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Abstract

This thesis contains detailed numerical studies of the superconducting state

of Sr2RuO4. This material’s magnetic response displays hc/4e periodicity in

multiply connected samples, a striking departure from hc/2e periodicity of the

Little-Parks effect. One likely explanation for this is that, instead of the Cooper

pairs existing in a spin-singlet state as in most conventional superconductors, the

pairs form in an l = 1, or p-wave, angular momentum state. The additional spin

degree of freedom offered by this angular momentum state allows the formation

of half-quantum vortices possessing half of the usual flux quantum.

In Chapter 1, I briefly review p-wave superconductivity and see how it sup-

ports half-quantum vortices. In Chapter 2, I review the conventional Ginzburg-

Landau formalism for treating superconductivity. We then extend this formal-

ism to treat p-wave superconductivity. In Chapter 3, I discuss the numerical

methods used to solve the coupled Ginzburg-Landau-Maxwell equations for the

model. In Chapter 4, I present numerical solutions of the Ginzburg-Landau

equations for the proposed model in realistic geometries and show that the data

can be simulated using physically reasonable parameters. I also analyze an

important alternative explanation to the presence of half-flux states involving

integer vortices penetrating the walls of the sample. In Chapters 6 and 7, I

present analyses of measurements of magnetoresistance oscillations in Sr2RuO4

including evidence of phase-shift due to Abrikosov vortices.
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1 Introduction

This thesis can be broadly divided into two parts based on the type of exper-

iment under theoretical analysis. The unifying theme of these experiments is

that they seek to probe the order-parameter of superconductors with exotic

pairing. Superconductors with triplet px + ipy pairing are interesting because

they can host half-quantum vortices with Majorana core states and non-Abelian

braid statistics [6, 7, 8]. There is indirect evidence that the layered supercon-

ductor Sr2RuO4 has this pairing [9, 10, 11], and a search is on for “smoking

gun” signatures that will confirm this. One signature — chiral edge currents

— has proved elusive, but recent work [1] has found striking results suggest-

ing that half-quantum vortices have been detected. If this result is correct, it

strongly supports the spin triplet pairing character of the superconducting order

parameter. Chapters 2 through 5 concern themselves with the construction and

evaluation of a theoretical model seeking to explain this experiment’s results.

Much of this material has been published in [12].

In the experiment reported in [1] a micron-sized annular flake of Sr2RuO4 is

mounted on a cantilever. Its magnetic moment is monitored as magnetic fields

both perpendicular (Bx) and parallel (Bz) to the c-axis are applied. As Bz

is increased, moment jumps corresponding to the entry of single-flux-quantum

vortices into the hole in the annulus are easily observed (see figure 1.1).

Figure 1.1: SRO sample and magnetization curves showing integer flux transi-
tions adapted from [1].

When a sufficiently large in-plane field Bx is applied, these entry-event jumps

break up into two separate events, each with one-half of the original magnetic-
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moment jump. (See Figure 1.2.)

Figure 1.2: Magnetization curves for various values of applied in-plane field.
Adapted from [1]. The shaded region highlights the wedge-shaped character of
the half-flux state’s stability region.

The most obvious explanation is that we are seeing half-quantum vortices:

The large B field presumably has broken a spin orbit coupling that had held

the spin-triplet order-parameter d vector parallel to the pair angular momentum

vector l. The d vector can now rotate freely in the x-z plane and this freedom

permits the existence of a half-quantum vortex defect around which the d vector

and the order-parameter phase φ both rotate through an angle π while leaving

the spin-triplet order parameter single valued. These rotations have the effect
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of producing a phase-winding vortex in one spin component, while leaving the

other with no phase winding. A circulating “anti-vortex” current is nonethe-

less induced in the second spin component by the magnetic field, and at large

distances the spin-up and spin-down flow velocities become equal and opposite.

This means that there is a long-range spin current surrounding the vortex. It is

the necessity of reducing the logarithmically divergent free-energy-cost of this

spin current that mandates the use of small annular samples [13].

As Bx is increased, the separation between the half-quantum jumps becomes

larger. Vakaryuk and Leggett [14] have proposed that this phenomenon can be

explained by a kinematic spin polarization. The different flow velocities for the

up and down spin condensates give rise to an analogue of the Bernoulli effect

which increases the magnitude of the order parameter for one condensate and

decreases it for the other. The resulting magnetic polarization lies parallel to

Bx, and so alters the energy cost for a vortex to enter the sample. Assessing

whether or not the energy gain from Vakaryuk-Leggett mechanism is sufficient

to explain the experimental data requires a detailed accounting of the energy in

the three dimensional magnetic field surrounding the sample and in the degree

of polarization of the condensate. In this thesis I perform this accounting by

obtaining numerical solutions to an appropriate set of coupled Maxwell-Landau-

Ginzburg-equations. With the specific geometry of the samples used in the

experiment, and with reasonable values of the Landau-Ginzburg parameters, I

find that I am able to qualitively reproduce the experimental data.

Another scenario explaining the appearance of half steps in magnetization

is one with bent Abrikosov vortices in a conventional, s-wave superconducting

order parameter. By piercing the sidewall of the ring halfway between the

top and bottom of the ring, bending, and then exiting the central hole, half

of the ring will contain a flux winding and the ring will exhibit a half step of

magnetization. However, I find that, because it is much smaller than the c-axis

penetration depth, the ring is nearly transparent to the parallel field, and the

lower critical field for vortices oriented in the ab plane to pierce the sample is

much higher than the field at which half-flux states appear.

In chapters 6 and 7, I analyze magnetoresistance oscillations, periodic os-

cillations in the measured resistance as a function of applied magnetic field,

of mesoscopic sized superconducting rings. The oscillations of Sr2RuO4 mea-

sured in [4] are unconventional in the sense that their magnitude is an order

of magnitude larger than what is predicted by the Little-Parks mechanism of

the suppression of Tc by the magnetic field. A new theory of magnetoresis-

tance oscillations has been proposed by Sochnikov et. al. [15] in which the

oscillations in the resistance are caused by phase shifts in the order parameter

from thermally activated vortices crossing the ring. In Chapter 6, I analyze

the magnetoresistance oscillations in mesoscopic rings of Sr2RuO4 in terms of

this theory of thermally activated vortex resistance oscillations. I find that the

theory is able to adequately describe the experimental data if one assumes a
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drastic suppression in the magnitude of the order parameter in small samples

of Sr2RuO4. This effect was also noticed in the data of [1]. At the present

time, this is believed to be caused by scattering at the surface, averaging the

gap over the Fermi surface. While the experiments of [4] were done without

any applied magnetic field in the ab-plane and should not be expected to detect

them, future experiments hope to detect the signature of half-quantum vortices

by the presence of hc/4e periodicity in the magnetoresistance oscillations.

Experiments in magnetoresistance oscillations have also measured phase

shifts in those oscillations, published examples of which can be found in [16].

In Chapter 7 I use the analytic London-limit solutions of Kogan, Clem, and

Mints [17] and numerical calculations to show that these phase shifts are caused

by the presence of Abrikosov vortices trapped in the bulk of the ring. I think

that this could be a very exciting discovery. If phase shifts are shown to be a

reliable detector of individual vortices, it would provide a powerful new tool for

studying vortex dynamics.
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2 Ginzburg-Landau Model

2.1 Ginzburg-Landau theory for s-wave

superconductors

In order to understand the model used in this work, it is helpful to review

standard Ginzburg-Landau theory and its generalization to superconductors

exhibiting exotic pairing.

The Ginzburg-Landau model for s-wave superconductors is embodied in the

Ginzburg-Landau free energy[18, Chapter 4]

F [ψ,ψ∗,A] =

∫
Ω

d3x

{
~2

2m

∣∣∣∣(∇− 2ie

~
A

)
ψ

∣∣∣∣2
+α|ψ|2 +

β

2
|ψ|4 +

1

2µ0
|∇ ×A−Bext|2

}
(2.1)

where ψ represents the complex scalar order-parameter. In this case, it can

be taken to be the center-of-mass wave-function of the s-wave Cooper-pairs.

Here, ~ is the reduced Planck’s constant, e the charge of the electron, m a

phenomenological mass (not the electron’s mass), and α and β are temperature

dependent parameters.

Minimizing this free energy with respect to ψ∗ (see [19, Chapter 1] for this

procedure) gives the Ginzburg-Landau equations

− ~2

2m

(
∇− 2ie

~
A

)2

ψ + αψ + β|ψ|2ψ = 0 in Ω (2.2)

1

µ0
∇× (∇×A−Bext)− 2eJ = 0 in Ω (2.3)

where

J =
~

2mi

{
ψ∗
(
∇− 2ie

~
A

)
ψ − ψ

(
∇+

2ie

~
A

)
ψ∗
}

(2.4)

is the Cooper-pair number current, along with the boundary conditions

n ·
(
∇− 2ie

~
A

)
ψ = 0 on ∂Ω (2.5)

and

∇× (∇×A−Bext) = 0. (2.6)
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Now consider a homogeneous superconductor in the absence of applied mag-

netic fields. Setting A = 0, the free energy reduces to

f = α(T )|ψ|2 + β(T )|ψ|4 (2.7)

and is sometimes referred to as the psuedopotential. Here I have indicated the

temperature dependence of α and β explicity. Ginzburg-Landau theory captures

the phenomenology of the superconducting phase transition by allowing α to

change sign at a critical temperature Tc. At T > Tc, α > 0 and the minimum

of the free energy is obtained by taking |ψ| = 0. Below Tc, α becomes negative

and the free energy is minimized by

ψ0 ≡
|α|
β
. (2.8)

More precisely, any order-parameter differing by a phase from ψ0 would mini-

mize the free-energy.

Figure 2.1: A cartoon of the psuedopotential both above and below Tc illustrat-
ing how Ginzburg-Landau theory captures the phenomenology of the phase-
transition in superconductors.

2.1.1 De-dimensionalization

Some dimensional analysis reveals two important length-scales in Ginzburg-

Landau theory. The units of the free energy, equation (2.1), must clearly be

Joules, [F ] =J. Since[
d3x

~2

2m
∇2

]
= m3 J2s2

kg
m−2 =

J2s2m

kg
, (2.9)

the units of the order-parameter must be [ψ] = m−3/2. This means that the

units of α must be Joules, J.

Now examine equation (2.2) for the case of vanishing vector potential but
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non-zero gradients in ψ,

− ~2

2m
∇2ψ + αψ + β|ψ|2ψ = 0. (2.10)

Dividing this equation by α we have

− ~2

2mα
∇2ψ + ψ +

β

α
|ψ|2ψ = 0. (2.11)

The combination (~2/2mα)∇2 is clearly dimensionless. This shows that

ξ ≡

√
~2

2m|α|
(2.12)

is the natural length-scale for variations in the order-parameter and is referred

to as the coherence length.

A similar calculation reveals the natural length-scale for variations in the

vector potential. Let’s consider equations (2.3) and (2.4) with a vanishing ap-

plied field, Bext = 0, and vanishing gradients in ψ. We then have

1

µ0
∇×∇×A+

4e2

m
|ψ|2A = 0. (2.13)

Now, using the identity ∇×∇×A = ∇(∇ ·A)−∇2A, assuming the Coulomb

gauge, ∇ ·A = 0, and dividing by 4e2/m|ψ|2, we arrive at

m

4e2µ0|ψ|2
∇2A−A = 0. (2.14)

We see that

λ ≡
√

m

4e2µ0|ψ|2
(2.15)

describes the natural length-scale for gradients in A and is referred to as the

penetration depth.

The ratio of the penetration depth and correlation length,

κ =
λ

ξ
(2.16)

is called the Ginzburg-Landau parameter. Superconductors for which κ < 1/
√

2

are called Type I, while those with κ > 1/
√

2 are called Type II. The phenomeno-

logical difference between these two types are vast and rich and a complete

discussion is the scope of this thesis. However, I will mention here that Type

II superconductors are those that exhibit vortices in the presence of magnetic

fields. All of the superconducting materials I discuss are Type II.

Now imagine a situation in which the order-parameter is at its equilibrium

value,
√
|α|/β, and the superconductor is in a perfect Meissner state, A = 0.
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Then, setting the free energy density equal to zero gives

α
|α|
β

+
β

2

|α|2

β2
+

1

2µ0
|Bext|2 = 0 (2.17)

which defines the thermodynamic critical field

Bc =

√
µ0|α|2
β

. (2.18)

This is the field at which the free energy cost of expelling the magnetic field

from the bulk of the superconductor equals the free energy gained by being in

the superconducting state.

By defining ψ ≡ ψ0ψ̃, x = λx̃, and A ≡
√

2BcλÃ, I can use these results to

write a dimensionless free-energy suitable for numerical work,

F̃ [ψ̃, ψ̃∗, Ã] =

∫
Ω

d3x̃

{∣∣∣∣(∇κ − iÃ
)
ψ̃

∣∣∣∣2 + sgn(α)|ψ̃|2 +
1

2
|ψ̃|4 + |∇ × Ã− B̃ext|2

}
,

(2.19)

which gives the free energy in units of λ2|α|2/β.

There are some useful things to keep in mind when working in these di-

mensionless units. For instance, notice that the only parameter that explicitly

enters the free energy is the Ginzburg-Landau parameter, κ, the ratio of λ and

ξ. However, in order to determine the correct geometric parameters, you must

know λ separately, since lengths are measured in penetration depths.

One also needs to know how to translate quantities back into dimensionful

units, and vice-versa. Knowing how to do so can save valuable calculation time.

For instance, suppose I want to study the periodicity of a thin ring. I know

that the size of a period is given by πr2Bext = Φ0. What value of B̃ does this

correspond to? Firstly, since we are going to have to translate the distances into

units of penetration depths, write r = γλ. We also know that B =
√

2BcB̃.

Using these in the above expression we have

√
2πγ2λ2BcB̃ = Φ0. (2.20)

This expression would seem to indicate that by varying the critical field Bc

while keeping λ fixed, we could vary the periodicity of the ring. This is contrary

to experience as the periodicity of superconducting rings is usually insensitive

to the critical field. Since κ is the only parameter to explicitly enter the di-

mensionless equations of motion, B must depend only on κ and the geometry

parameter γ. The reason some of these expressions look strange is that in order

to be internally consistent, Ginzburg-Landau theory fixes the thermodynamic

critical field if λ and ξ are known and they may be swapped for one another.
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Tinkham[18, Eq. 4.27] gives the expression

κΦ0 = 2
√

2πλ2Bc. (2.21)

Combining this with the previous expression for Φ0 gives B̃ = 2/γ2κ as the

periodicity of a thin ring in dimensionless units. Multiplying by
√

2Bc and

using Tinkham’s equation, this reduces to

B =
Φ0

πγ2λ2
=

Φ0

πr2
(2.22)

as expected.

2.1.2 Flux quantization

Consider the number-current, equation (2.4). If we write ψ as |ψ|eiθ, this ex-

pression reduces to

J =
~
m
|ψ|2

(
∇θ − 2e

~
A

)
≡ |ψ|2vs (2.23)

which defines the supercurrent velocity vs. Rearranging this expression and

integrating around a closed path we can write

~
2e

∮
∇θ · dl = Φ + 2eµ0

∮
λ2J · dl. (2.24)

where Φ =
∮
A · dl is the flux threading the closed path. The expression on

the left is called the fluxoid, Φ
′
. Because of the single valuedness of the order-

parameter, it must be quantized to multiples of h/2e ≡ Φ0, the magnetic flux

quantum. If we suppose that the closed path taken is deep enough in the interior

of a superconductor that we may ignore the current J , the expression reduces

to

Φ = nΦ0, (2.25)

showing that the magnetic flux piercing a superconductor is quantized. This

result should be contrasted with those of the next section in which I show how

flux may be quantized in units half as large in superconductors that admit

p-wave pairing.

In Type II superconductors, which support the presence of vortices, it is en-

ergetically favorable for each vortex to contain only one quantum of flux. The

vortices possess complex interactions, forming the so-called Abrikosov vortex

lattice, as shown in Figure 2.2. These interactions are one of the primary mo-

tivations in choosing the ring-like geometry of [1]. Once the vortices enter the

hole in interior of the ring, the interactions are no longer of any consideration

simply because there are no more vortices. The energetics of the resulting ladder

of fluxoid states is much easier to study. An introduction to the energetics of
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these fluxoid states and the resulting magnetization curves is given in Appendix

A.

Figure 2.2: Time series of vortices, having just entered the superconductor from
the edges, move to form the triangular Abrikosov vortex lattice.

2.2 Spin and charge stiffness

For a spin-triplet px+ipy superconductor with a fixed orbital angular momentum

vector l = ẑ, the order parameter is matrix-valued and of the form[20, 11, 21][
∆↑↑ ∆↑↓

∆↓↑ ∆↓↓

]
= |∆|eiχ(−iσ2 σ · d) = |∆|eiχ

[
−(d1 + id2) d3

d3 d1 − id2

]
. (2.26)

The d vector has unit length, and for our application we will assume that it is

perpendicular to a spin-quantization axis e3, which need not be the z axis. We

therefore set d3 = 0, d1 + id2 = eiφ, and define the phases of ∆↑↑ and ∆↓↓ to

be θ↑ + π and θ↓ respectively. Then

χ =
1

2
(θ↑ + θ↓), (2.27)

φ =
1

2
(θ↑ − θ↓). (2.28)
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The authors of [13](see also [22, 23]) write the free-energy density in the London

form

Klondon = ρs

∣∣∣∣∇χ− 2e

~
A

∣∣∣∣2 + ρspin|∇φ|2. (2.29)

This expression contains only the Goldstone fields χ and φ and so ignores the

free-energy cost of gradients in the magnitude of the order parameter. Nonethe-

less Eq. (2.29) captures the essential far-from-core vortex energetics. In par-

ticular, in a half-quantum vortex either θ↑ or θ↓ (but not both) rotate through

±2π. Then χ and φ rotate through ±π. Far from the vortex core, the B field

will adjust so as to make the first term in K zero, hence the total flux threading

the half-vortex is given by

Φ1/2 =

∮
A · dr =

~
2e

∮
∇χ · dr =

1

4

(
2π~
e

)
=

1

2
Φ0. (2.30)

The remaining term cannot be screened by the B field and gives a contribution

to the vortex energy that is logarithmically divergent at large distances. This

divergent energy cost means that a half-quantum vortex will be disfavoured

unless the spin stiffness ρspin is small and a finite size to the superconducting

region cuts-off the long-distance contribution.

The angle-valued Goldstone fields are not suitable for numerical work as

they are not singled-valued in the presence of vortices. We need to write

the free energy in terms of single-valued fields. We therefore introduce fields

ψ↑ = |ψ↑| exp{iθ↑} and ψ↓ = |ψ↓| exp{iθ↓}. The simplest form for the Landau-

Ginzburg free-energy density that has the correct symmetries contains the kinetic-

energy density

Klandau =
~2

2m∗

{∣∣∣∣(∇− 2ie

~
A

)
ψ↑

∣∣∣∣2 +

∣∣∣∣(∇− 2ie

~
A

)
ψ↓

∣∣∣∣2 + 2bJ↑ · J↓

}
,

(2.31)

where

J↑ =
ie~
m∗

(
ψ∗↑

(
∇− 2ie

~
A

)
ψ↑ − ψ↑

(
∇+

2ie

~
A

)
ψ∗↑

)
, (2.32)

J↓ =
ie~
m∗

(
ψ∗↓

(
∇− 2ie

~
A

)
)ψ↓ − ψ↓

(
∇+

2ie

~
A

)
ψ∗↓

)
. (2.33)

The current-current interaction introduces no new magnitude-gradient free-

energy cost, and so does not affect the coherence length.

If we set ψ↑ = |ψ|eiθ↑ , etc., and temporarily ignore derivatives of the common
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magnitude |ψ| , then

Klandau ≈ |ψ|2 ~2

2m∗

{∣∣∣∣∇θ↑ − 2e

~
A

∣∣∣∣2 +

∣∣∣∣∇θ↓ − 2e

~
A

∣∣∣∣2
+2b

(
∇θ↑ −

2e

~
A

)
·
(
∇θ↓ −

2e

~
A

)}
= |ψ|2 ~2

2m∗

{
2(1 + b)

∣∣∣∣∇χ− 2e

~
A

∣∣∣∣2 + 2(1− b)|∇φ|2
}
, (2.34)

which is to be compared with desired London form of [13]. As ρspin must be

positive, b must be less than unity. Being just less than unity encourages half-

quantum vortices.

The presence of the term 2bJ↑ ·J↓ in the free energy density alters the current

Jmaxwell that couples to the magnetic field. We have

Jmaxwell = J↑ + J↓ −
8e2b

m∗
(|ψ↑|2J↓ + |ψ↓|2J↑). (2.35)

Figure 2.3: Time series of full-quantum vortices splitting into half-quantum
vortices upon increase of the current-current coupling parameter.

The effect of the current-current interaction can be seen most starkly in

figure 2.3. The frames in figure 2.3 show temperature plots of the magnetic

field in a two-dimensional slab of superconducting material with kinetic energy

density given by equation (2.31). In frame 1, the coupling parameter b is equal
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to zero and the sample is penetrated by four vortices each containing a full

quantum of flux. The coupling parameter b is then increased linearly with time.

When b reaches the geometry dependent critical value, each of these vortices

splits into two separate vortices, each containing half of the orignal flux quantum

as evidenced by a darker shade in the temperature plot.

Another interesting figure that gives more insight into what’s going on is

figure 2.4. The left-hand plot of the time series shows temperature plots of

|ψ↑|+ |ψ↓| while the right-hand figures show only |ψ↓|. This shows that the ψ↓

component, itself, is what forms one set of the half-quantum vortices, ψ↑ the

other. One can think of the current-current coupling term in equation (2.31)

as imposing an energy cost for the vortices of ψ↑ and ψ↓ to exist in the same

space. The components then seperate from each other to form the half-quantum

vortices.

Figure 2.4: The left-hand figures display |ψ↑|+ |ψ↓| while the right-hand figures
show only |ψ↓|. This time series shows how these components break apart to
form the half-quantum vortices.

2.3 Kinematic spin polarization

Legget and Vakaryuk propose [14] that the dependence of the half-quantum

vortex stability region on the applied in-plane field Bx can be understood via

the existence of a spontaneous spin polarization in the half-quantum vortex state

that arises from the difference between the spin-up and spin-down condensate

velocities v↑ and v↓ in the half-quantum vortex.

The polarization occurs because for each of the two spin components in the
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Landau-Ginzburg theory we have a version of Bernoulli’s equation:

1

2
m∗|v↑,↓|2 +

∂u

∂ρ↑,↓
= const. (2.36)

Here ρ↑,↓ = |ψ↑,↓|2, and

u(ρ) = αρ+
1

2
βρ2, (2.37)

is the potential part of the Landau-Ginzburg free energy density.

As a consequence, as the superflow becomes faster, the order-parameter

density lowers. The polarizing tendency is proportional to

|v↑|2 − |v↓|2 = (v↑ + v↓) · (v↑ − v↓) (2.38)

= vcharge · vspin (2.39)

This polarizing tendency gives rise to spin magnetic moment

µspin = gµB
(
|ψ↑|2 − |ψ↓|2

)
e3 (2.40)

Here µB denotes the Bohr magneton, and g is a phenomenological parameter

that we expect to be of order unity. (If |ψ|2↑,↓ were the actual density of cooper

pairs, and if each of the two electrons in the pair contributes a Dirac moment

of µelectron ≈ µB , we would have g = 2.) The induced moment couples to the

magnetic field to give a free-energy contribution

∆F = −B · µspin. (2.41)

Jang et al. [1] assume that this moment lies in the x-y plane and so it is affected

only by Bx. We therefore account for it by including a term

∆F = −gµB
(
|ψ↑|2 − |ψ↓|2

)
B‖ (2.42)

in our free-energy functional. Without this term, it would be possible to obtain

analytic, London-limit expressions for the magnetization curves as in [24]. That

this term affects the magnitudes of the superfluid densities unequally and in a

non-homogeneous way is what makes undertaking numerical solutions necessary,

even for highly symmetric geometries.

2.4 Anisotropy

The superconductor Sr2RuO4 posseses a layered perovskite structure as shown

in figure 2.5. The superconductivity is strongest in the metallic planes, which

are weakly linked to each other in the z-direction. As such, the current response

in the z-direction is suppressed relative to the x- and y-directions.

Anisotropic behavior is common to other perovskite superconductors, such
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Figure 2.5: A unit cell of the layered perovskite structure of Sr2RuO4. Ruthe-
nium ions are red, strontium ions are blue, and oxygen ions are green.

as the cuprates and other high-temperature superconductors. A model of 2D su-

perconducting planes weakly linked in the z-direction was proposed by Lawrence

and Doniach[25]. In the limit that ψ varies slowly in the z-direction relative

to the interplanar separation, this model reduces to the anisotropic Ginzburg-

Landau model. In the anisotropic Ginzburg-Landau model, the scalar mass m∗

is replaced with a mass tensor M∗ so that the free energy becomes[26]

F [ψ,ψ∗,A] =

∫
Ω

d3x

{
~2

2

(
∇+

2ie

~
A

)
ψ∗ · (M∗)−1 ·

(
∇− 2ie

~
A

)
ψ+

+α|ψ|2 +
β

2
|ψ|4 +

1

2µ0
|∇ ×A−Bext|2

}
. (2.43)

We choose a coordinate system such that the crystal ab planes lie in the xy-

plane and are displaced from each other in the z direction. Then, the effective

mass tensor takes the form

M∗ = diag(m‖,m‖,m⊥). (2.44)

We can now define penetration depths and correlation lengths for both in-

plane and c-axis gradients. If we dedimensionalize the free energy by measuring
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Parameter ab c
Bc(0) (T) 0.023
ξ(0) (nm) 66 3.3
λ(0) (nm) 152 3000
κ(0) 2.3 46

Table 2.1: Table of the measured Ginzburg-Landau parameters of Sr2RuO4.

lengths in units of

λ‖ =

√
βm‖

4µ0e2|α|
, (2.45)

magnetic fields in units of
√

2Bc1 and the order parameter in units of ψ0 we

have

F [ψ,ψ∗,A] =
∫

Ω
d3x

{(
1
κ∇− iA

)
ψ∗ · (M∗red)−1 ·

(
1
κ∇+ iA

)
ψ

+sgn(α)|ψ|2 + 1
2 |ψ|

4 + |∇ ×A−Bext|2
}

(2.46)

where the ratio M∗red = diag(1, 1, γ) is the reduced effective mass tensor and

γ =
m⊥
m‖

=

(
λ⊥
λ‖

)2

(2.47)

can be calculated from the measured penetration depths λ⊥ and λ‖ of Sr2RuO4

and is found to be approximately 400. Table 2.1 lists the various Ginzburg-

Landau parameters of Sr2RuO4 from [11]. Note that since ξ(0)c = 3.3 nm is

still several times larger than the interplanar spacing, ≈ 1 nm, we are justified

in using the anisotropic Ginzburg-Landau theory.

2.5 Full model free energy and equations of

motion

The complete model free energy used in the following numerical studies can be

written as

F [ψ,ψ∗,A] =
∑
↑,↓

F0 + Fint. (2.48)

The first term includes two copies of the free energy of equation (2.43), one for

each field ψ↑ and ψ↓. The other term includes the interactions between the two

fields described in sections 2.2 and 2.3. Without de-dimensionalization, they

read

Fint =

∫
Ω

d3x
{

2bJ↑ · J↓ − gµB
(
|ψ↑|2 − |ψ↓|2

)
|B‖|

}
. (2.49)
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Writing b ≡ ξ2βb̃ and µ ≡ gµB ≡ |α|√
2Bc

µ̃ we can produce the dimensionless

quantity

F̃int =

∫
Ω

d3x̃
{

2b̃J̃↑ · J̃↓ − µ̃
(
|ψ̃↑|2 − |ψ̃↓|2

)
|B̃‖|

}
(2.50)

which gives the free-energy terms in units of λ2|α|2/β, as before.

Suppressing the tildes, the full, dimensionless, anisotropic free-energy reads

F [ψ↑, ψ↓,A] =

∫
Ω

d3x

∑
↑,↓

[(
∇
κ
− iA

)
ψ∗i · (M∗)−1 ·

(
∇
κ

+ iA

)
ψi

+sgn(α)|ψi|2 +
1

2
|ψi|4

]
+ |∇ ×A−Bext|2

+2bJ↑ · (M∗)−1 · J↓ − µ
(
|ψ↑|2 − |ψ↓|2

)
B‖
}
. (2.51)

Minimizing this funtional with respect to ψ∗↑ , ψ
∗
↓ , and A gives us

δF

δψ∗↑
= −∇

κ
· (M∗)−1 ·

[(
∇
κ
− iA

)
ψ↑ + ibψ↑J↓

]
+ (sgn(α) + |ψ↑|2 + |A|2 − 2bJ↓ · (M∗)−1 ·A)ψ↑

+ i
∇
κ
ψ↑ · (M∗)−1 · (A− bJ↓)− µψ↑B‖, (2.52)

δF

δψ∗↓
= −∇

κ
· (M∗)−1 ·

[(
∇
κ
− iA

)
ψ↓ + ibψ↓J↑

]
+ (sgn(α) + |ψ↓|2 + |A|2 − 2bJ↑ · (M∗)−1 ·A)ψ↓

+ i
∇
κ
ψ↓ · (M∗)−1 · (A− bJ↑) + µψ↓B‖, (2.53)

and

δF

δA
= ∇×∇× (A−Bext)− (J↑ + J↓)− b(|ψ↑|2J↓ + |ψ↓|2J↑). (2.54)

Here, the dimensionless current is

J i =
1

2i

[
ψ∗i

(
∇
κ
− iA)

)
ψi − ψi

(
∇
κ

+ iA

)
ψ∗i

]
(2.55)

which give the current in units of |α|/ξβ.

The associated boundary conditions are

n̂ · (M∗)−1 ·
[(
∇
κ
− iA

)
ψ↑ + ibψ↑J↓

]
= 0, (2.56)

n̂ · (M∗)−1 ·
[(
∇
κ
− iA

)
ψ↓ + ibψ↓J↑

]
= 0, (2.57)
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and

∇× (∇×A−Bext) = 0, (2.58)

to be satisfied at the boundary of the superconductor. One will notice that

these equations reduce to the usual Ginzburg-Landau equations and boundary

conditions, if b and µ are set equal to zero.
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3 Numerical Method

3.1 Equations and boundary conditions

My goal was to calculate equilibrium magnetization curves that can be directly

compared with those in [1] (see figures 1.1 and 1.2). Because of the asymmetric

and three-dimensional character of the experimental samples, these curves have

to be found numerically. The finite-element method is a natural tool for handling

the highly asymmetric geometries involved. Of the many published numerical

solutions to the Ginzburg-Landau equations (a small sampling includes [27, 28,

29]), the vast majority are of two-dimensional regions. Most do not adequately

treat the energy of magnetic field surrounding the superconducting region nor

do they seek to accurately calculate magnetization curves. Because of the lack

of collective experience in this endeavor, I had to be led by bitter experience to

a consistent and robust method of finding accurate solutions.

I seek the local minima (potentially metastable states) by choosing initial

data and sliding down the free-energy hill via

∂A

∂t
= − δF

δA
;

∂ψi
∂t

= − δF

δψ∗i
. (3.1)

Note the interchange of ψ and ψ∗ between the two sides of the last equation.

This is because we have used the metric defined by

||δψ||2 =

∫
Ω

d3x|δψ|2 (3.2)

to convert the functional derivative (a covector) into a gradient (a vector) in

function space. The necessary functional derivatives δF/δA, and δF/δψ∗i are

given in equations (2.52), (2.53), and (2.54).

The computational geometry is determined by attempting to define a su-

perconducting region as close to the real sample geometry as possible. This

sample is then embedded in a large cylindrical volume as depicted in figure 3.3.

For the boundary conditions of the vector potential, we can establish the exter-

nally imposed magnetic field B = (Bx, By, Bz) by imposing the inhomogeneous
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Dirichlet boundary conditions

Ax =
1

2
(Byz −Bzy),

Ay =
1

2
(Bzx−Bxz), (3.3)

Az =
1

2
(Bxy −Byx).

on the surface ∂Ω of the cylinder.

The first calculations I performed and reported in my preliminary exami-

nation were of rings with weak link Josephson junctions given in Appendix B.

Initially my advisor and I thought it would be simplest not to impose the natu-

ral boundary conditions for the order-parameters, given in equations (2.56) and

(2.57, at the boundary of the superconductor, but to simply set sgn(α)=-1 in

the superconducting volume, along with sgn(α)=+1 in the surrounding volume.

This is equivalent to modelling a superconductor embedded in a normal metal.

The subsequent proximity effect prohibits one from making a correspondence

between the volume with sgn(α)=-1 and the physical superconductor. This

was very striking in the studies of rings with weak links because the volume in

which sgn(α)=-1 was not multiply connected and yet the system showed peri-

odic fluctuations in free energy and magnetic moment. This led us to impose the

“natural” boundary conditions that arise from the variational problem of free

energy minimization. In other words, we require the vanishing of the integrated

out variation terms on the surface of the superconductor. This leads to

n · (M∗red)−1 ·

(
∇
κ
− iA− β̃

κ
J↓

)
ψ↑ = 0

n · (M∗red)−1 ·

(
∇
κ
− iA− β̃

κ
J↑

)
ψ↓ = 0 (3.4)

on the surface of the superconducting ring.

I find the fields that minimize the free energy by first choosing initial condi-

tions for the magnetic vector potential and for the order-parameter fields, and

then allow them to relax to a (local) minimum in free-energy via equations (3.1).

I can then integrate (r×J)z over the volume to find the magnetic moment in the

z-direction. We initially thought that we could simply calculate the results of

starting the system in the state ψ↑ = ψ↓ = 1, Bext = 0 at t = 0 and linearly in-

crease the magnetic field. Unfortunately this doesn’t capture the proper physics

due to an effect I refer to as numerical hysteresis. In nature, the transition from

one fluxoid state to another is expedited by thermally activated vortices. In my

equations I do not have any terms modelling thermal fluctuations. This leads

to the transitions between fluxoid states being delayed, making it impossible to

capture the correct periodicity. Simply adding randomly varying terms to the

psuedopotential has little effect as these are not the right type of fluctuations.
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What one would like to simulate are vortex fluctuations, for which it would be

very difficult to write analytic expression.

I then tried a method similar to what was done in the experiment of [1]

called “field-cooling”. I set sgn(α)=+1 at t = 0 along with Bext to the desired

value. Then, sgn(α) was continuously lowered until it equalled −1. I hoped

that the order-parameter would instantiate itself in with the correct winding

number. Unfortunately, this method was unreliable as can be seen in figure 3.1.

The system jumps between fluxoid states in an almost random fashion. It is

impossible to draw from this the correct periodicity.

Figure 3.1: Illustrating the unreliability of the field-cooled results.

After these failures, I developed a strategy based on calculating the mag-

netization curves via the formula −∂F/∂Bext. I begin by imposing the initial

conditions

ψ↑ = exp[in↑φ]; ψ↓ = exp[in↓φ] (3.5)

that correspond to a selected flux state. (Here, φ is the azimuthal angle around

the ring. For instance, (n↑, n↓) = (0, 0) corresponds to the zero flux state while

(1, 0) and (0, 1) correspond to half-flux states.)

After selecting the desired winding numbers and setting the externally im-

posed magnetic field, I allow the system to relax to a local minimum of the free

energy. This free energy is then calculated by evaluating the integral in (2.51).

In this way we are able to construct diagrams of free energy versus applied mag-

netic field in the z-direction for different flux states and for different values of

in-plane magnetic field. These diagrams reveal which flux state is energetically

favorable at each value of applied z-axis field. Using these, I numerically com-

pute the derivatives of the free energy with respect to the applied z-axis field,

and thus construct the magnetization curves.

I will focus on the results for the single annular sample shown in figure 3.3.

The ring’s inner radius is 2 λ|| while the outer radius averages 5.29 λ|| where

λ||(T = 0) is given as 152 nm for Sr2RuO4 in [11]. The height of the sample
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Figure 3.2: Temperature plots of the phase in states with winding number n=0,
n=1, and n=2.

is 1.7 λ||. This geometry is designed to approximate the experimental sample

shown in Figure [1.1]. The ring is centered in a cylindrical volume Ω of height

20 λ|| and radius 20 λ||. The dimensions of the cylinder were chosen to balance

the competing effects of increased computation time for larger cylinders against

spuriously high magnetic field energies caused by confining the field in too small

a volume.

Figure 3.3: On the left is shown a representation of the simulated geometry. On
the right is a top-down view of the simulated ring. The axes in both figures are
labelled in units of λ||.
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4 Results

Figure 4.1: This figure shows an example of calculated relative free energies of
the integer and half-flux states near the first transition. Each red line repre-
sents the free energy of the half-flux state at different values of applied in-plane
magnetic field. Higher magnetic fields are seen to result in relatively lower free
energies of the half-flux state.

Figure 4.1 illustrates the free energy of the system versus applied z-axis field

(from 0 to 32.5 Gauss), and for a few values of applied in-plane magnetic field.

The blue line depicts the (0,0) and (1,1) integer-flux states while the red line

depicts the (1,0) half-flux state.1 One can see from the diagram that the half-

flux state has a reduced free energy versus the integer-flux states for higher

values of in-plane field.

Applying a parabolic fit to the free energy curves, one can take the deriva-

tive with respect to the applied magnetic field to obtain magnetization curves.

Figure 4.2 displays magnetization curves versus z-axis field for various values of

in-plane field, as in Figure 2. The magnetization curves are seen to be quali-

tatively similar to the experimental curves of figure 1.2. By adjusting b̃ and µ̃

one may obtain the desired minimum in-plane stabilization field and stability

region growth rate.

The dimensionless current-current coupling parameter b̃ can be related to

1Applying an in-plane field produces a spin polarization for both integer and half integer
flux states. We have plotted the data so as to show only the relative free energy of the integer
and half-integer states. We did this by shifting all curves by an in-plane-field dependent
constant so that the integer-flux state’s data overlap one another.
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Figure 4.2: Computed magnetization curves obtained using ρsp/ρs = 0.25 and
a magnetic dipole moment of 0.55µB .

the ratio of the spin and charge fluid densities via

ρsp
ρs

=
1− b̃
1 + b̃

. (4.1)

Typical values of b̃ which matched the experimental data were 0.4-0.6 corre-

sponding to ρsp/ρs between 0.25 and 0.43.

If µ̃ is interpreted as the magnetic dipole moment per particle of the spin

condensate, it gives a magnetic dipole moment in units of
√

2e2Bcλ
2m−1

e . Using

Bc = 230 Oe and λ = 152 nm, the value of this unit is approximately 2.12 ×
10−23J/T ≈ 2.2µB . Typical values of the magnetic dipole moment that fit the

data were found to be around 0.6 µB .

The magnitude of the in-plane spin magnetic moment for the case of 240

Oe in-plane field is plotted in Figure 4.3. When the applied z-axis field is near

zero, the system is in the (n↑, n↓) = (0, 0) state. The presence of the in-plane

magnetic field induces an in-plane magnetic moment even in the absence of

kinematic spin polarization. Thus, there is a non-zero moment even in the

integer flux states. The presence of kinematic spin polarization accounts for

the sudden increase in moment at the transition to the half-flux state near 12

Oe. This additional moment vanishes when the system transitions to the unit

fluxoid state at 16 Oe.
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Figure 4.3: The calculated in-plane spin magnetic moment for 200 Oe of applied
in-plane field.

4.1 Abrikosov Vortices

As discussed in [1], the half-step magnetization jumps in Figure 1.2 may be

explained by unique Abrikosov vortex configurations in a simple s-wave order

parameter. In the applied field configurations where a half-flux quantum is

detected, a vortex could pierce the sample through the sidewall precisely halfway

between the top and bottom of the ring. The vortex could then bend and exit

the top or bottom without piercing the other side. In this way, half of the ring

could contain a flux winding and could produce a half-step of magnetization.

I examined this possibility by first examining at what magnitude of applied

in-plane field an Abrikosov vortex piercing the sample in the x-direction be-

comes energetically favorable. Using the numerical technique described in the

previous section with the usual s-wave Ginzburg-Landau model, I gave the sys-

tem the initial condition of having a flux winding about the x-direction (i.e.,

ψ = exp[i arctan(z/y)]). With COMSOL we are able to view the solution of

order parameter, as in Figure 4.4. The free energy of this configuration was

then compared to one with no flux winding in the sample. The results for the

sample of interest is shown in Figure 4.5. As can be seen in the figure, the vortex

becomes stable near 350 Oe of applied in-plane field, which is greater than the

region of in-plane field where the half-steps in flux quantization are first seen.

This is constistent with the experiment discussed in [1].
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Figure 4.4: Slices through the sample plotting the magnitude of the order param-
eter. Darker areas indicate lower values of the order parameter while brighter
regions indicate higher values. On the left is the sample penetrated by a vortex
oriented in the x-direction. On the right is the sample without any Abrikosov
vortices.

An analytic result for Hc1||ab in similarly sized samples of anisotropic su-

perconductors is given in [30] as Hc1||ab = (2γΦ0/πL
2
y) ln(Ly/πξab) where γ is

the anisotropy parameter λ⊥/λ||, Ly is the sample size in the ab-plane, and ξab

is the GL coherence length in the ab-plane. Using the values for our simulated

sample of γ = 20, Ly = 1600 nm, and ξab = 66nm, this formula gives 210 Oe,

which is in reasonable agreement with the numerical result. A similar result

was obtained for the sample considered in [1] where the estimated value of Hc1

was 150 Oe, while the measured value was somewhat higher at 250 Oe. These

results indicate that we should not expect to see Abrikosov vortex penetration

until the in-plane field is of much greater magnitude than where half-flux states

are detected.

I attempted to examine the stability of the bent vortex configuration by

giving the system the same initial condition ψ = exp[i arctan(z/y)] as shown

in Figure 4.4. If the bent vortex configurations were energetically favorable,

one expects the system to evolve from the initial condition to one with a bent

vortex. Despite numerous trials with magnetic field configurations in which we

saw a half-quantum vortex in the two-fluid model, I was unable to achieve a

stable bent-vortex configuration. The vortex either left the sample completely

or remained penetrating the entire sample. I recognize that this is not definitive,

but it does show the difficulty in stabilizing such a configuration.
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Figure 4.5: The free energies of a vortex oriented in the x-direction versus no
vortex.
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5 Vortex Energetics and
Magnetoresistance
Oscillations
The preceding results were qualitative in nature. However, an observant reader

will notice a large difference in the magnitudes of the magnetic moments plotted

in figures 1.2 and 4.2 despite the numerical calculations being performed using

a sample size and shape similar to the experimental setup. At a given field,

the numerical calculations yield a magnetic moment ≈ 40 times larger than the

experimental sample. What is not evident from the preceding discussion is that

this effect seems to be limited to samples with a diameter ∼ 1µm or smaller.

As a means of obtaining an order-of-magnitude approximation, consider a

model of the superconducting rings as an infinite solenoid maintaining a perfect

Meissner state. The magnetic moment, in this case, is µ = BextV/µ0, where

V is the sample volume. For a sample of 1 µm×1 µm×0.5 µm, similar to

the samples in [1], this formula gives ≈ 4 × 10−11e.m.u. at a field of 10 Oe,

significantly larger than the measured values of ≈ 1 × 10−13 e.m.u.. Compare

this case to a larger sample of 5 µm×4 µm×2 µm, such as the one featured in

[2], whose magnetization curves are reproduced here in figure 5.1. The crude

solenoid model gives an estimate of 3 × 10−12 e.m.u., in good agreement with

the data of figure 5.1.

Figure 5.1: Magnetization curves for a sample with a diameter of ≈ 5µm.
Adapted from [2].

Tc is strongly suppressed by non-magnetic impurties in materials with exotic

pairing mechanisms such as the cuprates and Sr2RuO4[11, 31, 32], presumably

due to scattering that averages k-states near the Fermi surface with opposite

phase. It is natural to expect that the order parameter in such materials is

greatly suppressed near the surface leaving a layer of depth ∼ ξ with negligible
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magnetization and greatly increasing the effective penetration depth. Given the

correlation length in Sr2RuO4 of 50-100 nm, the effect of this mechanism on the

magnetization should be negligible in macroscopic sample sizes. However, for the

mesoscopic samples used in [1], one would expect this effect to be significantly

enhanced as the suppressed region would make up a much larger proportion of

the sample. This idea is shown scematically in figure 5.2.

Figure 5.2: For a sample of smaller size, the suppression of the order-parameter
near the edges has a more pronounced effect on the overall average magnitude
and penetration depth.

In the rest of this chapter we try to put this idea on a more quantitative

footing. There have recently been attempts by a group at Penn State University

to measure the presence of half-quantum vortices in Sr2RuO4 via signatures in

magnetoresistance oscillations[4]. Such measurements are very sensitive to the

potential barrier for vortex entry making calculations of this type important.
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Figure 5.3: The resultant change in re-
sistance due to a shift in Tc.

Figure 5.4: Data from [3]. The up-
per trace plots the applied magnetic
field.

5.1 Theory of Magnetoresistance Oscillations

in Thin Rings

5.1.1 The Little-Parks Effect

Magnetoresistance oscillations indicative of flux quantization were first observed

by W.A. Little and R.D. Parks in a thin cylinder of tin in 1962[3]. The magne-

toresistance oscillations in tin and other s-wave superconductors known before

the discovery of the cuprates could be explained as oscillations in Tc as a func-

tion of the applied magnetic field. The change in resistance is then given by

∆R = (dR/dT )∆Tc as shown in figure 5.3. This phenomenon is known as the

Little-Parks effect.

For the case of a thin-walled, infinitely long superconducting cylinder of

width w, Groff and Parks[33] give the variation of Tc as

∆Tc
Tc

=
ξ(0)2

r2
m

[(
n− Φ

Φ0

)2

(1 + a2) +
4

3
n′2a2

]
(5.1)

where ξ(0) is the zero-temperature coherence length, rm = (router − rinner)/2,

Φ = πr2
mH, a = w/2rm, H the applied field, and n′ = n/(1 + a2). Here, n is

the winding number of the order-paramter about the cylinder, and is chosen to

maximize Tc(H) as the field increases.

While the Little-Parks effect adequately describes the magnetoresistance os-

cillations in the s-wave superconductors known in the 1960’s, it fails to explain

the oscillations observed in superconductors with exotic pairing mechanisms

and smaller correlations lengths such as La2−xSrxCuO4[34, 15] and Sr2RuO4[4].

Figure 5.4 shows the experimental setup and data reported in [4]. The resis-

tance was measured in a micron-sized annulus of Sr2RuO4 etched by a focused

ion beam. The oscillations predicted by the Little-Parks effect and equation
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Figure 5.5: The experimental setup and data reported in [4]. The dotted line
shows the resistance oscillations predicted by 5.1. Adapted from [4].

(5.1), shown by the dotted line, are an order of magnitude too small to explain

the measured resistance. This is due to the dependence of equation 5.1 on ξ2.

Small correlation lengths pose a problem to explaining the observed resistance

via the Little-Parks effect but also point the way to a solution. Since materi-

als for which these phenomena occur are in the Type II regime they support

vortices and vortices crossing the walls of the superconducting ring will cause a

phase difference and thus, a voltage, across the sample.

5.1.2 Vortex-Induced Magnetoresistance Oscillations

Sochnikov et. al. [15] have proposed a theory of magnetoresistance oscillations

driven by the passage of vortices into and out of multiply connected supercon-

ductors. Their theory hinges on Ambegaokar and Halperin’s result[35], which

shows that the resistance induced by thermal fluctuations in heavily damped

Josephson junctions in the limit of small currents is given by

R

Rn
= [I0(γ0/2)] (5.2)

where γ0 ≡ ~I1(T )/eT and I0 is the zeroth-order modified Bessel function. Here,

I1(T ) is the temperature dependent maximum Josephson current. This result

was used later by Tinkham to explain the resistive transition of the cuprates[36].

Tinkham interpreted γ0 as the activation energy for vortex lattice creep in high-

temperature superconductors. In Tinkham’s own words, “not rigorously appli-

cable to this case, their results at least provide a plausible simiquantitative

model for the dependence of R/Rn on γ0.”

In the theory of Sochnikov et. al. the important processes are vortices en-

tering and exiting the multiply connected superconductor. They therefore take

γ0 to be the thermal average of the potential barriers faced by the entry and

exit of all possible vortex states. In practice, it is necessary only to consider the
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entry and exit of a vortex(+) and anti-vortex(-) with winding numbers +1 and

-1, respectively. This expression can be written concretely as

∆E =
∑

i∈in, out
j∈+,−

∆Eji e
−∆Ej

i /kBT
/ ∑
i∈in, out
j∈+,−

e−∆Ej
i /kBT . (5.3)

The task remains to find the potential barriers ∆Eji . It is fruitful to take

advantage of the useful London theory solutions of a thin, superconducting ring

given by Kogan, Clem, and Mints[17]. Condsider a superconducting ring that

has a thickness d comparable to the superconducting coherence length and whose

largest dimension is much smaller than the Pearl length Λ ≡ 2λ2/d, where λ

is the superconducting penetration depth, an analytic expression for the free

energy of the ring can be calculated. Kogan, Clem, and Mints give the free

energy of a small, thin superconducting ring of inner radius a and outer radius

b as

F±(N, v,H) = εv(v) + ε0

[(
N ± ln(b/v)

ln(b/a)

)2

− 2h

(
N ± b2 − v2

b2 − a2

)
+ h2χ

]
.

(5.4)

The free energy is given as a function of the winding number of the order pa-

rameter around the central hole N , the radius of an Abrikosov vortex v, and the

applied magnetic field H. The ± indicates which direction the order parameter

winds around the vortex. If there is a “+” Abrikosov vortex penetrating the

ring at a radius a < v < b, the winding number of the order parameter at r = a

will be N while at r = b it is N + 1. Similarly, the winding number will be

N − 1 for a “-” vortex.The quantity εv(v) is the self-energy of the Abrikosov

vortex and is given by

εv ≈
φ2

0

8π2Λ
ln

[
2v ln(b/a)

πξ
sin

π ln(v/a)

ln(b/a)

]
. (5.5)

The quantity ε0 ≡ φ2
0 ln(b/a)/8π2Λ and h = H/H0 whereH0 = 2φ0 ln(b/a)/π(b2−

a2) is the period of ring. The quantity χ is a geometric factor of order unity

given by

χ =
b2/a2 + 1

b2/a2 − 1
ln
b

a
. (5.6)

Equations (5.4) and (5.5) involve the temperature-dependent penetration depth,

λ(T ), and correlation length, ξ(T ). For these I used the functional forms

λ(T ) =
λ0√

1− (T/Tc)2
(5.7)

and

ξ(T ) =
ξ0√

1− T/Tc
(5.8)

in accord with the standard formulae found in [18, Chapter 4].
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The potential barriers to the entry and exit of vortices and anti-vortices as

a function of vortex position can be calculated by subtracting the appropriate

forms of equation (5.4). For example, the potential barrier for the entry of a

vortex into a thin ring with a winding number N is

V +
in (N, v) ≡ F+(N, v)−F0(N) (5.9)

where F0(N) is found by setting v = b in (5.4) and the potential barrier for the

exit of an vortex from a ring with winding number N is

V −out(N, v) ≡ F−(N + 1, v)−F0(N). (5.10)

The maximums of V +
out, V

+
in , V −out, and V −in are then used as the ∆Eji in (5.3)

which, in turn, can be used to calculate the resistance via (5.2).

5.2 Oscillations in Superconducting Rings of

Sr2RuO4

Cai et. al. have published data showing unconventional magnetoresistance os-

cillations in mesoscopic rings of Sr2RuO4[4]. I will here analyze the energetics

of two of the samples presented there. The ring-shaped samples were of roughly

uniform height, but the inner and outer edges were sloped so as to give the rings

a broader width at the bottom than at the top as shown in the CAD illustration

of figure 5.7. The sample dimensions are shown in table 5.1.

Figure 5.6: SEM images and critical temperature measurements for the two
sample rings analyzed in section 5.2.

As discussed above, the size of the oscillations precludes their explanation

via the Little-Parks effect. However, there is another troubling barrier to their

explanation via vortex-induced phase noise. The efficacy of vortex-induced re-

sistance depends heavily on the ratio ∆E/kBT , the potential energy barrier
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Figure 5.7: CAD illustration of the samples used in [4].

experienced by the vortex to the thermal energy. The energy barrier for a vor-

tex crossing the ring should be on the order of (B2
c/2µ0) ∗ ξ2

abd where ξab is the

penetration depth in the ab-plane and d is the ring height. Using Bc ≈ 200 Oe,

ξab ≈100 nm, and d ≈ 400 nm, I find the energy scale to be ∼ 10−18 Joules.

However, at temperatures on the order of 1 K, kBT ≈ 10−23 J. The thermal

fluctuations appear to be five orders-of-magnitude too small to explain the pas-

sage of vortices numerous enough to cause a measurable resistance. For further

investigation, I performed fits to the data of two samples published in [4].

If I assume a uniform width to the rings, which one would expect to be

rm h wtop wbottom wm rfit
m hfit wfit

m

Sample 1 480 450 250 390 320 500 450 250
Sample 2 440 400 160 230 195 450 410 200

Table 5.1: This table lists the mean width, rm, height, h, width at the top,
wtop, width at the bottom, wbottom, median width wm, and their fitted values,
given in nm, of the two samples analyzed in this thesis. The measured sample
dimensions are accurate to within ±10 nm.
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between the minimum and maximum values listed in table 5.1, I can use the

method of calculation outlined in the previous section, attempting to fit the

resistance data with the theory of resistance oscillations presented by Sochnikov

et. al. in [15]. The fits were done using a MATLAB fitting tool utilizing a

non-linear least squares technique. Using the measured applied magnetic field,

temperature, the sample’s critical temperature, and normal resistance, I fitted

for the sample’s inner and outer radius, height, zero-temperature penetration

depth, and zero-temperature correlation length.

Figure 5.8: Fit of the magnetoresistance oscillations of Sample 1.

Figure 5.9: Fit of the magnetoresistance oscillations of Sample 2.

The fits are shown in figures 5.8 and 5.9. At temperatures so near Tc, the

energetics were insensitive to the values of ξ0 near the quoted value of 66 nm[11,

Section III.C]. The fitted values of the median radius, rfit
m , height, hfit, and

width, wfit
m are shown in table 5.1. All of the fitted values of the geometry are

reasonable. This model also does a good job of capturing the correct periodicity.

However, the fitted value of λ0 was ≈ 11 µm for Sample 1 and ≈ 15 µm for
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Sample 2, both in gross excess of 152 nm given by [11] and justifying the use

of analytic solutions applicable in the Pearl limit (dimension� (λ2/2d)). Given

equation (2.15), this is a sign that the superconducting order parameter is being

suppressed, increasing the effective penetration depth of the sample.

Victor Vakaryuk and I also examined the idea that the ease of vortex tran-

sitions into and out of the ring was facilitated by a defect near the edge of the

sample. At such a defect, the order-parameter would be suppressed, making

in energetically favorable for a vortex to pass into this region. And, due to its

proximity to one of the edges, the potential barrier for such a process would be

greatly reduced. However, I argued that such a model would fail to produce the

appropriate periodicity. According to the London theory results of Kogan, Clem

and Mints for thin rings in the limit of vanishing magnetization, the period in

the free-energy is given by

H0 = 2φ0
ln(b/a)

π(b2 − a2)
(5.11)

as discussed in the previous section. The period in the magnetoresistance os-

cillations matches this period because the vortices must pass between the inner

radius, a and the outer radius, b. If vortices were passing between the outer

radius and a defect situated at a radius of b−δ, the period in magnetoresistance

oscillations should be similar to

Hdefect
0 = 2φ0

ln(b/b− δ)
π(b2 − (b− δ)2)

≈ φ0

πb2
. (5.12)

In addition, if vortices were passing to defects near the edges of the sample, the

fitted values of the ring’s width, wfit
m , would be expected to be ∼ δ. This was

not seen.

These findings support the idea that surface scattering leads to an increase in

the effective penetration depth, lowering the potential barrier faced by vortices

attempting to pass through the ring. This effect is particularly prominent in

Sr2RuO4, making it a difficult material to work with and even more difficult to

perform theoretical predictions of sample behavior. Ab initio style calculations

are nearly impossible because the magnitude of the gap can vary wildly in

regions in which the crystal structure appears regular to the naked eye. Even

producing micron-sized samples which undergo a superconducting transition is

a difficult task.
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6 Vortex Induced Phase
Shifts

In this chapter I want to explore the consequences of vortices trapped in the

bulk of a superconducting ring. First, consider the potential barrier given by

Kogan, Clem, and Mints for a vortex to pass into a small, superconducting ring:

equation (5.9). Explicitly, this is

V +
in(N,H, v) = εv(v) + ε0

{[
2N +

ln(b/v)

ln(b/a)

]
ln(b/v)

ln(b/a)
− 2h

b2 − v2

b2 − a2

}
. (6.1)

This potential is plotted in figure 6.1 for two cases. On the left is the potential

barrier for a ring with inner radius of 75 nm, outer radius of 100 nm, thickness

10 nm, with a penetration depth of 200 nm. From top to bottom, the lines

represent the potential barriers with applied fields of h = 0, 10, 20, 30, 40, and

50. On the right are the potential barriers for a ring with the same parameters

except for the inner and outer radii of 62.5 nm and 100 nm, respectively. From

top to bottom, the lines represent the potential barrier with applied fields of

h =0, 10, 20, 30, 35, and 40. For the wider ring on the right, the highlighted

Figure 6.1: Plots of the potential barriers at various applied fields for two dif-
ferent ring widths.

potential barrier reaches zero for an applied field of h = 35. This is the field

at which it is energetically favorable for a vortex to penetrate the sample, Hc1,

and we should expect to see trapped vortices in the sample for applied fields

greater than this value.

Now take a closer examination of the free-energy in equation (5.4). In the

absense of vortices, this expression reduces to

F(N,H) = ε0(N2 − 2Nh+ h2χ). (6.2)
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Equating F(N,H) to F(N + 1, H), we find they are equal at the applied field

of h = N + 1/2. Since F(N − 1, H) = F(N,H) at h = N − 1/2, we see that the

period is ∆h = 1.

Now suppose a vortex enters the sample. Equating F(N, v,H) to F(N +

1, v,H), the transition is seen to happen at

h = (N + 1/2) +
ln(b/v)

ln(b/a)
. (6.3)

Similarly, the transition between the N − 1 and N states occurs at

h = (N − 1/2) +
ln(b/v)

ln(b/a)
. (6.4)

The period hasn’t changed but the oscillations have picked up a phase of δv =

ln(b/v)/ln(b/a). The free energy for the thin ring with and without a vortex

penetrating the ring is plotted in figure 6.2, illustrating this phase shift.

Figure 6.2: Plot of the free energy of fluxoid states with and without an
Abrikosov vortex penetrating the ring.

Mills, Shen, Xu, and Liu have recently published measurements of magne-

toresistance oscillations in the anisotropic superconductor NbSe2 which seem

to show phase shifts consistent with the precense of Abrikosov vortices in the

ring[16].

The Ginzburg-Landau parameters of NbSe2 have been inferred from mea-

surements of its specific heat in high magnetic fields by Sanchez, et. al. [37]

and measurements of the magnetic susceptibility by Banerjee, et. al. [38]. Their
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ξ‖ ξ⊥ λ‖ λ⊥ κ‖ κ⊥
Sanchez et. al. 10 3 200 202 21 72
Banerjee et. al. 8 3 107 455 14 49

Table 6.1: Measured Ginzburg-Landau parameters of NbSe2. The length scales
are given in nanometers.

results are summarized in table 6.1. Their conclusions are inconsistent with one

another. I mention this only to highlight one of the difficulties in perfoming

detailed calculations of vortex energetics.

A combination of electron-beam lithography and CF4 reactive ion plasma

etching was used to prepare square, mesoscopic loops from single crystals of

NbSe2, as reported in [39]. Figures 6.4(a) and 6.4(b) show SEM images of the

two loops. The thickness of both loops is ≈ 10 nm. Mills et. al. report that the

loop in figure 6.4(a) has a median diameter r = 155±4 nm and width w = 35±4

nm while the loop of figure 6.4(b) has a median diameter of r = 200±4 nm and

width w = 70± 4 nm. The constrictions in the second sample have a width of

≈ 35 nm and are intended to reduce the potential barrier for vortex crossing to

a similar value as that for the thinner ring.

The measured resistance oscillations of the two rings are displayed in figures

6.4(c) and 6.4(d). As with the resistance oscillations in Sr2RuO4 discussed in

the previous section, the magnitude of these oscillations are too great to be

explained by the Little-Parks effect and are believed to be caused by vortices

crossing the ring. The peaks in the data show where the ring’s equilibrium

fluxoid winding number changes. The first peak to the right of µ0H = 0 is

where the equilibrium fluxoid winding number changes from n = 0 to n = 1,

the second peak where it changes from n = 1 to n = 2, etc. Looking at 6.4(d),

the space between the peaks, or the periodicity of the ring’s free energy, is 840

Oe. Near the 5th peak, there is a phase shift of 0.3∆H ≈ 160 Oe.

I undertook a numerical study of the ring displayed in 6.4(b). Using COM-

SOL, I solved the full Maxwell-Ginzburg-Landau equations (2.2) and (2.3) as-

suming a geometry reported by Mills, et. al. with the exception of the constric-

tions. This is shown in figure 6.3. I did not believe that the energetic stability

of the Abrikosov vortices would be appreciably affected by their absence. For

the purposes of the study, I assumed λ‖ = 200 nm, ξ‖ = 10 nm, and that the

anisotropy parameter, γ, was equal to 3.5. The results of that analysis are shown

in figure 6.5. The bottom three curves are the free energy of the n = 6, n = 7,

and n = 8 fluxoid state. The two curves in the upper right of the plot are the

n = 7 and n = 8 fluxoid states with an Abrikosov vortex piercing the ring. The

free energy of these states were calculated by simply giving the order-parameter

the initial conditions of ψ = exp [inφ] exp [inarctan(y/(x− v))] where φ is the

azimuthal angle around the ring and v is the location of the vortex placed on

the x-axis.

The period that I calculate is 0.054 T, in good agreement with the experi-
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Figure 6.3: CAD drawing of Sample 1 sans-constrictions.

ment. The phase shift that I calculate is 260 Oe, higher than that found in the

experiment. Also, in the experiment, the phase shift was seen to happen near

the 5th peak in the resistance oscillations, or µ0H ≈ 0.25 T. In my calculations,

the fluxoid states with Abrikosov vortices present are not energetically stable,

even at fields as high as 0.45 T.

There are a number of possible explanations for these discrepancies. Since

the period closely matches that of the experimental sample, it is likely that the

geometry and Ginzburg-Landau parameters are approximately correct. How-

ever, while I do not believe that the energetic stability of the Abrikosov vortices

will be appreciably affected by a proper modeling of the constrictions, the mag-

nitude of the phase shift may be very sensitive to geometric details.

A phenomenon that was not modeled by my calculations and which certainly

will lower Hc1 and make the presence of Abrikosov vortices more favorable is

the effect of the currents passing through the ring. The currents will apply a

Lorentz force on the vortices oriented in the z-direction, pulling the vortices

into the ring. Mills et. al. include a study of this effect summarized in figure

6.6. Useful discussions of this effect, mostly in the context of nanowires, can

be found in [40] and references therein. In addition, Berdiyorov, et. al. have

demonstrated a method of modelling current activated vortices in finite-element-

method calculations [41].

Another question to be answered is what the phase shift of subsequent vor-

tices might be. Useful answers may even be found analytically. The conformal

mapping procedure used by Kogan, Clem, and Mints, [42, Part II, Chap. 10],

may be readily extended to a thin disk with a circumference forming any reg-

ular polygon and any number of evenly spaced Abrikosov vortices penetrating

the ring. It is also a simple matter to perform finite-element calculations with

multiple vortex entry using the already discussed techniques.

Vortex induced phase shifts could potentially be a robust means of detect-

ing individual vortices and provide a new tool for studying vortex dynamics.

40



Unfortunately, at the present time, the demand for the study of the effects of

geometry and the presence of current on Abrikosov vortex-induced phase shifts

is lacking.
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Figure 6.4: (a) SEM image of single-crystal NbSe2 loop with median diameter
r ≈ 160 nm and width w ≈ 35 nm. For measurements, the current is sourced
from 1 to 6 and voltage is measured from 3 to 4. Scale bar is 100 nm. (b) SEM
image of NbSe2 loop with r ≈ 200 nm and width w ≈ 70 nm. The constricted
regions have width ≈ 30 nm. Here the current is sourced from 1 to 5 and
voltage is measured from 3 to 6. Scale bar is 100 nm. (c) Magnetoresistance of
loop in (a) at 4.2, 3.8, and 1.8 K (bottom to top) and 500 nA after subtracting
of a monotonic background and offsetting curves for clarity. Vertical lines are
separated by H0 = 840 Oe. Shaded region denotes where phase shift occurs.
(d) Magnetoresistance of loop in (b) at 1.8 K and 650 nA. Vertical lines are
separated by H0 = 540 Oe, except where indicated. Shaded regions denote
where phase shifts are acquired.
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Figure 6.5: Plot of the free energy of fluxoid states with and without an
Abrikosov vortex penetrating the ring.

Figure 6.6: Figure (a) shows the measured resistance for various values of ap-
plied current. At higher applied currents the phase shift appears at lower ap-
plied magnetic fields. Figure (b) plots the field at which the Abrikosov vortex
is presumed to enter versus applied current.
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7 Conclusions

The model described in section II can qualitatively reproduce the results of the

experiment described in [1]. Using kinematic spin polarization and a current

coupling term in a two-component Ginzburg-Landau model, numerical results

show that an in-plane field results in the increasing stability of a half-quantum

vortex state. This leads to a wedge-like stability region in the half-flux state

versus applied c-axis field as shown in Figure 4.2. Moreover, this is achieved

using physically reasonable values of µ and ρsp/ρs.

In comparing Figure 4.2 to Figure 1.2 there are some disrepencies that should

be acknowledged. Firstly, the periodicity of the numerical result is approxi-

mately 30 Oe, while that of the data is 16 Oe. This is due to the fact that,

assuming a penetration depth of 152 nm, the simulated ring’s hole diameter is

0.6 µm while the actual sample has a hole diameter of 0.75 µm. A smaller hole

necessitates a larger applied field in order to achieve the flux necessary to induce

a fluxoid transition.

A more perplexing difference is in the magnitude of the moments, the nu-

merical result’s moments being an order of magnitude larger than those shown

in Figure 1.2. These small magentic moments seem to be found only in the

smaller samples examined by Jang, et. al. The moment data collected from

larger samples, as in Figure 2 of [2], seems to be of the appropriate order of

magnitude. This phenomenon was also seen in the experiments of Cai, et. al.

[4]. In Chapter 5, I suggested that this effect may be due to a suppression of

the order-parameter due to surface scattering in samples that have dimension

of ∼ ξ. A thorough, quantitative understanding of this phenomenon is the most

difficult problem presented in this thesis and I believe that to go beyond what

I have explored here will require methods beyond Ginzburg-Landau theory.

While the origin of the suppressed magnetic moments may be qualitatively

understood, this discrepency in the magnitudes makes the interpretation of

the experiments in [1] difficult. One possible scenario explaining the half-

height jumps in magnetization were Abrikosov vortices piercing the side-wall

nearly half-way between the top and bottom of the ring. One of the argu-

ments against this is that the magnitude of the induced spin magnetic moment

µHI is an order of magnitude less than that produced by a side-wall vortex.

The estimates of µHI were determined by Jang, et. al. by using the for-

mula µHI = δHz∆µz/4(Hx − Hx,min) where ∆µz is the jump in magnetic

moment upon entry of a unit vortex, δHz is the width of the stability wedge,
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and Hx − Hx,min is the amount of applied in-plane field over the minimum

necessary to see half-flux states. For the data shown in Figure 1.2, the implied

µHI ≈ 9× 10−15 emu while, from Figure 4.3, µHI ≈ 3.5× 10−14 emu. Since the

measured ∆µz and µHI appear to be poorly understood, this argument loses

some credibility. However, the numerically calculated results shown in figure

4.2 and figure 4.3 show µHI to be an order-of-magnitude smaller than ∆µz,

suggesting that this is a generic feature. A better understanding will require

an understanding of the character and stability of wall-vortex states. While I

showed that it is difficult to find stable wall vortex states, a systematic approach

to disproving them is lacking.

Finally, in Chapter 7, I presented an unfinished study of phase shift in

the magnetoresistance oscillations of Type II superconductors. Using ana-

lytic London-limit expressions and numerical solutions, I showed that vortices

trapped in multiply connected samples will cause phase shifts in free energy os-

cillations. I also suggested several directions a future study might readily take

and which I would be interested in seeing as I believe the reward would outweigh

the cost of such a study.
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A Magnetization curves of
ring-shaped
superconductors
Consider a long, thin-walled cylinder of radius R whose central axis is coinci-

dent with z-axis. In this limit, we may consider the magnitude of the order-

parameter, |ψ|, and the supercurrent, J , to be uniform throughout the cylinder.

We also suppose that there is no appreciable magnetization so that∇×A = Bext

throughout. Using equations (2.1) and (2.23), we can write the free energy den-

sity as

f =
1

2
m|vs|2 + α|ψ|2 +

1

2
β|ψ|4

=
~2

2m
|ψ|2

(
∇θ − 2e

~
A

)2

+ α|ψ|2 +
1

2
β|ψ|4. (A.1)

Given the azimuthal symmetry of the geometry, we can take∇φ = (2πn/2πR)φ̂ =

(n/R)φ̂. Choosing the gauge for the vector potential such that A = (rBext/2)φ̂

and rearranging, we can finally cast the free energy density in the form

f =
~2

2mR2
|ψ|2

[(
n− Φ

Φ0

)2

+ α+
1

2
β|ψ|2

]
(A.2)

where Φ is the flux threading the cylinder, 2πRBext. Let us further assume that

the externally applied field is of insufficient magnitude to suppress |ψ|2 to any

appreciable extent. We may then drop the last two terms in the above equation.

The resulting free energy as a function of the applied flux is plotted in figure

A.1 for various values of n . At zero applied field, the system is in equilibrium

with a winding number of n = 0, corresponding to zero field penetrating the

ring. As the field is increased, the current and free energy increase until Φ/Φ0

exceeds 1/2, where it becomes energetically favorable to transition to the n = 1

state. This is accomplished by a vortex entering the cylinder, carrying quantum

of flux, and increasing the winding number by one.

Keeping in mind that the cylinder will maintain a winding number closest to

Φ/Φ0, we can find the magnetization by taking the derivative M = −∂F/∂Bext,

shown in figure A.2.

Magnetization curves of cylinder or ring-shaped superconductors such as this

simple example and those of figures 1.1 and 1.2 can generally be parameterized

by their period, ∆H, the slope of the curve, the magnetic susceptibility, χM ,

and the magnitude of the discontinuity when the system transitions from one
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Figure A.1: The free energy of a thin-walled cylinder for various values of the
winding number of the order parameter.

fluxoid state to another, ∆M . In the case of the the thin-walled cylinder,

∆H = Φ0, (A.3)

χM =
π~2R2

4e2µ0λ2
, (A.4)

and

∆M =
~2

4e2µ0λ2R2
. (A.5)

Analytic solutions exist for the case of an infinitely long cylinder such as

those of Arutunian and Zharkov [43]. However, to derive useful formulae for

the parameters of magnetization curves, the London limit, where one ignores

variations in |ψ|, is normally taken. For the case of an infinitely long cylinder

(length L � radius) with inner radius R1 and outer radius R2 in the London

limit, Vakaryuk [24] gives

∆H =
Φ0

πR2
1

a13

b12 − 2λ2/R2
1

, (A.6)

4πL−1χM =
πR2

3

a13

(
b21 −

4λ4

R2
1R

2
2

1

b12

)
, (A.7)

and

∆M =
Φ0L

2

(
1− 2λ2

R2
1b12

)
(A.8)

where
ajk = K0(j)I0(k)− I0(j)K0(k)

bjk = K2(j)I0(k)− I2(j)K0(k)
(A.9)

and In andKn are modified Bessel functions of n-th order andK0(j) ≡ K0(Rj/λ),

etc.

Other useful formulae are found by examing the London-limit solutions of

thin (thickness d), small (diameter� Λ = λ2/2d) superconducting rings given
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Figure A.2: The magnetic moment of a long, thin-walled cylinder.

by [17]. Analysis of those solutions gives

∆H =
2Φ0ln(R2/R1)

π(R2
2 −R2

1)
, (A.10)

χM = 2ε0
R2

2/R
2
1 + 1

R2
2/R

2
1 − 1

ln(R2/R1), (A.11)

and

∆M =
Φ0(R2

2 −R2
1)d

16πλ2
(A.12)

where ε0 is an energy scale given by Φ2
0/8π

2Λ.

For real geometries, one must resort to numerical methods as I have done in

this thesis, but these solutions provide insight, intuition, approximations, and

sanity checks on numerical solutions.

Now consider a two component model with a current-current coupling. In

section 2.2 I showed that, in the London-limit, we have the effective free energy

f = |ψ|2 ~2

2m∗

{
2(1 + b)

∣∣∣∣∇χ− 2e

~
A

∣∣∣∣2 + 2(1− b)|∇φ|2
}

(A.13)

or

f = ρs

∣∣∣∣∇χ− 2e

~
A

∣∣∣∣2 + ρspin|∇φ|2 (A.14)

where χ may possess a half-integer winding number. In order for this free energy

density to be stable, ρspin must not be negative. We can examine this free energy

in the case of a very thin cylinder of radius R as we did for the single component
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free energy and write

f =
ρs
R2

(
n− Φ

Φ0

)2

+ ρspin|∇φ|2 (A.15)

where n is allowed to be an integer or half-integer and ρspin|∇φ|2 is a geometry-

dependent energy cost only present when n is a half-integer. For a generic value

of ρspin the free energy of various winding numbers is plotted in figure A.3.

By increasing the current-current coupling parameter, b, we can lower ρspin

and make the half-flux states more stable. This is the mechanism by which I

can change the minimum in-plane field required to see half-flux states in my

calculations.

Figure A.3: The free energy curves of a two component system with current-
current coupling. The states with half-integer flux winding are shown in red.
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B Magnetic moment curves of
rings with weak links

I began by looking at thin superconducting rings with Josephson junctions. The

basic shape was a ring with an outer radius of 3.5 λ‖ and an inner radius of

2.5 λ‖, making the ring thickness 1 λ‖. The height of the ring was made to be

1.8 λ‖. Here λ‖ refers to the ab-plane penetration depth. Meano et.al. lists its

value at 0K to be 152 nm[11].

The first type of Josephson junction was created by subtracting two toroids

from the azimuthally symmetric ring making a bow-tie shaped junction (Fig.

B.1). In this study, we set sgn(α)=-1 in the volume of the ring, and sgn(α)=+1

in the surrounding vaccuum, as if there were a superconducting region embedded

in a normal metal. This led to areas outside of the defined ring boundaries to

have a non-zero value for the order parameter. It becomes difficult, then, to

model a given experimental geometry because the volume in which sgn(α)=-

1 does not correspond to the real, physical sample volume. In this case, in

order to weaken the superconductivity at the bow-tie shaped junction to an

extent at which it behaved in the manner of a weak-link Josephson junction, it

was necessary to place an actual gap in the junction. There is a region with

sgn(α)=+1 in the middle of the junction. Various gap lengths were tested to

obtain behavior similar to the experimental magnetization.

Figure B.4 is a plot of the z-component of the magnetization versus the field

strength in the z-direction for various junction widths given in nanometers.

This was obtained by establishing a superconducting phase at 0 Gauss (G) and

then increasing the field strength to 65 G as slowly as was reasonable given

finite time constraints. This was done in order to minimize effects of hysteresis

due to increasing the field strength too quickly, a phenomenon we have dubbed

“computational hysteresis”. This sort of hysteresis can be seen most clearly by

examining the magnetization curve for a junction length of 0nm; in other words,

a solid ring. The curve plotted is smooth, whereas the theoretical curve giving

the equilibrium magnetization exhibits jump discontinuities.

The order-of-magnitude of the magnetization is consistent with that found

by Raffi Budakian et. al.[1]. The magnetic susceptibility of this ring is − 1.5×
10−14cm3 which is around twice as large as that found in the sample of [1]. The

period of the magnetization curve is around 35 G which implies an effective

radius, defined by reff =
√

Φ0/2πBext, of 2.8 λ‖. One can also see that the

magnetization curve becomes more sinusoidal and the non-diamagnetic shifts in

the magnetization decrease as the Josephson coupling is decreased. All of these
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Figure B.1: Thin ring Josephson junction with cylindrical symmetry.

Figure B.2: Magnitude of the order parameter in junction with vortex.

results are consistent with the expected behavior of rings of this type and thus

the simulations are believed to be reliable.

I decided to continue examinations using the 46 nm long junction. I per-

formed tests in which a superconducting state was established in zero magnetic

field. A magnetic field oriented in the +x-direction was slowly turned up to a

desired value. At that point, a magnetic field in the z-direction was applied and

slowly turned from 0 to 65 G. Figure B.5 is a plot of the z-component of the

magnetization as a function of the c-axis field strength for various values of the

in-plane field. Figure B.6 is the same plot where I have attempted to subtract

the Meissner slope and offset the curves.

With the use of COMSOL, one can examine the solutions of the order pa-

rameter using integrated plotting software. Doing this, one can see that vortices

pass through the junction oriented along the x-axis. Figure B.2 is a temperature

plot of the magnitude of the order parameter showing a vortex in the junction.

The vortex shown occured in the field sweep with 800 G of in-plane field and
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Figure B.3: Thin ring Josephson junction pinched in one direction.

shows the asymmetric character of vortices aligned in the ab-plane of Sr2RuO4.

At lower values of in-plane field the vortices passing through the junction are

not kinked to as great of a degree.

What this shows, though, is that vortices passing through the junction in

this way fail to effect the critical current of the ring and the sinusoidal shape of

the magnetization curve is maintained.

In the second junction geometry tested, the ring was only pinched in the x-

direction, leaving the height of the ring unchanged in the weak link region (Fig.

B.3). We once again ran tests with a 46 nm wide gap of normal metal in the

junction. Significant differences with the first junction type were noticed. Figure

B.7 shows vortices entering the junction due to the application of an increasing

magnetic field in the x-direction. These vortices were not seen in the first type

of junction, presumably because the junction simply wasn’t big enough. Two

vortices entering symmetrically from the top and bottom, as shown, is expected

due to the reflection symmetry in the sample and hence, no magnetization in the

z-direction is seen. Similar results were seen when this symmetry was broken by

creating an asymmetric junction that was wider at the bottom than at the top.

Geometrical asymmetry must be present to create only a single vortex in the

junction as this would imply a non-zero magnetization in the z-direction. Once

again, these vortices do not exit the back of the ring but bend and exit toward

the plus and minus z-directions. A vortex does not penetrate the backside of

the ring until the in-plane field value is over 800 G.

Figure B.8 shows the magnetization curves of this ring with various values
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Figure B.4: Magnetization curves of a thin ring with a Josephson junction of
varying coupling strengths.

of in-plane field, the Meissner slopes subtracted off and the curves offset. One

can see that the curve with 300 G of in-plane field appears to have a double

bump in the magnetization during the first transition similar to what was found

in the data. The cause of this effect, as evidenced by animations of the order

parameter in the junction, is that the vortices passing through the junction

spend more time in the middle of the junction than near the edges. When the

vortex stops in the middle of the junction the magnetization curve remains a

constant (neglecting the diamagnetic Meissner response) until it starts moving

again, leading to this double-step pattern. However, it doesn’t appear to be

periodic as it doesn’t occur in the same way in the second transtion. Moreover,

this effect disappears when the in-plane field is turned up to 500 G. Here we

see the expected sinusoidal behavior but with a phase shift. The 800 G curve

shows a severe depression of the critical current.

To examine this behavior further we ran the same simulations but with the

in-plane field turned by 30 degrees. Figure B.9 shows the simulated data over

the range -65 G to 65 G. Once again, the 300 G magnetization curve shows a

modulation of the critical current during the first transtion. However, this time

the curve doesn’t show “stepping” but rather two “bumps” at the same value.

This effect is, once again, not periodic and vanishes when the in-plane field is

increased.
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Figure B.5: Magnetization curves of 46 nm junction with in-plane field.

Figure B.6: Magnetization curves of 46 nm junction with Meissner slope sub-
tracted and curves offset
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Figure B.7: Vortices in second geometry.
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Figure B.8: Magnetization curves of second ring.
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Figure B.9: Second ring with in-plane field rotated by 30 degrees.
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C Magnetic field
delocalization and flux
inversion
Babaev, et. al. have reported in [5] solutions for the asymptotic behavior of

the magnetic field near a vortex core in a generalized two-component Ginzburg-

Landau model. They find that only in exceptional cases is the magnetic field

screened exponentially at long distances and that near the center of the vortex,

the magnetic field actually changes directions, a phenomenon that has been

dubbed w-modulation. I will briefly summarize their argument here.

They consider a free energy of the form

E =
1

2

∫
dxdy

{
|(∂k + ieAk)ψ1|2 + |(∂k + ieAk)ψ2|2

+η1(u2
1 − |ψ1|2)2 + η2(u2

2 − |ψ2|2)2 + (εij∂iAj)
2
}
. (C.1)

Neglecting anisotropy, this is analogous to the model free energy of section 2.5

without the current-current coupling described in section 2.2. I can write the

pseudopotential terms of our half-quantum vortex model as

V (ψ↑, ψ↓) =
∑
↑,↓

{
(α∓ gµB |B‖|)|ψi|2 +

1

2
β|ψi|4

}
(C.2)

which shows that 2ηi corresponds to α∓gµB |B‖| while ηiui corresponds to β/2.

This free energy yields the equations of motion

(∂k + ieAk)2ψ1 + 2η1(u2
1 − |ψ1|2)ψ1 = 0, (C.3)

(∂k + ieAk)2ψ2 + 2η2(u2
2 − |ψ2|2)ψ2 = 0, (C.4)

and

−εkj∂jB = Jk (C.5)

where Jk = i
2e{ψ1(∂k − ieAk)ψ∗1 + ψ2(∂k − ieAk)ψ∗2 + c.c.}. They then seek

solutions of the form

(A1, A2) =
a(r)

r
(− sin θ, cos θ); ψi = ρie

−iniθ, (C.6)

enforcing an integer winding number of the order parameters about the vortex

situated at the origin. They also require that Jk → 0 and ρi → ui as r → ∞,

ensuring a localized solution. Performing the line integral of |J | around a closed
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path located far from the origin yields the flux quantization condition

a(r)→ 1

2
Φ, where Φ =

n1u
2
1 + n2u

2
2

u2
1 + u2

2

. (C.7)

An examination of this expression is illuminating. If the superfluid densities are

the same, u1 = u2, then a half-flux vortex state can be obtained if n1 6= n2.

However, if u1 6= u2, the state is no longer possesses a half-integer of flux.

This is the case for our model outlined in Chapter 2 due to the kinematic-spin-

polarization terms. Coupling to the in-plane magnetic field renders the two

superfluid densities slightly unequal.

Substituting the ansatz (C.6) into the equations of motion gives the coupled

ordinary differential equations

ρ′′1 +
ρ′1
r
− (n1 − ea)2

r2
ρ1 + 2η1(u2

1 − ρ2
1)ρ1 = 0, (C.8)

ρ′′2 +
ρ′2
r
− (n2 − ea)2

r2
ρ2 + 2η2(u2

2 − ρ2
2)ρ2 = 0, (C.9)

and

a′′ − a′

r
− e(ae(ρ2

1 + ρ2
2)− n1ρ

2
1 − n2ρ

2
2) = 0. (C.10)

Babaev et. al. then observe that in the fractional flux states in which n1 6= n2,

neither n1 − ea or n2 − ea approaches zero as r → ∞. Therefore, ρ1 and ρ2

can not approach their equilibrium values of u1 and u2 exponentially fast. They

make the self-consistent assumption that

ρi ∼ ui − αir−2 (C.11)

at large r for some real coefficients α1 and α2. Inserting into the differential

equations and demanding that the leading term (O(r−2)) vanish gives the result

αi =
(ni − Φ)2

4ηiui
, i = 1, 2. (C.12)

By a similar method, they assume that

a(r) ∼ Φ

e
− βr−2 (C.13)

and find that

β =
1

2e(u2
1 + u2

2)

[
(n1 − Φ)3

η1
+

(n2 − Φ)3

η2

]
(C.14)

Quoting Babaev, et. al. :

“Now B = r−1a′(r), so in the case where Φ > 0, a(r) interpolates between

a(0) = 0 and a∞ > 0, so one expects a′(r) > 0 uniformly, and hence B(r) > 0.

In particular, one expects a(r) to approach its boundary value a∞ from below,

so that β > 0. But in this regard, this formula contains a surprise: it is quite
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possible for β to be negative. In this case, since B(r) ∼ 2βr−4 at large r, we

see that the magnetic field has to flip its direction as one travels out from the

vortex core: it is positive for small r and negative for large r.”

They then show that this is not a pathological case and is true for half the

(ui, ηi) parameter space. Figure C.1 shows numerical solutions of the behavior

of the superfluid density near a vortex core for various flux fractions. Notice

the characteristic “W” shape of the component without a flux winding. I re-

port this here because I serendipitously discovered w-modulation in my own

numerical studies. Figure C.2 shows superfluid velocity profiles of ψ↑ and ψ↓

in the half-flux state in a ring geometry. Notice the upturn in the velocity of

the component without a phase winding near the inner edge of the ring. This

came as some surprise at first since we were initially intending to make exactly

half-flux states. However, kinematic-spin-polarization produces a difference in

magnitude between the two components leading to w-modulation.

Figure C.1: From [5]. The behavior of the superfluid densities near the core of a
vortex. On the left is plotted |ψ1| with |ψ2| on the right. The blue line represents
a flux fraction of 5/6, the green, 5/7, and the red, 1/3. the component with the
phase winding is ψ1. Notice the “W”-shape of the profile of ψ2.
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Figure C.2: Velocity profile of ψ↑ and ψ↓ in the half-flux state in a ring geometry.
Contrary to integer flux states, the superfluid velocity of the component without
a flux winding increases near the vortex core.

61



D A Brief Introduction to the
Finite-Element-Method

In this appendix I wanted to give a flavor of what the finite-element-method is

about and hopefully illustrate why it has become the de facto method for solving

partial differential equations in asymmetric geometries. Given space and time

constraints, I think the most illuminating method of beginning is with a simple

example.

Consider Poisson’s equation

∇2u(x, y) = f(x, y) in Ω (D.1)

subject to the Dirichlet boundary condition

u = 0 on ∂Ω (D.2)

where Ω is a connected open region in the (x, y) plane whose boundary ∂Ω is a

smooth manifold. The first step in solving this problem via the finite-element-

method is to convert it to its weak formulation.

D.1 Weak formulation

First, let’s write our differential equation as

∇ · ∇u(x, y) = f(x, y) in Ω. (D.3)

Now let v be an arbitrary, nice function on Ω, which satisfies v = 0 on ∂Ω.

This will be called the test function. Multiply our differential equation by v and

integrate over Ω: ∫
Ω

v∇ · ∇udxdy =

∫
Ω

vfdxdy (D.4)

Now use Gauss’s theorem to integrate by parts:∫
∂Ω

v∇u · nds−
∫

Ω

∇v · ∇udxdy =

∫
Ω

vfdxdy (D.5)

Utilizing the boundary condition on v, this reduces to∫
Ω

vfdxdy = −
∫

Ω

∇v · ∇udxdy ≡ −φ(u, v). (D.6)
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In the general case the boundary term may not vanish. This is the so-called

weak formulation. Reversing the steps, it is easy to see that if u satisfies the

weak form, it will satisfy the original differential equation. However, notice

that it only requires that u be once differentiable as opposed to the original

problem. This is why it is called weak. It is possible to find solutions to the

weak formulation of a problem for which the original form has no meaning.

φ can be turned into an inner product on a space H1
0 (Ω) of once differentiable

functions on Ω that are zero on ∂Ω. This is known as a Sobolev space.

The next step in utilizing the finite-element-method is to discretize the prob-

lem.

D.2 Discretization

The general idea is to turn our infinite-dimensional problem in equation (D.6)

into a finite-dimensional version. We do this by discretizing Ω, a process known

as creating a “mesh”, and defining a finite, linearly-independent set of test

functions on each element of the discretized space. An example of a mesh on a

two-dimensional disk is shown in figure D.1. There are many complex algorithms

for creating a mesh for a general geometry. Most popular finite-element software

packages have several and are, in large part, what give these software packages

their value.

To better understand this step in the process it is easier to briefly look at

a simpler problem in one-dimension. Imagine you wanted to solve Poisson’s

equation on the line segment (0, 1). First you would divide the line interval

(0, 1) into as many segments as you’d like by node points: x1, x2, etc., creating

the mesh. Once we have a mesh, we can introduce our approximantion to u.

We want to be able to describe u with a finite number of parameters, or degrees

of freedom. We will then insert this approximation into the weak form of our

differential equation, generating a system of linear equations.

To start with, let’s divide the interval into two equal parts: 0 < x < 1/2

and 1/2 < x < 1. Our node point, then, is x = 1/2. We will approximate u by

linear functions on each segment, meaning that to completely characterize the

solution, we only need to know u(x) at x = 0, x = 1/2, and x = 1. Denote these

values as U1, U2, and U3, respectively. These are the degrees of freedom.

Now, we can write

u(x) = U1w1(x) + U2w2(x) + U3w3(x) (D.7)

where wi are piecewise linear functions such that on each mesh interval, it equals

1 at the ith node point, and equals 0 at the other node points. For example,

w1(x) = 1 − x if 0 ≤ x ≤ 1/2 and 0 if 1/2 ≤ x ≤ 1. These are called the basis

functions or shape functions. The set of functions u(x) so constructed is called

a finite element space.
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Figure D.1: The mesh of a two-dimensional disk by triangles. (”Finite element
triangulation” by Oleg Alexandrov - self-made, with en:Matlab. Licensed under
Public Domain via Wikimedia Commons)

For the triangulated mesh of our two-dimensional problem we must first de-

fine local coordinates on each mesh element. COMSOL defines local coordinates

ξ1, ξ2 in each triangle such that ξ1 ≥ 0, ξ2 ≥ 0, ξ1 + ξ2 ≤ 1. The shape functions

are then given in table D.1.

The primary advantage of this choice of basis is that the inner products

〈wi, wj〉 =

∫ 1

0

wiwjdx (D.8)

Node Point Shape Function
(0,0) 1− ξ1 − ξ2
(1,0) ξ1
(0,1) ξ2

Table D.1: Linear shape functions for triangular mesh elements.
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and

φ(wi, wj) =

∫ 1

0

w′iw
′
jdx (D.9)

will be zero for almost all i, j. In the one-dimensional case, the support of

wk is the interval [xk−1, xk+1]. Hence, 〈wi, wj〉 and φ(wi, wj) vanish whenever

|j − k| > 1.

For the two-dimensional case, if xi and xj do not share and edge of the

triangulation mesh, then ∫
Ω

wiwjdxdy (D.10)

and ∫
Ω

∇wi · ∇wjdxdy (D.11)

both vanish.

To cast the one-dimensional problem in matrix for a general number of mesh

elements, write

u(x) =

n∑
k=1

Ukwk(x) (D.12)

and

f(x) =

n∑
k=1

Fkwk(x). (D.13)

Then, taking v(x) in equation (D.6) to be wi(x) for i = 1, ..., n, we have

−
n∑
k=1

Ukφ(wi, wj) =

n∑
k=1

Fk

∫ 1

0

wiwjdx for j = 1, 2, ..., n. (D.14)

Now let U = (U1, U2, ..., Un)T , F = (F1, ..., Fn)T as well as

Lij = φ(wi, wj) (D.15)

and

Mij =

∫ 1

0

wiwjdx. (D.16)

Equation (D.6) may be restated as

−LU = MF . (D.17)

Most of the entries of L and M are zero because the basis functions wi only

have support on a small part of the mesh. We now have a system of n linear

equations where the we matrix that we need to invert, L, consists mostly of

zeros. There are many solvers for inverting such sparse matrices. The steps

needed to produce this matrix equation in higher dimensions are exactly the

same.

The great strength in this method lies in its ability to handle compicated

geometries. In finite difference methods, it is difficult to work with a compu-
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tational grid that isn’t rectangular. In the finite-element-method, on the other

hand, can discretize the geometry in a variety of ways. The finite elements dis-

cussed here are called Lagrange elements of order 1. The order refers to the fact

that the basis elements were first order polynomials. A Lagrange element of

order k uses shape functions which are k-th order polynomials. Notice that the

Lagrange elements of order 1 would not be solutions of the original differential

equation, which requires u(x) to be twice differentiable.

There are many ways of discretizing a geometry and there are many differ-

ent types of shape functions that one can utilize. The COMSOL Multiphysics

Reference Guide[44] is a wealth of information of this type. For general informa-

tion about the finite-element-method, I found useful the textbook The Finite

Element Method: Basic Concepts and Applications[45], by Darrel W. Pepper

and Juan C. Heinrich.
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