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Abstract

The first principles study plays a very important role in developing new generation of materials, such

as organic semiconductors and long polymer chains, as well as understanding of physical properties of

nanoparticles , inorganic semiconductors and semiconductor alloys. In this work, we start from the Kohn-

Sham one-particle equation Schrödinger equation and solve it by expanding its eigenfunctions in terms of

the linear augmented-slater-type orbits(LASTO) under full potential with the exchange-correlation potential

functional given by meta-generalized gradient approximation(mGGA). Our theoretical results were compared

to WIEN2K’s, and good agreement was obtained. As the application, we apply TDDFT plus mGGA to

calculate optical spectra for bulk solids. The result shows good agreement with experimental data.

III-V ternary alloys AxB1−xC are promising materials for optoelectronic, high-speed electronic and

microwave applications, such as infrared emitting diodes and detectors, high electron mobility transistors,

heterojunction bipolar transistors, quantum-dot lasers, modulators and ultrafast switches. We adopted

the TDDFT theory and the cluster averaging method to compute the spectra of III-V ternary alloys with

arbitrary concentration x. We find great agreement between theoretical and experimental data. The success

of this method is mainly because that we approximate the transition matrix elements by the LDA p-matrix

elements via (mGGA) which contains the singularity of the type fXC,00(q) ∼ 1/q2 as q → 0. Thus, Our

studies provide some insight into the theoretical calculation of optical spectra of semiconductor alloys.
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Chapter 1

Introduction

The first principles study plays a very important role in developing new generation of materials, such

as organic semiconductors and long polymer chains, as well as understanding of physical properties of

nanoparticles, inorganic semiconductors and semiconductor alloys. Because of inorganic semiconductors,

the large scale integration becomes reality, and high-performance computer, smart phone and radio come

into people’s life. Nanoparticles are predicted to be the basis of another industrial revolution due to a wide

range of potential applications in biomedicine, cosmetics, food packaging, clothing, and so on. R. Lam

etc. [1] proved that nanodiamond based biomedical device could be used to deliver chemotherapy drugs to

cancer cells without the negative effects of current delivery agents. The potential devices including organic

light-emitting diodes [2,3], organic photovoltaic cells [4,5] and organic transistors [6,7] are the application of

fundamental properties of organic semiconductors. A common characteristic of above materials is that they

are complex many-body systems. The research of them has to take into account the interaction of particles

carefully and accurately. One can’t build simple models to explain them easily. Therefore, the development

of them requires accurate and efficient theoretical models using ab initio methods.

The difficulty in solving a many-body system is that the Schrodinger equation is hardly soluble. W. Kohn

etc. brought a breakthrough to this field when they developed the density functional theory(DFT) [8,9]. This

theory uses the charge density as the basic variable and minimizes the energy with respect to the density by

variational principle. It converts the many-body Schrodinger equation into a easy and soluble Kohn-Sham

equation with an effective potential, a summation of the external potential, the Hartree potential and the

exchange-correlation potential Vxc. To this extent, it’s a theoretically exact method to solve a ground state

problem if the form of Vxc is known. Unfortunately, the exchange-correlation potential doesn’t have an

analytic form, thus a good approximation must be used during the self-consistent solving of the Kohn-Sham

equation, like local density approximation(LDA) [9], generalized gradient approximation(GGA) [10–12] or

meta-generalized gradient approximation(mGGA) [13–17]. Besides this, this exact theory is just a ground

state theory. The eigenvalues gotten from it are not so accurate, except for the total ground state energy

is correct. Likewise, these values represent neither the genuine electron addition or subtraction energies nor
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the neutral excitation energies in the corresponding interacting many-body system, and their differences

are NOT excitation energies. However, physically meaningful quantities can be constructed based on the

Kohn-Sham eigenfunctions and eigenvalues by some advanced approaches, such as GW approximation [18],

time-dependent density functional theory(TDDFT) [19] and the Bethe-Salpeter equation(BSE) [20–26].

In this work, we pay our attention to the interaction of external electro-magnetic field with electron-hole

excitations in materials since they are very demanding in technological applications. As was mentioned

above, DFT doesn’t solve excitation states, so an advanced method is required to fulfill this job. Therefore,

we adopt time-dependent density functional theory to calculate excited states that we are interested in. The

Kohn-Sham eigenfunctions are expanded in terms of the linear augmented-slater-type orbits(LASTO) [27–30]

under full potential since LASTOmethod uses less number of basis functions than linearized augmented plane

waves (LAPW) method [32] so that it speeds up the computation and can be easily scaled to systems with

large number of particles without losing accuracy and efficiency significantly. For the exchange-correlation, F.

Tran and P. Blaha’s approximation [14] is used to do the self-consistent run to get the expansion coefficients

of eigenfunctions.

This dissertation is organized as follows. In Chapter 2, a brief introduction to DFT is given first. The

Vxc has to be approximated directly and indirectly in terms of the density and/or its derivatives. Since

DFT can’t solve excitation states, TDDFT is then explained in detail as a alternative. To compare the

computational results later, BSE is also introduced briefly in this chapter. To see the shortcoming of LDA,

the Kohn-Sham one-particle equation is solved under this approximation in Chapter 3. We also compare the

band structures of some materials to those computed by the commercial package WIEN2K [46] to show the

accuracy of our LASTO package. Then, in Chapter 4, we compute band structures using mGGA and see

the impressive improvement of band gaps. The comparison to WIEN2k is aslo done in this chapter. As the

application, we apply TDDFT under mGGA to bulk solids, semiconductors and alloys in Chapter 5 and 6.

We see that mGGA shows great advantages over LDA, like correct band gaps in alloys so that one doesn’t

need to use the expensive GW calculation and deal with the zone folding problem. The optical spectra here

support the application of mGGA. The Chapter 7 shows the application of BSE under mGGA, as a direct

comparison to TDDFT. The computational parameters and details are explained and listed in the latter

three chapters.
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Chapter 2

Time-Dependent Density Functional
Theory

To study optical properties of a novel material, it’s inevitable to solve the many-body Schrodinger

equation given by

[
− ~2

2me

∑
i

∇i + ĤHartree + Vext + Vcore

]
Ψ({r⃗i}) = EΨ({r⃗i}) , (2.1)

where

ĤHartree ≡
1

2

∑
i̸=j

e2

|r⃗i − r⃗j |
, Vext =

∑
i,I

ZIe
2

|r⃗i − R⃗I |
, (2.2)

and

Vcore = −
∑
I

~2

2MI
∇I +

1

2

∑
I ̸=J

ZIZJe
2

|R⃗I − R⃗J |
, (2.3)

for interacting electrons and nuclei. Here Ψ({r⃗i}) is the many-electron eigenfunction corresponding to the

eigenenergy E, where r⃗i is the combination of spatial and spin coordinators for electrons with mass me and

charge e, provided total N electrons, and the upper case variable R⃗I denotes the coordinators for nuclei

with mass MI and charge ZI . Due to the Born-Oppenheimer approximation [33], the nuclear kinetic energy

can be ignored. Therefore, the effect of the nuclei can be treated as a fixed external potential to electrons.

Obviously, this equation can’t be solved analytically due to the interaction of electrons. So a simple approach

is to approximate this potential as some effective potential, i.e., to use independent-electron approximation.

The first one to do so is D. R. Hartree [34] who thought that every electron moved in the average field

of other electrons and nuclei. This is the Hartree approximation. Thus, the Schrodinger equation can

be decoupled into a set of one-particle Schrodinger equation which is solvable. In this way, the many-

electron eigenfunction Ψ({r⃗i}) doesn’t obey the Fermi-Dirac statics. In 1930, Fock [35] developed Hartree

approximation by writing the wave function as a Slater determinant which satisfied the anti-symmetrization

required by the Fermi-Dirac statics. This is the so-called Hartree-Fock approximation. However, Hartree-
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Fock equations are hard to solve and can only be solved in some special cases, like the homogeneous electron

gas, and requires too much computational resource. Although independent-electron approximation is simple

and easy, it’s insufficient to describe the real electrons’ movement. Furthermore, both methods require to

describe the wave function Ψ({r⃗i}) precisely which is a demanding task in a many-body system.

In 1927, Thomas [36] and Fermi [37] proposed an alternative method which used the density of electrons

as the basic variable. They defined the total energy of a system approximately as a functional of the local

density at any given point, and didn’t consider exchange and correlation between electrons. The later was

revised by Dirac who added exchange, which also used the local approximation, to the functional. Although

this approximation is too crude and has only limited success in computational physics, it is a breakthrough to

solving the Schrodinger equation given above, and shows people how density functional theory(DFT) works.

In 1964, Hohenberg and Kohn [8] constructed the powerful density functional theory based on Thomas-Fermi

approximation. Now let’s take a look at this beautiful theory.

2.1 Density Functional Theory

Instead of using the many-body wave functions, density functional theory determines physical quantities,

like total energy, in terms of the exact ground state density based on two Hohenberg-Kohn theorems [8].

The first theorem states that there’s a one-to-one mapping between a given external potential Vext(r) and

the ground state electron density n0(r) for any interacting electrons system. This can be proved easily as

the following. Given an external potential of an interacting system, it’s Hamiltonian is given by

Ĥ = T̂ + Ûint(r) + V̂ext(r) , (2.4)

where T̂ is the kinetic energy operator and Uint includes all internal interaction and potential. Assume that

the ground state wave function is Ψ0 with corresponding eigenenergy E0. Then we have

E0 = ⟨Ψ0|Ĥ|Ψ0⟩ = ⟨Ψ0|T̂ + Uint(r)|Ψ0⟩+
∫
Vext(r)n0(r)dr . (2.5)

Now consider another external potential V ′
ext(r) which differs Vext(r) by only a constant. Assume it generates

the same ground state electron density n0(r). The corresponding Hamiltonian is similar to Ĥ given by

Ĥ ′ = T̂ + Uint(r) + V ′
ext(r) . (2.6)
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Since both external potentials are different, the Hamiltonian can’t be the same, i.e., the ground state Ψ′
0 of

Ĥ ′ is different from Ψ0. The corresponding eigenenergy E′
0 is of the form given by

E′
0 = ⟨Ψ′

0|Ĥ|Ψ′
0⟩ = ⟨Ψ′

0|T̂ + Uint(r)|Ψ′
0⟩+

∫
V ′
ext(r)n0(r)dr . (2.7)

Obviously, Ψ′
0 is not the ground state of Ĥ. According to the Rayleigh-Ritz minimal principle, we get

E0 < ⟨Ψ′
0|Ĥ|Ψ′

0⟩ = ⟨Ψ′
0|Ĥ ′|Ψ′

0⟩+
∫
[Vext(r)− V ′

ext(r)]n0(r)dr

= E′
0 +

∫
[Vext(r)− V ′

ext(r)]n0(r)dr . (2.8)

Similar analogous for the state Ψ0 leads to the inequality given by

E′
0 < E0 +

∫
[V ′

ext(r)− Vext(r)]n0(r)dr . (2.9)

Sum both sides of Eqs. (2.8) and (2.9) separately and obtain

E′
0 + E0 < E0 + E′

0 . (2.10)

The above contradiction shows that the first theorem is true.

The second theorem says that the total energy of a interacting electron system can be defined as a

functional of the density, and that the exact ground state density gives the global minimum of this functional

which is just the exact ground state energy. The former part of this theorem is easy to understand. The

total energy is the expectation value of the Hamiltonian in Eq. (2.4). Assume that its ground state is Ψ0

and the corresponding ground state density is n0(r). Then the total ground state energy is given by

E0 = ⟨Ψ0|Ĥ|Ψ0⟩ =
1

2

∫
|∇Ψ0|2dr+

∫
[Uint(r) + Vext(r)]n0(r)dr . (2.11)

Here the first term is the kinetic energy which is a functional of the wave function Ψ0 which, in turn, is a

functional of the density n0(r). We can see that other terms are also functional of the density. This tells that

the total energy is a functional of the density. Now let’s consider an arbitrary state Ψ which is different from

the ground state Ψ0, then the density n(r) must be different from n0(r). According to the Rayleigh-Ritz

minimal principle, we obtain

E0 < ⟨Ψ|Ĥ|Ψ⟩ = E . (2.12)
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Therefore the exact ground state energy minimizes the total energy functional and gives the ground state

wave function. Hohenberg and Kohn separated the long-range Coulomb interaction from Uint and wrote the

total energy in the form of functional given by

E0[n0(r)] = G[n0(r)] +
1

2

∫
n0(r)n0(r

′)

|r− r′|
drdr′ +

∫
Vext(r)n0(r)dr . (2.13)

where G[n0(r)] includes the kinetic energy, all internal interaction and potential energy except for the classic

Coulomb energy, and the second term is the classic Coulomb energy, also called Hartree energy.

Armed with Hohenberg-Kohn theorems, one still can’t solve the many-body Schrodinger equation easily

since it needs the knowledge of G[n0(r)] which isn’t easy to obtain. The advantage of these theorems is that

the density becomes the basic variable which requires less detail than the wave function, and that one can

write the Hamiltonian as a functional in terms of the density. In 1965, Kohn and Sham [9] reduced this

difficulty by their ansatz.

2.2 The Kohn-Sham Theory

In the Kohn-Sham theory [9], a non-interacting electrons system is chosen to have the same density n0(r)

and the effective potential, which includes the Hartree potential, the external potential and the exchange-

correlation potential, of the interacting electrons system. Firstly, the functional G[n0(r)] is written as

G[n0(r)] = T [n0(r)] + Exc[n0(r)] . (2.14)

where T [n0(r)] is the kinetic energy of the non-interacting electrons system and Exc[n0(r)] is the exchange-

correlation energy of the interacting system. Then the total energy functional can be rewritten as

E0[n0(r)] = T [n0(r)] +
1

2

∫
n0(r)n0(r

′)

|r− r′|
drdr′ +

∫
Vext(r)n0(r)dr+ Exc[n0(r)] . (2.15)

The stationary points of E0[n0(r)] give the equations which are satisfied by n0(r). Since the total number

of electrons is constant, the constraint on the variation is given by

n0(r) =

∫
δn0(r)dr . (2.16)
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Therefore, the density can be obtained by solving the one-particle Schrodinger equation

[
− ~2

2me
∇+ Veff (r)

]
ψi(r) = ϵiψi(r) , (2.17)

where

Veff (r) = HHartree(r) + Vxc(r) + Vext(r) , (2.18)

and the exchange-correlation potential

Vxc(r) =
δExc[n0(r)]

δn0(r)
. (2.19)

Here ψi(r) is called Kohn-Sham orbitals corresponding to eigenenergy ϵi. The density is constructed by

Kohn-Sham orbitals as

n0(r) =
N∑
i

|ψi(r)|2 , (2.20)

where N is the total number of electrons. Now one can theoretically solve all many-body problems through

solving the Kohn-Sham one-particle Schrodinger equation self-consistently as the flow chart in Fig. 2.1.

However, technically speaking , the exchange-correlation potential Vxc(r) needs more work before this self-

consistent job is done since the exact form of Vxc(r) is unknown. This will be explained in the next section.

2.3 The Exchange-Correlation Energy

An important part of the effective potential is the exchange-correlation potential Vxc which can be

constructed from the exchange-correlation energy, whose exact form remains unknown, by Eq. (2.19). Thus,

an appropriate approximation must be chosen for it. In general, people think that Exc is a functional in terms

of the density. For a system with slowly varying density, Exc(r) at a spacial position r can be approximated

as a function of the density at r. People call this approximation the local density approximation(LDA).

It can generate reliable results for electronic structure properties for many materials. However, serious

problems exist in it, for instance, underestimated band gaps compared to experiment for semiconductors

and insulators [38,39]. Based on LDA, people import the gradient of the density into the dependence of Exc,

that is, expanding Exc in terms of the density and the gradient of it |∇n|. This is the so called generalized-

gradient approximation(GGA). Although the GGA has notable improvement over LDA in many cases, it
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Figure 2.1: Flow chart describing the self-consistent procedure for solving the one-particle Kohn-Sham
equation.

also has the underestimated band gap problem. To improve the lower band gaps, the kinetic energy density

(and sometimes ∇2n) is adopted, in addition to the GGA ingredients, in the expansion of Exc. This extended

approximation is named meta-GGA(mGGA). Our current work mainly focuses on LDA and mGGA.

2.3.1 The Local Density Approximation

LDA is a very simple approximation which expands the exchange-correlation(XC) energy Exc(r) only in

terms of the density n(r) for a slowly varying density system, such as sp-bonded metals and molecules with

covalent and/or ionic bonding. For this kind of system, the XC energy is of the form given by

Exc(r) =

∫
n(r)εxc(r)dr , (2.21)

where εxc(r) is the exchange-correlation energy per particle of a uniform electron gas with the same density

n(r). Here the exchange energy per particle εx(r) has an analytical form, while the correlation energy per

particle εc(r) uses the approximation proposed by L. Hedin etc. [40]. It will be explained in section 3.2.
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Besides of the LDA by L. Hedin etc., people can also use the one proposed by S.H. Vosko etc. [41]. The

latter uses Pade approximant to interpolate the monte-carlo results for para- and ferro-magnetic limits of

Ceperley and Alder [42].

2.3.2 The meta-Generalized Gradient Approximation

To improve accuracy, meta-generalized gradient approximation(mGGA) expands the exchange-correlation

potential not only in terms of the density and the gradient of the density ∇nσ(r) but also in terms of the

kinetic energy density τ(r) and(or) ∇2nσ(r), so it is of the form given by

Exc =

∫
εxc(n(r), |∇n(r)|, τ(r),∇2nσ(r))dr , (2.22)

where τ(r) is the kinetic energy density. Here one can think that depending on the kinetic energy density is

an implicit way to expand in terms of the density since it can be constructed by the wavefunctions which,

in turn, is a functional of the density. This work uses the one proposed by Tran and Blaha(TB09) [14] to

solve the Kohn-Sham one particle equation (2.17) self-consistently. TB09 will be elaborated in section 4.1.

2.4 Time-Dependent Density Functional Theory

As was mentioned before, density functional theory is a ground state theory whose eigenvalues are not

accurate and their difference are NOT excitation energies, that is, the Kohn-Sham approach can’t properly

describe excitations. This problem can be solved by the time-dependent density functional theory(TDDFT).

Runge and Gross [19] proved that, for a fixed initial state, there existed a one-to-one mapping between

the time-dependent external potential and the time-dependent density. Firstly, they showed that two time-

dependent external potential, which differed by more than a time-dependent constant, generated different

time-dependent current densities. Then they proved that different time-dependent current densities corre-

spond to different time-dependent densities through the continuity equation.

Thus one can study a system by adding a weak perturbation to it, then measures the response of it to

the perturbation. This measurement yields excitonic information about electrons and holes, and about their

interaction, i.e., the electronic structure of the system. Theoretically, the information is contained in the

complex dielectric function εM (q, ω) via the response function χ given by

1

εM (q, ω)
= 1 +

4πe2

q2
χ00(q, ω) , (2.23)

9



where the response function χ can be built from the frequency-dependent, dynamical exchange-correlation(XC)

kernel fXC(r, r
′, t− t′) defined as

fXC(r, r
′, t− t′) =

δ2EXC [n]

δn(r, t)δn(r′, t′)
=
δVXC [n(r, t)]

δn(r′, t′)
, (2.24)

where VXC [n(r, t)] is the time-dependent XC potential which is a functional of the particle density n(r, t).

Therefore, the key quantity is the time-dependent XC potential VXC or its functional derivative, the XC

kernel fXC .

For the most general case, one doesn’t know whether there exists a scalar XC kernel fXC within linear

response theory. E.K.U. Gross et al. [53] derived a formal representation of fXC in terms of response

functions. Consider an unperturbed inhomogeneous interacting electronic system under the static external

potential vext(r). This is a static problem, so one can easily use DFT to compute the ground state density

n0(r). Then add a small perturbing potential v1(r, ω)e
−iωt to the system. The corresponding density

response n1(r, ω) is given by

n1(r, ω) =

∫
dr′χ(r, r′, ω)v1(r

′, ω). (2.25)

R. van Leeuwen [54] proved that there exists a non-interacting system which can reproduce a given inter-

acting evolution n(r, t), so one can reproduce the system above by a noninteracting electronic system under

an effective single-particle potential veff0 + veff1 . Here veff1 is defined by the equation

veff1 (r, ω) = v1(r, ω) +

∫
n1(r

′, ω)

r− r′
dr′ + v1XC(r, ω), (2.26)

where v1XC(r, ω) is the XC potential. Thus the response density can be calculated by

n1(r, ω) =

∫
dr′χKS(r, r

′, ω)veff1 (r′, ω), (2.27)

where χKS(r, r
′, ω) is the Kohn-Sham(KS) response function of the ground state of the noninteracting system

corresponding to veff1 . In the linear response theory, one seek a solution of the XC potential v1XC(r, ω) of

the form

v1XC(r, ω) =

∫
dr′fXC(r, r

′, ω)n1(r
′, ω). (2.28)

According to Eqs. (2.25), (2.26), (2.27) and (2.28), one can easily find that fXC is of the form [53]

fXC(r, r
′, ω) = χ−1

KS(r, r
′, ω)− χ−1(r, r′, ω)− e2

|r− r′|
, (2.29)
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where χ(r, r′, ω) is the longitudinal density response function and χKS(r, r
′, ω) is its single-particle Kohn-

Sham counterpart. The existence of the inverse of them is discussed by E. Runge et al and E.K.U. Gross [19].

Here χKS(r, r
′, ω) can be built by the KS orbitals. This will be discussed later.

The attraction of TDDFT is that it provides a powerful tool for studying excitations in these systems

which can’t be done within the ordinary static density functional theory(DFT). One key quantity in TDDFT

is the XC kernel fXC(r, r
′, t−t′) which includes all the many-body effects beyond the Hartree approximation.

In principle, excitonic effects and self-energy correction are exactly contained in the TDDFT equations if

the exact XC potential Vxc and kernel fxc are used [55]. Almost all calculations under TDDFT today use

an ”adiabatic local density approximation(ALDA)” [56] to evaluate VXC since the exact form of the XC

potential as a functional of the density remains unknown. It assumes that the time-dependent XC potential

has the functional form of the static local density approximation (LDA), only with a time-dependent density

V ALDA
XC (n(r, t)) =

d

dn
ϵhXC(n(r, t)) , (2.30)

where ϵhXC(n(r, t)) is the XC energy of the homogeneous electron gas of density n(r, t). One has to admit

that ALDA leads to many useful results. However, the XC potential has a memory(nonlocality in time),

i.e., VXC [n(r, t)], which depends on the density on the earlier times t′. The memory implies nonlocality

of the XC potential in space since a small volume element of the system located at r was situated at a

different position r′. Due to the nonlocality, the direct electron-hole interaction effects are only partially

described in finite systems, and in general still out of reach of todays TDDFT calculations for solids [55].

In 1994, Dobson found that results obtained from the use of LDA violate the so called harmonic potential

theorem (HPT) [57]. To conquer this problem, one has to adopt the adiabatic meta-generalized gradient

approximation expands(AMGGA) [58]. The XC energy within MGGA is written as

EXC =

∫
drϵXC [n(r),∇n(r), τ(r)] , (2.31)

where ϵXC is the XC energy density functional. Here Voorhis and Scuseria’s approximation(VS98) [15] is

used, so the functional doesn’t depend on the laplacian of the density. The second functional derivative of
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EXC gives,

fXC(r, r
′) =

∂2ϵXC

∂n2
(r)δ(r− r′)−

[
∇ ∂2ϵXC

∂n∂∇n

]
(r)δ(r− r′)−

[
∇i

∂2ϵXC

∂∇in∂∇jn

]
(r)∇jδ(r− r′)

+
∂2ϵXC

∂n∂τ
(r)

∂τ(r)

∂n(r′)
+
∂2ϵXC

∂n∂τ
(r′)

∂τ(r′)

∂n(r)
−∇∂2ϵXC

∂n∂τ
(r)

∂τ(r)

∂n(r′)
−∇′ ∂

2ϵXC

∂n∂τ
(r′)

∂τ(r′)

∂n(r)

+

∫
dr′′

∂2ϵXC

∂τ2
(r′′)

∂τ(r′′)

∂n(r)

∂τ(r′′)

∂n(r′)
+

∫
dr′′

∂ϵXC

∂τ
(r′′)

∂2τ(r′′)

∂n(r)∂n(r′)
. (2.32)

Ignoring those terms, which don’t have the singularity of the type fXC,00(q) ∼ 1/q2 as q → 0 in the reciprocal

space, in the above equation, one can obtain

fxcG,G′ ≈ −∂ϵxc
∂τ

χ−1
KS,s(G,G

′) , (2.33)

where

χKS(r, r
′) =

∑
ν,ν′,σ

fν − fν′

ϵν − ϵν′ + iη
ψ∗
ν,σ(r)ψν′,σ(r)ψ

∗
ν′,σ(r

′)ψν,σ(r
′) , (2.34)

and ψν,σ, ϵν and fν are KS wave functions, KS eigenenergies and occupation numbers with quantum numbers

ν and spin quantum number σ.

2.5 The Bethe-Salpeter Approach

One can also solve the excitonic effects by the Bethe-Salpeter approach [20–26]. The Bethe-Salpeter

approach(BSA), which is a Green’s-function-based many-body approach, solves the Bethe-Salpeter equation

for the irreducible vertex function Γ̃ given by

Γ̃(12, 3) = δ(1, 2)δ(1, 3) + iW (1, 2)

∫
d6

∫
d7G(1, 6)G(7, 2)Γ̃(67, 3), (2.35)

where G is the Green’s function and W (1, 2) =
∫
d3ε−1(1, 3)vee(3, 2) is the screened electron-electron inter-

action. Here vee is the bare Coulomb potential. Then, insert the vertex Γ̃ into the response function given

by

χ(1, 2) = χ̃(1, 2) +

∫
d3

∫
d4χ̃(1, 3)vee(3, 4)χ(4, 2), (2.36)

12



where the irreducible response function is given by

χ̃(1, 2) ≡ −i
∫
d3

∫
d4G(1, 3)G(4, 1)Γ̃(34, 2). (2.37)

Finally, one gets the response function (thus for ε) by the way described above. This approach interprets

correctly the excitonic effects for a wide range of materials. In 2002, P. Pusching et al. used the BSA to

calculate the excitonic effects. However, the BSA needs the GW correction, that they didn’t use, to generate

accurate result. Moreover,the GW correction is hard to implement. On the other hand, the BSA doesn’t

explain how vertex corrections and dynamical screening to be included consistently [55]. In addition to

these, BSA is a big time consumer during computation. For a big system, it takes more than one month to

finish. This work focuses on TDDFT which can reduce the time to several hours.
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Chapter 3

Solve the Kohn-Sham One-Particle
Equation with LDA

In general, a Schrodinger equation can be solved either directly or indirectly depending on the potential.

For simple potentials, like those of the simple harmonic oscillator, 1D infinite well and the hydrogen atom,

people can solve them easily and successfully. While for a complicated potential, like the Kohn-Sham’s

effective potential mentioned before, one has to expand the eigenfunctions in terms of a complete basis

set. The simplest basis set is the plane waves set with a big shortcoming that it requires huge number of

plane waves to describe the activities of electrons in the region around the atoms that demands very heavy

computational resources. So a modified model was proposed by Slater who thought that people should treat

the region around the atomic nuclei different from the region outside of it [59]. He used atomic-like functions

in this region while he still kept the plane waves outside. Based on this, Anderson proposed the linearized

augmented plane waves (LAPW) method [32]. This work uses the Linear augmented Slater-type orbital

method which was developed by Davenport et al. [27–30] based on Andersons linearized augmented plane

waves (LAPW) method but used Slater type orbitals in the interstitial region.

3.1 The Linear augmented Slater-type orbital method

In this method, a unit cell is divided into the muffin-tin region, the non-overlapping spheres around the

atoms, and the interstitial region, see Fig.3.1. The basis functions ψk,N (r) are chosen differently in these two

regions. In the interstitial region, basis functions are chosen to be the Slater-type orbitals(STO) centered at

site {Ri} given by [60]

ψk,N (r) =
1√
Nc

∑
i

eik·RiϕN (ri), (3.1)

where N is composite index of n,l,m, Nc is the number of atoms in the unit cell and

ϕN (ri) = rn−1
i e−ςriYL(r̂i). (3.2)
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Figure 3.1: The division of a 2D unit cell into the sphere region and the interstitial region, where the shaded
spheres are the sphere region where the atomic nuclei is located.

where L is the composite index of l,m and ri = r−Ri. The Fourier transform of the Slater-type orbital can

be computed analytically given by

ϕ̃N (q) =
4π(−i)lYL(q̂)

Vc

∫ ∞

0

drjl(qr)r
n+1e−ζnlr, (3.3)

where Vc is the volume of the unit cell and q = k + G, where G denotes a reciprocal lattice vector. The

parameter ζ controls the width of the orbital;large ζ gives more localized function than small ζ. STOs are

used because they decay exponentially as the distance from the nuclei and accurately describe the long-range

overlap between atoms compared to plane waves, see Fig. 3.2. While within the ith muffin-tin sphere, the

basis functions are linear combinations of atomic radial functions and spherical harmonics given by

ψk,N (r) =
1√
Nc

∑
Ñ

eik·Ri

[
AN,Ñ (k)ul(ri) +BN,Ñ (k)u̇l(ri)

]
YL(r̂i)

=
1√
Nc

∑
Ñ

eik·RiΛN,Ñ (ri)YL(r̂i) (3.4)
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Figure 3.2: Comparison of Slater type orbitals and Plane waves.For STOs, (n=1,l=0),(n=2,l=0) and
(n=3,l=0) waves are plotted.

where

ΛN,Ñ (ri) =
[
AN,Ñ (k)ul(ri) +BN,Ñ (k)u̇l(ri)

]
, (3.5)

and Ñ is a composite index for {̃i, l̃, m̃}. Here u’s are normalized within the spheres,

∫ Rs

0

r2u2l (r)dr = 1 , (3.6)

and ul and u̇l are orthogonal,

∫ Rs

0

r2ul(r)u̇ldr = 0 . (3.7)

According to the one-particle Kohn-Sham equation, they should satisfy the radial equations given by

hrul = ϵul

hru̇l = ϵu̇l + ul , (3.8)
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where hr is the scalar relativistic Hamiltonian,

hr = − ~2

2M

[
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2

]
− ~2

2M

1

2Mc2
dVeff
dr

d

dr
+ Veff , (3.9)

and u̇l is the derivative of ul with respect to ϵ. The effective mass is defined as M = m[1 + (ϵ− V )/2mc2].

A and B are coefficients to be determined by matching the wave functions and their derivatives inside the

spheres and in the interstitial region. Then the Kohn-Sham orbitals are expanded in terms of these basis

functions given by

Ψνk =
∑
N

Cνk(N)ψk,N (r) , (3.10)

where ν labels the Kohn-Sham eigenfunctions. Note that u̇l is adopted in the basis functions. In the

augmented plane wave(APW) method [31], the basis function is expanded in terms of only the atomic radial

function ul which depends on energy. Thus one has to guess a initial energy, followed by a self-consistent

run to get the true ul corresponding to the real energy. This costs a lot of computational source and time.

In 1975, Andersen [32] proved that the linear combination Φ(u, u̇) of ul, corresponding to a given arbitrary

but fixed energy Ea, and its energy derivative u̇l, matching continuously and differentiably onto the wave

functions in the interstitial region, gives energy E with error of order (E−Ea)
4 while the difference between

Φ(u, u̇) and the correct wave function ϕ(E) is order (E−Ea)
2. Therefore, this linear combination can reach

the correct wave function faster.

3.2 The Local Density Approximation

In LDA, the exchange energy per particle εx(r) has an analytical form given by

εx(r) = −3

4

(
3

2π

)2/3
1

rs
, (3.11)

where the density parameter rs is defined by

rs =

[
3

4πn(r)

]1/3
, (3.12)

while the correlation energy per particle εc(r) uses the approximation proposed by L. Hedin etc. [40] given

by

εc(r) = −C
[
(1 + x3) ln

(
1 +

1

x

)
+
x

2
− x2 − 1

3

]
, (3.13)
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where the coefficient C = 0.045 and x = rs/A with A = 21. Therefore the exchange potential is given by

vx(r) = −
(

3

2π

)2/3
1

rs
, (3.14)

while the correlation can be obtained by [39]

vc(r) = −C ln

(
1 +

1

x

)
. (3.15)

When to solve the Kohn-Sham one particle equation (2.17) self-consistently, Eqs. (3.14) and (3.15) will be

used to calculate the effective potential.

3.3 Computational parameters

Now we can compute the band structures for Si,Ge, GaAs, GaP, InAs and InP using LASTO with LDA.

All of them are zincblende structures with two atoms in the unit cell. The primitive vectors are chosen to

be

a1 = (0, 0.5, 0.5)a0,

a2 = (0.5, 0, 0.5)a0, (3.16)

a3 = (0.5, 0.5, 0)a0 ,

where a0 is the lattice constants(atomic units) at low temperature(0K), listed in Table 3.1. These values were

extrapolated at 0K, see Ref. [45]. For the position of the atoms in the unit cell, We put one atom at (0,0,0)a0,

Table 3.1: Lattice constants(atomic units)at low temperature(0K)

Si Ge GaAs InAs InP
10.23287 10.65617 10.65239 11.42151 11.06624

Table 3.2: Electron configuration(EC), the muffin tin radius and the atomic number(Z) of elements.

Si Ge Ga P As In
Z 14 32 31 15 33 49
EC [Ne]3s23p2 [Ar] 3d104s24p2 [Ar]3d104s24p1 [Ne]3s23p3 [Ar]3d104s24p3 [Kr]4d105s25p1

rs 2.215 2.3 2.306 2.242 2.425 2.52
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Table 3.3: Optimized ζ values

Si Ge
GaAs

Ga As

3s 1.23514 4s 2.315 4s 1.210614 4s 1.210614

3p 1.95005 4p 2.369 4p 1.513267 4p 1.513267

3d 1.57 3d 1.51 3d 1.913267 3d 1.613267

3s 0.945 4s 1.210 4s 1.815921 4s 1.815921

3p 1.26 4p 1.51 4p 2.269901 4p 2.269901

InAs InP
In As In P

5s 1.411365 4s 1.129092 5s 1.456675 3s 0.874005
5p 1.693638 4p 1.411365 5p 1.748010 3p 1.165340
4d 1.793638 3d 1.411365 4d 2.548010 3d 1.456675
5s 0.940910 4s 1.567818 5s 0.971117 3s 1.311008
5p 1.129092 4p 2.117048 5p 1.165340 3p 1.748010

and the other at (1/4,1/4,1/4)a0. To find the basis set, we need the outermost electron configuration for

atoms Si, Ge, Ga, As, P, In, see Table 3.2. From the table, we can determine the basis set for those elements,

that is, 3s and 3p for Si, 4s and 4p for Ge, 4s and 4p for Ga, 2s and 2p for P, 4s and 4p for As and 5s and 5p

for In. The ζ values for the STOs of the basis set by the rule that the first zeta values are given by (n+ l)/rs,

then adjust them by matching the band gaps to experimental results. Here n is the principal quantum

number, l is the orbital angular momentum quantum number and rs is the muffin tin radius. The optimized

ζ values are listed in Table 3.3. The special k points in the Brillouin-zone are generated by Monkhorst-Pack

special points scheme [61,62].

3.4 Computational results

Armed with above parameters, band structures and LDA dielectric functions are computed. The results

are compared to those calculated by WIEN2K [46] and experimental results.

3.4.1 Band structures

The LDA band structures of Si,Ge, GaAs, InAs and InP are plotted, see Figs.3.3,3.4,3.5,3.6,3.7. The band

gaps are listed in Table 3.4. We can see that both LASTO and WIEN2K generate similar band structures

although they use different basis set in the interstitial region. From the table, Si’s direct gap is lower than

the experimental direct gap. This confirms that LDA underestimates band gaps. Moreover, Ge’s direct gap

is 0ev, while the experiment gap is 0.74ev. The LDA’s gap for Ge is inconsistent with the fact that Ge is a
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Figure 3.3: The LDA band structure of Si

semiconductor.

Table 3.4: Comparison of LDA Band gaps of materials from LASTO, WIEN2K and experiment. Those
marked with * are direct band gap while those with ♭ are indirect band gap.

Si Ge GaAs InAs InP
LASTO 2.5476∗ 0.4978♭ 0.0304 0.3590 -0.7179 0.4057
WIEN2K 2.5326∗ 0.4594♭ -0.1116 0.3420 -0.4389 0.4870

Exp 3.34a∗ 1.17b♭ 0.898c∗ 1.5191d 0.4105e 1.4236f

a Reference [47] b Reference [48] c Reference [49] d Reference [50] e Reference [51] e Reference [52]
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Figure 3.4: The LDA band structure of Ge
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Figure 3.5: The LDA band structure of GaAs

21



-10

-5

0

5

EF

En
er
gy

(e
V)

W L X Z W K

(a) Computed by LASTO

-10

-5

0

5

EF

En
er
gy

(e
V)

W L X Z W K

(b) Computed by WIEN2K

Figure 3.6: The LDA band structure of InAs
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Figure 3.7: The LDA band structure of InP
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Chapter 4

Solve the Kohn-Sham One-Particle
Equation with MGGA

In the previous chapter, we solved the Kohn-Sham One-Particle Equation with LDA and confirmed that

LDA leaded to underestimated or even disappeared band gaps, like Si and Ge. This notorious problem can

be fixed by meta-generalized gradient approximation(mGGA). A better mGGA, used by most computational

package to do self-consistent computation, is the one proposed by Tran and Blaha(TB09) [14] which will

be elaborated in section 4.1. Then the implementation of TB09 will be explained in section 4.2. Band

structures and gaps calculated by LASTO with TB09 will be listed thereafter.

4.1 The meta-Generalized Gradient Approximation

In TB09, the exchange-correlation energy is expanded in terms of the density, the gradient of the density

nσ(r), the kinetic energy density and the laplacian of the density ∇2nσ(r), i.e.,

Exc =

∫
εxc(n(r), |∇n(r)|, τ(r),∇2nσ(r))dr . (4.1)

The exchange potential is written as

vTB
x,σ (r) = cvBR

x,σ (r) + (3c− 2)
1

π

√
5

12

√
τσ(r)

nσ(r)
, (4.2)

where the Becke-Roussel(BR) [43] potential vBR
x,σ is of the form given by

vBR
x,σ (r) = − 1

bσ(r)

[
1− exσ(r) − 1

2
xσ(r)e

xσ(r)

]
, (4.3)

the kinetic energy density is defined by

τσ(r) =

occp.∑
i,σ

|∇ψi,σ(r)|2 , (4.4)
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the parameter b is defined by

bσ(r) =
xσ(r)e

−xσ(r)

8πnσ(r)
, (4.5)

and the parameter c depends linearly on the square root of the average of |nσ(r)|/nσ(r) given by [14]

c = α+ β(
1

Ωcell

∫
cell

|∇nσ(r′)|
nσ(r′)

d3r′)1/2 , (4.6)

where the quantity Ωcell is the unit cell volume and α and β are two free parameters. Here the parameter

xσ(r) has to be solved self-consistently by [43]

xσ(r)e
−2xσ(r)/3

xσ(r)− 2
=

2

3
π2/3nσ(r)

5/3

Qσ(r)
, (4.7)

where

Qσ(r) =
1

6
∇2nσ(r)− 2γDσ(r) , (4.8)

and

Dσ(r) = τσ(r)−
1

4

(∇nσ(r)2)
nσ(r)

. (4.9)

The parameter γ = 0.8 is chosen to precisely recover the exchange potential of the uniform electron gas.

During the computation, the kinetic energy constructed by wave functions in Eq. (4.4) is a time consumer.

Instead of using this equation, people can compute the kinetic energy density by

τσ(r) =
1

2

occp.∑
i,σ

|∇ψi,σ(r)|2 =
∑
iσk

fiσkϵiσk|ψiσk(r)|2 − Veff(r)nσ(r) +
1
4∇

2nσ(r) , (4.10)

where fiσk is the occupation number. This can be derived based on the one particle Kohn-Sham equation

as the following.

∇2nσ(r) =

occp.∑
i,σ

[
ψi,σ(r)∇2ψ∗

i,σ(r) + ψ∗
i,σ(r)∇2ψi,σ(r) + 2|∇ψi,σ(r)|2

]
=

occp.∑
i,σ

[
4(Veff(r)− ϵiσk)ψi,σ(r)ψ

∗
i,σ(r) + 2|∇ψi,σ(r)|2

]
. (4.11)
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TB09 [14] is a very good approximation to produce accurate results well agreed with experiment for a

band of solids considered, such as wide band gap insulators, sp semiconductors, and strongly correlated 3d

transition-metal oxides. Please note that Tran and Blaha optimized α and β using WIEN2K [46] with the

mGGA by matching the band gap of Si to the experiment exactly whereas minimizing the mean absolute

relative error for band gaps of other materials. If one needs accurate band gap for other materials, α and β

must be readjusted to match the experiment. Please note that TB09 includes only the exchange part. For

the correlation part, we use the LDA correlation potential proposed by Pewdew and Wang [44].

4.2 Implementation of TB09

To calculate the exchange-correlation potential, we have to compute the gradient of the density nσ(r)

and the kinetic energy density τ(r) first. Since τ(r) depends on the laplacian of the density ∇2n(r), this

quantity should also be prepared for the calculation. In the interstitial region, LASTO package stores the

Fourier coefficients of the density n(r). Thus we can easily get the ∇n(r) and ∇2n(r) given by

∇n(r) = ∇
∑

n(G)eiG·r =
∑

[iGn(G)]eiG·r . (4.12)

∇2n(r) = ∇2
∑

n(G)eiG·r = −
∑

[|G|2n(G)]eiG·r, (4.13)

Inside the muffin tin spheres, LASTO package stores the density in a little complicated way which divides

Figure 4.1: The division of a 2D muffin tin sphere. The shaded region is the one with sphereical symmetry
while the unshaded region is the shell.

the sphere into a small sphere with spherical symmetry and the shell region between the small sphere and
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the muffin tin sphere, see Fig. 4.1. So the density in the small sphere is written as

n(r) = n00(r)Y00 , (4.14)

while in the shell region, the density

n(r) =
∑
l

ñl(r)Kl(r) =
∑
lm

ñl(r)clmYlm(r) =
∑
lm

nlm(r)Ylm(r) , (4.15)

where Kl(r) is the lattice harmonics which is of the form given by

Kl(r) =
∑
m

clmYlm(r) , (4.16)

and

nlm(r) ≡ clmñl . (4.17)

Therefore, ∇n(r) and ∇2n(r) in the muffin tin sphere can be calculated by the equation given below.

∇µnlm(r)Ylm(r̂) =
√

l+1
2l+3C(l, 1, l + 1|m,µ,m+ µ)Yl+1m+µ(r̂)

(
d
dr − l

r

)
nlm(r)

−
√

l
2l−1C(l, 1, l − 1|m,µ,m+ µ)Yl−1,m+µ(r̂)

(
d
dr + l+1

r

)
nlm(r) , (4.18)

where µ = −1, 0,+1, the gradient of the coefficient nlm(r) is given by

(
d

dr
− l

r

)
nlm(r) = Bi,L(u

′ − l

r
u) +Ai,L(u̇

′ − l

r
u̇)(

d

dr
+
l + 1

r

)
nlm(r) = Bi,L(u

′ +
l + 1

r
u) +Ai,L(u̇

′ +
l + 1

r
u̇) , (4.19)

and the coefficient C is the Clebsch-Gordan coefficient defined by,

C(J1J2J3|m1m2m3) = (−1)J1−J2+m3
√
2J3 + 1

J1 J2 J3

m1 m2 −m3

 , (4.20)
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where  j1 j2 j3

m1 m2 m3

 =

(−1)j1+j2+m3

√
(j1 +m1)! (j2 +m2)! (j3 +m3)! (j3 −m3)! (j1 −m1)! (j2 −m2)!

(j2 − j1 + j3)! (j1 − j2 + j3)! (j1 + j2 − j3)! (1 + j1 + j2 + j3)!

∑
k

(−1)k

(j2 − j1 + j3)! (j1 − j2 + j3)! (j1 + j2 − j3)!

(j3 − j1 −m2 + k)! (j3 − j2 +m1 + k)! (j1 + j2 − j3 − k)! k! (j1 −m1 − k)! (j2 +m2 − k)!
.

Here B and A are expansion coefficients of the eigenfunctions of the Hamiltonian in the muffin-tin sphere,

defined in section 3.1. The gradient operator ∇µ is defined in terms of the spherical unit vectors êµ:

ê+1 = − x̂+ iŷ√
2

, ê0 = ẑ, ê−1 =
x̂− iŷ√

2
, (4.21)

i.e.,

∇+1 = −∂x + i∂y√
2

, ∇0 = ∂z, ∇−1 =
∂x − i∂y√

2
. (4.22)

The laplacian ∇2n(r) in the muffin tin sphere is given by

∇2ρ(r) =
∑
l

{[ ∂
2

∂r2
+

2

r

∂

∂r
]ρ̃l(r)−

l(l + 1)

r2
ρ̃l(r)}Kl(r̂)

=
∑
lm

{[ ∂
2

∂r2
+

2

r

∂

∂r
]ρ̃l(r)−

l(l + 1)

r2
ρ̃l(r)}clmYlm(r) , (4.23)

where Kl(r̂) is a eigenfunction of ∇2 since

∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
[

1

sin2ϕ

∂2

∂θ2
+
cosϕ

sinϕ

∂

∂ϕ
+

∂2

∂ϕ2
] , (4.24)

and

[
1

sin2ϕ

∂2

∂θ2
+
cosϕ

sinϕ

∂

∂ϕ
+

∂2

∂ϕ2
+ l(l + 1)]Ylm = 0 . (4.25)

Please note that LASTO package usually stores y = r2ρ̃l(r). When to calculate the laplacian ∇2n(r), one

has to use the following equations.

∂

∂r
ρ̃l(r) =

1

r3
(
∂y

∂x
− 2y)

∂2

∂r2
ρ̃l(r) =

1

r
[(
∂2y

∂x2
− 4y)

1

r3
− 5

∂

∂r
ρ̃l(r)] . (4.26)
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The kinetic energy density is usually defined as |
∑

lm ∇s
µΛlm(r)Ylm(r̂)|2/2. However, it is a time consumer

to use the definition to construct it directly. Instead of using this definition, one can use Eq. (4.10) to

compute the kinetic density.

4.3 Computational parameters

Now Let’s compute the band structures for Si,Ge, GaAs, GaP, InAs and InP using LASTO with mGGA.

Those parameters in section 3.3, like primitive vectors, basis set, ζ values and k-points, will be used here.

Besides of these parameters, one very important parameter is the constant c defined by Eq. (4.6). Here

the free parameters α and β will use the same values, -0.012 and 1.023, optimized by Tran and Blaha in

Reference [14]. The c’s used in LASTO for these bulk materials are listed in Table 4.1.

Table 4.1: Lattice constants c for bulk solids

Si Ge GaAs GaP InAs InP
10.65617 10.23287 10.65595 10.2741 11.42533 11.06994

4.4 Compare data with WIEN2K

In this section, we compare the density, the gradient of the density, the laplacian of the density and the

kinetic energy density for Si between LASTO and WIEN2K. Our package uses the LASTO method, while

WIEN2K uses the LAPW method. Both methods divide the unit cell in the same way: a spherical region

and a interstitial region. Let’s compare those quantities from both packages in the spherical region first.

In the spherical region, datum are stored in terms of the spherical harmonics. The angles are generated by

Gaussian quadrature rule, while the radius uses a homogeneous log mesh given by

ri = r0e
(i−1)∆x , (4.27)

where i = 1...Nr when Nr of r mesh is used to describe the radial function in the muffin tin(MT) sphere.

Here r0 is determined by the MT radius rs and Nr with the condition rs = r0 exp[(Nr−1)∆x]. To compare,

one specific space angle should be specified. Here we use the first space angle, generated by WIEN2K, with

θ = 0.05754rad and ϕ = 0.16554rad. The number of r mesh Nr = 431 is used. The datum generated by

both packages are plotted in Figs. 4.2, 4.3, 4.4 and 4.5. We can see that both packages generated the
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Figure 4.2: Comparison of the density computed by LASTO and WIEN2K
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Figure 4.3: Comparison of the gradient of the density computed by LASTO and WIEN2K
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Figure 4.5: Comparison of the kinetic energy density computed by LASTO and WIEN2K

30



same densities and the same kinetic energy densities. Of course, other quantities related only to the density

should also be the same. This is for sure since both packages uses the same basis set in the MT sphere.

The interstitial region uses a homogeneous 32×32×32 cubic mesh with basis vectors defined by Eq. (3.16)

for Si. It’s better to plot 3D figure for this region. Please note that the density is constructed by the STO’s

in the full unit cell, so those points reside in the MT spheres are included. To exclude them, we adopt the

step function

Θ(r) =

 1, if |ri −Rα| > rs;

0, elsewhere.
, (4.28)

to do this job. Here Rα are the position vectors of the atoms with α up to the second neighbors of the unit

cell, and ri are position vectors of the points of the cubic mesh. When we plot, we choose those datum at

z = 9, i.e., at xy-plane only. Let’s first take a look at what the step function looks like in this plane, see

Fig. 4.6. Here a 64× 64 mesh points are plotted. We can see that there’re two big holes in the center which

Figure 4.6: Plot the step function in real space

is because of the Si atom sitting at (0,0,0)a0 and its neighbor. The bites on the edge of the figure come
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(a) Computed by LASTO (b) Computed by WIEN2K

Figure 4.7: Plot the density of Si in the interstitial region

(a) Computed by LASTO (b) Computed by WIEN2K

Figure 4.8: Plot the gradient of the density of Si in the interstitial region

(a) Computed by LASTO (b) Computed by WIEN2K

Figure 4.9: Plot the laplacian of the density of Si in the interstitial region

from the atoms sitting at(1/4,1/4,1/4)a0 and its neighbor. Then let’s compare the density, the gradient

of the density, the laplacian of the density and the kinetic energy density from LASTO and WIEN2K in

the interstitial region, see Figs. 4.7, 4.8, 4.9 and 4.10. We can see that both packages generated similar
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(a) Computed by LASTO (b) Computed by WIEN2K

Figure 4.10: Plot the kinetic energy density of Si in the interstitial region

quantities in this region with a little difference on the values.

4.5 Computational results

With MGGA, LASTO can generate good band structures with correct band gap compared to experi-

mental results for solids. We can check this for Si,Ge, GaAs, GaP, InAs and InP, and compare the band

structures to those computed by WIEN2K, see Figs.4.11,4.12,4.13,4.14,4.15.The band gaps are listed in Ta-

ble 4.2. We can see that both LASTO and WIEN2K generate similar band structures although they use

different basis set in the interstitial region. From the table, we can confirm that MGGA can fix the band

gap errors caused by LDA.

Table 4.2: Comparison of mGGA Band gaps of materials from LASTO, WIEN2K and experiment.Those
marked with * are direct band gap while those with ♭ are indirect band gap.

Si Ge GaAs InAs InP
LASTO 3.0186∗ 1.170♭ 1.054∗ 0.8122♭ 1.6643 0.4268 1.6497
WIEN2K 3.0987∗ 1.1262♭ 1.11∗ 0.8823♭ 1.7002 0.696 1.6365

Exp 3.34a∗ 1.17b♭ 0.898c∗ 0.744c♭ 1.5191d 0.4105e 1.4236f

a Reference [47] b Reference [48] c Reference [49] d Reference [50] e Reference [51] e Reference [52]
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Figure 4.11: The MGGA band structure of Si
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Figure 4.12: The MGGA band structure of Ge
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Figure 4.13: The MGGA band structure of GaAs
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Figure 4.14: The MGGA band structure of InAs
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Figure 4.15: The MGGA band structure of InP
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Chapter 5

Optical properties of Solids with
MGGA

In that Kohn-Sham eigenvalues can’t represent either the genuine electron addition/subtraction energies

or the neutral excitation energies for a interacting many-body system, and their differences are NOT excita-

tion energies, people alternatively use the dielectric function whose poles are located at the exact excitation

energies and which can be constructed by Kohn-Sham eigenfunctions and eigenvalues through Eq. (2.23),

(2.29), (2.33) and (2.34). The optical spectra of Si,Ge, GaAs, InAs and InP and other materials were calcu-

lated by different methods, like the pseudopotential method [63,64], projector-augmented-wave method [65]

and the LAPW method [66]. These results have peaks neither at the correct excitation energies nor with

correct strength. It is primarily due to the failure of the independent-particle approximation. However,

the XC potential has a memory(nonlocality in time), i.e., VXC [n(r, t)], which depends on the density on

the earlier times t′. The memory implies nonlocality of the XC potential in space since a small volume

element of the system located at r was situated at a different position r′. Due to the nonlocality, the direct

electron-hole interaction effects are only partially described in finite systems, and in general still out of reach

of todays calculations utilizing LDA for solids [55]. In 1994, Dobson found that results obtained from the use

of LDA violate the so called harmonic potential theorem (HPT) [57]. A good news is that it has been shown

that the inclusion of electron-hole interactions via the time-dependent density functional theory(TDDFT)

significantly improves the optical spectra [58].

In this chapter, we first explain how to compute the dielectric function in one-electron picture and

including electron-hole interactions effects via TDDFT in the reciprocal space. The implementation of

the dielectric function based on the LASTO basis set is shown next. Then, computational details, the

convergence tests and results are discussed.

5.1 MGGA dielectric function in Reciprocal space

Now we can start the calculation of the dielectric function for bulk systems. To facilitate the computation,

it’s better to do the calculation in the reciprocal space to take advantage of the translational invariance in

37



bulk systems. We know that fXC has a singularity at G = 0 or G′ = 0 when q → 0. To avoid this problem

during calculation, define a new quantity given by

YG,G′(ω) = δG,G′ +
1

4πe2
lim
q→0

fxcG,G′(q) | G+ q || G′ + q |, (5.1)

where fxcG,G′ can be calculated by χKS
G,G′ given by [58]

fxcG,G′ ≈ −∂ϵxc
∂τ

χ−1
KS,s(G,G

′) . (5.2)

Do the same thing to the scalar KS response function, then another new quantity is defined by

XG,G′(ω) = lim
q→0

4πe2χKS
G,G′(q, ω)

| G+ q || G′ + q |
. (5.3)

Here

χKS
G,G′(q, ω) =

∑
ν,ν′,σ

fν,k − fν′,k+q

ω − ϵν′,k + ϵν,k + iη
UG,G′ , (5.4)

where

UG,G′ ≡ ⟨Ψν,σ,k(r) | e−i(G+q)·r | Ψν′,σ,k(r)⟩⟨Ψν′,σ,k(r
′) | ei(G

′+q)·r | Ψν,σ,k(r
′)⟩ , (5.5)

and ψν,σ, ϵν and fν are KS wave functions, KS eigenenergies and occupation numbers with quantum numbers

ν and spin quantum number σ. Therefore, the dielectric function can be calculated by the equation below,

εM (ω) =
1

1 + {[X−1(ω)− Y (ω)]−1}0,0
. (5.6)

This equation can be derived by inserting the above defined quantities into Eq. (2.23) and

χ−1 = χ−1
KS − (C + fXC) , (5.7)

where C is given by

CG,G′(q) =
4π

| G+ q |2
δG,G′ . (5.8)
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Here we need to consider several special cases with G = 0 and/or G′ = 0. When G = 0 and G′ = 0,

X0,0(ω) = lim
q→0

4πe2χ̂KS
0,0 (q, ω)

|q2|
(5.9)

= lim
q→0

∑
νν′σ

4πe2(fν − fν′)⟨Ψνσk(r) | e−iq·r | Ψν′σk(r)⟩⟨Ψν′σk(r
′) | eiq·r′ | Ψνσk(r

′)⟩
(ω − ϵν′,k+q + ϵν,k + iη)|q2|

= lim
q→0

∑
νν′σ

4πe2(fν − fν′)⟨Ψνσk(r) | vi | Ψν′σk(r)⟩⟨Ψν′σk(r
′) | v′

i | Ψνσk(r
′)⟩

(ω − ϵν′,k+q + ϵν,k + iη)(ϵν′,k+q − ϵν,k)2
,

according to the identity

⟨νk | e−iq·r | ν′k⟩ = 1

ϵQP
ν′,k − ϵQP

ν,k

⟨νk | q · v | ν′k⟩QP . (5.10)

Here i = x, y, z. The wave number q is of the magnitude of that of visible light. In general, q ∼ 1/500nm

and the Brillouin zone is of size around 1/0.5nm, so q can be 0.001 · 2π/a where a is the lattice constant.

Please note that the optical transition matrix(OTM) elements in the right-hand side of the identity (7.17)

can’t be calculated directly. Alternatively, as mentioned by Rohlfing and Louie [64], one can evaluate the

transition matrix elements by

q⟨νk | êi · v | ν′k⟩QP = (ϵQP
ck − ϵQP

νk )⟨νk | e−iqêi·r | ν′,k+ q⟩ , (5.11)

A little trouble is that one has to calculate the wave functions explicitly at the shifted wave vectors k+ qei.

Here three directions of the photon momentum q has to be considered to include the angular dependence.

On the other hand, we found the mGGA Vxc distorted the KS eigenfunctions so that it affected the

evaluation of the optical transition matrix elements. Therefore, we present a new method to calculate the

OTM elements. Similar to the discussion by Rohlfing and Louie, we approximate the OTM elements under

mGGA by

⟨νk | v | ν′k⟩QP =
EQP

ν′k − EQP
νk

ELDA
ν′k − ELDA

νk

⟨νk | v | ν′k⟩LDA , (5.12)

since the calculation of KS eigenfunctions under LDA is very stable and, theoretically speaking, mGGA only

modifies the band structure to generate correct band gap instead of the p-matrix. One problem arises from

the above equation for the materials with zero band gap or negative band gap. We might set a energy cut

around 0.5eV since the experiment mostly measures excitation spectra above 1eV . During the calculation

of spectra, mGGA eigenenergies are still used since they are correct QP energies. Similarly, When G = 0
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and G′ ̸= 0,

X0,G′(ω) = [XG,0(ω)]
∗ = lim

q→0

4πe2χ̂KS
0,G′(q, ω)

|q||G′ + q|
(5.13)

= lim
q→0

∑
ν,ν′,σ

4πe2(fν − fν′)⟨Ψν,σ,k(r) | e−iq·r | Ψν′,σ,k(r)⟩⟨Ψν′,σ,k(r
′) | ei(G′+q)·r′ | Ψν,σ,k(r

′)⟩
(ω − ϵν′,k+q + ϵν,k + iη)|q||G′ + q|

= lim
q→0

∑
ν,ν′,σ

4πe2(fν − fν′)⟨Ψν,σ,k(r) | qêi · v | Ψν′,σ,k(r)⟩⟨Ψν′,σ,k(r
′) | ei(G′+q)·r′ | Ψν,σ,k(r

′)⟩
(ω − ϵν′,k+q + ϵν,k + iη)(ϵν′,k+q − ϵν,k)|G′ + q|

5.2 The derivative of Exc with respect to the kinetic energy

density

An important quantity in Eq. (5.2) is the derivative of Exc with respect to the kinetic energy density ∂ϵxc

∂τ .

Since the TB09 doesn’t provides an approximation for Exc, other mGGA should be adopted to do this job.

Voorhis and Scuseria’s approximation(VS98) [15] was reported to be a good one to do the derivative [58], so

we’re going to use it in this work.

5.2.1 Implementation of VSxc

VS98 [15] have developed a new exchange-correlation functional based on the density matrix expan-

sion(DME). In this approximation, both the exchange energy and the correlation energy used the same

general form,derived from DME, for the nonlocal part, while they take that of the uniform electron gas as

the local part. The exchange energy functional is given by

ex = ρ4/3
[

a

γ(x, z)
+
bx2 + cz

γ2(x, z)
+
dx4 + ex2z + fz2

γ3(x, z)

]
≡ ρ4/3f(x, z) , (5.14)

where

f(x, z) ≡ a

γ(x, z)
+
bx2 + cz

γ2(x, z)
+
dx4 + ex2z + fz2

γ3(x, z)
, (5.15)

γ(x, z) = 1 + α(x2 + z) , (5.16)

with x and z defined by

x =
|∇ρ|
ρ4/3

, z =
τ

ρ5/3
− CF . (5.17)
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Here CF is the Fermi constant given by

CF =
3

5
(3π2)2/3 .

and a, b, c, d, e, f and α are some constants(see table I in Ref. [15]). For the spin-polarized case, ex is given

by

ex(ρσ) = ρ4/3σ

[
a

γ(xσ, zσ)
+
bx2σ + czσ
γ2(xσ, zσ)

+
dx4σ + ex2σzσ + fz2σ

γ3(xσ, zσ)

]
. (5.18)

where xσ and zσ have the same form as x and z but evaluated at ρσ. The same-spin and opposite-spin

correlation functionals are given by

eσσc = ρf(xσ, zσ)Dσe
LDA
cσσ , (5.19)

and

eσσ
′

c (ρσ, ρσ′) = ρf(x, z)eLDA
cσσ′ , (5.20)

where

x2 ≡ x2↑ + x2↓, z ≡ z↑ + z↓, Dσ ≡ 1− x2σ
4(zσ + CF )

. (5.21)

The derivatives of exchange-correlation energy over density, ∇ρ and τ can be computed according to equa-

tions above. We obtain

∂f

∂γ
= − a

γ2(x, z)
− 2

bx2 + cz

γ3(x, z)
− 3

dx4 + ex2z + fz2

γ4(x, z)
(5.22)

∂f

∂x
=

2bx

γ2(x, z)
+

4dx3 + 2exz

γ3(x, z)
+
∂f

∂γ
(2αx) , (5.23)

∂f

∂z
=

c

γ2(x, z)
+
ex2 + 2fz

γ3(x, z)
+
∂f

∂γ
(α) , (5.24)

∂(Dσf
σσ)

∂xσ
= Dσ

[
2bxσ

γ2(xσ, zσ)
+

4dx3σ + 2exσzσ
γ3(xσ, zσ)

+
∂f

∂γ
(2αxσ)

]
− f(xσ, zσ)

xσ
2 τ

ρ
5/3
σ

, (5.25)

∂(Dσf
σσ)

∂zσ
= Dσ

[
c

γ2(xσ, zσ)
+
ex2σ + 2fzσ
γ3(xσ, zσ)

+
∂f

∂γ
(α)

]
+ f(xσ, zσ)

x2σ
4( τ

ρ
5/3
σ

)2
. (5.26)
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Thus we get,

∂ex(x, z)

∂ρ
= ρ1/3

[
4

3
(f(x, z)− x

∂f

∂x
)− 5

3
(
τ

ρ5/3
∂f

∂z
)

]
, (5.27)

∂eσσc
∂ρ

= f(xσ, zσ)Dσe
LDA
cσσ + ρf(xσ, zσ)Dσ

∂eLDA
cσσ

∂ρ
− ρeLDA

cσσ

[
4

3
xσ
∂(Dσf

σσ)

∂xσ
+

5

3

τ

ρ5/3
∂(Dσf

σσ)

∂zσ

]
, (5.28)

∂eσσ
′

c

∂ρ
= f(x, z)eLDA

cσσ′ + ρf(x, z)
∂eLDA

cσσ′

∂ρ
− ρeLDA

cσσ′

[
4

3

∂f

∂x

(x2σ)
2

x
+

5

3

τ

ρ
5/3
σ

∂f

∂zσ

]
, (5.29)

and

∂ex(x, z)

∂τ
= ρ−1/3 ∂f

∂z
, (5.30)

∂eσσc
∂τ

= eLDA
cσσ

1

ρ2/3
∂(Dσf

σσ)

∂zσ
, (5.31)

∂eσσ
′

c

∂τ
= eLDA

cσσ′ ρ
∂f

∂zσ

1

ρ
5/3
σ

. (5.32)

The exchange-correlation potential is then given by

Vxc =
∂ex(x, z)

∂ρ
+
∂eσσc
∂ρ

+
∂eσσ

′

c

∂ρ
. (5.33)

5.2.2 LDA correlation energy density by Stoll

The parallel correlation energy density eLDA
cσσ in Eq. (5.27) is given by [67]

eLDA
c↑↑ = ρ↑εc↑↑(ρ↑, 0), (5.34)

eLDA
c↓↓ = ρ↓εc↓↓(0, ρ↓) . (5.35)

The total density parameter rs and relative spin polarization ζ are of the form given by

rs =

(
3

4πρ

)1/3

, ζ =
ρ↑ − ρ↓
ρ↑ + ρ↓

. (5.36)

Then we have

ρ↑ =
1 + ζ

2
ρ, ρ↓ =

1− ζ

2
ρ . (5.37)
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The new density parameter r′s is defined by

r′s =

(
3

4πρs

)1/3

=

(
2

1± ζ

)1/3

rs, ζ ′s = ±1 . (5.38)

The derivative of ∂eLDA
cσσ /∂ρ needs the following derivatives

1

ρ

∂eLDA
cσσ

∂rs
=

∂εcσσ
∂r′s

∂r′s
∂rs

1± ζ

2
, (5.39)

and

1

ρ

∂eLDA
cσσ

∂ζ
= ±εcσσ

2
+
∂εcσσ
∂r′s

∂r′s
∂ζ

1± ζ

2
, (5.40)

where

∂r′s
∂ζ

= ∓ r′s
3(1± ζ)

. (5.41)

5.3 Implementation of dielectric function

To calculate the exciton in the dielectric function, Eq. (5.6), we follow the implementation on the LAPW

method [66] closely, since the LASTO basis functions are linear combinations of LAPWs. The transition

matrix element, Tνν′(k,q), which is frequently used in calculating the electron-hole interaction kernel and

KS response function, can be written as follows,

Tνν′(k,G) = < νk|e−i(q+G)·r|ν′k′ >

=

∫
V

drΨ∗
νk(r)e

−i(q+G)·rΨν′k′(r)

=
V

Vc

∫
Vc

drΨ∗
νk(r)e

−i(q+G)·rΨν′k′(r) (5.42)

where k′ = k+ q. Plug Eq.(3.10) into Eq.(5.42),

Tνν′(k,G) =
∑
NN ′

CνkCν′k′
V

Vc

∫
Vc

drψ∗
kN (r)e−i(q+G)·rψk′N ′(r)

=
∑
NN ′

CνkCν′k′tNN ′(k,q,G) (5.43)
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where

tNN ′(k,q,G) ≡ V

Vc

∫
Vc

drψ∗
kN (r)e−i(q+G)·rψk′N ′(r) (5.44)

The matrix element tGG′(k,q,G) can be computed in the interstitial region and the muffin-tin region

separately.

In the interstitial region, the contribution to the matrix element tNN ′(k,q,G) is given by

tNN ′(k,q,G) =
1

Vc

∫
Vc

drψ∗
kN (r)Θ(r)e−i(q+G)·rψk′N ′(r)

=
1

Vc

∑
G′G′′K

∫
Vc

drϕ∗k(G
′)Θ(K)e−i(G′+G−G′′−K)·rϕk′(G′′)

=
∑

G′G′′

ϕ∗k(G
′)Θ(G′ +G−G′′)ϕk′(G′′) (5.45)

where Θ(r) is the step function defined by

Θ(r) ≡


1, r ∈ interstitial region

0, r ∋ interstitial region

, (5.46)

and Θ(G) is Θ(r)’s Fourier coefficients which can be analytically computed by

Θ(G) =


1−

∑
i
4πR3

ı

3Vc
,G = 0

− 4π
Vc|G|

∑
i jl(|G|Rı)R

2
ı e

iGRı ,G ̸= 0

. (5.47)

In the muffin-tin region, the contribution to the matrix element tNN ′(k,q,G) comes from the integrals

over those spheres in the unit cell given by

tNN ′(k,q,G) =
1

Vc

∑
i

e−i(q+G)·Ri

∫
MTi

drψ∗
kN (r)e−i(q+G)·rψk′N ′(r)

=
1

Vc

∑
i

e−i(q+G)·RiINN ′(k,q,G) (5.48)

where

INN ′(k,q,G) ≡
∫
MTi

drψ∗
kN (r)e−i(q+G)·rψk′N ′(r) (5.49)

is the integral over the ith muffin-tin sphere. To calculate this quantity, it’s noted that the plane wave
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e−i(q+G)·r can be expanded using the Rayleigh expansion given by

e−iK·r = 4π

∞∑
l=0

l∑
m=−l

iljl(Kr)Ylm(K̂)Ylm(r̂). (5.50)

Plug Eq.(5.50) and Eq.(3.4) into Eq.(5.49) and regroup terms to get the new form of INN ′(k,q,G) given by

INN ′(k,q,G) =
∑
Ñ ′

{AN ′Ñ ′(k
′)
∑
Ñ

[A∗
NÑ

(k)I(u, u,K) +B∗
NÑ

(k)I(u̇, u,K)]

+ BN ′Ñ ′(k
′)
∑
Ñ

[A∗
NÑ

(k)I(u, u̇,K) +B∗
NÑ

(k)I(u̇, u̇,K)]}, (5.51)

with

I(u, u,K) = 4π
∑
L′′

iLY ∗
L′′(K̂)G(L,L′′, L′)Ul,l′′,l′(u, u,K). (5.52)

I(u̇, u,K) = 4π
∑
L′′

iLY ∗
L′′(K̂)G(L,L′′, L′)Ul,l′′,l′(u̇, u,K). (5.53)

I(u, u̇,K) = 4π
∑
L′′

iLY ∗
L′′(K̂)G(L,L′′, L′)Ul,l′′,l′(u, u̇,K). (5.54)

I(u̇, u̇,K) = 4π
∑
L′′

iLY ∗
L′′(K̂)G(L,L′′, L′)Ul,l′′,l′(u̇, u̇,K). (5.55)

where the Gaunt coefficients G(L,L′′, L′) is given by

G(L,L′′, L′) =

∫
dΩY ∗

L (r̂)YL′′(r̂)Y ∗
L′(r̂), (5.56)

and

Ul,l′′,l′(u, u,K) =

∫ R

0

r2drul(r)jl′′(Gr)ul′(r), (5.57)

Ul,l′′,l′(u, u̇,K) =

∫ R

0

r2drul(r)jl′′(Gr)u̇l′(r), (5.58)

Ul,l′′,l′(u̇, u,K) =

∫ R

0

r2dru̇l(r)jl′′(Gr)ul′(r), (5.59)

Ul,l′′,l′(u̇, u̇,K) =

∫ R

0

r2dru̇l(r)jl′′(Gr)u̇l′(r). (5.60)

5.4 Computational details

We first solve Kohn-Sham One-Particle Equation with mGGA self-consistently. The converged mGGA

density will be used to compute the derivative of Exc with respect to the kinetic energy density ∂ϵxc

∂τ in
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Eq. (5.2). Then results for materials we considered are listed in Table 5.1. The we use the converged Kohn-

Table 5.1: The derivative of Exc with respect to the kinetic energy density

Si Ge GaAs InAs InP
0.0452 0.0784 0.0547 0.0404 0.0192

Sham eigenengergies and eigenfunctions from Chapter 4 to construct those quantities required in Eqs.(5.2),

(5.3), (5.4) and (5.5). Then the dielectric function can be computed by Eq.(5.6).

5.4.1 Brillouin zone integration and convergence test

Here the summation over k-mesh will be evaluated directly and broadened with an appropriate width

η when to calculate the dielectric function. The Monkhorst-Pack special points scheme [61, 62] is used

to generate k points in the Brillouin zone (BZ). We’d better find a special k-mesh to do BZ integration

accurately and efficiently. We can say that we need k points as many as possible to get converged results

by intuition. However, it turns out that the larger number of k points is used in summation during the

calculation, the more time will be consumed. It is because the number of the integral Tνν′(k,G) and the

size of the matrix increases proportionally to the square of the number of k. Besides of this, we found that

the result converged when the number of k points reached some value. In addition, adding shift to k points

during generation may improve the result. Albrecht et al. [68] used 2048 k points without shift in order to

take advantage of the symmetry properties of the crystal, but the result didn’t converge well and showed

a wrong double peak behaviour. As a improvement, Albrecht and coworkers [69] obtained a much better

and converged result with much less k points if appropriate shift was added. Benedict et al. [63], Arnaud et

al. [65] and Puschnig et al. [66] applied shifted k-mesh in their calculation as well and got beautiful results.

The reason is that shifting the mesh off the high symmetry directions could make k points so inequivalent

that they all contribute to the final result. Meanwhile, the degenerate eigenstates can be avoided. For

example, for a 10x10x10 k-mesh without shift, we can get only 47 independent k points in the irreducible

BZ(IBZ) after symmetry operation, while 110 inequivalent k points can be obtained if an symmetric shift

(0.5, 0.5, 0.5) 2πa is applied during the generation. Furthermore, we can get a a denser k-mesh with 1000

nonequivalent points if the k-mesh is shifted by an arbitrary k-vector. In a word, we’d better adopt a shifted

k-mesh in our calculation. For the summation over q points, we only need to consider q = 0 in TDDFT

calculation, i.e., the long wavelength limit.

To do the convergence test, we calculated Si spectra with a direct sum over k-mesh and Lorentzian-

broadening. The number of G vectors is set to 65, and the number of valence bands 4, conduction bands 22.
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The broadening η is set to 0.15 eV for Si and the rest materials in this chapter unless otherwise noted. With

an arbitrary shift (0.083333, 0.25, 0.416667) 2πa , 8x8x8, 10x10x10, 12x12x12, 14x14x14 and 16x16x16 k mesh

are tested. We choose this shift since it can generate homogeneous k points in the irreducible BZ(IBZ).The

inequivalent k points and computational time corresponding to different k-mesh are listed in Table 5.2.

From this table, all k mesh with an arbitrary shift can be handled in reasonable computation time. As

Table 5.2: The inequivalent k points and computational time corresponding to different k mesh. The first five
mesh use the same shift (0.083333, 0.25, 0.416667)2πa , while the mesh 8x8x8a is shifted by (0.1, 0.2, 0.3) 2πa .

8x8x8 10x10x10 12x12x12 14x14x14 16x16x16 8x8x8a
k points 288 550 936 1470 2176 288
Time(s) 839.46 1584.04 2684.54 4204.48 6203.42 815.97

mentioned above, the convergence of spectra with different k-mesh may be different. Si spectra using 8x8x8,

10x10x10, 12x12x12, 14x14x14 and 16x16x16 k mesh are shown in Fig. 5.1. We can see that those spectra

using different k mesh converge reasonably. The Figure shows that 12x12x12 k mesh for Si is enough in

our calculation. For comparison, we also use another arbitrary shift (0.1, 0.2, 0.3) 2πa to generate the 8x8x8
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Figure 5.1: Si spectra in TDDFT level calculated with direct sum over k points under mGGA.

k mesh and compute the dielectric function for Si, see Fig. 5.2. It shows that with any arbitrary shift, one

can get similar converged result.
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Figure 5.2: Si spectra in TDDFT level calculated with direct sum over k points with different arbitrary
shift.

5.4.2 Optical spectrum with high angular momentum states

We compare the calculated optical absorption spectra of Si to experimental data [70] and find that

the calculated peaks were weaker than the experimental ones, see Fig. 5.3. Let’s look at those ζ values,

which determines the basis set, used in Chapter 4 to solve the converged Kohn-Sham eigenengergies and

eigenfunction under mGGA. These values tell that the basis set is a set of low angular momentum states

which is good enough to solve band structures. However, it turns out that if we use the high angular

momentum states as the basis set, we can improve the strength of those peaks, see Fig. 5.4, which compares

Si optical absorption spectra calculated by the regular basis and high angular momentum L basis. From the

figure, we see that the peaks are significantly improved by using latter. The optimized ζ values for Si, Ge,

GaAs and InAs are listed in Table 5.3.

Table 5.3: Optimized ζ values for Si, Ge, GaAs and InAs

Si 3s 1.7 3p 1.4 3d 1.6 4e 0.5 5f 0.5

Ge 4s 1.2 4p 1.5 4d 1.8 4e 0.7 5f 0.9

GaAs
Ga 4s 1.2 4p 1.5 3d 1.5 4e 0.7 5f 0.7

As 4s 1.2 4p 1.5 4d 1.8 4e 0.7 5f 0.96

InAs
In 5s 1.41 5p 1.69 4d 1.69 5e 0.9 6f 0.9

As 4s 1.13 4p 1.41 4d 1.69 4e 0.9 5f 0.9
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Figure 5.3: Calculated Si optical absorption spectra with excitonic effects compared to experimental data.
Solid lines denote imaginary part while dashed lines denote real part.
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Figure 5.4: Compare Si optical absorption spectra calculated by the regular basis(black lines) and high
angular momentum L basis(red lines). Solid lines denote imaginary part while dashed lines denote real part.
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5.5 Results and discussion

We compare the calculated optical absorption spectra with excitonic effects of Si, Ge, InAs and GaAs in

this section. The spectra of other materials, like alloys, will be discussed in the next chapter.

5.5.1 Si and Ge’s optical absorption spectra

The spectra computed using 12x12x12 k mesh with an arbitrary shift (1/12, 1/4, 5/12) 2πa and experi-

mental spectrum are shown in Figs. 5.5 and 5.6. The experimental data [70] is denoted by dashed lines

while the calculated ones denoted by only solid lines with different colors. These show that the calculated

TDDFT spectrum with LDA p-matrix elements agrees better to the experimental one than the one using

mGGA p-matrix elements since latter has weaker E1 peak. It’s noteworthy that the low frequency and

high frequency parts are almost the same as the corresponding experimental ones. However, there are still

notable discrepancies in the region between the E1 and E2 peaks. The difference of the E2 peaks is less

than 10% while the one of the E1 peaks is a little big. We think that the main reason is that LASTO uses a

smaller basis set which isn’t accurate enough. Besides of this, the approximation for fxc given by Eq. (2.33)

discards many terms which could contribute to the spectrum.
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Figure 5.5: Calculated Si optical absorption spectra with excitonic effects compared to experimental data.
Solid lines denote imaginary part while dashed lines denote real part.
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Figure 5.6: Calculated Ge optical absorption spectra with excitonic effects compared to experimental data.
Solid lines denote imaginary part while dashed lines denote real part.

5.5.2 InAs and GaAs’s optical absorption spectrum

The same 12x12x12 k mesh as Si’s was used to compute InAs and GaAs’s Kohn-Sham eigenfunctions and

eigenenergies which are used to construct the spectrum. Figs. 5.8 shows the comparison of the calculated

spectrum and the experimental data [70]. The experimental data [70] is denoted by dashed lines while

the calculated ones denoted by solid lines with different colors. The calculated TDDFT spectra with LDA

p-matrix elements agrees well to the experimental one as expected. Of course, small discrepancies still exist.

The reasons are the same as Si and Ge’s.

5.6 Conclusion

mGGA is a good approximation to generate band structure with approximately correct band gaps. This

is the base of Nazarov and Vignale’s theory [58]. Results show that their adiabatic TDDFT formalism can

construct spectra for solids in good agreement with experimental data. The exchange-correlation kernel fxc

brings the required singularity of the type α/q2, i.e., the nonlocality to the calculation, while the mGGA

guarantee that the peaks are in the correct position. The TDDFT spectra with p-matrix approximated by

the one under LDA agree great with the experimental data. Part of reason that Nazarov’s result deviates

from experimental data is that they didn’t treat the p-matrix appropriately. The main discrepancies mainly
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Figure 5.7: Calculated GaAs optical absorption spectra with excitonic effects compared to experimental
data. Solid lines denote imaginary part while dashed lines denote real part.

2 3 4 5 6 7

-10

-5

0

5

10

15

20

25

Photo energy (eV)

 Exp.
 Exp.
 TDDFT+<p> mGGA

 TDDFT+<p> mGGA

 TDDFT+<p> LDA

 TDDFT+<p> LDA

 RPA
 RPA

Figure 5.8: Calculated InAs optical absorption spectra with excitonic effects compared to experimental data.
Solid lines denote imaginary part while dashed lines denote real part.
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come from that (i) LASTO uses a smaller basis set which isn’t accurate enough, and (ii) the approximation

for fxc given by Eq. (2.32) discards many terms which could contribute to the spectrum. Calculation of the

exact mGGA exchange-correlation kernel fxc given by Eq. (2.33) might solve the problem.
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Chapter 6

Optical properties of semiconductors
and alloys

III-V ternary alloys AxB1−xC are promising materials for optoelectronic, high-speed electronic and

microwave applications, such as infrared emitting diodes and detectors, high electron mobility transistors,

heterojunction bipolar transistors, quantum-dot lasers, modulators and ultrafast switches [71–78]. The

advantages of these alloys include high electron and hole mobility, large conduction band offset between

the binary end points compounds AC and BC, better growth stability and design flexibility. The optical

spectra of these alloys play an very important role in designing the devices. This work limits the discussion to

isostructural and isovalent alloys only since physical properties of the alloy AxB1−xC can be calculated by the

analytical interpolation of the properties of constituents AC and BC. We put our focus on InxGa1−xAs and

InAsxP1−x alloys. InxGa1−xAs alloys can potentially outperform GaAs in electron transport properties and

their room temperature band gaps are particularly well suited for applications in infrared emitting diodes

and detectors [71]. Improved DC current gain and increased mobilities and saturation velocities make

InAsxP1−x a good material for heterojunction bipolar transistor [76]. The modulation-doped InAsxP1−x

shows better performance in quantum-well lasers [72]. High single-mode yield makes InAsxP1−x showing

competitive application in laser diodes [73]. Thus, it is highly desirable to have a better understanding of

the electronic properties of these alloys. Kim et al. [79] and Choi et al. [80] reported the dielectric functions

of selected compositions of different concentration x for InxGa1−xAs and InAsxP1−x, separately, including

the endpoints values x = 0 and x = 1, which can be used as the database to analyze those with arbitrary

concentration x.

On the other hand, people can use many theoretical methods, like Bethe-Salpeter equation (BSE) [20,

23–26] and time-dependent local density approximation (TDLDA) [81, 82], to calculate optical spectra for

semiconductors and achieve good agreement with the experiment. These approaches focus on the response

of the interacting system to a weak external perturbation and treat the exchange-correlation potential Vxc

by local density approximation (LDA) [40]. However, severely underestimating the band gaps of materials

has been a well-known difficulty about LDA and its semilocal extensions since the early 1980s [58]. A scissor

operator (△E)Pck must be used to correct the band gap for their application in solids. The energy shift
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(△E) is some constant which can be obtained either semiempirically [83] or by GW computation [84–86],

and Pck is the projection operator applied on conduction bands only. Unfortunately, it’s impossible to use

the scissor operator in alloy since it is a composition of two or more semiconductors and one can’t determine

which band gap should be corrected. One might be able to adopt GW correct to solve the gap problem, but

it turns out that it is too expensive to be applied to big systems. Therefore, the notorious band gap problem

from LDA prevents the application of those theoretical methods to alloys. Fortunately, the recent emerged

meta-generalized gradient approximation(mGGA) [13–15] can fix the notorious underestimated band gaps

caused by LDA [38,39]. It expands the exchange-correlation potential in terms of not only the density, but

also the gradient of the density ∇nσ(r), the kinetic energy density τ(r) and(or) ∇2nσ(r). Tran and Blaha’s

mGGA [14] shows great improvement in band gaps which can be in perfect agreement with experimental

results.

Our studies provide some insight into the theoretical calculation of optical spectra of semiconductor

alloys. The mGGA can be used to generate Kohn-Sham(KS) wave functions and eigenenergies with good

band gaps for GaAs, InAs and their alloys. The idea of using time-dependent density functional theory

(TDDFT) [19,53] with adiabatic mGGA to compute optical spectrum was adopted by Nazarov etc. [58]. They

have implemented this approach into the full potential linearized augmented plane-wave (FPLAPW) [32]

scheme to calculate optical spectrum for bulk Si and Ge with good success. FPLAPW needs a big number

of plane waves as the basis which makes it not easy to be applicable to systems with large number of atoms.

We will implement this approach into the linear augmented-slater-type orbits (LASTO) [27–30] scheme

with adiabatic mGGA to compute optical spectra for alloys since LASTO uses less number of basis than

FPLAPW, which we believe makes it more competitive to be applied to big systems than the latter.

In addition, recent ellipsometry measurement on various alloy systems have determined the composition-

al dependence of their optical spectra and several critical-point (CP) energies [87–90]. We are motivated

to calculate the optical spectra of these ternary alloys theoretically and compare them to the experimental

results. The LASTO method under mGGA will be adopted to calculate the required alloys’ electronic struc-

tures with spin-orbit interactions included. Based on the calculated electronic structures, we use TDDFT to

calculate dielectric functions for basic structures for a family of alloys. Then we adopt the cluster-averaging

method, explained in section 6.2, to calculate the dielectric functions of alloys InxGa1−xAs and InAsxP1−x

with arbitrary concentration x.

This chapter is organized as the following. First, the method to model alloys and the cluster-averaging

method will be reviewed. Next, computational details such as parameters used during the calculation will

be given. And then, calculated optical spectra of alloys InxGa1−xAs and InAsxP1−x will be compared to
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experimental results.

6.1 Vegard’s law and deviation

People know well properties of the binary end-point compounds AC and BC, while properties of the

corresponding ternary alloys AxB1−xC, like the lattice constant, can be explained by Vegard’s law [91]

which states that there exists a linear relation which can describe the crystal physical properties of an alloy

in terms of the concentration(x) of the constituent elements. According to this law, the lattice constant of

a ternary alloy AxB1−xC can be written as

aA1−xBxC = xaAB + (1− x)aAC. (6.1)

However, the lattice constant of some alloys approximately abides by a quadratic form [93], but the deviation

to the linear form given above is generally very small. Besides of the exceptions for lattice constant, alloy

band gaps E(x) are also found to deviate considerably from the composition average value of two end-point

compounds AC and BC [94–96]. Furthermore, people found a quadratic form given by

F (x) = xFAC + (1− x)FBC − bx(1− x) (6.2)

works well for many physical properties F (x) of alloys AxB1−xC, where the general bowing parameter b is

defined by [97]

b = 2[FAC(aAC) + FBC(aBC)− 2FA0.5B0.5C(aA0.5B0.5C)], (6.3)

where FAC(aAC) is the physical property of a end-point compound AC at its lattice constant aAC and

FA0.5B0.5C (aA0.5B0.5C) the one of a 50%-50% alloy A0.5B0.5C (also ABC2) at its equilibrium lattice constant

aA0.5B0.5C . Instead of using the quadratic form, the cluster-averaging method can also be used to compute

physical property of alloys with arbitrary concentration x.

6.2 Cluster-averaging Method

To calculate the dielectric functions for a ternary alloy AxB1−xC with arbitrary concentration(x) of

the constituent elements, we adopt the cluster-averaging method. Firstly, five basic structures, AC, BC,

A3BC4, AB3C4 and the 50%-50% alloy ABC2, have to be modeled and calculated at the corresponding
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lattice constants that can be computed by Vegard’s law [91] given by Eq. (6.1).

We model the binary end points compounds AC and BC by zinc blende structure with Td symmetry.

Their calculation was done before. The remaining thing is to model a 50%-50% alloy InGaAs2 and two

minority clusters A3BC4 and AB3C4. In general, atoms are randomly distributed over the sample in alloys.

However, for symmetry purpose, we’d better adopt periodic unit cells with special symmetries for them so

that the calculation can be simplified and applicable. We follow the procedure described in Ref. [97]. In

this work, we assume that the alloy systems of our interest all have cubic structure. The 50%-50% alloy

can be approximately considered as a even mixture of compounds AC and BC. We model its unit cell by

a supercell of four atoms with the primitive tetragonal structure whose symmetry is defined by space group

No. 115 in the International Tables for Crystallography or point group D2d. The primitive vectors of this

structure are given by

a1 = (
1

2
,−1

2
, 0)a,

a2 = (
1

2
,
1

2
, 0)a, (6.4)

a3 = (0, 0, 1)a,

where a is the face-centered cubic lattice constant. Here we plot the unit cell of InGaAs2 to show the

primitive structure, see Fig. 6.1.

For both 25%-75% alloy AB3C4 and 75%-25% alloy A3BC4, we model them by a larger supercell of eight

atoms with the primitive cubic structure whose symmetry is defined by space group No. 215 or point group

Td. Their primitive vectors are defined by

a1 = (1, 0, 0)a

a2 = (0, 1, 0)a (6.5)

a3 = (0, 0, 1)a.

Here we use In3GaAs4 as an example to plot the unit cell, see Fig. 6.2. The one of InGa3As4 is similar to

Fig. 6.2 with symbols In and Ga switched only.

As described above, we only need three different unit cells for the five basic structures, the typical

Zincblende unit cell for AC and BC, the primitive tetragonal unit cell for 50%-50% alloy ABC2, and the

primitive cubic unit cell for 25%-75% and 75%-25% alloys, AB3C4 andA3BC4. However, to avoid systematic
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Figure 6.1: InGaAs2 primitive tetragonal unit cell Figure 6.2: In3GaAs4 primitive cubic unit cell

errors, the largest unit cell, specified by Eq. (6.5) and Fig. 6.2, is used to model the latter three alloys, that

is, the unit cell of ABC2 is twice bigger than the one defined by Eq. (6.4) and Fig. 6.1. Additionally, we

need to specify the Cartesian coordinates of atoms in the unit cells. In general, their constituent atoms

can move independently and are allowed to relax in such a way that they must keep the required symmetry

as described above. To decide their equilibrium positions, we call WIEN2K [46] to do atomic relaxation

for them since LASTO uses less number of basis functions than LAPW so it can’t do such kind of job.

Please note that we don’t use supercell for AC and BC since we found results from supercell unit cell and

WignerCSeitz cell were the same through comparison.

Then, their electronic structures can be computed based on the unit cells defined above. When KS

eigenfunctions and eigenenergies are ready, the TDDFT+mGGa method with p-matrix approximated by the

one under LDA (described in Chapter 5) is adopted to calculate their dielectric functions. Their contributions

to the one of the alloy of interest are incorporated with occurrence probabilities P (n)(x)

εM (q, ω, ax) =
∑
n

P (n)(xn) · εM (AnB4−nC4, axn) , (6.6)

where ax ≡ aA1−xBxC. These probabilities are assumed to be random and can be calculated by the equation

P (n)(x) =

 4

n

xn(1− x)4−n , (6.7)
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Table 6.1: The lattice constants(Bohr) of basic ternary alloys InGaAs2, InGa3As4, In3GaAs4, In2AsP ,
In4As3P and In4AsP3.

InGaAs2 InGa3As4 In3GaAs4 In2AsP In4As3P In4AsP3

11.06586 10.87443 11.25710 11.26939 11.35896 11.17981

where n = 0, 1, ..., 4.

6.3 Parameters and Structural Properties

Now We calculate the optical spectra of alloys InxGa1−xAs and InAsxP1−x and fit them to experimental

results. The SO coupling is considered during the calculation.

6.3.1 Band Structures

As mentioned above, five basic structures needs to be calculated first. The self-consistent KS band

structures of GaAs, InGa3As4, InGaAs2, In3GaAs4, InAs, InP , In2AsP , In4As3P and In4AsP3 were

computed with TB09 [14] mGGA and LASTO basis scheme. The three endpoint compounds InAs, GaAs

and InP are bulk structure with Td symmetry. The reference from which their experimental lattice constants

at room temperature were taken is Ref. [92]. Their other parameters and dielectric functions were done in

Chapter 5. Here we’ll redo this part with only SO interaction added. For the 50%-50% alloys , 25%-75%

alloys and 75%-25% alloys, their lattice constants were computed by Vegard’s law and are listed in Table

6.1. The unit cell for all six alloys are supercell with basis vectors given by Eq. (6.5). Since LASTO uses

point group to do the calculation, we use D2d symmetry for the 50%-50% alloys InGaAs2 and In2AsP , and

Td symmetry for the primitive cubic structure for 25%-75% alloys InGa3As4 and In4AsP3 and 75%-25%

alloys In3GaAs4 and In4As3P . The relaxed coordinates of atoms of the alloys are listed in Tables 6.2 and

6.3.

Table 6.2: The Cartesian coordinates of atoms of relaxed alloys InGaAs2, InGa3As4 and In3GaAs4.

InGaAs2 InGa3As4 In3GaAs4
In1(0, 0, 0) In1(0, 0, 0) Ga1(0, 0, 0)

In2(0.5, 0.5, 0) Ga1(0, 0.5, 0.5) In1(0, 0.5, 0.5)
Ga1(0.5, 0, 0.5) Ga2(0.5, 0, 0.5) In2(0.5, 0.5, 0)
Ga2(0, 0.5, 0.5) Ga3(0.5, 0.5, 0) In3(0.5,0, 0.5)

As1(0.7503, 0.7503, 0.2705) As1(0.2596, 0.2596, 0.2596) As2(0.2395, 0.2395, 0.2395)
As2(0.2497, 0.2497, 0.2705) As2(0.2596, 0.7404, 0.7404) As2(0.2395, 0.7605, 0.7605)
As3(0.7503, 0.2497, 0.7295) As3(0.7404, 0.7404, 0.2596) As3(0.7605, 0.7605, 0.2395)
As4(0.2497, 0.7503, 0.7295) As4(0.7404, 0.2596, 0.7404) As4(0.7605, 0.2395, 0.7605)
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Table 6.3: The Cartesian coordinates of atoms of relaxed alloys In2AsP , In4As3P and In4AsP3.

In2AsP In4As3P In4AsP3

As1(0, 0, 0) P1(0, 0, 0) As1(0, 0, 0)
As2(0.5, 0.5, 0) As1(0, 0.5, 0.5) P1(0, 0.5, 0.5)
P1(0.5, 0, 0.5) As2(0.5, 0, 0.5) P2(0.5, 0.5, 0)
P2(0, 0.5, 0.5) As3(0.5, 0.5, 0) P3(0.5,0, 0.5)

In1(0.7502, 0.7502, 0.2581) In1(0.2466, 0.2466, 0.2466) In2(0.2544, 0.2544, 0.2544)
In2(0.7502, 0.2498, 0.7419) In2(0.2466, 0.7534, 0.7534) In2(0.2544, 0.7456, 0.7456)
In3(0.2498, 0.2498, 0.2581) In3(0.7534, 0.7534, 0.2466) In3(0.7456, 0.7456, 0.2544)
In4(0.2498, 0.7502, 0.7419) In4(0.7534, 0.2466, 0.7534) In4(0.7456, 0.2544, 0.7456)

The optimized ζ values for the LASTO basis functions of the constituent astoms are listed in Tables 6.4

and 6.5. The band structures of GaAs, InAs, InP ,InGaAs2 and In2AsP are shown in Figs. 6.3, 6.4, 6.5,

Table 6.4: Optimized ζ values for InGaAs2, InGa3As4 and In3GaAs4

InGaAs2 InGa3As4 In3GaAs4
In Ga As In Ga As In Ga As

5s 1.5 4s 1.2 4s 1.2 5s 1.4 4s 1.2 4s 1.2 5s 1.5 4s 1.2 4s 1.2
5p 1.8 4p 1.5 4p 1.5 5p 1.7 4p 1.5 4p 1.5 5p 1.8 4p 1.5 4p 1.5
4d 2.3 3d 1.8 3d 1.5 4d 2.4 3d 1.9 3d 1.6 4d 2.3 3d 2.0 4d 1.5
5s 1.0 4s 0.8 4s 1.7 5s 0.9 4s 1.8 4s 1.8 5s 1.0 4s 1.6 4s 1.7
5p 1.2 4p 1.0 4p 2.2 5p 1.1 4p 2.3 4p 2.3 5p 1.2 4p 2.3 4p 2.2

Table 6.5: Optimized ζ values for In2AsP , In4As3P and In4AsP3

In2AsP In4As3P In4AsP3

In As P In As P In As P
5s 1.1 4s 1.1 3s 0.9 5s 1.4 4s 2.0 3s 0.9 5s 1.4 4s 1.2 3s 0.9
5p 1.7 4p 1.4 3p 0.8 5p 1.7 4p 1.4 3p 1.1 5p 1.7 4p 1.4 3p 1.2
4d 2.7 4d 1.7 3d 0.5 4d 1.7 4d 1.7 3d 1.4 4d 1.9 4d 1.7 3d 1.4
5s 1.0 4s 1.7 3s 1.3 5s 0.9 4s 1.7 3s 1.3 5s 1.0 4s 1.7 3s 2.2
5p 1.1 4p 2.1 3p 1.7 5p 1.1 4p 2.1 3p 1.7 5p 1.2 4p 2.1 3p 1.7

6.6 and 6.7, computed by both LASTO and WIEN2K for comparison. We can see that LASTO still keeps

the required accuracy for band structures even if it uses a contracted basis set of LAPW.

6.3.2 Spectra

Based on the band structures, We calculated optical spectra for five basic structures, using TDDFT with

the transition matrix elements approximated by the LDA p-matrix elements, as described by Eq. (5.12),

via mGGA. We used a 8x8x8 k-mesh for supercells and 10x10x10 k-mesh for bulk structures, generated by
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Figure 6.3: Band structures of GaAs.
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Figure 6.4: Band structures of InAs.
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Figure 6.5: Band structures of InP.
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Figure 6.6: Band structures of InGaAs2.
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Figure 6.7: Band structures of In2AsP .

Monkhorst-Pack [61] method with shift (0.083333, 0.25, 0.416667) 2πa , to do the Brilloin zone integration. The

cutoffs of the reciprocal vectors were set to 2.3 for bulk structures and 1.5 for supercells. The average value

of the derivative of the XC energy with respect to the kinetic energy density in Eq. (2.24) were computed

by Voorhis and Scuseria’s XC functional [15]. Their spectra are presented in Figs. 6.8 and 6.9.

6.4 Results and discussion

Once we get the dielectric functions for the basic five structures, we can use Eq. (6.6) to calculate

the spectrum at any concentration x. The theoretical results are compared to the experimental ones at

concentration x = 0.17, 0.34, 0.49, 0.52, 0.56, 0.66 for InxGa1−xAs(see Reference [79]), and at concentration

x = 0.13, 0.40, 0.60, 0.80 for InAsxP1−x(see Reference [80]). The experimental spectra were determined
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Figure 6.8: Optical spectra of five basic structures.

-5

0

5

10

15

20

25

0 2 4 6 8
0

5

10

15

20

 InP
 In4AsP3

 In2AsP
 In4As3P
 InAs

 InP
 In4AsP3
 In2AsP
 In4As3P
 InAs

Photon energy (eV)

Figure 6.9: Optical spectra of five basic structures.

by ellipsometry psedodielectric functions. Here we present the occurrence probabilities of the five basic

structures of InxGa1−xAs for different concentrations x, listed in Table 6.6. This table shows that the

dielectric function of a arbitrary concentration x is mainly determined by the structures with concentration

close to it while other structures only modify the behavior a little bit. Those of InAsxP1−x shows similar

behaviour.
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Table 6.6: The occurrence probabilities of the five basic structures GaAs, InGa3As4, InGaAs2, In3GaAs4
and InAs in a alloy with concentration x.

GaAs InGa3As4 InGaAs2 In3GaAs4 InAs
x=0.17 0.47458 0.38882 0.11945 0.01631 0.00835
x=0.34 0.18974 0.39099 0.30213 0.10376 0.01336
x=0.49 0.06765 0.25999 0.37470 0.24000 0.05765
x=0.52 0.05308 0.23003 0.37380 0.26996 0.07312
x=0.56 0.03748 0.19081 0.36427 0.30908 0.09834
x=0.66 0.01336 0.10376 0.30213 0.39099 0.18975
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Figure 6.10: Optical spectra of alloys InxGa1−xAs. Colored and solid lines are results obtained with cluster
averaging method, except for x = 0 and x = 1 whose results are computed with mGGA band structures
including the many-body interactions through fXC given by Eq. (2.24). Colored and dashed lines are
experimental data from Ref. [79].

The comparison of theoretical and experimental spectra is plotted in Figs. 6.10 and 6.11. The curves

show that low energy parts of the spectra, especially the E1 peaks, agree greatly with experimental data

while some E2 peaks deviate the experimental ones. Some discrepancies exist in the energy range above

E2 peaks. Note that our theoretical results have two peaks around E1 which are very similar to the ones

from experiment. This is because our calculation includes SO interaction so the SO splitting is shown in

the figure. The great agreement of experimental and theoretical results proves the success of the TDDFT

theory with LDA p-matrix and the cluster averaging method.
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Figure 6.11: Optical spectra of alloys InAsxP1−x. Colored and solid lines are results obtained with cluster
averaging method, except for x = 0 and x = 1 whose results are computed with mGGA band structures
including the many-body interactions through fXC given by Eq. (2.24). Colored and dashed lines are
experimental data from Ref. [80].

6.5 conclusion

We used the TDDFT theory with LDA p-matrix and the cluster averaging method to compute the spectra

of InxGa1−xAs and InAsxP1−x with arbitrary concentration x and compared them to experimental results.

It turns out the great success of this method. This method is simple and time saving. The main reason is

that mGGA provides correct band structures for alloys so that the expensive GW correction or inapplicable

rigid scissor operator is no longer needed in our calculation. We believe this method can be applied in more

materials, especially some with special structures, like superlattice, in the future.
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Chapter 7

BSE Calculation of Optical properties
of semiconductors with electron-hole
interactions

7.1 Introduction

Density functional theory(DFT) [8,9] provides a promising method which reduces the usually unresolvable

interacting many-body Schrödinger equation to the solvable one-particle Kohn-Sham(KS) equation. Within

the KS framework, although the many-body interactions are replaced by the effective potential, the many-

body effects still exist through the exchange-correlation potential Vxc which doesn’t have an analytic form

and must be approximated when to solve the KS equation. In general, Vxc is a functional of the density

nσ(r). A simple approximation is to expand Vxc only in terms of the density, i.e., the so called local

density approximation (LDA) [40] which is good for a system with slowly varying density. A serious problem

with it is that it severely underestimate the band gaps compared to experiment for semiconductors and

insulators [38, 39]. A scissor operator (△E)Pck must be used to correct the band gap for its application in

solids. The energy shift (△E) is some constant which can be obtained either semiempirically [83] or by GW

computation [84–86], and Pck is the projection operator applied on conduction bands only. Unfortunately,

it’s impossible to use the scissor operator in alloy and superlattice since one has to correct band gaps

for two or more materials at the same time. To improve the accuracy of the band gap, meta-generalized

gradient approximation(mGGA) [13–15] expands the exchange-correlation potential in terms of not only the

density, but also the gradient of the density ∇nσ(r), the kinetic energy density τ(r) and(or) ∇2nσ(r). Tran

and Blaha’s mGGA [14] shows great improvement in band gaps which can be in perfect agreement with

experimental results. Armed with true band gaps, one can easily compute the spectra of superlattice made

of two semiconductor materials with different band gaps, like (GaAs)m(AlAs)m. The electron transport can

be studied which was barely done because of incorrect electron tunneling rates caused by wrong band gaps.

One can also combine mGGA with tight-binding method to predict the correct positions of the defect levels

in InAs, HgTe and CdTe.

DFT is widely used in ab-initio framework to study electronic structure of solids. However, DFT is a

ground state theory whose eigenenergy are neither the addition nor the removal energies of electrons from
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the interacting many-body system, that is, the excitation energies can’t be obtained by the difference of the

KS eigenenergies. On the other hand, the excitation levels play a very important role in the application

of solid materials. Fortunately, the response of the interacting system to an external perturbation contains

enough information for them. Therefore, one can compute the excitations via dynamical response theory

based on the KS eigenfunctions and eigenenergies.

For weak external perturbations, Nazarov etc. [58] reported that time-dependent density functional theory

(TDDFT) [19,53] with adiabatic mGGA could generate accurate optical spectrum for bulk Si and Ge. They

brilliantly approximated the exchange-correlation kernal fxc to be linearly dependent on the inverse of

the static KS density response function χs(r, r
′, ω) which solved the notorious ”ultranonlocality” problem,

just the one preventing TDDFT’s application to extended systems [98]. The further application of their

approach maybe requires a full numerical implementation of the exact mGGA fxc, see Eq. (5) in Ref. [58].

Alternatively, Puschnig etc. [66] implemented the Bethe-Salpeter equation (BSE) [20,23–26] for the electron-

hole interaction to compute the absorption spectrum and got impressive agreement with the experimental

data. Since they used LDA to generate KS eigenfunctions and eigenenergies, a GW correction or a rigid

scissors operator should be used to correct the band gaps. Note that both approaches were implemented

into the full potential linearized augmented plane-wave (FPLAPW) [32] scheme which uses a big number of

plane waves as the basis which makes them not easy to be applicable to systems with large number of atoms.

In addition, FPLAPW maybe a reason that makes BSE computationally demanding. In this work, we will

implement the BSE method into the linear augmented-slater-type orbits (LASTO) scheme with adiabatic

mGGA to compute optical spectra for bulk and superlattice semiconductors. LASTO uses less number of

basis than FPLAPW, which we believe makes it more competitive to be applied to big systems than the

latter.

This chapter is organized as follows. In Sec. 7.2 we briefly review the BSE concepts and formulas on

which our calculation is based. In Sec. III we apply the BSE approach to compute the optical absorption

spectra of bulk Si and GaAs. The results are compared to and gotten good agreement with experimental

data. Finally, a short summary and outlook is presented to conclude this chapter in Sec. IV.

7.2 Theoretical methods

To describe optical excitations correctly, we should go beyond the independent particle approximation and

include electron-hole interactions in the dielectric function. It has been shown that the inclusion of electron-

hole interactions via the Bethe-Sapleter equation (BSE) significantly improves the optical spectra [20,23–26].
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Let’s start from the integral form of the BSE for the electron-hole correlation function L given by

L(1, 2; 1′, 2′) = L0(1, 2; 1
′, 2′) +

∫
d(3456)L(1, 4; 1′, 3)Ξ(3, 5; 4, 6)L(6, 2; 5, 2′) , (7.1)

where

L(1, 2; 1′, 2′) ≡ −G2(1, 2; 1
′, 2′) +G(1, 1′)G(2, 2′) , (7.2)

L0 describes the free motion of an electron and an hole given by

L0(1, 2; 1
′, 2′) = G(1, 2′)G(2, 1′) , (7.3)

Ξ is the effective electron-hole interaction kernel, and the labels 1, 2, ... mean the combination of variables

of space, spin, and time. In principle, we can get all required information about electron-hole by solving

Eq. (7.1). However, it’s not trivial to solve it directly. Instead, following some suitable algorithm, it can be

transformed into a generalized eigenvalue problem. We follow the derivation of Strinati [26] and obtain,

(Eck+κ − Evk)A
λ
vck +

∑
v′c′k′

Ξvck,v′c′k′+κA
λ
v′c′k′ = EλAλ

vck , (7.4)

where v(c) denotes a valence band index(a conduction band index) of an quasiparticle at Bloch vector k,

and κ is the momentum of an absorbed photon. In this work, we consider zero-momentum excitations only,

i.e., κ = 0. Eck and Evk are quasiparticle eigenvalues in conduction bands and valence bands respectively.

The matrix elements of the kernel Ξ are evaluated on the basis given by the single-particle KS wavefunctions

of the electron and hole states given by [64],

Ξdir
vck,v′c′k′ = −

∫
dx dx′ψ∗

c,k(x)ψc′,k′(x)W (r, r′)ψvk(x
′)ψ∗

v′k′(x′) , (7.5)

Ξex
vck,v′c′k′ =

∫
dx dx′ψ∗

c,k(x)ψv,k(x)v(r, r
′)ψc′k′(x′)ψ∗

v′k′(x′) , (7.6)

where ψnk denotes the one-particle state at wave vector k and band index n with a corresponding eigenvalue

Enk and v(r, r′) is the bare Coulomb interaction. The direct term Ξdir
vck,v′c′k′ results from the screened

Coulomb interaction and dynamic screening effects W (r, r′) while the exchange term Ξex
vck,v′c′k′ results from

the bare Coulomb interaction. It is obvious that the former describes the attractive part of the electron-hole
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interactions while the latter represents the repulsive part. Their Fourier transform is given by [99]

⟨
vck

∣∣Ξdir
∣∣v′c′k′⟩ = − 1

Ω

∑
G,G′

WGG′(q)×
⟨
v′k′∣∣ei(q+G)·r∣∣vk⟩⟨ck∣∣e−i(q+G′)·r∣∣c′k′⟩δq,k′−k , (7.7)

⟨
vck

∣∣Ξex
∣∣v′c′k′⟩ = 2× 4π

Ω

∑
G̸=0

1

|G|2
⟨
ck

∣∣eiG·r∣∣vk⟩⟨v′k′∣∣e−iG·r∣∣c′k′⟩ , (7.8)

where WGG′(q) is the Fourier transform of the screened Coulomb interaction and can be expressed in terms

of the microscopic dielectric function εGG′ ,

WGG′(q) =
4πε−1

GG′(q)

|q+G||q+G′|
. (7.9)

The microscopic dielectric function relates the longitudinal component of an external field to the longitudinal

component of the total electric field. It can be obtained in terms of the irreducible polarizability χ0
GG′ given

by

ϵG,G′(q, ω) = δG,G′ − 4π

|G+ q||G′ + q|
χ0
GG′(q, ω) . (7.10)

Via the Adler-Wiser formula [100,101], χ0
GG′ is of the form given by

χ0
GG′(q, ω) =

1

V

∑
ν,ν′,k

fν′k+q − fνk
Eνk − Eν′k+q − ω − iη

⟨
νk

∣∣e−i(q+G)·r∣∣ν′k+ q
⟩⟨
ν′k+ q

∣∣ei(q+G′)·r∣∣νk⟩ .(7.11)
Here fνk is the Fermi distribution, η is a positive infinitesimal and V is the crystal volume. At zero temper-

ature, fνk can only be either 0 or 1. The transition matrix element is symmetric. Therefore, equation (7.11)

can be reduced to [18]

χ0
GG′(q, ω) =

2

V

∑
v,c,k

1

Eck+q − Evk − ω − iη

⟨
vk

∣∣e−i(q+G)·r∣∣ck+ q
⟩⟨
ck+ q

∣∣ei(q+G′)·r∣∣vk⟩ . (7.12)
Note that this equation is only applicable to a systems with finite band gap. For systems with zero or

negative band gap, one may set up a small energy cut to avoid the divergence.

Now the eigenfunction (7.4) can be solved to get the eigenvalues Eλ and the eigenvectors Aλ of the

exciton. Then we can construct the (G = 0,G′ = 0) component of the response function [68]

χ00(q, ω) =
1

V

∑
λ

∣∣∣∣∑
vck

⟨
vk

∣∣e−iq·r∣∣ck⟩Aλ
vck

∣∣∣∣2 1

Eλ − ω + iη
.

(7.13)
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The macroscopic dielectric function can be calculated by [68]

εM (ω) = 1− lim
q→0

v(q)χ00(q, ω) . (7.14)

One can evaluate the above equation to get the macroscopic dielectric function. Instead of doing it, people

find that it is easy to evaluate the imaginary part of εM first while the real part can be computed by

KramersCKronig relation. Using the identity,

Im
1

Eλ − ω + iη
= −πδ(Eλ − ω) , (7.15)

we obtain

ϵ2(ω) = lim
q→0

8π2

V q2

∑
λ

∣∣∣∣∑
vck

⟨
vk

∣∣e−iq·r∣∣ck⟩Aλ
vck

∣∣∣∣2δ(Eλ − ω) . (7.16)

During the calculation, the matrix element
⟨
vk

∣∣e−iq·r
∣∣ck⟩ appears many times and is very important. We

should be very careful to evaluate it. According to k · p perturbation theory, we have the identity

⟨vk | e−iq·r | ck⟩ = 1

ϵQP
c,k+q − ϵQP

v,k

⟨vk | q · v | ck⟩QP . (7.17)

at the limiting of vanishing q. Similar to the TDDFT under mGGA, the transition matrix ⟨ck | v | vk⟩QP

should be approximated by Eq. (5.12). Since we’re using mGGA in our computation, no scissor operator is

required to get the correct band gap, so we can say that the quasiparticle(QP) wave functions are the same

as KS mGGA orbitals. Therefore, we arrive at

ϵ2(ω) =
8π2

Ω

∑
λ

∣∣∣∣∑
vck

⟨
vk

∣∣ê · v∣∣ck⟩LDA

ELDA
ck − ELDA

vk

Aλ
vck

∣∣∣∣2δ(Eλ − ω) .

(7.18)

This work uses the Linear augmented Slater-type orbital method, developed by Davenport and co-

workers [27–30], to solve the KS equations. LASTO was explained in Chapter 3.

To calculate the dielectric function, Eq. (7.18), we follow the implementation on the LAPW method [66]

closely. Since the LASTO method is similar to the LAPW method except the difference in treatment of the

interstital part, here we only list the interstitial contribution to the optical matrix elements
⟨
vk

∣∣ê · p
∣∣ck⟩
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given by

IGNN ′ =
∑
ij

ϕ̃∗Nk(Ki)ϕ̃N ′k′(Kj)Θ̃(Ki −Kj +G) (7.19)

where Θ̃(G) is the Fourier transform of the step function Θ(r).

7.3 Results and Discussion

In this section, absorption spectra of Si, GaAs obtained from the solution of the BSE will be shown.

We compare our results with experimental data as well as with theoretical work recently appearing in the

literature. During evaluating the dielectric function and the irreducible polarizability, the summation over

k mesh needs to be done directly and broadened with an appropriate width η (eV). The Monkhorst-Pack

special points scheme [61, 62] is used to generate k points in the Brillouin zone (BZ). k mesh shifted by an

arbitrary vector is used through all calculation. However, the symmetry of q points will be same as the

symmetry of unshifted k mesh since q must be equal to the difference between two k points because of

momentum conservation. Besides of summation over k mesh in BZ, another summation over the reciprocal

lattice vectors G must be cut off to save computational resource according to convergence. We found that

for 10x10x10 k-mesh with an arbitrary shift, Eq. (7.4) can be directly diagonalized, while for higher dense k

mesh, the quasi-minimal residua (QMR) method [103] should be adopted to diagonalize it since the related

matrix size is too large to diagonalize directly.

7.3.1 The spectra of Si

We calculated the spectra of Si using the 10x10x10 k-mesh with an arbitrary shift (0.1, 0.3, 0.5) 2πa , and

the parameters NG = 59, Nv = 3, Nc = 4, Nce = 20. The spin-orbit interaction is not included. Fig. 7.1

shows the comparison of the BSE results, RPA results and experimental data. The calculated spectra are

broadened by 0.15 eV. Similar to the TDDFT under mGGA, we computed the optical spectra by two ways.

The first way used the momentum operator matrix to replace the transition matrix ⟨νk | v | ν′k⟩QP directly,

called approximation I. The calculated absorption spectrum of Si is plotted by red solid line. Another way

was to approximate the qusiparticle transition matrix by the LDA transtion matrix given by Eq. (5.12),

called approximation II. The result computed by this way is plotted by olive solid line. The RPA spectrum

is plotted by green solid line and the experimental data [70] by dashed line.

Comparing the spectra computed by the two ways, we can see that the spectrum computed by the

71



1 2 3 4 5 6 7 8

0

10

20

30

40

50

Im

Photo energy (eV)

 Exp.
 BSE+<p>mGGA

 BSE+<p>LDA

 RPA

Figure 7.1: Calculated optical absorption spectra of Si with (red and olive solid lines) and without (green
solid line) excitonic effects compared to the experimental data (black dashed line)

approximation II is much better. The E1 peak of both results was enhanced more than twice as that of the

RPA one, fitted to the experimental one through both the position and strength. It is noteworthy that the

E2 of approximation II was shifted more than the one of the approximation I and the strength is enhanced

a little bit. The fine splittings on the peaks due to the spin-orbit(SO) interaction were mingled together

because of no SO interaction included in the calculation. All these effects work together to make the resulting

spectra agree better to the experimental data. The inclusion of the electron-hole interactions significantly

improves the spectra.

For the notable discrepancy in the region the around the E2 peak, we think it might be because the BSE

approximation needs to be improved upon mGGA and the transition matrix elements needs to be directly

evaluated (see Eq.(5.11)). Nonetheless, the inclusion of excitonic effects via BSE based on mGGA provides

a crucial step forward in improving the optical spectra from the RPA level.

7.3.2 The spectra of Ge

We calculated the spectra of Ge using the 10x10x10 k-mesh with an arbitrary shift (0.1, 0.3, 0.5) 2πa , and

the parameters NG = 59, Nv = 3, Nc = 4, Nce = 12. The spin-orbit interaction is not included. Fig. 7.2
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shows the comparison of the BSE results, RPA results and experimental data. The calculated spectra are

broadened by 0.15 eV. The calculated absorption spectrum computed by approximation I is plotted by red

solid line, the one from approximation II by olive solid line. The RPA spectrum is plotted by green solid

line, and the experimental data [70] by dashed line.
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Figure 7.2: Calculated optical absorption spectra of Ge with (red and olive solid lines) and without (green
solid line) excitonic effects compared to the experimental data (black dashed line)

Comparing the spectra computed by the two ways, we do see the improvement of the spectrum computed

by the approximation II. Similar to the bulk Si case, we also see the enhancement of the position and the

strength of the E2 peak due to approximation II while the E1 peak is overcorrected. This means that the

oscillator strength is redistributed excessively between the E1 and the E2 peaks for BSE. As mentioned

in Section7.3.1, we may need to improve mGGA and evaluate the transition matrix elements directly(see

Eq.(5.11)).

7.3.3 The spectra of GaAs

We calculated the optical spectra of GaAs using the same 10x10x10 k-mesh as the one used by Si,

and the parameters used are NG = 65, Nv = 3, Nc = 4, Nce = 20. The spin-orbit interaction is not

included, too. Figs. 7.3 shows the comparison of the BSE results, RPA results and experimental data
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[70, 102]. The theoretical spectra are broadened by 0.15 eV. The calculated absorption spectrum computed

by approximation I is plotted by red solid line, the one from approximation II by olive solid line. The RPA

spectrum is plotted by green solid line, and the experimental data [70] by dashed line.

Compareing the spectra computed by the two ways, we do see the improvement of the spectrum computed

by the approximation II. Similar to the bulk Si case, we also see the enhancement of the position and the

strength of the E2 peak due to approximation II while the E1 peak is overcorrected. fitted to the experimental

one through both the position and strength. The fine splittings on the peaks due to the spin-orbit interaction

were mingled together because of no SO interaction included in the calculation. This means that the oscillator

strength is redistributed excessively between the E1 and the E2 peaks for BSE. As mentioned in Section7.3.1,

we may need to improve mGGA and evaluate the transition matrix elements directly(see Eq.(5.11)).
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Figure 7.3: Calculated optical absorption spectra of GaAs with (red and olive solid lines) and without (green
solid line) excitonic effects compared to the experimental data (black dashed line)
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