the new market. When β=0, the optimizer will

determine the optimal design attributes only from the pre-life stage for both models, which will generate the same

design attributes with the total profit of $8,300,000. When β > 0, it is expected that the total profit from the PLCD

framework is greater than that of the pre-life model except the case of selecting the same design attributes. The results

in Figure 3.7 show that both models choose all different designs when β > 0. When β = 0.6, the slops of the both

models are changed since the upper bound is changed from Dreman to A (Equation (13) and (17)). When β = 0.7, both

models select different designs from the previous ones. For β = 0.8 and β = 0.9, the upper bounds are changed again,

and finally when β = 1, the optimal design is changed for PLCD. In the illustration example, when β = 0.9, the profit

difference is maximized. The results reaffirm that the PLCD framework with the DTM algorithm is always better than

the traditional pre-life design, although the magnitude of the benefit changes depending upon β.
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Figure 3.7: Sensitivity analysis of reman market size ratio

3.4 Conclusion

This chapter proposes a new demand modeling technique, demand trend mining (DTM), for product design analytics.

The first contribution is the development of the DTM algorithm. In order to capture hidden and upcoming trends of

demand, the algorithm combines three different models: decision tree for large-scale data, discrete choice analysis for

demand modeling, and automatic time series forecasting for trend analysis. The DTM algorithm dynamically reveals

design attribute patterns that affect demands. The second contribution is the new design framework, predictive life

cycle design (PLCD), which connects DTM and data-driven product design. The optimization-based model enables a

company to optimize its product design by considering the pre-life and end-of-life stages of a product simultaneously.

The DTM algorithm interacts with the optimization-based model to maximize the total profit of a product. The smart-

phone case study demonstrated that there is a hidden source of opportunity for profit and the PLCD framework can

help utilize this opportunity. Moreover, the sensitivity analysis reaffirmed that the life cycle design is more preferable

than the traditional design method.

The current PLCD framework considers/optimizes two consecutive life cycles of a single product. The model can

be extended to accommodate multiple life cycles and multiple products. The current DTM algorithm allows discrete

attributes and class variables only, which should be extended to process continuous attributes and class variables. Also,
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in reality, it is possible that a product evolves with new attributes. It is important to find out a way how to incorporate

emerging attributes into DTM. Text mining [111, 112] and sentiment mining [113] techniques in the domain of product

design can be candidates for the management of dynamic attribute sets. On-line review data is a promising source that

can provide not only customer preferences but also important emerging attributes. It should be noted that in terms of

the performance of predictive models, since Tucker and Kim [14] showed that the predictive model from the preference

trend mining outperforms that of the static data mining, the prediction accuracy of the DTM algorithm was not tested

in this chapter.

The next chapter will discuss some limitations of discrete preference trend mining and how to deal with them.

Also, the newly developed algorithm will be intensively tested with various data sets to validate the performance of its

predictability. In terms of data, more commonly available transactional data will be utilized.
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Chapter 4

Continuous Preference Trend Mining for
Optimal Product Design with Multiple
Profit Cycles
In this chapter1, the Continuous Preference Trend Mining (CPTM) algorithm is proposed to address some fundamental

challenges in the context of product and design analytics. The first contribution is the development of a new predictive

trend mining technique that captures a hidden trend of customer purchase patterns from accumulated transactional

data. Unlike traditional, static data mining algorithms, CPTM does not assume stationarity, but dynamically extracts

valuable knowledge from customers over time. By generating trend embedded future data, the CPTM algorithm not

only shows higher prediction accuracy in comparison with well-known static models, but also provides essential prop-

erties that could not be achieved with previously proposed models: utilizing historical data selectively, avoiding an

over-fitting problem, identifying performance information of a constructed model, and allowing a numeric prediction.

The second contribution is the formulation of the optimal design problem which can reveal an opportunity for multiple

profit cycles. This mathematical formulation enables design engineers to optimize product design over multiple life

cycles while reflecting customer preferences and technological obsolescence using the CPTM algorithm. For illustra-

tion, the developed framework is applied to an example of tablet PC design in leasing market and the result shows that

the determination of optimal design is achieved over multiple life cycles.

4.1 Introduction

Data mining in the context of product and design analytics was suggested as an alternative for knowledge extraction

[116]. Traditionally, there are a few methods for capturing customer requirements and preferences such as quality

function deployment, conjoint analysis, and discrete choice analysis. These methods resort to direct or close interac-

tions with target customers and generate stated preference data. The strength of using data mining models is to utilize

revealed preference data or accumulated data sets related to customers’ actual behavior (e.g., transactional data, sales,

and on-line reviews) that usually have characteristics of large volume, unstructured form, and timeliness.

Predictive trend mining is a new and emerging data mining area, which is also known as change mining [10, 11] or

learning concept drift [12]. Unlike traditional static data mining models with the assumption of stationarity, predictive

1Presented in [114] and published in [115].
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trend mining is a dynamic and adaptive model that captures trend or change of customer preferences over time.

A tree based data mining algorithm with predictability was used in predictive trend mining. Tucker and Kim

[14] proposed the Discrete Preference Trend Mining (DPTM) algorithm and suggested a classification of attributes as

standard, non-standard and obsolete with respect to a class variable for guiding design engineers. The attributes or

features are also known as independent and explanatory variables, and the class variable is a dependent and response

variable. It should be noted that due to the fact that the algorithm was developed to deal with discrete class variables

and attributes for product portfolio concept generation, the term Discrete is added to the original name PTM. For

example, five discrete prices {$99, $149, $179, $199, $249} were used as the class variable and no design problem

was provided. Chapter 3 discussed how to extend the work and proposed that the predictive trend mining technique

called Demand Trend Mining (DTM) can benefit optimal life cycle design problems. Utility was used as the discrete

class variable and discrete choice analysis was utilized to calculate expected market shares. However, the nature of

optimal design problems often requires continuous variables, e.g., price, cost, demand, etc. and discrete class variables

might limit the application of design problems. In order to allow continuous variables while capturing a trend, a new

method, Continuous Preference Trend Mining (CPTM), is presented in this chapter.

The CPTM algorithm as the method of predictive design analytics will shed light on the initial design problem

which has an opportunity for multiple profit cycles. If there are multiple recovery chances for end-of-life products

in the near future, a trend of customer preferences and technological obsolescence will be traced and captured at the

target time for the optimal initial design. The captured information will then be merged with a product design problem.

Design for multiple life cycles is a design paradigm that enables design engineers to close the loop of a product life

cycle and to manage its multiple life cycles. Leasing or sales of service is a representative example of the management

of multiple life cycles as shown in Figure 4.1. After designing and manufacturing a product, a lessor (a person

possessing a product that is being leased) would lease the product to a lessee (user of the product being leased). At the

end of the lease contract or the usage stage, the lessor would take back the product and determine a proper recovery

option. If it is profitable, the lessor would lease the product again for a multiple periods of time. Eventually, a product

would generate multiple profit cycles, k. Many studies showed that the initial design of a product would determine 70

∼ 85% of total life cycle cost and environmental impact [25, 26, 27], so the selection of initial design attributes is the

focus in this chapter, especially from the economic perspective.

In order to combine the design problem with the method of predictive design analytics, design for multiple life

cycles is proposed to be formulated as an optimization problem. The formulation determines the design attributes

that maximize the total life cycle profit and generate multiple profit cycles. Only a few studies [117, 80] provided

mathematical models that realize the total profit from both pre-life (design and manufacturing) and end-of-life stages.

Design for multiple life cycles will extend these studies.
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Figure 4.1: Product life cycle in leasing market

As a method of predictive design analytics, the CPTM algorithm is developed to take large sets of transactional

data and extract valuable knowledge of customer purchase patterns. The architecture of CPTM will help to predict the

target class variable that reflects trend of customer preferences and technological obsolescence over time. By merging

the continuous, predictive trend mining technique with an optimization model, the proposed framework will produce

an optimal product design that maximizes a total unit profit and eventually reveals an opportunity for multiple profit

cycles.

The rest of this chapter is organized as follows. In Section 4.2, the entire methodology is explored with the CPTM

algorithm and an optimal product design model for multiple profit cycles. Section 4.3 presents performance tests

of CPTM with various data sets. An illustration example of tablet PC design is provided in Section 4.4, and the

conclusion and future research directions are presented in Section 4.5.

4.2 Methodology

The entire framework is divided into two phases. Phase 1 is to implement the CPTM algorithm, which entails data

preprocessing, trend embedded future data generation, and model tree induction as shown in Figure 4.2. Phase 2

involves an optimal product design for multiple profit cycles by combining the predictive models built from CPTM.

The schematic of the CPTM algorithm shown in Figure 4.3 constructs a predictive model (model tree in Section

2.1.3) at time n+h or h periods ahead based on the historical data sets from time 1 to n. The core part of the algorithm

is the generation of trend embedded data. Geometric sampling is developed to capture the trend of the relationship

between design attributes and class variables by sampling normalized historical data selectively (i.e., 1© and 2©).
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n time-stamped transactional data sets

Transform discrete into binary attributes

1. Construct future data using geometric sampling

after normalization of attributes and class values

2. Change the normalized values to trend embedded real values     

using automatic time series forecasting

Inducing model tree for target time stamped data

(splitting  and pruning)

Optimization model for multiple life cycles

Express component based attributes as generational difference

③ Model tree
induction

② Trend embedded 
data generation

① Data 
preprocessing

Figure 4.2: Overall flow of methodology

Automatic time series forecasting proposed by Hyndman et al.[96] is used to predict future values of design attributes

and class variables. By applying the predicted values to the normalized sampled data, unseen future data at time n+h

or Dn+h can be generated (i.e., 3©). Finally, the future model tree or MT n+h can be built based on the trend embedded

data (i.e., 4©). The two dotted boxes represent the predicted data and model, which are not available initially.

Discrete PTM, on the other hand, builds a predictive model (decision tree [100]) based on predicted values of Gain

Ratio, one of splitting measures. The mathematical form of the Gain Ratio is defined as [118, 14]

Gain Ratio(X) =
Entropy(T)−Entropyx(T)

−∑
n
j=1
|Tj |
|T | · log2

|Tj |
|T |

=
−∑

k
i=1 p(ci) · log2 p(ci)[bits]−∑

n
j=1
|Tj |
|T | ·Entropy(Tj)

−∑
n
j=1
|Tj |
|T | · log2

|Tj |
|T |

(4.1)

where X is a set of attributes, T is a data set, and Tj is a subset of the data T after splitting. The denominator

represents the information generated by splitting the data set T into n partitions. The numerator represents the amount

of uncertainty reduction by splitting on attribute x. Entropy quantifies the expected value of the information in bits.

p(ci) represents the probability mass function of a class variable ci and k is the number of class values.

The concept of building a tree model based on the predicted Gain Ratio was initially proposed by Böttcher and

Spott [10]. The predicted Gain Ratio provides a way to build a future classification tree without real data but there are

some disadvantages. First, there is a strong possibility of over-fitting since no pruning process is suggested. Highly

branching trees risk over-fitting the training data and performing poorly on new samples. Pruning can help to determine

the optimal size of trees. Second, no performance result of built models can be estimated since there is no test data.

Third, the Gain Ratio based methods are only applicable to classification models or discrete class variables. It will be
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shown that by generating the target data, the CPTM algorithm can provide a way to utilize historical data selectively,

avoid an over-fitting problem, and identify performance information of constructed model. More importantly, CPTM

adopts a tree induction model that allows the use of continuous class variables.

Data D1 D2 Dn· · ·

Model Tree

Trend embedded 

data generation 

Time

MT1 MT2 MTn· · · MTn+h

t1 t2 tn· · · tn+h

Dn+h

- Geometric 

Sampling

- Automatic Time 

Series Forecasting
Reverse normalization with predicted values 

Dn· · · DnD1 · · ·

Normalization①

②

③
④

D1 D2

selective sampling

Figure 4.3: A schematic of CPTM algorithm

Usually the process of data mining consists of data collection and selection, cleaning and transformation, pattern

discovery, and interpretation. In the product design domain, text and web mining [119] provides a way for design

engineers to collect and analyze customer preference data (e.g., review data), including identifying product attributes

and modeling customer ratings [120, 121, 122, 123, 124]. In this study, our focus is limited to the pattern discovery

and interpretation stage.

4.2.1 Phase 1: Continuous Preference Trend Mining

Data Preprocessing

The first step, data preprocessing, is a data preparation technique for trend mining. It starts by gathering and organizing

n-time stamped transactional data sets. An example of a data set is shown in Table 6.4. The data set consists of a set

of attributes and one class variable. In the example, there are 8 different attributes of a product and a class variable,

price, which customers paid in their transactions. Even though any class variables that researchers are interested in

can be selected, paid price or market value was used in this study since it is directly related to customer preferences.

Sales or demand can be another candidate. There is no restriction on the data except that the class variable should be

continuous. Both discrete and continuous attributes can be dealt with by using the proposed approach. In this study,

only one class variable is modeled. In order to allow more than one class variable, a multivariate tree [125] can be

used instead of a univariate tree (i.e., model tree).
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Next, discrete attributes are transformed to a set of binary attributes. In the case of attributes with significant

improvement in their values (which are component based attributes, e.g., Hard drive, CPU, etc.), the values need to

be expressed as a generational difference [99]. The generational difference is a relative scale that can be acquired

by comparing the generational gap between the target part and the latest cutting-edge part which corresponds to the

minimum generation or zero. As time passes, a new part is introduced in the market and the generational difference of

the existing part is increased. We assume that customers perceive the relative generational gap of components with a

given time, and a company has expected values or a roadmap of the components in the near future. The generational

difference is utilized to represent the technological obsolescence and its effect over time. In Table 4.10, an example of

generational difference is shown over time and the cutting-edge part has a value of zero.

Before moving to the next step, it can be checked whether structural changes or trends are in the data. In this study,

two possible trends are identified. First, levels under each attribute and class variable can have increasing, decreasing

or cyclical patterns. For example, the display size of cell phones can have an increasing pattern. In order to detect this

kind of trend, it is useful to visualize data. Statistically, Spearman’s rho test of trend and Mann-Kendalls tau test of

trend are available [126]. Second, there are some trends in terms of relationship between design attributes and class

variables over time. For example, the memory size of notebooks might be an important factor for the purchase of the

products a couple of years ago but some technological advances can change the importance of the memory size in the

next year. There is no known method to detect this kind of trend but one possible way is to apply the tests of trend to

the coefficients of regression models. If both trends are not detected (i.e., static case), CPTM will generate the same

result with the simple model tree, and other static models (e.g., regression, neural network, SVM, etc.) can be applied

to the latest data set or the entire data set depending on the characteristics of data.

Trend Embedded Future Data Generation

The second step is the generation of trend embedded future data. In the previous section, two different trends were

introduced in data. The automatic time series forecasting is the technique that captures the first type of trend, and the

geometric sampling that is newly proposed in this study helps to capture an underlying relationship between design

attributes and a class variable (i.e., the second type of trend) by selectively utilizing historical data.

When there are a series of time stamped data points, {x1, x2, . . . , xn }, where xt stands for a data point at time

t, a couple of different techniques can be applied to forecast a data point at n+ 1 or one-step-ahead forecast. As a

heuristic, it is possible to take either the latest data point or the average of all historical data for the forecast. Simple

moving average is a method to smooth a time series over last k observations though the selection of k can be a heuristic.

Exponential smoothing is one of well-known time series analysis methods, and the simplest form is given by Equation

(4.2) [96].
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x̂n+1 = λxn +(1−λ)x̂n = λxn +λ(1−λ)xn−1 +λ(1−λ)2xn−2 + · · ·

+λ(1−λ)3xn−3 +λ(1−λ)n−1x1 +(1−λ)nx̂1

(4.2)

where x̂t is a forecast at time t and λ is a constant between 0 and 1. The exponential smoothing is a weighted mov-

ing average of all time series with exponentially decreasing weights defined by λ. The expanded form shows that

recent values have a greater weight than old ones. A total of 30 exponential smoothing models are classified based

on the combination of trend, seasonal, and error components. There are two error components (additive and multi-

plicative), three seasonal components (none, additive, and multiplicative), and five trend components (none, additive,

multiplicative, additive-damped, and multiplicative-damped). For example, a model with all additive components can

be expressed as (trend+seasonal+error) and a model with all multiplicative components is (trend×seasonal×error).

Hyndman et al. [96] provided all the classifications. We adopted the automatic forecasting method [127]. First, apply

all the 30 exponential smoothing models and estimate initial states and parameters using maximum likelihood estima-

tion. Second, choose the best model according to one of the following criteria: Akaike’s information criterion (AIC),

corrected Akaike’s information criterion (AICc) or Bayesian information criterion (BIC) [127].

After the geometric sampling process which will be introduced shortly, the sampled normalized data set for the

target time is finally transformed to the real value data by applying predicted values of each attribute and class variable.

The minimum and maximum values of each attribute and class at the target time are predicted (i.e., the first type of

trend) by the automatic time series forecasting algorithm. By adopting the automatic algorithm, users do not need to

resort to their own knowledge for models and parameters.

The second type of trend cannot be captured by time series analysis methods since the underlying relationship

between design attributes and class variables is hidden. However, similar to the exponential smoothing, required traits

include dynamically utilizing all past observations and applying decreasing weights in order to reflect underlying

trends of the relationship between design attributes and class variables. Previously proposed trend mining models

[10, 14] did not consider the dynamics of relative importance of historical data. For example, Böttcher and Spott

[10] used a polynomial regression method to predict the future Gain Ratio. This implicitly gave equal weights for all

historical data. If historical data is available and older data sets contain more errors (this can be viewed as outliers),

the accuracy of the predictive model will be diminished. The CPTM algorithm, on the other hand, provides a dynamic

selection of historical data for the reflection of upcoming hidden trends by assigning exponentially decreasing weights

to old data sets.

The geometric sampling is a method to sample historical data selectively for the second type of trend. Before

sampling, each attribute and class variable should be normalized within a single time step. The tth term of the geo-
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metric sampling or at which gives the number of instances (data points) that needs to be sampled at time t is given by

Equation (4.3).

at = a(1−α)n−t (4.3)

where a is an original number of instances, (1- α) is a common ratio in geometric series, α is a smoothing factor (0

≤ α ≤ 1) and n is the latest time. The smoothing factor α can be considered a characteristic of product domain in

terms of relationship between design attributes and class variable. Table 4.1 indicates that when α is close to 1, only

the latest data set is useful, and the product domain is technology sensitive and rapidly changing. When α is close

to 0, all data sets are valid for future target time and the product domain has a quite insensitive and slowly changing

characteristic.

Table 4.1: α value and product domain

α value sampling product domain
≈ 1 only the latest data set technology sensitive, drastically changing
≈ 0 all data sets insensitive and slowly changing

In the geometric sampling, α is defined as a smoothing factor to generate t = n data using t = 1 to t = n−1 data

when t = 1 to t = n data are available. α is obtained by Equation (4.4).

argminE
α

(4.4)

where E is a performance measure (e.g., error metrics such as mean absolute error, root mean-squared error, and

relative squared error, etc.) tested for a model tree constructed from t = 1 to t = n−1 data sets (as training data) with

t = n data (as test data). The data for building a model tree can be sampled by Equation (4.3). A model tree will be

introduced in the next section.

For example, if t = 1 to t = 10 normalized data sets are available, using t = 1 to t = 9 data sets, a model tree can

be constructed with different α values and predicted values of attributes and class variables at t = 10, and validated

with t = 10 data. Table 4.2 shows the best α example in terms of the performance measure, mean absolute error which

is the average deviation between predicted and observed class variable price, with simulated data sets (each has a

thousand instances or a = 1000). For α = 0.9, the number of total instances (1111) comes from a thousand instances

(1000(1−0.9)0) from t = 9 data, a hundred instances (1000(1−0.9)1) from t = 8 data, ten instances (1000(1−0.9)2)

from t = 7 data, and one instance (1000(1− 0.9)3) from t = 6 data based on Equation (4.3). The required numbers

are sampled randomly using a random number generator. The sampled normalized data becomes real value data after

applying predicted values of attributes and class variables. Then, a model tree can be built based on this data and tested
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with t = 10 data. The best α is 0.4 based on the performance measure, mean absolute error in Table 4.2.

Table 4.2: Example of best α selection

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Mean Absolute Error 39.6 37.4 35.4 34.8 32.8 33.0 33.4 33.7 34.7 35.5 37.0

Total number of instances 9000 6125 4321 3199 2477 1998 1666 1427 1250 1111 1000

Based on the selected α, a number of required instances for each data set is determined and sampled as in the

example but using t = 1 to t = 10 data sets this time. By applying predicted values of attributes and class variables at

a target time to the sampled normalized data, trend embedded future data is finally generated at the target time. Table

4.2 shows that the total number of samples can be varied depending on the selected α. Based on the smoothing factor,

only the latest data or all data can be used in the extreme case.

A graphical example of the trend embedded future data generation is depicted in Figure 4.4. The values of original

data sets are normalized within a single time step and then sampled using the geometric sampling method with the

selected α. In the example, suppose that the first and the last instances were sampled from the t = 10 data set. By

applying predicted minimum and maximum values from the time series prediction technique, real values are predicted

at the target time. For example, the display size is getting bigger, and the generated target data set reflects the trend

(e.g., refer to the small arrows).
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Figure 4.4: Graphical example of trend embedded data generation

By generating future data, two advantages can be achieved. First, performance information of built models can be

provided similar to normal data mining processes. The predicted Gain Ratio based models in Section 4.2.1 cannot give
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test data but the generated data from CPTM can work as test and validation data. The 10-fold cross-validation tech-

nique [119] is a popular way to get the performance (i.e., prediction of class variables) information when a validation

data is not available. In the 10-fold cross-validation, the generated data is randomly partitioned into 10 subsamples

and validation processes are repeated 10 times. Each time a model is built using 9 subsamples and validated with one

remaining subsample. Then, an average performance error can be estimated. Second, pruning can be implemented

based on the generated data to reduce the risk of over-fitting. The predicted Gain Ratio based models classify class

values without data so that no comparison can be made between a node and subtree for the pruning. In the next section,

pruning in the model tree algorithm will be introduced.

Model Tree Induction

The third step is to build a model based on the newly generated data set from the second step. In this step, the

knowledge and hidden patterns between the new values of attributes and class variables are mined using a model

tree. The result of the model tree is a piecewise linear regression equation depending on a given data set, which can

approximate non-linear functions. Figure 4.5 shows an example of a model tree. The model tree gives three different

linear models to express the non-linearity with two attributes: A and B. On the other hand, a decision tree that was

used in the other trend mining algorithms classifies discrete or categorical class variables.

A

B LM† 1

LM 2 LM 3

† LM: Linear Model

Figure 4.5: Example of model tree

The M5 model tree was initially proposed by Quinlan [128]. After comprehensive descriptions of model tree

induction including a pseudocode by Wang and Witten [129], the model tree has received attention from researchers.

Wang and Witten’s model tree algorithm is known as M5P. The basic operation is splitting, and the splitting is based

on standard deviation reduction (SDR) in Equation (4.5) [129].
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SDR = stdev(T )−∑
i

|Ti|
|T |
× stdev(Ti) (4.5)

where stdev() is a standard deviation, | · | stands for the number of instances, T is all instances, T1, T2, . . . are result

sets from splitting attributes. An attribute is determined as a node when it has a maximum SDR compared to all other

attributes’ SDR. If no attribute can reduce a standard deviation of class values, a model tree will be identical to a

simple linear regression model. For example, there are two attributes and one class variable in the model tree example

in Figure 4.5. stdev(T) is the standard deviation of the class values. All possible split points of the two attributes are

used to estimate SDRs of the class values after splitting. Then, the one with the maximum SDR becomes the split

point and the attribute of the split point becomes the node. The termination criterion of splitting in the M5P is when

the number of instances is less than four or when the standard deviation at a node is less than 0.05*stdev(T). Once the

splitting operation is finished, instances at the leaf nodes are used to build linear models.

A pruning procedure can reduce size of a tree and the risk of over-fitting. The M5P algorithm uses post-pruning

or backward pruning, which means the pruning process starts after a tree reaches a leaf node. If the lower estimated

error is expected when errors in non-leaf nodes and subtree are compared, the subtrees are pruned to be leaves. The

expected error of subtrees is the weighted average of each node’s error by the proportion of sample sizes, and the

expected error of non-leaf nodes is in Equation (4.6) [129].

n+ v
n− v

∑instances |deviation from predicted class value|
n

(4.6)

where n is the number of instances at the non-leaf node and v is the number of parameters in a linear regression model

in the node. The second fraction represents the average of absolute difference between the predicted value and the

actual class value over each of instances that reach the node. The first fraction is the compensation factor to simplify

the regression model in the node.

The manual implementation of the model tree in Figure 4.5 is provided to show how it works. Based on the sample

data in Table 4.3, the model tree in Figure 4.5 is manually built. The sample data has two attributes, A and B, and one

class variable C.

Table 4.3: Sample data for model tree

A B C
200 14.5 10
140 20 26
90 14.4 29
98 13.5 32
86 16 34
50 24 44
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Table 4.4 shows all standard deviation reduction (SDR) calculations for determining the root node and splitting

point of the model tree. First, the class variable and each attribute are grouped, and values of the attribute are sorted

from smallest to largest. For each mid-point, calculate the standard deviation of class values in the divided groups. For

example, with the mid-point 88 (the second row), stdev(T 1) and stdev(T 2) represent the standard deviation of {44,

34} and {29, 32, 26, 10}. stdev(T ) represents the standard deviation of all the class values. Then, the final column

SDR is calculated based on Equation (4.5), and the mid-point that produces the maximum SDR is the splitting point

(i.e., 119 of attribute A).

Table 4.4: Determining a root node of model tree

C A mid-point stdev(T) stdev(T1) stdev(T2) SDR
44 50 68 11.2 N/A 9.5 N/A
34 86 88 11.2 7.1 9.8 2.3
29 90 94 11.2 7.6 11.4 1.7
32 98 119 11.2 6.5 11.3 3.1
26 140 170 11.2 6.9 N/A N/A
10 200 N/A
C B mid-point stdev(T) stdev(T1) stdev(T2) SDR
32 13.5 14 11.2 N/A 12.4 N/A
29 14.4 14.5 11.2 2.1 14.4 0.9
10 14.5 15.3 11.2 11.9 9.0 0.7
34 16 18 11.2 11 12.7 -0.4
26 20 22 11.2 9.5 N/A N/A
44 24 N/A

When the value of attribute A is greater than 119, only two instances reach the node. The termination criterion of

the M5P algorithm (i.e., less than four instances) stops further splitting for this branch. For the other branch, there are

four instances and the standard deviation at the node (6.5) is greater than the other criterion (i.e., 0.05*stdev(T)=0.56).

After removing the instances that are greater than 119, the same procedure can be applied as shown in Table 4.5. In

this case, two splitting points (i.e., 88 of attribute A and 15.2 of attribute B) produce the same SDR so that either of

them can be selected and the model performance will be the same. Figure 4.5 shows the case that 15.2 of attribute B

is selected. All the nodes have less than four instances so that the splitting operation of the model tree is completed.

Finally, the instances at the leaf nodes are used for regression models. Due to the small number of instances, all leaf

nodes take a simple model i.e., LM1: C=18, LM2: C=30.5, and LM3: C=39.

A pruning procedure compares the expected error of leaf nodes and a non-leaf node. The non-leaf node B has

two leaf nodes and their expected error can be calculated as follows: the absolute difference between the predicted

and the actual class value is averaged at the each node and weighted by the proportion of sample sizes ( 2
4 (
|29−30.5|

2 +

|32−30.5|
2 ) + 2

4 (
|34−39|

2 + |44−39|
2 ) = 3.25). The internal regression model at the node B (C=1.31*B+12.59) is then

used to calculate the expected error (2.05) based on Equation (4.6). Also by dropping the parameter of the internal
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Table 4.5: Determining the second node of model tree

C A mid-point stdev(T) stdev(T1) stdev(T2) SDR
44 50 68 6.5 N/A 2.5 N/A
34 86 88 6.5 7.1 2.1 1.9
29 90 94 6.5 7.6 N/A N/A
32 98 N/A
C B mid-point stdev(T) stdev(T1) stdev(T2) SDR
32 13.5 14 6.5 N/A 7.6 N/A
29 14.4 15.2 6.5 2.1 7.1 1.9
34 16 20 6.5 2.5 N/A N/A
44 24 N/A

regression model (C=34.75), another expected error (4.63) can be calculated but this model can be ignored due to the

higher expected error. Since the expected error of the node B is lower than that of the leaf nodes, the tree should be

pruned and the internal regression model becomes a leaf node. Similarly, by comparing the node A and leaf nodes, the

pruning operation can be determined and it turns out that the tree should be pruned. After the pruning procedure, one

regression model (C=-0.21*A+52.21) replaces the three regression models.

The unique contribution of this Phase 1 is to propose a new data generation scheme for a target time, which reflects

two different trends. By applying the model tree algorithm to this predicted data set, this section shows some crucial

properties that could not be achieved with the previous models [10, 14]: dynamic selection of historical data, avoidance

of over-fitting problem, identification of performance information of constructed model, and allowance of a numeric

prediction. Section 4.3 will show empirical test results with higher prediction accuracy.

4.2.2 Phase 2: Optimal Product Design for Multiple Profit Cycles

As shown in Figure 4.1, products can have multiple life cycles in the leasing market. When design engineers determine

the initial product design over the multiple life cycles, they should consider not only the profit from the initial lease,

but also the profit from the recoveries and re-leases, which can be a hidden source of profits. Usually, the latter part is

ignored in the initial design stage due to the absence of supporting models. The CPTM results from Section 4.2.1 are

expressed as model tree functions and will help to reveal the hidden source of profits.

The optimal product design for multiple profit cycles is formulated as a mathematical model and the overall ar-

chitecture of the model is depicted in Figure 4.6. Model tree functions are used to reflect customer preferences and

technological obsolescence over time. In order to address the reliability of target products over time, a reusability

function is formulated, which will give probabilities of reusable and non-reusable products. The probabilities affect

the cost of end-of-life processes. While the optimizer evaluates the unit profit of a given set of attributes that are

decision variables, model tree and reusability functions will take those decision variables and return the unit price and
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the cost of end-of-life process at a given time t respectively.

Figure 4.6: Architecture of optimal design with CPTM

Problem Statement

The unit profit of a design over multiple life cycles is obtained by a mathematical model. The model is summarized as

the following optimization problem.

Objective

· Maximize unit profit of the product for its life cycle

Constraints

· Uniqueness of design attributes

Decision variables

· Target product design attributes

Given inputs

· Historical transactional data as a set of attributes and paid price

· Generational information of parts

· Reliability information

· Cost of manufacturing and new parts

· Cost of reconditioning and logistics
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Mathematical Formulation

Objective Function The objective function is expressed as the summation of unit profits, which is the difference

between unit price and unit cost at a given time t in Equation (4.7).

Maximize f = ∑
t

1
(1+ r)δ

(pt − ct) (4.7)

Since the multiple life cycles occur in the future, an annual interest rate r should be applied to discount the value. For

the present value, 1
(1+r)δ

is multiplied and δ is the number of the years.

A unit price at time t is derived from the model tree function MT t() in Equation (4.8). Binary decision variables,

Yi j, represent the level of non-component based attributes such as weight, size, color, etc. and Xi j represent the level of

component based attributes or replaceable and upgradable attributes such as battery, memory, CPU, etc. A unit cost is

divided into three different costs. First, when time t is the starting time (t1), it is the production of new products, and

the unit cost consists of manufacturing costs and forward logistics costs in Equation (4.9). The manufacturing cost is

affected by Xi j. If product attribute i has the level of j, Xi j equals 1; otherwise, it equals 0. Second, when time t is the

take-back time, it is the remanufacturing of take-back products, and the unit cost consists of end-of-life process costs,

and inverse and forward logistics costs in Equation (4.10). Third, when a product eventually reaches the point that is

not profitable (tend), it will have a unit price of recycling and a cost of disposal in Equation (4.11) and (4.12).

pt = MT t(Yi j,Xi j),where t 6= tend (4.8)

ct = ∑
j

cmanu f acturing
j Xi j + c f orwardlogistics,where t = t1 (4.9)

ct = cinverselogistics + cEOL(t)+ c f orwardlogistics,where t = ttake-back (4.10)

pt = precycling,where t = tend (4.11)

ct = cinverselogistics + c f orwardlogistics + cdisposal ,where t = tend (4.12)

Constraints Equation (4.13) imposes that each product attribute i has a unique attribute level j. In other words,

finding a unique combination of each design attribute is the design problem.

∑
j

Yi j = 1,Yi j ∈ (0,1), ∑
j

Xi j = 1,Xi j ∈ (0,1) (4.13)

A probability of reusable parts β or a reusability function is defined as the multiplication of each part’s reliability at
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time t in Equation (4.14). Equation (4.15) formulates the cost of end-of-life processes as manufacturing costs with new

parts and reconditioning costs with old parts. Reconditioning is conducted with probability β. If a part is not reusable,

then a new part should be used. Because a part’s manufacturing cost differs by design decisions, remanufacturing

with new parts is formulated as a function of Xi j with a probability of non-reusable parts (1 - β). Table 4.6 shows the

probability of reusable and non-reusable parts at different time t with the assumption that the reliability of a product

will be back in a state as new after end-of-life processes. Therefore, memorylessness is satisfied.

β = ∏
i

∑
j

γ j(t)Xi j (4.14)

cEOL(t) = ∑
j

cmanu f acturing
j Xi j(1−β)+ creconditioning

β (4.15)

Table 4.6: Probability of reusable and non-reusable parts at different time t

Time t = 1 t = 2 · · · t = n
Prob. of non-reusable parts (1- β) (1−β)2+β(1- β)=(1- β) · · · (1- β)

Prob. of reusable parts β β2+(1- β)β=β · · · β

The contribution of this Phase 2 is to formulate the optimal product design model with multiple life cycles. In

order to address some issues on the multiple life cycles such as customer preferences, technological obsolescence, and

reliability over time, model trees from CPTM and reusability functions are combined in the optimization model.

4.3 Performance Test of CPTM

In this section, a set of different data are tested with the CPTM algorithm. In order to understand the mechanism of

CPTM, Section 4.3.1 and Section 4.3.2 provide simple data sets. A real data set is also tested in Section 4.3.3 to verify

the performance of the CPTM algorithm in a real situation. Section 4.3.4 deals with the most complex data that will

be used for the statistical analysis and the illustration study in Section 4.3.5.

Four different static models were compared with the dynamic model, CPTM: linear regression, model tree (M5P),

support vector machine (SMOreg), and neural network (Multilayer Perceptron). Weka [107] was used to implement

these models, and the names in the parenthesis represent the equivalent algorithms. For the automatic time series

forecasting, R [108] was used with the package, forecast [127]. All static models construct a predictive model based

on the latest data set (latest in Table 4.8) or all historical data sets (all in Table 4.8) as heuristics. On the other

hand, CPTM utilizes all historical data selectively and builds a predictive model based on the generated data set. It

is important to realize that the CPTM algorithm also uses the model tree but the difference is in the use of trend
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embedded target data.

As a performance measure, mean absolute error (MAE) and root mean-squared error (RMSE) were used [119].

Equation (4.16) and (4.17) show the MAE and the RMSE with the predicted class values, b1, b2, · · · , bm and the actual

class values, d1, d2, · · · , dm.

Mean Absolute Error =
|b1−d1|+ · · ·+ |bm−dm|

m
(4.16)

Root Mean Squared Error =

√
|b1−d1|2 + · · ·+ |bm−dm|2

m
(4.17)

4.3.1 Test with Data Generated from Stationary Linear Mapping Function

The data shown in Figure 4.7 was generated by stationary linear mapping functions over time. There are two nominal

attributes, A and B, and one class variable, Class. The values of column A increase by two and those of column B

by one over time, which represents the first type of trend. In order to generate the class values, the first five instances

used a mapping function, Class = 0.1 ∗A+ 0.9 ∗B+Random(−0.2 ∼ 0.2) and the remaining five instances used a

mapping function, Class = 0.4 ∗A+ 0.2 ∗B+Random(−0.2 ∼ 0.2) with some randomness in the functions, which

represents the second type of trend. Since this is a stationary case, all data sets from t = 1 to t = 8 have the same

mapping functions.

The goal is to construct a predictive model for t = 8 data with t = 1 to t = 7 data sets. First, the values of each

attribute and class variable were normalized within a single time step. Second, based on Equation (4.4), the smoothing

factor, α = 0, was selected using the built model tree from t = 1 to t = 6 data with different αs on Equation (4.3) and

tested with t = 7 data in terms of the MAE. Then, the selected α gave the number of samples from each normalized

data set based on Equation (4.3). Since α = 0, all 70 normalized data were sampled. Third, the automatic time series

forecasting was conducted for the original values of attributes A, B, and class variable Class in Table 4.7. By applying

the predicted minimum and maximum values to the sampled normalized data, Figure 4.7 shows the resulted trend

embedded data set for the target time t = 8. Finally, the model tree algorithm was applied to the generated data set and

the built model tree is the predictive model from the CPTM algorithm. The model tree was pruned so that 10 linear

models were reduced to only two linear models. The pruned model showed almost the same performance accuracy

compared to the unpruned tree. Table 4.8 shows the result of the performance test.
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A B Class

1 5 4.4

2 10 9.3

3 15 14

4 20 18.6

5 25 23.1

6 30 8.6

7 35 10

8 40 11.3

9 45 12.6

10 50 14.1

A B Class

3 6 5.7

4 11 10.4

5 16 14.9

6 21 19.3

7 26 24.2

8 31 9.2

9 36 10.9

10 41 12.2

11 46 13.4

12 51 15.2

A B Class

5 7 6.6

6 12 11.6

7 17 15.9

8 22 20.6

9 27 25.4

10 32 10.6

11 37 12

12 42 13.1

13 47 14.4

14 52 15.8

A B Class

15 12 12.4

16 17 17

17 22 21.5

18 27 26

19 32 30.5

20 37 15.2

21 42 16.9

22 47 18.1

23 52 19.7

24 57 21.2

t=1 t=8

…

t=2 t=3

A B Class

15 12 12.4

16 17 16.8

17 22 21.5

18 27 26.2

19 32 30.7

20 37 15.6

21 42 17.1

22 47 18.2

23 52 19.8

24 57 21.1

18 27 26.3

21 42 16.8

⁞ ⁞ ⁞

Trend embedded

data set for t=8

Total 70

instances

Figure 4.7: Data from stationary linear mapping function and generated future data

4.3.2 Test with Data Generated from Stationary Non-Linear Mapping Function

The data shown in Figure 4.8 was generated by stationary non-linear mapping functions over time. Two nominal

attributes, A and B are the same as in Section 4.3.1 but non-linear mapping functions were used: Class = 0.01∗A2 +

0.9∗B+Random(−0.2 ∼ 0.2) for the first five instances and Class = 0.2∗
√

A+0.3∗B+Random(−0.2 ∼ 0.2) for

the last five instances.

The goal is to construct a predictive model for t = 8 data with t = 1 to t = 7 data sets, and Figure 4.8 shows the

trend embedded data set for the target time. The smoothing factor, α = 0.3, was selected using the built model from

t = 1 to t = 6 data and tested with t = 7 data. Also the automatic time series forecasting was conducted in Table 4.7.

Based on the smoothing factor, 27 normalized instances were sampled and the predicted values were applied to them.

The model tree was pruned so that 8 linear models were reduced to only two linear models. The pruned model showed

a little bit higher performance accuracy compared to the unpruned tree. Table 4.8 shows the result of the performance

test.

4.3.3 Test with Real Data

Second-hand values or buy-back prices of cell phones [130] were tested with CPTM. Since the data set was obtained

with the list of target cell phones, all attribute values were the same but buy-back prices were varied over time. Due to

market penetration, the market value of the same products has a tendency to go down over time. After preprocessing

the original data, monthly data sets of 155 cell phones from June 2009 to March 2010 were tested with 10 different
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A B Class

1 5 4.4

2 10 9.5

3 15 14.6

4 20 19.8

5 25 25.1

6 30 9.7

7 35 11.2

8 40 12.7

9 45 14.1

10 50 15.7

A B Class

3 6 6.3

4 11 11.6

5 16 16.9

6 21 22.3

7 26 28.4

8 31 9.7

9 36 11.5

10 41 12.9

11 46 14.3

12 51 16.2

A B Class

5 7 8.6

6 12 14.6

7 17 20.1

8 22 26.2

9 27 32.6

10 32 10.4

11 37 12.0

12 42 13.2

13 47 14.6

14 52 16.2

A B Class

15 12 33.4

16 17 41

17 22 48.7

18 27 56.6

19 32 64.7

20 37 11.8

21 42 13.6

22 47 14.9

23 52 16.7

24 57 18.3

t=1 t=8

…

t=2 t=3

A B Class

15 12 30.2

16 17 38.5

17 22 47.3

18 27 56.4

19 32 65.6

20 37 12.4

21 42 14.3

22 47 15.7

23 52 17.8

24 57 19.4

15 12 26.2

19 32 65.6

⁞ ⁞ ⁞

Trend embedded

data set for t=8

Total 27

instances

Figure 4.8: Data from stationary non-linear mapping function and generated future data

attributes: camera pixel, talk time, touch screen, weight, memory slot, wiFi, MP3, GPS, bluetooth, and 3G.

The goal is to construct a predictive model for the t = 10 data with t = 1 to t = 9 data sets. The smoothing factor,

α = 0, was selected using the built model from t = 1 to t = 8 data and tested with t = 9 data. Also the automatic time

series forecasting was conducted in Table 4.7. Table 4.8 shows the result of performance test with this real data.

Table 4.7: Forecast results

t=7
(Latest) Forecast

t=8
(Target)

Stationary
linear
data

A Min 13 15 15
Max 22 24 24

B Min 11 12 12
Max 56 57 57

Class Min 11.3 12.42 12.4
Max 29.7 30.73 30.5

Stationary
nonlinear

data

A Min 13 15 15
Max 22 24 24

B Min 11 12 12
Max 56 57 57

Class Min 11.75 12.37 11.79
Max 56.9 65.55 64.7

Real data Class Min 1 0.9 0
Max 379 379 395
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Table 4.8: Performance results

MAE RMSE

Stationary
linear
data

Dynamic CPTM 1.30 1.57

Static
(latest/all)

Linear Regression 3.93 / 3.83 5.12 / 5.06
Model Tree 3.87 / 2.59 5.44 / 4.93

SVM 3.80 / 3.71 5.12 / 5.31
Neural Network 3.61 / 5.46 4.99 / 6.89

Stationary
nonlinear

data

Dynamic CPTM 6.77 8.88

Static
(latest/all)

Linear Regression 11.80 / 14.64 15.75 / 17.35
Model Tree 11.86 / 8.65 18.34 / 15.96

SVM 12.73 / 15.68 18.19 / 20.98
Neural Network 13.24 / 15.50 19.59 / 20.58

Real data

Dynamic CPTM 13.70 18.40

Static
(latest/all)

Linear Regression 21.9 / 25.13 31.1 / 33.54
Model Tree 18.20 / 14.56 25.8 / 19.02

SVM 18.79 / 20.65 34.86 / 33.10
Neural Network 17.32 / 20.96 21.81 / 24.97

4.3.4 Test with Data Generated from Non-Stationary Linear Mapping Function

24 data sets were generated randomly with assumed ranges of attributes and some trends reflecting real-world tablet

PC leasing markets. Each data set has 200 instances and 8 different attributes shown in Table 6.4. The first part

of Table 6.4 explains levels of each attribute which are decision variables explored in Section 4.2.2 The second part

indicates an example of the generated data. The data set shows transactional history and the class variable is the price

that customers paid. Since this is data from non-stationary linear mapping functions, mapping functions with some

randomness vary over time.

The goal is to construct a series of predictive models for the t = n+1 data using t = 1 to t = n data sets. n were

increased by 1 from 11 to 23. For example, for an unseen t = 12 data set, static models were constructed using the latest

data set t = 11 while CPTM mined a trend from t = 1 to t = 11 data sets and constructed a tree model from a predicted

data set at t ′ = 12 with the calculated smoothing factor 0.5. Then, both models were evaluated with real t = 12 data

set in terms of the MAE. This procedure continued up to t = 24 (total 13 times) for one time-ahead prediction and the

results are shown in Figure 4.9.

In order to obtain a statistically valid conclusion between static models and CPTM, both parametric (F and T-test)

and non-parametric (Mann-Whitney) tests were employed. With a significance level of alpha = 0.05, the accuracy of

the CPTM model was significantly higher than that of static models with the generation of trend embedded data.
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Table 4.9: Example of data set (decision variables and snapshot of data)

Display size Weight Hard drive CPU Graphics card Memory Battery Touchscreen Price
(inch) (lbs) (GB) (technology) (technology) (GB) (hours) (technology) ($)

9 0.8 40 Core 2 duo HD G 4 6 Touch D p1
(Y11) (Y21) (X11) (X21) (X31) (X41) (X51) (X61)

10 1 80 Core 2 e HD G 2000 6 12 Touch C p2
(Y12) (Y22) (X12) (X22) (X32) (X42) (X52) (X62)

11 1.5 120 Core i3 HD G 2500 8 18 Touch B p3
(Y13) (Y23) (X13) (X23) (X33) (X43) (X53) (X63)

12 2 250 Core 2 i5 HD G 3000 16 24 Touch A
...

(Y14) (Y24) (X14) (X24) (X34) (X44) (X54) (X64)
320 Core 2 i7 HD G 4000 32
(X15) (X25) (X35) (X45)
500 Core 2 i7 e
(X16) (X26)

10 1.3 40 Core 2 i7 HD G 2500 4 6 Touch D 950
10.5 0.8 80 Core 2 duo HD G 2000 8 24 Touch B 910
12 0.9 320 Core 2 i5 HD G 4000 32 18 Touch C 1,200
...

...
...

...
...

...
...

...
...

4.3.5 Discussion

The CPTM algorithm showed good predictive performances in comparison to the four well-known static models in

Table 4.8. From the cases of data sets generated from simple stationary linear and non-linear mapping functions, it

is relatively clear to look at the effect of the geometric sampling and the time series prediction of attributes and class

variables as shown in Figure 4.7, 4.8 and Table 4.7. The geometric sampling helped to reflect the trend of relation

between attributes and class variables over time. The automatic time series forecasting also gave good approximations

of future attribute and class values. In both cases, smoothing factors were close to zero, which makes sense in that

stationary mapping functions were applied over time.

The real data in Section 4.3.3 had an interesting data structure. The values of attributes were fixed but the class

variable continued to change, which is why there are only predictions for class variables in Table 4.7. It is important

to realize that even though the forecast result was similar to the latest data, the geometric sampling improved the

predictive performance alone. Empirical tests showed that without a precise prediction of attribute values, the CPTM

algorithm worked well with the geometric sampling. Also, without any knowledge of customer preferences and

their trend over time in the used product market, the selected smoothing factor can indicate that underlying relations

between attributes and class variables were quite stationary in the interval of one month. This test with real data has

great potential and can provide some directions from data collection to real application in different design domains.

The last case of data from non-stationary mapping functions represents a very complex data structure, and the

question was whether CPTM worked well in this case. Due to the non-stationary nature of data, the prediction error
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Figure 4.9: Comparison of the one time-ahead prediction accuracy between static and dynamic model (CPTM)

of CPTM was close to other static models, e.g., at t = 13 and t = 14, etc. in Figure 4.9. However, statistical results

(Mann-Whitney test, α = 0.05) showed that an overall performance of CPTM is better than other models with this

data.

Among those four static models, the model tree was selected for the purpose of direct comparison since the CPTM

algorithm also adopts the model tree for the prediction of class variables. From all the tested data cases, the predictive

performance of CPTM outperformed that of the model tree, and this indicates that the generation of a trend embedded

data set improved the accuracy.

While conducting these experiments, a total of five possible sources of variation on the result were observed:

smoothing factor, model tree, time series prediction, selection of samples or random number generator, and size of

samples. With the data sets from simple stationary linear and non-linear mapping functions, it is difficult to construct

a good model due to the small number of instances. Random sampling can also have a great impact with the small

sample size. However, the impact from the last two factors can be minimized with large-scale data. The model tree

algorithm in CPTM is known to be fast or capable of dealing with large number of instances and attributes [131].

Empirical tests with a data set which is similar to the real buy-back price data (10 attributes) in Section 4.3.3 showed

that the model tree took 1.34 seconds with 104 instances and 10.44 seconds with 105 instances running on an Intel

Core i5 2.5 GHz Processor.

Moreover, the important observations are the facts that the model trees were pruned to avoid an over-fitting and
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could generate performance information of the models by applying the 10-fold cross-validation technique. Also,

continuous attributes and class variables were allowed in the models. These are aforementioned benefits of CPTM

over the DPTM from generating the trend embedded future data.

4.4 Illustrative Example: Tablet PC Design

The overall methodology in Section 4.2 was applied to tablet PC design in the leasing market. The same data sets

described in Section 4.3.4 were used. Weka and R in Section 4.3 also provided necessary tools for the model tree

induction and the automatic time series forecasting.

4.4.1 Problem Setting

Tablet PCs are wireless, portable touch screen-operated computers. It is assumed that feasible candidate design at-

tributes are defined in Table 6.4. It is expected that the start of leasing time is t = 12 and the company has accumulated

data sets from t = 1 to t = 11. A manufacturer (and lessor) should manage multiple life cycles of its tablet PC by taking

back leased products and re-leasing after processing for the next usage-life. The goal of this problem is to find the

optimal tablet designs for multiple profit cycles while considering customer preferences, technological obsolescence,

and reliability. Given inputs and assumptions are as follows:

Given inputs

· Historical transactional data as a set of attributes and price

· Generational difference information in Table 4.10

· Reliability information in Table 4.11

· Manufacturing and new parts cost in Table 4.12

· Reconditioning cost = $120

· Logistics cost: forward logistics= $5, reverse logistics= $5

Assumptions

· 2-year time frame (No disposal stage)

· Leasing period is fixed at six months

· After end-of-life processes, the reliability of a product will be back in a state as new
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Table 4.10: Assumed information of generational difference

t = 11 Hard drive CPU Graphics card Memory Battery Touch screen
5 5 4 4 3 3
4 4 3 3 2 2
3 3 2 2 1 1
2 2 1 1 0 0
1 1 0 0
0 0

t = 12 Hard drive CPU Graphics card Memory Battery Touch screen
6 5 4 5 3 3
5 4 3 4 2 2
4 3 2 3 1 1
3 2 1 2 0 0
2 1 0 1
1 0

t = 13 Hard drive CPU Graphics card Memory Battery Touch screen
6 6 5 5 5 3
5 5 4 4 4 2
4 4 3 3 3 1
3 3 2 2 2 0
2 2 1 1
1 1

t = 14 Hard drive CPU Graphics card Memory Battery Touch screen
8 7 6 6 5 5
7 5 5 5 4 4
6 4 4 4 3 3
5 3 3 3 2 2
4 2 2 2
3 1

t=15 Hard drive CPU Graphics card Memory Battery Touch screen
9 8 6 7 5 5
8 7 5 6 2 4
7 6 4 5 1 3
6 4 3 4 0 2
5 3 2 3
4 2
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Table 4.11: Assumed information of reliability

t = 11 Hard drive CPU Graphics card Memory Battery Touch screen
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1
1 1

t = t +1 Hard drive CPU Graphics card Memory Battery Touch screen
0.95 0.95 0.96 0.98 0.99 0.99
0.98 0.95 0.97 0.98 0.99 0.97
0.99 0.98 0.98 0.99 0.99 0.97
0.99 0.99 0.98 0.99 0.98 0.91
0.99 0.99 0.93 0.96
0.95 0.93

Table 4.12: Assumed information of cost for manufacturing and new parts ($)

Hard drive CPU Graphics card Memory Battery Touch screen
40 60 90 20 40 50
55 70 110 30 50 60
75 90 130 40 60 85
90 100 140 80 70 100

100 110 160 135
120 125

· Upgrade is not considered so that there are no compatibility issues during EOL processes

· Time for logistics and remanufacturing is negligible compared to that of the leasing period length

4.4.2 Applying CPTM

Since it was assumed that the tablet PC will have 6 months leasing time over the 2-year time frame, the number of

life cycles is 4 and predictive models from t = 12 to t = 15 are needed by design. Static models were constructed

using heuristics e.g., only the t = 11 data set or all historical data. For CPTM, it predicted 1 time, 2 time, 3 time,

and 4 time-ahead data sets using t = 1 to t = 11 data sets selectively and built model trees from the predicted data

sets. Table 4.13 presents the results. At t = 12 all split points of the 8 attributes were used to estimate SDRs of the

class vales after splitting. Since the split point 2.5 of the attribute CPU maximized the standard deviation reduction of

the class values, the CPU became the first node with branches of less than or equal to 2.5 and greater than 2.5. After

all of the splitting, instances at the leaf nodes were used to build linear models. The resulted model tree was pruned

so that it had only three linear models while the original tree had 169 linear models. By pruning the tree, the built

model’s performance was decreased based on the generated data or training data (e.g., 14.6 % more errors than the
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unpruned tree) but the prediction accuracy of the model was improved with real t = 12 data (e.g., 1.3 % less errors than

the unpruned tree) due to the generalization. The 10-fold cross-validation in Weka was used to get the performance

information of the built model from the training data (i.e., the predicted data set at t ′ = 12) and the prediction accuracy

was calculated from the real data (i.e., the real data set at t = 12). This shows that unpruned trees have a strong chance

to be over-fitted. The comparison result between static models with the latest data set and CPTM is shown in Figure

4.10. Finally, these linear models will be used in the optimization model.

Table 4.13: CPTM results of illustration example

At t = 12, MT 12 is defined as follows:
CPU ≤ 2.5 : LM1
CPU > 2.5 :
| Hard Drive ≤ 2.5 : LM2
| Hard Drive > 2.5 : LM3
LM num: 1
Class(Price) = -1.0472 * Weight + 0.6497 * Hard Drive - 8.8437 * CPU - 28.1698 * Graphics Card
- 17.0256 * Memory - 10.779 * Battery Life - 8.6369 * Touchscreen + 1014.3514
LM num: 2
Class(Price) = 7.8489 * Display size - 3.4677 * Weight - 12.11 * Hard Drive - 16.2778 * CPU
- 30.4275 * Graphics Card - 20.6762 * Memory - 3.8257 * Battery Life - 1.9893 * Touchscreen + 940.6956
LM num: 3
Class(Price) = 8.6802 * Display size - 3.4677 * Weight - 4.4711 * Hard Drive - 18.8712 * CPU
- 21.8863 * Graphics Card - 2.8183 * Memory - 32.5704 * Battery Life - 1.9893 * Touchscreen + 990.9373
At t = 13, MT 13 is defined as follows:
Hard Drive ≤ 2.5 : LM1
Hard Drive > 2.5 : LM2
LM num: 1
Class(Price) = 8.3753 * Display size - 33.9229 * Hard Drive - 20.2652 * CPU
- 37.4899 * Graphics Card - 11.9472 * Memory - 7.3387 * Battery Life - 8.3119 * Touchscreen + 993.0399
LM num: 2
Class(Price) = 0.7584 * Display size - 21.0345 * Weight - 6.1539 * Hard Drive - 18.1878 * CPU
- 8.9427 * Graphics Card - 7.4079 * Memory - 31.1933 * Battery Life - 0.505 * Touchscreen + 1103.8625
At t = 14, MT 14 is defined as follows:
LM1
LM num: 1
Class(Price) = 16.3777 * Display size + 10.698 * Hard Drive - 17.8321 * CPU
- 20.8245 * Graphics Card - 14.2723 * Memory - 19.7954 * Battery Life + 853.3004
At t=15, MT 15 is defined as follows:
LM1
LM num: 1
Class(Price) = 7.481 * Hard Drive - 27.5058 * CPU - 14.6723 * Graphics Card - 18.1991 * Memory
- 28.7345 * Battery Life - 6.7278 * Touchscreen + 1107.0882
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Figure 4.10: Comparison of 1, 2, 3 and 4 time-ahead prediction accuracy between static and dynamic model

4.4.3 Design for Multiple Profit Cycles

Table 4.14 shows the mathematical formulation of the illustration case derived from Section 4.2.2. The objective

function consists of unit profits from four lease contracts and the interest rate, 3%, was assumed. Prices or market

values that reflect the trend of customer preferences and technological obsolescence were formulated with the model

tree functions depicted in Table 4.13.

Table 4.14: Mathematical formulation for illustration example

Objective Function
Maximize f =(p12− c12)+ 1

(1.03)0.5 (p13− c13)+ 1
(1.03) (p14− c14)+ 1

(1.03)1.5 (p15− c15)
p12 = MT 12(Yi j,Xi j), p13 = MT 13(Yi j,Xi j), p14 = MT 14(Yi j,Xi j), p15 = MT 15(Yi j,Xi j)

c12 = ∑ j cmanu f acturing
j Xi j + c f orwardlogistics

c13 = cinverselogistics + cEOL(13)+ c f orwardlogistics

c14 = cinverselogistics + cEOL(14)+ c f orwardlogistics

c15 = cinverselogistics + cEOL(15)+ c f orwardlogistics

Constraints
h1 : ∑ j Yi j = 1
h2 : ∑ j Xi j = 1
h3 : cEOL(t) = ∑ j cmanu f acturing

j Xi j(1−β)+ creconditioningβ

h4 : β = ∏i(∑ j γ jXi j)
h5 : Yi j,Xi j ∈ (0,1)
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4.4.4 Discussion

Similar to the previous section for the CPTM performance, Figure 4.10 indicates that the accuracy of CPTM outper-

formed that of those static models even with the multiple time-ahead predictions. The accuracy was measured by the

mean absolute error which is the average deviation between predicted and observed class variable price. Based on

Figure 4.10, the CPTM was adopted as the predictive model for this illustration.

The CPTM result in the Table 4.13 shows model trees constructed from the CPTM algorithm. At t = 12 and t = 13,

multiple linear regression models were built and at t = 14 and t = 15, simple regression models were formulated to

explain the class variable price. At t = 12, the model tree consists of three linear models: LM1, LM2, and LM3. When

the attribute CPU has a generational difference less than 2.5, the first linear model, LM1, is selected. If the attribute

CPU has a generational difference greater than 2.5 then the attribute hard drive will work as a splitting criterion.

Again, if the attribute hard drive has a generational difference less than 2.5, then the second linear model, LM2, will

be selected. Otherwise, the third linear model, LM3, will be used. In each linear model, 8 different design attributes

in Table 6.4 with a constant term explain the class variable.

Excel solver with an evolutionary algorithm was used to solve the illustrated design problem. The selected designs

are shown in Table 4.15, and the total life cycle unit profits are revealed in Table 4.16. The selected best design

attributes are 12-inch in display size, 0.8-lbs in weight, 40-GB in hard drive, Core 2 i7 e in CPU, HD G 4000 in

graphics card, 8-GB in memory, 24-hour in battery life, and touch C in Touch screen with the total life cycle unit profit

of $1,562. There are other design results from linear regression models (i.e., static model) with the two heuristics

in Table 4.15. First, the “only latest data set case” selected different CPU, memory, and touch screen attributes. It is

interesting that the model generated much more profits at t = 12 but the design selected by CPTM brought more profits

over the life cycle as shown in Table 4.16. Second, the “all data set case” selected different graphic card, memory, and

touch screen attributes. This model generated more profits than the other heuristic but fewer profits than CPTM. The

illustration concludes that the proposed framework can identify the optimal design that maximizes the total life cycle

profit based on historical transactional data sets.

Table 4.15: Result of optimal tablet PC design

Display size Weight Hard drive CPU Graphics card Memory Battery Touch screen
(inch) (lbs) (GB) (technology) (technology) (GB) (hours) (technology)

CPTM 12 0.8 40 Core 2 i7 e HD G 4000 8 24 Touch C
Linear Regression 12 / 12 0.8 / 0.8 40 / 40 Core 2 duo / HD G 4000 / 32 / 32 24 / 24 Touch D /

(latest/all) Core 2 i7 e HD G 3000 Touch A

From the result obtained from the artificially generated data, it can be argued that customers are very sensitive

about the technological obsolescence for CPU, graphics card and battery attributes (refer to Table 6.4). Manufacturers
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Table 4.16: Result of total life cycle unit profit

t = 12 t = 13 t = 14 t = 15 Total life cycle
CPTM Profit($) 419 430 386 327 1,562

Price($) 949 994 951 875 3,769
Cost($) 530 564 565 548 2,207

Linear Regression Profit($) 477 / 392 390 / 418 346 / 376 232 / 343 1,445 / 1,529
(latest/all) Price($) 962 / 972 919 / 1,000 875 / 958 745 / 909 3,501 / 3,839

Cost($) 485 / 580 529 / 582 529 / 582 513 / 566 2,056 / 2,310

should use the latest cutting edge technology for these parts. At the same time, due to the popularity of cloud storage

and external storage devices, the capacity of a hard drive seems to have become less important to customers. This

suggests that manufacturers can place less priority on hard drive capacity. The proposed framework enabled this type

of insight, which is not readily available under the previous trend mining approaches.

The illustration does not consider the option to upgrade for the initial design selection problem. However, an

additional decision making process can determine the proper end-of-life options including upgrades [99]. Given the

target time, manufacturers can decide whether the decrease of generational difference (i.e., upgrade) is better than

reconditioning for each component. The life cycle management plan can then be set up including upgrades.

4.5 Conclusion

In this chapter, a new predictive trend mining algorithm, CPTM, is developed in the context of product and design

analytics. Unlike traditional, static data mining algorithms, CPTM does not assume stationarity, and dynamically ex-

tracts valuable knowledge of customers over time. By generating trend embedded future data, the CPTM algorithm

not only shows higher prediction accuracy in comparison with static models, but also provides essential properties

that could not be achieved with the previous trend mining algorithms: dynamic selection of historical data, avoidance

of over-fitting problem, identification of performance information of constructed model, and allowance of a numeric

prediction. Various generated data sets and the real data set were used to test the performance of CPTM and those ben-

efits were verified. Also the optimization model for multiple life cycles is formulated as a binary integer programming

model and combined with the CPTM result. Using the proposed framework, design engineers can select the optimal

design for the target product that can generate multiple profit cycles. The illustration example of tablet PC design

showed that the optimization model with CPTM can reveal hidden profit cycles successfully.

It will be interesting to observe the impact of the prediction interval in the CPTM algorithm even though there are

multiple sources of variation as discussed in Section 4.3.5. Different optimal design solutions can be obtained based

on the interval. The optimization model in the illustration example was simplified in order to show the application
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of CPTM. Additionally, compatibilities among different parts, different product life cycles, and product families can

be considered for more interesting and realistic problems. Finally, instead of having a set of attributes as a priori,

capturing of emerging attributes and management of dynamic attribute sets would be possible tasks in the future.

The next chapter will discuss optimal design in the area of product family design. Since the product family design

of products that can be highly shared by many other products is very data-intensive, predictive design analytics can

provide a new insight for this design problem. Prediction intervals will be incorporated in the process of decision

making, and customer preferences to affect the determination of product architectures will be identified from data. A

large volume of data will be utilized in an illustrative example to test the algorithm can handle the large-scale data.
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Chapter 5

Product Family Architecture Design with
Predictive, Data-Driven Product Family
Design Method
This chapter1 addresses the challenge of determining optimal product family architectures with large-scale customer

preference data. The proposed model, predictive data-driven product family design (PDPFD), expands clustering based

data-driven approaches to incorporate a market-driven approach. The market-driven approach provides a profit model

in the near future to determine the optimal position and number of product architectures among product architecture

candidates generated by the k-means clustering algorithm. Unlike discrete choice analysis models which were used

in previous market-driven approaches, a market value prediction method is proposed as a dynamic model which can

capture and reflect the trend of customer preferences. Prediction intervals provide market uncertainties of the dynamic

profit model for product architecture design. A universal electric motors design example is used to demonstrate the

implementation of the proposed framework with large-scale data. The comparative study shows that the PDPFD algo-

rithm can generate more profit than pure clustering based data-driven models, which shows the necessity of combining

data-driven and market-driven approaches

5.1 Introduction

Today’s highly competitive market situation and enormous data generation environment mean companies and design

engineers have to consider a wide variety of customer preferences and requirements. Massive-scale customer pref-

erence data is available from various data sources such as company databases, social networks, clickstreams, etc. In

order to accommodate the diversity of customer preferences, designing a family of products becomes a prevailing

strategy across many industries [135, 45, 41].

The main question considered in this study is how to determine the optimal product family architectures with

large-scale customer preference data. Clustering based data-driven methodologies [64, 65] were presented to identify

central points of clusters (market segments) in the customer preference space (performance requirements). The central

points are ideal points in market segments [65] and are also product family architecture candidates. Tucker et al. [64]

proposed that a clustering technique can enable design engineers to identify the optimal number of product architec-

1Presented in [132, 133] and submitted to [134].
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tures from large-scale customer preference data. This study expands these clustering based data-driven approaches

[64, 65] to incorporate a market-driven approach [42, 61] with massive-scale customer preference data. The market-

driven approach provides a profit model as an objective function to determine optimal product architectures. Unlike

the previous market-driven approaches [42, 61], this study does not assume that 1) market segments are given, and 2)

customer preferences are static (i.e., no change over time).

The products of interest are products or parts that can be highly shared by many other products, including universal

motors in power tools and home appliances, engines in on and off-road vehicles, batteries in electronics, etc. These

products should satisfy a wide variety of different customers’ requirements. The product family design scenario that

this study focuses on is presented as follows. A company wants to analyze historical large-scale transactional data

in order to support its product family architecture decision for new orders. Figure 5.1 shows a data-driven approach

in the two-dimensional (requirement 1 and 2) customer requirement (circles) space. The objective is to determine

the position and number of product architectures (e.g., one rectangle and three triangles) in order to satisfy customers’

requirements. Pure data-driven approaches might generate geometrically meaningful results. For example, the product

architecture in the middle (rectangle) can be the optimal solution based on the selected information criterion (model

fitting function with penalization of complex models) but it might end up with an inferior solution from the perspective

of markets. With the guidance of market-driven approaches, data-driven approaches can produce a meaningful result

for decision makers. Once architectures are determined then clusters can be interpreted as market segments (dotted

lines).

Figure 5.2 shows a market-driven approach, which evaluates product architecture candidate sets (one rectangle

and three triangles in Figure 5.1) in terms of profit. With estimated revenue and production cost, the profit and its

uncertainty (dotted line) can be estimated. Note that the X-axis represents the number of product architectures and the

Y-axis represents the monetary value. When the number of product architectures is increased, the fixed costs will be

increased with more product variants. However, since more customers’ product requirements can be satisfied, revenue

can be increased too. Figure 5.1 and 5.2 together show the necessity of a market-driven approach in the clustering

based data-driven approaches.

Predictive, data-driven product family design (PDPFD) proposed in this study aims to merge data-driven and

market-driven approaches based on the predictive design analytics paradigm. The predictive design analytics paradigm

[81, 115] enables design engineers to extract knowledge from large-scale, multidimensional, unstructured, volatile

data, and transform that knowledge and trend into design decision making. The PDPFD framework introduces predic-

tive profit modeling in a clustering based data-driven model so that it can support complex product family architecture

decisions. In order to capture trends in profit, market value prediction with regression coefficients is used together with

time series analysis. The proposed method is demonstrated using a universal motor design problem [3] with massive-
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Figure 5.1: Overview of data-driven approach

scale customer preference data. Finally, a previous data-driven method [64] is compared to the PDPFD method in

order to show the benefits of the proposed method.

The rest of the study is organized as follows: The proposed approach, PDPFD, is presented in Section 5.2 followed

by a case study in Section 5.3. The benefits and limitations of the proposed approach along with future work are

discussed in Section 5.4.

5.2 Methodology

5.2.1 Overview

Figure 5.3 outlines the framework of PDPFD. There are two stages: individual product design stage and product family

design stage. The individual product design stage involves the enterprise level and engineering level [59, 60, 136].

The enterprise level represents managerial level decision making for maximizing the expected profit with respect to

the number and specifications of architectures as targets. The engineering level represents physical design decision

making with respect to engineering level design variables (e.g., thickness and length of parts). The objective function

consists of local objective functions (e.g., minimizing product’s weight) and the deviation term for target matching

(e.g., satisfying performance requirements). If the enterprise level target is infeasible, then a new target should be

explored. Once the individual product design stage decisions are made, the next step is to deterime product family

design. Based on the determined product variants, a decision making process for scale-based product family design is

explored. Scaling variables (i.e., the reduced design variables) of the architectures can be stretched or shrunk to satisfy

the same objective function in engineering level while common parameters remain constant. The common parameters
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constitute the product platform.

Three important tools for the PDPFD framework are a market value prediction model with exponential smooth-

ing for market considerations (Section 5.2.3), k-means clustering for product family architecture candidates (Sec-

tion 5.2.4), and expectation maximization clustering for multiple-platform design (Section 5.2.5). The first tool will

capture a trend of customer preferences and uncertainties, the second tool will find the optimal number of architectures

to minimize deviations between customer requirements and performance of architectures, and the last tool will figure

out the possibility of multiple platforms.

5.2.2 Data Structure and Assumptions

The main question in a data-driven model is how to represent data. Figure 5.4 shows the basic data structure. The

index t represents discrete time and data at t = n indicates the current data. In the historical data set from t = 1 to t = n,

transactional information is available, which is the set of data on product requirements (e.g., torque and efficiency),

chosen product architectures (e.g., a1, a2, etc), and the discounted price that customers paid based on their utility for

the chosen product architecture. Note that discounts can be applied if the product requirements cannot be matched.

The goal is how to determine the position and number of product architectures at h time-ahead (i.e., at t = n+ h).

Furthermore, the trend in customer preferences in historical data is captured and reflected in a profit function.

The transaction tables in Figure 5.4 also show the generation of the deviation between what customers want and

what products provide. By generating the deviation columns from product requirements and product architectures, the

impact of increasing or decreasing product architectures can be investigated in terms of discounts.

The availability and quality of data are critical in data-driven models. The data set utilized in this study is transac-
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Figure 5.3: Overall framework of PDPFD

tional information, which can be found in company databases though it is usually classified as confidential. Instead of

directly analyzing real data sets, randomly generated data sets will be used to test the proposed model. Since the qual-

ity of data-driven models can be hugely affected by the quality of data, great efforts should be made for the preparation

of input data sets. To improve the quality of data, data cleaning methods were adopted such as removing abnormality

values and handling missing values [119].

The basic assumptions in the framework of PDPFD are depicted in Figure 5.5. The circles represent customers’

requirements in terms of performance of products, and the rectangle shows the centroid of the cluster or the architec-

ture. In the extreme case, seven product architectures can be developed to satisfy all customers, which is the ideal case

of mass customization. Or, only one product architecture (the current figure) can serve as a single medium to embrace

all the requirements if the customers can ignore the differences. It is assumed that customers will buy the product

that is closer to their requirements in terms of the Euclidean distance. Basically, the performance of the product will

determine price and cost functions. For example, key performances of notebook computers (e.g., memory, processors,

screen size, etc.) determine notebook computer price and cost. In addition, the deviation or distance between a product

architecture and customer requirements will affect a purchase in terms of the discounted price, and the increasing the

number of architectures will increase the fixed costs.

Under the aforementioned assumptions, the result of the PDPFD framework can be used in a product design
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t=n Torque Efficiency Architecture Deviation
Discounted

Price

Customer 1 0.3 0.65 a1 1 40

Customer 2 0.5 0.8 a2 0.3 85

… … … … … …

t=1 Torque Efficiency Architecture Deviation
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Customer 1 0.3 0.65 a1 1 40

Customer 2 0.5 0.8 a2 0.3 85
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Figure 5.5: Basic assumptions of PDPFD

decision support system. No competing product is considered so that the impact of product brand is not investigated

in this study. Also, product performance in the customer requirement space is limited to continuous variables. The

proposed model attempts to model the trend of customer preferences in the market and use the trend and prediction

intervals for the product design decision support system. Since the predicted model is designed to be used for a short

forecasting horizon (e.g., one-step-ahead short prediction such as three months and six months later), the evolution of

a product family and technology shifts are not considered.
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5.2.3 Market Value Prediction for a Profit Model

In order to build a predictive profit model (Section 5.2.4), market value prediction is the key component and this section

will provide the method with prediction intervals (i.e., lower and upper bounds). Most of all, significant factors among

identified design requirements for prices and costs should be identified. Subject matter experts are helpful to manage

the list of candidate factors, and stepwise regression procedures can be applied to find the significant factors in a

stepwise manner.

Market value prediction with regression coefficients

Prediction of product prices with regression coefficients was proposed by Rutherford and Wilhelm[137] for a notebook

computer (hereinafter RW model). Recently, this model was revalidated with a more mature notebook market [138].

Though the RW model was validated with a notebook computer, it was also used to relate demand, price, and the

features that comprise a general product [139, 140] and suggested as a possible prediction method of product design

[141]. The RW model consists of two phases. Phase 1 fits a linear regression model to each time series. Phase 2

uses linear trend analysis of regression coefficients to capture a trend over time. Then, future market values of target

products can be predicted with given features. From publicly available data (notebook price data), the model predicted

the rate of price erosion of a notebook computer up to seven months ahead within 10% error. The RW model is used

for the base case of price prediction.

The main difference between the RW model and the predictive model in PDPFD (hereinafter PDPFD model) is

that the PDPFD model uses exponential smoothing models at Phase 2, which is more flexible (e.g., linear trend model

can be considered one of exponential smoothing models) and provides prediction intervals for prediction uncertainty.

The general form of the regression model in this study is given in Equation (5.1):

Pt = β0t +∑
i∈A

βitait +θt , for t = 1, · · · ,n (5.1)

where Pt is the price or market value of a product at discrete time t, β0t is the intercept, i is the index for levels or

alternatives of product features, A is the set of product features, βit is the regression coefficients of factor i, ait is the

measurement of factor i, and θt is the random error. Note that the price is determined by product features but the

discounted price considers one more factor, diviation in Section 3.4. It does not need to be linear but homogeneous

forms of regression models are required over time (i.e., linear, squared, cubic, etc.) to apply the PDPFD model. Linear

regression is usually adopted as a general model with the following assumptions: linear relationship between factors

and response, independent factors and random errors, and random error with constant variance.

The next step is to trace the trend of βit , which is considered as customer preferences over time. Exponential
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smoothing based on innovations state space models [96] is proposed to model the time series. Equation (5.2) and (5.3)

show generalized state space equations for βit [96]:

βit = w(xi(t−1))+ r(xi(t−1))εit (5.2)

xit = f (xi(t−1))+g(xi(t−1))εit (5.3)

where βit is the observed value at time t, xit is the state vector which contains unobserved components such as the

level, trend, and seasonality of a time series, w() and r() are scalar functions, f () and g() are the vector functions, and

εit is the white noise process with variance σ2. The white noise process has zero mean, constant and finite variance,

and uncorrelated values. For a succinct notation, index i ∈ A∪{0} is used in Equation (5.2) and (6.15).

By combining Equations (5.1), (5.2) and (5.3), the following state space based price equations are formulated:

Pt = [w(x0(t−1))+ r(x0(t−1))ε0t ]+∑
i∈A

[w(xi(t−1))+ r(xi(t−1))εit ]ait +θt (5.4)

xit = f (xi(t−1))+g(xi(t−1))εit (5.5)

Finally, estimation of the price at h time-ahead is formulated as follows:

P̂t+h = β̂0(t+h|t)+∑
i∈A

β̂i(t+h|t)ai(t+h) (5.6)

where β̂t+h|t represents the forecast of β̂t+h based on all the data up to time t.

There are a total of 30 exponential smoothing models classified based on trend, seasonality, and error in additive,

multiplicative or mixed ways. Hyndman et al. [96] provided details of the classifications. The automatic forecasting

method [127] is adopted to determine all the necessary parameters and the best model. The first step is to apply all

the 30 exponential smoothing models, and estimate initial states and parameters using maximum likelihood estimation

based on the innovations representation of the probability density function (refer to Equation (5.8)). The next step is to

choose the best model according to an information criterion: Akaike’s information criterion (AIC), corrected Akaike’s

information criterion (AICc) or Bayesian information criterion (BIC).

Prediction interval of market value

In the previous section, point forecasting of the time series βit was discussed, which provides an average market value

of products. In order to consider the uncertainty in market trends, prediction intervals in time series prediction are
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used as well.

Three sources of uncertainty were identified in forecasting a future value [96]: 1. selected model, 2. estimated

parameters and initial states, 3. future innovations: εi(n+1), · · · , εi(n+h). If it is assumed that the uncertainties from

the first and second sources can be minimized by applying the automatic forecasting method in Section 5.2.3, the

uncertainty in the future innovations is the only source that needs to be considered for prediction intervals.

If the initial state value xi0 is known, the innovation εit is a one-step-ahead prediction error. The conditional

expectation [96], which is also the one-step-ahead point forecast β̂it|(t−1) is given by:

E(βit |βi(t−1), · · · ,βi1,βi0) = E(βit |xi(t−1)) = β̂it|(t−1) = w(xi(t−1)) (5.7)

The probability density function [96] for βi is also given as a function of innovations εit in Equation (5.8):

P(βi|xi0) =
n

∏
t=1

P(βit |xi(t−1)) =
n

∏
t=1

P(εit)/r(xi(t−1)) (5.8)

Then, the recursive relationships can be summarized as follows:

β̂it|(t−1) = w(xi(t−1)) (5.9)

εit = (βit − β̂it|(t−1))/r(xi(t−1)) (5.10)

xit = f (xi(t−1))+g(xi(t−1))εit (5.11)

Therefore, h time-ahead prediction of βit requires only εi(n+1), · · · , εi(n+h).

In order to obtain prediction distributions, a simulation approach [96] is adopted, which is simple and can cover all

the 30 exponential smoothing models. The simulation approach simulates sample paths or observations βit with initial

states xit from the chosen model. The remaining unknown values are future innovations εit , and they can be obtained

from a random number generator with an appropriate distribution. An approximate 100(1−α)% prediction interval

for forecast horizon h is given by the α

2 and 1− α

2 quantiles of βi(t+h)|t :

P̂
α

2
t+h = β̂

α

2
0(t+h|t)+∑

i∈A
β̂

α

2
i(t+h|t)ai(t+h) (5.12)

P̂
(1− α

2 )

t+h = β̂
(1− α

2 )

0(t+h|t)+∑
i∈A

β̂
(1− α

2 )

i(t+h|t)ai(t+h) (5.13)

For example, 90% of the prediction interval of a market value is given by P̂0.05
t+h and P̂0.95

t+h . The prediction interval
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should be interpreted as the average prediction success instead of any single case. In other words, 90% of the time, the

real market value will fall within the bounds of intervals.

Performance test for predictive model in PDPFD

In this section, the prediction capabilities of the PDPFD model and the RW model in Section 5.2.3 are compared. The

hypotheses are 1) the PDPFD model can provide a similar level of predictive accuracy to the RW model when data has

a simple trend (trend of regression coefficients) and 2) the PDPFD model can predict future values more accurately

than the RW model when data has complex patterns (e.g., trend and cycle of regression coefficients).

Data sets with a simple trend and complex patterns were generated randomly with the description of the generation

procedures. Each data set contains three factors and one class variable (response or dependent variable) with 100

instances. The goal is to predict one-step-ahead class values using previous data sets. There were a total of 30 data

sets from t=1 to t=30 and the prediction results were collected from t=11 to t=30 (i.e., 20 time periods).

As a performance measure, mean absolute error (MAE) was selected as given by Equation (5.14):

Mean Absolute Error =
|b1−d1|+ · · ·+ |bm−dm|

m
(5.14)

where b1, b2, · · · , bm are the predicted class values and d1, d2, · · · , dm are the actual class values.

Data with trend

For the first hypothesis, the following data generation procedure was applied: 1) the value of each factor was randomly

chosen from 1 and 5 for each of the 30 data sets, 2) the base regression coefficients (i.e., t=1) for three factors were

randomly chosen between 30 and 40, 3) one of possible trends (increasing 1.5 or decreasing 1.5) was randomly

selected and applied to each coefficient from t=2 to t=30, 4) the class values were generated based on the values of the

factors and the regression coefficients with some additional randomness, 5) the regression analysis was applied to the

generated data sets, 6) the identified values of regression coefficients were used for predictive modeling. Due to the

randomness in step 4, the trend of regression coefficients are not exactly 1.5.

The result of 20 MAEs (each MAE represents the average of absolute errors for 100 instances) showed that the

prediction accuracies of the PDPFD method and the RW model were almost identical (Mann-Whitney test, α = 0.05,

p-value=0.98). Both models predicted one-step-ahead values with less than 1% error.

Data with trend and cycle

For the second hypothesis, the following data generation procedure was applied: 1) the value of each factor was
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randomly chosen from 1 and 5 for each of the 30 data sets, 2) the base regression coefficients for three factors were

randomly chosen with cyclical patterns (e.g., t=1 between 30 and 40, t=2 between 40 and 50, t=3 between 50 and

60, t=4 between 60 and 70), 3) one of possible trends (increasing 1.5 or decreasing 1.5) was randomly selected and

applied to the regression coefficients of each cycle from t=5 to t=30, 4) the class values were generated based on the

values of the factors and the regression coefficients with some additional randomness, 5) the regression analysis was

applied to the generated data sets, 6) the identified values of regression coefficients were used for predictive modeling.

As a result of this procedure, similar patterns were repeated for every four-time steps (i.e., cycles).

Table 5.1 shows the comparison result from both models. Since the RW model depends only on the trend line

for the prediction, when data has complex patterns, the PDPFD model provides a higher prediction accuracy (Mann-

Whitney test, α = 0.05, p-value=0).

Table 5.1: Comparison between RW and PDPFD model over 30 data sets (MAE)

t11 t12 t13 t14 t15 t16 t17 t18 t19 t20
RW 25.5 142.6 213.5 49.5 25.5 149.7 201.9 49.4 26.2 162.3

PDPFD 2.7 3.4 2.8 2.9 3.1 2.6 2.8 3.0 3.0 3.4
t21 t22 t23 t24 t25 t26 t27 t28 t29 t30

RW 183.9 46.1 27.4 156.8 180.9 44.7 28.7 161.4 177 44.2
PDPFD 2.9 3.0 3.2 3.1 3.0 3.0 2.8 2.6 2.9 2.6
* MAE: mean absolute error

The strength of the PDPFD model comes from the fact that both linear and non-linear forms of formulations can

be used, and the trend of coefficients can be captured dynamically in an automatic way. Moreover, the PDPFD model

can provide prediction intervals (e.g., forecast value is 60.3 with 80% prediction interval of 59.8 and 60.8), which

can show the uncertainty of market trend (customer preferences) in Section 5.2.3. These are characteristics of the

predictive model in PDPFD, which are not present in the RW model.

Now, a general model of predicted market values and its interval is formulated and tested. In the next section, the

model will be combined with a profit model.

5.2.4 Individual Product Design Stage

In the individual product product stage, there are two levels: enterprise level and engineering level [59, 60, 136]. As

shown in Figure 5.3, the market-driven target setting from large-scale customer preference data is implemented at the

enterprise level, and engineering design with the target is realized at the engineering level.

Enterprise level

At the enterprise level, the objective is to maximize the expected profit while satisfying other constraints:
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Maximize

Πn+h(Tk) = Dn+h(P*
n+h−Cn+h) (5.15)

Subject to:

g(Tk)≤ 0,h(Tk) = 0 (5.16)

where Πn+h is the economic profit at time n+h (h time-ahead); Tk is the set of target values (i.e., product architectures

with k number); Dn+h is the demand or number of orders; P*
n+h is the discounted price or sale price; Cn+h is the cost;

g() are inequality constraints (e.g., range of k or minimum profit); h() are equality constraints (e.g., exact number of

k).

Equation (5.17) and (5.18) show the general models for the price and cost based on the assumptions in Sec-

tion 5.2.2:

P*
n+h = f (Tk,d) (5.17)

Cn+h = f (Tk,k) (5.18)

where f () is a scalar function; d is the deviation in Equation (5.20), which represents the impact of deviations between

customers’ requirements and product architectures; k is the number of architectures, which represents fixed costs to

increase the number of architectures. In order to apply regression analysis, it is assumed that historical data has k≥ 2.

The data for the cost model at t = n+h is assumed to be available to manufacturers but the price model at t = n+h

should be predicted as discussed in Section 5.2.3. If cost related data at t = n+h is not available, the same technique

used in the price model should be applied.

To solve this problem with large-scale data, a two-step approach is proposed. The proposed process starts from

identifying maximum k. Then, find each T2,· · · ,Tk that minimizes deviations from customer requirements. Next,

among T2,· · · ,Tk, determine the best one by considering profit prediction along with its prediction intervals at the target

time. Note that since this is product family design, more than two product variants (T2) will be realized.

Step 1: set maximum k or number of architectures, and calculate a deviation for all k centroids by applying

k-means clustering

Step 2: calculate profits for all k architectures with prediction intervals, and set the target Tk that generates

maximum profit
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The determination of maximum k in this algorithm depends on designers. In general, it is almost impossible for

designers to decide the number from large-scale data. However, the maximum number of architectures (k) can be

estimated not purely by data but jointly by manufacturer’s capability and managerial decisions (e.g., the number of

production lines allow only a certain number of product variants). If the maximum number k cannot be estimated,

k should be increased enough to the point where no more improvement is possible in the case of a concave profit

function. Tucker et al. [64] used the X-means clustering algorithm to automatically select the optimal k for product

family architecture design but the maximum k should be provided by designers.

The k-means clustering algorithm [142, 119] is used since it is simple and effective. The Euclidean assumption

in Figure 5.5 works well with the k-means algorithm. The clustering algorithm partitions a given data set into a fixed

number of clusters k. It aims at minimizing the objective function, which is within cluster sum of squared errors (SSE)

as shown in Equation (5.19):

f =
k

∑
i=1

∑
x∈Ci

‖x− ci‖2 (5.19)

where x = (x1,x2, · · · ,xn) is a set of customer requirements; Ci = (C1,C2, · · · ,Ck) is a set of clusters; ci is the centroid

of cluster Ci (which is the arithmetic mean of points in Ci). The deviation d is defined in Equation (5.20):

d =
∑

k
i=1 ∑x∈Ci ‖x− ci‖2

n
(5.20)

The iterative process of the k-means algorithm starts by specifying the number of clusters (k). Then, k points are

chosen randomly as cluster centers (ci) and all instances (x) are assigned to the closest cluster centers in accordance to

the Euclidean distance. After the assignment, new cluster centers are recalculated as means. This process is repeated

until the same instances are assigned to the same clusters.

The k-means clustering algorithm has some disadvantages as follows. First, it is necessary to specify the number of

cluster k by designers. It was discussed above how to constrain the k for product family architecture design. Second, its

performance can be significantly diminished with high dimensional data. New k-means clustering algorithm with high

dimensional data was proposed by Sun et al. [143] and various dimensionality reduction techniques were discussed in

the literature such as principle components analysis [119], kernel trick [119], data compression [65], feature selection

[119, 64], etc. If data is really high dimensional (e.g., DNA, tweets, etc.) special clustering techniques should be

applied [144]. Third, the algorithm converges to local minima. Initial starting points can affect the result and repeating

the algorithm with different starting points is required. Note that these disadvantages are common in any clustering

algorithm.
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Engineering level

The engineering level problems can be stated as follows: find a design solution that minimizes the deviations between

design targets from Section 5.2.4 and actual responses while satisfying design constraints:

Minimize

fk +‖Tk−R‖2
2 (5.21)

Subject to:

g(Tk)≤ 0,h(Tk) = 0 (5.22)

where fk is the local product design objective function(s) (e.g., minimize weights); Tk is the target vector cascaded

down from the enterprise level; the R is the response vector obtained from the analysis model r(x) (e.g., engineering

level analytical models to calculate the response of the targets).

5.2.5 Product Family Design Stage

The goal of the product family design stage is to find clusters of values under each common parameter for exploring the

possibility of multiple platforms while maintaining the performances of products. The clustering is based on similarity

without the prior knowledge of cluster numbers. There are a few clustering techniques to allow this task: expectation

maximization (EM) [145, 119, 146] and X-means clustering [147]. Both of them are extended versions of the k-means

clustering method, which is used in the individual product design stage. Based on empirical test results for the product

family design stage, the EM algorithm is used in this stage.

The EM clustering algorithm is a generalization of maximum likelihood estimation when the given data set is

incomplete or there are unobserved latent variables. The goal is to estimate parameter θ̂ that maximizes the log-

likelihood logP(x,z;θ), where x is the observed variable and z is the latent variable. The EM iteration alternates

between the expectation (E) step, which calculates a probability distribution over possible completions of missing data

with the initial guess of parameters, and the maximization (M) step, which re-estimates the parameters using these

completions. Do and Batzoglou [146] provided a simple coin-flipping example of the EM algorithm.

In the clustering task, the unobserved latent variables are the assignments of observed values to clusters, and the

parameters are the means and covariance matrices of the selected distributions representing each cluster. Therefore,

the E-step calculates the cluster probabilities with the guessed parameters. The M-step calculates the parameters (i.e.,

cluster means and covariances) by maximizing the likelihood of the distributions.

Based on the result of the EM clustering, multiple values are allowed for common parameters. Whether one

constant (i.e., single platform) or multiple constant values (i.e., multiple platforms) are used for common parameters
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depends on designers. Finally, the engineering level optimization problem should be re-solved with respect to reduced

design variables (i.e., scaling variables) with fixed common parameters.

5.3 Illustrative Example: Universal Motor Family Design

5.3.1 Background and Data Generation

The design of a universal motor family [3] is used to demonstrate the effectiveness of the proposed model and provide

a comparison of the proposed model and a pure clustering based data-driven model [64]. Universal electric motors are

the most common components in power tools such as electric saws, drills, drivers, etc. and in household appliances

such as blenders, vacuum cleaners, washing machines, etc. Figure 5.6 shows the schematic of a universal motor.

There are eight design variable as inputs in Table 5.2. A mathematical model provided by Simpson et al. [3] returns

four performance outputs: power (P), torque (T), mass (M), and efficiency (η) of motors as a function these eight

design variables. The objective of this case study is designing a family of universal electric motors that maximizes the

expected profit for the next market trend (customer preferences) based on accumulated large-scale data.

Figure 5.6: Universal motor schematic (source: [3])

Three large-scale data sets (data set 1, data set 2 and data set 3) were generated using the generation procedure

in Section 5.2.3 (Data with trend) with manually generated new orders. Figure 5.7 shows the new orders in data set 1

and data set 2, which needs to be clustered. Due to the security issues with real data, the simulated data sets were used

to test the proposed model. Each data set contains twelve historical (six-month interval) transactional data, one new

order data, and one cost related data. Each data has one million instances (i.e., a total of 14 million instances for each

data set). The embedded artificial trends in data set 1 is shown in Table 5.3. For example, the coefficients of efficiency
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Table 5.2: Design variables and ranges of universal motors

Variable Definition Range
Nc Number of wire turns on the motor armature 100≤ Nc ≤ 1500 turns
Ns Number of wire turns on each field pole 1≤ Ns ≤ 500 turns
Awa Cross-sectional area of the armature wire 0.01≤ Awa ≤ 1 mm2

Aw f Cross-sectional area of the field wire 0.01≤ Aw f ≤ 1 mm2

r Radius of the motor 0.01≤ r ≤ 0.1 m
t Thickness of the motor 0.0005≤ t ≤ 0.1 m
I Current drawn by the motor 0.1≤ I ≤ 6.0 Amp
L Stack length 0.0566≤ L≤ 10 cm

have an increasing trend over time, which indicates customers pay more attention to the factor as time passes. For the

remaining sections, only data set 1 is used for discussion except for the comparative study in Section 5.3.3.
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Figure 5.7: New orders in data set 1 (left) and data set 2 (right)

5.3.2 Profit Modeling

Two key factors (torque and efficiency) were assumed to be identified for the estimation of discounted price and

cost functions. The discounted price and cost functions at one-step ahead (i.e., six months later) were formulated in

Equation (5.23) and (5.24):

P̂*
n+h = β0(n+1)+β1(n+1)

k

∑
i=1

a1i +β2(n+1)

k

∑
i=1

a2i +β3(n+1)d (5.23)

Ĉn+1 = γ0(n+1)+ γ1(n+1)

k

∑
i=1

a1i + γ2(n+1)

k

∑
i=1

a2i + γ3(n+1)k (5.24)
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where a1 is the torque; a2 is the efficiency of a universal motor; d is the deviation in Equation (5.20); k is the number

of product architectures. Since the demand (Dn+1) is given as the customers’ new orders, the profit model at time n+1

is formulated by Equation (5.15). In order to maximize the profit, both the deviation and the number of architectures

should be minimized. However, these two components are conflicting each other. When the number of architectures

is increased, the deviation is decreased accordingly or vice versa. Both Equation(5.23) and (5.24) use the constant

impact of the deviation and the number of product architectures.

Table 5.3 shows the historical regression coefficients of the discounted price fitted for historical data. The expo-

nential smoothing based on innovations state space models was applied to model each time series (e.g., Torque from

t=1 to t=12) using the forecast package [127] in R [108]. The mean column of Table 5.4 contains the point estimation

of one-step-ahead prediction (i.e., t=13). The automatic forecasting method in Section 5.2.3 provided required param-

eters and initial states. Table 5.4 also shows lower (i.e., lo80 and lo95) and higher (i.e., hi80 and hi95) bounds of 80

and 95% prediction intervals based on the simulation method in Section 5.2.3. Instead of having the assumption of

normally distributed errors, re-sampled errors or bootstrapping techniques were used to simulate future values. The

cost model at t=13 is provided in the right side of Table 5.4.

Table 5.3: History of regression coefficients for discounted price

t=1 t=2 t=3 t=4 t=5 t=6 t=7
Torque 34.99 34.50 34.20 34.00 33.50 33.09 32.79

Efficiency 22.01 22.49 22.8 23.00 23.50 23.60 23.60
Deviation -18.00 -18.10 -18.20 -18.30 -18.50 -18.70 -19.10
Intercept -0.0077 0 0 0 -0.0002 -0.0002 -0.0005

t=8 t=9 t=10 t=11 t=12
Torque 32.70 32.49 32.19 31.79 31.19

Efficiency 23.60 23.80 24.79 25.49 26.29
Deviation -19.10 -19.29 -19.49 -19.69 -19.89
Intercept -0.0003 0 0.0001 0.0014 0.0001

Table 5.4: Regression coefficients for discounted price and cost at t=13

for discounted price mean lo80 hi80 lo95 hi95 for cost mean
Torque 30.86 30.68 31.03 30.59 31.13 Torque 26.0

Efficiency 27.07 26.63 27.50 26.40 27.73 Efficiency 24.8
Deviation -20.10 -20.14 -20.06 -20.16 -20.04 k 2.5
Intercept 0.00027 -0.00262 0.00316 -0.00414 0.00469 Intercept 0
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5.3.3 Individual Product Design Stage

Enterprise level

It was assumed that the maximum number of architectures was determined as 15 based on the manufacturer’s capability

and production environment. Positions of product architectures that minimize deviation errors for the one million new

orders were identified using the k-means algorithm in Weka [107]. Since the k-means algorithm is the local optimizer,

multiple seed values (10 different values) were used to get the k best clusters. Figure 5.7 shows the result with k=11

(left) and k=5 (right).

The profit model in Equation (5.15) at n+ 1 (i.e., t = 13) is now available. By utilizing Equations (5.6), (5.12)

and (5.13), profits for mean, 80%, and 95% prediction intervals can be calculated as shown in Table 5.5. The top 4 ks

were selected according to their profits. Though the selection of k is dependent on designers, the important fact is that

the prediction intervals give the uncertainties of the predicted profit model. For example, T11 can have the profit range

from 0.47 to 7.59 million dollars while T15 can have the range from -1.16 to 8.48 million dollars with a 80% prediction

interval. It was assumed that the designer chose 11 architectures (T11) with the expected profit of 4.03 million dollars.

Then, the target T11 in Figure 5.7 was cascaded down to the engineering level.

Table 5.5: Architecture rankings based on prediction intervals of profit

mean lo80 hi80 lo95 hi95
Rank The best 11/4.03 11/0.47 15/8.48 5/-1.01 15/11.04

(k/profit($ MM)) Second 15/3.66 5/-0.15 11/7.59 11/-1.41 11/9.47
Third 13/2.68 7/-0.27 14/6.80 4/-1.48 14/9.14
Fourth 14/2.40 6/-0.72 13/6.79 7/-1.48 13/8.89

* k is the number of architectures

Engineering level

The local objective function fk (from Equation (5.21)) in this case study is the mass function of a universal motor. A

mathematical universal motor model [3] is used as the analysis model r(x) in Equation (5.21). Therefore, the objective

function is to minimize the mass of motors and deviations between the target T11 and the response R while satisfying

design constraints in Table 5.6.

Table 5.6: Design constraints for universal motors

Name Constraint
Magnetizing intensity, H H ≤ 5000Amp · turns/m

Feasible geometry t<r
Power, P P=300W
Mass, M M ≤ 2.0kg
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The Generalized Reduced Gradient (GRG) algorithm in Excel was used to solve this problem. Table 5.7 shows the

engineering level optimization result with T11 from Figure 5.7 (i.e., T and η column).

Table 5.7: Universal motor specifications and performance responses

Motor Product specifications (design variables) Responses
no. Nc Ns Aw f (mm2) Awa(mm2) I(Amp) r(cm) t(mm) L(cm) T (Nm) η(%) P(W) M(kg)
1 998 105 0.476 0.347 3.72 3.05 2.73 2.34 0.30 70 300 0.984
2 998 105 0.430 0.416 5.25 4.91 2.44 1.69 0.40 49.8 300 0.809
3 998 105 0.431 0.467 3.81 4.57 2.41 1.58 0.20 68.5 300 0.637
4 997 36 0.149 0.149 5.22 1.47 1.47 1.88 0.10 50.0 300 0.218
5 997 75 0.346 0.346 4.24 2.51 2.51 4.49 0.49 61.6 300 1.294
6 997 101 0.560 0.560 3.29 2.62 2.62 4.50 0.41 79.4 300 1.821
7 995 61 0.255 0.255 3.47 1.67 1.67 2.26 0.10 75.3 300 0.406
8 995 72 0.335 0.334 4.41 2.49 2.49 4.46 0.50 59.3 300 1.252
9 995 53 0.213 0.213 4.35 1.82 1.82 2.63 0.17 60.0 300 0.443
10 995 45 0.199 0.199 5.15 1.82 1.82 2.62 0.2 50.7 300 0.422
11 995 70 0.319 0.319 4.41 2.42 2.42 4.23 0.45 59.3 300 1.126

Comparative study

As shown in the previous sections, the PDPFD algorithm combines the data-driven and market-driven approaches

together for the target setting of the individual product design stage. In this section, PDPFD and a previous data-

driven approach [64] are compared to validate the performance of the proposed algorithm.

The pure clustering based data-driven method [64] used the X-means clustering algorithm [147] to design aero-

dynamic particle separators. Out of 1000 data points, the X-means clustering found five cluster centroids (i.e., archi-

tectures) based on the Bayesian information criterion (BIC) [147]. From these five architectures (with the maximum

BIC score), five product variants could be realized. However, the data-driven method calculated the production cost

after determining the five product architectures. In contrast, the PDPFD algorithm considers the expected profit while

simultaneously determining the product architectures. By design, PDPFD can generate profits that are equal to or

greater than profits from the data-driven only method while BIC scores can be reduced.

Data set 1, 2, 3 were utilized for this comparative study. The X-means clustering algorithm in Weka [107] was

used with the minimum (2) and maximum (15) number of architectures. Table 5.8 shows both results from PDPFD and

the data-driven method. When PDPFD generated more architectures, the averages of within cluster sum of squared

errors (SSE) were lower than that of the data-driven method. The data-driven method generated lower expected profit

at the end because it maximized the BIC score first and then the profit was calculated sequentially with the determined

number of product architectures. The PDPFD algorithm explored all the k values (e.g., k=2 to 15) and determined the

best one by comparing profits. This shows the necessity of data-driven and market-driven combined approaches in

product family architecture design as introduced in Figure 5.1 and 5.2.
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Table 5.8: Result of comparative study

data set 1 k Average SSE BIC Cost($ MM))/k Revenue($ MM))/k Expected profit($ MM))
PDPFD 11 0.003 -933 25.76 26.12 4.03

Data-driven method 2 0.104 -907 25.17 24.83 -1.57
data set 2 k Average SSE BIC Cost($ MM))/k Revenue($ MM))/k Expected profit($ MM))
PDPFD 5 0.021 -934 28.56 28.65 0.42

Data-driven method 4 0.032 -795 27.00 26.71 -1.10

data set 3 k Average SSE BIC Cost($ MM))/k Revenue($ MM))/k Expected profit($ MM))
PDPFD 2 0.096 -781 27.50 124.50 0.194

Data-driven method 4 0.025 -716 30.25 78.44 0.192
* k is the number of architectures

5.3.4 Product Family Design Stage

Based on the result (i.e., 11 motors) from the individual product design stage, the EM clustering in Weka [107] was

applied to find clusters within design variables. Two clusters were identified for the number of wire turns (Ns) and the

radius of the motor (r), and all other design variables had one cluster. Next, common parameters and scaling variables

are selected. Based on Simpson et al. [3], the radius of the motor (r) and the thickness of the stator (t) were selected

as the common parameters. Then, the engineering level optimization problem was resolved with respect to the six free

design variables with the two fixed common parameters (i.e., r and t). Table 5.9 shows the result of the optimization

problem which indicates two different platforms based on r and t (i.e., 4.74/2.21 and 2.21/2.21) shared by motors. The

average weight of the motor family was increased by 30.2% (from 0.86kg to 1.12kg) but all weight constrains were

satisfied (i.e., less than 2kg).

Table 5.9: Universal motor family design with fixed r and t

Motor Product specifications (design variables) Responses
no. Nc Ns Aw f (mm2) Awa(mm2) I(Amp) r(cm) t(mm) L(cm) T (Nm) η(%) P(W) M(kg)
1 1229 54 0.195 0.195 5.21 2.21 2.21 0.75 0.30 70 300 1.003
2 1227 116 0.475 0.475 5.25 4.74 2.21 1.31 0.40 49.8 300 1.975
3 1196 159 0.562 0.562 3.81 4.74 2.21 0.93 0.20 68.5 300 1.999
4 1437 54 0.220 0.220 5.21 2.21 2.21 0.64 0.10 50.0 300 0.346
5 1437 67 0.412 0.411 4.23 2.21 2.21 3.86 0.49 61.6 300 1.329
6 1050 86 0.597 0.597 3.29 2.21 2.21 5.69 0.41 79.4 300 1.894
7 1050 81 0.279 0.278 3.47 2.21 2.21 1.32 0.10 75.3 300 0.462
8 1050 64 0.354 0.353 4.41 2.21 2.21 5.18 0.50 59.3 300 1.262
9 1050 65 0.223 0.222 4.35 2.21 2.21 1.78 0.17 60.0 300 0.467

10 1050 55 0.208 0.207 5.15 2.21 2.21 1.77 0.2 50.7 300 0.443
11 1050 64 0.333 0.333 4.41 2.21 2.21 4.66 0.45 59.3 300 1.128
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5.4 Conclusion

This chapter addresses how to determine optimal product family architectures with large-scale customer preference

data. The proposed model expands clustering based data-driven approaches to incorporate a market-driven approach.

The market-driven approach provides a profit model in the near future to determine the optimal position and number

of product architectures among product architecture candidates generated by the k-means clustering algorithm. Unlike

discrete choice analysis models which were used in previous market-driven approaches, a market value prediction

method is proposed as a dynamic model which can capture and reflect the trend of customer preferences. Prediction

intervals also provide market uncertainties of the dynamic profit model for product family architecture design.

The predictive, data-driven product family design (PDPFD) framework consists of the individual product design

stage and the product family design stage. The individual design stage is a bi-level optimization model. At the

enterprise level, a price prediction formulation is suggested with regression coefficients and time series modeling of the

coefficients using exponential smoothing based on innovations state space models. In comparison with the RW model,

the proposed model not only showed the better prediction accuracy for data with complex patterns but also provided

prediction intervals which represent the dynamics and uncertainties of customer preferences. The k-means clustering

algorithm is suggested to capture the effect of deviations between product architectures and customer requirements.

Then, the optimal position and number of product architectures can be determined to maximize the profit model

without pre-defined market segment information. With this market-driven target, the engineering level optimization

problem is formulated to find designs which minimize deviations from the target. The next stage is the product family

design stage where the EM clustering algorithm is applied to find clusters in common parameters so that the possibility

of multiple platforms can be explored. Finally, the engineering level optimization is resolved with reduced design

variables and common parameters. The example of universal electric motors design demonstrates the implementation

of the proposed framework with large-scale data. The comparative study shows that the PDPFD algorithm can generate

more profit than pure clustering based data-driven models, which shows the necessity of data-driven and market-driven

combined approaches.

The PDPFD algorithm starts with a maximum number of architectures which is mainly dependent on the manu-

facturer’s capability and production condition. If k is too big, then processing time for the algorithm will be very long.

More efficient and data-driven ways should be explored to find the lower and upper bound of the number of k in the

future. Furthermore, throughout this study, a scenario with no competition was used. It will be interesting to consider

competing products for market-driven target setting as possible future work.

The next chapter will discuss a new usage modeling technique for life cycle assessment of systems. Since policy

makers and manufacturers mainly focus on environmental impacts in the future, predictive design analytics can help

the estimation more accurately. Preprocessing and time series modeling of sensor data will be discussed.
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Chapter 6

Predictive Usage Mining for Life Cycle
Assessment

In this chapter1, the usage modeling technique, predictive usage mining for life cycle assessment (PUMLCA) algo-

rithm, is proposed as an alternative of the conventional constant rate method. By modeling usage patterns as trend,

seasonality, and level from a time series of usage information, predictive LCA can be conducted in a real time horizon,

which can provide more accurate estimation of environmental impact. Large-scale sensor data of product operation

is suggested as a source of data for the proposed method to mine usage patterns and build a usage model for LCA.

The PUMLCA algorithm can provide a similar level of prediction accuracy to the constant rate method when data

is constant, and the higher prediction accuracy when data has complex patterns. In order to mine important usage

patterns more effectively, a new automatic segmentation algorithm is developed based on change point analysis. The

PUMLCA algorithm can also handle missing and abnormal values from large-scale sensor data, identify seasonality,

and formulate predictive LCA equations for current and new machines. Finally, the LCA of agricultural machinery

demonstrates the proposed approach and highlights its benefits and limitations.

6.1 Introduction

The usage modeling in life cycle assessment (LCA) is rarely discussed despite the magnitude of environmental impact

from the usage stage. In this study, a new perspective of dynamic LCA is proposed to consider time in LCA, especially

the modeling of the usage stage. Among the life cycle stages of a product, the manufacturing stage, which is the chosen

stage in the majority of LCA studies, can be considered as a one-time event, i.e., time-independent event. Although a

dynamic inventory approach [73] attempted to relax this (e.g., the impact from material x or process y can be changed

over time), the inventory data is considered constant in this study. On the other hand, the usage stage (with maintenance

and end-of-life stages) is a time-dependent event, which means the lifespan of a product has a large impact on LCA.

Many studies showed that the majority of environmental impact can come from the usage stage over life cycle (e.g.,

more than 60% for cars [74], more than 80% for off-load machinery (product of interest in this study) [75], and

80∼90% for some small electronics [150]). Therefore, how to model the usage stage in LCA is critical and one of the

1Presented in [148] and submitted to [149].
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main questions of this work.

LCA studies in literature usually utilized a constant rate [77, 78, 75, 1, 79] of usage information (hereinafter

constant rate method) with the implicit assumption of steady-state processes. This method is simple and easy to apply,

but if data has complex patterns (e.g., trend, seasonality and segments), the prediction accuracy of the constant rate

method can be significantly reduced. Figure 6.1 shows the expected result from both the proposed model and the

constant rate method. Based on the available historical data, a usage (e.g., diesel fuel consumption) model should be

built and used for predicting the future usage profile. It can be seen that the constant rate method can misinterpret the

upcoming usage profile.

Amount of

diesel fuel (l)

Available historical data timepresent future

Building a usage model Prediction of usage

real value

constant rate

PUMLCA

(e.g., 7-year data) (e.g., 9.5-year data)

Figure 6.1: A prediction scenario of PUMLCA and constant rate method

One exception is Telenko and Seepersad [150] who proposed a usage context modeling technique in LCA using

Bayesian network models. The usage context includes human, situational, and product variables. Based on a pre-

defined probabilistic network of relevant usage patterns (e.g., weather→ usage of electric kettle with probability of x),

a usage profile and its variability can be modeled as a form of distribution. However, in order to apply this approach,

causal relationships among different usage contexts should be known, which is expressed as a probabilistic network.

For example, the usage of agricultural machinery (e.g., crop sprayer, harvester, nutrient applicator, etc.) can be affected

by a various usage context (e.g., weather, soil, experience of farmers, price of fuel and crops, machine deterioration). It

will be difficult to correlate these variables with specific usage information (e.g., diesel fuel consumption and operating

hours). Furthermore, Telenko and Seepersad [150] did not consider time in LCA.

Alternatively, this study proposes a time series usage modeling technique, predictive usage mining for life cycle

assessment (PUMLCA), as shown in Figure 6.2. Companies such as Caterpillar (PRODUCT LinkTM) and John Deere

(JDLinkTM) have developed telematics systems for their machinery and have been gathering operational data in real

time for various purposes: asset utilization monitoring, location tracking, fleet management, machine health prognos-

95



tics, etc. These large-scale time-stamped data sets are the sources of data for the PUMLCA algorithm. Usually, the

whole picture of a usage profile is not available for currently deploying machines or new machines. Based on the lim-

ited past information, future usage patterns should be predicted for LCA as shown in Figure 6.1. Time series analysis

is useful when future values should be predicted while explanatory variables are difficult to identify. By modeling time

series usage information, not only can future usage patterns be obtained, but also variability (i.e., prediction interval).

For example, Ma et al. [81, 115] showed that a trend of valuable information (demand and price) could be mined and

reflected in system design using the combination of time series analysis and data mining.

Handling missing and 

abnormal data

Seasonality analysis

Segmentation analysis

Time series analysisData representation

Current machine

New machine

<Predictive life cycle assessment>

Environmental impact with 

target time horizon (real time)
Usage model

Large-scale sensor data

<Modeling usage stage><Telematics systems>

+

Figure 6.2: Overview of PUMLCA

Time series usage information, however, frequently shows highly seasonal activity periods with periodic no-

activity or very low-activity periods. For example, combine harvesters are mainly operated during the harvest season

with almost zero usage during the off-season. A similar pattern can be observed from seasonally used machinery.

This pattern is also widespread for time series data of highly seasonal items such as Christmas, Easter and Halloween

products. When analyzing and modeling this kind of time series data, a segmentation can help to find usage patterns

more clearly by grouping distinct periods (e.g., off-season period) [151]. Segmentation algorithms [4] were proposed

for various applications such as voice recognition, handwriting recognition, clustering, classification, etc. However,

not much has been reported in the LCA literature whether segmentation algorithms can improve predictive capability.
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Figure 6.3 shows the example. The usual time series segmentation (A (Electrocardiogram) in the figure, piecewise

linear representation) is used for the approximation of a time series but the proposed segmentation (B (Monthly sales

for a souvenir shop in Queensland, Australia) in the figure, dotted lines for predicted values) is designed to improve

the predictive capability of time series modeling by grouping distinct periods and magnifying important patterns (e.g.,

1© ‘+’ and ‘−’ segments are separated and predicted, 2© segments are regrouped). Therefore, how to segment a time

series for better LCA results is another main question of this work.

A) B)

- + + +- - -

+

-

+

① ②

Figure 6.3: Time series segmentation A) piecewise linear representation (redrawn from [4]) B) segmentation for
prediction (redrawn from [5])

The main contribution of this chapter is to propose the usage modeling technique, predictive usage mining for

life cycle assessment (PUMLCA) algorithm, which enables predictive LCA in a real time horizon. The PUMLCA

algorithm can provide a similar level of prediction accuracy to the constant rate method when data is constant, and

a higher prediction accuracy when data has complex patterns. In order to mine important usage patterns (trend,

seasonality and level) effectively from a time series, a new automatic segmentation algorithm is developed based on

change point analysis. The PUMLCA algorithm can also handle missing and abnormal values from large-scale sensor

data, identify seasonality, and formulate predictive LCA equations for current and new machines. Finally, the LCA of

agricultural machinery demonstrates the proposed approach and highlights its benefits and limitations.

The rest of the chapter is organized as follows: Section 6.2 describes the PUMLCA algorithm. Section 6.3 pro-

vides design problems for current and new machines. Numerical prediction tests are presented for PUMLCA and the

constant rate method in Section 6.4 followed by a case study of agricultural machinery in Section 6.5. The benefits

and limitations of the proposed methodology along with future research directions are discussed in Section 6.6.
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6.2 Methodology

Figure 6.4 outlines the predictive usage mining for life cycle assessment (PUMLCA) algorithm. There are five stages:

data preprocessing for handling missing and abnormal values, seasonal period analysis, segmentation analysis, time

series analysis, and predictive LCA. Details are explained in each subsection respectively. The algorithm starts from

gathering time-stamped sensor data sets with usage information of interest. The amount of fuel (or energy) consump-

tion and operating hours by work modes (e.g., idling and non-idling) are selected as the usage information. In this

study, the usage information is viewed as a result of interactions among human, situational and product variables

which are the components of the usage context [150]. For example, the amount of fuel consumed by work modes can

be affected by user experience and preference (human variables), weather and soil (situational variables), and machine

deterioration and efficiency (product variables). The patterns of the usage information (usage patterns) are defined

as trend, seasonality and level in historical time series data. A trend is a long-term increase or decrease pattern; a

seasonality is a repeated pattern with a fixed and known period; and a level is base values after removing trend and

seasonality. Since a level can be considered as an initial value with a series of random errors, trend and seasonality are

the two main patterns that will be mined.

6.2.1 Data Preprocessing

After collecting a time series of usage information of interest, it should be checked whether there are missing or

abnormal values. Though it is assumed that the error rate of sensor data is very low and the incompleteness of data

happens at random, it is still possible to have missing or abnormal values. In order to handle missing values (usually

indicated as not available), various imputation techniques are available: 1) removing the missing values, 2) replacing

the missing values with random values, adjacent values, mean or median, and 3) replacing the missing values based

on values of a correlated variable. Since the volume of collected data is very large, any aforementioned method can be

applied.

Unlike missing values, abnormal values (or outliers) are difficult to define. However, similar to the case of missing

values, it is assumed that the sample size of abnormal values is much smaller than the volume of the original data

and abnormal values are not generated systematically. There are two approaches: 1) three-sigma rule and 2) boxplot.

The three-sigma rule states that approximately 99.73% of values lie within three standard deviations of the mean

in Gaussian distribution. In other words, if the collected values (yt ) are considered random variables following the

Gaussian distribution, abnormal values can be defined as values located outside of Equation (6.1):

µ−3σ≤ yt ≤ µ+3σ (6.1)
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Figure 6.4: Overall framework of PUMLCA

where µ is the mean and σ is the standard deviation.

Another method to detect abnormal values is a boxplot. Abnormal values are defined as values located outside of

Equation (6.2):

Q1−1.5IQR≤ yt ≤ Q3 +1.5IQR (6.2)

where Q1 is the 25th percentile, Q2 is the median or 50th percentile, Q3 is the 75th percentile, and IQR refers to

the interquartile range (Q3−Q1). If data is distributed as the Gaussian distribution, Equation (6.2) can be expressed

as µ± 2.7σ. Figure 6.4 indicates that detected abnormal values are removed and handled by techniques for missing

values.
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6.2.2 Seasonal Period Analysis

The next step is to determine whether there are seasonal patterns, and if there is, what the length (period) of seasonality

is. It should be noted that seasonality modeling will be conducted in Section 6.2.4, but without the information of the

seasonal period, seasonality cannot be modeled. Examples of typical periods include 24 for an hourly series, 7 for a

weekly series, 12 for a monthly series, 4 for a quarterly series, etc. If a seasonal period is known, the information can

be used. If it is not known, then a dominant period should be identified with different seasonal representations of the

original sensor data.

A periodogram [152] is suggested to identify the important seasonal period. The periodogram is a plot with the

x-axis of frequencies and the y-axis of periodogram values. In order to derive the relationship between periodogram

values and frequencies, it starts from the fact that a sum of cosine or sine waves can express a time series. For example,

a cosine wave is given in Equation (6.3):

Acos(2πωt +φ) = β1cos(2πωt)+β2sin(2πωt) (6.3)

where A is an amplitude, ω is a frequency and φ is a phase. The equality is based on a trigonometric identity with

β1 = Acos(φ) and β2 =−Asin(φ).

Then, a time series with n discrete time points is represented as a generalization of Equation (6.3), which is given

by [152]:

yt =
n/2

∑
j=1

[β1(
j
n
)cos(2π(

j
n
)t)+β2(

j
n
)sin(2π(

j
n
)t)] (6.4)

where ( j/n) are frequencies ω j ( j cycles in n time points) for j = 1,2, · · · ,n/2.

Now, the periodogram values are defined as [152]:
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(6.5)

where β̂1 and β̂2 are considered regression parameters and can be derived using the least squares estimates (i.e., the

second equality). The periodogram is a sample spectral density, which can give the relative importance of frequencies.

In order to obtain the periodogram values, a discrete Fourier transform (DFT) can be used, which is given by [152]:
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where i is an imaginary number and the second equality is from Euler’s formula.

The squared d( j/n) times (4/n) gives the periodogram values:
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Equation (6.7) can be computed by a fast Fourier transform (FFT), which is available in many computing software

platforms such as R and Matlab. R codes to plot a periodogram with FFT is provided by [152].

Finally, the dominant period (i.e., reciprocal of a frequency ( j/n)) can be identified by satisfying:

argmaxP( j/n)
j/n

(6.8)

One helpful treatment before plotting a periodogram is detrending time series usage information (i.e., remove a

trend). Two possible methods of detrending will be presented in Section 6.2.4. Also, from a practical standpoint, users

can limit a range of frequencies as a meaningful range by their definition.

6.2.3 Segmentation Analysis

There are two types of segmentation analysis: deterministic and automatic. Deterministic segmentation analysis

can be used when some segments of given time series data show deterministic patterns, e.g., zero usages over time

within specific periods. If this prior knowledge is not available or patterns are not deterministic with variable periods,

automatic segmentation analysis should be applied. In this study, a new automatic segmentation algorithm with the

change point analysis is presented.

Figure 6.5 shows the schematic of the automation segmentation algorithm. A period (n/ j) is identified from

Section 6.2.2 and the number of data points n is proportional to the period (i.e., n/ j = jp/ j = p). For each period,

there are p time indexes, m1,m2, · · · ,mp. For example, a period 12 has 12 time indexes which are January, February,

· · · , December. The goal of this algorithm is to find a shared segment (SS) over periods. sp j denotes a segment, which

is a set of p time indexes in the period p j. The segment does not contain any change point.

Change point analysis is a statistical technique that can detect multiple change points within a time series [153].

When a discrete time series, y1:n = {y1, · · · ,yn}, is given, positions of change points, τ1:m (τ0 = 0 and τm+1 = n) can
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Figure 6.5: A schematic of automatic segmentation algorithm

be identified if the statistical properties of y1:τ1 , yτ1+1:τ2 , · · · , yτm+1:n are different in some sense. In this study, changes

in mean are adopted, although changes in variance are another option. In order to identify change points, an objective

function is given by [153]:

F(n) = min
τ
{

m+1

∑
i=1

[C(y(τi−1+1):τi)+β]} (6.9)

where C is a cost function for a segment and β is a penalty. For t < n, a recursive expression can be determined as

follows [153] and solved in turn by dynamic programming:

F(n) = min
t
{min

τ∈τ1:t

m

∑
i=1

[C(y(τi−1+1):τi +β)]+C(y(t+1):n)+β]}

= min
t
{F(t)+C(y(t+1):n)+β}

(6.10)

A pruned exact linear time (PELT) method [153] was proposed to solve Equation (6.10) more efficiently with a

pruning procedure instead of searching all possible change points. During iterations for t < s < n, only a set of t

satisfying Equation (6.11) will be considered:

F(t)+C(y(t+1):s)+K ≤ F(s) (6.11)

where K is a constant.

As a cost function, the negative of maximum log-likelihood is used, which is given by [153]:

C(y(t+1):n) =−max
θ

n

∑
i=t+1

log f (yi|θ) (6.12)
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where f (yi|θ) is a density function with the parameter θ for a segment.

As a penalty, there are some options such as Akaike’s Information Criterion (AIC, β = 2p) and Bayesian Informa-

tion Criterion (BIC, β = plog(n)), where p is the number of added parameters for a change point. It is also possible to

specify a type I error (e.g., 0.05 or 0.01) as a penalty value using an asymptotic distribution [154]. The PELT algorithm

is implemented in R [154].

The automatic segmentation algorithm based on the change point analysis (i.e., PELT) is provided in Algorithm 2.

The goal of this algorithm is to find shared segments over seasonal periods which contain no change point. Unlike the

PELT algorithm, change points will be identified within a seasonal period. A penalty, β, should be selected by users.

As the penalty value increases, less change points will be identified and the algorithm will be less sensitive over close

values. A segment is defined as a group of members within a seasonal period. At least two members are required to

be a segment (e.g., y1:3 in line 12). In line 4, τ∗ contains the possible positions of change points, which are p time

indexes within each period (e is the indexes of periods). In line 5∼8 [153], the PELT algorithm is implemented with

the pruning procedure in line 8. Rτ∗ is the set of τ∗; τ′ is the identified optimal position of change points; CPe denotes

the optimal positions of change points (τ∗) for each period, which is the result of the first part of the algorithm in line

10. Line 12 makes a set of segments, Se, for each period based on the identified optimal change points (CPe). Note

that τ1:mp = (τ1, · · · ,τmp). Line 13 finds shared segments (SS) over different periods. At this point, it is possible that

change points can exist among the sets, Se, in the shared segments, which indicates that those segments are not similar

patterns that repeat periodically. Line 14 makes one new time series (NS) using shared segments of each period (e.g.,

SSp1 represents the shared segment of the first period). Line 15 applies the PELT method for the new series with no

period and a new change point set, CP′, is returned in Line 16. The output depends on the new change point set. If

there is no change point, the shared segments and the remaining data are grouped as different time series. If there is a

change point, no segmentation will be implemented.

Based on the result of the automatic segmentation algorithm, time series analysis methods in the next section will

be applied to each segmented time series. Now, each time series has a new period, which is the number of seasonal

time indexes.

6.2.4 Time Series Analysis

Time series analysis includes modeling time series data by extracting important patterns and forecasting future values

from the fitted model. The two most widely used time series analysis techniques [5] are adopted in this study: expo-

nential smoothing (ETS) and autoregressive integrated moving average (ARIMA). Since “each has its strengths and

weaknesses” [127], either method can be selected by users. Observations are denoted by yt and a forecast of h ahead

time based on all the data up to time t is denoted by ŷt+h|t where h is a real time horizon.
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Algorithm 2 Automatic Segmentation
1: A time series, y1:n with n number of data points
2: A seasonal period, p, where p=n/j with j cycles
3: A measure of fit C(·) and a penalty β

4: for τ∗ = 1, · · · ,mp and e = p1, p2, · · · , p j do
5: Calculate F(τ∗) = min

τ∈Rτ∗
[{F(τ)+C(y(τ+1):τ∗)+β}

6: Let τ′ = argmin
τ∈Rτ∗

[{F(τ)+C(y(τ+1):τ∗)+β}

7: Set CPe(τ
∗) = [cp(τ′),τ′]

8: Set Rτ∗+1 = {τ ∈ Rτ∗ ∪{τ∗} : F(τ)+C(y(τ+1):τ∗ +K ≤ F(τ∗))}
9: end for

10: return CPp1 ,CPp2 , · · · ,CPp j

11: for e = p1, p2, · · · , p j do
12: Set Se = {y1:τ∗1

,y(τ∗1+1):τ∗2
, · · · ,y(τ∗mp−1+1):τ∗mp

}
13: Find SS = {Sp1 ∩Sp2 ∩·· ·∩Sp j}
14: Let NS = {SSp1 ,SSp2 , · · · ,SSp j}
15: Apply line 4∼9 to NS
16: Get CP′(τ∗)
17: end for
18: return
19: if CP′(τ∗)=null then
20: group SS as one time series and remaining as another time series
21: number of time series (s) = z
22: else
23: no segmentation, s = 1 (i.e., original data)
24: end if

Exponential Smoothing

The ETS models refer to an exponential smoothing family (e.g., simple exponential smoothing, Holt’s linear trend

model, Holt-Winters seasonal model, etc.) based on the innovations state space framework [96]. The ETS model

identifies key components of a time series (trend and seasonality) and expresses their relationships (additive and

multiplicative) using exponential smoothing.

The simplest model of ETS is given as:

ŷt+1 = ŷt +α(yt − ŷt) (6.13)

where α is a parameter between zero and one. Equation (6.13) represents that the new forecast is the combination

of the old forecast and the error from the last forecast. Similar to Equation (6.13), there are 30 ETS models with a

combination of trend (none, additive, additive damped, multiplicative and multiplicative damped), seasonality (none,

additive and multiplicative) and error (additive and multiplicative) [96].

All the 30 ETS models can be expressed as innovations state space models and the general model is given as [96]:
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yt = w(xt−1)+ r(xt−1)εt (6.14)

xt = f (xt−1)+g(xt−1)εt (6.15)

where xt is the state vector which contains unobserved components such as the level, trend, and seasonality of a time

series; w() and r() are scalar functions; f () and g() are the vector functions; and εt is the white noise process with

variance σ2. The white noise process is a process that has zero mean, constant and finite variance, and uncorrelated

series. Using this innovations state space framework, Hyndman et al. [96] showed that prediction interval can be

obtained along with a point forecast.

In order to get a forecast, ŷt+h|t , a recursive expression was summarized as follows [96]:

ŷt|t−1 = w(xt−1) (6.16)

εt = (yt − ŷt|t−1)/r(xt−1) (6.17)

xt = f (xt−1)+g(xt−1)εt (6.18)

Then, a simulation approach [127] can be used to simulate εt for a forecast with a prediction interval.

The remaining part is the identification of trend and seasonality, which is called as the decomposition of a time se-

ries. First, the trend component can be estimated (T̂t ) by a moving average smoothing. The moving average smoothing

of order m is given by [5]:

T̂t =
1
m

k

∑
j=−k

yt+ j (6.19)

where m = 2k + 1. The order of the moving average smoothing is a seasonal period, and if the seasonal period is

not known, usually odd orders (e.g., 3, 5, 7, 9, etc.) can be applied [5]. A larger order gives a smoother fit. Then,

detrended time series data can be obtained as yt − T̂t for the additive model or yt/T̂t for the multiplicative model. It

should be noted that this is one method to obtain a detrended series for the seasonal period analysis in Section 6.2.2.

Second, the seasonal component can be estimated from detrended series data. An average of each seasonal time

index over seasonal periods (e.g., all values in January for monthly data) gives the seasonal component, Ŝt .
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ARIMA

While the ETS model represents a time series as exponential smoothing of trend and seasonality, the ARIMA model

is based on autocorrelations in the time series. The ARIMA model (without seasonality) is a combination of three

models given as [5]:

(1−φ1B−·· ·−φpBp)(1−B)dyt = c+(1+θB+ · · ·+θqBq)et (6.20)

where the first parenthesis is an autoregressive (AR) model of order p, the second parenthesis is an integration (or

differencing operation), and the third parenthesis on the right-hand side is a moving average (MA) model of order q.

B represents a backward shift operator, e.g., Byt = yt−1.

The AR model of order p is given by:

yt = c+φ1yt−1 +φ2yt−2 + · · ·+φpyt−p + et (6.21)

where c is a constant and et is white noise. This is a linear combination of past observations.

The differencing operation of order 1 and order 2 is given as:

y′t = yt − yt−1 (6.22)

y′′t = y′t − y′t−1 (6.23)

The determination of differencing can be made by statistical inference called unit root tests [5]. It should be noted

that this is another method for detrending time series data for the seasonal period analysis in Section 6.2.2.

The MA model of order q is given as:

yt = c+ et +θ1et−1 +θ2et−2 + · · ·+θqet−q (6.24)

This is a linear combination of past forecast errors.

Finally, seasonal ARIMA model can be written as [5]:

(1−φ1B−·· ·−φpBp)(1−Φ1Bm−·· ·−ΦPBPm)(1−B)d(1−Bm)Dyt

= c+(1+θ1B+ · · ·+θqBq)(1+Θ1Bm + · · ·+ΘQBQm)et

(6.25)
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where lower-case letters p, d, and q are orders for non-seasonal AR, integration, and MA models; upper-case letters P,

D, and Q are orders for seasonal AR, integration, and MA models; and m is a period.

In order to forecast future values based on a fitted ARIMA model, Equation (6.25) can be expanded so that only

yt will be shown on the left-hand side. By rewriting it as ŷt+h|t , a recursive expression can be solved for a forecast of

h ahead time.

Close observation for both ETS and ARIMA models reveals similarities. The ETS model starts identifying trend

and seasonality and the ARIMA model uses the differencing operation to remove trend and seasonality (i.e., station-

arity). The ETS then expresses a series using past level, trend and seasonality with exponentially decreasing weights

while the ARIMA expresses a series using past observations and forecast errors.

Automatic Modeling of ETS and ARIMA

As shown previously, the ETS and ARIMA require parameter estimation and model selection. Hyndman and Khan-

dakar [127] provided an automatic forecasting algorithm to handle a large number of univariate time series data. The

algorithm is implemented in R package forecast. This section briefly introduces the automatic forecasting algorithm

for the ETS and ARIMA models.

The automatic forecasting algorithm for the ETS models can be summarized as follows: 1) apply all 30 models

and optimize parameters of each model, 2) select the best model based on a penalized likelihood such as AIC and BIC,

and 3) forecast future values and obtain prediction intervals based on the selected model.

The automatic forecasting algorithm for the ARIMA can be summarized as follows: 1) apply four possible models

and select the best model based on a penalized likelihood, 2) apply 13 variations on the current model and repeat the

process if a better model can be identified based on a penalized likelihood, and 3) forecast future values and obtain

prediction intervals based on the selected model. Details of these algorithm can be found in the work of Hyndman and

Khandakar [127].

6.2.5 Predictive Life Cycle Assessment

The difference between predictive LCA and original LCA is to model the usage stage (with maintenance and end-of-

life stages) as a time series and to forecast future impact in a real time horizon. The total life cycle impact of a product

can be expressed as [1]:

Itotal = Im f g + Iusage + Imaint + Ieol (6.26)

where Im f g, Iusage, Imaint and Ieol represent the impact of manufacturing, usage, maintenance, and end-of-life stage. In
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the equation, a constant fuel (or energy) consumption rate in the usage stage and replacement cycles in the maintenance

stage are components that are dependent upon the expected lifespan. However, the time in Equation (6.26) is nominal,

e.g., 10 years instead of specifying a time horizon such as from October 2014 to December 2024.

Instead, Equation (6.27) gives the total environmental impact in a real time horizon:

l

∑
t=i

Itotal = Im f g +
l

∑
t=i

[Iusage
i + Imaint

i + Ieol ] (6.27)

where l is the expected life time starting from time i. The impact of manufacturing can be considered as a one-time

event while the impacts of usage, maintenance, and end-of-life are affected by time series usage information.

The impact of manufacturing is given as [1]:

Im f g = ∑
r

eraw
r Nr +∑

p
eprocess

p Np +∑
s

etrans
s Ns (6.28)

where eraw
r , eprocess

p , and etrans
s represent unit environmental impact of raw materials (r), manufacturing processes (p),

and transportation (s); Nr, Np, and Ns denote the number of units of raw materials, manufacturing processes, and

transportation.

The impacts of usage, maintenance, and end-of-life are given as:

l

∑
t=i

Iusage =
l

∑
t=i

I f uel
i +

l

∑
t=i

Iemission =
l

∑
t=i

e f uelN f t +∑
q

l

∑
t=i

eemission
q ERqOHt (6.29)

l

∑
t=i

Imaint = ∑
m

l

∑
t=i

emaint
m Nm

⌈
max(OHt −RCm,0)

RCm

⌉
(6.30)

l

∑
t=i

Ieol = eeol
used +∑

m

l

∑
t=i

eeol
replaceNm

⌈
max(OHt −RCm,0)

RCm

⌉
(6.31)

where I f uel and Iemission are the impacts of fuel production as in Equation (6.28) and emissions while running an equip-

ment; e f uel , eemission
q , emaint

m , eeol
used , and eeol

replace are the unit impacts of fuel, emissions, manufacturing of maintenance

part m as in Equation (6.28), and end-of-life processing of a used product and replaced part (m); N f t is the amount of

fuel consumed per liter; Nm denotes the number of units of part m (in a product); ERq is the emission rate of emissions

q in g/hr; OHt is the operating time in hours; RCm is the replacement cycle of part m in hours; d·e is the ceiling function.

The value of a ceiling function will give the number of replacements for part m. All the unit impacts can be obtained

from the ecoinvent database (version 2.2), which is available in the LCA software SimaPro. Note that this study only

considers energy-related impacts (e.g., fuel and electricity) of the usage stage. Other consumables are not considered,

e.g., coffee and water for coffee machines, paper and ink for printers, etc.

108



Section 6.2 described the proposed algorithm from data preprocessing to predictive LCA formulation. Note that

the algorithm starts from the available time-stamped data sets (top of Figure 6.4) and it is not discussed how many data

sets should be available for the algorithm. Empirical studies show that if the available data is not enough to identify

useful patterns (e.g., only a few data points), then the result from Section 6.2.4 is identical with the constant rate

method, which is smoothing by averaging available data points. Actually, the constant rate method can be considered

as a special case of the proposed time series analysis methods. In the next section, the proposed LCA formulation will

be elaborated with design problems.

6.3 Design Problems with PUMLCA

Two system design cases are considered in this study, which is shown in Figure 6.6. The first case, analysis for

sustainability, is when current machines need to be analyzed for sustainability. In this case, enough usage data is

available with manufacturing, maintenance and end-of-life data. Life cycle information includes all the information

from life cycle stages and the expected lifespan or target time horizon.

Manufacturing
data (BOM)

Usage data 
(Sensor)

Maintenance 
data EOL data

Usage model (PUMLCA)

Predictive LCA

Current machines

Manufacturing
data (BOM)

Usage data

Maintenance 
data

EOL data

New machines

Life cycle information

Analysis for sustainability

Design for sustainability

Environmental impact reduction target

Improvement
Ratio

Figure 6.6: Two system design cases for predictive LCA

The amount of fuel consumed, N f t , and operating hour, OHt , are the time series usage information. The fitted

models for N f t and OHt from ARIMA or ETS are T S
N f
ts and T SOH

ts with the number of segments s in Algorithm 2. For

example, T S
N f
ts can be either Equation (6.32) and (6.33), or Equation (6.34):
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N f ts = w(xt−1)+ r(xt−1)εt (6.32)

xt = f (xt−1)+g(xt−1)εt (6.33)

(1−φ1B−·· ·−φpBp)(1−Φ1Bm−·· ·−ΦPBPm)(1−B)d(1−Bm)DN f ts

= c+(1+θ1B+ · · ·+θqBq)(1+Θ1Bm + · · ·+ΘQBQm)et

(6.34)

The environmental impact of current machines can be predicted as follows based on Equation (6.28), (6.29), (6.30)

and (6.31):

Im f g = ∑
r

eraw
r Nr +∑

p
eprocess

p Np +∑
s

etrans
s Ns (6.35)

l

∑
t=i

Iusage =
l

∑
t=i

z

∑
s=1

e f uelT S
N f
ts +∑

q

l

∑
t=i

z

∑
s=1

eemission
q ERqT SOH

ts (6.36)

l

∑
t=i

Imaint = ∑
m

l

∑
t=i

z

∑
s=1

emaint
m Nm

⌈
max(T SOH

ts −RCm,0)
RCm

⌉
(6.37)

l

∑
t=i

Ieol = eeol
used +∑

m

l

∑
t=i

z

∑
s=1

eeol
replaceNm

⌈
max(T SOH

ts −RCm,0)
RCm

⌉
(6.38)

The second case, design for sustainability, is for the assessment of the new machines’ sustainability when the

target of environmental impact reduction should be applied to current machines due to new environmental regulations

and enforcement. In this case, it is assumed that the new machines are upgraded versions of current machines. For

example, new machines can improve the fuel efficiency with different materials or components. While these BOM (bill

of materials) changes might increase the environmental impact of the manufacturing stage, the efficient fuel usage can

reduce the environmental impact of the usage stage. As shown in Figure 6.6, the main difference between the current

machines and new machines is the availability of usage data (or usage model). The proposed method for the estimation

of usage information is to use the improvement ratio which is defined as follows:

δN f =
(N f /Wunit)new machine

(N f /Wunit)current machine
(6.39)

δOH =
(OH/Wunit)new machine

(OH/Wunit)current machine
(6.40)

where δN f is the improvement ratio for the amount of fuel consumption, δOH is the improvement ratio for the operating

hours, and Wunit is a unit of work. For example, if a new nutrient applicator can apply fertilizers with high precision
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and speed, these can be expressed as δN f and δOH with the work unit of the square meter (m2) from testing data. Then,

the sensor data of current nutrient applicators can be used with the δN f and δOH as follows for the environmental

impact of the new machine:

Im f g = ∑
r

eraw
r Nr +∑

p
eprocess

p Np +∑
s

etrans
s Ns (6.41)

l

∑
t=i

Iusage =
l

∑
t=i

z

∑
s=1

e f uel
δN f T S

N f
ts +∑

q

l

∑
t=i

z

∑
s=1

eemission
q ERqδOHT SOH

ts (6.42)

l

∑
t=i

Imaint = ∑
m

l

∑
t=i

z

∑
s=1

emaint
m Nm

⌈
max(δOHT SOH

ts −RCm,0)
RCm

⌉
(6.43)

l

∑
t=i

Ieol = eeol
used +∑

m

l

∑
t=i

z

∑
s=1

eeol
replaceNm

⌈
max(δOHT SOH

ts −RCm,0)
RCm

⌉
(6.44)

The LCA result from Equation (6.41), (6.42), (6.43) and (6.44) estimates the environmental impact of the new

machine. The result can also show whether the target of environmental impact reduction is satisfied. Otherwise, new

design strategy should be explored. Note that the two design cases can be viewed as phases of a single design case,

i.e., evaluation of current sustainability and redesign.

6.4 Numerical Prediction Tests for PUMLCA

In this section, a set of different data is tested to validate the prediction performance of PUMLCA. Due to the signifi-

cance of environmental impact from the usage stage in LCA, the prediction accuracy of a time series usage model will

play an important role for the estimation of environmental impact. The conventional method to model the usage stage

is the constant rate method, which is the average of observations. The hypotheses are 1) the PUMLCA algorithm can

provide a similar level of prediction accuracy to the constant rate method when data is constant with small random

errors (i.e., steady-state processes), hereinafter data 1, 2) the PUMLCA can predict future values more accurately

than the constant rate method when data has a trend, hereinafter data 2, 3) the automatic segmentation algorithm in

PUMLCA can help to improve the predictive modeling when data has a trend and segments, hereinafter data 3, and

4) the PUMLCA algorithm can provide higher prediction accuracy than the constant rate method when prediction is

required for specific periods within the whole prediction horizon.

Data sets (data 1, 2, 3) with monthly seasonal patterns were generated and the procedures are described in Section

4.1 for the hypotheses 1), 2) and 3). The three types of data sets were also used to test the hypothesis 4). In terms

of the target of prediction, this study proposes to use not only the aggregated life cycle values (accuracy) but also the

seasonal values of time series usage information (variance) because different time horizon scenarios can be tested. For
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example, monthly usage data is used to predict the next two-year values and the accumulated two-year values can be

used to assess the environmental impact of life cycle as an accuracy measure. If the environmental impact of next

quarter or specific periods within two years is required to be estimated, the accuracy of the predicted seasonal values

(i.e., monthly values) will determine the quality of the analysis, which can be considered a variance measure. This

is related to the fourth hypothesis. Therefore, the best model should provide good predictions of both values: high

accuracy (aggregated life cycle values) and low variance (seasonal values).

As a prediction performance measure, mean absolute percentage error (MAPE) and mean absolute error (MAE)

were used. Equation (6.45) and (6.46) show MAPE and MAE with the predicted values, b1, b2, · · · , bm and the real

values, d1, d2, · · · , dm. MAPE is scale-independent so that results from different data sets can be compared. However,

by design, if the actual values are close to zero, MAPE cannot be defined. In this case, the scale-dependent measure,

MAE, was used.

Mean Absolute Percentage Error =
100(| b1−d1

d1
|+ · · ·+ | bm−dm

dm
|)

m
(6.45)

Mean Absolute Error =
|b1−d1|+ · · ·+ |bm−dm|

m
(6.46)

Throughout the numerical tests, only positive values were accepted as valid values. Negative values were set to

zero. In order to handle non-negative data, one common method is the Box-Cox transformations [5], which includes

logarithms and power transformations. More theoretical discussions can be found in the literature [96].

6.4.1 Data generation

To test the first hypothesis, the following data generation procedure was applied: 1) a value from 100 to 1000 was

randomly chosen using a random number generator for each month, 2) by adding a random error between -5 and 5 for

each month, monthly data with seasonal patterns was generated for 16.5 years as shown in Table 6.1. This is data 1,

which does not contain a trend and segments.

For the second hypothesis, one more procedure was added from the procedure for data 1. After applying the first

and second steps, 50 (i.e., a trend) was added for the next year values as shown in Table 6.2 (e.g., the column of Jan.

increases by 50). This is data 2, which contains a trend.

For the third hypothesis, after applying the first and second steps from the procedure for data 1, 100 (i.e., a trend)

was added to the next year values. Then, eight consecutive monthly values starting from a random number were set

to small numbers σ (i.e., segments) throughout the years as shown in Table 6.3 (σ = 0 in this test), which represents

periods of no activity. This is data 3, which contains a trend and segments.
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Table 6.1: Sample of data 1

Year Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.
1 470 538 544 669 232 911 747 353 909 980 133 213
2 475 540 545 672 231 913 742 354 909 982 130 218
3 475 542 544 670 234 908 747 354 914 985 129 215
4 466 539 547 671 229 919 745 350 906 975 135 216
5 473 534 548 674 232 913 748 358 913 984 135 214
6 474 539 539 668 232 911 747 349 908 983 132 208
7 471 541 548 667 232 913 748 353 912 982 137 214
8 473 543 545 666 229 907 748 354 911 980 136 217
9 467 536 542 670 229 911 745 355 907 975 138 211

10 466 537 544 674 235 914 743 355 910 979 136 217
11 468 536 543 673 230 909 749 349 909 982 129 215
12 472 542 542 665 222 908 750 351 908 976 132 208
13 466 541 545 664 229 916 746 351 905 977 132 218
14 473 542 539 667 229 912 742 354 908 977 133 217
15 474 538 541 664 228 914 748 349 905 984 133 209
16 473 533 549 674 232 911 751 356 909 979 135 212
17 467 534 539 672 234 915

For each data, a total of 20 data sets were generated and tested. The first 7 years of data were used as training data

and the remaining 9.5 years of data were used as test data as shown in Figure 6.1.

6.4.2 Test results

The goal of this test is to construct a predictive model with the training data sets and predict future values (i.e., bm in

Equation (6.45) and (4.16)). The test data sets work as real values (i.e., dm in Equation (6.45) and (4.16)). Table 6.4

shows the results of the data sets (data 1, 2, 3) in Section 4.1.

First, for data 1 (data without a trend and segments), since the data sets are designed to be constant with some mild

randomness, the constant rate method showed good prediction performance for the accuracy measure. The PUMLCA

algorithm with both ETS (PUMLCA-ets) and ARIMA (PUMLCA-arima) also showed the similar level of accuracy

and there is no significant difference between the constant rate method and PUMLCA (Mann-Whitney test, α = 0.05,

p-value=0.95). For the variance measure, since the constant rate method took the average rate for each month, monthly

predictions of the constant rate method showed much lower accuracy than those of PUMLCA (Mann-Whitney test,

α = 0.05, p-value=0). This affects the prediction of the next quarter values (i.e., hypothesis 4) because lower monthly

errors can give higher chances to predict specific periods with accuracy. For the next quarter values, the PUMLCA

showed higher prediction accuracy (Mann-Whitney test, α = 0.05, p-value=0). Therefore, the PUMLCA algorithm

can provide accurate prediction capabilities for aggregated life cycle values (accuracy), seasonal values (variance) and

values for specific periods with data 1 in comparison to the constant rate method.

Second, for data 2 (data with a trend), the constant rate method showed poor prediction performance in terms

of the accuracy measure. On the other hand, the PUMLCA algorithm with both ETS and ARIMA showed good
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Table 6.2: Sample of data 2

Year Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.
1 975 872 965 976 799 449 681 169 399 728 614 725
2 1024 921 1010 1029 845 500 733 219 455 779 669 772
3 1077 973 1061 1070 893 549 786 271 502 828 713 823
4 1123 1022 1119 1129 940 605 832 312 549 872 765 871
5 1174 1077 1160 1179 991 659 885 365 600 928 813 923
6 1224 1117 1210 1224 1040 701 930 421 658 974 870 975
7 1273 1176 1268 1275 1095 751 978 462 698 1030 913 1025
8 1326 1220 1309 1325 1139 808 1029 522 751 1073 963 1079
9 1381 1271 1359 1379 1197 854 1078 567 805 1130 1011 1131

10 1427 1321 1419 1421 1248 899 1128 616 857 1179 1063 1181
11 1481 1367 1468 1472 1299 950 1180 671 900 1230 1117 1225
12 1526 1419 1515 1526 1340 1006 1229 712 953 1278 1162 1278
13 1575 1469 1561 1569 1393 1058 1278 769 1005 1328 1215 1328
14 1629 1527 1618 1625 1447 1099 1337 821 1056 1371 1268 1380
15 1677 1575 1667 1670 1495 1155 1378 872 1102 1420 1320 1423
16 1723 1623 1714 1722 1540 1209 1429 933 1153 1469 1372 1471
17 1770 1671 1760 1776 1592 1258

prediction accuracy. There is no significant difference found between the real values and the results of PUMLCA-

ets/arima (Mann-Whitney test, α = 0.05, p-value=0.29/0.78). For the variance measure, monthly predictions of the

constant rate method showed much lower accuracy than those of PUMLCA (Mann-Whitney test, α= 0.05, p-value=0).

This affects the prediction of the next quarter values. For the next quarter values, the PUMLCA showed higher

prediction accuracy (Mann-Whitney test, α = 0.05, p-value=0). Therefore, the PUMLCA algorithm can provide

accurate prediction capabilities for aggregated life cycle values (accuracy), seasonal values (variance) and values for

specific periods with data 2 in comparison to the constant rate method.

Third, for data 3 (data with a trend and segments), the constant rate method and the ETS method without the

automatic segmentation algorithm (ets-no seg) showed poor prediction performance in terms of the accuracy mea-

sure. On the other hand, the ARIMA method without the automatic segmentation algorithm (arimai-no seg) and

PUMLCA-ets/arima showed strong prediction accuracy. However, Table 6.5 zooms in their prediction performances

using MAE, and it can be seen that the errors from the ARIMA method without the automatic segmentation algorithm

were much higher than the those from the PUMLCA method. Due to the importance of the usage stage, the errors

from the ARIMA method without the automatic segmentation are not acceptable, and this shows that the automatic

segmentation algorithm can enhance the prediction result. Out of 20 samples, the PUMLCA-ets/arima showed the best

performance. For the next quarter values, the PUMLCA method with the automatic segmentation algorithm showed

higher prediction accuracy. Therefore, the proposed segmentation algorithm can improve the predictive model of

PUMLCA with data 3.

Overall, the PUMLCA method with the automatic segmentation algorithm provided better prediction performance

than the constant rate method for various data sets which are simulated from the observation of real data. This

prediction improvement of usage modeling will help to estimate the environmental impact of the product of interest
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Table 6.3: Sample of data 3

Year Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.
1 σ σ σ σ σ σ 155 129 643 313 σ σ

2 σ σ σ σ σ σ 257 233 746 409 σ σ

3 σ σ σ σ σ σ 355 333 848 518 σ σ

4 σ σ σ σ σ σ 452 429 944 610 σ σ

5 σ σ σ σ σ σ 558 525 1038 710 σ σ

6 σ σ σ σ σ σ 654 632 1141 813 σ σ

7 σ σ σ σ σ σ 752 734 1242 909 σ σ

8 σ σ σ σ σ σ 855 827 1344 1012 σ σ

9 σ σ σ σ σ σ 958 928 1445 1117 σ σ

10 σ σ σ σ σ σ 1053 1025 1542 1214 σ σ

11 σ σ σ σ σ σ 1160 1124 1643 1317 σ σ

12 σ σ σ σ σ σ 1253 1231 1743 1410 σ σ

13 σ σ σ σ σ σ 1354 1328 1839 1510 σ σ

14 σ σ σ σ σ σ 1450 1425 1943 1616 σ σ

15 σ σ σ σ σ σ 1553 1534 2044 1711 σ σ

16 σ σ σ σ σ σ 1656 1629 2143 1808 σ σ

17 σ σ σ σ σ σ

Table 6.4: Test results

Constant rate ets-no seg arima-no seg PUMLCA-ets PUMLCA-arima
data 1, average MAPE

Accuracy 0.75 0.08 0.14
Variance 65.58 0.76 0.79

Next quarter value 13.84 0.25 0.24
data 2, average MAPE

Accuracy 37.05 2.80 0.91
Variance 34.92 2.80 0.98

Next quarter value 22.06 0.74 0.29
data 3, average MAE

Accuracy 30736 24462 1612 166 154
Variance 636 313 225 2 2

Next quarter value 1979 1017 139 10 9

more accurately. The example of the LCA with PUMLCA will be provided in the next section. The PUMLCA method

could also provide prediction intervals while estimating a point forecast. For example, a point forecast of the next

month is 1344 with the 80% prediction interval of [1330, 1359]. The prediction interval can show the uncertainty of

time series usage models.

115



Table 6.5: MAEs over 20 data samples of data 3

1 2 3 4 5 6 7 8 9 10
arima-no seg 1870 3005 855 1478 2295 2382 592 2200 965 156
PUMLCA-ets 58 1061 64 48 311 292 17 237 101 34

PUMLCA-arima 145 1044 16 24 293 224 59 173 102 66
11 12 13 14 15 16 17 18 19 20

arima-no seg 558 865 1870 1464 829 2829 1170 2826 1971 2060
PUMLCA-ets 96 70 540 9 102 122 66 3 48 48

PUMLCA-arima 57 0 322 147 119 80 35 64 47 66

6.5 Illustrative Example: Agricultural Machinery Design

6.5.1 Background

In this section, the proposed algorithm, predictive usage mining for life cycle assessment (PUMLCA), is demonstrated

with a case study of agricultural machines: current and new machine. The machines have more than 15,000 parts

and weigh more than 20,000 kg. The current machine was updated to have a 10 % reduction of its environmental

impact based on an improved fuel efficiency. This updated machine is called the new machine. The goal is to estimate

the environmental impacts of the current and new machines in a real time horizon. Due to the data security issue,

simulated data is used based on the observation of real data. Table 6.6 and 6.7 show simulated seven-year monthly

data for fuel consumption and operating hours after preprocessing the raw sensor data.

Table 6.6: Monthly representation of fuel consumption (`) data

Year Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.
2007 9 0 0 0 0 0 0 2 600 3,400 5,000 250
2008 15 0 0 0 0 0 0 0 650 3,410 5,500 270
2009 17 0 0 0 0 0 0 0 660 3,450 5,550 280
2010 16 0 0 0 0 0 0 1 665 3,370 5,600 270
2011 14 0 0 0 0 0 0 1.5 660 3,430 5,650 275
2012 16 0 0 0 0 0 0 0 680 3,500 5,735 280
2013 17 0 0 0 0 0 0 2 700 3,570 5,800 285

In this case study, time series usage models from the historical sensor data will be utilized to calculate the environ-

mental impacts for up to 10 to 20 years. Since the first stage (i.e., data preprocessing in Section 6.2.1) of PUMLCA is

straightforward and simple, it was skipped in this section.

6.5.2 Seasonal Period Analysis

Instead of exploring all possible data representations (e.g., daily, weekly, quarterly, etc.), the focus was set on whether

the simulated data showed a monthly seasonality. The periodogram was plotted using Equation (6.7) with the condition
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Table 6.7: Monthly representation of operating hours (hr) data

Year Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.
2007 1 0 0 0 0 0 0 0.2 35.2 100.6 152.3 15.1
2008 1.8 0 0 0 0 0 0 0 37.1 101.6 158.1 16.3
2009 2 0 0 0 0 0 0 0 38 105.3 159.3 17.8
2010 1.9 0 0 0 0 0 0 0.1 38.3 97.6 160.1 16.5
2011 1.7 0 0 0 0 0 0 0.2 38 103.5 162.2 17
2012 1.9 0 0 0 0 0 0 0 39 110.3 164.3 17.9
2013 2 0 0 0 0 0 0 0.22 41 115.2 165.2 18.2

of frequency greater than zero. Figure (6.7) shows that the maximum periodogram value can be achieved at the

frequency of 0.0833 (i.e., period = 1/0.0833=12) for the fuel consumption data. Similarly, the operating hours data

also indicate a period of 12.

6.5.3 Segmentation Analysis

The automatic segmentation algorithm (Algorithm 2) was applied to the two data sets in Table 6.6 and 6.7. As a

penalty, the type I error of 0.05 was used for both data sets. First, for the fuel consumption data, a segment from

February to August was identified as a shared segment since the same change points were detected (1, 8, 9, 10, 11,

and 12 as seasonal time indexes) every year. Therefore, two segments were finally obtained, e.g., the shared segment

(February∼August) and the remaining segment (January, September∼December). Second, for the operating hours

data, the segment from January to August was identified as a shared segment. The same change points were detected

(8, 9, 10, 11, and 12 as seasonal time indexes) every year. Therefore, two segments were finally obtained.

6.5.4 Time Series Analysis

The automatic forecasting algorithm in Section 6.2.4 was applied to the original data sets (i.e., without segmentation)

and the results of the automatic segmentation in Section 6.5.3. Table 6.8 shows the results. For example, the original

fuel consumption data is fitted as a seasonal AR model with a seasonal differencing and a drift using ARIMA. The first

segment data (segment 1) shows a combination of seasonal AR and MA models without a drift. The second segment

data (segment 2) shows only a seasonal differencing operation with a drift. The original fuel consumption data is also

fitted as an additive error and seasonal component model using ETS. The first segment data shows an additive error and

seasonal component model again. The second segment data shows an additive trend, multiplicative error and seasonal

component model.

Table 6.9 shows the comparison of forecasts after 10 years (i.e., 2024) for fuel consumption data using the fitted

time series models in Table 6.8. The second column represents the usage of the automatic segmentation algorithm.
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Figure 6.7: Periodogram for fuel consumption

It can be observed that the automatic segmentation algorithm can distinguish low activity periods and help to capture

patterns more clearly.

6.5.5 Predictive LCA

LCA for Current Machine

The PUMLCA-ets models (with two segments) of fuel consumption, N f t , and operating hours, OHt , in Table 6.8 were

used as usage models of the agricultural machine. For predictive LCA, starting from January 2014, forecasts were built

up to December 2024 (i.e., 10 years) and up to December 2034 (i.e., 20 years). For environmental impact calculation,

Eco-Indicator 99 method (EI-99) [155] was used, which is one of widely used methods in LCA and provides a single

score (Point) from pre-defined damage categories such as human health, ecosystem quality, and resource.

In the manufacturing stage, the environmental impact was assumed as 12,000 Pt. In the usage stage, the density

of diesel fuel was assumed as 0.85 kg/liter and emission rates was given in Table 6.10. The idling and nonidling

ratio (20%/80%) was calculated using averages of seven-year operating hours by work modes. In the maintenance

stage, the assumptions on the replacement cycle of major parts and minor parts are as follows [1]: tires (3,000 hours),

transmission (3,000 hours), hydraulic components (3,000 hours), engine (5,000 hours), axles (5,000 hours), and minor

parts such as oils, greases, filters, etc. (specified cycle). In the end-of-life stage, the following assumptions were

made: steel (90% recycle and 10% landfill), iron (90% recycle and 10% landfill), and others (80% landfill and 20%

incineration).

Based on Equation (6.35), (6.36), (6.37) and (6.38), a predictive LCA result of the current machine in the real

time horizon (January 2014∼December 2034) was estimated as shown in Figure 6.8. The impact of the manufacturing
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Table 6.8: Results of time series analysis

ARIMA ETS

Fuel
consumption

data

Original (1−0.41B12)(1−B12)yt = 1.53+ et

yt = lt−1 + st−12
lt = lt−1 +0.06εt
st = st−12 +10−4εt

Segment 1
(Feb.∼Aug.) (1+0.28B7)(1−B7)yt = (1−0.28B4)et

yt = lt−1 + st−7
lt = lt−1 +0.001εt
st = st−7 +2 ·10−4εt

Segment 2
(Jan., Sept.∼Dec.) (1−B5)yt = 7.42+ et

yt = (lt−1 +bt−1)st−5
lt = (lt−1 +bt−1)(1+0.395εt)
bt = bt−1 +0.098(lt−1 +bt−1)εt
st = st−5(1+10−4εt)

Operating
hours data

Original (1−B12)yt = (1+0.21B)et

yt = lt−1 + st−12
lt = lt−1 +0.29εt
st = st−12 +3 ·10−4εt

Segment 1
(Jan.∼Aug.) (1−B8)yt = (1−0.67B)(1−0.64B8)et

yt = lt−1 + st−8
lt = lt−1 +10−4εt
st = st−8 +0.03εt

Segment 2
(Sept.∼Dec.) (1−B4)yt = 0.38+ et

yt = lt−1 + st−4
lt = lt−1 +0.12(lt−1 + st−4)εt
st = st−4 +0.88(lt−1 + st−4)εt

Table 6.9: Comparison of forecasts after 10 years for fuel consumption (`) data

Method Segmentation Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.
ARIMA No 189 171 171 171 171 171 171 175 885 3,790 6,016 460

PUMLCA-arima Yes 388 0 0 0 0 0 0 0.9 1,071 3,941 6,171 656
ETS No 45 41.4 36.4 40 34 29 50 41 695 3,473 5,564 310

PUMLCA-ets Yes 18.4 0 0 0 0 0 0 0.9 814 4,240 6,649 328

stage was the same regardless of time horizons since it is a one-time event. On the other hand, the impacts of the

usage, maintenance, and end-of-life stage were varied by time. Similar to previous LCA studies, the impact of the

usage stage accounted for the majority of the environmental impact. The impact of the maintenance stage showed a

big increase since major parts (engine and axles) were replaced after 10 years. It should be noted that the two usage

models (PUMLCA and constant rate method) were used for the usage stage in order to show the impact of prediction

accuracy in Section 6.4 (PUMLCA was also used for the maintenance and end-of-life stages). The data in this case

study was similar to the third hypothesis in Section 6.4 (i.e., data with increasing trend and segments) so that it can

be expected that the constant rate method would underestimate the impact (about 17,000 Pt over 20 years), which is

greater than the impact of the manufacturing stage. If the data is quite constant, a similar result between PUMLCA and

the constant rate method would be produced as seen in Section 6.4 (i.e., data without trend and segments, aggregated

life cycle values). Furthermore, the top of Figure 6.8 shows the 80% prediction intervals of the usage impact by

PUMLCA. Unlike the constant rate method, PUMLCA can provide the uncertainty of its predictive model.
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Table 6.10: Assumptions on emission rates (g/hr) [1]

Type Nonidling (80%) Idling (20%) Average
Nitrogen oxides (NOx) 372.73 143.16 326.82
Particulate matter (PM) 1.76 0.67 1.54
Carbon monoxide (CO) 23.84 9.16 20.9

Hydrocarbons (HC) 5.42 2.08 4.75
Sulfur dioxide (SO2) 0.99 0.43 0.89

Carbon dioxide (CO2) 150829.6 065427.83 133749.3

LCA for New Machine

New machines were assumed to be designed based on the current machines with the target of 10% reduction of

environmental impact over 20 years. It needs to utilize the usage data of the current machines with the improvement

ratio, δN f and δOH as shown in Figure 6.6. Similar to the current machine, predictive LCA was conducted starting from

January 2014 up to December 2024 (i.e., 10 years) and up to December 2034 (i.e., 20 years) with the EI-99 method.

In the manufacturing stage, the environmental impact was assumed to be increased to 14,500 Pt (20.8%) due to the

additional power sources. The other assumptions of the usage, maintenance and end-of-life stage were similar to the

current machine. The unit of work was the square meter (m2) and the performance test was conducted to compare the

new machine and the current machine. The improvement ratio for fuel consumption δN f was 0.8 and the improvement

ratio for operating hours δOH was 0.85.

Based on Equation (6.41), (6.42), (6.43) and (6.44), the predictive LCA result of the new machine in the real time

horizon (January 2014∼December 2034) was estimated as shown in Figure 6.9.

Table 6.11 shows the comparison of the two LCA results of the current and new machine. Although the impact

from the manufacturing stage was increased (20.8%) for the new machine, the total impact was reduced mainly from

the usage stage. It should be noted that the result depends on the lifespan of machines. 8.4% of environmental impact

reduction was expected for 10 years and 11.3% for 20 years, which satisfies the target of 10% reduction of environ-

mental impact over 20 years. Sensitivity analysis can be applied to find the minimum values of the improvement

ratio, δN f and δOH to satisfy the target. In conclusion, the proposed algorithm, PUMLCA, captured usage patterns

from large-scale sensor data with the automatic segmentation algorithm and time series analysis, and could assess

environmental impact of a complex system in a real time horizon.

Table 6.11: Comparison of current and new machines (EI-99, Pt)

Manufacturing Usage Maintenance End-of-life Total
10 yr. 20 yr. 10 yr. 20 yr. 10 yr. 20 yr. 10 yr. 20 yr. 10 yr. 20 yr.

Current machine 12,000 12,000 41,706 84,002 9,295 22,890 476 805 63,477 119,697
New machine 14,500 14,500 33,763 67,961 9,400 22,900 480 820 58,143 106,181
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Figure 6.8: Predictive LCA results for current machine

6.6 Conclusion

In this chapter, the predictive usage mining for life cycle assessment (PUMLCA) algorithm is proposed to model the

usage stage for the LCA of products. By defining usage patterns as trend, seasonality, and level from a time series

of usage information, predictive LCA can be conducted in a real time horizon, which can provide more accurate

results of LCA. Large-scale sensor data of product operation was analyzed to mine usage patterns and build a usage

model for LCA. The PUMLCA algorithm includes handling missing and abnormal values, seasonal period analysis,

segmentation analysis, time series analysis, and predictive LCA. In order to mine important usage patterns more

effectively from a time series, the automatic segmentation algorithm is developed based on change point analysis.

The prediction performance test results with various data sets showed that the predictive model from the PUMLCA

method can provide better prediction accuracy than the constant rate method. The automatic segmentation algorithm

magnified important patterns and helped to predict future values more accurately.

Two different design problems were formulated to incorporate the usage model from the PUMLCA method in pre-

dictive LCA. The case study of agricultural machinery showed how to apply the PUMLCA method for the predictive

LCA of complex systems. The environment impacts of both current machines and new machines could be estimated

and compared.
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Figure 6.9: Predictive LCA results for new machine

In the future, various data sets from different products can be tested with the PUMLCA algorithm. The current

model, which considers only a single type of machinery, can be extended to multiple types of machinery. In order

to perform LCA with multiple types of machinery, hierarchical time series modeling and forecasting may be helpful

[156].

The next chapter will briefly summarize all the chapters and discuss future research directions.
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Chapter 7

Closure

7.1 Summary

This dissertation discusses data analytics methods for better system design while considering the challenges of large-

scale data characterized by the four dimensions (volume, variety, velocity and veracity). Though the four dimensions

of large-scale data in the domain of system design cause distinctive challenges to design engineers, they also represent

new opportunities to improve various design decisions.

Predictive design analytics is proposed not only as a paradigm to motivate design engineers in the era of Big Data

but also as a framework to be applied in design problems. Economical life cycle design (Chapters 3 and 4) requires

the modeling of time-varying customer preferences. The demand trend mining (DTM) and continuous preference

trend mining (CPTM) algorithms are developed to serve this need. Product family design (Chapter 5) demands the

combination of data-driven and market-driven approaches to determine product family architectures. The predictive,

data-driven family design (PDPFD) algorithm is developed to find the optimal architecture design in the near future.

Sustainable design (Chapter 6) necessitates the modeling of product usage and forecasting. The predictive usage

mining for life cycle assessment (PUMLCA) algorithm is developed to provide a new usage model from sensor data,

which can estimate future environmental impacts of current and new machines. The benefits and effectiveness of

these predictive design analytics methods are demonstrated with electronic products, mechanical parts and complex

agricultural machines.

In addition to the contributions of the proposed models as design support systems, Figure 7.1 emphasizes the

contributions of them as data analytics. The proposed models are either extended from existing models or newly

developed. Furthermore, they provides good properties that other analytics models could not provide as shown in

Figure 7.1.

Though the proposed predictive design analytics in engineering system design shows some potential and opportu-

nities, there are more research areas to be explored. Apart from the design problems that are discussed in this disser-

tation, there are more interesting and challenging design problems that are yet to be explored. Tackling new design

problems and developing necessary data analytics methods would be the immediate future work of this dissertation.

123



Demand Trend Mining algorithm

• More flexible modeling is possible using automatic time series forecasting.

• Various levels of design attributes can be considered instead of fixing them.

• Utility is used as class variables in decision trees to model market shares.

Predictive Usage Mining for Life Cycle Assessment algorithm

• Time series usage models is proposed as a predictive model.

• Automatic segmentation algorithm is developed to handle segmented data.

• Predictive life cycle assessment is formulated with time series usage models.

• The uncertainty of environmental impact estimation is given as prediction intervals.

Continuous Preference Trend Mining algorithm

• Two different types of trends are detected from data.

• Geometric sampling is developed to sample historical data selectively.

• Trend embedded data is used to identify performance information of a constructed model.

• Over-fitting can be avoided with pruning and performance information.

• Unlike previous discrete trend mining algorithm, continuous variables are allowed.

Predictive, Data-driven Product Family Design algorithm

• A new market value prediction method is proposed as a predictive model.

• Prediction intervals are defined for lower and upper bounds of profit.

• k-means clustering is used for generating a set of interested clusters.

Figure 7.1: Contributions of data analytics methods in this dissertation

In addition to this, in the next section, two future research directions are suggested.

7.2 Future Work

7.2.1 Predictive Modeling

More theoretical foundations of predictive modeling can lead to the enhancement of predictive design analytics meth-

ods. Shmueli [157] discussed predictive modeling in comparison with explanatory modeling. The critical question

is how to quantify predictive power and predictive accuracy. Furthermore, multicollinearity should be properly ad-

dressed. The possible application would be predicting the quantity, quality and timing of product returns in economical

life cycle design 1. Note that this dissertation assumes special market environments such as take-back programs in

Chapter 3 or lease contracts in Chapter 4 instead of handling the issue with statistical models.

1The related work will be presented in [158].
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7.2.2 Big Data Analytics

Another future research direction is Big Data analytics. In this dissertation, only data volumes that one computer

can handle (but much larger than traditional data from a controlled environment) are utilized under the assumption

that proper preprocessing can be applied, and the data is related to the domain of engineering design. If the volumes

exceed the capability of one computer, parallel, distributed system can be built using the Hadoop framework. The

Hadoop framework provides modules such as distributed storage (Hadoop Distributed File System), parallel processing

(Hadoop MapReduce) and data mining library (Mahout). Furthermore, the efficiency of data analytics methods is a

challenge in Big Data. Data reduction techniques such as support vectors in support vector machines and principle

components in principle components analysis can be utilized to reduce the necessity of processing all data.
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[137] D.P. Rutherford and W.E. Wilhelm. Forecasting notebook computer price as a function of constituent features.
Comput. Ind. Eng., 37(4):823–845, December 1999.

[138] Philip DesAutels and Pierre Berthon. The PC (polluting computer): Forever a tragedy of the commons? The
Journal of Strategic Information Systems, 20(1):113–122, 2011.

[139] Wilbert E. Wilhelm, Purushothaman Damodaran, and Jingying Li. Prescribing the content and timing of product
upgrades. IIE Transactions, pages 647–664, 2003.

[140] P. Damodaran and W. E. Wilhelm. Branch-and-price approach for prescribing profitable feature upgrades.
International Journal of Production Research, 43(21):4539–4558, 2005.

[141] Minjung Kwak and Harrison Kim. Market positioning of remanufactured products with optimal planning for
part upgrades. Journal of Mechanical Design, 135(1):011007, 2013.

[142] J. MacQueen. Some methods for classification and analysis of multivariate observations. In L. M. Le Cam and
J. Neyman, editors, Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability -
Vol. 1, pages 281–297. University of California Press, Berkeley, CA, USA, 1967.

[143] Wei Sun, Junhui Wang, and Yixin Fang. Regularized k-means clustering of high-dimensional data and its
asymptotic consistency. Electron. J. Stat., 6:148–167, 2012.
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