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Abstract

Consider a symplectic circle action on a closed symplectic manifold M with

non-empty isolated fixed points. Associated to each fixed point, there are

well-defined non-zero integers, called weights. We prove that the action is

Hamiltonian if the sum of an odd number of weights is never equal to the

sum of an even number of weights (the weights may be taken at different

fixed points). Moreover, we show that if dimM = 6, or if dimM = 2n ≤ 10

and each fixed point has weights {±a1, · · · ,±an} for some positive integers

ai, the action is Hamiltonian if the sum of three weights is never equal to

zero. As applications, we recover the results for semi-free actions, and for

certain circle actions on six-dimensional manifolds. Finally, we prove that if

there are exactly three fixed points, M is equivariantly symplectomorphic to

CP2.
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Chapter 1

Introduction

The study of fixed points of a flow or a map is a classical and important

topic in geometry and dynamical systems. In this paper, we focus on the

case where a manifold admits a symplectic structure and a circle action on

the manifold preserves the symplectic structure. A circle action in symplectic

geometry corresponds to a periodic flow in mechanical systems. Fixed points

by the action corresponds to equilibrium points by the flow. If a circle action

has fixed points, a lot of information is encoded by the fixed point data of

the action.

Any Hamiltonian action is symplectic but a symplectic action needs not

be Hamiltonian. Hence it is a natural question to ask if there is a non-

Hamiltonian symplectic action on a compact symplectic manifold. It is a

classical fact that a Hamiltonian circle action on a compact symplectic man-

ifold (M,ω) has at least 1
2

dimM + 1 fixed points.

T. Frankel proves that a symplectic S1-action on a Kähler manifold is

Hamiltonian if and only if is has a fixed point [F]. The property that a

symplectic S1-action is Hamiltonian if and only if it has a fixed point holds

on 4-dimensional symplectic manifolds [MD], and it also holds for semi-free

actions on symplectic manifolds with discrete fixed points [TW]. On the

other hand, in the same paper D. McDuff constructs an example of a non-

Hamiltonian symplectic circle action with fixed points. However, in this

case the fixed point set are tori. Therefore, the question has still remained, if

there is a non-Hamiltonian symplectic circle action with isolated fixed points.

Recently, S. Tolman constructes a non-Hamiltonian symplectic circle action

on a six-dimensional compact symplectic manifold with 32 fixed points [T2].

Let the circle act symplectically on a compact, connected symplectic man-

ifold M . First of all, there cannot be exactly one fixed point, unless M is a

point. Also, due to C. Kosniowski, if there are exactly two fixed points, then

either M is the 2-sphere or dimM = 6 [Ko]. This is reproved by A. Pelayo
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and S. Tolman using another method [PT]. This result itself does not rule

out the possibility that there is a 6-dimensional compact symplectic manifold

M with exactly two fixed points by the symplectic circle action.

In this paper, we study symplectic circle actions on compact, connected

symplectic manifolds with isolated fixed points. It consists of two parts.

The first part (Chapter 3) concerns under which conditions a symplec-

tic circle action is Hamiltonian. Let the circle act symplectically on a 2n-

dimensional closed symplectic manifold and suppose that the fixed points

are isolated. Associated to each fixed point p, there are well-defined non-

zero integers wip, called weights, 1 ≤ i ≤ n. We prove that if the weights at

the fixed points satisfy certain conditions, then the action is Hamiltonian.

Consider a collection of weights among all the fixed points, counted with

multiplicity. For each integer a, the multiplicity of a in the collection is pre-

cisely maxp∈MS1 |{i|a = wip}|. For instance, if there are fixed points whose

weights are {−1,−1, 1, 1} and {−1,−1,−1, 2}, then the multiplicity of −1

and 1 in the collection is at least 3 and 2, respectively. First, we show that

the symplectic action is Hamiltonian if the sum of an odd number of weights

in the collection is never equal to the sum of an even number of weights in

the collection.

Theorem 1.0.1. Consider a symplectic circle action on a closed symplectic

manifold with non-empty isolated fixed points. The action is Hamiltonian if

the sum of an odd number of weights among all fixed points is never equal to

the sum of an even number of weights.

For instance, if the action is semi-free, all the weights are either +1 or −1.

Therefore, the sum of an odd number of weights cannot equal the sum of an

even number of weights, and hence the action is Hamiltonian. In some cases,

we only need to consider if the sum of three weights is never equal to zero.

Theorem 1.0.2. Consider a symplectic circle action on a 2n-dimensional

closed symplectic manifold with non-empty fixed points, whose weights are

{±a1,±a2, · · · ,±an} for some positive integers ai, 1 ≤ i ≤ n. Assume that

n ≤ 5 and ±ai±aj±ak 6= 0 for all i < j < k. Then the action is Hamiltonian.

Theorem 1.0.3. Consider a symplectic circle action on a six-dimensional

closed symplectic manifold with non-empty isolated fixed points. The action

is Hamiltonian if the sum of three weights among all fixed points is never

equal to zero.
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The condition that the sum of three weights among all fixed points is never

equal to zero, seems to play a certain role for a symplectic circle action to be

Hamiltonian. If a symplectic circle action on a closed symplectic manifold

M has two fixed points, then either M is the 2-sphere, or dimM = 6 and

the weights at the two fixed points are {−a− b, a, b} and {−a,−b, a+ b} for

some positive integers a and b [Ka], [PT]. If dimM = 6, then the action

cannot be Hamiltonian, since a compact Hamiltonian S1-manifold M has at

least 1
2

dimM + 1 fixed points. Moreover, there is the sum of three weights

that is equal to zero. In fact, the first Chern class at each fixed point, which

is the sum of weights at the fixed point, is equal to zero. However, to the

author’s knowledge, we do not know, whether such a manifold exists or not.

In S. Tolman’s construction of a non-Hamiltonian symplectic S1-action on a

six-dimensional compact symplectic manifold with 32 fixed points, 16 fixed

points have weights {1, 1,−2} and the other 16 fixed points have weights

{−1,−1, 2}.

Question 1.0.4. Let the circle act symplectically on a closed symplectic man-

ifold with non-empty isolated fixed points. Suppose that the sum of three

weights among all fixed points is never equal to zero. Then is the action

Hamiltonian?

In the second part (Chapter 4), we classify a symplectic circle action with

exactly three fixed points; we prove that any symplectic circle action on a

compact connected symplectic manifold with exactly three fixed points is

equivariantly symplectomorphic to CP2 with some standard action on it. In

particular, it follows that in this case the manifold must be 4-dimensional.

Moreover, the action must be Hamiltonian.

Theorem 1.0.5. Let the circle act symplectically on a compact, connected

symplectic manifold M . If there are exactly three fixed points, M is equivari-

antly symplectomorphic to CP2.
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Chapter 2

Background and Notation

A differential form α is called closed if dα = 0. A two-form ω on a manifold

M is called nondegenerate if for each vp ∈ TpM such that vp 6= 0, there

exists wp ∈ TpM such that ωp(vp, wp) 6= 0. A symplectic manifold (M,ω)

is a manifold with a closed, non-degenerate two-form ω on it.

Example 2.0.6. Examples of symplectic manifolds.

(1) (R2, dx ∧ dy) is a symplectic manifold.

(2) More generally, (R2n,
∑n

i=1 dxi ∧ dyi) are symplectic manifolds.

(3) The two torus (T2 = (S1)2, dθ1 ∧ dθ2) where we regard S1 as R/Z and

θi ∈ R/Z is an example of compact symplectic manifolds.

(4) A complex projective spaces (CPn, ωFS) with the Fubini-Study form is

another example of compact symplectic manifolds.

Let (M,ω) be a 2n-dimensional symplectic manifold. Then the wedge

product of the symplectic form ω by n-times, ωn 6= 0. Therefore ωn is a top-

degree form and gives an orientation for M . It follows that every symplectic

manifold is orientable. If (M,ω) is compact, it follows that ωi are closed but

not exact for 0 ≤ i ≤ n. Therefore, it follows that dimH2i(M) ≥ 1 for all

0 ≤ i ≤ n.

Example 2.0.7. Examples of even-dimensional manifolds that are not sym-

plectic.

(1) The Möbius strip is not a symplectic manifold since it is not orientable.

(2) An even dimensional sphere S2n is not symplectic if n > 1, since it is

compact but H2i(M) = 0 for 1 < i < n.
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Let the circle act on a symplectic manifold (M,ω). If the circle action on

M preserves ω, the action is called symplectic, i.e g∗ω = ω for each g ∈ S1.

Let XM be the vector field on M generated by the circle action. The action

is called Hamiltonian, if there exists a map µ : M → R such that

ιXMω = −dµ.

This implies that every symplectic action is Hamiltonian if H1(M ;R) = 0,

since ιXMω is closed. It is the classical fact due to Morse that any Hamiltonian

S1-action on a compact symplectic manifold has at least 1
2

dimM + 1 fixed

points, since the number of fixed points is equal to the number of critical

points of µ, which is equal to
∑

i dimH2i(M). However, this is at least
1
2

dimM + 1 since dimH2i(M) ≥ 1 for all 0 ≤ i ≤ n as mentioned above.

Example 2.0.8. Examples of symplectic S1-actions

(1) Consider the unit 2-sphere (S2, dh ∧ dθ) inside R3, where θ is the angle

about the z-axis and h is the height. Let the circle act on M by rotation

about the z-axis, i.e. it acts by g ·(θ, h) = (θ+g, h), where g ∈ S1 = R/Z.

The north pole and the south pole are the fixed points of the action. The

vector field XM generated by the action is d
dθ

and ιXMω = ι d
dθ
dh ∧ dθ =

−dh. Therefore the action is Hamiltonian.

(2) Let the circle act on the two torus (T2 = (S1)2, dθ1 ∧ dθ2) by rotation on

one factor of S1, i.e. g · (θ1, θ2) = (θ1 + g, θ2), where θi, g ∈ S1 = R/Z.

This action has no fixed points, and so it follows that the action cannot

be Hamiltonian.

Consider a circle action on a manifold M . The equivariant cohomology

of M is defined by H∗S1(M) = H∗(M ×S1 S∞). For instance, the equivariant

cohomology of a point is H∗S1({p}) = H∗({p} ×S1 S∞) = H∗(CP∞) = Z[t],

where t is of degree 2. If M is oriented and compact, then from the projection

map π : M ×S1 S∞ → CP∞ we obtain a natural push-forward map

π∗ : H i
S1(M ;Z)→ H i−dimM

S1 (CP∞;Z)

for i ∈ Z. This map is given by ”integration over the fiber” and denoted by∫
M

.

Theorem 2.0.9. (ABBV localization) [AB] Let the circle act on a compact

oriented manifold M . Fix α ∈ H∗S1(M ;Q). As elements of Q(t),
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∫
M

α =
∑

F⊂MS1

∫
F

α|F
eS1(NF )

,

where the sum is over all fixed components, and eS1(NF ) denotes the equiv-

ariant Euler class of the normal bundle to F.

Consider a circle action on an almost complex manifold (M,J). Suppose

that the action preserves the almost complex structure J . Let p be an isolated

fixed point. Then we can identify TpM with Cn and the action of S1 at p with

g ·(z1, · · · , zn) = (gξ
1
pz1, · · · , gξ

n
p zn), where ξip are non-zero integers, regarding

here S1 as a subset of C. These non-zero integers are called weights at the

fixed point p. Any symplectic manifold (M,ω) admits an almost complex

structure and hence is an almost complex manifold. Moreover, the set of

almost complex structures on M that are compatible with ω is contractible.

Therefore, at each fixed point of a symplectic manifold (M,ω) by a symplectic

circle action, the weights are well defined.

Denote σi by the ith-elementary symmetric polynomial in n variables. Then

the ith-equivariant Chern class at the fixed point p is given by

ci(M)|p = σi(ξ
1
p , ..., ξ

n
p )ti,

where t is the generator of H2
S1(p;Z). For instance, the equivariant first

Chern class at p is c1(M)|p = Σξipt, and the equivariant Euler class of the

normal bundle to p is eS1(Np) = cn(M)|p = (
∏n

j=1 ξ
j
p)t

n. Hence,∫
p

ci(M)|p
eS1(Np)

=
σi(ξ

1
p , ..., ξ

n
p )∏n

j=1 ξ
j
p

ti−n.

Denote λp by twice of the number of negative weights at p for all p ∈MS1

.

This is called the index at p and this notion agrees with the index of a fixed

point of a Hamiltonian circle action. Weights in the isotropy representation

TpM satisfy the following:

Lemma 2.0.10. [PT] Let the circle act symplectically on a 2n-dimensional

compact symplectic manifold M with isolated fixed points. Then

|{p ∈MS1 | λp = 2i}| = |{p ∈MS1 | λp = 2n− 2i}|, for all i ∈ Z.

Corollary 2.0.11. [PT] Let the circle act symplectically on a 2n-dimensional

compact symplectic manifold with k isolated fixed points. If k is odd, then n

is even.
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Lemma 2.0.12. [PT] Let the circle act symplectically on a compact sym-

plectic manifold M with isolated fixed points. Then∑
p∈MS1

Np(l) =
∑

p∈MS1

Np(−l), for all l ∈ Z.

Here, Np(l) is the multiplicity of l in the isotropy representation TpM for all

weights l ∈ Z, for p ∈MS1
.

Consider a symplectic circle action on a compact, connected symplectic

manifold. If there are exactly two fixed points, then A. Pelayo and S. Tolman

give the classification of such a manifold:

Theorem 2.0.13. [PT] Let the circle act symplectically on a compact, con-

nected symplectic manifold M with exactly two fixed points. Then either M

is the 2-sphere, or dimM = 6 and there exist positive integers a and b so

that the weights at the two fixed points are {a, b,−a− b} and {a+ b,−a,−b}.

Corollary 2.0.14. [PT] Let the circle act symplectically on a compact sym-

plectic manifold M with non-empty fixed point set. Then there are at least

two fixed points, and if dimM ≥ 8, then there are at least three fixed points.

Moreover, if the Chern class map is not identically zero and dimM ≥ 6, then

there are at least four fixed points.

Now we consider an elliptic differential operator on a 2n-dimensional com-

pact almost complex manifold (M,J), where J is an almost complex structure

on M . By choosing an almost Hermitian metric on M , we can define the

Hodge star operator ∗ and the formal adjoint operator ∂
∗

of the ∂-operator.

For each i such that 0 ≤ i ≤ n, we define an elliptic differential operator by

∂ + ∂
∗

:
⊕
j:even

Ωi,j(M) −→
⊕
j:odd

Ωi,j(M),

where Ωi,j(M) = Γ(
∧i T ∗M

⊗∧j T ∗M). The index of the operator is de-

fined to be χi(M) = dimC ker(∂+∂
∗
)−dimC coker(∂+∂

∗
). For more details,

the readers are referred to [L] and the references therein.

Let the circle act on a compact almost manifold (M,J). Assume that

the action preserves the almost complex structure J and the fixed points are

isolated. P. Li proves that the Dolbeault-type operator on an almost complex

manifold is rigid under the circle action.
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Theorem 2.0.15. [L] Consider a circle action on a 2n-dimensional compact

almost complex manifold M . Suppose that the action preserves the action and

the fixed points are isolated. Then

χi(M) =
∑

p∈MS1

σi(t
ξ1p , · · · , tξnp )∏n
j=1(1− tξ

j
p)

= (−1)iN i = (−1)n−iNn−i,

where N i is the number of fixed points of index 2i and t is an indeterminate.

In addition, assume that M is a symplectic manifold and the action is sym-

plectic. Then χ0(M) = 1 if the action is Hamiltonian, and χ0(M) = 0 if it

is not Hamiltonian.

Example 2.0.16. Examples of symplectic S1-actions with isolated fixed points.

(1) Consider an action of S1 on the 2-sphere S2 by rotating it a-times, where

we regard S2 as a subset of R3 and the action rotates with speed a about

the z-axis. The north pole N and the south pole S are the fixed points

of the action. At N and S, the action can be identified with g · z = g−az

and g · z = gaz, for g ∈ S1 ⊂ C. Therefore, the weights at N and S

are {−a} and {a}. One can check Theorems and Lemmas above for this

example.

(2) Let the circle act on CP2 by g · [z0 : z1 : z2] = [ga+bz0 : gaz1 : z2] for some

positive integers a and b. This action has three fixed points [1 : 0 : 0],

[0 : 1 : 0], and [0 : 0 : 1]. Let Ui = {[z0 : z1 : z2] ∈ CP2|zi 6= 0}. On U0,

the action is g · ( z1
z0
, z2
z0

) = ( gaz1
ga+bz0

, z2
ga+bz0

= (g−b z1
z0
, g−a−b z2

z0
). Therefore,

the weights at [1 : 0 : 0] are {−b,−a− b}. Similarly, one can show that

the weights at [0 : 1 : 0] and [0 : 0 : 1] are {b,−a} and {a, a+ b}.

Remark 2.0.17. Consider a circle action on a compact almost complex

(symplectic) manifold (M,J) ((M,ω)). Assume that the action is effective

and preserves the almost complex structure J (the symplectic structure ω).

As a subgroup of S1, Zk also acts on M , for k ∈ Z \ {−1, 0, 1}. The set MZk

of points fixed by the Zk-action is a union of smaller dimensional almost com-

plex submanifolds (symplectic submanifolds). Moreover, the isotropy weights

in MZk are multiples of k. Suppose that Z is a connected component of MZk

and dimZ = 2m. If p ∈ MS1
is a point fixed by the S1-action that lies in

the connected component Z, then p has exactly m-weights that are multiples

of k.
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Example 2.0.18. Let the circle act on M = S2×S2 = M1×M2 by rotating

the first 2-sphere 3-times and the second 2-sphere 4-times, i.e., the action is

given by g · (θ1, h1, θ2, h2) = (θ1 + 6πg, h1, θ2 + 8πg, h2), where θi are angles

and hi are heights, i = 1, 2, g ∈ S1 = R/Z, 0 ≤ g ≤ 1. This action has

four fixed points, n1 × n2, n1 × s2, s1 × n2, and s1 × s2, where ni and si

are the north pole and the south pole for each sphere, i = 1, 2. The weights

at the fixed points are Σn1×n2 = {−3,−4}, Σn1×s2 = {−3, 4}, Σs1×n2 =

{3,−4}, and Σs1×s2 = {3, 4}. Then as a subgroup of S1, Z2 acts on M by

x · (θ1, h1, θ2, h2) = (θ1 + 3πx, h1, θ2 + 4πx, h2), for x = 0, 1. Therefore, the

set of points fixed by the Z2-action is Z1 = n1 ×M2 and Z2 = s1 ×M2. In

particular, dimZi = 2 < 4 = dimM , for i = 1, 2. Inside n1 ×M2, n2 has

the weight −4 and s2 has the weight 4. Inside s1×M2, n2 has the weight −4

and s2 has the weight 4.

Lemma 2.0.19. [T1] Let the circle act on a compact symplectic manifold

(M,ω). Let p and p′ be fixed points which lie in the same component N of

MZk , for some k > 1. Then the S1-weights at p and at p′ are equal modulo

k.

Let the circle act on a compact symplectic manifold M . Let p and p′ be

fixed points which lie in the same component N of MZk , for some k > 1.

Denote Σp and Σp′ by the multisets of weights at p and p′, respectively.

Lemma 2.0.19 states that there exists a bijection between Σp and Σp′ that

takes each weight α at p to a weight β at p′ such that α ≡ β mod k.

9



Chapter 3

On symplectic S1-actions with isolated fixed
points

We begin with the proof of Theorem 1.0.1. Recall that for a symplectic

circle action on a closed symplectic manifold M with non-empty isolated

fixed points, we consider a collection of weights among all the fixed points,

counted with multiplicity, and for each integer a, the multiplicity of a in the

collection is precisely maxp∈MS1 |{i|a = wip}|.

Theorem 3.0.20. Consider a symplectic circle action on a closed symplectic

manifold with non-empty isolated fixed points. The action is Hamiltonian if

the sum of an odd number of weights among all fixed points is never equal to

the sum of an even number of weights.

Proof. The main idea of the proof is to manipulate the formula in Theorem

2.0.15; we consider χ0(M), make each exponent in the denominator positive,

and clear up the denominators by multiplying the least common multiple of

the denominators. In such a way each term has the exponent that is the sum

of the absolute values of the weights and we derive the conclusion.

Assume, on the contrary, that the action is not Hamiltonian. By Theorem

2.0.15, χ0(M) = χn(M) = 0 and there are no fixed points of index 0 and 2n.

Moreover,

χ0(M) =
∑

p∈MS1

1∏n
m=1(1− tξ

m
p )

=
∑

p∈MS1

1∏n
m=1(1− tξ

m
p )

∏
ξmp <0(−t−ξ

m
p )∏

ξmp <0(−t−ξ
m
p )

=
∑

p∈MS1

∏
ξmp <0(−t−ξ

m
p )∏

ξmp >0(1− tξ
m
p )
∏

ξmp <0{(1− tξ
m
p )(−t−ξmp )}

=
∑

p∈MS1

(−1)
λp
2

∏
ξmp <0 t

−ξmp∏
ξmp >0(1− tξ

m
p )
∏

ξmp <0(1− t−ξ
m
p )

=
∑

p∈MS1

(−1)
λp
2

t
∑
ξmp <0(−ξmp )∏n

m=1(1− t|ξ
m
p |)

= 0.
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Denote by A = {a1, a2, · · · , al} the collection of all the absolute values

of weights among all the fixed points, counted with multiplicity, where for

each positive integer a the multiplicity of a in A is precisely maxp∈MS1 |{i|a =

|wip|}|. Therefore, the least common multiple of the denominators is
∏l

i=1(1−
ta). Denote by Bp = A \ {|w1

p|, · · · , |wnp |} = {b1p, b2p, · · · , bl−np } the set of

elements in A minus the absolute values of the weights at p. We multiply

the equation above by
∏l

i=1(1− tai) to get

0 =
∑

p∈MS1

(−1)
λp
2 t

∑
ξmp <0(−ξmp )

∏
a∈Bp

(1− ta)

=
∑

p∈MS1

(−1)
λp
2 t

∑
ξmp <0(−ξmp )

(1−
∑
x

tb
x
p +

∑
x1<x2

tb
x1
p +b

x2
p + · · · )

=
∑

p∈MS1

[(−1)
λp
2 t

∑
ξmp <0(−ξmp ) − (−1)

λp
2

∑
x

t
bxp+

∑
ξmp <0(−ξmp )

+(−1)
λp
2

∑
x1<x2

t
{
∑
ξmp <0(−ξmp )}+(b

x1
p +b

x2
p )

+ · · · ].

In the last equation, each summand of the exponent of a term, −ξmp or bxp ,

is a positive integer and is an element of A. Each term whose exponent is

the sum of an odd number of elements in A has the coefficient −1 and each

term whose exponent is the sum of an even number of elements in A has the

coefficient 1.

Since χ0(M) = 0, this implies that each term whose exponent is the sum

of an odd number of elements must cancel out with another term whose

exponent is the sum of an even number of elements.

Suppose that there is a fixed point p0 of index 2i0, for some i0 such that 0 <

i0 < n. Then p0 contributes a summand (−1)i0t
∑
ξmp0

<0(−ξmp0 ), where ξmp0 < 0 are

the negative weights at p0. Since χ0(M) = 0, this term must be cancelled out.

The coefficient of the term is (−1)i0 . Therefore, if the term is cancelled out by

another term, then its exponent must be the sum of j0-elements in A, where j0

and i0 have different parities. Suppose that the summand (−1)i0t
−

∑
ξmp0

<0 ξ
m
p0 is

cancelled out by another term, say (−1)j0td1+d2+···+dj0 , di > 0. These di’s form

a subset of {−ξ1q , · · · ,−ξnq } ∪Bq for some fixed point q, i.e., {d1, · · · , dj0} ⊂
{−ξ1q , · · · ,−ξnq } ∪Bq. Let us rewrite

∑
ξmp0<0(−ξmp0) = c1 + c2 + · · ·+ ci0 , i.e.,

c1 + c2 + · · · + ci0 = d1 + d2 + · · · + dj0 . For each positive integer a, the

multiplicity of a on each side does not exceed maxp∈MS1 |{i : a = |wip|}|.
For the equation c1 +c2 + · · ·+ci0 = d1 +d2 + · · ·+dj0 , we do the following:

if ck = dk′ for some k and k′, then we cancel these terms out on the equation.

11



By performing these steps as many as possible and by permuting ci’s and di’s

if necessary, assume that we have c1 + c2 + · · ·+ ci′0 = d1 + d2 + · · ·+ dj′0 (∗),
ci, di > 0. For any positive integer a that appears in (∗), either it appears

only on the left hand side or only on the right hand side. Moreover, the

multiplicity of a in the equation does not exceed maxp∈MS1 |{i : a = |wip|}|.
Denote by C the collection of the equations, each of which is the sum of an

odd number of weights being equal to the sum of an even number of weights,

where weights are taken among all the fixed points, counted with multiplicity.

Consider an element of C. It is an equation of the form w1 +w2 + · · ·+wi′ =

wi′+1 + · · · + w2j′+1 for some i′, j′, where each wk is a weight at some fixed

point. For each integer a, the multiplicity of a on each side is at most

maxp∈MS1 |{i|a = wip}|. For the equation we do the following: if wk = −wk′
and they appear on the same side of the equation, we cancel out these terms.

If wk = wk′ and they appear on the opposite side of the equation, we also

cancel out these terms. If wk is a negative weight, we move the term to the

opposite side as −wk. By performing these steps as many as possible, assume

that we have e1+e2+· · ·+ei′′ = f1+f2+· · ·+f2j′′+1, ei, fi > 0. For any positive

integer a that appears in the last equation, either it appears only on the left

hand side or only on the right hand side. Moreover, the multiplicity of a in the

equation does not exceed maxp∈MS1 |{i| − a = wip}|+ maxp∈MS1 |{i|a = wip}|.
Note that for each positive integer a, we have that maxp∈MS1 |{i : a =

|wip|}| ≤ maxp∈MS1 |{i| − a = wip}| + maxp∈MS1 |{i|a = wip}|. Therefore, the

equation (∗) is an element of C. However, by the assumption that the sum

of an odd number of weights is never equal to the sum of an even number of

weights, C is an emptyset. Therefore, there are no fixed points of index 2i

for all 0 < i < n, which is a contradiction. �

We can generalize Theorem 1.0.1 further. Let the circle act symplectically

on a closed symplectic manifold M with isolated fixed points. As in the

proof of Theorem 3.0.20, denote by A = {a1, a2, · · · , al} the collection of

all the absolute values of weights among all the fixed points counted with

multiplicity, and Ai = {aj1 +aj2 +· · ·+aji}aj1<aj2<···<aji the collection of sums

of i elements of A, for 1 ≤ i ≤ l. For each positive integer a, the multiplicity

of a in A is precisely maxp∈MS1 |{i|a = |wip|}|. Note that here we consider

the collection of the absolute values of the weights, and hence it is different

12



from the one in the introduction. For instance, with the fixed points of the

same weights {−1,−1, 1, 1} and {−1,−1,−1, 2} as before, the multiplicity

of 1 in the collection is 4.

Theorem 3.0.21. Let the circle act symplectically on a closed symplectic

manifold M with non-empty isolated fixed points. Let A = {a1, a2, · · · , al} be

the collection of all the absolute values of weights among all the fixed points,

counted with multiplicity, and Ai = {aj1 + aj2 + · · ·+ aji}aj1<aj2<···<aji the

collection of sums of i-elements of A, for 1 ≤ i ≤ l. If there exists 0 < i < n

such that Ai ∩ Aj = ∅ for all j such that j 6= i mod 2, then the action is

Hamiltonian.

Proof. The idea of the proof is similar to that of Theorem 3.0.20. However,

we consider χi(M) for many i’s.

Assume, on the contrary, that the action is not Hamiltonian. By Theorem

2.0.15, χ0(M) = χn(M) = 0 and there are no fixed points of index 0 and 2n.

As in the proof of Theorem 3.0.20, we have

χ0(M) =
∑

p∈MS1

1∏n
m=1(1− tξ

m
p )

=
∑

p∈MS1

(−1)
λp
2

t
∑
ξmp <0(−ξmp )∏n

m=1(1− t|ξ
m
p |)

= 0.

Denote by Bp = A \ {|w1
p|, · · · , |wnp |} = {b1p, b2p, · · · , bl−np } for each fixed

point p. We multiply the equation above by
∏l

i=1(1− tai) to get

0 =
∑

p∈MS1

(−1)
λp
2 t

∑
ξmp <0(−ξmp )

∏
a∈Bp

(1− ta)

=
∑

p∈MS1

(−1)
λp
2 t

∑
ξmp <0(−ξmp )

(1−
∑
x

tb
x
p +

∑
x<y

tb
x
p+b

y
p + · · · )

=
∑

p∈MS1

[(−1)
λp
2 t

∑
ξmp <0(−ξmp ) − (−1)

λp
2

∑
x

t
bxp+

∑
ξmp <0(−ξmp )

+(−1)
λp
2

∑
x1<x2

t
{
∑
ξmp <0(−ξmp )}+(b

x1
p +b

x2
p )

+ · · · ].

In the equation, −ξmp ∈ A and bxp ∈ A for all −ξmp , bxp . Therefore, if a term

has the exponent that is the sum of i-elements in A, then the exponent is

an element of Ai. Each term whose exponent is the sum of an odd number

of elements in A has the coefficient −1 and each term whose exponent is the

sum of an even number of elements in A has the coefficient 1.

13



Since χ0(M) = 0, this implies that each term whose exponent is the sum

of an odd number of elements must cancel out with another term whose

exponent is the sum of an even number of elements.

Suppose that there is a fixed point p of index 2i, 0 < i < n. Then p

contributes a summand (−1)it
∑
ξmp <0(−ξmp )

, where ξmp < 0 are the negative

weights at p. Since χ0(M) = 0, this term must be cancelled out. The

coefficient of the term is (−1)i. Therefore, if the term is cancelled out by

another term, then its exponent must be the sum of j-elements, where j and

i have different parities. By the assumption that Ai ∩ Aj = ∅ for j 6= i

mod 2, the summand (−1)it
∑
ξmp <0(−ξmp )

cannot be cancelled out, which is a

contradiction. Therefore, there are no fixed points of index 2i.

From now on we seperate into several cases, depending on if i ≤ n
2

or i > n
2
,

if i is odd or even, and if n is odd or even. Each case is a slight variation

of the other cases. If i > n
2
, we use the symmetry that N j = Nn−j for all j,

where Nj is the number of fixed points of index 2j. With the symmetry, the

case where i > n
2

is a slight variation of the case where i ≤ n
2
.

First, suppose that i ≤ n
2

and i is odd. By Theorem 2.0.15,

χi(M) =
∑

p∈MS1

σi(t
ξ1p , · · · , tξnp )∏n

m=1(1− tξ
m
p )

= 0.

As in the proof of Theorem 3.0.20, we make the exponent of each term in

the denominators positive to get

χi(M) =
∑

p∈MS1

(−1)
λp
2
t
∑
ξmp <0(−ξmp )

σi(t
ξ1p , · · · , tξnp )∏n

m=1(1− t|ξ
m
p |)

= 0.

Multiplying the equation above by
∏l

i=1(1− tai), we have∑
p∈MS1

(−1)
λp
2 t

∑
ξmp <0(−ξmp )

σi(t
ξ1p , · · · , tξnp )

∏
a∈Bp

(1− ta) = 0.

Let us consider t
∑
ξmp <0(−ξmp )

σi(t
ξ1p , · · · , tξnp ). When we expand the terms,

the exponent of any term is the sum of positive integers that are in A.

No negative integer appears in the exponent of any term when expanded.

Therefore, when we multiply t
∑
ξmp <0(−ξmp )

σi(t
ξ1p , · · · , tξnp ) by

∏
a∈Bp(1 − ta)

and expand the terms, each summand in the equation has the exponent that

belongs to Ai for some i. If it belongs to Ai, then it has the sign (−1)i.

Suppose that a fixed point p has the index 2k, where k is even and 0 ≤
k ≤ 2i. In the last equation, such a point contributes a summand whose
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exponent is the sum of i elements. By the assumption, such a term cannot

be cancelled out. Hence there are no fixed points of index 0, 4, · · · , 4i, i.e.

N0 = N4 = · · · = N4i = 0 and thus N2n = N2n−4 = · · · = N2n−4i = 0, by

Theorem 2.0.15. In particular, χi+1(M) = (−1)i+1N i+1 = 0.

Next, we consider χi+1(M) = 0. Using the same argument, one can show

that there are no fixed points of index 2k where k is odd and 0 ≤ k ≤ i+ 2.

And then we consider χi+2(M) = 0 to conclude that there are no fixed points

of index 2k where k is even and 0 ≤ k ≤ i+ 3. We continue this to conclude

that there are no fixed points of any index, which is a contradiction.

Second, suppose that i ≤ n
2

and i is even. Using the same argument as

in the first case, by considering χi(M) = 0, one can show that there are no

fixed points of index 2k, where k is even and 0 ≤ k ≤ 2i. Next, consider

χi+2(M) = 0 and conclude that there are no fixed points of index 2k where k

even and k ≤ i+4. And then we consider χi+4(M) = 0 to conclude that there

are no fixed points of index 2k where k is even and k ≤ i + 6. We continue

this until χn−i(M) if n is even and χn−i−1(M) if n is odd, to conclude that

there are no fixed points of index that is a multiple of 4, which contradicts

Lemma 3.0.28 below that there must be fixed points whose indices differ by

2.

Third, suppose that n is odd, i > n
2
, and i is odd. Considering χi(M) = 0,

it follows that there are no fixed points of index 2k such that k is even and

0 ≤ k ≤ 2(n− i). By Theorem 2.0.15, since N j = Nn−j for all j, there are no

fixed points of index 2k, where k is odd and n− (2n− 2i) = 2i− n ≤ k ≤ n.

In particular, there are no fixed points of index i − 2. Next, considering

χi−2(M) = 0, we have that there are no fixed points of index 2k, where k is

even and k ≤ 2n− 2i+ 2. By the symmetry that N j = Nn−j for all j, there

are no fixed points of index 2k such that k is odd and 2i − n − 2 ≤ k ≤ n.

We continue this to have that there are no fixed points of any index, which

is a contradiction.

As a slight variation of the arguments above, the other cases, (4) n is odd,

i > n
2
, and i is even, (5) n is even, i > n

2
, and i is odd, and (6) n is even,

i > n
2
, and i is even, are proved. �

Corollary 3.0.22. [TW], [L] A semi-free, symplectic circle action on a

closed symplectic manifold M with isolated fixed points is Hamiltonian if
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and only if it has a fixed point.

Proof. All the weights are either 1 or −1. Therefore, Ai = {i} for each i and

so the corollary follows. �

We show that, in certain cases, we can only look at the sum of three

weights. The first instance is the following (Theorem 1.0.2):

Theorem 3.0.23. Consider a symplectic circle action on a 2n-dimensional

closed symplectic manifold M with non-empty fixed points, whose weights

are {±a1,±a2, · · · ,±an} for some positive integers ai, where 1 ≤ i ≤ n.

Assume that n ≤ 5 and ±ai± aj ± ak 6= 0 for all i < j < k. Then the action

is Hamiltonian.

Proof. Assume, on the contrary, that the action in not Hamiltonian. By

Theorem 2.0.15, χ0(M) = χn(M) = 0 and there are no fixed points of index

0 and 2n. Denote by A = {a1, a2, · · · , an} and Ai = {aj1 + aj2 + · · · +

aji}aj1<aj2<···<aji the collection of sums of i elements of A, where 1 ≤ i ≤ n.

Then the problem is equivalent to showing that if A1 ∩ A2 = ∅, the action

is Hamiltonian. We consider Ai ∩ Aj for all i, j such that i 6= j mod 2,

1 ≤ i ≤ n− 1, 1 ≤ j ≤ n.

First, assume that n ≤ 3. Then A1 ∩ A2 is the only intersection that we

consider, so the result follows from Theorem 3.0.21.

Second, assume that n = 4. Then A1 ∩ A2 and A2 ∩ A3 are the only ones

that we consider. However, A1∩A2 = ∅ if and only if A2∩A3 = ∅. Therefore

the result follows from Theorem 3.0.21.

Finally, assume that n = 5. The only possible non-empty intersections

that we consider are A1 ∩ A4 6= ∅, A2 ∩ A3 6= ∅, and A3 ∩ A4 6= ∅. However,

A2 ∩ A3 6= ∅ if and only if A3 ∩ A4 6= ∅. Therefore, we can only consider

the case A1 ∩ A4 6= ∅ and the case A2 ∩ A3 6= ∅. By the assumption that

A1 ∩ A2 = ∅, if one is satisfied, the other fails to be satisfied.

We consider χ0(M). By Theorem 2.0.15,

χ0(M) =
∑

p∈MS1

1∏
j(1− tξ

j
p)

=
∑

p∈MS1

(−1)
λp
2

∏
ξjp<0 t

−ξjp∏
j(1− t|ξ

j
p|)

= 0.

Multiplying by (1− ta1) · · · (1− ta5) on the equation above, we have
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0 =
∑

p∈MS1

(−1)
λp
2 t

∑
ξ
j
p<0

(−ξjp)
.

Assume first that A1 ∩ A4 6= ∅. Without loss of generality, let a5 =

a1 + a2 + a3 + a4. Suppose that there is a fixed point whose weights are

{−a1, a2, a3, a4, a5}. In the last expression, such a point has a summand

−ta1 . This term can only be cancelled by another term whose exponent is

the sum of even elements. However, a5 = a1+a2+a3+a4 is the only equation

among weights. Therefore, there cannot be a fixed point whose weights are

{−a1, a2, a3, a4, a5}. Similarly, one can show that we may only have fixed

points whose weights are {a1, a2, a3, a4,−a5} and {−a1,−a2,−a3,−a4, a5}.
Therefore, we only have fixed points of index 2 and 8, which contradicts

Corollary 3.0.28 below.

Next, suppose that A2∩A3 6= ∅. Without loss of generality, let a1+a2+a3 =

a4 + a5. By using an argument similar to the case above, one can show that

we may only have fixed points whose weights are {a1, a2, a3,−a4,−a5} and

{−a1,−a2,−a3, a4, a5}. Suppose that there are k fixed points whose weights

are {a1, a2, a3,−a4,−a5}. By Theorem 2.0.15, k = χ2(M) = −χ3(M) and

there are k fixed points of weights {−a1,−a2,−a3, a4, a5}. Moreover,

0 = χ1(M) = k
ta1 + ta2 + ta3 + t−a4 + t−a5

(1− ta1)(1− ta2)(1− ta3)(1− t−a4)(1− t−a5)

+k
t−a1 + t−a2 + t−a3 + ta4 + ta5

(1− t−a1)(1− t−a2)(1− t−a3)(1− ta4)(1− ta5)

= k
ta4+a5(ta1 + ta2 + ta3 + t−a4 + t−a5)

(1− ta1)(1− ta2)(1− ta3)(1− ta4)(1− ta5)

−k ta1+a2+a3(t−a1 + t−a2 + t−a3 + ta4 + ta5)

(1− ta1)(1− ta2)(1− ta3)(1− ta4)(1− ta5)
.

Multiplying the equation above by (1− ta1)(1− ta2) · · · (1− ta5), we have

0 = kta4+a5(ta1 + ta2 + ta3 + t−a4 + t−a5)

−kta1+a2+a3(t−a1 + t−a2 + t−a3 + ta4 + ta5)

= k(ta1+a4+a5 + ta2+a4+a5 + ta3+a4+a5 + ta5 + ta4)

−k(ta2+a3 + ta1+a3 + ta1+a2 + ta1+a2+a3+a4 + ta1+a2+a3+a5).

By the assumption it follows that the term kta4 cannot be cancalled out,

which is a contradiction. �
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Another case where the condition that the sum of any three weights is

never equal to zero guarantees that a symplectic action is Hamiltonian, is

when the dimension of the manifold is six (Theorem 1.0.3). In fact, we prove

a stronger result:

Theorem 3.0.24. Consider a symplectic circle action on a six-dimensional

closed symplectic manifold with non-empty isolated fixed points. Suppose that

each negative weight at the fixed point of index 2 is never equal to the sum of

negative weights at the fixed point of index 4. Then the action is Hamiltonian.

Proof. Assume, on the contrary, that the action is not Hamiltonian. By

Theorem 2.0.15, χ0(M) = χ3(M) = 0 and there are no fixed points of index

0 and 6. Moreover, the number of fixed points of index 2 and that of 4

are equal. Suppose that there are k fixed points of index 2, and let pi, qi

be the fixed points of index 2,4, respectively, for 1 ≤ i ≤ k. Let Σpi =

{−b1pi , b
2
pi
, b3pi},Σqi = {−c1qi ,−c

2
qi
, c3qi} be the weights at pi, qi, respectively,

where bjpi , c
j
qi

are positive integers. By permuting pi’s and qi’s if neccesary,

we may assume that b1p1 ≤ b1p2 ≤ · · · ≤ b1pk and c1q1 + c1q1 ≤ c1q2 + c1q2 ≤ · · · ≤
c1qk + c1qk . By Theorem 2.0.15,

χ0(M)

=
∑
i

1

(1− t−b1pi )(1− tb2pi )(1− tb3pi )
+
∑
i

1

(1− t−c1qi )(1− t−c2qi )(1− tc3qi )

= −
∑
i

tb
1
pi

(1− tb1pi )(1− tb2pi )(1− tb3pi )
+
∑
i

tc
1
qi
+c2qi

(1− tc1qi )(1− tc2qi )(1− tc3qi )
= 0.

Denote by A = {a1, a2, · · · , al} the collection of all the absolute values

of the weights over all the fixed points counted with multiplicity, where for

each positive integer a the multiplicity of a in A is precisely maxp∈MS1 |{i|a =

|wip|}|. Let Bi = A \ {b1pi , b
2
pi
, b3pi} = {d1pi , · · · , d

l−3
pi
}, Ci = A \ {c1qi , c

2
qi
, c3qi} =

{e1qi , · · · , e
l−3
qi
} be the elements in A minus the absolute values of weights at

pi,qi, respectively.

Multiplying the equation above by
∏

a∈A(1− ta), we have

0 = −
∑

i t
b1pi
∏

a∈Bi(1− t
a) +

∑
i t
c1qi+c

2
qi

∏
a∈Ci(1− t

a)

= {−
∑

i t
b1pi +

∑
i,j t

b1pi+d
j
pi −

∑
i,j1<j2

tb
1
pi
+d

j1
pi
+d

j2
pi + · · · }+ {

∑
i t
c1qi+c

2
qi −∑

i,j t
c1qi+c

2
qi
+ejqi +

∑
i,j1<j2

tc
1
qi
+c2qi+e

j1
qi
+e

j2
qi − · · · }.

In the equation, each summand in the exponent of any term is an ele-

ment of A. a term has the coefficient -1 if its exponent is the sum of odd
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elements in A and 1 if its exponent is the sum of even elements in A. Con-

sider −tb1p1 . Since b1p1 ≤ b1pi for i ≥ 2, this term cannot be cancelled out by

any summand in −
∑

i t
b1pi +

∑
i,j t

b1pi+d
j
pi −

∑
i,j1<j2

tb
1
pi
+d

j1
pi
+d

j2
pi . Therefore, it

must be cancelled out by another summand in
∑

i t
c1qi+c

2
qi −

∑
i,j t

c1qi+c
2
qi
+ejqi +∑

i,j1<j2
tc

1
qi
+c2qi+e

j1
qi
+e

j2
qi − · · · for some i, whose exponent is the sum of even

elements in A, where at least two elements of them are c1qi , c
2
qi

. By the assump-

tion, the exponent of such a summand cannot be c1qi+c
2
qi

. Hence, the exponent

of the term must be the sum of at least four elements, say b1p1 = c1qi + c2qi +α.

Next, consider tc
1
qi
+c2qi . We have that c1qi + c2qi < c1qi + c2qi + α = b1p1 . Since

c1q1 + c1q1 ≤ c1q2 + c1q2 ≤ · · · ≤ c1qk + c1qk , the term tc
1
qi
+c2qi cannot be cancelled

out by any term in
∑

i t
c1qi+c

2
qi−

∑
i,j t

c1qi+c
2
qi
+ejqi +

∑
i,j1<j2

tc
1
qi
+c2qi+e

j1
qi
+e

j2
qi −· · · .

On the other hand, c1qi + c2qi < b1p1 . Therefore, it cannot also be cancelled

out by any term in −
∑

i t
b1pi +

∑
i,j t

b1pi+d
j
pi −

∑
i,j1<j2

tb
1
pi
+d

j1
pi
+d

j2
pi , which is a

contradiction. �

As a corollary, we recover the result by L. Godinho:

Corollary 3.0.25. [G] Let the circle act symplectically on a six-dimensional

closed symplectic manifold. Suppose that fixed points are isolated and their

weights are {±a,±b,±c}, where 0 < a ≤ b ≤ c and a + b 6= c. If there is a

fixed point, then the action is Hamiltonian.

Proof. This follows from Theorem 3.0.20, Theorem 3.0.21, Theorem 3.0.23,

or Theorem 3.0.24. �

For a certain type of weights, we show that there is a restriction. To show

the restriction, we introduce a terminology.

Definition 3.0.26. Consider a circle action on a closed almost complex

manifold. Suppose that the action preserves the almost complex structures

and the fixed points are isolated. Denote by A = {a1, a2, · · · , al} the collection

of all the absolute values of weights among all the fixed points counted with

multiplicity, and Ai = {aj1 +aj2 +· · ·+aji}aj1<aj2<···<aji the collection of sums

of i elements of A, for 1 ≤ i ≤ l. A positive weight w is called primitive,

if w /∈ Ai for i ≥ 2, i.e. w is never equal to the sum of the absolute values

of weights among all the fixed points, counted with multiplicity, other than w

itself.
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Note that the smallest positive weight is primitive. In [Ka], C. Kosniowski

derives a certain formula for a holomorphic vector field on a complex manifold

with only simple isolated zeros. We follow the idea of C. Kosniowski to find a

restriction for a primitive weight of a circle action on a closed almost complex

manifold with isolated fixed points. For the smallest positive weight, the

Lemma is already given in [?] and the proof is almost identical, but we give

a proof in details.

Lemma 3.0.27. Consider a circle action on a 2n-dimensional closed al-

most complex manifold. Suppose that the action preserves the almost complex

structure and the fixed points are isolated. For each primitive weight w, the

number of times the weight −w occurs at fixed points of index 2i is equal to

the number of times the weight w occurs at fixed points of index 2i − 2, for

all i.

Proof. We first show that∑
λp=2i

[Np(w) +Np(−w)] =
∑

λp=2i−2

Np(w) +
∑

λp=2i+2

Np(−w), (∗)

where Np(w) is the number of times the weight w occurs at p. The basic

idea is to manipulate χi(M) and compare the coefficients of tw-terms. By

Theorem 2.0.15,

χi(M) =
∑

p∈MS1

σi(t
ξ1p , · · · , tξnp )∏n

m=1(1− tξ
m
p )

=
∑

p∈MS1

(−1)
λp
2

[
∏

ξmp <0 t
−ξmp ]σi(t

ξ1p , · · · , tξnp )∏n
m=1(1− t|ξ

m
p |)

.(∗∗)

Denote by Jp = [
∏
ξmp <0

t−ξ
m
p ]σi(t

ξ1p , · · · , tξnp ) and Kp =
n∏

m=1

(1− t|ξmp |).

If λp = 2i, then Jp = 1 + fp(t), where fp(t) is a polynomial that does not

have a constant term and tw-term.

If λp = 2i ± 2, then Jp = Np(∓w)tw + fp(t), where fp(t) is a polynomial

that does not have a constant term and tw-term.

If λp 6= 2i, 2i ± 2, then Jp = fp(t), where fp(t) is a polynomial that does

not have a constant term and tw-term.

Multiplying (∗∗) by
∏

p∈MS1

Kp yields
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χi(M)[1−
∑

p(Np(−w) +Np(w))tw] + g1(t) =

{(−1)i−1
∑

λp=2i−2Np(w)+(−1)i+1
∑

λp=2i+2Np(−w)+(−1)i
∑

λp=2i(Np(w)+

Np(−w))− χi(M)
∑

p(Np(w) +Np(−w))}tw +
∑

λp=2i(−1)i + g2(t),

where gi(t) are polynomials without constant terms and tw-terms. Compar-

ing the coefficients of tw-terms, the claim follows.

Applying (∗) for i = 0, we have∑
λp=0

Np(w) =
∑
λp=2

Np(−w).

Next, applying (∗) for i = 1, we have∑
λp=2

[Np(−w) +Np(w)] =
∑
λp=0

Np(w) +
∑
λp=4

Np(−w).

Since
∑
λp=0

Np(w) =
∑
λp=2

Np(−w), it follows that

∑
λp=2

Np(w) =
∑
λp=4

Np(−w),

Continuing this, the Lemma follows. �

As an application, there must be at least two fixed points whose indices are

nearby. This is shown for a holomorphic vector field on a compact complex

manifold with only simple isolated zeroes by C. Kosniowski [Ka].

Corollary 3.0.28. Consider a circle action on a closed almost complex man-

ifold. Suppose that the action preserves the almost complex structure and the

fixed points are non-empty and isolated. Then there exist two fixed points

whose indices differ by 2.

Proof. Apply Lemma 3.0.27 to the smallest positive weight. �
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Chapter 4

The Case of Three Fixed Points

4.1 Preliminaries

In the introduction, we mentioned the following:

Theorem 4.1.1. Let the circle act symplectically on a compact, connected

symplectic manifold M . If there are exactly three fixed points, M is equivari-

antly symplectomorphic to CP2.

Proof. By quotienting out by the subgroup which acts trivially, without loss

of generality we may assume that the action is effective. Then this is an im-

mediate consequence of Proposition 4.2.3, Proposition 4.3.1, and Proposition

4.4.1 below. �

We now give a brief overview of the proof. The proof is based on induction

on the dimension of M . The main idea of the proof is to get restrictions on

the weights at the three fixed points and show that if dimM > 4, the weights

cannot satisfy all the restrictions.

One of the key facts is that, as mentioned in Remark 2.0.17, for any non-

zero integer l such that l ∈ Z \ {−1, 0, 1}, the subgroup Zl ⊂ S1 also acts

on M . Moreover, the set of points MZl fixed by the Zl-action is a union of

symplectic submanifolds, and the isotropy weights in MZl are multiples of l.

Two important isotropy weights are the largest weight and two. First, let

d be the biggest weight among all the weights that occurs at the three fixed

points. We show that MZd is a union of a 2-sphere and a point. Moreover,

we show that this gives significant restrictions on other weights. Second,

we show that MZ2 is CP2, provided that dimM > 4. This implies that

for manifolds of dimension greater than four, exactly two weights at each

fixed point are even. If the largest weight d is even, it is itself one of the
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weights in the isotropy submanifold fixed by the Z2-action. Because of this,

we divide the theorem into two cases, depending on if the largest weight is

odd or even. The former case is much easier and requires less work. Finally,

if dimM > 4, the fact that there are exactly three fixed points implies that

the sum of the weights at any fixed point is zero. When combined with the

restrictions described above, this determines the number of negative weights

at each fixed point.

Finally, the ABBV localization formula describes the push-forward map

from the equivariant cohomology of M to the equivariant cohomology of a

point in terms of a formula in the weights at the fixed points [AB], see Theo-

rem 2.0.9. Since the push-forward of 1 is 0, this gives additional restrictions

on the weights, we use these to complete the proof.

The classification of the case of three fixed points is organized in the fol-

lowing way. In section 4.1, we prove preliminary lemmas. In section 4.2, we

prove the base case, that is, when dimM < 8. In section 4.3, we consider the

case where the largest weight is odd. Section 4.4 and 4.5 are preliminaries for

section 4.6, in which we consider the case where the largest weight is even.

As mentioned in the overview of the proof above, one of the main ideas

to prove the theorem is to look at the biggest weight among all the weights

of fixed points. Consider a symplectic circle action on a 2n-dimensional

compact, connected symplectic manifold M with exactly three fixed points.

The key fact is that the largest weight occurs only once. From this it follows

that if without loss of generality we assume that λp ≤ λq ≤ λr where p, q,

and r are the three fixed points, then λp = n− 2, λq = n, and λr = n+ 2.

Definition 4.1.2. A weight d is the largest weight if it is the biggest

weight such that
∑

u∈MS1 Nu(d) > 0.

Proposition 4.1.3. Let the circle act symplectically on a compact, connected

symplectic manifold M and suppose that there are exactly three fixed points.

Let d be the largest weight. Then the isotropy submanifold MZd contains

exactly two components that have fixed points: one isolated fixed point and

one two-sphere that contains two fixed points.

Proof. Consider the isotropy submanifold MZd . By Theorem 2.0.13, the only

possible cases are:

1. The isotropy submanifoldMZd contains a 2-sphere with two fixed points.

The third fixed point is another component of MZd .

23



2. The isotropy submanifold MZe contains a 6-dimensional component

with two fixed points. The third fixed point is another component of

MZd .

3. The isotropy submanifold MZd contains a component with the three

fixed points.

The subset inclusions may not be equalities since MZd may contain other

components with no fixed points.

Suppose that the second case holds. By Theorem 2.0.13, the weights in the

isotropy submanifold MZd at two fixed points that lie in the 6-dimensional

component are {a, b,−a− b} and {−a,−b, a+ b} for some natural numbers a

and b. Moreover, a, b, and a+ b are multiples of d, which is impossible since

d is the largest weight.

Suppose that the third case holds. Let Z be the component. Let dimZ =

2m. Since all the weights in the isotropy submanifold MZd are either d or

−d, by Theorem 2.0.9,

0 =

∫
Z

1 =
1∏m

i=1±d
+

1∏m
i=1±d

+
1∏m

i=1±d
= ± 1

dm
∓ 1

dm
± 1

dm
6= 0,

which is a contradiction.

Hence the first case is the case and the weights in the isotropy submanifold

MZd at the two fixed points in the 2-sphere are {−d} and {d}. �

Considering S1 as a subset of C, denote a S1-action on a manifold M by g·p
for g ∈ S1, p ∈M . For technical reasons, throughout the paper we sometimes

reverse the S1-action. By reversing the action, we mean a S1-action on M

by g−1 · p.

Lemma 4.1.4. Let the circle act symplectically on a 2n-dimensional com-

pact, connected symplectic manifold M and suppose that there are exactly

three fixed points. Then we can label the fixed points p, q, and r so that

λp = n − 2, λq = n, and λr = n + 2. Moreover, if dimM 6= 4, then after

possibly reversing the circle action, we may assume that −d ∈ Σp and d ∈ Σq,

where d is the largest weight.

Proof. Let p, q, and r be the fixed points. Without loss of generality, assume

that λp ≤ λq ≤ λr. By Corollary 2.0.11, n is even. Also, since the number
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of fixed points is odd, λq = n by Lemma 2.0.10. Moreover, since M is

connected, dimM 6= 0.

First, assume that dimM = 4. Then by Lemma 2.0.10, either λp = λq =

λr = 2, or λp = 0, λq = 2, and λr = 4. Suppose that λp = λq = λr = 2. Then

by Theorem 2.0.9,

0 =

∫
M

1 =
1∏2
i=1 ξ

i
p

+
1∏2
i=1 ξ

i
q

+
1∏2
i=1 ξ

i
r

< 0,

which is a contradiction. Hence λp = 0, λq = 2, and λr = 4.

Next, assume that dimM ≥ 8. By Lemma 4.1.3, we can label the fixed

points α, β, and γ such that α and β lie in the same 2-dimensional connected

component of MZd such that −d ∈ Σα, d ∈ Σβ, and Nγ(d) = Nγ(−d) = 0.

By reversing the circle action if necessary, we may assume that either λα ≤ λγ

or λβ ≤ λγ. Moreover, by Corollary 2.0.14, the first Chern class map is iden-

tically zero. By Lemma 4.1.5 below, λα + 2 = λβ. Together with Lemma

2.0.10, the above statements imply that λp = n − 2, λq = n, λr = n + 2,

−d ∈ Σp, and d ∈ Σq. �

To prove Lemma 4.1.4, we need the following technical Lemma.

Lemma 4.1.5. Let the circle act on a 2n-dimensional compact symplectic

manifold (M,ω). Let v and w be fixed points in the same 2-dimensional

component Z of MZd, where d is the largest weight. Also suppose that −d ∈
Σv, d ∈ Σw, and c1(M)|v = c1(M)|w. Then λv + 2 = λw.

Proof. By Lemma 2.0.19, Σv ≡ Σw mod d. Let ξiv, 1 ≤ i ≤ n, and ξiw, 1 ≤
i ≤ n, be the weights at v and w, respectively, where ξiv, ξ

i
w ∈ Z \ {0}. By

permuting if necessary, we can assume that ξiv ≡ ξiw mod d, for all i < n,

ξnv = −d, and ξnw = d. By Lemma 2.0.12, d > |ξiv| and d > |ξiw|, for i < n.

Then for all i < n, the following holds:

1. If ξiv > 0 and ξiw > 0, or if ξiv < 0 and ξiw < 0, then ξiv ≡ ξiw mod d

implies ξiv − ξiw = 0.

2. If ξiv > 0 and ξiw < 0, then ξiv ≡ ξiw mod d implies ξiv − ξiw = d.

3. If ξiv < 0 and ξiw > 0, then ξiv ≡ ξiw mod d implies ξiv − ξiw = −d.

Moreover, there are λv
2
− 1 negative weights in Σv excluding −d and λw

2

negative weights in Σw. Hence,
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0 = c1(M)|v − c1(M)|w = (ξ1v + · · ·+ ξn−1v − d)− (ξ1w + · · ·+ ξn−1w + d)

= (ξ1v − ξ1w) + · · ·+ (ξn−1v − ξn−1w )− 2d = d

(
λw
2
− λv

2
+ 1

)
− 2d

= d

(
λw
2
− λv

2
− 1

)
.

Therefore, λv + 2 = λw. �

Remark 4.1.6. We can generalize Lemma 4.1.5 in the following way: let

the circle act on a 2n-dimensional compact symplectic manifold (M,ω). Let

v and w be fixed points in the same component Z of MZd, where d is the

largest weight. Then

λv(M)− λw(M) + λv(Z)− λw(Z) = −2

d

(
c1(M)|v − c1(M)|w

)
.

The proof goes similarly to that of Lemma 4.1.5; by Lemma 2.0.19, their

weights are equal modulo d. Then as a bijection between Σv and Σw modulo

d, ±d at v is paired with ±d at w. Consider other weights; a positive weight

ξ at v is either paired with ξ or ξ − d at w, etc. Finally, we consider the

difference of the first Chern class at v and w together with indices at v and

w.

Finally, when the largest weight is odd, we need the following closely re-

lated technical lemma.

Lemma 4.1.7. Let the circle act on a 2n-dimensional compact symplectic

manifold (M,ω). Suppose that fixed points v and w satisfy the conditions in

Lemma 4.1.5. Let d be the largest weight and assume that d is odd. Suppose

that Σv and Σw have E+
v and E+

w positive even weights and E−v and E−w

negative even weights, respectively. Then E+
v − E−v − E+

w + E−w = 2.

Proof. By Lemma 2.0.19, Σv ≡ Σw mod d. Define ξiv and ξiw as in Lemma

4.1.5 and recall that the following hold:

(a) If ξiv > 0 and ξiw > 0, or if ξiv < 0 and ξiw < 0, then ξiv − ξiw = 0.

(b) If ξiv > 0 and ξiw < 0, then ξiv − ξiw = d.

(c) If ξiv < 0 and ξiw > 0, then ξiv − ξiw = −d.
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Let e+v be a positive even weight at v, e−v a negative even weight at v, o+v

a positive odd weight at v, and o−v a negative odd weight at v, and similarly

for w. Then since the largest weight d is odd, we have the following:

1. e+v ≡ e+w mod d implies that e+v = e+w . Hence in c1(M)|v − c1(M)|w,

this pair contributes 0. Suppose that there are k1 such pairs.

2. e+v ≡ o−w mod d implies that e+v −o−w = d. Hence in c1(M)|v−c1(M)|w,

this pair contributes d. There are E+
v − k1 such pairs.

3. e−v ≡ e−w mod d implies that e−v = e−w . Hence in c1(M)|v − c1(M)|w,

this pair contributes as 0. Suppose that there are k2 such pairs.

4. e−v ≡ o+w mod d implies that e−v − o+w = −d. Hence in c1(M)|v −
c1(M)|w, this pair contributes −d. There are E−v − k2 such pairs.

5. o+v ≡ o+w mod d implies that o+v = o+w . Hence in c1(M)|v − c1(M)|w,

this pair contributes 0. Suppose that there are k3 such pairs.

6. o+v ≡ e−w mod d implies that o+v −e−w = d. Hence in c1(M)|v−c1(M)|w,

this pair contributes d. There are E−w − k2 such pairs.

7. o−v ≡ e+w mod d implies that o−v − e+w = −d. Hence in c1(M)|v −
c1(M)|w, this pair contributes −d. There are E+

w − k1 such pairs.

8. o−v ≡ o−w mod d implies that o−v = o−w . Hence in c1(M)|v − c1(M)|w,

this pair contributes 0. Suppose that there are k4 such pairs.

Then

0 = c1(M)|v − c1(M)|w
= d(E+

v − k1)− d(E−v − k2) + d(E−w − k2)− d(E+
w − k1)− 2d

= d(E+
v − E−v − E+

w + E−w − 2).

�

Remark 4.1.8. We can also generalize Lemma 4.1.7 in the following way:

Let the circle act on a 2n-dimensional compact symplectic manifold (M,ω).

Let v and w be fixed points in the same component Z of MZd, where d is the

largest weight. Assume that the largest weight d is odd. Then

d(E+
v − E−v − E+

w + E−w ) = c1(M)|v − c1(M)|w − c1(Z)|v + c1(Z)|w.

The proof goes similarly to that of Lemma 4.1.7.
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4.2 Base Case

The proof of Theorem 4.1.1 is based on induction. The key fact to prove

Theorem 4.1.1 is that an isotropy submanifold of a symplectic manifold is

itself a smaller symplectic manifold.

To prove the base case, we need several theorems:

Proposition 4.2.1. [MD] An effective symplectic circle action on a four

dimensional compact, connected symplectic manifold is Hamiltonian if and

only if the fixed point set is non-empty.

Let the circle act symplectically on a 4-dimensional compact, connected

symplectic manifold M with isolated fixed points. Assume that the action

is effective. Then we can associate a graph to M in the following way: we

assign a vertex to each fixed point. Label each fixed point by its moment

image. Additionally, given two fixed points p and q, we say that (p, q) is

an edge if there exists k > 1 such that p and q are contained in the same

component of the isotropy submanifold MZk , where k is the largest such.

We label the edge by k. We say that two graphs Π and Π′ are isomorphic,

if there are one-to-one correspondence between vertices in Π and vertices in

Π′, and one-to-one correspondence between edges in Π and edges in Π′ such

that if σ : Π −→ Π′ is such a map and if (p, q) is a k-edge, then σ((p, q)) is

a k-edge.

Theorem 4.2.2. (Uniqueness Theorem) [Ka] Let (M,ω,Π) and (M ′, ω′,Π′)

be two compact four dimensional Hamiltonian S1 spaces. Then any iso-

morphism between their corresponding graphs is induced by an equivariant

symplectomorphism.

We now prove the base case.

Proposition 4.2.3. Let the circle act symplectically on a compact, connected

symplectic manifold M and suppose that there are exactly three fixed points.

If dimM < 8, then M is equivariantly symplectomorphic to CP2.

Proof. Suppose that dimM < 8. By quotienting out by the subgroup which

acts trivially, we may assume that the action is effective. Since the manifold

M is connected, dimM 6= 0. Hence by Corollary 2.0.11, dimM = 4. Let

p, q, and r denote the three fixed points and without loss of generality assume

that λp ≤ λq ≤ λr. Then by Lemma 4.1.5, λp = 0, λq = 2, and λr = 4.
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By a standard action on CP2 we mean that for each g ∈ S1 ⊂ C, g acts

on CP2 by

g · [z0 : z1 : z2] = [ga+bz0 : gaz1 : z2]

for some positive integers a and b. This action has three fixed points [1 : 0 : 0],

[0 : 1 : 0], and [0 : 0 : 1]. And the weights at these points are {−a − b,−b},
{−a, b}, and {a, a+ b}.

Since dimM = 4, by Proposition 4.2.1, the action is Hamiltonian. Fur-

thermore, by Lemma 2.0.12, there exist positive integers a, b, and c such that

the weights are Σp = {a, c}, Σq = {−a, b}, and Σr = {−b,−c}. By Theorem

2.0.9,

0 =

∫
M

1 =
1

ac
− 1

ab
+

1

bc
=
b− c+ a

abc
.

Thus c = a+b. It is straightforward to check that the corresponding graph is

isomorphic to a graph corresponding to some standard action on CP2 where

the action is given by g · [z0 : z1 : z2] = [ga+bz0 : gbz1 : z2], and hence this

induces an equivariant symplectomorphism on manifolds by Theorem 4.2.2.

�

Hence from now on we assume that dimM ≥ 8. Then note that, by

Corollary 2.0.14, the Chern class map is identically zero.

Lemma 4.2.4. Fix a natural number n such that n ≥ 4. Assume that

Theorem 4.1.1 holds for all manifolds M such that dimM < 2n. Let the

circle act symplectically on a 2n-dimensional compact, connected symplectic

manifold M and suppose that there are exactly three fixed points. Assume

that the action is effective. Then there exist even positive integers a and b

such that the weights at the three fixed points in the isotropy submanifold MZ2

are {a, c}, {−a, b}, and {−b,−c}, where c = a+ b.

Proof. Since the action is effective, the isotropy submanifold Z2 is a smaller

manifold, i.e., for any component Z of MZ2 , we have that dimZ < dimM .

Then by the inductive hypothesis and Theorem 2.0.13, there are only four

possible cases:

1. Each fixed point is a component of the isotropy submanifold MZ2 .
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2. The isotropy submanifoldMZ2 contains a 2-sphere with two fixed points.

The third fixed point is another component of MZ2 .

3. The isotropy submanifold MZ2 contains a 4-dimensional component

with the three fixed points.

4. The isotropy submanifold MZ2 contains a 6-dimensional component

with two fixed points. The third fixed point is another component of

MZ2 .

Assume that the first case holds. Let p, q, and r be the fixed points. The

first case means that all the weights at p, q, and r are odd. Let A,B, and C

be the products of the weights at p, q, and r, respectively. Then by Theorem

2.0.9, ∫
M

1 =
∑

F⊂MS1

∫
F

1

eS1(NF )

=
1∏
ξip
t−n +

1∏
ξiq
t−n +

1∏
ξir
t−n

=

(
1

A
+

1

B
+

1

C

)
t−n = 0.

Hence

1

A
+

1

B
+

1

C
= 0.

Multiplying both sides by ABC yields

BC + AC + AB = 0.

However, since A,B, and C are odd,

BC + AC + AB ≡ 1 mod 2,

which is a contradiction.

Assume that the second case holds. Then the two fixed points in the 2-

sphere have one even weight and n− 1 odd weights. By Corollary 2.0.11, n

is even. Then sums of the weights at these points are congruent to 1 mod 2,

which contradicts Corollary 2.0.14 that the first Chern class map (the sum

of the weights at a fixed point) is zero for all fixed points if dimM ≥ 8 and

there are exactly three fixed points.

Assume that the fourth case holds. Then the two fixed points in the 2-

sphere have three even weights and n− 3 odd weights. By Corollary 2.0.11,

n is even. Again, the sums of weights at these points are congruent to 1
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mod 2, which contradicts that the first Chern class map is zero for all fixed

points by Corollary 2.0.14.

Hence the third case is the case. Thus as in the proof of Proposition 4.2.3,

there are even natural numbers a and b such that the fixed points of the

isotropy submanifold MZ2 have weights {a+b, a}, {−a, b}, and {−b,−a−b}.
�

Lemma 4.2.5. Fix a natural number n. Assume that Theorem 4.1.1 holds

for all manifolds M such that dimM < 2n. Let the circle act symplectically

on a 2n-dimensional compact, connected symplectic manifold M and suppose

that there are exactly three fixed points. Assume that the action is effective.

Given an integer e ∈ Z \ {−1, 0, 1}, exactly one of the following holds:

1. Each fixed point is a component of the isotropy submanifold MZe.

2. The isotropy submanifold MZe contains a 2-sphere with two fixed points,

and the weights in the 2-sphere at these points are {a} and {−a} for

some natural number a that is a multiple of e. The third fixed point is

another component of MZe.

3. The isotropy submanifold MZe contains a 4-dimensional component

with the three fixed points, and the weights in the isotropy submani-

fold at these points are {a+ b, a}, {−a, b}, and {−b,−a− b} for some

natural numbers a and b that are multiples of e.

4. The isotropy submanifold MZe contains a 6-dimensional component

with two fixed points, and the weights in the isotropy submanifold at

these points are {a, b,−a − b} and {a + b,−a,−b} for some natural

numbers a and b that are multiples of e. The third fixed point is an-

other component of MZe.

Proof. Fix an integer e ∈ Z \ {−1, 0, 1}. Since the action on M is effective,

for any component Z of the isotropy submanifold MZe , we have that dimZ <

dimM .

By ABBV Localization (Theorem 2.0.9), if any component of the isotropy

submanifold MZe only contains one fixed point, then the fixed point itself is

the component.
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If every fixed point is itself a component of the isotropy submanifold MZe ,

this is the first case of the Lemma.

Suppose instead that there exists a component Z of the isotropy subman-

ifold MZe that contains exactly two fixed points. Then by Theorem 2.0.13,

either

(a) The component is 2-sphere and the weights in the isotropy submanifold

MZe at these points are {a} and {−a} for some natural number a that

is a multiple of e. By the previous argument, the third fixed point is

another component of MZe . This is the second case of the Lemma.

(b) The component is 6-dimensional and the weights in the isotropy subman-

ifold MZe at these points are {a, b,−a− b} and {a+ b,−a,−b} for some

natural numbers a and b that are multiples of e. The third fixed point

is another component of MZe . This is the fourth case of the Lemma.

Finally, suppose that a component of the isotropy submanifold MZe con-

tains the three fixed points. Then by the inductive hypothesis, the component

is 4-dimensional and the weights in the isotropy submanifold are {a + b, a},
{−a, b}, and {−b,−a− b} for some natural numbers a and b that are multi-

ples of e. This is the third case of the Lemma. �

As particular cases of Lemma 4.2.5, we need the following Lemma.

Lemma 4.2.6. Fix a natural number n. Assume that Theorem 4.1.1 holds

for all manifolds M such that dimM < 2n. Let the circle act symplectically

on a 2n-dimensional compact, connected symplectic manifold M and suppose

that there are exactly three fixed points. Assume that the action is effective.

Fix an integer e ∈ Z \ {−1, 0, 1}.

1. Suppose that there exist distinct fixed points α and β such that Nα(e) >

0 and Nβ(−e) > 0 such that |e| > d
2

where d is the largest weight. Then

Nα(e) = 1, Nβ(−e) = 1, Σα ≡ Σβ mod e, and no additional multiples

of e appear as weights.

2. If there exist two distinct fixed points α and β such that Nα(e) > 0 and

Nβ(e) > 0, then after possibly switching α and β,

{2e, e} ⊂ Σα, {−e, e} ⊂ Σβ, and {−2e,−e} ⊂ Σγ
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where γ is the remaining fixed point. Moreover, no additional multiples

of e appear as weights.

3. If there exists a fixed point α such that Nα(e) > 1, {−2e, e, e} ⊂ Σα and

{2e,−e,−e} ⊂ Σβ for some fixed point β 6= α. Moreover, no additional

multiples of e appear as weights.

4. Suppose that there exists a fixed point β such that Nβ(e) > 0 and

Nβ(−e) > 0. Then

{2e, e} ⊂ Σα, {−e, e} ⊂ Σβ, and {−2e,−e} ⊂ Σγ

where α and γ are the remaining two fixed points. Moreover, no addi-

tional multiples of e appear as weights.

Proof. Fix an integer e ∈ Z\{−1, 0, 1} and consider the isotropy submanifold

MZe .

1. By looking at the weights in the isotropy submanifold MZe , the second,

the third, and the fourth cases of Lemma 4.2.5 are possible. In the third

case or the fourth case, a ≥ |e| and b ≥ |e| hence a + b ≥ 2|e| > d,

which is a contradiction. Hence this must be the second case of Lemma

4.2.5 with a = |e|. Moreover, α and β lie in the same 2-sphere of MZe .

Hence by Lemma 2.0.19, Σα ≡ Σβ mod e.

2. By looking at the weights in the isotropy submanifold MZe , this must

be the third case of Lemma 4.2.5 with a = b = |e|.

3. By looking at the weights in the isotropy submanifold MZe , this must

be the fourth case of Lemma 4.2.5 with a = b = |e|.

4. By looking at the weights in the isotropy submanifold MZe , this must

be the third case of Lemma 4.2.5 with a = b = |e|.

�
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4.3 The case where the largest weight is odd

Let the circle act symplectically on a compact, connected symplectic manifold

M with exactly three fixed points. In this section, we show that if dimM ≥ 8,

the largest weight cannot be odd.

Proposition 4.3.1. Fix a natural number n such that n ≥ 4. Assume that

Theorem 4.1.1 holds for all manifolds M such that dimM < 2n. Let the

circle act symplectically on a 2n-dimensional compact, connected symplectic

manifold M and suppose that there are exactly three fixed points. Assume

that the action is effective. Then the largest weight is even.

Proof. Assume on the contrary that the largest weight is odd. Then this is

an immediate consequence of Lemma 4.3.2, Lemma 4.3.6, and Lemma 4.3.7

below. �

Lemma 4.3.2. Fix a natural number n such that n ≥ 4. Assume that

Theorem 4.1.1 holds for all manifolds M such that dimM < 2n. Let the

circle act symplectically on a 2n-dimensional compact, connected symplectic

manifold M and suppose that there are exactly three fixed points p, q, and r,

with λp ≤ λq ≤ λr. Assume that the action is effective and the largest weight

d is odd. Then after possibly reversing the circle action we may assume that

−d ∈ Σp and d ∈ Σq, and there exist even natural numbers a and b such that

either

1. {a, c} ⊂ Σp, {−a, b} ⊂ Σq, and {−b,−c} ⊂ Σr; or

2. {−a, b} ⊂ Σp, {−b,−c} ⊂ Σq, and {a, c} ⊂ Σr,

where c = a+ b. Moreover, these are the only even weights.

Proof. By Lemma 4.1.3, Np(d) +Nq(d) +Nr(d) = 1 and Np(−d) +Nq(−d) +

Nr(−d) = 1. By Lemma 4.1.4, λp = n−2, λq = n, and λr = n+2. Moreover,

after possibly reversing the circle action, we may assume that −d ∈ Σp and

d ∈ Σq.

By Lemma 4.2.4, there exist even natural numbers a and b such that

the weights at the three fixed points in the isotropy submanifold MZ2 are

{a, c}, {−a, b}, and {−b,−c}, where c = a + b. In the Lemma, the order is

not specified. We have six possible cases. Other four cases are:
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a. {a, c} ⊂ Σp, {−b,−c} ⊂ Σq, and {−a, b} ⊂ Σr.

b. {−a, b} ⊂ Σp, {a, c} ⊂ Σq, and {−b,−c} ⊂ Σr.

c. {−b,−c} ⊂ Σp, {−a, b} ⊂ Σq, and {a, c} ⊂ Σr.

d. {−b,−c} ⊂ Σp, {a, c} ⊂ Σq, and {−a, b} ⊂ Σr.

The fixed points p and q satisfy the conditions in Lemma 4.1.7. Therefore,

E+
p − E−p − E+

q + E−q = 2 and the other cases are ruled out. �

Lemma 4.3.3. Under the assumption of Lemma 4.3.2, a 6= b.

Proof. Assume on the contrary that a = b. Since −d ∈ Σp and d ∈ Σq where

d is the largest weight, by Lemma 4.2.6 part 1 for d, Σp ≡ Σq mod d. As a

result, we can find a bijection between the weights at p and the weights at

q that takes each weight α at p to a weight β at q such that α ≡ β mod d.

Moreover, since a = b, we can take this bijection to take a at p to b at q in

the first case, and we can take this bijection to take −a at p to −b at q in

the second case.

Assume that the first case in Lemma 4.3.2 holds, i.e., {a, c} ⊂ Σp, {−a, b} ⊂
Σq, and {−b,−c} ⊂ Σr. Moreover, these are the only even weights. First,

−d at p has to go to d at q since all the other weights are non-zero and have

absolute values less than d. Next, c at p must go to c − d at q and −a at q

must go to d− a at p. If l is any remaining positive odd weight at p, then it

has to go to l at q since the largest weight d is odd. Similarly, any negative

odd weight −k at p must go to −k at q.

By Corollary 2.0.11, 1
2

dimM is even. Since λp = 1
2

dimM − 2 and λq =
1
2

dimM by Lemma 4.1.4, this implies that the weights at p and q are

Σp = {−d, a, c, d− a} ∪ {xi}ti=1 ∪ {−yi}ti=1

Σq = {d, b, c− d,−a} ∪ {xi}ti=1 ∪ {−yi}ti=1

for some odd natural numbers xi’s and yi’s where dimM = 8 + 4t, for some

t ≥ 0.

Suppose that xi > 1 for some i. Then by Lemma 4.2.6 part 2, {2xi, xi} ⊂
Σp, {−xi, xi} ⊂ Σq, and {−2xi,−xi} ⊂ Σr, or {−xi, xi} ⊂ Σp, {2xi, xi} ⊂
Σq, and {−2xi,−xi} ⊂ Σr. Moreover, no more multiples of xi should sppear

as weights. This implies that −xi 6= −yj for all j. Since −yj’s are the only
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negative odd weights at p, this implies that the second case is impossible.

Assume that the first case holds. Then we must have c = 2xi. Also, since

{−xi, xi} ⊂ Σq but −xi 6= −yj for all j, −xi = c − d. However, this means

that 2xi − d = c− d = −xi hence d = 3xi, which is a contradiction since no

more multiples of xi should appear.

Hence xi = 1 for all i. Similarly, one can show that yi = 1 for all i. Then

c1(M)|p = −d+ a+ c+ d− a = c > 0, which is a contradiction by Corollary

2.0.14 that the first Chern class map is identically zero.

Similarly, we get a contradiction of the second case of Lemma 4.3.2 with

a = b by a slight variation of this argument. �

Lemma 4.3.4. Assume that the first case in Lemma 4.3.2 holds. Then the

weights are

Σp = {−d, a, c, d− a, b− d, 1} ∪ {−1, 1}ti=1

Σq = {d, a− d, c− d,−a, b, 1} ∪ {−1, 1}ti=1

Σr = {−b,−c, · · · }

where the largest weight d is odd, a, b, and c are even natural numbers such

that c = a + b, and dimM = 12 + 4t for some t ≥ 0. Moreover, a 6= b and

the remaining weights at r are odd.

Proof. Assume that the first case in Lemma 4.3.2 holds, i.e., there exist

even natural numbers a, b, and c such that {a, c} ⊂ Σp, {−a, b} ⊂ Σq, and

{−b,−c} ⊂ Σr where c = a+ b. Moreover, these are the only even weights.

Since −d ∈ Σp and d ∈ Σq where d is the largest weight, by Lemma 4.2.6

part 1 for d, Σp ≡ Σq mod d. First −d at p has to go to d at q since all the

other weights are non-zero and have absolute values less than d. Second, by

Lemma 4.3.3, a 6= b. Hence a at p must go to a− d at q and b at q must go

to b − d at p. Next, c at p must go to c − d at q and −a at q must go to

d − a at p. If l is any remaining positive odd weight at p, then it has to go

to l at q since the largest weight d is odd. Similarly, any remaining negative

odd weight −k at p must go to −k at q.

By Corollary 2.0.11, 1
2

dimM is even. Since λp = 1
2

dimM − 2 and λq =
1
2

dimM by Lemma 4.1.4, this implies that the weights at p and q are

Σp = {−d, a, c, d− a, b− d} ∪ {xi}t+1
i=1 ∪ {−yi}ti=1

Σq = {d, a− d, c− d,−a, b} ∪ {xi}t+1
i=1 ∪ {−yi}ti=1
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for some odd natural numbers xi’s and yi’s where dimM = 12 + 4t, for some

t ≥ 0. We also have

Σr = {−b,−c, · · · }.

We show that xi = yi = 1 for all i.

1. xi = 1 for all i.

Suppose not. Without loss of generality, assume that x1 > 1. Then by

Lemma 4.2.6 part 2 for x1, we have that {2x1, x1} ⊂ Σp, {−x1, x1} ⊂
Σq, and {−2xi,−xi} ⊂ Σr, or {−x1, x1} ⊂ Σp, {2x1, x1} ⊂ Σq, and

{−2xi,−xi} ⊂ Σr. Moreover, no more multiples of x1 should sppear as

weights. This implies that −x1 6= −yj for all j. If the first case holds,

we must have that c = 2x1. Also, there must be a weight at q that is

equal to−x1. If−x1 = a−d, {2x1, x1, x1} = {c,−a+d, x1} ⊂ Σp, which

is not possible by Lemma 4.2.6. If −x1 = c− d, −x1 = c− d = 2x1− d
implies that d = 3x1, which contradicts that no more multiples of x1

should appear as weights. If the second case holds, we must have that

b = 2x1. Also, there must be a weight at p that is equal to −x1. Since

−x1 6= −d, −x1 = b− d. However, −x1 = b− d = 2x1 − d implies that

d = 3x1, which contradicts that no more multiples of x1 should appear

as weights.

2. yi = 1 for all i.

Suppose not. Without loss of generality, assume that y1 > 1. Then by

Lemma 4.2.6 part 2 for y1, we must have that {2y1, y1} ⊂ Σr, which is

a contradiction since r has no positive even weight.

�

Lemma 4.3.5. Assume that the second case in Lemma 4.3.2 holds. Then

the weights are

Σp = {−d,−a, b, d− b, d− c, 1} ∪ {−1, 1}ti=1

Σq = {d,−b,−c, d− a, b− d, 1} ∪ {−1, 1}ti=1

Σr = {a, c, · · · },
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where the largest weight d is odd, a, b, and c are even natural numbers such

that c = a + b, and dimM = 12 + 4t for some t ≥ 0. Moreover, a 6= b and

the remaining weights at r are odd.

Proof. Assume that the second case in Lemma 4.3.2 holds, i.e., there exist

even natural numbers a, b, and c such that {−a, b} ⊂ Σp, {−b,−c} ⊂ Σq,

and {a, c} ⊂ Σr where c = a+ b. Moreover, these are the only even weights.

Since −d ∈ Σp and d ∈ Σq where d is the largest weight, by Lemma 4.2.6

part 1 for d, Σp ≡ Σq mod d. First −d at p has to go to d at q since all the

other weights are non-zero and have absolute values less than d. Second, by

Lemma 4.3.3, a 6= b. Hence −a at p must go to d− a at q and −b at q must

go to d− b at p. Next, c at p must go to c− d at q and −a at q must go to

d−a at p. If l is any remaining positive odd weight at p, then it has to go to

l at q since the largest weight d is odd. Similarly, any negative odd weight

−k at p must go to −k at q.

By Corollary 2.0.11, 1
2

dimM is even. Since λp = 1
2

dimM − 2 and λq =
1
2

dimM by Lemma 4.1.4, this implies that the weights at p and q are

Σp = {−d,−a, b, d− b, d− c} ∪ {xi}t+1
i=1 ∪ {−yi}ti=1

Σq = {d,−b,−c, d− a, b− d} ∪ {xi}t+1
i=1 ∪ {−yi}ti=1

for some odd natural numbers xi’s and yi’s where dimM = 12 + 4t, for some

t ≥ 0. We also have

Σr = {a, c, · · · }.

We show that xi = yi = 1 for all i.

1. xi = 1 for all i.

Suppose not. Without loss of generality, assume that x1 > 1. Then

by Lemma 4.2.6 part 2 for x1, we must have that {−2x1,−x1} ⊂ Σr,

which is a contradiction since r has no negative even weight.

2. yi = 1, for all i.

Suppose not. Without loss of generality, assume that y1 > 1. Then

by Lemma 4.2.6 part 2 for y1, {−2y1,−y1} ⊂ Σp, {−y1, y1} ⊂ Σq, and

{2y1, y1} ⊂ Σr, or {−y1, y1} ⊂ Σp, {−2y1,−y1} ⊂ Σq, and {2y1, y1} ⊂
Σr. Moreover, no more multiples of y1 should appear as weights.
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If the first case holds, we must have that a = 2y1. Also, there must

be a weight at q that is equal to y1. Thus, we have that d − a = y1.

However, this implies that d−a = d−2y1 = y1 hence d = 3y1, which is

a contradiction since no more multiples of y1 should appear as weights.

Suppose that the second case holds. Then we must have that c = 2y1.

Also, there must be a weight at p that is equal to y1. Hence y1 =

d − b. Then {−2y1,−y1,−y1} = {−c, b − d,−y2} ⊂ Σq, which is a

contradiction.

�

Lemma 4.3.6. The first case in Lemma 4.3.2 is not possible.

Proof. By Lemma 4.3.4, the weights are

Σp = {−d, a, c, d− a, b− d, 1} ∪ {−1, 1}ti=1

Σq = {d, a− d, c− d,−a, b, 1} ∪ {−1, 1}ti=1

Σr = {−b,−c, · · · },

where the largest weight d is odd, a, b, and c are even natural numbers such

that c = a + b, and dimM = 12 + 4t for some t ≥ 0. Moreover, a 6= b and

the remaining weights at r are odd.

We consider Lemma 2.0.12 for each integer. Lemma 2.0.12 holds for d, a,

b, and c. Since d > c > b, b − d < −1. Since a 6= b, by Lemma 2.0.12 for

b− d, it is straightforward to show that d− b ∈ Σr.

First, suppose that c − d 6= −1. Then Np(1) = Np(−1) + 1 and Nq(1) =

Nq(−1)+1. Hence by Lemma 2.0.12 for 1, Nr(1)+2 = Nr(−1). Considering

Lemma 2.0.12 for each integer, one can show that the weights are

Σp = {−d, a, c, d− a, b− d, 1} ∪ {−1, 1}ti=1

Σq = {d, a− d, c− d,−a, b, 1} ∪ {−1, 1}ti=1

Σr = {−b,−c, d− b,−1, d− c,−1} ∪ {−ei, ei}ti=1

for some odd natural numbers ei’s. We show that ei = 1 for all i.

Suppose that e1 > 1. Then by Lemma 4.2.6 part 4, either {−2e1,−e1} ⊂
Σp, {2e1, e1} ⊂ Σq, and {−e1, e1} ⊂ Σr, or {2e1, e1} ⊂ Σp, {−2e1,−e1} ⊂
Σq, and {−e1, e1} ⊂ Σr. However, since p has no negative even weight,

the first case is impossible. If the second case holds, we must have that
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−a = −2e1. Moreover, we must have that a − d = −e1 or c − d = −e1. If

a− d = −e1, 2e1 − d = a− d = −e1 hence 3e1 = d, which is a contradiction

since no additional multiples of e1 should appear. Next, if c − d = −e1,
{d− c,−e1, e1} = {−e1,−e1, e1} ⊂ Σr, which is also a contradiction. Hence

ei = 1, for all i. Then the weights are

Σp = {−d, a, c, d− a, b− d, 1} ∪ {−1, 1}t

Σq = {d,−a, b, a− d,−1, 1} ∪ {−1, 1}t

Σr = {−b,−c, d− b,−1, 1,−1} ∪ {−1, 1}t.

Second, suppose that c− d = −1. Then Np(1) = Np(−1) + 1 and Nq(1) =

Nq(−1). Hence by Lemma 2.0.12 for 1, Nr(1) + 1 = Nr(−1). Considering

Lemma 2.0.12 for each integer, one can show that the weights are

Σp = {−d, a, c, d− a, b− d, 1} ∪ {−1, 1}ti=1

Σq = {d, a− d,−1,−a, b, 1} ∪ {−1, 1}ti=1

Σr = {−b,−c, d− b,−1} ∪ {−ei, ei}t+1
i=1

for some odd natural numbers ei’s. As above, ei = 1 for all i.

Hence in either case the weights are

Σp = {−d, a, c, d− a, b− d, 1} ∪ {−1, 1}t

Σq = {d,−a, b, a− d, c− d, 1} ∪ {−1, 1}t

Σr = {−b,−c, d− b,−1, d− c,−1} ∪ {−1, 1}t.

Moreover, since c1(M)|p = 0 by Corollary 2.0.14, we have that −d+ a+ c+

d−a+ b−d+ 1 = 0. Therefore, d = c+ b+ 1. Let A = cn(M)|p =
∏
ξjp, B =

cn(M)|q =
∏
ξjq , and C = cn(M)|r =

∏
ξjr . Then

(−1)t+1(B + C) = dab(d− a)(d− c)− bc(d− b)(d− c)
= b(d− c){da(d− a)− c(d− b)}

= b(d− c){(c+ b+ 1)a(c+ b+ 1− a)− c(c+ b+ 1− b)}
= b(d− c){(c+ b+ 1)a(2b+ 1)− c(c+ 1)}

= b(d− c){(a+ 2b+ 1)a(2b+ 1)− (a+ b)(a+ b+ 1)}
= b(d− c){(a2 + 2ab+ a)(2b+ 1)− (a2 + 2ab+ b2 + a+ b)}

= b(d− c){2a2b+ 4ab2 + 2ab+ a2 + 2ab+ a− (a2 + 2ab+ b2 + a+ b)}
= b(d−c){(2a2b−a2)+(4ab2−b2)+(2ab−2ab)+(a2−a)+(2ab−b)+a} > 0.

Hence (−1)t+1B > −(−1)t+1C > 0, i.e., (−1)t+1

(
1

B
+

1

C

)
< 0. We also

have that (−1)t+1 1

A
< 0. Then, by Theorem 2.0.9,
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0 = (−1)t+1

∫
M

1 = (−1)t+1

(
1

A
+

1

B
+

1

C

)
< 0,

which is a contradiction. �

Lemma 4.3.7. The second case in Lemma 4.3.2 is not possible.

Proof. By Lemma 4.3.5, the weights in this case are

Σp = {−d,−a, b, d− b, d− c, 1} ∪ {−1, 1}ti=1

Σq = {d,−b,−c, d− a, b− d, 1} ∪ {−1, 1}ti=1

Σr = {a, c, · · · },

where the largest weight d is odd, a, b, and c are even natural numbers such

that c = a+ b, and dimM = 12 + 4t for some t ≥ 0.

Let A = cn(M)|p =
∏
ξjp, B = cn(M)|q =

∏
ξjq , and C = cn(M)|r =

∏
ξjr .

Then

(−1)t+1(B + A) = dbc(d− a)(d− b)− dab(d− b)(d− c)
= db(d− b){c(d− a)− a(d− c)} > 0,

since c > a and d− a > d− c. Hence it follows that (−1)t+1

(
1

A
+

1

B

)
< 0.

Since λr = 1
2

dimM+2, we also have that (−1)t+1 1

C
< 0. Then, by Theorem

2.0.9,

0 = (−1)t+1

∫
M

1 = (−1)t+1

(
1

A
+

1

B
+

1

C

)
< 0,

which is a contradiction. �

4.4 Preliminaries for the largest weight even case: part

1

Let the circle act symplectically on a compact, connected symplectic manifold

M with exactly three fixed points. Also assume that dimM ≥ 8 and the

largest weight is even. The main idea to prove Theorem 4.1.1 is to rule out

manfiolds such that dimM ≥ 8. In this section, we investigate properties

that the manifold M should satisfy, if it exists.
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Proposition 4.4.1. Fix a natural number n such that n ≥ 4. Assume that

Theorem 4.1.1 holds for all manifolds M such that dimM < 2n. Let the

circle act symplectically on a 2n-dimensional compact, connected symplectic

manifold M and suppose that there are exactly three fixed points. Assume

that the action is effective. Then the largest weight is odd.

Proof. Assume on the contrary that the largest weight is even. Then this is an

immediate consequence of Lemma 4.4.2, Lemma 4.5.1, Lemma 4.6.1, Lemma

4.6.2, Lemma 4.6.3, Lemma 4.6.4, Lemma 4.6.5, Lemma 4.6.6, Lemma 4.6.7,

Lemma 4.6.8, Lemma 4.6.9, Lemma 4.6.10, and Lemma 4.6.11 below. �

Lemma 4.4.2. Fix a natural number n such that n ≥ 4. Assume that

Theorem 4.1.1 holds for all manifolds M such that dimM < 2n. Let the

circle act symplectically on a 2n-dimensional compact, connected symplectic

manifold M and suppose that there are exactly three fixed points p, q, and r,

with λp ≤ λq ≤ λr. Assume that the action is effective and the largest weight

c is even. Then after possibly reversing the circle action we may assume that

the weights are

Σp = {−c,−b} ∪ {xi}t+3
i=1 ∪ {−yi}ti=1 ∪ {1} ∪ {−1, 1}si=1

Σq = {c, a} ∪ {xi − c}t+3
i=1 ∪ {c− yi}ti=1 ∪ {1} ∪ {−1, 1}si=1

Σr = {−a, b, · · · }

for some s ≥ 0 and t ≥ 0 such that dimM = 2n = 12 + 4t+ 4s, where a and

b are even natural numbers such that c = a + b, and xi’s and yi’s are odd

natural numbers for all i. Moreover, the remaining weights at r are odd.

Proof. Let c be the largest weight. By Lemma 4.1.3, Np(c)+Nq(c)+Nr(c) = 1

and Np(−c) + Nq(−c) + Nr(−c) = 1. By Lemma 4.1.4, λp = n − 2, λq = n,

and λr = n+ 2. Moreover, after possibly reversing the circle action, we may

assume that −c ∈ Σp and c ∈ Σq.

By Lemma 4.2.4, there exist even natural numbers a and b such that

the weights at the three fixed points in the isotropy submanifold MZ2 are

{a, d}, {−a, b}, and {−b,−d}, where d = a + b. In Lemma 4.2.4, the order

is not specified. However, since we can assume without loss of generality

that −c ∈ Σp and c ∈ Σq, we can assume that d = c, hence {−c,−b} ⊂
Σp, {c, a} ⊂ Σq, and {−a, b} ⊂ Σr. Moreover, these are the only even weights.
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Next, by Lemma 4.2.6 part 1 for c, Σp ≡ Σq mod c. As a result, we can

find a bijection between weights at p and weights at q that takes each weight

α at p to a weight β at q such that α ≡ β mod c.

First, −c at p has to go to c at q since all the other weights are non-zero

and have absolute values less than c. Second, −b at p must go to a at q.

Next, if l is any positive odd weight at p, then it either goes to l or l− c at q.

Suppose that there are t0 positive odd weights at p that go to negative odd

weights at q. Then since λp = n− 2 and there is no positive even weight at

p, there are n
2

+ 1− t0 positive odd weights p that go to positive odd weights

at q. Similarly, if −k is any negative odd weight at p, either it has to go to

−k or c − k at q. Suppose that there are t1 negative odd weights at p that

go to positive odd weights at q. On the other hand, since λq = n and q has

two positive even weights, the number of positive odd weights at q that go to

positive odd weights at p is equal to n
2
−2− t1. Hence n

2
+1− t0 = n

2
−2− t1,

i.e., t0 = t1 + 3. Let t = t1 and s = n
2
− t− 3. By Corollary 2.0.11, 1

2
dimM

is even. This implies that the weights are

Σp = {−c,−b} ∪ {xi}t+3
i=1 ∪ {−yi}ti=1 ∪ {ei}s+1

i=1 ∪ {−fi}si=1

Σq = {c, a} ∪ {xi − c}t+3
i=1 ∪ {c− yi}ti=1 ∪ {ei}s+1

i=1 ∪ {−fi}si=1

Σr = {−a, b, · · · }

for some odd natural numbers xi’s, yi’s, ei’s, and fi’s, where dimM = 2n =

12 + 4t+ 4s, for some t ≥ 0 and s ≥ 0.

Next, we show that ei = fi = 1 for all i.

1. ei = 1 for all i.

Assume on the contrary that ei > 1 for some i. Denote e = ei. Then

by Lemma 4.2.6 part 3 for e, either {2e, e} ⊂ Σp, {−e, e} ⊂ Σq, and

{−2e,−e} ⊂ Σr, or {−e, e} ⊂ Σp, {2e, e} ⊂ Σq, and {−2e,−e} ⊂ Σr.

Moreover, no additional multiples of e should appear as weights. Since

{−2e,−e} ⊂ Σr in either case, the only possibility is that a = 2e.

Therefore, the latter is the case. Thus, we have that {−e, e} ⊂ Σp.

Therefore, −e = −yi for some i or −e = −fi for some i. Since no

additional multiples of e should appear as weights at q, −fi 6= −e for

all i. Hence, −yi = −e for some i. Without loss of generality, let

y1 = e. Moreover, since no additional multiples of e should appear as
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weights, b 6= 2e. In particular, a = 2e 6= b. Since 2e = a < a + b = c,

e < c
2
. Thus c− e > c

2
.

Next, we show that e− c ∈ Σr. We have that c− e = c− y1 ∈ Σq. By

Lemma 2.0.12 for c− e, either e− c ∈ Σp, e− c ∈ Σq, or e− c ∈ Σr.

(a) e− c /∈ Σp.

Suppose that e− c ∈ Σp. Since e− c is odd, either e− c = −yi for

some i or e− c = −fi for some i.

First, assume that e − c = −yi for some i. If e − c = −y1, this

implies that e − c = −e hence c = 2e, which is a contradiction.

Hence if e− c = −yi for some i, i 6= 1. Without loss of generality,

let e−c = −y2. Then we have that {−y1,−y2} = {e−c, e−c} ⊂ Σp.

Then by Lemma 4.2.6 part 3 for e − c, 2(c − e) ∈ Σp, which is a

contradiction since 2(c− e) > c.

Second, assume that e − c = −fi for some i. Then we have that

e−c = −fi ∈ Σp and e−c = −fi ∈ Σq. Then by Lemma 4.2.6 part

2 for c−e, 2(c−e) ∈ Σr, which is a contradiction since 2(c−e) > c.

Hence e− c 6= Σp.

(b) e− c /∈ Σq.

Suppose that e − c ∈ Σq. Then we have that {c − e, e − c} =

{c− y1, e− c} ⊂ Σq. Hence by Lemma 4.2.6 part 4 for c− e, either

2(c − e) ∈ Σp or 2(c − e) ∈ Σr. However, 2(c − e) > c, which is a

contradiction.

Therefore e− c ∈ Σr. Then by Lemma 4.2.6 part 1 for c− e, Σq ≡ Σr

mod c − e. Consider {c, e} ⊂ Σq. We have that c /∈ Σr and e /∈ Σr.

Also, e − (c − e) = 2e − c = a − a − b = −b, but −b /∈ Σr since −b
is a negative even integer and −a is the only negative even weight in

Σr, but a 6= b. Since |e + k(c − e)| > c for k < −2 or k > 1, Σq ≡ Σr

mod c−e and {c, e} ⊂ Σq imply that Nr(e−2(c−e)) = Nr(3e−2c) = 2.

Then by Lemma 4.2.6 part 3 for 3e − 2c, 2(2c − 3e) ∈ Σr, which is a

contradiction since 2(2c−3e) = 4c−6e = c+3c−6e = c+3a+3b−6e =

c+ 6e+ 3b− 6e = c+ 3b > c, where c is the largest weight. Therefore,

ei = 1 for all i.

2. fi = 1 for all i.
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Assume on the contrary that fi > 1 for some i. Denote f = fi. Then

by Lemma 4.2.6 part 3 for f , either {−2f,−f} ⊂ Σp, {−f, f} ⊂ Σq,

and {2f, f} ⊂ Σr, or {−f, f} ⊂ Σp, {−2f,−f} ⊂ Σq, and {2f, f} ⊂
Σr. Moreover, no additional multiples of f should appear as weights.

Since {2f, f} ⊂ Σr in either case, the only possibility is that b = 2f .

Therefore, the former is the case. Thus, we have that {−f, f} ⊂ Σq.

Therefore, f = c − yi for some i. Without loss of generality, let c −
y1 = f . Moreover, since no additional multiples of f should appear as

weights, a 6= 2f . In particular, b = 2f 6= a. Since 2f = b < a + b = c,

f < c
2
. Thus c− f > c

2
.

Next, we show that c − f ∈ Σr. We have that f − c = −y1 ∈ Σp. By

Lemma 2.0.12 for c− f , either c− f ∈ Σp, c− f ∈ Σq, or c− f ∈ Σr.

(a) c− f /∈ Σp.

Suppose that c − f ∈ Σp. Then we have that {c − f, f − c} =

{c− f,−y1} ⊂ Σp. Then by Lemma 2.0.12 part 4 for c− f , either

2(c − f) ∈ Σq or 2(c − f) ∈ Σr, which is a contradiction since

2(c− f) > c.

(b) c− f /∈ Σq.

Suppose that c − f ∈ Σq. Then c − f = c − yi for some i. If

c− f = c− y1, then c− f = c− y1 = f hence c = 2f < c, which is

a contradiction. Next, suppose that c− f = c− yi for some i 6= 1.

Then we have that {f − c, f − c} = {−y1,−yi} ⊂ Σp. Hence, by

Lemma 4.2.6 part 3 for f−c, 2(c−f) ∈ Σp, which is a contradiction

since 2(c− f) > c.

Therefore c − f ∈ Σr. We also have that f − c = −y1 ∈ Σp. Then

by Lemma 4.2.6 part 1 for c − f , Σp ≡ Σr mod c − f . Consider

{−c,−f} ⊂ Σp. We have that −c /∈ Σr and −f /∈ Σr. Also, −f + (c−
f) = c−2f = a+b−2f = a+2f−2f = a, but a /∈ Σr since a is a positive

even integer and b is the only positive even weight in Σr, but a 6= b.

Since | − f + k(c − f)| > c for k < −1 or k > 2, Σp ≡ Σr mod c − f
and {−c,−f} ⊂ Σp imply that Nr(−f + 2(c− f)) = Nr(2c− 3f) = 2.

Then by Lemma 4.2.6 part 3 for 2c − 3f , −2(2c − 3f) ∈ Σr, which

is a contradiction since −2(2c − 3f) = −4c + 6f = −c − 3c + 6f =
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−c− 3a− 3b+ 6f = −c− 3a− 6f + 6f = −c− 3a < −c, where −c is

the smallest weight. Therefore, fi = 1 for all i.

�

Lemma 4.4.3. In Lemma 4.4.2, xi 6= c− yj, for all i and j.

Proof. Suppose not. Without loss of generality, assume that x1 = c − y1.

Then either x1 >
c
2
, x1 − c < − c

2
, or x1 = y1 = c

2
. If x1 >

c
2
, x1 ∈ Σp

and x1 = c − y1 ∈ Σq. Hence by Lemma 4.2.6 part 2 for x1, −2x1 ∈ Σr,

which is a contradiction since −2x1 < −c where −c is the smallest weight.

Next, assume that x1 − c < − c
2
. Then x1 − c = −y1 ∈ Σp and x1 − c ∈ Σq.

Again by Lemma 4.2.6 part 2 for x1 − c, 2(c − x1) ∈ Σr, which is a contra-

diction since 2(c − x1) > c where c is the largest weight. If x1 = y1 = c
2
,

{−2x1, x1,−x1} = {−c, x1,−y1} ⊂ Σp, which is a contradiction by Lemma

4.2.6 part 4 for x1. �

Lemma 4.4.4. In Lemma 4.4.2, if xi = c−xj for i 6= j, then 2xi = 2xj = c.

Also, if xi = c−xi for some i, then 2xi = 2xj = c for some j 6= i. Moreover,

there could be at most one such pair (xi, xj) for i 6= j such that xi = c− xj.

Proof. First, suppose that xi = c − xi for some i. Then c = 2x1. Thus, we

have that {−2xi, xi} = {−c, xi} ⊂ Σp and {2xi,−xi} = {c, xi − c} ⊂ Σq.

By looking at the isotropy submanifold MZxi , this must be the fourth case

of Lemma 4.2.5. Hence, {−2xi, xi, xi} ⊂ Σp and {2xi,−xi,−xi} ⊂ Σq. This

implies that xi = xj for some j 6= i.

Next, suppose that xi = c − xj and xi 6= xj for some i 6= j. Without loss

of generality, let x1 = c− x2 and x1 6= x2. We can also assume that x1 > x2.

Then x1 >
c
2
> x2. Since x1 ∈ Σp and −x1 = x2 − c ∈ Σq, by Lemma 4.2.6

part 1 for x1, Σp ≡ Σq mod x1.

First, we can choose a bijection between Σp and Σq so that

Σp ⊃ {1} ∪ {−1, 1}s ≡ {1} ∪ {−1, 1}s ⊂ Σq mod x1.

Also, since x1 + x2 = c, we can also choose so that

Σp ⊃ {−c, x1, x2} = {−x1 − x2, x1, x2}
≡ {−x2,−x1, x1 + x2} = {x1 − c, x2 − c, c} ⊂ Σq mod x1.
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We separate into two cases:

1. t = 0.

In this case, we are left with

Σp ⊃ {−b, x3} ≡ {a, x3 − c = x3 − x1 − x2} ⊂ Σq mod x1.

If x3 ≡ x3−x1−x2 mod x1, we have that x1|x2, which is a contradiction

since x1 > x2. Hence x3 ≡ a mod x1. By Corollary 2.0.14, c1(M)|p =

−c− b+ x1 + x2 + x3 + 1 = −b+ x3 + 1 = 0, hence x3 + 1 = b. Then,

since a = c−b = x1+x2−x3−1, we have that x3 ≡ x1+x2−x3−1 = a

mod x1, hence 2x3+1 ≡ x2 mod x1. Since 2x3+1, x2, and x1 are odd,

and 2x1 > c where c is the largest weight, this implies that 2x3+1 = x2.

Then we have that a > x1 >
c
2
> x2 > b > x3. Therefore,

−(−1)s(B + A)

x1x2(x1 + x2)
= a(x1 + x2 − x3)− bx3 > 0,

hence (−1)s+1B > (−1)sA. Also, since λr = 1
2

dimM + 2 by Lemma

4.1.4, (−1)sC > 0. Then, by Theorem 2.0.9,

0 =

∫
M

1 = (−1)s
(

1

A
+

1

B
+

1

C

)
> 0,

which is a contradiction.

2. t > 0.

In this case, we are left with

{−b} ∪ {xi}t+3
i=3 ∪ {−yi}ti=1 ≡ {a} ∪ {xi − c}t+3

i=3 ∪ {c− yi}ti=1 mod x1.

Without loss of generality, let x3 ≤ x4 ≤ · · · ≤ xt+3 and −y1 ≤ −y2 ≤
· · · ≤ −yt. Hence,

{−b,−y1 ≤ · · · ≤ −yt < 0 < x3 ≤ · · · ≤ xt+3}
≡ {x3 − c ≤ · · · ≤ xt+3 − c < 0 < c− y1 ≤ · · · ≤ c− yt, a} mod x1
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Recall that x1 is odd and 2x1 > c where c is the largest weight.

Consider x3 ∈ Σp. If x3 ≡ c− yi mod x1 for some i, then x3 = c− yi,
which contradicts Lemma 4.4.3. If x3 ≡ xi − c mod x1 for some i 6= 1

and 2, we have that x3 − 2x1 = xi − c, which is a contradiction since

x3 − 2x1 < xi − c for i 6= 1 and 2. Hence, x3 ≡ a mod x1. Then we

can also choose so that −b = a− c ≡ x3− c mod x1. Then we are left

with

{−y1 ≤ · · · ≤ −yt < 0 < x4 ≤ · · · ≤ xt+3}
≡ {x4 − c ≤ · · · ≤ xt+3 − c < 0 < c− y1 ≤ · · · ≤ c− yt} mod x1

Next, consider −yt ∈ Σp. If −yt ≡ xi − c mod x1 for some i 6= 1, 2,

and 3, then −yt = xi − c, which is a contradiction by Lemma 4.4.3.

If −yt ≡ c − yi mod x1 for some i, then 2x1 − yt = c − yi, which is

a contradiction since 2x1 − yt > c − yi for all i. Then −yt ∈ Σr is

congruent to no element in Σq modulo x1, which is a contradiction.

Finally, without loss of generality, assume that x1 = c−x2 and x3 = c−xi
for some i. Then 2x1 = 2x2 = c and 2x3 = 2xi = c for some i. Then we

have {−2x1, x1, x1, x1} = {−c, x1, x2, x3} ⊂ Σp, which is a contradiction by

Lemma 4.2.6 part 3 for x1. �

Lemma 4.4.5. In Lemma 4.4.2, yi 6= c− yj, if i 6= j.

Proof. Suppose not. First, assume that yi = c − yj and yi = yj for some

i 6= j , i.e., 2yi = 2yj = c. Then {−2yi,−yi,−yi} = {−c,−yi,−yj} ⊂ Σp,

which contradicts Lemma 4.2.6 part 3 for yi.

Second, assume that yi = c− yj and yi 6= yj for some i 6= j. Without loss

of generality assume that y1 = c− y2 and y1 6= y2. We can also assume that

y1 >
c
2
> y2. Then we have that −y1 ∈ Σp and c − y2 = y1 ∈ Σq. Hence by

Lemma 4.2.6 part 1 for y1, Σp ≡ Σq mod y1.

First, we can choose a bijection between Σp and Σq so that

Σp ⊃ {−y1, 1} ∪ {−1, 1}s ≡ {c− y2 = y1, 1} ∪ {−1, 1}s ⊂ Σq mod y1.

Then we are left with

Σp ⊃ {−c,−b} ∪ {xi}t+3
i=1 ∪ {−yi}ti=2

≡ {c, a} ∪ {xi − c}t+3
i=1 ∪ {c− y1 = y2} ∪ {c− yi}ti=3 ⊂ Σq mod y1.
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Without loss of generality, let x1 ≤ x2 ≤ · · · ≤ xt+3 and −y3 ≤ −y4 ≤ · · · ≤
−yt, i.e.,

{−c,−b,−y2,−y3 ≤ −y4 ≤ · · · ≤ −yt < 0 < x1 ≤ x2 ≤ · · · ≤ xt+3}
≡ {x1 − c ≤ · · · ≤ xt+3 − c < 0 < c− y3 ≤ · · · ≤ c− yt, c, a, c− y2} mod x1.

Recall that y1 is odd and 2y1 > c where c is the largest weight.

Consider x1 ∈ Σp. If x1 ≡ c − yi mod y1 for some i 6= 1 and 2, then

x1 = c − yi, which contradicts Lemma 4.4.3. If x1 ≡ xi − c for some i,

x1− 2y1 = xi− c, which is a contradiction since x1− 2y1 < xi− c for all i. If

x1 ≡ c mod y1, then x1+y1 = c, which contradicts Lemma 4.4.3. Therefore,

x1 ≡ a mod y1.

Next, consider −yt ∈ Σp. If −yt ≡ c − yi for some i 6= 1 and 2, then

2y1 − yt = c − yi, which is a contradiction since 2y1 − yt > c − yi for all

i. If −yt ≡ xi − c mod y1 for some i, then −yt = xi − c, which contradicts

Lemma 4.4.3. Therefore, we have that either −yt ≡ c mod y1 or −yt ≡ c−y2
mod y1.

Suppose that −yt ≡ c mod y1. This means that −yt + 3y1 = c. Then we

have that −yt = c− 3y1 = y1 + y2− 3y1 = y2− 2y1 < y1− 2y1 = −y1 < −y2,
hence −yt < −y2. Next, we consider −y2 ∈ Σp. Using the same argument

for −yt, we have that −y2 ∈ Σp is congruent to no element in Σq modulo y1,

which is a contradiction.

Next, suppose that −yt ≡ c−y2 mod y1. This means that 2y1−yt = c−y2.
Then we have that 2y1 − yt = c − y2 = y1 + y2 − y2 = y1, hence y1 = yt.

Hence, we have {−y1,−y1} = {−y1,−yt} ⊂ Σp. Then by Lemma 4.2.6 part

3 for −y1, 2y1 ∈ Σp, which is a contradiction since c < 2y1 where c is the

largest weight. �

Lemma 4.4.6. Fix a natural number e such that e 6= c
2
. In Lemma 4.4.2, at

most one of xi’s, yi’s, c− xi’s, and c− yi’s can be e.

Proof. Fix a natural number e such that e 6= c
2
.

1. xi = e for some i.

First, by Lemma 4.4.3, xi 6= c − yj for all j. Second, suppose that

xi = c − xj for some j. Then by Lemma 4.4.4, 2e = 2xi = 2xj = c,

which is a contradiction.
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Third, suppose that xi = yj for some j. Assume that e > c
2
. Since

{−e, e} = {−yj, xi} ⊂ Σp, either 2e ∈ Σq or 2e ∈ Σr by Lemma 4.2.6

part 4 for e, which is a contradiction since 2e > c where c is the largest

weight. Next, assume that e < c
2
. Since {e−c, c−e} = {xi−c, c−yj} ⊂

Σq, either 2(c − e) ∈ Σp or 2(c − e) ∈ Σr by Lemma 4.2.6 part 4 for

c− e, which is a contradiction since 2(c− e) > c where c is the largest

weight.

Last, suppose that xi = xj for some j 6= i. Assume that e > c
2
. Since

{e, e} = {xi, xj} ⊂ Σp, −2e ∈ Σp by Lemma 4.2.6 part 3 for e, which

is a contradiction since −2e < −c where −c is the smallest weight.

Next, assume that e < c
2
. Since {e− c, e− c} = {xi − c, xj − c} ⊂ Σq,

2(c− e) ∈ Σq by Lemma 4.2.6 part 3 for e− c, which is a contradiction

since 2(c− e) > c where c is the largest weight.

2. yi = e for some i.

As above, yi 6= xj for all j. By Lemma 4.4.3, yi 6= c− xj for all j.

Next, suppose that yi = c−yj for some j. Then by Lemma 4.4.4, i = j.

Hence c = 2yi = 2e, which is a contradiction by the assumption that

e 6= c
2
.

Finally, Suppose that yi = yj for some j 6= i. Assume that e > c
2
.

Since {−e,−e} = {−yi,−yj} ⊂ Σp, 2e ∈ Σp by Lemma 4.2.6 part 3 for

e, which is a contradiction since 2e > c where c is the largest weight.

Next, assume that e < c
2
. Since {c− e, c− e} = {c− yi, c− yj} ⊂ Σq,

−2(c−e) ∈ Σq by Lemma 4.2.6 part 3 for c−e, which is a contradiction

since −2(c− e) < −c where −c is the smallest weight.

3. c− xi = e for some i.

As above, c− xi 6= xj for all j and c− xi 6= yj for all j. Since xj 6= yk

for all j and k, c − xi 6= c − yj for all j. Also, since xj 6= xk for all j

and k, c− xi 6= c− xj for all j.

4. c− yi = e for some i.

As above, c− yi 6= xj, c− yi 6= yj, and c− yi 6= c− xj for all j. Since

yj 6= yk for all j and k as above, c− yi 6= c− yj for all j.

�
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Lemma 4.4.7. In Lemma 4.4.2, xi 6= yj for all i and j.

Proof. Assume on the contrary that xi = yj for some i and j. Then by

Lemma 4.4.6, xi = yj = c
2
. Hence, {−2x1, x1,−x1} = {−c, x1,−y1} ⊂ Σp,

which contradicts Lemma 4.2.6 part 4 for x1. �

Lemma 4.4.8. In Lemma 4.4.2, assume that {−f, f} ⊂ Σr for some natural

number f . If f > 1, then c = 2f , {−c = −2f,−f} ⊂ Σp, {2f = c, f} ⊂ Σq,

and {−f, f} ⊂ Σr. Moreover, no additional multiples of f should appear as

weights.

Proof. Assume that f > 1. By Lemma 4.2.6 part 4 for f , either {2f, f} ⊂ Σp,

{−2f,−f} ⊂ Σq, and {−f, f} ⊂ Σr, or {−2f,−f} ⊂ Σp, {2f, f} ⊂ Σq, and

{−f, f} ⊂ Σr. However, since Σp does not have a positive even weight,

the former case is impossible. Hence the latter must be the case. Then,

−2f ∈ Σp implies that c = 2f or b = 2f . Suppose that b = 2f . Then we

have that {b = 2f,−f, f} ⊂ Σr, which is a contradiction by Lemma 4.2.6

part 4 for f . Therefore, c = 2f . �

Lemma 4.4.9. In Lemma 4.4.2, if Np(1) > Nr(1) and Nq(1) > Nr(1), then

Np(1) < Nr(1)+3 or Nq(1) < Nr(1)+3. Similarly, if Np(−1) > Nr(−1) and

Nq(−1) > Nr(−1), then Np(−1) < Nr(−1) + 3 or Nq(−1) < Nr(−1) + 3.

Proof. First we prove the former. For this suppose not, i.e., Np(1) ≥ Nr(1)+3

and Nq(1) ≥ Nr(1) + 3. There are three cases:

1. a > c
2
.

Since a ∈ Σq and −a ∈ Σr, by Lemma 4.2.6 part 1 for a, Σq ≡ Σr

mod a. With Nq(1) ≥ Nr(1) + 3, this implies that Nr(1 + a) ≥ 2 or

Nr(1 − a) ≥ 2, since |1 + ka| > c for |k| ≥ 2. If Nr(1 + a) ≥ 2,

−2(1 + a) ∈ Σr by Lemma 4.2.6 part 3 for 1 + a, but 2(1 + a) > c,

which is a contradiction. If Nr(1 − a) ≥ 2, 2(a − 1) ∈ Σr by Lemma

4.2.6 part 3 for 1− a. However, 2(a− 1) ≥ c but c /∈ Σr.

2. a < c
2
.

Suppose that a < c
2
. Then b = c−a > c

2
. Since −b ∈ Σp and b ∈ Σr, by

Lemma 4.2.6 part 1 for b, Σp ≡ Σr mod b. With Np(1) ≥ Nr(1) + 3,
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this implies that Nr(1 + b) ≥ 2 or Nr(1− b) ≥ 2, since |1 + kb| > c for

|k| ≥ 2. If Nr(1 + b) ≥ 2, −2(1 + b) ∈ Σr by Lemma 4.2.6 part 3 for

1 + b. However, 2(1 + b) > c, which is a contradiction. If Nr(1− b) ≥ 2,

2(b− 1) ∈ Σr by Lemma 4.2.6 part 3 for 1− b. However, 2(b− 1) ≥ c

but c /∈ Σr.

3. a = c
2
.

Since a = c
2
, we have that b = c−a = c

2
. Then the isotropy submanifold

MZa must be the third case of Lemma 4.2.5. This means that the three

fixed point lie in the same component of MZa , hence Σp ≡ Σq ≡ Σr

mod a by Lemma 2.0.19. With Nq(1) ≥ Nr(1) + 3, Σq ≡ Σr mod a

implies that Nr(1+a) ≥ 2, Nr(1−a) ≥ 2, Nr(1−2a) ≥ 2, or Nr(1+a) =

Nr(1− a) = Nr(1− 2a) = 1, since |1 + ka| > c for k 6= −2,−1, 0, and

1.

(a) Nr(1 + a) ≥ 2.

Since Nr(1 + a) ≥ 2, −2(1 + a) ∈ Σr by Lemma 4.2.6 part 3 for

1 + a. However, −2(1 + a) < −c where −c is the smallest weight,

which is a contradiction.

(b) Nr(1− 2a) ≥ 2.

By Lemma 4.2.6 part 3 for 1 − 2a, 2(2a − 1) ∈ Σr. However,

2(2a − 1) = 2(c − 1) > c where c is the largest weight, which is a

contradiction.

(c) Nr(1− a) ≥ 2.

By Lemma 4.2.6 part 3 for 1 − a, Nr(1 − a) = 2 and 2(a − 1) ∈
Σr. Since b is the only positive even weight at r, this means that

2(a−1) = b. Hence a = b = 2 and c = a+ b = 4. Then the weights

at p and q are

Σp = {−4,−2} ∪ {xi}t+3
i=1 ∪ {−yi}ti=1 ∪ {1} ∪ {−1, 1}s

Σq = {4, 2} ∪ {xi − 4}t+3
i=1 ∪ {4− yi}ti=1 ∪ {1} ∪ {−1, 1}s.

Since c = 4 is the largest weight, all of xi’s and yi’s are either 1

or 3. If at least two of xi’s are 3, Np(3) ≥ 2 hence −6 ∈ Σp by

Lemma 4.2.6 part 3 for 3, which is a contradiction since −4 is the

smallest weight. If at most one of xi is 1, then at least two xi− c’s
are -3. This means that Nq(−3) ≥ 2 and hence 6 ∈ Σq by Lemma
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4.2.6 part 3 for −3, which is a contradiction since 4 is the largest

weight.

(d) Nr(1 + a) = Nr(1− a) = Nr(1− 2a) = 1.

Since 1 − 2a ∈ Σr, by Lemma 2.0.12 for 1 − 2a, there must be a

weight of 2a−1 for some fixed point. If it is r, {2a−1, 1−2a} ⊂ Σr.

Hence 2(2a − 1) ∈ Σp or 2(2a − 1) ∈ Σq by Lemma 4.2.6 part 4

for 2a− 1, which is a contradiction since 2(2a− 1) = 2(c− 1) > c

where c is the largest weight. Hence either 2a− 1 ∈ Σp or 2a− 1 ∈
Σq. Suppose that 2a − 1 ∈ Σp. Then by Lemma 4.2.6 part 1 for

2a− 1, Σp ≡ Σr mod 2a− 1. That Np(1) ≥ Nr(1) + 3 implies that

Nr(2 − 2a) ≥ 3 since |1 + k(2a − 1)| ≥ c for k 6= 0 and −1, and

the fixed point r does not have a weights of c. However, r has only

one negative even weight −a, which is a contradiction. Similarly,

2a− 1 ∈ Σq is also impossible.

With a slight variation of this argument, one can prove the latter. �

4.5 Preliminaries for the largest weight even case: part

2

Let the circle act symplectically on a compact, connected symplectic manifold

M with exactly three fixed points. Also, assume that dimM ≥ 8 and the

largest weight is even. In this section, for technical reasons, we consider

w = minα∈MS1 min{Nα(−1), Nα(1)} and rewrite the weights in terms of w.

And then we further investigate properties that the manifoldM should satisfy

in terms of w, if such a manifold exists.

Lemma 4.5.1. Let w = minα∈MS1 min{Nα(−1), Nα(1)}. In Lemma 4.4.2,

the weights are

Σp = {−c,−b} ∪ {xi}t+3
i=1 ∪ {−yi}ti=1 ∪ {1} ∪ {−1, 1}v+w

Σq = {c, a} ∪ {xi − c}t+3
i=1 ∪ {c− yi}ti=1 ∪ {1} ∪ {−1, 1}v+w

Σr = {−a, b, · · · } ∪ {−1, 1}w
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for some t ≥ 0 and v ≥ 0, where a, b, and c are even natural numbers such

that c = a+ b is the largest weight, and xi’s and yi’s are odd natural numbers

for all i. Moreover, the remaining weights at r are odd.

Proof. In Lemma 4.4.2, the weights are

Σp = {−c,−b} ∪ {xi}t+3
i=1 ∪ {−yi}ti=1 ∪ {1} ∪ {−1, 1}s

Σq = {c, a} ∪ {xi − c}t+3
i=1 ∪ {c− yi}ti=1 ∪ {1} ∪ {−1, 1}s

Σr = {−a, b, · · · }

for some s ≥ 0 and t ≥ 0 such that dimM = 2n = 12 + 4t + 4s, where a, b,

and c are even natural numbers such that c = a + b is the largest weight,

and xi’s and yi’s are odd natural numbers for all i. Moreover, the remaining

weights at r are odd.

Let w = minα∈MS1 min{Nα(−1), Nα(1)}. We rewrite the weights in terms

of w. We show that {−c,−b} ∪ {xi}t+3
i=1 ∪ {−yi}ti=1 ∪ {1} in Σp and {c, a} ∪

{xi − c}t+3
i=1 ∪ {c− yi}ti=1 ∪ {1} in Σq do not contribute to w, i.e.,

{−1, 1} *
({−c,−b}∪{xi}t+3

i=1∪{−yi}ti=1∪{1})∩({c, a}∪{xi−c}t+3
i=1∪{c−yi}ti=1∪{1}).

First, a, b, and c are even natural numbers. Second, by Lemma 4.4.6, at

most one of c− xi’s or yi’s can be 1.

Suppose that yi = 1 for some i. Then c− xj 6= 1 for all j by Lemma 4.4.6.

Hence in Σq, {−1, 1} * ({c, a} ∪ {xi − c}t+3
i=1 ∪ {c− yi}ti=1 ∪ {1}).

Next, suppose that c− xi = 1 for some i. Then yj 6= 1 for all j by Lemma

4.4.6. Hence in Σp, {−1, 1} * ({−c,−b} ∪ {xi}t+3
i=1 ∪ {−yi}ti=1 ∪ {1}).

Last, if yi 6= 1 and c−xi 6= 1 for all i, then {−1, 1} * ({−c,−b}∪{xi}t+3
i=1∪

{−yi}ti=1 ∪{1}) in Σp and {−1, 1} * ({c, a}∪ {xi− c}t+3
i=1 ∪{c− yi}ti=1 ∪{1})

in Σq.

Therefore, we can rewrite the weights so that the weights are

Σp = {−c,−b} ∪ {xi}t+3
i=1 ∪ {−yi}ti=1 ∪ {1} ∪ {−1, 1}v+w

Σq = {c, a} ∪ {xi − c}t+3
i=1 ∪ {c− yi}ti=1 ∪ {1} ∪ {−1, 1}v+w

Σr = {−a, b, · · · } ∪ {−1, 1}w

where s = v + w. �

Lemma 4.5.2. In Lemma 4.5.1, for each xi, either xi = c − xj for some j

or −xi ∈ Σr \ ({−a, b} ∪ {−1, 1}w).
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Proof. By Lemma 2.0.12, for each xi, either −xi ∈ Σp, −xi ∈ Σq, or −xi ∈
Σr.

First, assume that xi > 1. By Lemma 4.4.6, xi 6= yj for all j. Hence

−xi /∈ Σp. Next, if −xi ∈ Σq, then −xi = xj − c for some j. If −xi ∈ Σr,

−xi ∈ Σr \ ({−a, b} ∪ {−1, 1}w).

Second, assume that xi = 1. By Lemma 4.4.6, at most one of c − xi’s

or yi’s can be 1. Hence, either Np(1) > Np(−1) and Nq(1) ≥ Nq(−1), or

Np(1) ≥ Np(−1) and Nq(1) > Nq(−1). By Lemma 2.0.12, this implies that

Nr(1) < Nr(−1). Therefore, −xi = −1 ∈ Σr \ ({−a, b} ∪ {−1, 1}w). �

Lemma 4.5.3. In Lemma 4.5.1, for each c − yi, yi − c ∈ Σr \ ({−a, b} ∪
{−1, 1}w).

Proof. By Lemma 2.0.12, for each c− yi, either yi − c ∈ Σp, yi − c ∈ Σq, or

yi − c ∈ Σr.

First, assume that c−yi > 1. Suppose that c−yi ∈ Σq. Then c−yi = c−xj
for some j, which is a contradiction since c− yi 6= c− xj for all j by Lemma

4.4.7. Next, suppose that yi − c ∈ Σp. Then yi − c = −yj for some j. By

Lemma 4.4.5, i = j, i.e., c = 2yi. Hence, {−2yi,−yi} = {−c,−yi} ⊂ Σp

and {2yi, yi} = {c, c − yi} ⊂ Σq. The isotropy submanifold MZyi must be

the third case of Lemma 4.2.5. Therefore, we have that {−yi, yi} ⊂ Σr. In

particular, yi− c = −yi ∈ Σr \ ({−a, b}∪{−1, 1}w), since c−yi = yi = c
2
≥ 2

and c− yi is odd.

Second, assume that c− yi = 1. By Lemma 4.4.6, at most one of c− xi’s
or yi’s can be 1. Hence, either Np(1) > Np(−1) and Nq(1) ≥ Nq(−1), or

Np(1) ≥ Np(−1) and Nq(1) > Nq(−1). By Lemma 2.0.12, this implies that

Nr(1) < Nr(−1). Therefore, yi − c = −1 ∈ Σr \ ({−a, b} ∪ {−1, 1}w). �

Lemma 4.5.4. In Lemma 4.5.1, suppose that c − xi 6= 1. Then either

c− xi = xj for some j or c− xi ∈ Σr \ ({−a, b} ∪ {−1, 1}w).

Proof. Suppose that c − xi 6= 1. By Lemma 2.0.12, for each c − xi, either

c−xi ∈ Σp, c−xi ∈ Σq, or c−xi ∈ Σr. First, assume that c−xi ∈ Σp. Then

c−xi = xj for some j. Second, assume that c−xi ∈ Σq. Then c−xi = c−yj
for some j, which is a contradiction by Lemma 4.4.7. Hence c−xi /∈ Σq. Last,

assume that c−xi ∈ Σr. Since c−xi 6= 1, c−xi ∈ Σr \ ({−a, b}∪{−1, 1}w).
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Lemma 4.5.5. In Lemma 4.5.1, suppose that yi 6= 1. Then yi ∈ Σr \
({−a, b} ∪ {−1, 1}w).

Proof. Suppose that yi 6= 1. By Lemma 2.0.12, for each yi, either yi ∈ Σp,

yi ∈ Σq, or yi ∈ Σr. First, assume that yi ∈ Σp. Then yi = xj for some j,

which is a contradiction by Lemma 4.4.7. Hence yi /∈ Σp. Second, assume

that yi ∈ Σq. Then yi = c−yj for some j. By Lemma 4.4.5, i = j, i.e., c = 2yi.

Hence, {−2yi,−yi} = {−c,−yi} ⊂ Σp and {2yi, yi} = {c, c− yi} ⊂ Σq. The

isotropy submanifold MZyi must be the third case of Lemma 4.2.5. Therefore,

we have that {−yi, yi} ⊂ Σr. In particular, yi ∈ Σr \ ({−a, b} ∪ {−1, 1}w),

since yi = c
2
≥ 2 and yi is odd. Last, assume that yi ∈ Σr. Since yi 6= 1,

yi ∈ Σr \ ({−a, b} ∪ {−1, 1}w). �

Lemma 4.5.6. In Lemma 4.5.1, if xi 6= c− xj for all i and j, then t < v.

Proof. Assume on the contrary that xi 6= c − xj for all i and j, and t ≥ v.

By Lemma 4.5.2, −xi ∈ Σr \ ({−a, b} ∪ {−1, 1}w) for all i. Also, by Lemma

4.5.3, yi − c ∈ Σr \ ({−a, b} ∪ {−1, 1}w) for all i.

We show that xi 6= xj and yi 6= yj for i 6= j. Suppose that xi = xj for

some i 6= j. Then by Lemma 4.4.6, 2xi = 2xj = c, hence xi = c − xj,

which contradicts the assumption. Therefore, xi 6= xj for i 6= j. Suppose

that yi = yj for some i 6= j. Then by Lemma 4.4.6, 2yi = 2yj = c, hence

yi = c− yj, which contradicts Lemma 4.4.5. Therefore, yi 6= yj for i 6= j.

First, suppose that c − xi = 1 for some i. Without loss of generality, let

c − x1 = 1. Then by Lemma 4.4.6, c − xi 6= 1 for i 6= 1 and yj 6= 1 for

all j. Hence c − xi ∈ Σr \ ({−a, b} ∪ {−1, 1}w) for i 6= 1 by Lemma 4.5.4.

Also, yj ∈ Σr \ ({−a, b} ∪ {−1, 1}w) for all j by Lemma 4.5.5. Also, by

Lemma 4.4.3, xi 6= c− yj for all i and j. Therefore, we have that {−xi}t+3
i=1 ∪

{c − xi}t+3
i=2 ∪ {yi}ti=1 ∪ {c − yi}ti=1 ⊂ Σr \ ({−a, b} ∪ {−1, 1}w), which is a

contradiction since |{−xi}t+3
i=1∪{c−xi}t+3

i=2∪{yi}ti=1∪{c−yi}ti=1| = 4t+5 and

|Σr\({−a, b}∪{−1, 1}w)| = 2t+4+2u+2v, but 4t+5 = 2t+2t+5 > 2t+4+2v.

Second, suppose that yi = 1 for some i. Without loss of generality, let

y1 = 1. Then by Lemma 4.4.6, c − xi 6= 1 for all i and yj 6= 1 for j 6= 1.

Hence c − xi ∈ Σr \ ({−a, b} ∪ {−1, 1}w) for all i by Lemma 4.5.4 and
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yj ∈ Σr \ ({−a, b} ∪ {−1, 1}w) for j 6= 1 by Lemma 4.5.5. Also, by Lemma

4.4.3, xi 6= c− yj for all i and j. Then we have that {−xi}t+3
i=1 ∪ {c− xi}t+3

i=1 ∪
{yi}ti=2 ∪ {c− yi}ti=1 ⊂ Σr \ ({−a, b} ∪ {−1, 1}w), which is a contradiction.

Finally, suppose that c − xi 6= 1 and yi 6= 1 for all i. Then c − xi ∈ Σr \
({−a, b}∪{−1, 1}w) for all i by Lemma 4.5.4 and yj ∈ Σr\({−a, b}∪{−1, 1}w)

for all j by Lemma 4.5.5. Also, by Lemma 4.4.3, xi 6= c − yj for all i and

j. Then we have that {−xi}t+3
i=1 ∪ {c − xi}t+3

i=1 ∪ {yi}ti=1 ∪ {c − yi}ti=1 ⊂
Σr \ ({−a, b} ∪ {−1, 1}w), which is a contradiction. �

4.6 The case where the largest weight is even

Let the circle act symplectically on a compact, connected symplectic manifold

M with exactly three fixed points. In this section, we show that if dimM ≥ 8,

the largest weight cannot be even. We rule out case by case. In Lemma 4.5.1,

we have the following cases:

1. t = 0 and v = 0.

2. t = 0 and v = 1.

3. t = 0 and v = 2.

4. t = 1 and v = 0.

5. t = 1 and v = 1.

6. t = 1 and v = 2.

7. t = 2 and v = 1.

8. t = 2 and v = 2.

9. t = 3 and v = 2.

10. t ≥ 2 + v.

11. v ≥ 3.

Lemma 4.6.1. In Lemma 4.5.1, t = 0 and v = 0 are impossible.
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Proof. The weights in this case are

Σp = {−c,−b, x1, x2, x3, 1} ∪ {−1, 1}w

Σq = {c, a, x1 − c, x2 − c, x3 − c, 1} ∪ {−1, 1}w

Σr = {−a, b, · · · } ∪ {−1, 1}w,

where w = minα∈MS1 min{Nα(−1), Nα(1)}, a, b, and c are even natural num-

bers such that c = a + b is the largest weight, and xi’s are odd natural

numbers for all i. Moreover, and the remaining weights at r are odd.

By Lemma 4.5.6, xi = c − xj for some i and j. Then by Lemma 4.4.4,

there exist xi and xj where i 6= j such that 2xi = 2xj = c. Without loss of

generality, let 2x1 = 2x2 = c. Lemma 4.4.4 also implies that x3 6= c−xi for all

i. Therefore, −x3 ∈ Σr\({−a, b}∪{−1, 1}w). Note that x1 = c−x1 = c
2
≥ 2.

First, suppose that c− x3 = 1. Then we have that x3 = c− 1 > 1. Hence,

Np(1) = Np(−1) + 1 = w + 1 and Nq(1) = Nq(−1) = w + 1. Therefore,

Nr(1) + 1 = Nr(−1) by Lemma 2.0.12 for 1. Considering Lemma 2.0.12 for

each integer, one can show that the weights are

Σp = {−c,−b, x1, x1, x3, 1} ∪ {−1, 1}w

Σq = {c, a,−x1,−x1,−1, 1} ∪ {−1, 1}w

Σr = {−a, b,−x3, f,−f,−1} ∪ {−1, 1}w

for some odd natural number f . If f > 1, by Lemma 4.4.8, we have that

c = 2x1 = 2f , which is a contradiction since no additional multiples of x1

should appear by Lemma 4.2.6 part 3 for x1. Hence f = 1.

Second, suppose that c − x3 6= 1. Then by Lemma 4.5.4, c − x3 ∈ Σr \
({−a, b} ∪ {−1, 1}w). Also, Np(1) ≥ Np(−1) + 1 = w + 1 and Nq(1) =

Nq(−1) + 1 = w+ 1. Therefore, Nr(1) + 2 ≤ Nr(−1) by Lemma 2.0.12 for 1.

Considering Lemma 2.0.12 for each integer, one can show that the weights

are

Σp = {−c,−b, x1, x1, x3, 1} ∪ {−1, 1}w

Σq = {c, a,−x1,−x1, x3 − c, 1} ∪ {−1, 1}w

Σr = {−a, b,−x3, c− x3,−1,−1} ∪ {−1, 1}w

Therefore, in either case the weights are

Σp = {−c,−b, x1, x1, x3, 1} ∪ {−1, 1}w

Σq = {c, a,−x1,−x1, x3 − c, 1} ∪ {−1, 1}w

Σr = {−a, b,−x3, c− x3,−1,−1} ∪ {−1, 1}w
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Let A = cn(M)|q =
∏
ξjp, B = cn(M)|q =

∏
ξjq , and C = cn(M)|r =

∏
ξjr .

First, 2x1 = c = a + b > b. Since c = a + b ≥ 2 + 2 = 4, x1 = c
2
≥ 2.

Therefore, c = 2x1 > x3 implies that x21 > x3. Then

(−1)w
−B − C
a(c− x3)

= cx21 − bx3 > 0,

and this implies that (−1)w+1B > (−1)wC. Also, we have that (−1)wA > 0.

Then, by Theorem 2.0.9,

0 = (−1)w
∫
M

1 = (−1)w
(

1

A
+

1

B
+

1

C

)
> 0,

which is a contradiction. �

Lemma 4.6.2. In Lemma 4.5.1, t = 0 and v = 1 are impossible.

Proof. The weights in this case are

Σp = {−c,−b, x1, x2, x3, 1} ∪ {−1, 1}w+1

Σq = {c, a, x1 − c, x2 − c, x3 − c, 1} ∪ {−1, 1}w+1

Σr = {−a, b, · · · } ∪ {−1, 1}w,

where w = minα∈MS1 min{Nα(−1), Nα(1)}, a, b, and c are even natural num-

bers such that c = a + b is the largest weight, and xi’s are odd natural

numbers for all i. Moreover, and the remaining weights at r are odd.

1. xi 6= c− xj for all i and j.

By Lemma 4.5.2, −xi ∈ Σr \({−a, b}∪{−1, 1}w) for all i. Assume that

xi = xj for some i 6= j. Then by Lemma 4.4.6, 2xi = 2xj = c hence

xi = c−xj, which contradicts the assumption. Hence xi 6= xj for i 6= j.

First, assume that c− xi 6= 1 for all i. Then by Lemma 4.5.4, c− xi ∈
Σr \ ({−a, b} ∪ {−1, 1}w) for all i. Hence, the weights are

Σp = {−c,−b, x1, x2, x3, 1,−1, 1} ∪ {−1, 1}w

Σq = {c, a, x1 − c, x2 − c, x3 − c, 1,−1, 1} ∪ {−1, 1}w

Σr = {−a, b,−x1,−x2,−x3, c− x1, c− x2, c− x3} ∪ {−1, 1}w

Then we have that λr = 1
2

dimM , which contradicts Lemma 4.1.4 that

λr = 1
2

dimM + 2.
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Next, assume that c − xi = 1 for some i. Without loss of generality,

let c − x3 = 1. Then by Lemma 4.4.6, c − xi 6= 1 for i 6= 3. By

Lemma 4.5.4, c− xi ∈ Σr \ ({−a, b}∪ {−1, 1}w) for i 6= 3. Also, by the

assumption, xi 6= 1 for i 6= 3. Then Np(1) = Np(−1) + 1 = w + 2 and

Nq(1) = Nq(−1) = w + 2. Therefore, Nr(1) + 1 = Nr(−1) by Lemma

2.0.12 for 1. Then the weights are

Σp = {−c,−b, x1, x2, c− 1, 1,−1, 1} ∪ {−1, 1}w

Σq = {c, a, x1 − c, x2 − c,−1, 1,−1, 1} ∪ {−1, 1}w

Σr = {−a, b,−x1,−x2, 1− c, c− x1, c− x2,−1} ∪ {−1, 1}w

By Lemma 4.2.6 part 1 for x3 = c − 1, Σp ≡ Σr mod c − 1. Since

c − x3 = 1, c − x1 6= 1 and c − x2 6= 2 by Lemma 4.4.6. Hence

Nr(1) = w. Then Np(1) ≥ w + 2, Nr(1) = w, and Σp ≡ Σr mod c− 1

imply that Nr(2−c) ≥ 2 since |1+k(c−1)| > c| for |k| ≥ 2 and c /∈ Σr.

However, r has only one negative even weight, which is a contradiction.

2. xi = c− xj for some i and j.

By Lemma 4.5.6, xi = c− xj for some i and j. Then by Lemma 4.4.4,

there exist xi and xj where i 6= j such that 2xi = 2xj = c. Without

loss of generality, let 2x1 = 2x2 = c. Lemma 4.4.4 also implies that

x3 6= c−xi for all i. Therefore, by Lemma 4.5.2, −x3 ∈ Σr \ ({−a, b}∪
{−1, 1}w). Note that x1 = c− x1 = c

2
≥ 2.

First, assume that c− x3 = 1. Then Np(1) = Np(−1) + 1 = w + 2 and

Nq(1) = Nq(−1) = w + 2. Therefore, Nr(1) + 1 = Nr(−1) by Lemma

2.0.12 for 1. Considering Lemma 2.0.12 for each integer, one can show

that the weights are

Σp = {−c,−b, x1, x1, c− 1, 1,−1, 1} ∪ {−1, 1}w

Σq = {c, a,−x1,−x1,−1, 1,−1, 1} ∪ {−1, 1}w

Σr = {−a, b, 1− c,−1,−f, f,−g, g} ∪ {−1, 1}w

for some odd natural numbers f and g. If f > 1, then by Lemma 4.4.8,

{−2f,−f} ⊂ Σp, which is a contradiction since p has no negative odd

weight that is less than -1. Hence f = 1. However, this means that

minα∈MS1 min{Nα(−1), Nα(1)} ≥ w + 1, which is a contradiction.
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Second, assume that c − x3 6= 1. By Lemma 4.5.4, c − x3 ∈ Σr \
({−a, b} ∪ {−1, 1}w). Then Np(1) ≥ Np(−1) + 1 = w + 2 and Nq(1) =

Nq(−1) + 1 = w+ 2. Therefore, Nr(1) + 2 ≤ Nr(−1) by Lemma 2.0.12

for 1. Considering Lemma 2.0.12 for each integer, one can show that

the weights are

Σp = {−c,−b, x1, x2, x3, 1,−1, 1} ∪ {−1, 1}w

Σq = {c, a,−x2,−x1, x3 − c, 1,−1, 1} ∪ {−1, 1}w

Σr = {−a, b,−x3, c− x3,−1,−1,−f, f} ∪ {−1, 1}w

for some odd natural number f . As above, f = 1 and this means that

minα∈MS1 min{Nα(−1), Nα(1)} ≥ w + 1, which is a contradiction.

�

Lemma 4.6.3. In Lemma 4.5.1, t = 0 and v = 2 are impossible.

Proof. The weights in this case are

Σp = {−c,−b, x1, x2, x3, 1} ∪ {−1, 1}w+2

Σq = {c, a, x1 − c, x2 − c, x3 − c, 1} ∪ {−1, 1}w+2

Σr = {−a, b, · · · } ∪ {−1, 1}w,

where w = minα∈MS1 min{Nα(−1), Nα(1)}, a, b, and c are even natural num-

bers such that c = a + b is the largest weight, and xi’s are odd natural

numbers for all i. Moreover, and the remaining weights at r are odd.

1. xi 6= c− xj for all i and j.

By Lemma 4.5.2, −xi ∈ Σr \({−a, b}∪{−1, 1}w) for all i. Assume that

xi = xj for some i 6= j. Then by Lemma 4.4.6, 2xi = 2xj = c hence

xi = c−xj, which contradicts the assumption. Hence xi 6= xj for i 6= j.

First, assume that c− xi 6= 1 for all i. Then by Lemma 4.5.4, c− xi ∈
Σr \ ({−a, b} ∪ {−1, 1}w) for all i. Also, Np(1) ≥ Np(−1) + 1 = w + 3

and Nq(1) = Nq(−1) + 1 = w + 3. Therefore, Nr(1) + 2 ≤ Nr(−1) by

Lemma 2.0.12 for 1. Considering Lemma 2.0.12 for each integer, one

can show that the weights are
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Σp = {−c,−b, x1, x2, x3, 1,−1, 1,−1, 1} ∪ {−1, 1}w

Σq = {c, a, x1 − c, x2 − c, x3 − c, 1,−1, 1,−1, 1} ∪ {−1, 1}w

Σr = {−a, b,−x1,−x2,−x3, c− x1, c− x2, c− x3,−1,−1} ∪ {−1, 1}w

Then we have that Np(1) ≥ w + 3, Nq(1) ≥ w + 3, and Nr(1) = w,

which contradict Lemma 4.4.9.

Next, assume that c − xi = 1 for some i. Without loss of generality,

let c − x3 = 1. Then by Lemma 4.4.6, c − xi 6= 1 for i 6= 3. Hence,

by Lemma 4.5.4, c − xi ∈ Σr \ ({−a, b} ∪ {−1, 1}w) for i 6= 3. Also,

Np(1) ≥ Np(−1) + 1 = w+ 3 and Nq(1) = Nq(−1) = w+ 3. Therefore,

Nr(1)+1 ≤ Nr(−1) by Lemma 2.0.12 for 1. Considering Lemma 2.0.12

for each integer, one can show that the weights are

Σp = {−c,−b, x1, x2, c− 1, 1,−1, 1,−1, 1} ∪ {−1, 1}w

Σq = {c, a, x1 − c, x2 − c,−1, 1,−1, 1,−1, 1} ∪ {−1, 1}w

Σr = {−a, b,−x1,−x2, 1− c, c− x1, c− x2,−1,−f, f} ∪ {−1, 1}w

for some odd natural number f . If f > 1, then by Lemma 4.4.8,

{−2f,−f} ⊂ Σp, which is a contradiction since p has no negative odd

weight that is less than -1. Hence f = 1. However, this means that

minα∈MS1 min{Nα(−1), Nα(1)} ≥ w + 1, which is a contradiction.

2. xi = c− xj for some i and j.

By Lemma 4.4.4, there exist xi and xj where i 6= j such that 2xi =

2xj = c. Without loss of generality, let 2x1 = 2x2 = c. Lemma 4.4.4

also implies that x3 6= c− xi for all i. Therefore, −x3 ∈ Σr \ ({−a, b}∪
{−1, 1}w). Note that x1 = c− x1 = c

2
≥ 2.

First, assume that c−x3 = 1. Then we have that Np(1) = Np(−1)+1 =

w+ 3 and Nq(1) = Nq(−1) = w+ 3. Therefore, Nr(1) + 1 = Nr(−1) by

Lemma 2.0.12 for 1. Considering Lemma 2.0.12 for each integer, one

can show that the weights are

Σp = {−c,−b, x1, x1, c− 1, 1,−1, 1,−1, 1} ∪ {−1, 1}w

Σq = {c, a,−x1,−x1,−1, 1,−1, 1,−1, 1} ∪ {−1, 1}w

Σr = {−a, b, 1− c,−1,−f, f,−h, h,−k, k} ∪ {−1, 1}w
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for some odd natural numbers f, h, and k. As above, f = 1 and

this means that minα∈MS1 min{Nα(−1), Nα(1)} ≥ w + 1, which is a

contradiction.

Second, assume that c − x3 6= 1. By Lemma 4.5.4, c − x3 ∈ Σr \
({−a, b} ∪ {−1, 1}w). Also, Np(1) ≥ Np(−1) + 1 = w + 3 and Nq(1) =

Nq(−1) + 1 = w+ 3. Therefore, Nr(1) + 2 ≤ Nr(−1) by Lemma 2.0.12

for 1. Considering Lemma 2.0.12 for each integer, one can show that

the weights are

Σp = {−c,−b, x1, x1, x3, 1,−1, 1,−1, 1} ∪ {−1, 1}w

Σq = {c, a,−x1,−x1, x3 − c, 1,−1, 1,−1, 1} ∪ {−1, 1}w

Σr = {−a, b,−x3, c− x3,−1,−1,−f, f,−h, h} ∪ {−1, 1}w

for some odd natural numbers f and h. As above, f = 1 and this means

that minα∈MS1 min{Nα(−1), Nα(1)} ≥ w+ 1, which is a contradiction.

�

Lemma 4.6.4. In Lemma 4.5.1, t = 1 and v = 0 are impossible.

Proof. The weights in this case are

Σp = {−c,−b, x1, x2, x3, x4,−y, 1} ∪ {−1, 1}w

Σq = {c, a, x1 − c, x2 − c, x3 − c, x4 − c, c− y, 1} ∪ {−1, 1}w

Σr = {−a, b, · · · } ∪ {−1, 1}w,

where a, b, and c are even natural numbers such that c = a + b is the

largest weight, xi’s and y are odd natural numbers for all i, and w =

minα∈MS1 min{Nα(−1), Nα(1)}. Moreover, the remaining weights at r are

odd.

By Lemma 4.5.6, xi = c − xj for some i and j. Then by Lemma 4.4.4,

there exist xi and xj where i 6= j such that 2xi = 2xj = c. Without loss of

generality, let 2x1 = 2x2 = c. Lemma 4.4.4 also implies that xi 6= c−xj for i 6=
1 and 2, and for all j. Therefore, −xi ∈ Σr\({−a, b}∪{−1, 1}w) for i = 3 and

4 by Lemma 4.5.2. Also, by Lemma 4.5.3, y− c ∈ Σr \ ({−a, b} ∪ {−1, 1}w).

Moreover, by Lemma 4.2.6 part 3 for x, none of xi’s, y, c − xi’s and c − y
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can be x for i 6= 1 and 2. Hence, by Lemma 4.4.6, all of xi’s, y, c− xi’s and

c− y are different for i 6= 1 and 2.

First, suppose that c− xi 6= 1 for all i and y 6= 1. Then by Lemma 4.5.4,

xi − c ∈ Σr \ ({−a, b} ∪ {−1, 1}w) for i = 3 and 4. Also, by Lemma 4.5.5,

y ∈ Σr \ ({−a, b} ∪ {−1, 1}w). Then the weights are

Σp = {−c,−b, x1, x1, x3, x4,−y, 1} ∪ {−1, 1}w

Σq = {c, a,−x1,−x1, x3 − c, x4 − c, c− y, 1} ∪ {−1, 1}w

Σr = {−a, b,−x3,−x4, y, c− x3, c− x4, y − c} ∪ {−1, 1}w

Then we have that λr = 1
2

dimM , which contradicts Lemma 4.1.4 that λr =
1
2

dimM + 2.

Second, suppose that y = 1. Then by Lemma 4.4.6, none of xi’s, c− xi’s,
and c−y is 1 for all i. Hence, by Lemma 4.5.4, xi−c ∈ Σr\({−a, b}∪{−1, 1}w)

for i = 3 and 4. Moreover, Np(1) = Np(−1) = w + 1 and Nq(1) − 1 =

Nq(−1) = w. By Lemma 2.0.12 for 1, this implies that Nr(1) = Nr(−1)− 1.

Then the weights are

Σp = {−c,−b, x1, x1, x3, x4,−1, 1} ∪ {−1, 1}w

Σq = {c, a,−x1,−x1, x3 − c, x4 − c, c− 1, 1} ∪ {−1, 1}w

Σr = {−a, b,−x3,−x4, c− x3, c− x4, 1− c,−1} ∪ {−1, 1}w

By Corollary 2.0.14, c1(M)|p = 0 and this implies that x3 + x4 = b. Since

x3 + x4 = b < a + b = c = 2x1 and x1 = c
2
≥ 2, we have that x21 > x3x4.

Therefore,

(−1)w
B + C

a(c− x3)(c− x4)(c− 1)
= cx21 − bx3x4 > 0.

Also, (−1)wA < 0. Then, by Theorem 2.0.9,

0 =

∫
M

1 = (−1)w
(

1

A
+

1

B
+

1

C

)
< 0,

which is a contradiction.

Finally, suppose that c−xi = 1 for some i. Since c ≥ 4, c−x1 = x1 = c
2
≥ 2.

Hence, c− xi = xi 6= 1 for i = 1 and 2. Therefore, without loss of generality,

let c−x4 = 1. By Lemma 4.4.6, none of xi’s, c−xj’s, y, and c− y is 1 for all

i and for j 6= 4. Hence, by Lemma 4.5.4, c− x3 ∈ Σr \ ({−a, b} ∪ {−1, 1}w).

Also, by Lemma 4.5.5, y ∈ Σr \ ({−a, b} ∪ {−1, 1}w). Moreover, Np(1) =

Np(−1) + 1 = w + 1 and Nq(1) = Nq(−1) = w + 1. By Lemma 2.0.12 for 1,

this implies that Nr(1) = Nr(−1)− 1. Then the weights are
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Σp = {−c,−b, x1, x1, x3, c− 1,−y, 1} ∪ {−1, 1}w

Σq = {c, a,−x1,−x1, x3 − c,−1, c− y, 1} ∪ {−1, 1}w

Σr = {−a, b,−x3, 1− c, c− x3, y − c, y,−1} ∪ {−1, 1}w

By Lemma 4.2.6 part 1 for c − 1 = x4, Σp ≡ Σr mod c − 1. First, we can

choose a bijection between Σp and Σq so that Σp ⊃ {c− 1,−c}∪ {−1, 1}w ≡
{1−c,−1}∪{−1, 1}w ⊂ Σr mod c−1. Since Np(1) = w+1 and Nr(1) = w,

Σp ≡ Σr mod c−1 implies that 2−c ∈ Σr since |1+k(c−1)| > c for |k| ≥ 2

and c /∈ Σr. Since −a is the only negative even weight at r, we have that

−a = 2− c, i.e., a+ 2 = c = a+ b. Hence, b = 2. Then we are left with

{−2 = −b, x1, x1, x3,−y} ≡ {2 = b,−x3, c− x3, y − c, y} mod c− 1.

Since for 2 ∈ Σr, 2 6= −2, x1, and x3 mod c− 1, the only possibility is that

2 ≡ −y mod c − 1, i.e., 2 − c + 1 = −y. Thus y = c − 3. By Corollary

2.0.14, c1(M)|p = −c− 2 + x1 + x1 + x3 + c− 1− y + 1 = 0. Hence, we have

that x3 + c = y + 2. However, x3 + c = y + 2 = c − 3 + 2 = c − 1 and so

0 < x3 = −1, which is a contradiction. �

Lemma 4.6.5. In Lemma 4.5.1, t = 1 and v = 1 are impossible.

Proof. The weights in this case are

Σp = {−c,−b, x1, x2, x3, x4,−y, 1} ∪ {−1, 1}w+1

Σq = {c, a, x1 − c, x2 − c, x3 − c, x4 − c, c− y, 1} ∪ {−1, 1}w+1

Σr = {−a, b, · · · } ∪ {−1, 1}w,

where a, b, and c are even natural numbers such that c = a + b is the

largest weight, xi’s and y are odd natural numbers for all i, and w =

minα∈MS1 min{Nα(−1), Nα(1)}. Moreover, the remaining weights at r are

odd.

By Lemma 4.5.6, xi = c − xj for some i and j. Then by Lemma 4.4.4,

there exist xi and xj where i 6= j such that 2xi = 2xj = c. Without loss

of generality, let 2x1 = 2x2 = c. Denote x = x1. Lemma 4.4.4 also implies

that xi 6= c − xj for i 6= 1 and 2, and for all j. Therefore, −xi ∈ Σr \
({−a, b}∪{−1, 1}w) for i = 3 and 4 by Lemma 4.5.2. Also, by Lemma 4.5.3,

y − c ∈ Σr \ ({−a, b} ∪ {−1, 1}w). Moreover, by Lemma 4.2.6 part 3 for x,

none of xi’s, y, c−xi’s, and c−y can be x for i 6= 1 and 2. Hence, by Lemma
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4.4.6, all of xi’s, y, c− xi’s, and c− y are different for i 6= 1 and 2. We have

the following cases:

1. y = 1.

By Lemma 4.4.6, none of xi’s, c − xi’s, and c − y is 1 for all i. Then

by Lemma 4.5.4, c − xi ∈ Σr \ ({−a, b} ∪ {−1, 1}w) for i = 3 and 4.

Moreover, Np(1) = Np(−1) = Nq(1) = Nq(−1) + 1 = w + 2. Hence, by

Lemma 2.0.12 for 1, Nr(−1) = Nr(1) + 1. Considering Lemma 2.0.12

for each integer, one can show that the weights are

Σp = {−c,−b, x, x, x3, x4,−1, 1,−1, 1} ∪ {−1, 1}w

Σq = {c, a,−x,−x, x3 − c, x4 − c, c− 1, 1,−1, 1} ∪ {−1, 1}w

Σr = {−a, b,−x3,−x4, c− x3, c− x4, 1− c,−1,−f, f} ∪ {−1, 1}w

for some odd natural number f . Suppose that f > 1. Then by Lemma

4.4.8, c = 2x = 2f , which is a contradiction since no additional mul-

tiples of x should appear by Lemma 4.2.6 part 3 for x. Hence f = 1.

However, this means that minα∈MS1 min{Nα(−1), Nα(1)} ≥ w + 1,

which is a contradiction.

2. c− xi = 1 for some i.

Since 2x1 = 2x2 = c ≥ 4, c−x1 = c−x2 = x1 ≥ 2. Hence, without loss

of generality, assume that c− x4 = 1. By Lemma 4.4.6, none of xi’s, y,

c−xj’s, and c−y can be 1 for all i and j 6= 4. Thus y ∈ Σr \ ({−a, b}∪
{−1, 1}w) by Lemma 4.5.5 and c − x3 ∈ Σr \ ({−a, b} ∪ {−1, 1}w) by

Lemma 4.5.4. Moreover, Np(1) = Np(−1) + 1 = Nq(1) = Nq(−1) =

w+2. Hence, by Lemma 2.0.12 for 1, Nr(−1) = Nr(1)+1. Considering

Lemma 2.0.12 for each integer, one can show that the weights are

Σp = {−c, b, x, x, x3, c− 1,−y, 1,−1, 1} ∪ {−1, 1}w

Σq = {c, a,−x,−x, x3 − c,−1, c− y, 1,−1, 1} ∪ {−1, 1}w

Σr = {−a, b,−x3, 1− c, y, c− x3, y − c,−1,−f, f} ∪ {−1, 1}w

for some odd natural number f . Then as above, f = 1, which is a

contradiction since this means that minα∈MS1 min{Nα(−1), Nα(1)} ≥
w + 1.
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3. y 6= 1 and c− xi 6= 1, for all i.

By Lemma 4.5.5, y ∈ Σr \ ({−a, b} ∪ {−1, 1}w). Also, c − xi ∈
Σr \ ({−a, b} ∪ {−1, 1}w) for i = 3 and 4 by Lemma 4.5.4. More-

over, Np(1) ≥ Np(−1) + 1 and Nq(1) ≥ Nq(−1) + 1. Hence, by Lemma

2.0.12 for 1, Nr(−1) ≥ Nr(1) + 2. Considering Lemma 2.0.12 for each

integer, one can show that the weights are

Σp = {−c,−b, x, x, x3, x4,−y, 1,−1, 1} ∪ {−1, 1}w

Σq = {c, a,−x,−x, x3 − c, x4 − c, c− y, 1,−1, 1} ∪ {−1, 1}w

Σr = {−a, b,−x3,−x4, c− x3, c− x4, y, y − c,−1,−1} ∪ {−1, 1}w

By Lemma 4.2.6 part 3 for x, no additional multiples of x appear.

Hence, a 6= x and b 6= x. Since 2x = c = a+ b, either a > c
2

or b > c
2
.

(a) a > c
2
.

By Lemma 4.2.6 part 1 for a, Σq ≡ Σr mod a. First, we can choose

so that

Σq ⊃ {c = a+ b, a,−1} ∪ {−1, 1}w ≡ {−a, b,−1} ∪ {−1, 1}w ⊂ Σr

mod a.

Next, {−x,−x} ⊂ Σq and −x /∈ Σr imply that {a − x, a − x} ⊂
Σr \({−a, b,−1}∪{−1, 1}w), {2a−x, 2a−x} ⊂ Σr \({−a, b,−1}∪
{−1, 1}w), or {a−x, 2a−x} ⊂ Σr \ ({−a, b,−1}∪{−1, 1}w), since

| − x + ka| > c for k < 0 or k > 2. If the first case or the second

case holds, it implies that two of c − x3, c − x4, and y are equal

since c − x3, c − x4, and y are the only positive integers in Σr \
({−a, b,−1}∪{−1, 1}w), which is a contradiction by Lemma 4.4.6.

Hence we have that {a−x, 2a−x} ⊂ Σr \ ({−a, b,−1}∪{−1, 1}w).

Similarly, Nq(1) = w + 2, Nr(1) = w, and Σq ≡ Σr mod a imply

that either {1 + a, 1 + a} ⊂ Σr \ ({−a, b,−1} ∪ {−1, 1}w), {1 −
a, 1 − a} ⊂ Σr \ ({−a, b,−1} ∪ {−1, 1}w), or {1 − a, 1 + a} ⊂
Σr \ ({−a, b,−1} ∪ {−1, 1}w), since |1 + ka| > c for |k| ≥ 2. If

the first case holds, −2(a + 1) ∈ Σr by Lemma 4.2.6 part 3 for

a + 1, which is a contradiction since −2(a + 1) < −c where −c
is the smallest weight. If the second case holds, 2(a − 1) ∈ Σr

by Lemma 4.2.6 part 3 for 1 − a, which is a contradiction since
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2(a − 1) ≥ 2x = c but c /∈ Σr. Hence, the third case must be the

case.

To sum up, we have {1−a, 1 +a, a−x, 2a−x} ⊂ {−x3,−x4, y, c−
x3, c − x4, y − c} = Σr \ ({−a, b,−1} ∪ {−1, 1}w), i.e., 1 − a ∈
{−x3,−x4, y−c} and {1+a, a−x, 2a−x} = {y, c−x3, c−x4}. For

each α ∈ {−x3,−x4, y− c}, we have that α+ c ∈ {y, c−x3, c−x4}.
This implies that 1−a+c ∈ {y, c−x3, c−x4} = {1+a, a−x, 2a−x}.
If 1 − a + c = 1 + a, then 1 − a + c = 1 − a + 2x = 1 + a, hence

2x = 2a, which contradicts that a > x. If 1 − a + c = 2a − x,

then 1 − a + c = 1 − a + 2x = 2a − x, hence 3x + 1 = 3a, which

is a contradiction since a > x. Hence 1− a + c = a− x. Then we

have that c + 1 = 2a − x, which is a contradiction since 2a − x ∈
{y, c − x3, c − x4} ⊂ Σr but 2a − x = c + 1 > c, where c is the

largest weight.

(b) b > c
2
.

By Lemma 4.2.6 part 1 for b, Σp ≡ Σr mod b. First, we can choose

so that

Σp ⊃ {−c = −a− b,−b,−1} ∪ {−1, 1}w

≡ {−a, b,−1} ∪ {−1, 1}w ⊂ Σr mod b.

Next, as above, one can show that {b− x, 2b− x, b + 1} = {y, c−
x3, c−x4}. This implies that b−x+ 2b−x+ b+ 1 = 4b− 2x+ 1 =

2c + y − x3 − x4 = y + c − x3 + c − x4. Therefore, 4b − 2x + 1 =

2c+y−x3−x4 = 4x+y−x3−x4, hence 4b+1 = 6x+y−x3−x4. On

the other hand, by Corollary 2.0.14, c1(M)|p = b+x3+x4−y+1 = 0.

Thus y−x3−x4 = b+1. Then we have that 4b+1 = 6x+y−x3−x4 =

6x+b+1, hence 3b = 6x, which is a contradiction since b < 2x = c.

�

Lemma 4.6.6. In Lemma 4.5.1, t = 1 and v = 2 are impossible.

Proof. The weights in this case are

Σp = {−c,−b, x1, x2, x3, x4,−y, 1} ∪ {−1, 1}w+2

Σq = {c, a, x1 − c, x2 − c, x3 − c, x4 − c, c− y, 1} ∪ {−1, 1}w+2

Σr = {−a, b, · · · } ∪ {−1, 1}w,
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where a, b, and c are even natural numbers such that c = a + b is the

largest weight, xi’s and y are odd natural numbers for all i, and w =

minα∈MS1 min{Nα(−1), Nα(1)}. Moreover, the remaining weights at r are

odd. By Lemma 4.5.3, y − c ∈ Σr \ ({−a, b} ∪ {−1, 1}w). We have the

following cases:

1. xi = c− xj for some i and j.

By Lemma 4.4.4, there exist xi and xj where i 6= j such that 2xi =

2xj = c. Without loss of generality, let 2x1 = 2x2 = c. Denote x = x1.

Lemma 4.4.4 also implies that xi 6= c−xj for i 6= 1 and 2, and for all j.

Therefore, −xi ∈ Σr \ ({−a, b} ∪ {−1, 1}w) for i = 3 and 4 by Lemma

4.5.2. Moreover, by Lemma 4.2.6 part 3 for x, none of xi’s, y, c− xi’s,
and c− y can be x for i 6= 1 and 2. Hence, by Lemma 4.4.6, all of xi’s,

y, c− xi’s, and c− y are different for i 6= 1 and 2.

First, assume that y = 1. Then none of xi’s, c−xi’s, and c−y is 1 for all

i. Hence c− xi ∈ Σr \ ({−a, b} ∪ {−1, 1}w) for i = 3 and 4 by Lemma

4.5.4. Moreover, Np(1) = Np(−1) = Nq(1) = Nq(−1) + 1 = w + 3.

Hence, by Lemma 2.0.12 for 1, Nr(−1) = Nr(1) + 1. Considering

Lemma 2.0.12 for each integer, one can show that the weights are

Σp = {−c,−b, x, x, x3, x4,−1, 1,−1, 1,−1, 1} ∪ {−1, 1}w

Σq = {c, a,−x,−x, x3 − c, x4 − c, c− 1, 1,−1, 1,−1, 1} ∪ {−1, 1}w

Σr = {−a, b,−x3,−x4, c−x3, c−x4, 1− c,−1,−f, f,−h, h}∪{−1, 1}w

for some odd natural numbers f and h. Suppose that f > 1. Then

by Lemma 4.4.8, c = 2x = 2f , which contradicts Lemma 4.2.6 part

3 for x. Hence f = 1, which is a contradiction since it means that

minα∈MS1 min{Nα(−1), Nα(1)} ≥ w + 1.

Second, assume that c−xi = 1 for some i. Since c−x1 = c−x2 = x1 =
c
2
≥ 2, without loss of generality, let c − x4 = 1. Then none of xi’s,

c− xj’s, y, and c− y is 1 for all i and j 6= 4. Thus y ∈ Σr \ ({−a, b} ∪
{−1, 1}w) by Lemma 4.5.5 and c − x3 ∈ Σr \ ({−a, b} ∪ {−1, 1}w) by

Lemma 4.5.4. Moreover, Np(1) = Np(−1) + 1 = Nq(1) = Nq(−1) =

w+3. Hence, by Lemma 2.0.12 for 1, Nr(−1) = Nr(1)+1. Considering

Lemma 2.0.12 for each integer, one can show that the weights are

69



Σp = {−c,−b, x, x, x3, c− 1,−y, 1,−1, 1,−1, 1} ∪ {−1, 1}w

Σq = {c, a,−x,−x, x3 − c,−1, c− y, 1,−1, 1,−1, 1} ∪ {−1, 1}w

Σr = {−a, b,−x3, 1− c, y, c− x3, y − c,−1,−f, f,−h, h} ∪ {−1, 1}w

for some odd natural numbers f and h. As above, f = 1, which is

a contradiction since it means that minα∈MS1 min{Nα(−1), Nα(1)} ≥
w + 1.

Last, assume that y 6= 1 and c − xi 6= 1 for all i. By Lemma 4.5.5,

y ∈ Σr \ ({−a, b} ∪ {−1, 1}w). Also, c− xi ∈ Σr \ ({−a, b} ∪ {−1, 1}w)

for i = 3 and 4 by Lemma 4.5.4. Moreover, Np(1) ≥ Np(−1) + 1

and Nq(1) ≥ Nq(−1) + 1. Hence, by Lemma 2.0.12 for 1, Nr(−1) ≥
Nr(1) + 2. Considering Lemma 2.0.12 for each integer, one can show

that the weights are

Σp = {−c,−b, x, x, x3, x4,−y, 1,−1, 1,−1, 1} ∪ {−1, 1}w

Σq = {c, a,−x,−x, x3 − c, x4 − c, c− y, 1,−1, 1,−1, 1} ∪ {−1, 1}w

Σr = {−a, b,−x3,−x4, y, c−x3, c−x4, y− c,−1,−1,−f, f}∪{−1, 1}w

for some odd natural number f . As above, f = 1, which is a contra-

diction since it means that minα∈MS1 min{Nα(−1), Nα(1)} ≥ w + 1.

2. xi 6= c− xj, for all i and j.

By Lemma 4.5.2, −xi ∈ Σr \ ({−a, b} ∪ {−1, 1}w) for all i. Also, by

Lemma 4.5.3, y − c ∈ Σr \ ({−a, b} ∪ {−1, 1}w).

We show that xi 6= xj for i 6= j. Suppose that xi = xj for some

i 6= j. Then by Lemma 4.4.6, 2xi = 2xj = c, hence xi = c− xj, which

contradicts the assumption. Therefore, xi 6= xj for i 6= j. Moreover,

by Lemma 4.4.3, xi 6= c− y for all i and j.

First, suppose that y = 1. By Lemma 4.4.6, none of xi’s, c− xi’s, and

c − y is 1. Then by Lemma 4.5.4, c − xi ∈ Σr \ ({−a, b} ∪ {−1, 1}w)

for all i. Moreover, Np(1) = Np(−1) = Nq(1) = Nq(−1) + 1 = w + 3.

Hence, by Lemma 2.0.12 for 1, Nr(−1) = Nr(1)+1. Hence, the weights

are
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Σp = {−c,−b, x1, x2, x3, x4,−1, 1,−1, 1,−1, 1} ∪ {−1, 1}w

Σq = {c, a, x1− c, x2− c, x3− c, x4− c, c− 1, 1,−1, 1,−1, 1} ∪ {−1, 1}w

Σr = {−a, b} ∪ {−xi}4i=1 ∪ {c− xi}4i=1 ∪ {1− c,−1} ∪ {−1, 1}w

Then we have that Np(1) ≥ w + 3, Nq(1) ≥ w + 3, and Nr(1) = w,

which is a contradiction by Lemma 4.4.9.

Second, suppose that c− xi = 1 for some i. Without loss of generality,

assume that c− x4 = 1. By Lemma 4.4.6, none of xi’s, c− xj’s, y, and

c − y is 1 for all i and j 6= 4. Thus y ∈ Σr \ ({−a, b} ∪ {−1, 1}w) by

Lemma 4.5.5 and c−xi ∈ Σr \({−a, b}∪{−1, 1}w) for i 6= 4 by Lemma

4.5.4. Moreover, Np(1) = Np(−1) + 1 = Nq(1) = Nq(−1) = w + 3.

Therefore, by Lemma 2.0.12 for 1, Nr(−1) = Nr(1) + 1. Hence, the

weights are

Σp = {−c,−b, x1, x2, x3, x4,−y, 1,−1, 1,−1, 1} ∪ {−1, 1}w

Σq = {c, a, x1 − c, x2 − c, x3 − c,−1, c− y, 1,−1, 1,−1, 1} ∪ {−1, 1}w

Σr = {−a, b} ∪ {−xi}4i=1 ∪ {c− xi}3i=1 ∪ {y, y − c,−1} ∪ {−1, 1}w

Then we have that Np(1) ≥ w + 3, Nq(1) ≥ w + 3, and Nr(1) = w,

which is a contradiction by Lemma 4.4.9.

Finally, suppose that y 6= 1 and c− xi 6= 1 for all i. By Lemma 4.5.5,

y ∈ Σr \ ({−a, b} ∪ {−1, 1}w). Also, c− xi ∈ Σr \ ({−a, b} ∪ {−1, 1}w)

for all i by Lemma 4.5.4. Hence, the weights are

Σp = {−c,−b, x1, x2, x3, x4,−y, 1,−1, 1,−1, 1} ∪ {−1, 1}w

Σq = {c, a, x1− c, x2− c, x3− c, x4− c, c− y, 1,−1, 1,−1, 1} ∪ {−1, 1}w

Σr = {−a, b} ∪ {−xi}4i=1 ∪ {y} ∪ {c− xi}4i=1 ∪ {y − c} ∪ {−1, 1}w

Then we have that Np(1) ≥ w + 3, Nq(1) ≥ w + 3, and Nr(1) = w,

which is a contradiction by Lemma 4.4.9.

�

Lemma 4.6.7. In Lemma 4.5.1, t = 2 and v = 1 are impossible.
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Proof. The weights in this case are

Σp = {−c,−b, x1, x2, x3, x4, x5,−y1,−y2, 1} ∪ {−1, 1}w+1

Σq = {c, a, x1 − c, x2 − c, x3 − c, x4 − c, x5 − c, c− y1, c− y2, 1} ∪ {−1, 1}w+1

Σr = {−a, b, · · · } ∪ {−1, 1}w,

where a, b, and c are even natural numbers such that c = a + b is the

largest weight, xi’s and yi’s are odd natural numbers for all i, and w =

minα∈MS1 min{Nα(−1), Nα(1)}. Moreover, the remaining weights at r are

odd.

By Lemma 4.5.6, xi = c − xj for some i and j. Then by Lemma 4.4.4,

there exist xi and xj where i 6= j such that 2xi = 2xj = c. Without loss

of generality, let 2x1 = 2x2 = c. Denote x = x1. Lemma 4.4.4 also implies

that xi 6= c − xj for i 6= 1 and 2, and for all j. Therefore, −xi ∈ Σr \
({−a, b}∪{−1, 1}w) for i 6= 1 and 2 by Lemma 4.5.2. Also, by Lemma 4.5.3,

yi − c ∈ Σr \ ({−a, b} ∪ {−1, 1}w) for all i. Moreover, by Lemma 4.2.6 part

3 for x, none of xi’s, yj’s, c− xi’s, and c− yj’s can be x for i 6= 1 and 2, and

for all j. Hence, by Lemma 4.4.6, all of xi’s, yj’s, c − xi’s, and c − yj’s are

different for i 6= 1 and 2, and for all j.

First, suppose that yi = 1 for some i. Without loss of generality, let y2 = 1.

Then none of xi’s, c− xi’s, y1, and c− yi’s is 1 for all i. Then we have that

y1 ∈ Σr \ ({−a, b} ∪ {−1, 1}w) by Lemma 4.5.5 and c− xi ∈ Σr \ ({−a, b} ∪
{−1, 1}w) for i 6= 1 and 2 by Lemma 4.5.4. Moreover, Np(1) = Np(−1) and

Nq(1) = Nq(−1) + 1. Hence, by Lemma 2.0.12 for 1, Nr(1) + 1 = Nr(−1).

Then the weights are

Σp = {−c,−b, x, x, x3, x4, x5,−y1,−1, 1,−1, 1} ∪ {−1, 1}w

Σq = {c, a,−x,−x, x3 − c, x4 − c, x5 − c, c− y1, c− 1, 1,−1, 1} ∪ {−1, 1}w

Σr = {−a, b,−x3,−x4,−x5, y1, c−x3, c−x4, c−x5, y1−c, 1−c,−1}∪{−1, 1}w

Then Σq ≡ Σr mod c−1 by Lemma 4.2.6 part 1 for c−1. First, |1+k(c−1)| >
c for |k| ≥ 2. Also, c /∈ Σr. Then, Nq(1) = w + 2, Nr(1) = w, and Σq ≡ Σr

mod c−1 imply that Nr(2− c) = 2, which is a contradiction since r has only

one negative even weight.

Second, suppose that c−xi = 1 for some i. Since c−x1 = c−x2 = x1 = c
2
≥

2, without loss of generality, let c− x5 = 1. Then none of xi’s, c− xj’s, yi’s,
and c−yi’s is 1 for all i and j 6= 5. Therefore, we have that yi ∈ Σr\({−a, b}∪
{−1, 1}w) for all i by Lemma 4.5.5 and c − xj ∈ Σr \ ({−a, b} ∪ {−1, 1}w)
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for j = 3 and 4 by Lemma 4.5.4. Moreover, Np(1) = Np(−1) + 1 and

Nq(1) = Nq(−1). Hence, by Lemma 2.0.12 for 1, Nr(1) + 1 = Nr(−1). Then

the weights are

Σp = {−c,−b, x, x, x3, x4, c− 1,−y1,−y2, 1,−1, 1} ∪ {−1, 1}w

Σq = {c, a,−x,−x, x3 − c, x4 − c,−1, c− y1, c− y2, 1,−1, 1} ∪ {−1, 1}w

Σr = {−a, b,−x3,−x4, 1− c, y1, y2, c−x3, c−x4, y1− c, y2− c,−1}∪{−1, 1}w

Then Σp ≡ Σr mod c − 1 by Lemma 4.2.6 part 1 for c − 1. As above,

Np(1) = w+2, Nr(1) = w, and Σp ≡ Σr mod c−1 imply that Nr(2−c) = 2,

which is a contradiction since r has only one negative even weight.

Last, suppose that c − xi 6= 1 and yi 6= 1 for all i. Then we have that

yi ∈ Σr \ ({−a, b} ∪ {−1, 1}w) for all i by Lemma 4.5.5 and c − xj ∈ Σr \
({−a, b} ∪ {−1, 1}w) for j 6= 1 and 2 by Lemma 4.5.4. Then the weights are

Σp = {−c,−b, x, x, x3, x4, x5,−y1,−y2, 1,−1, 1} ∪ {−1, 1}w

Σq = {c, a,−x,−x, x3 − c, x4 − c, x5 − c, c− y1, c− y2, 1,−1, 1} ∪ {−1, 1}w

Σr = {−a, b,−x3,−x4,−x5, y1, y2, c−x3, c−x4, c−x5, y1−c, y2−c}∪{−1, 1}w

Then we have that λr = 1
2

dimM , which contradicts Lemma 4.1.4 that

λr = 1
2

dimM + 2. �

Lemma 4.6.8. In Lemma 4.5.1, t = 2 and v = 2 are impossible.

Proof. In this case, the weights are

Σp = {−c,−b, x1, x2, x3, x4, x5,−y1,−y2, 1} ∪ {−1, 1}w+2

Σq = {c, a, x1 − c, x2 − c, x3 − c, x4 − c, x5 − c, c− y1, c− y2, 1} ∪ {−1, 1}w+2

Σr = {−a, b, · · · } ∪ {−1, 1}w,

where a, b, and c are even natural numbers such that c = a + b is the

largest weight, xi’s and yi’s are odd natural numbers for all i, and w =

minα∈MS1 min{Nα(−1), Nα(1)}. Moreover, the remaining weights at r are

odd.

By Lemma 4.5.6, xi = c − xj for some i and j. Then by Lemma 4.4.4,

there exist xi and xj where i 6= j such that 2xi = 2xj = c. Without loss

of generality, let 2x1 = 2x2 = c. Denote x = x1. Lemma 4.4.4 also implies

that xi 6= c − xj for i 6= 1 and 2, and for all j. Therefore, −xi ∈ Σr \
({−a, b}∪{−1, 1}w) for i 6= 1 and 2 by Lemma 4.5.2. Also, by Lemma 4.5.3,

yi − c ∈ Σr \ ({−a, b} ∪ {−1, 1}w) for all i. Moreover, by Lemma 4.2.6 part
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3 for x, none of xi’s, yj’s, c− xi’s, and c− yj’s can be x for i 6= 1 and 2, and

for all j. Hence, by Lemma 4.4.6, all of xi’s, yj’s, c − xi’s, and c − yj’s are

different for i 6= 1 and 2, and for all j.

First, suppose that yi = 1 for some i. Without loss of generality, let y2 = 1.

Then none of xi’s, c− xi’s, y1, and c− yi’s is 1 for all i. Therefore, we have

that y1 ∈ Σr\({−a, b}∪{−1, 1}w) by Lemma 4.5.5 and c−xi ∈ Σr\({−a, b}∪
{−1, 1}w) for i 6= 1 and 2 by Lemma 4.5.4. Moreover, Np(1) = Np(−1) and

Nq(1) = Nq(−1) + 1. Hence, by Lemma 2.0.12 for 1, Nr(1) + 1 = Nr(−1).

Considering Lemma 2.0.12 for each integer, the weights are

Σp = {−c,−b, x, x, x3, x4, x5,−y1,−1, 1,−1, 1,−1, 1} ∪ {−1, 1}w

Σq = {c, a,−x,−x, x3−c, x4−c, x5−c, c−y1, c−1, 1,−1, 1,−1, 1}∪{−1, 1}w

Σr = {−a, b}∪{−xi}5i=3∪{y1}∪{c−xi}5i=3∪{yi−c}2i=1∪{−1,−f, f}∪{−1, 1}w

for some odd natural number f . If f > 1, by Lemma 4.4.8, c = 2x = 2f ,

which is a contradiction that no additional multiples of x should appear as

weights by Lemma 4.2.6 part 3 for x. Hence f = 1, which is a contradiction

since it means that minα∈MS1 min{Nα(−1), Nα(1)} ≥ w + 1.

Second, suppose that c − xi = 1 for some i. Since c − x1 = c − x2 =

x1 = c
2
≥ 2, without loss of generality, let c − x5 = 1. Then none of

xi’s, c − xj’s, yi’s, and c − yi’s is 1 for all i and j 6= 5. Therefore, we

have that yi ∈ Σr \ ({−a, b} ∪ {−1, 1}w) for all i by Lemma 4.5.5 and c −
xj ∈ Σr \ ({−a, b} ∪ {−1, 1}w) for j = 3 and 4 by Lemma 4.5.4. Moreover,

Np(1) = Np(−1) and Nq(1) = Nq(−1) + 1. Hence, by Lemma 2.0.12 for 1,

Nr(1) + 1 = Nr(−1). Then the weights are

Σp = {−c,−b, x, x, x3, x4, c− 1,−y1,−y2, 1,−1, 1,−1, 1} ∪ {−1, 1}w

Σq = {c, a,−x,−x, x3− c, x4− c,−1, c− y1, c− y2, 1,−1, 1,−1, 1}∪ {−1, 1}w

Σr =

{−a, b}∪{−xi}5i=3∪{yi}2i=1∪{c−xi}4i=3∪{yi−c}2i=1∪{−1,−f, f}∪{−1, 1}w

for some odd natural number f . As above, f = 1, which is a contradiction

since it means that minα∈MS1 min{Nα(−1), Nα(1)} ≥ w + 1.

Last, suppose that c− xi 6= 1 and yi 6= 1 for all i. Then we have that yi ∈
Σr \({−a, b}∪{−1, 1}w) for all i by Lemma 4.5.5 and c−xj ∈ Σr \({−a, b}∪
{−1, 1}w) for j 6= 1 and 2 by Lemma 4.5.4. Since Np(1) ≥ Np(−1) + 1 and

Nq(1) ≥ Nq(−1) + 1, by Lemma 2.0.12 for 1, Nr(1) + 2 ≤ Nr(−1). Then the

weights are
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Σp = {−c,−b, x, x, x3, x4, x5,−y1,−y2, 1,−1, 1,−1, 1} ∪ {−1, 1}w

Σq = {c, a,−x,−x, x3−c, x4−c, x5−c, c−y1, c−y2, 1,−1, 1,−1, 1}∪{−1, 1}w

Σr = {−a, b}∪{−xi}5i=3∪{yi}2i=1∪{c−xi}5i=3∪{yi−c}2i=1∪{−1,−1}∪{−1, 1}w

Then we have that Np(1) ≥ w + 3, Nq(1) ≥ w + 3, and Nr(1) = w, which is

a contradiction by Lemma 4.4.9. �

Lemma 4.6.9. In Lemma 4.5.1, t = 3 and v = 2 are impossible.

Proof. In this case, the weights

Σp = {−c,−b} ∪ {xi}6i=1 ∪ {−yi}3i=1 ∪ {1} ∪ {−1, 1}w+2

Σq = {c, a} ∪ {xi − c}6i=1 ∪ {c− yi}3i=1 ∪ {1} ∪ {−1, 1}w+2

Σr = {−a, b, · · · } ∪ {−1, 1}w,

where a, b, and c are even natural numbers such that c = a + b is the

largest weight, xi’s and yi’s are odd natural numbers for all i, and w =

minα∈MS1 min{Nα(−1), Nα(1)}. Moreover, the remaining weights at r are

odd.

By Lemma 4.5.6, xi = c − xj for some i and j. Then by Lemma 4.4.4,

there exist xi and xj where i 6= j such that 2xi = 2xj = c. Without loss

of generality, let 2x1 = 2x2 = c. Denote x = x1. Lemma 4.4.4 also implies

that xi 6= c − xj for i 6= 1 and 2, and for all j. Therefore, −xi ∈ Σr \
({−a, b}∪{−1, 1}w) for i 6= 1 and 2 by Lemma 4.5.2. Also, by Lemma 4.5.3,

yi − c ∈ Σr \ ({−a, b} ∪ {−1, 1}w) for all i. Moreover, by Lemma 4.2.6 part

3 for x, none of xi’s, yj’s, c− xi’s, and c− yj’s can be x for i 6= 1 and 2, and

for all j. Hence, by Lemma 4.4.6, all of xi’s, yj’s, c − xi’s, and c − yj’s are

different for i 6= 1 and 2, and for all j.

First, suppose that yi = 1 for some i. Without loss of generality, let

y3 = 1. Then none of xi’s, c− xi’s, yj’s, and c− yi’s is 1 for all i and j 6= 3.

Therefore, yi ∈ Σr \ ({−a, b} ∪ {−1, 1}w) for i 6= 3 by Lemma 4.5.5 and

c−xj ∈ Σr \({−a, b}∪{−1, 1}w) for j 6= 1 and 2 by Lemma 4.5.4. Moreover,

Np(1) = Np(−1) and Nq(1) = Nq(−1) + 1. Hence, by Lemma 2.0.12 for 1,

Nr(1) + 1 = Nr(−1). Then the weights are

Σp = {−c,−b, x, x, x3, x4, x5, x6,−y1,−y2,−1, 1} ∪ {−1, 1}w+2

Σq = {c, a,−x,−x, x3−c, x4−c, x5−c, x6−c, c−y1, c−y2, c−1, 1}∪{−1, 1}w+2

Σr = {−a, b}∪{−xi}6i=3∪{yi}2i=1∪{c−xi}6i=3∪{yi−c}3i=1∪{−1}∪{−1, 1}w
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Then we have that Np(1) = w + 3, Nq(1) = w + 3, and Nr(1) = w, which is

a contradiction by Lemma 4.4.9.

Second, suppose that c−xi = 1 for some i. Since c−x1 = c−x2 = x1 = c
2
≥

2, without loss of generality, let c− x6 = 1. Then none of xi’s, c− xj’s, yi’s,
and c− yi’s is 1 for all i and j 6= 6. Therefore, yi ∈ Σr \ ({−a, b}∪ {−1, 1}w)

for all i by Lemma 4.5.5 and c− xj ∈ Σr \ ({−a, b} ∪ {−1, 1}w) for j = 3, 4,

and 5 by Lemma 4.5.4. Moreover, Np(1) = Np(−1) + 1 and Nq(1) = Nq(−1).

Hence, by Lemma 2.0.12 for 1, Nr(1) + 1 = Nr(−1). Then the weights are

Σp = {−c,−b, x, x, x3, x4, x5, c− 1,−y1,−y2,−y3, 1} ∪ {−1, 1}w+2

Σq = {c, a,−x,−x, x3−c, x4−c, x5−c,−1, c−y1, c−y2, c−y3, 1}∪{−1, 1}w+2

Σr = {−a, b}∪{−xi}6i=3∪{yi}3i=1∪{c−xi}5i=3∪{yi−c}3i=1∪{−1}∪{−1, 1}w

Then we have that Np(1) = w + 3, Nq(1) = w + 3, and Nr(1) = w, which is

a contradiction by Lemma 4.4.9.

Last, suppose that c − xi 6= 1 and yi 6= 1 for all i. Then we have that

yi ∈ Σr \ ({−a, b} ∪ {−1, 1}w) for all i by Lemma 4.5.5 and c − xj ∈ Σr \
({−a, b} ∪ {−1, 1}w) for j 6= 1 and 2 by Lemma 4.5.4. Then the weights are

Σp = {−c,−b, x, x, x3, x4, x5, x6,−y1,−y2,−y3, 1} ∪ {−1, 1}w+2

Σq = {c, a,−x,−x, x3−c, x4−c, x5−c, x6−c, c−y1, c−y2, c−y3, 1}∪{−1, 1}w+2

Σr = {−a, b} ∪ {−xi}6i=3 ∪ {yi}3i=1 ∪ {c− xi}6i=3 ∪ {yi − c}3i=1 ∪ {−1, 1}w

Then we have that Np(1) ≥ w + 3, Nq(1) ≥ w + 3, and Nr(1) = w, which is

a contradiction by Lemma 4.4.9. �

Lemma 4.6.10. In Lemma 4.5.1, t ≥ v + 2 is impossible.

Proof. By Lemma 4.5.6, xi = c−xj for some i and j. Then by Lemma 4.4.4,

there exist xi and xj where i 6= j such that 2xi = 2xj = c. Without loss of

generality, let 2x1 = 2x2 = c. Lemma 4.4.4 also implies that xi 6= c− xj for

i 6= 1 and 2, and for all j. Therefore, −xi ∈ Σr\({−a, b}∪{−1, 1}w) for i 6= 1

and 2 by Lemma 4.5.2. Also, by Lemma 4.5.3, yi−c ∈ Σr\({−a, b}∪{−1, 1}w)

for all i. Moreover, by Lemma 4.2.6 part 3 for x, none of xi’s, yj’s, c− xi’s,
and c− yj’s can be x for i 6= 1 and 2, and for all j. Hence, by Lemma 4.4.6,

all of xi’s, yj’s, c− xi’s, and c− yj’s are different for i 6= 1 and 2, and for all

j.

First, suppose that c−xi = 1 for some i. Since c−x1 = c−x2 = x1 = c
2
≥ 2,

without loss of generality, let c−x3 = 1. Then, by Lemma 4.4.6, c−xi 6= 1 for
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i 6= 3 and yj 6= 1 for all j. Then c− xi ∈ Σr({−a, b} ∪ {−1, 1}w) for i 6= 1, 2,

and 3 by Lemma 4.5.4, and yj ∈ Σ({−a, b} ∪ {−1, 1}w) for all j by Lemma

4.5.3. Therefore, we have that {−xi}t+3
i=3∪{yi}ti=1∪{c−xi}t+3

i=4∪{yi−c}ti=1 ⊂
Σr\({−a, b}∪{−1, 1}w), which is a contradiction since there are 2t+4+2u+2v

spaces in Σr \ ({−a, b} ∪ {−1, 1}w) but 4t+ 1 > 4t ≥ 2t+ 4 + 2u+ 2v by the

assumption.

Second, suppose that yi = 1 for some i. Without loss of generality, let

y1 = 1. Then, by Lemma 4.4.6, c−xi 6= 1 for all i and yj 6= 1 for j 6= 1. Then

c− xi ∈ Σr \ ({−a, b} ∪ {−1, 1}w) for i 6= 1 and 2 by Lemma 4.5.4, and yj ∈
Σr \ ({−a, b}∪{−1, 1}w) for j 6= 1 by Lemma 4.5.3. Therefore, we have that

{−xi}t+3
i=3∪{yi}ti=2∪{c−xi}t+3

i=3∪{yi−c}ti=1 ⊂ Σr\({−a, b}∪{−1, 1}w), which is

a contradiction since there are 2t+4+2u+2v spaces in Σr\({−a, b}∪{−1, 1}w)

but 4t+ 1 > 4t ≥ 2t+ 4 + 2u+ 2v by the assumption.

Last, suppose that c − xi 6= 1 and yi 6= 1 for all i. Then c − xi ∈
Σr \ ({−a, b} ∪ {−1, 1}w) for i 6= 1 and 2 by Lemma 4.5.4, and yj ∈
Σr \ ({−a, b} ∪ {−1, 1}w) for all j by Lemma 4.5.3. Therefore, we have that

{−xi}t+3
i=3∪{yi}ti=1∪{c−xi}t+3

i=3∪{yi−c}ti=1 ⊂ Σr\({−a, b}∪{−1, 1}w), which is

a contradiction since there are 2t+4+2u+2v spaces in Σr\({−a, b}∪{−1, 1}w)

but 4t+ 2 > 4t ≥ 2t+ 4 + 2u+ 2v by the assumption. �

Lemma 4.6.11. In Lemma 4.5.1, v ≥ 3 is impossible.

Proof. First, min{Np(−1), Np(1)} ≥ w+3 and min{Nq(−1), Nq(1)} ≥ w+3.

If min{Nr(−1), Nr(1)} > w, then minα∈MS1 min{Nα(−1), Nα(1)} ≥ w + 1,

which is a contradiction. Hence min{Nr(−1), Nr(1)} = w. Then either

Nr(−1) = w or Nr(1) = w. However, neither case is possible by Lemma

4.4.9. �
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