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Abstract 

       Depolymerizable polymers are stimuli-responsive materials that can be triggered to rapidly and 

completely depolymerize into their constituting monomers on command. Their applications include use in 

triggered release, recyclable and restructurable materials, disappearing or transient materials, and many 

others functions. Polyaldehyde materials were selected as a candidate system for study due to their known 

ability to depolymerize rapidly; however, they are also known to generally suffer from limited synthetic 

accessibility and sensitivity toward post-polymerization modification, thus restricting widespread adoption. 

My research has broadly focused in two areas: Chapters 2-5 focus on the development of a general and 

scalable cationic polymerization and copolymerization of aldehydes; Chapters 6-7 describe the installation 

of functional handles for post-polymerization elaboration of polyaldehydes into various nanostructures. 

Chapter 8 includes more recent work aimed at the preparation of a novel class of sustainable, recyclable, 

and eco-friendly depolymerizable polyesters. In short, the cationic polymerization of aldehydes was found 

to be a robust and scalable reaction, and mechanistic analysis of the polymerization has revealed a reversible 

cyclization process that produces macrocyclic architectures in high yield and with high purity. It was also 

found that copolymerization of o-phthalaldehyde with substituted benzaldehydes, generally considered 

unreactive to polymerization, yielded stimuli-responsive polyaldehyde materials that could be further 

elaborated to generate depolymerizable single-chain polymeric nanoparticles and polymer networks. These 

and other studies on the preparation and development of depolymerizable materials have advanced the state-

in-the-art in polyaldehyde synthesis and paved the way for new applications in triggered depolymerization. 
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Chapter 1: Depolymerizable Polymers: An Overview of 

Discovery, Preparation and Applications 

1.1 Abstract 

Depolymerizable polymers are stimuli-responsive materials that can be triggered to depolymerize 

rapidly and completely into their constituting monomers on command. Their applications include use as 

triggerable vehicles for controlled release, recyclable and restructurable materials, disappearing or 

sacrificial composites, lithographic resists, and many others functions. Due to their widespread utility across 

many disciplines, significant efforts have been put forth in recent years to explore, prepare and study a 

variety of depolymerizable polymers along with their corresponding triggering modes. This introductory 

chapter aims to highlight the discovery of these polymers over a half-century ago, discuss methods to 

prepare the polymers, and present recent advances in triggered depolymerization. It also surveys 

applications that take advantage of these polymers’ unique properties, while offering insights into new 

research directions that may directly contribute to the future development of this dynamic field.  

 

1.2 The Ceiling Temperature Phenomenon 

The concept of a ceiling temperature was first described and reported by Snow and Frey in 1943, 

followed by further elucidation by Dainton and Ivin in several seminal studies on poly(olefin sulfone) 

polymerizations.1 The researchers independently discovered that copolymerizations between sulfur dioxide 

and olefins were paused as temperatures increased; further increasing the temperature to drive the 

polymerization to completion led to reduced monomer conversions and polymer molecular weights. On the 

contrary, decreasing polymerization temperature correlated with increasing tendency for the monomers to 

polymerize and higher polymer molecular weights.2 

The authors correctly interpreted this counterintuitive result to be a consequence of unfavorable 

thermodynamics in poly(olefin sulfone) polymerizations.3 With few exceptions, polymerizations are 

inherently exothermic and exoentropic (ΔH < 0 and ΔS < 0; there are few known examples of endothermic 

and endoentropic polymerizations, which exhibit a floor temperature3c). It was surmised that all 

polymerizations are reversible processes, and that there exists a temperature at which the free energy for a 

polymerization crosses from negative to positive (Scheme 1.1). If the temperature of polymerization is 

raised to this point, the propagation reaction is halted, and increasing temperature further favors the reverse 

reaction, resulting in depropagation or “unzipping.” 
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Scheme 1.1 | Schematic of monomer-polymer equilibrium. 

 

The cross-over temperature was termed a ceiling temperature (Tc), as it represents a critical 

threshold above which depropagation is the spontaneous process.3-4 The Tc is an inherent thermodynamic 

constraint in any polymerization, and depends solely on free energy parameters for any given monomer: 

                                                                   ∆𝐺𝑝 =  ∆𝐻𝑝 − 𝑇∆𝑆𝑝                                                               (1) 

                                                                       ∆𝐺 = 0 𝑎𝑡 𝑇𝐶                                                                                 (2) 

                                                                                    𝑇𝑐 =  
∆𝐻𝑝

∆𝑆𝑝
                                                                                 (3) 

Since the entropy of polymerization depends on concentration, pressure, and effects of solvation, 

the Tc is generally reported for any given monomer at standard pressure and for an initial monomer 

concentration of 1.0 mol/L.3 A more general form of the monomer-polymer equilibrium is expressed below, 

where [M]e is the equilibrium monomer concentration at a given temperature: 

                                                                           𝑇 =  
∆𝐻𝑝

∆𝑆𝑝
° + 𝑅𝑙𝑛[𝑀]𝑒

                                                                       (4) 

These relationships enable facile determination of polymer ceiling temperatures. Rearranged, a 

linear relationship is evident between 
1

𝑇
 and ln[𝑀]𝑒, with a slope of  

∆𝐻𝑝

𝑅
 and a y-intercept of −

∆𝑆𝑝
°

𝑅
 : 

                                                                     𝑙𝑛[𝑀]𝑒 =  
∆𝐻𝑝

𝑅
(

1

𝑇
) −

∆𝑆𝑝
°

𝑅
                                                                  (5) 

Thus, measuring monomer equilibrium concentrations at various temperatures enables accurate 

determination of thermodynamic parameters and gives a reliable estimate of a polymer’s Tc. It can be seen 

that with increasing temperature, the monomer concentration at equilibrium likewise increases. 

Alternatively, it is possible to measure the rates of polymerization or the polymer molecular weights at 

various temperatures, and to extrapolate to zero in either case.3-4 While these last two techniques are less 

accurate than the first, they were the methods of choice in many early studies on the thermodynamics of 

polymerization in low Tc polymers. 

That the existence of a Tc was not discovered until the 1940s is a direct result of the fact that typical 

olefin polymerizations are extremely exothermic and have impractically high Tc’s.4 Compared to typical 

olefin polymerizations known at the time, the exotherm in poly(olefin sulfone) preparation is significantly 
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reduced (i.e. more positive). The less exothermic polymerization results in a concomitant decrease in Tc, 

which was impressively recognized and interpreted by the early researchers, paving the way for the 

discovery of other polymers with low Tc’s. 

It is worth noting here that reverse propagation above Tc, which will be henceforth termed 

“depolymerization,” is a concept distinct from degradation. Many polymers have been prepared with 

cleavable bonds within their backbone or side-chains; however, cleaving these bonds, by hydrolysis for 

example, constitutes degradation and not depolymerization. All polymers are theoretically capable of 

depolymerization if the temperature is raised above their Tc. However, the majority of common polymers 

have such high Tc’s that thermal degradation is observed before depolymerization. Depolymerizable 

polymers are thus a special class of polymers with a low Tc, such that depropagation is possible at or near 

ambient temperatures. Other commonly known depolymerizable polymers besides poly(olefin sulfone)s 

include many different polyaldehydes, polymers from certain cyclic ethers or acetals, α-methyl styrene, and 

an emergent class of “self-immolative” polymers, which will be discussed in later sections.4-7 

 

1.3 Preparation of Depolymerizable Polymers by Kinetic Stabilization of Chain-Ends 

 Low Tc, depolymerizable polymers are inherently thermodynamically unstable at, or just above, 

room temperature. This property raises an important question: how then can low Tc polymers be prepared 

and exploited as useful materials in ambient conditions? To prepare stable, isolable polymers based on these 

types of monomers, it is critical to prepare the materials below their Tc and then block or impede the 

depolymerization process at elevated temperatures. This feat has been achieved in several different manners 

for various methods of polymerization, but all necessitate “capping” chain-ends to block the 

depolymerization pathway. End-capping kinetically stabilizes depolymerizable polymers above their Tc 

because there is not sufficient energy at room temperature to cleave capping groups and permit 

depropagation to the lowest energy state––monomer. 

 For radical polymerizations such as poly(olefin sulfone) preparation, blocking the chain-ends from 

unzipping is relatively trivial.2 Polymerization at low temperature is accompanied by termination via radical 

combination or disproportionation, which effectively quenches the reactive chain-ends and end-caps the 

polymer to inactivate it from depropagation (Scheme 1.2).8 Only by re-initiating the capped chain-ends or 

cleaving the polymer backbone to expose new chain-ends can unzipping proceed to effect 

depolymerization. In this manner, low Tc polymers synthesized by free radical polymerizations essentially 

stabilize themselves spontaneously by termination. 
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Scheme 1.2 | Termination “end-capping” processes in free radical polymerizations. 

 

 However, in living chain-growth and step-growth polymerizations, termination steps that quench 

or otherwise inactivate chain-ends do not occur spontaneously (barring termination by cyclization or chain-

transfer). It was not until the late 1950s that researchers at DuPont began to identify strategies that 

effectively stabilize low Tc polymers from depropagation. Polyoxymethylene (POM, or polyformaldehyde) 

was known at the time to be thermally unstable, thereby limiting interest in its study and industrial 

application.9 Several pioneering efforts demonstrated that anionic polymerization of formaldehyde below 

its Tc followed by a post-polymerization esterification greatly enhanced the thermal stability of the polymer, 

culminating in a series of publications that for the first time characterized the polymer’s physical, thermal, 

and mechanical properties (Scheme 1.3).10 The enhanced thermal stability is a consequence of esterification 

of the chain-end hemiacetal, blocking the polymer from depolymerization at elevated temperatures. 

Scheme 1.3 | End-capping polyoxymethylene by esterification. R depends on polymerization initiator. 

 

 

A later discovery introduced an alternative method to effectively stabilize depolymerizable 

polymers: copolymerization with small quantities of comonomers that do not depolymerize, thereby acting 

as “chain-stoppers” within the polymer chain.9 Polymers formed in this way unzip until they reach a unit 

incapable of depropagation, subsequently stopping depolymerization and leaving the polymers end-capped. 

One example of such chain-stoppering approach is the cationic copolymerization of 1,3,5-trioxane—the 

cyclic trimer of formaldehyde—with epoxides (Scheme 1.4). The aldehyde units can unzip via their acetal 

linkages. However, the additional carbon spacer introduced by the epoxide halts depropagation so that the 

ehtyelene unit persists as a stable chain-end. A variety of other cyclic ethers and acetals have also been used 

as comonomers to stabilize polyaldehydes. 9 Although polymers prepared with this method cannot fully 

depolymerize from head-to-tail due to the blocking comonomers, they can be activated to depolymerize 

into smaller subunits by cleaving sites within the backbone to create new chain-ends. 
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Scheme 1.4 | Copolymerization of trioxane with chain-stoppering ethylene oxide. R depends on initiator. 

 

The discovery of these methods for end-capping ionic chain-growth polymerizations immediately 

stimulated a large outgrowth in the synthesis and study of a range of polyaldehydes.11-12 Vogl and coworkers 

notably embarked on the preparation of a wide range of higher aliphatic polyaldehydes, demonstrating that 

these polymers could be stabilized by post-polymerization esterification as well (Table 1.1).11 Later, the 

first aromatic polyaldehydes were discovered by the Aso group in the low-temperature cyclopolymerization 

of o-phthalaldehyde and related monomers (Scheme 1.5, Table 1.1).12 Advantages of aromatic 

polyaldehydes include enhanced monomer stability relative to aliphatic counterparts, and improved 

polymer solubility due to their atactic nature, unlike the highly crystalline aliphatic polyaldehydes.6, 11-12 

Table 1.1 | Aldehyde monomers and associated ceiling temperatures.6 

Aldehyde Tc (°C) 

CH2O 119 

CH3CHO -39 

CH3(CH2)2CHO -18 

CH3OCOCHO 26 

CH3CH2OCOCHO 35 

CF3CHO 85 

CCl3CHO 17 

CBr3CHO -75 

CFClBrCHO 41 

o-phthalaldehyde -43 
  

Scheme 1.5 | Cyclopolymerization and stabilization of o-phthalaldehyde.12b 

 

 

More recently, depolymerizable polymers prepared by step-growth polymerizations have emerged 

in the literature.5,7 The first such linear polymer, termed a “self-immolative polymer,” was reported in 2008, 

and many other classes of similar polymers based on quinone-methide backbones have since been 

reported.7,13 Synthesis of these materials is accomplished with AB-type monomers containing a blocked 
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reactive unit. Polymerization ensues on activation of blocked functional groups, for example by catalytic 

activation of blocked isocyanates or deprotection of amines, to form linear polyurethanes and 

polycarbonates.13 These polymers depolymerize via a mechanism unique from low Tc polymers, expelling 

gaseous byproducts to drive the depolymerization process forward (discussed in section 1.4). However, 

preventing these polymers from unwanted head-to-tail depolymerization again relies on adding a reagent 

to end-cap the reactive polymer chains. In this case, a monofunctional reactive species, which is added near 

the end of the polymerization, is employed to serve as a chain-end and stabilizing group (Scheme 1.6).  

Scheme 1.6 | Polymerization and stabilization of self-immolative polymers.13a 

 

 

1.4 Recent Advances in Triggered Depolymerization 

 Depolymerizable polymers have witnessed a resurgence in the literature over the past decade due 

to their capacity to undergo triggered depolymerization.5 There are numerous applications of triggered 

depolymerization, which will be discussed in the ensuing section. Regardless of polymer type, triggered 

depolymerization relies on a physical or chemical stimulus that reacts with either the polymer end-caps to 

expose chain-ends, or the polymer backbone to create new chain-ends capable of unzipping.  

The first example of triggered head-to-tail depolymerization in linear polymers was reported by 

Shabat and coworkers in 2008. They employed self-immolative polymers for this purpose, which were 

derived from self-immolative dendrimers previously prepared by the same group.7, 13a They demonstrated 

that, in order to enact triggered depolymerization, it was necessary to end-cap the polymers with a stimulus-

responsive functionality rather than the conventional, inert blocking group. When the responsive cap is 

removed, head-to-tail depolymerization is initiated and driven to completion by expulsion of CO2 (Scheme 

1.7). Specifically, they employed 4-hydroxy-2-butanone as a trigger, which is removed by enzymatic 

cleavage, subsequently activating the depolymerization cascade. Later examples expanded the triggering 

modes to groups that respond to acid, base, UV light, near-IR light, heat, and redox reagents.13c-g  
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Scheme 1.7 | Triggered depolymerization of self-immolative polymers.13a 

 

The Gillies group successfully expanded the scope of linear self-immolative polymers and 

modulated the rates of their depolymerization by designing analogs with cyclizing spacers and alternative 

main-chain atoms.13f-i They demonstrated that by using a cyclizable thiol spacer with a polycarbonate 

backbone, depolymerization rates could be amplified by several orders of magnitude (Scheme 1.8).13h They 

further prepared small, monodisperse self-immolative polymers by stepwise synthesis to conclusively 

demonstrate that, as expected, the rate of depolymerization is directly related to the chain-length for this 

class of polymer.13i  

Scheme 1.8 | Triggered depolymerization with enhanced rates by alternating cyclization-elimination.13h 

 

An analogous class of polymers, the “chain-shattering” polymers, also undergoes triggered 

depolymerization by a similar quinone-methide elimination mechanism. However, rather than head-to-tail 

depolymerization proceeding from chain-ends, these polymers cleave and depolymerize from alternating 

sites within their backbone (Scheme 1.9).14 Compared to self-immolative polymers capable of head-to-tail 

depolymerization, functionalizing the polymer backbone with multiple triggering sites enhances rates of 

depolymerization.14a Further, preparation of chain-shattering polymers by step-growth copolymerization 

between activated, bifunctional quinone-methide moieties and bifunctional comonomers enables 

integration of a wide variety of functional motifs into polymer chains.14f In fact, the Cheng group 
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demonstrated that copolymerization with a reactive therapeutic allows for direct insertion of target drugs 

into polymer backbones for on-demand release.14g One could further envision the incorporation of multiple 

unique, stimuli-responsive triggers to afford chain-shattering polymers responsive to multiple stimuli. 

Scheme 1.9 | Triggered depolymerization of chain-shattering polymers.14f 

 Triggered depolymerization from head-to-tail was first demonstrated for low Tc polyaldehydes in 

2010.15a It was already known that acid exposure was a viable route to achieve polyaldehyde 

depolymerization by random chain-scission along the acetal backbone.16 However, triggering stimuli were 

limited to acidic reagents capable of backbone cleavage. Taking inspiration from the self-immolative 

polymer literature, researchers demonstrated that end-capping poly(phthalaldehyde) with a responsive 

functionality enabled triggered depolymerization (Scheme 1.10). They employed protective groups 

sensitive to palladium sources or fluoride ions, and showed that complete depolymerization to monomer is 

nearly instantaneous upon exposure to the chemical stimulants. In this case, unzipping at room temperature 

is not driven by expulsion of gaseous byproducts, but rather results from the extremely low Tc of the 

polyaldehyde (-43 °C). Using available thermodynamic data,12a it can be estimated that the equilibrium 

monomer concentration for this polymer at room temperature is 14 mol/L (at 25 °C), so depolymerization 

continues until reaching this condition, which is unachievable in practice.    

 Scheme 1.10 | Triggered depolymerization of poly(phthalaldehyde).15a 

 

 Triggered depolymerization of low Tc polyaldehydes, specifically poly(phthalaldehyde), has many 

advantages compared to self-immolative polymers, which has made this class of polymers a system of 

choice for continued research over several decades. High molecular weight poly(phthalaldehyde) can be 

readily prepared and end-capped with a variety of stimuli-responsive triggers from commercially available 

reagents.13b-c Further, it is possible to functionalize related polymers by post-polymerization modification 

in order to achieve cross-linking or tailor the polymer with specific moieties.13d-e Most importantly, the 
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depolymerization process is nearly instantaneous on exposure to acid, heat, or triggering reagents. As a 

result, polyaldehydes have found widespread use in a variety of applications.5 

 

1.5 Applications of Depolymerizable, Low Tc Polyaldehydes 

 1.5.1 Lithographic Materials 

 One of the earliest applications of depolymerizable polymers was for lithographic purposes. In the 

1980s, researchers at IBM began to explore the use of low Tc polyaldehydes as photoresist materials for 

lithography.16 Poly(phthalaldehyde) was chosen for research due to its ease of preparation and solubility in 

common organic solvents. When combined with photoacid generators, exposure of poly(phthalaldehyde) 

films to light triggers acid-catalyzed depolymerization, permitting fabrication of patterned films. 

Depolymerization was found to be a particularly effective mechanism in lithography because of the drastic 

and rapid physical changes between polymer and monomer that occur on  exposure.16a-d More recently, 

IBM has shown probe-based nanolithography to be a useful tool for patterning poly(phthalaldehyde) by 

thermal depolymerization. A heated scanning probe is used to stimulate depolymerization and evaporation 

of the resultant monomer, permitting rapid patterning with high resolution. Remarkable 2-D and 3-D 

architectures were fabricated with unprecedented resolution (Figure 1.1).16e-f 

 

Figure 1.1 | AFM topographic image of a 3D world map written into a poly(phthalaldehyde) layer by 

thermally induced depolymerization via probe-based nanolithography (Reproduced with permission from 

Reference 16f. Copyright 2010 John Wiley and Sons). 
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1.5.2 Triggered Release 

 Perhaps the most ubiquitous application of depolymerizable polymers is their use in triggered 

release.5-7, 17 Several methods to achieve triggered release are possible and have been reported with 

depolymerizable polymers. The monomer itself may serve as the compound of interest or disassemble 

further to release a compound of interest; alternatively, the depolymerizable material may serve as a 

structural container that releases sequestered active agents on triggered destruction. Triggered release itself 

can be categorized further, as liberated compounds may serve as reporter molecules for signal-amplified 

sensing, fluorescent probes, active drug components for drug delivery, healing agents in autonomic self-

healing, or they may serve many other functions.5-7, 17 The focus herein will be given to reports of 

depolymerizable polyaldehydes used in triggered release. 

 Two different low Tc polyaldehydes have been reported thus far for application in triggered release: 

poly(phthalaldehyde) and poly(glyoxylate)s.17c-d In either case, the polyaldehyde serves as a structural 

container for sequestered active compounds (Figure 1.2). Phillips and coworkers demonstrated that core-

shell microcapsules could be fabricated with poly(phthalaldehyde) shell walls. Encapsulated actives are 

successfully released upon triggering shell wall depolymerization by subjecting capsules to chemical 

reagents that cleave polymer end-groups.17c Gillies and coworkers later reported the preparation of micellar 

nanoparticles with amphiphilic poly(ethyl glyoxylate)-poly(ethylene glycol) block copolymers. Triggered 

release was achieved via photolysis of poly(glyoxylate) end-groups to induce depolymerization and initiate 

nanoparticle decomposition, thereby liberating core contents.17d 

 

Figure 1.2 | Schematic of triggered release: core-shell containers are disassembled by triggering shell wall 

depolymerization to release sequestered actives (Reproduced with permission from Reference 17b. 

Copyright 2011 American Chemical Society). 

Unlike self-immolative polymers, generating active or reporter molecules directly from 

depolymerized polyaldehydes has not yet been reported.7 One could envision that future systems will take 

advantage of the inherently amplified response in depolymerizable polyaldehydes by incorporating a 

monomer designed for a targeted purpose like drug delivery or sensing. Alternatively, monomers could 

undergo further disassembly to autonomically produce an active agent, as has been reported for “self-

immolative comb polymers.”13b 
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 1.5.3 Adaptive Structural Materials 

 One remarkable feature of depolymerizable polymers is their capacity to serve as dynamic 

structural materials. By selectively triggering their depolymerization, structural materials can be designed 

to erode at specified times to permit recycling, patterning, regeneration, or other relevant shape-shifting 

transformations. Phillips and coworkers capitalized on this application by fabricating a patterned plastic 

block composed of poly(phthalaldehyde) with two distinct and responsive end-groups. Exposure to one 

triggering condition selectively etched the corresponding polymers, thereby disintegrating portions of the 

plastic to reveal predesigned patterns while leaving the remainder polymer intact.13a 

 Researchers later extended the concept of adaptive polyaldehyde materials by demonstrating a 

reversible cycle of depolymerization followed by repolymerization, mimicking regenerative biomaterials 

such as bone (Figure 1.3).18 It was found that depolymerization of poly(phthalaldehyde) could be 

mechanically activated by ultrasonication, which cleaves polymer chains that subsequently unzip to 

monomer. Incredibly, the monomer thus generated was directly repolymerized to poly(phthalaldehyde), 

albeit by first cooling below its Tc and adding initiator. This finding highlights the potential for 

poly(phthalaldehyde) to serve as a recyclable or regenerative synthetic material. While these studies served 

merely as preliminary proof-of-concept demonstrations, they emphasize the potential importance of 

adaptive, dynamic structural materials in future material designs. 

 

Figure 1.3 | Adaptive polyaldehyde material exhibiting reversible cycle of depolymerization and orthogonal 

repolymerization. Poly(phthalaldehyde) was mechanically depolymerized by exposure to high-intensity 

ultrasonication, and resulting monomer (o-phthalaldehyde) repolymerized by anionic polymerization.18a 
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 1.5.4 Transient Substrate and Template Materials 

 A final key application of depolymerizable polyaldehyde materials has been their use as temporary 

substrate or template materials. While most prior polymer research has focused on preparing permanent, 

mechanically and thermally robust structures, there is a growing interest in depolymerizable substrates that 

could serve as temporary barrier materials, transient substrate materials, or other adaptive structures. In one 

example, triggered depolymerization of poly(phthalaldehyde) films was employed to activate a microfluidic 

pumping system on command.19a It was shown that modification of end-group polarity in polyaldehyde 

films, such that chain-end triggers are exposed to interfaces rather than buried within polymer layers, was 

a productive means to enhance solid-state depolymerization capabilities in the microscale pumps. Toward 

depolymerizable packaging, it was shown that in conjunction with photoacid generators, light-sensitive 

poly(phthalaldehyde) films could be fabricated and employed as substrate materials for transient 

electronics.19b When suitably irradiated, film depolymerization induces loss of mechanical integrity and 

concomitant electronic device destruction (Figure 1.4). One could envision expanding this concept to a 

range of other applications where triggered destruction is desirable. 

 

Figure 1.4 | Triggered depolymerization of poly(phthalaldehyde) films for transient electronics. Films are 

embedded with photoacid generators such that UV irradiation initiates acid-catalyzed depolymerization of 

substrate and electronic destruction (Reproduced with permission from Reference 19b. Copyright 2014 

John Wiley and Sons). 

 In analogous efforts, depolymerizable polyaldehydes have been utilized as removable templating 

materials to drive nanostructure formation. Patterned poly(phthalaldehyde) films were shown to be 

effective, removable scaffolds for directed gold nanoparticle assembly.20a Likewise, poly(phthalaldehyde)-

polystyrene block copolymers were shown to self-assemble under suitable conditions, and subsequent acid 

treatment depolymerized and etched away the poly(phthalaldehyde) blocks, leaving behind porous 

nanochannels.20b With the growing importance of nanostructured and nanoporous materials, there is a clear 

opportunity for additional utilization of depolymerizable polymers as sacrificial templating scaffolds. 
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1.6 Current Status and Future Directions 

 A great deal of research effort has been invested into the field of depolymerizable polymers. While 

many different depolymerizable polymer scaffolds have been prepared and studied, there is still demand 

for novel and versatile materials. For one, new materials are needed that are more robust toward 

environmental conditions; polyaldehydes are exceedingly sensitive to acidic conditions, while self-

immolative polymers are known to undergo unwanted side reactions with nucleophiles.5 There is 

undoubtedly a great challenge in the preparation of materials that can be triggered to fall apart on command, 

yet are stable to any orthogonal conditions. The Phillips group has begun exploring new materials to address 

this need and has pioneered a class of poly(benzyl ether)s that depolymerize on triggering but are stable to 

both acid and base.21 The window for achieving these contrasting properties in synthetic polymers is 

exceedingly small, leaving a high demand for similar types of robust yet depolymerizable structures. 

Opportunities also exist in the rational design of aldehyde monomers with programmed function. 

As detailed in the preceding section, the development of polyaldehyde materials where the generated 

monomer performs a function could be exploited, as in the case for self-immolative polymers. Likewise, 

small molecules released by further disassembly of aldehyde monomers would be an effective means to 

add functionality to depolymerizable polyaldehydes. 

In the context of biomaterials and drug delivery, there is an increasing demand for biocompatible 

materials and triggers sensitive to biologically relevant small molecules, receptors, and enzymes. New 

triggers will need to be developed and evaluated in terms of their capability to initiate stimulus-responsive 

depolymerization in complex biological environments. Furthermore, it is crucial to expand the availability 

and scope of biocompatible polyaldehyde materials. While poly(phthalaldehyde) depolymerizes to the toxic 

o-phthalaldehyde monomer, the poly(glyoxylate) family represents a biocompatible class of 

depolymerizable polyaldehydes that merits further exploration for biological applications.17d, 22 

 Finally, with further refinement in the preparation of depolymerizable polymers, the materials will 

undoubtedly find expanded use in diverse, and perhaps unexpected, applications. The use of sacrificial 

templates for the fabrication of nanoporous materials or other relevant degradable composites, and the use 

of these polymers for transient or other adaptive structures will almost surely continue. One might 

additionally expect new depolymerizable materials to be developed specifically to address the rising 

challenge of finding green, recyclable materials that minimally impact the environment. Depolymerizable 

polymers, notably those prepared from renewable resources, would represent an ideal way to achieve 

materials capable of recycling on command. Beyond that, could these reversible materials be used for 

energy storage and delivery? It remains to be seen how this field will grow and into which areas it will 
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expand, but the prospects certainly look bright that the coming years will witness major progress in this 

dynamic field. 
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Chapter 2: End Group Characterization of 

Poly(phthalaldehyde): Discovery of a Reversible, Cationic 

Macrocyclization Mechanism* 

2.1 Abstract 

End-capped poly(phthalaldehyde) (PPA) synthesized by anionic polymerization has garnered 

significant interest due to its ease of synthesis and rapid depolymerization. Yet, alternative ionic 

polymerizations to produce PPA have been largely unexplored. It was found that a cationic polymerization 

of o-phthalaldehyde initiated by boron trifluoride results in cyclic PPA in high yield, high molecular weight, 

and with extremely high cyclic purity. The cyclic structure is confirmed by NMR spectroscopy,         

MALDI-TOF mass spectrometry, and triple detection GPC. The cyclic polymers are reversibly opened and 

closed under the polymerization conditions. Owing to PPA’s low ceiling temperature, cyclic PPA is capable 

of chain-extension to larger molecular weights, controlled depolymerization to smaller molecular weights, 

or dynamic intermixing with other polymer chains, both cyclics and end-capped linears. These unusual 

properties endow the system with great flexibility in the synthesis and isolation of pure cyclic polymers of 

high molecular weight. Further, it is speculated that the absence of end-groups enhances the stability of 

cyclic PPA and makes it an attractive candidate for lithographic applications.  

 

2.2 Introduction 

 Poly(phthalaldehyde) (PPA) is a stimuli-responsive polymer that has garnered significant interest 

in recent years.1-3 PPA has been shown to have a ceiling temperature around -40 °C,4 i.e., at room 

temperature without a kinetically stabilizing end-cap, it spontaneously depolymerizes to monomer. Since 

its first syntheses in the 1960s, PPA has been widely used as an acid-sensitive, radiation-sensitive, or 

thermally sensitive degradable film for lithography.5 Recently, Philips and coworkers demonstrated that 

end-capped PPA prepared via anionic polymerization is activated to depolymerize with specific triggering 

moieties that remove the end-cap.2 Relative to other depolymerizable polymer classes, PPA benefits from 

its ease of synthesis3 and rapid and complete depolymerization. 

                                                           
* Portions of this chapter have been published: Kaitz, J. A.; Diesendruck, C. E.; Moore, J. S. J. Am. Chem. 

Soc. 2013, 135, 12755-12761. 
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 Interestingly, the cationic polymerization of o-phthalaldehyde (o-PA) has been studied to a far 

lesser extent than its anionic counterpart.4,6 PPA prepared with a boron trifluoride initiator is reportedly 

isolated without end-capping,6 prompting the authors to speculate that chain entanglement at high molecular 

weights affords polymer stability above its ceiling temperature. A rigorous assessment of the end group 

structure of PPA prepared by cationic polymerization is lacking in the literature, and as a result, the polymer 

prepared by the cationic route has not found wide use in stimuli-responsive applications. We therefore 

initiated a rigorous study of PPA prepared under cationic conditions, with the intent to attain control over 

the final molecular weight of the chains, as well as to understand the end-capping of the polymers, with the 

aim to eventually use these polymers for stimuli-responsive applications. 

 

 

2.3 Results and Discussion 

2.3.1 Anionic and Cationic Polymerization of o-Phthalaldehyde 

 The polymerization of o-phthalaldehyde was conducted with both anionic and cationic initiators 

following reported procedures (See Tables 2.1 and 2.2).1,3-4 The cationic polymerization is very fast, 

yielding PPA within minutes, while the anionic polymerization requires several hours to reach full 

conversion (see section 2.5 for full details). PPAs generated under cationic conditions have molecular 

weights ranging from Mn ca. 3 kDa to greater than ca. 100 kDa, with polydispersities ranging from ca. 1.5 

to 4.5 (Table 2.1). The molecular weights of the cationic polymers do not conform to predictions based on 

monomer conversion and initial monomer-to-initiator ratios, a known issue with the cationic polymerization 

of o-phthalaldehyde which will be discussed in subsequent sections.4,6 Consistent with prior observation, 

PPA was collected without quenching by addition of a neutralizing base (Entry 10).6 Stable PPA was also 

isolated without a methanol washing step (Entry 11), suggesting that neither pyridine nor methanol are 

involved in end-capping the polymer chains. Instead, pyridine’s role is to neutralize the Lewis acidic 

initiator, but this step is not essential to successfully isolate polymer. Polymerizations were also performed 

with alternative cationic initiators triethyloxonium tetrafluoroborate (Entry 14), tin (IV) chloride (Entry 

15), and triphenylcarbenium tetrafluoroborate (Entry 16). Regardless of cationic initiator, PPA was 

produced with similar yields and molecular weights as with boron trifluoride initiation. 
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Table 2.1 | Cationic polymerization reaction: Polymer collected after precipitation into methanol and 

washing with methanol and diethyl ether. 

 

Entry [o-PA]a [M]0/[I]0 Yield Mn  (kDa)b
 Mp  (kDa)b PDIb 

1 1.0 M 10 / 1 86% 36.1 158 4.5 

2 0.7 M 7 / 1 99% 109 199 2.5 

3 0.7 M 11 / 1 73% 13.2 31.5 2.5 

4 0.5 M 10 / 1 77% 6.7 10.1 2.4 

5 0.1 M 10 / 1 48% 14.9 54.1 3.5 

6 0.1 M 5 / 1 52% 7.9 9.1 1.7 

7 0.4 M 5 / 1 60% 5.9 17.2 3.0 

8c 0.1 M 1 / 2 17% 2.7 2.5 1.6 

9d 0.2 M 10 / 1 63% 10.5 22.0 2.2 

10e 0.7 M 6 / 1 76% 15.4 73.7 4.4 

11f 0.7 M 8 / 1 99% 51.5 107 2.0 

12g 0.2 M 6 / 1 68% 25.0 71.4 2.8 

13 0.9 M 20 / 1 94% 104 218 2.3 

14h 0.9 M 20 / 1 92% 88.6 158 2.2 

15i 0.9 M 20 / 1 86% 89.4 181 2.3 

16j 0.8 M 20 / 1 92% 26.2 57.2 2.3 

aMonomer purified before use according to literature procedure.1a  bAverage molecular weights and polydispersity determined by 

gel permeation chromatography (GPC), calibrated with monodisperse polystyrene standards. cPolymer made by inverse addition 

of monomer to two equivalents initiator. Low yield attributed to low monomer concentration and use of excess initiator.                     
d3-fluoropyridine substituted in place of pyridine.  eNo pyridine added. Polymer precipitated directly at -78 °C in diethyl ether and 

washed in diethyl ether and methanol.  fPrecipitation and washing conducted in hexanes and diethyl ether only. gAddition of               

1-pyrene methanol following reaction and precipitation into diethyl ether. hTriethyloxonium tetrafluoroborate initiator. iTin (IV) 

chloride initiator. jTriphenylcarbenium tetrafluoroborate initiator. 

 

 As a comparison, we also prepared PPA by an anionic polymerization of o-phthalaldehyde. In 

conjunction with an alcohol initiator, the phosphazene base P2-t-Bu [1-tert-butyl-2,2,4,4,4-pentakis-

(dimethylamino)-2Λ5,4Λ5-catenadi(phosphazene)] is a known potent catalyst for anionic o-phthalaldehyde 

polymerization.1a, 3 The polymerization reaction is terminated by addition of an electrophile; both 

trichloroacetyl isocyanate and acetic anhydride effectively end-cap the polymer chains. The PPA chains 

generated under anionic conditions have molecular weights ranging from Mn ca. 4 kDa to ca. 20 kDa, with 

polydispersities ranging from ca. 2-3 (Table 2.2). The molecular weights obtained under anionic conditions 
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are lower than the theoretically calculated values from conversion and monomer-to-initiator ratios, but this 

was attributed to impurities in the monomer causing side reactions or providing additional initiation sites.1a 

 

Table 2.2 | Anionic polymerization reaction: Polymer collected by precipitation into methanol and washed 

in methanol and diethyl ether. 

 

Entry [o-PA]a [M]0/[I]0/[P2]0
b  Yield Mn  (kDa)c

 Mp  (kDa)c PDIc 

1 0.7 125/1/2 83% 4.4 5.4 1.8 

2 0.7 250/ 1/2 92% 6.3 8.1 3.0 

3 0.7 625/1/2 92% 9.0 11.5 2.1 

4 0.7 2500/1/3 36% 16.1 26.5 2.7 

5 0.7 5000/1/3 34% 20.4 40.9 2.0 

aMonomer purified before use according to literature procedure.1a bInitial monomer-to-initiator-to catalyst ratio.3 cAverage 

molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated with monodisperse 
polystyrene standards. 

 

2.3.2 Spectroscopic Characterization of PPAs 

 PPAs prepared by cationic and anionic polymerization were examined by a combination of 

spectroscopic techniques, including nuclear magnetic resonance (NMR) spectroscopy and matrix-assisted 

laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry in an attempt to definitively 

identify the end groups produced by the different polymerization mechanisms.  

End-groups are clearly observed by 1H NMR in PPA prepared by anionic polymerization of              

o-phthalaldehyde. When trichloroacetyl isocyanate was used for end-capping, only the 1,6-hexanediol 

initiator is observed (Figure 2.1a); moreover, we have previously demonstrated the presence of various 

anhydride end-capping reagents in the n-BuLi initiated anionic polymerization of o-phthalaldehyde.1b On 

the other hand, end groups are not observed in the 1H NMR of a PPA of similar molecular weight prepared 

by cationic polymerization when comparable signal to noise is attained (Figure 2.1b). Fluorinated end 

groups are also not detected by 19F NMR on quenching a cationically initiated polymerization with                 

3-fluoropyridine (Table 2.1, Entry 9), and only trace solvent peaks are observed on addition of various 

nucleophilic end-capping reagents. Alternative cationic initiators also fail to show the presence of an end 

group. In an attempt to incorporate a chromophore end cap, 1-pyrene methanol was added to the 

polymerization reaction prior to precipitation (Table 2.1, Entry 12), but the UV detector on the GPC 

confirmed that pyrene was not incorporated into the polymer.7  
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Figure 2.1 | 1H NMR spectra of PPA prepared by anionic and cationic polymerization: a) NMR spectra 

of Mn = 6.3 kDa PPA prepared by anionic polymerization (Table 2.2, Entry 2) in CDCl3. Stars indicate 

peaks corresponding to 1,6-hexandiol initiator. Residual o-phthalaldehyde monomer is also observed. Inset 

region magnification of δ 0-5 ppm. b) NMR spectra of Mn = 5.9 kDa PPA prepared by cationic 

polymerization (Table 2.1, Entry 7) in CDCl3. No end-groups are observed. Additional peaks correspond 

to water and residual o-phthalaldehyde monomer. Inset region magnification of δ 0-5 ppm. 

 

All analytical techniques failed to identify end groups in PPA samples polymerized by cationic 

initiation. Without end-caps, PPA is expected to rapidly depolymerize to monomer due to its known ceiling 

temperature of -40 °C.4 This depolymerization reaction has been shown to occur rapidly and completely on 

end-cap removal by specific deprotecting reagents for PPA samples produced by anionic polymerization.2 

We therefore hypothesized that a cyclic polymer is the sole product of the boron trifluoride-initiated 

polymerization. We envisioned the possibility of a back-biting mechanism leading to cyclic 

poly(phthalaldehyde) (cPPA) in a process analogous to the zwitterionic ring-opening polymerization of 

lactides established by Waymouth.8a-c The Aso group has previously demonstrated the formation of small 

cyclic oligomers in the cationic polymerization o-formylphenylacetaldehyde by boron trifluoride.9  

Cyclic polymers have interested chemists in recent decades due to the unique structural and 

physical properties imbued into the large macrocycles through the topological constraint of connected 

chain-ends.10 Several synthetic strategies exist for the preparation of cyclic polymers including the use of 

solid supports,11 the coupling of reactive chain-ends of linear precursors at high dilution,12 and ring-

expansion strategies utilizing cyclic initiators.8,13-14 Ring-expansion strategies are advantageous in that they 

produce cyclic polymer in high purity and circumvent additional synthetic steps in high dilutions to generate 

cyclic macromolecules in high yields. However, the synthetic methods currently available are still limited 

by the inability to effectively separate residual linear contaminants.10 The Waymouth and Zhang groups 

have recently demonstrated a zwitterionic ring-opening polymerization strategy toward the synthesis of 
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cyclic polyesters and polyamides.8 Cyclic polymers were obtained in high yields with good control over 

molecular weight and polydispersity, and the cyclic structure was confirmed by several analytical methods.8 

The proposed cyclic structure of PPA prepared by cationic polymerization was further elucidated 

by MALDI-TOF mass spectrometry and comparisons of the solution properties to analogs of similar 

molecular weight PPAs prepared by anionic polymerization. The MALDI-TOF mass spectrum clearly 

shows molecular ions for the sodium-complexed cPPA (Figure 2.2). The signals are spaced by 134 mass 

units and correspond perfectly to o-phthalaldehyde monomer units plus a sodium ion. A series of minor 

peaks separated by +18 mass units from the major peak series is also occasionally observed. This 

presumably corresponds to PPA with hemiacetal groups produced by hydrolysis on reacting with the acidic 

MALDI matrix (2,5-dihydroxybenzoic acid, DHB). Importantly, since uncapped linear PPA rapidly 

degrades to monomer, cPPA is solely obtained in high yield without residual linear contaminants, as 

confirmed by the presence of a single distribution of cyclic polymer species in the MALDI-TOF mass 

spectra (Figure 2.2). 

 

Figure 2.2 | MALDI-TOF mass spectrum of cPPA: Peaks match sodium adduct of cyclic PPA. DHB 

(2,5-dihydroxybenzoic acid) was used as the matrix and sodium iodide as the cationization agent. 

 

2.3.3 Size-Molecular Weight Correlations by Triple Detection GPC 

 Additional evidence for the cyclic structure of the cationic PPA was provided by GPC coupled with 

refractometer, light-scattering detector and viscometer. PPAs of comparable molecular weight distributions 

were synthesized by cationic and anionic polymerizations and analyzed. Cationic PPA elutes later than 

anionic counterparts of the same molecular weight (Figure 2.3a – molecular weights were calculated by 

Zimm plot), indicative of the compact cyclic structure. Furthermore, Mark-Houwink-Sakurada plots 

demonstrate that PPA prepared by cationic polymerization has a lower intrinsic viscosity than its anionic 

analog (Figure 2.3b). Both polymers presented a Mark-Houwink coefficient of ca. 0.6, and the calculated 

[η]cationic/[η]anionic was found to be 0.7, consistent with the cyclic/linear ratio based on theoretical predictions 
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and experimental findings on other cyclic polymers.8,12-15 These results, in conjunction with MALDI-TOF 

measurements and 1H NMR spectroscopy, were taken as ample evidence for the cyclic structure of PPA 

synthesized by cationic polymerization. 

 

Figure 2.3 | Comparison of the physical properties of PPA prepared by cationic and anionic 

polymerization: a) Plot of molecular weight (logarithmic axis) versus retention volume. PPA prepared by 

cationic polymerization (blue trace) exhibits greater retention volume than PPA prepared by anionic 

polymerization (red trace); b) Mark-Houwink-Sakurada double log plot of intrinsic viscosity versus 

molecular weight. PPA prepared by cationic polymerization (blue trace) exhibits lower intrinsic viscosity 

than PPA prepared by anionic polymerization (red trace). 

 

2.3.4 Reversible Macrocyclization Polymerization 

 Upon confirming the cyclic structure of PPA prepared by cationic polymerization, we questioned 

the reversibility of ring-closure under the polymerization conditions. In the case of anionic PPA, end-

capping terminates the reaction (and this stabilizes the resulting chains from depolymerization); the 

obtained chains are unreactive. In the cationic polymerization, stabilization is achieved by an intramolecular 

ring closure rather than end-capping. Similarly, ring-closure could represent an irreversible termination step 
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that inactivates the polymer from further growth or contraction. We hypothesized, however, that the cPPA 

acetal backbone is re-opened under the Lewis acidic polymerization conditions. To test this hypothesis, the 

isolated macrocycles were subjected to boron trifluoride at temperatures below the ceiling temperature in 

an attempt to carry out further propagation on the stable, linear chains produced. 

 Ring-opening and ring-expansion of cPPA to larger molecular weights was achieved under the 

polymerization conditions in the presence of boron trifluoride and additional monomer (Figure 2.4a). 

Interestingly, the polymer was also made to controllably depolymerize to smaller cyclic polymers or even 

remain at an identical molecular weight after monomer addition, depending on monomer concentration 

(Figure 2.4b). This unique property is a result of polymerization occurring close to the polymer ceiling 

temperature, rendering propagation and depropagation dependent on monomer concentration.4a The cyclic 

polymer molecular weight is therefore under thermodynamic control and is tuned by both the 

polymerization temperature4a and the monomer concentration (defined as the amount of o-phthalaldehyde 

added plus the amount of phthalaldehyde repeat units in the cPPA).16 Attempts to make low molecular 

weight polymer by inverse addition of monomer to excess initiator confirmed that molecular weight does 

not strongly correlate with percent initiator. Significantly, this property enables the reversible ring-

expansion and ring-contraction of cPPA to form cyclic polymer of various sizes with reasonable control. 

 
Figure 2.4 | cPPA ring-opening testing: a) Normalized GPC chromatogram of cPPA (blue, Mp = 5.1 kDa) 

repolymerized to higher molecular weight at a total monomer concentration of 0.6 M (red, Mp = 67 kDa), 

and the resulting product repolymerized again at 0.6 M (green, Mp = 46 kDa). All polymerizations were 

conducted at -78 °C. b) Normalized GPC chromatogram of cPPA (blue, Mp = 199 kDa) repolymerized to 

lower molecular weight at a total monomer concentration of 0.5 M (red, Mp = 10 kDa) and the resulting 

product repolymerized again at 0.5 M (green, Mp = 9.1 kDa). All polymerizations were conducted at                

-78 °C. 

 To conclusively illustrate the dynamic reversibility of cPPA polymerization and demonstrate the 

unique features of the system, we designed two control experiments. In the first, polymerization reactions 

were carried out at monomer concentrations of 1.0 M and 0.1 M. A third reaction was run in parallel in 



25 

 

which the monomer concentration began at 1.0 M, and then a second batch of monomer was added such 

that the overall concentration dropped to 0.1 M. In analogous experiments investigating the zwitterionic 

macrocyclic polymerization of lactones, researchers identified two outcomes: either chain extension to 

larger cyclic polymer was observed, or re-initiation occurred to generate a second distribution of cyclic 

polymer.8a In this case, though, the molecular weight distribution mirrors that of the polymerization at        

0.1 M after the addition of the second batch of monomer (Figure 2.5a), demonstrating the dynamic 

equilibrium nature of the polymerization. 

 As a second control experiment, two cPPA polymers of different molecular weights were mixed 

together and subjected to the cationic polymerization conditions. In one reaction, boron trifluoride etherate 

was added, while no initiator was added to the second. GPC analysis of the molecular weight distributions 

clearly reveal the dynamic intermixing of polymers in the presence of boron trifluoride, whereas the 

polymer blend remained unchanged in the absence of initiator (Figure 2.5b). Interestingly, linear PPA 

prepared by anionic polymerization can be converted to cPPA using cationic polymerization conditions. 

By subjecting linear PPA as well as mixtures of linear PPA and cPPA to cationic polymerization conditions, 

the dynamic polymer intermixing to a single distribution of macrocyclic product is observed. Polymer 

recoveries of 90% and higher corroborate the incorporation of linear polymer into cyclic polymer products, 

with remaining uncapped PPA presumably depolymerized and removed in the work-up. 

 

Figure 2.5 | Cycloreversible polymerization studies: a) Normalized GPC chromatogram of cPPA 

polymerized at monomer concentrations of 1.0 M (blue), 0.1 M (red), and an initial [o-PA] of 1.0 M 

followed by addition of a second batch of o-PA to final concentration of 0.1 M (green). The monomodal 

peak at lower molecular weight is indicative of reversible polymerization. b) Normalized GPC 

chromatogram of two cPPA polymers (green and purple, dashed lines) and blends of the two polymers in 

the presence (blue, 0.5 M monomer) and absence (red, 0.5 M monomer) of initiator. Mixing of polymers to 

monomodal peak at lower molecular weight again indicative of dynamic, reversible polymerization. 
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 This unique property of cPPA is intriguing because the polymer can be grown, depolymerized, and 

repolymerized by adjusting reaction temperature and concentration. The thermodynamic control over the 

final product allows for precise production of polymers with predefined molecular weights and sizes. 

Whereas some cyclic polymers cannot be re-opened and polymerized to different molecular weights after 

initiator removal (since cyclization is an irreversible termination process), cPPA is capable of participating 

in reversible activation-deactivation processes. Furthermore, cPPA can be made to intermingle with and 

redistribute repeat units of other polymer chains, even linear chains. One could imagine mixing cPPA, or 

linear PPA, with a second similar polymer such as poly(4-bromophthalaldehyde)17 to arrive at a completely 

intermixed, cyclic copolymer where the product composition is completely defined by thermodynamics. 

Such structural reorganization of distinct polymer blends could facilitate the preparation of complex and 

novel cyclic copolymers. 

 

2.3.5 Cyclic PPA Mechanism 

On the basis of these observations, we propose a cationic propagation mechanism for the 

cyclopolymerization of o-phthalaldehyde, generating cPPA by a back-biting reaction (Scheme 2.1). While 

a zwitterionic propagation mechanism with negatively charged boron trifluoride bound at one polymer 

terminus is possible, polymerizations performed with alternative cationic initiators suggest that the chains 

grow via cationic propagation. In the proposed mechanism, initiation by an acidic or cationic species (RX) 

generates the charged monomer 1. Propagation proceeds by monomer addition to the cationic center, and 

cyclization to produce cPPA extrudes the acidic species, which is neutralized by addition of a base (4). 

Back-biting can theoretically occur at any position along the chain to produce cPPA and a shortened cationic 

chain, but ring closure from only the terminal position is shown for simplicity. As discussed previously, the 

macrocyclization is entirely reversible. The polymers presumably grow by a reversible activation-

deactivation (RAD) process, much like controlled radical polymerization18 mechanisms, except in this case 

rings equilibrate between closed (cyclic; 2C) and open (cationic; 2, 3) forms. This enables cyclic polymers 

to re-engage in the polymerization, even after their isolation. Cyclic PPA could potentially react with 

growing cationic chain ends, cationic monomeric intermediate, or initiator itself; only cPPA ring-opening 

by reaction with the acidic “RX” (reverse termination) is shown, again for simplicity. Notably, the 

equilibrium dramatically shifts to favor monomer (M) under dilute conditions and at temperatures above    

-40 °C.  Therefore, non-cyclized PPA rapidly degrades to monomer such that cPPA is obtained in high 

yield with high purity. 
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Scheme 2.1 | Proposed mechanism of reversible, cationic macrocyclization PPA polymerization. 

 

 

2.4 Conclusions 

To conclude, while trying to incorporate specific end-caps to cationically polymerized                         

o-phthalaldehyde, we unexpectedly discovered an expedient cationic polymerization to generate high 

molecular weight cyclic polymer with high purity via a thermodynamically controlled process. The cyclic 

structure of the polymer product was confirmed by a variety of techniques, namely NMR spectroscopy, 

MALDI-TOF mass spectrometry, and triple-detection GPC. Significantly, the cyclic polymers were shown 

to be reversible; the macrocycles are ring-opened to produce either larger cPPA by propagation or smaller 

cPPA by depropagation, depending on the reaction conditions. These cyclic polymers scramble with other 

PPA (cyclic or linear) or similar polymer chains and dynamically intermix to a monomodal distribution of 

macrocyclic product. 

The flexibility in sequence and molecular weight distributions make cPPA an exceptional polymer 

system that merits further exploration. The dynamic polymer is completely recyclable given that it is 

composed entirely of phthalaldehyde repeat units and therefore will undergo re- or depolymerization 

depending on conditions. The lack of end-groups in cPPA is additionally advantageous in that it could 

overcome issues from residual non-volatile end-groups in applications that require total material removal. 

For example, this could improve capabilities in highly sensitive applications such as lithography or 

packaging of transient electronics.3,5,19 We also note that cPPA is remarkably stable in comparison to linear 

PPA. Samples left on the bench-top have been observed to remain a pristine white polymer for several 
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months in air, while linear PPA analogs require meticulous storage or risk depolymerizing within days, 

likely as a result of end-cap removal.1a  

 Finally, we highlight that polymerization near the ceiling temperature may provide a general route 

to cyclic polymer synthesis with near perfect purity. We anticipate that when an avenue is available for 

cyclization, and when transfer reactions or other side reactions are avoided, cyclic polymer can be obtained 

as the sole product without resorting to high dilution conditions.20 Cyclization would be enforced by the 

thermodynamic preference to self-correct, i.e., to stabilize by ring-closure, and cyclic polymer would be 

obtained in high purity by concurrent depolymerization of linear, uncapped products. This potentially 

general route to cyclic polymer synthesis is currently under investigation in further experimental and 

computational studies. 

 

 

2.5 Synthetic Procedures 

Scheme 2.2 | General cationic polymerization. 

 

O-Phthalaldehyde (o-PA) is purified according to a literature procedure1a and dried under high vacuum for 

24 hours. o-PA (1.00 g, 7.5 mmol) is weighed into a Schlenk flask and dissolved in dichloromethane           

(10 mL). The solution is cooled to -78 °C and boron trifluoride etherate is added (0.02 mL, 0.16 mmol). 

The reaction mixture is left stirring at -78 °C for 2 h, then pyridine (0.12 mL, 1.5 mmol) is added. The 

mixture is left stirring 2 h at -78 °C, then brought to room temperature and the polymer precipitated by 

pouring into methanol (100 mL). The product is collected by filtration, then further purified by dissolving 

in dichloromethane and re-precipitating from methanol/diethyl ether (0.84 g, 84%). 1H NMR (500 MHz, 

CDCl3) δ 7.80-7.15 ppm (br, 4H, aromatic), 7.15-6.25 ppm (br, 2H, acetal). 13C{1H} NMR (125 MHz, 

CDCl3) δ 138.8 ppm, 130.2 ppm, 123.5 ppm, 105.0-101.8 ppm. 
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Table 2.3 | Cationic polymerization samples. 
Entry [o-PA] [M]0/[I]0 Yield Mn 

(kDa)a 

Mp 

(kDa)a 

PDIa 

1  1.0 M 10 / 1 86% 36.1 158 4.5 

2    0.7 M     7 / 1 99% 109 199 2.5 

3    0.5 M 10 / 1 77% 6.7 10.1 2.4 

4    0.1 M 10 / 1 48% 14.9 54.1 3.5 

5b 0.2 M 10 / 1 63% 10.5 22.0 2.2 

6c  0.7 M 6 / 1 76% 15.4 73.7 4.4 

7d  0.7 M 8 / 1 99% 51.5 107 2.0 

8e  0.2 M 6 / 1 68% 25.0 71.4 2.8 

9 0.9 M 20 / 1 94% 104 218 2.3 

10f 0.9 M 20 / 1 92% 88.6 158 2.2 

11g 0.9 M 20 / 1 86% 89.4 181 2.3 

12h 0.8 M 20 / 1 92% 26.2 57.2 2.3 

aAverage molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated 

with monodisperse polystyrene standards. b3-fluoropyridine used in place of pyridine.  cNo pyridine added. Polymer 

precipitated directly at -78 °C in diethyl ether and washed in diethyl ether and methanol.  dPrecipitation and washing 

conducted in hexanes and diethyl ether only. eAddition of 1-pyrene methanol following reaction and precipitation 

into diethyl ether. fTriethyloxonium tetrafluoroborate initiator. gTin(IV) chloride initiator. hTriphenylcarbenium 

tetrafluoroborate initiator. 

 

Scheme 2.3 | General anionic polymerization. 

 

In a glovebox, purified o-PA (0.20 g, 1.5 mmol) is weighed into a Schlenk flask and dissolved in THF         

(2 mL). The solution is removed from the glovebox and degassed by three freeze-pump-thaw cycles. Then, 

1,6-hexanediol in THF (0.10 mL of a 0.03 M solution, 3 μmol) is added, and the solution stirred 2 minutes 

then cooled to -78 °C. Finally, P2-t-Bu phosphazene base in THF (0.03 mL of a 0.20 M solution, 6 μmol) 

is added to initiate polymerization. The reaction mixture is left stirring at -78 °C for 2.5 h, then the polymer 

is end-capped by adding trichloroacetyl isocyanate (0.05 mL, 0.4 mmol) and allowing the mixture to stir an 

additional 2 h at -78 °C. The reaction mixture is then brought to room temperature and polymer precipitated 

by pouring into methanol (100 mL) and collected by filtration. If necessary, the polymer is further purified 

by dissolving in dichloromethane and re-precipitating from methanol/diethyl ether (0.18 g, 90%). 1H NMR 

(500 MHz, CDCl3) δ 7.80-7.15 (b, 4H, aromatic), 7.15-6.25 (b, 2H, acetal), 3.80-3.30 (b, initiator),          

1.85-0.75 (b, initiator). 
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Table 2.4 | Anionic polymerization samples.  
Entry [o-PA] [M]0/[I]0/[P2]0

a  Yield Mn 

(kDa)b 

Mp 

(kDa)b 

PDIb 

1 0.7 125 / 1 / 2 83% 4.4 5.4 1.8 

2 0.7 250 / 1 / 2 92% 6.3 8.1 3.0 

3 0.7 625 / 1 / 2 92% 9.0 11.5 2.1 

4 0.7 2500 / 1 / 3 36% 16.1 26.5 2.7 

5 0.7 5000 / 1 / 3 34% 20.4 40.9 2.0 

aInitial monomer-to-initiator-to catalyst ratio.2 bAverage molecular weights and polydispersity determined by gel 

permeation chromatography (GPC), calibrated with monodisperse polystyrene standards. 

 

Scheme 2.4 | Inverse addition cationic polymerization. 

 

In a clean, dry Schlenk flask, boron trifluoride etherate (0.15 mL, 1.2 mmol) is dissolved in dichloromethane 

(3 mL). The solution is cooled to -78 °C and o-PA (0.30 g, 2.2 mmol) in dichloromethane (2 mL) is added 

dropwise to the stirring mixture. The reaction mixture is left stirring at -78 °C for 10 minutes, then pyridine 

(0.15 mL, 1.9 mmol) is added. The mixture is left stirring 10 minutes at -78 °C, then brought to room 

temperature and the polymer precipitated by pouring into methanol (100 mL). The product is collected by 

filtration, then further purified by dissolving in dichloromethane and re-precipitating from methanol/diethyl 

ether (0.25 g, 83%). 1H NMR (500 MHz, CDCl3) δ 7.80-7.15 ppm (br, 4H, aromatic), 7.15-6.25 ppm (br, 

2H, acetal). 

 

Table 2.5 | Inverse addition cationic polymerization samples. 
Entry [o-PA] [M]0/[I]0 Yield Mn 

(kDa)a 

Mp 

(kDa)a 

PDIa 

1 0.6 M 5 / 1 99% 61.3 124.6 2.5 

2    0.4 M     2 / 1 83% 25.8 165.3 4.5 

3b 0.1 M 1 / 2 17% 2.7 2.5 1.6 

aAverage molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated 

with monodisperse polystyrene standards. bLow yield attributed to low monomer concentration and use of excess initiator. 
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Scheme 2.5 | Cationic repolymerization reactions (Figure 2.4). 

 

Poly(phthalaldehyde) [PPA] (0.20 g) is weighed into a Schlenk flask and dissolved in dichloromethane      

(2 mL). The solution is cooled to -78 °C and boron trifluoride etherate is added (0.02 mL, 0.16 mmol). 

Then, o-PA (0.20 g, 1.5 mmol) in dichloromethane (2 mL) is added dropwise to the stirring mixture. The 

reaction mixture is left stirring at -78 °C for 2 h, then pyridine (0.12 mL, 1.5 mmol) is added. The mixture 

is left stirring 2 h at -78°C, then brought to room temperature and then the polymer precipitated by pouring 

into methanol (100 mL). The product is collected by filtration, then further purified by dissolving in 

dichloromethane and re-precipitating from methanol/diethyl ether (0.29 g, 73%). 1H NMR (500 MHz, 

CDCl3) δ 7.80-7.15 ppm (br, 4H, aromatic), 7.15-6.25 ppm (br, 2H, acetal). 

 

Table 2.6 | Repolymerization samples. 
Entry [o-PA] [M]0/[I]0 Yield Initial Polymer 

Mp (kDa) 

Final Polymer 

Mn (kDa)a
 

Final Polymer 

Mp (kDa)a 

PDIa 

1 0.1 M 6 / 1 21% - - - 4.0 5.1 1.6 

2b 0.6 M 18 / 1 86% 5.1 12.5 67.4 5.1 

3c 0.6 M 18 / 1 86% 67.4 16.8 45.6 2.7 

4 0.7 M 7 / 1 99% - - - 109 199 2.5 

5d 0.5 M 4 / 1 77% 199 6.7 10.1 2.4 

6e 0.4 M 5 / 1 52% 10.1 7.9 9.1 1.7 

aAverage molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated 

with monodisperse polystyrene standards. bRepolymerization of Entry 1. cRepolymerization of Entry 2. 
dRepolymerization of Entry 4. eRepolymerization of Entry 5. 
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Scheme 2.6 | Second batch monomer addition reactions (Figure 2.5a). 

 

o-PA (0.10 g, 0.7 mmol) is weighed into a Schlenk flask and dissolved in dichloromethane (0.7 mL). The 

solution is cooled to -78 °C and boron trifluoride etherate is added (0.02 mL, 0.16 mmol). The reaction 

mixture is left stirring at -78 °C for 1 h, then o-PA (0.10 g, 0.7 mmol) in dichloromethane (14 mL) is added 

dropwise. After stirring for another 1 h at -78 °C, pyridine (0.12 mL, 1.5 mmol) is added. Finally, the 

mixture is stirred 2 h at -78 °C, then brought to room temperature and the polymer precipitated by pouring 

into methanol (100 mL). The product is collected by filtration, then further purified by dissolving in 

dichloromethane and re-precipitating from methanol/diethyl ether (96 mg, 48%). 1H NMR (500 MHz, 

CDCl3) δ 7.80-7.15 ppm (br, 4H, aromatic), 7.15-6.25 ppm (br, 2H, acetal). 

 

Table 2.7 | Second batch monomer addition samples. 
Entry [o-PA] [M]0/[I]0 Yield Mn 

(kDa)a 

Mp 

(kDa)a 

PDIa 

1 1.0 M 10 / 1 86% 36.1 158 4.5 

2        0.1 M 10 / 1 48% 14.9 54.1 3.5 

3b  1.0  0.1 M 10 / 1 48% 11.8 48.6 4.1 

aAverage molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated 

with monodisperse polystyrene standards. bInitial monomer concentration of 1.0 M, total concentration after 

addition of second batch of monomer 0.1 M. 
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Scheme 2.7 | Polymer mixing reactions (Figure 2.5b). 

 

High molecular weight PPA (75 mg, Mp = 199 kDa) and low molecular weight PPA (75 mg, Mp = 30 kDa) 

are weighed into a Schlenk flask and dissolved in dichloromethane (2.2 mL). The solution is cooled to           

-78°C and boron trifluoride etherate is added (0.03 mL, 0.24 mmol). The reaction mixture is left stirring at 

-78 °C for 2 h, then pyridine (0.10 mL, 1.2 mmol) is added. The mixture is left stirring 2 h at -78 °C, then 

brought to room temperature and then the polymer precipitated by pouring into methanol (100 mL). The 

product is collected by filtration, then further purified by dissolving in dichloromethane and re-precipitating 

from methanol/diethyl ether (0.13 g, 87%). 1H NMR (500 MHz, CDCl3) δ 7.80-7.15 ppm (br, 4H, aromatic), 

7.15-6.25 ppm (br, 2H, acetal). 

 

Table 2.8 | Polymer mixing samples. 
Entry [o-PA] [M]0/[I]0 Yield Mn 

(kDa)a 

Mp 

(kDa)a 

PDIa 

1 0.7 M 7 / 1 99% 109 199 2.5 

2    0.5 M   14 / 1 83% 11.7 29.5 2.1 

3b 0.5 M 5 / 1 87% 8.3 6.0 1.6 

4c,d 0.5 M - - - 99% 10.5 30.7, 155 7.8 

5e 0.7 M 125 / 1 83% 4.4 5.4 1.8 

6 1.0 M 10 / 1 86% 36.1 158 4.5 

7f 0.6 M 3 / 1 90% 7.5 32.9 2.2 

aAverage molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated 

with monodisperse polystyrene standards. bPolymers 1 and 2 mixed and initiator added. cControl reaction; polymers 

1 and 2 mixed, no initiator added. dBimodal molecular weight distribution. ePolymer prepared by anionic 

polymerization. fPolymers 5 and 6 mixed and initiator added. 
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2.6 NMR Spectra, MALDI Spectra, and Thermal Characterization 

 

Figure 2.6 | 1H NMR spectrum of cyclic PPA: NMR spectra of Mn = 6 kDa PPA prepared by cationic 

polymerization in CDCl3. No end-groups are observed. Additional peaks correspond to water (1.6 ppm) 

and residual o-phthalaldehyde monomer. 

 

 

Figure 2.7 | 1H NMR spectrum of linear PPA: NMR spectra of Mn = 6 kDa PPA prepared by anionic 

polymerization in CDCl3. Residual o-phthalaldehyde monomer remains even after three successive 

precipitations.  
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Figure 2.8 | MALDI-TOF mass spectrum of cPPA: Peaks match sodium adduct of cPPA (GPC Mn = 2.7 

kDa); minor secondary peaks match sodium and water adduct of PPA, presumably PPA with hemiacetal 

groups from reaction with MALDI matrix (+18 mass units). 

 

 

 

Figure 2.9 | MALDI-TOF mass spectrum of cPPA: Peaks match sodium adduct of cPPA (GPC Mn = 25.0 

kDa). 
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Figure 2.10 | TGA of linear and cyclic PPA: Normalized TGA curves of representative samples of linear 

(red) and cyclic (blue) PPA. Molecular weight data and depolymerization temperatures are summarized in 

Table 2.9. 

 

Table 2.9 | TGA Samples. Molecular weight and depolymerization data for linear and cyclic PPA. 
Entry Polymerization Mn 

(kDa)a
 

Mp 

(kDa)a 

PDIa Onset Temp 

(°C) 

Endset Temp 

(°C) 

Residue at 

300 °C 

1 Cationic 6.7 10.1 2.4 159 236 3.6% 

2 Cationic 7.9 9.1 1.7 156 211 2.4% 

3 Cationic 11.8 48.6 4.1 157 186 4.5% 

4 Cationic 14.9 54.1 3.5 148 204 2.3% 

5 Cationic 36.1 158 4.5 139 199 2.0% 

6 Cationic 37.1 79.8 2.2 158 195 1.1% 

Cationic Averages    153 ± 8 °C  2.6 ± 1.2%  

7 Anionic 4.4 5.4 1.8 150 199 3.6% 

8 Anionic 6.3 8.1 3.0 141 190 3.2% 

9 Anionic 9.0 11.5 2.1 132 193 2.1% 

10 Anionic 16.1 26.5 2.7 135 185 2.6% 

11 Anionic 20.4 40.9 2.0 138 200 2.4% 

12 Anionic 22.6 35.5 1.6 136 177 0.5% 

Anionic Averages    139 ± 6 °C  2.4 ± 1.1% 

aAverage molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated 

with monodisperse polystyrene standards. 
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Figure 2.11 | DSC of linear and cyclic PPA: Normalized DSC curves of representative samples of linear 

(blue) and cyclic (red) PPA. Molecular weight data and depolymerization temperatures are summarized in 

Table 2.10. 

 

Table 2.10 | DSC Samples. Molecular weight and enthalpic data for linear and cyclic PPA. 
Entry Polymerization Mn 

(kDa)a
 

Mp 

(kDa)a 

PDIa Enthalpy (J/g) 

1 Cationic 6.7 10.1 2.4 -540 

2 Cationic 7.9 9.1 1.7 -520 

3 Cationic 11.8 48.6 4.1 -540 

4 Cationic 14.9 54.1 3.5 -580 

5 Cationic 36.1 158 4.5 -590 

6 Cationic 37.1 79.8 2.2 -520 

Cationic Averages    -550 ± 30 J/g 

7 Anionic 4.4 5.4 1.8 -590 

8 Anionic 6.3 8.1 3.0 -580 

9 Anionic 9.0 11.5 2.1 -570 

10 Anionic 16.1 26.5 2.7 -530 

11 Anionic 20.4 40.9 2.0 -580 

12 Anionic 22.6 35.5 1.6 -520 

Anionic Averages    -560 ±30 J/g 

aAverage molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated 

with monodisperse polystyrene standards. 
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Chapter 3: Scrambling Cyclic Homopolymer Mixtures to 

Produce Multi-Block and Random Cyclic Copolymers* 

3.1 Abstract  

The cationic polymerization of o-phthalaldehyde to produce macrocyclic poly(phthalaldehyde) 

polymers was recently discovered. Re-subjecting the cyclic polymers to the polymerization conditions led 

to a redistribution of the polymer to a new cyclic structure consistent with thermodynamic equilibrium. The 

synthesis of cyclic poly(phthalaldehyde) derivatives is now discussed, and the scrambling of distinct 

homopolymer mixtures to copolymers under the cationic polymerization conditions is demonstrated. 

Homopolymer mixtures are found to rapidly redistribute, first to multi-block cyclic copolymers. With 

extended reaction time, random macrocyclic copolymers are obtained. Evolution of the microstructure was 

monitored by NMR spectroscopy, MALDI-TOF mass spectrometry, and gel permeation chromatography 

(GPC). This scrambling method leads to the rapid preparation of macrocyclic copolymers of high molecular 

weight with variable microstructure depending on reaction times and catalyst loadings. 

 

3.2 Introduction 

 Polymer scrambling and intermixing has been extensively studied in the context of dynamic 

covalent polymer chemistry.1-3 Dynamic covalent polymers are unique from conventional polymers in that 

they consist of reversible covalent bonds and are capable of restructuring and reorganization under 

appropriate conditions, even after polymerization. These dynamic features enable microstructural 

reorganization of polymer blends for a variety of purposes such as in stimuli-responsive materials, the 

synthesis of complex polymer architectures, and dynamic combinatorial chemistry.1 In this light, we were 

interested in the potential of low ceiling-temperature (Tc) polyacetal polymers to serve as dynamic covalent 

polymers,3 utilizing their inherent reversibility when polymerization is conducted below Tc. 

Low Tc polymers have also garnered significant interest in recent years for their stimuli-responsive 

properties and depolymerization capabilities.4-5 One such thermodynamically unstable polymer, 

poly(phthalaldehyde) (PPA),6 has found use as an acid-sensitive, radiation-sensitive, or thermally sensitive 

degradable film for lithography.7 We recently reported a cationic, macrocyclic polymerization of                    

                                                           
* Portions of this chapter have been published: Kaitz, J. A.; Diesendruck, C. E.; Moore, J. S. 

Macromolecules 2013, 46, 8121-8128. 
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o-phthalaldehyde to produce cyclic PPA (cPPA).8 The macrocyclic polymers could be re-subjected to 

polymerization conditions leading to a new equilibrium molecular weight distribution in accord with the 

repeat unit concentration. Cyclic polymers such as cPPA are of interest in their own right, but they have 

specifically emerged at the forefront of polymer chemistry due to their unique structural and physical 

properties through the topological constraint of connected chain-ends.9 Many methods exist to construct 

such macrocyclic products; the Waymouth and Zhang groups in particular have pioneered zwitterionic ring-

opening polymerization strategies toward the synthesis of cyclic polymers and block and gradient cyclic 

copolymers.10 

We were especially intrigued, though, by the ability of cPPA to ring-open and dynamically intermix 

to reach a new equilibrium distribution. With this in mind, we initiated work aimed at the investigation of 

the microstructural consequences of polymer intermixing reactions, with the intent to develop new stimuli-

responsive materials and synthesize complex new polymer architectures. In this chapter, the synthesis and 

scrambling of distinct cPPA homopolymer mixtures, the characterization of the resulting copolymer 

composition and microstructure, and the correlation of copolymer structures with scrambling conditions is 

discussed. 

 

3.3 Results and Discussion 

3.3.1 Cationic, Macrocyclic Homopolymerization of Phthalaldehyde Derivatives 

 O-phthalaldehyde derivatives with 4-bromo (B-PA) and 4-methyl (M-PA) substituents were 

synthesized in two steps adapted from literature procedures.11-12 B-PA is synthesized by tetrabenzylic 

bromination followed by hydrolysis of 4-bromo-o-xylene.11 M-PA is produced by reduction of                         

4-methylphthalic anhydride to the corresponding diol, followed by a Swern oxidation to give the product 

in high yield.12 The homopolymerization of all three o-phthalaldehyde monomers was conducted with boron 

trifluoride etherate following our recently reported procedures (Scheme 3.1; Table 3.1, Entries 1-3).8 The 

polymerization is quite rapid, giving high molecular weight cyclic polymer within two hours. 

Scheme 3.1 | Cationic polymerization reaction: Polymer collected after precipitation into methanol and 

washing with methanol and diethyl ether. R substituent corresponds to –H (o-PA), -Br (B-PA), or –CH3 

(M-PA). 
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Cyclic homopolymer is obtained in near perfect purity due to the depolymerization of linear 

contaminants upon warming to room temperature, as confirmed by MALDI-TOF mass spectrometry. Only 

a single distribution of polymer structures is observed, corresponding to the sodium adduct of the various 

cyclic PPAs (Figure 3.1). The monomer impurity is presumably washed away in the workup. Furthermore, 

1H NMR spectroscopy failed to identify the presence of an end-group, as expected. The polymers were all 

collected as white, free-flowing solids. 

 

Figure 3.1 | MALDI-TOF mass spectra of cPPAs: Peaks match sodium adduct of (a) cPPA; (b) cPBPA; 

and (c) cPMPA. DHB (2,5-dihydroxybenzoic acid) was used as the matrix and sodium iodide as the 

cationization agent. 



43 

 

3.3.2 Cationic Copolymerizations of Phthalaldehyde Derivatives 

Two unique methods were utilized to synthesize copolymers (See Scheme 3.2). The first, a 

“random” copolymerization, employed standard cationic polymerization conditions with comonomers 

combined in a 1:1 molar ratio (Scheme 3.2a; Table 3.1, Entries 4, 7, and 10). Although measurement of 

reactivity ratios is desirable, reliable methods to determine them are not available when depropagation 

reactions occur to a significant extent, as is the case in reversible polymerizations.13 Nevertheless, reactivity 

ratios are likely close to unity due to the similarity of monomers studied,14 so the standard copolymerization 

was presumed to occur in a random or close to random manner. 

In a second approach, “scrambling” reactions were pursued where homopolymers were mixed in a 

1:1 molar ratio and re-subjected to the polymerization conditions (Scheme 3.2b; Table 3.1, Entries 5, 6, 8, 

9, 11, and 12). It was already shown that cyclic homopolymers could be dynamically ring-opened and reach 

an equilibrium state in the cationic polymerization conditions,8 but true intermixing between distinct 

homopolymers was not attempted. We were therefore interested in comparing the scrambled copolymers 

to the homopolymers as well as random copolymers in an effort to verify the scrambling reaction as well 

as to investigate microstructure dependence on time and catalyst loading. 

 

Scheme 3.2 | Cationic copolymerization reactions: a) Random copolymerization; b) Scrambling 

copolymerization. 
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Table 3.1 | Cationic copolymerization reactions and polymers used in this study. 
Entry Polymer R1 R2 Reaction Type Reaction 

Time 

[M]a [M]0/[I]0 Yield Mn 

(kDa)b 

Mp 
(kDa)b 

PDIb 

1 cPPA H - - - Homopolymer 2 h 0.7 M 5 / 1 97% 31.7 90.4 2.6 

2 cPBPA Br - - - Homopolymer 2 h 0.6 M 8 / 1 42% 2.1 5.4 2.9 

3 cPMPA CH3 - - -  Homopolymer 2 h 0.6 M 12 / 1 54% 3.8 8.5 2.5 

4 r(PPA/PBPA) H Br Random 2 h 1.0 M 8 / 1 58% 8.1 14.2 1.8 

5 s(PPA/PBPA)1 H Br Scrambling 0.75 h 0.7 M 5 / 1 78% 5.9 13.8 2.3 

6 s(PPA/PBPA)2 H  Br Scrambling 10 h 0.9 M 2 / 1 63% 3.6 6.5 1.9 

7 r(PPA/PMPA) H CH3 Random 2 h 1.0 M 8 / 1 55% 8.7 16.8 1.9 

8 s(PPA/PMPA)1 H CH3 Scrambling 0.75 h 1.0 M 6 / 1 62% 11.2 23.5 2.0 

9 s(PPA/PMPA)2 H CH3 Scrambling 10 h 1.0 M 2 / 1 51% 5.4 11.1 2.0 

10 r(PBPA/PMPA) Br CH3 Random 2 h 1.0 M 12 / 1 50% 2.4 4.9 2.2 

11 s(PBPA/PMPA)1 Br CH3 Scrambling 0.75 h 1.0 M 6 / 1 75% 6.6 9.9 1.7 

12 s(PBPA/PMPA)2 Br CH3 Scrambling 10 h 0.9 M 2 / 1 40% 2.6 4.7 1.8 

aO-phthalaldehyde purified before use according to literature procedure.5a  bAverage molecular weights and polydispersity 
determined by gel permeation chromatography (GPC), calibrated with monodisperse polystyrene standards. 

 

3.3.3 GPC and MALDI-TOF Characterization of Scrambled PPAs 

 All scrambled copolymers were characterized by GPC and compared to the homopolymer 

precursors. In all cases, it was readily apparent that homopolymers reshuffled to a new, monomodal 

distribution consistent with the expected outcome of an intermixing reaction (Figure 3.2), retaining 

polydispersities on the same order as, or even lower than the homopolymers. The monomodal distribution 

supports our previously described mechanism in which homopolymers ring-open and reach an equilibrium 

molecular weight distribution during polymerization.8 The molecular weight depends on temperature and 

concentration, as previously demonstrated,6a, 8 with no relation to polymerization time once equilibrium is 

established. GPC analysis alone, however, is not sufficient to confirm true intermixing of polymer chains 

rather than a simple equilibration of distinct homopolymers within the blend. MALDI-TOF mass 

spectrometry was therefore performed to further investigate the scrambling reaction. 

 MALDI-TOF mass spectrometry verified polymer scrambling to a single copolymer product. The 

spectra of homopolymer mixtures in a 1:1 ratio reveal two distinct series of peaks corresponding to each 

distinct homopolymer in the blend (Figure 3.3a-b). For homopolymer mixtures with cPBPA, cyclic 

hexamer is the highest molecular weight observed for cPBPA, likely due to its reduced tendency to desorb 

in the MALDI-TOF instrument (as seen in Figure 3.1b) in comparison to cPPA and cPMPA. 
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Figure 3.2 | Normalized GPC chromatograms of scrambled cPPA and cPMPA: cPPA homopolymer (blue 

trace, Mp = 90.4 kDa) scrambled with cPMPA homopolymer (red trace, Mp = 8.5 kDa) for 45 minutes in 

cationic polymerization conditions to produce PPA/PMPA scrambled copolymer (green trace,                       

Mp = 23.5 kDa). 

 

 MALDI-TOF spectra of scrambled copolymers, on the other hand, show completely different 

patterns when compared to the homopolymer mixtures. The copolymers display complex spectra due to 

intermixing, confirming that scrambling truly does occur rather than the sample remaining a simple 

homopolymer blend (Figure 3.3c-d). As seen in Figure 3.3c, cyclic pentamer through cyclic nonamer is 

observed for scrambled cPPA/cPMPA copolymers. Within each cluster of oligomeric peaks, the individual 

spacing is 14 mass units, corresponding to a series of n-mers with an increasing number of M-PA units. For 

instance, Figure 3.3d shows a zoom of the seven hexamer copolymer peaks corresponding to: cPPA6, 

c(PPA5 + PMPA1), c(PPA4 + PMPA2), c(PPA3 + PMPA3), c(PPA2 + PMPA4), c(PPA1 + PMPA5), and 

cPMPA6. The analogous pattern of products within each oligomer cluster qualitatively appears to approach 

a binomial distribution after only 45 minutes of reaction. Copolymers scrambled with cPBPA, however, do 

not show the fine structure observed for PPA/PMPA copolymers, likely as a result of the reduced tendency 

for the brominated polymers to desorb in the MALDI-TOF instrument. For those cPPA/cPBPA and 

cPMPA/cPBPA scrambled copolymers, cPPA and cPMPA homopolymer is still observed as the main series 

of peaks as well as another series of peaks from c(PPAn-1 + PBPA1) and c(PMPAn-1 + PBPA1), respectively. 

The presence of this second series of minor peaks confirms the incorporation of PBPA units into either 

homopolymer and, in conjunction with GPC analysis, verifies that polymer scrambling occurs for all 

copolymer combinations. 
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Figure 3.3 | MALDI-TOF mass spectra of blended and scrambled cPPA and cPMPA: a) MALDI-TOF 

spectrum of homopolymer mix of cPPA and cPMPA in 1:1 ratio (by weight); distinct series of homopolymer 

peaks is observed and labeled. b) Expansion of hexamer region in homopolymer mixture; cPPA6 found at 

827.3 (theoretical 827.2), cPMPA6 found at 911.4 (theoretical 911.3). c) MALDI-TOF spectrum of 

scrambled PPA/PMPA copolymer. Oligomers up to 9 repeat units are observed with a fine spacing of 14 

mass units, corresponding to the mass difference between monomers and confirming copolymerization 

occurred. d) Expansion of hexamer region from a sample of scrambled copolymer; approximate binomial 

distribution of copolymers observed. Most abundant peak found at 869.1 [theoretical c(PPA3/PMPA3) 

869.3]. DHB (2,5-dihydroxybenzoic acid) was used as the matrix and sodium iodide as the cationization 

agent. 

 

3.3.4 Kinetic Investigation of cPPA and cPMPA Scrambling 

 A series of scrambling copolymerizations was conducted between cPPA and cPMPA to track the 

time evolution of polymer microstructure. Ring size equilibration was monitored by GPC, while 

compositional change was tracked by MALDI-TOF analysis. Scrambled cPPA/cPMPA was selected due 

to the ability to readily monitor copolymer composition by MALDI-TOF mass spectrometry, unlike the 

PBPA copolymers. Copolymerization reactions were carried out between 10 and 240 min at -78 °C. The 

scrambling copolymerization is extremely rapid—the GPC traces transform from a bimodal mix of 

homopolymers to a peak with minor shouldering after only 30 min (Figure 3.4a). A monomodal peak is 

observed at and beyond 45 min, and the polydispersity drops and stabilizes to a steady state of 

approximately two at the same time-point (Figure 3.4b). 
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Figure 3.4 | GPC analysis of cPPA and cPMPA scrambling: a) cPPA and cPMPA homopolymer mix (red 

trace) overlayed with polymer products from cPPA/cPMPA scrambling copolymerizations of various 

reaction times. b) Polydispersity index (PDI) of the polymer mixture as a function of time during 

cPPA/cPMPA scrambling copolymerization at -78 °C. 

 

Likewise, MALDI-TOF characterization confirmed a rapid compositional transformation from the 

simple cPPA/cPMPA homopolymer blend to a copolymer over the course of the scrambling reaction. 

Within 10 min, a full series of copolymer products is observed (Figure 3.5b), although the unreacted 

homopolymers remain the major product. This is consistent with the bimodal trace in the GPC as well as 

the substantial drop in polydispersity after 10 min, as the homopolymers begin to intermix to copolymers. 

After 30 min of reaction time, the copolymer products begin to stand out from the homopolymer (Figure 

3.5c), but appreciable homopolymer peaks remain. A binomial distribution has not yet been reached, as the 

theoretical ratio of homopolymer peaks to the greatest copolymer peak for the hexamer cluster should be 

1/20, which is clearly not observed. Again, this matches GPC findings at the same time-point, as the 

polymer product shows shouldering in the GPC traces confirming that it has not yet fully equilibrated to its 

final molecular weight distribution. Finally, after 45 min of scrambling, the homopolymer peaks are greatly 

diminished and the scrambling reaction is essentially complete (Figure 3.5d). The ratio of homopolymer to 

the greatest copolymer peak in the hexamer cluster qualitatively approaches that of the binomial 

distribution. It can be expected that all homopolymers have fully reacted by this point, and the remaining 

homopolymer observed has simply scrambled with identical monomer and polymer products. 
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Figure 3.5 | MALDI-TOF analysis of cPPA and cPMPA scrambling, expanded on hexamer clusters: a) 

MALDI-TOF spectrum of homopolymer mix of cPPA and cPMPA in 1:1 ratio (by weight); cPPA6 found at 

827.3 (theoretical 827.2), cPMPA6 found at 911.4 (theoretical 911.3). b) MALDI-TOF spectrum of cPPA 

and cPMPA scrambled for 10 min. c) MALDI-TOF spectrum of cPPA and cPMPA scrambled for 30 min. 

d) MALDI-TOF spectrum of cPPA and cPMPA scrambled for 45 min. DHB (2,5-dihydroxybenzoic acid) 

was used as the matrix and sodium iodide as the cationization agent. 

 

3.3.5 NMR Characterization of Scrambled PPA Microstructures 

 13C NMR spectroscopy was employed to further investigate the microstructure of all copolymers 

synthesized. Interestingly, the “random” copolymers displayed resonances that matched the carbons of each 

respective homopolymer, except at carbons in the polymer backbone and those directly adjacent to the 

polymer backbone. For instance, Figure 3.6a shows the shift observed in the aromatic carbons adjacent to 

the polymer backbone in random cPBPA/cPMPA copolymers as compared to each respective 

homopolymer. Both cPBPA carbon peaks shift downfield (from 140.7 ppm and 137.4 ppm to 141.0 ppm 

and 137.7 ppm, respectively), while the cPMPA carbons shift upfield (from 138.9 ppm and 135.8 ppm to 

138.7 ppm and 135.6 ppm, respectively). While these shifts in resonance are seemingly inconsequential, 

the peaks of copolymers scrambled for 45 min almost entirely match the resonances of all homopolymer 

carbons, even those in the backbone and adjacent aromatic carbons (Figure 3.6b). Similar results are 

observed for both cPPA/cPBPA and cPPA/cPMPA copolymers as well (see section 3.6).  
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These results suggest that copolymers scrambled for short times retain a blocky microstructure. 

The “random” copolymer, on the other hand, shows a distinct microstructure different from either 

homopolymer. While it may not necessarily be perfectly random, it at least appears to be less blocky than 

the scrambled copolymer microstructure. 

 

 

Figure 3.6 | 13C NMR spectra of cPBPA/cPMPA random and scrambled copolymers: a) PBPA/PMPA 

copolymer produced from "random” copolymerization reaction (red), overlayed with cPBPA (blue) and 

cPMPA (green) homopolymers. Shifts in resonance are observed in aromatic carbons adjacent to 

copolymer backbone. b) PBPA/PMPA scrambled copolymer after 45 min reaction (red), overlayed with 

cPBPA (blue) and cPMPA (green) homopolymers. Overlap in resonances of carbons adjacent to copolymer 

backbone suggests a blocky polymer microstructure. All NMR spectra collected with DMSO-d6 solvent. 

 

 Homopolymers were allowed to engage in scrambling reactions for up to 10 h in an attempt to 

further transform the copolymer microstructure. It was found that copolymers scrambled for 4 h resembled 

the blocky microstructure found in copolymers scrambled for 45 min. However, when the homopolymers 

were scrambled for 10 h with 50% catalyst loading, a unique microstructure was identified by 13C NMR. 

The aromatic carbons adjacent to the copolymer backbone in cPBPA/cPMPA copolymers again shift in 

resonance (Figure 3.7), signifying that the microstructure approaches the more random structure observed 

in “random” copolymers. Similar observations were also made for cPPA/cPBPA and cPPA/cPMPA 

scrambled copolymers (see section 3.6). 
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Figure 3.7 | 13C NMR spectra of cPBPA/cPMPA scrambled copolymers: a) cPBPA/cPMPA scrambled 

copolymer after 45 min reaction (red), overlayed with cPBPA (blue) and cPMPA (green) homopolymers to 

confirm blocky polymer microstructure. b) cPBPA/cPMPA scrambled copolymer after 10 h reaction (red), 

overlayed with cPBPA (blue) and cPMPA (green) homopolymers to illustrate changes in polymer 

microstructure. All NMR spectra collected with DMSO-d6 solvent. 

 

It is quite valuable that a full array of copolymer structures can be obtained by this scrambling 

copolymerization approach; a diversity of products ranging from homopolymer, to multi-block copolymers, 

to completely random copolymers is possible with this technique. One could envision synthesizing a series 

of copolymer products with increasingly shorter block sizes (and increasingly random sequences) simply 

by varying the reaction time. Scrambling copolymerization reactions thus represent a unique and useful 

tool in polymer synthesis. In fact, the biggest limitation we face is fully characterizing these copolymers 

with current analytical techniques, which prevents us from knowing the true depth of this method in 

synthesizing complex copolymer products. 

 

3.3.6 Scrambling Copolymerization Mechanism 

 On the basis of the above observations, we propose a scrambling mechanism whereby, in the 

presence of initiator, macrocyclic polymers open to linear polymeric species and intermix, then back-bite 

to form cyclic copolymer products (Scheme 3.3). The rapid formation of multi-block cyclic copolymers 

suggests transposition of polymer fragments rather than depolymerization to monomer followed by 

copolymerization. Under polymerization conditions, cyclic homopolymer (1C) reacts with cationic initiator 
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(RX) to form a linear cationic species (1), which is stable below its Tc. The linear species thus formed closes 

back to cyclic homopolymer by intramolecular back-biting, reacts with other linear species (not shown for 

clarity), or is attacked by a cyclic homopolymer (2C) in the mixture. Intermixing with identical cyclics (or 

linears) retains linear homopolymer species 1, but scrambling with different cyclics/linears produces linear 

block copolymers (3) that cyclize to produce isolable cyclic block copolymers (3C). The scrambling is 

entropically-driven; i.e., without providing a “de-mixing” impetus such as adding a template, scrambling is 

irreversible. Kinetic investigations on the scrambling reaction suggest that molecular weight equilibration 

and intermixing to copolymer occur on similar time scales. Thus, the rate of intramolecular back-biting is 

on the same order as intermixing and subsequent cyclization. Once formed, cyclic block copolymers (3C) 

continue to react with initiator and linear chains to reach an equilibrium mixture of linear and cyclic random 

copolymer species (4 and 4C). As before, the scrambling process is entropically-driven, so scrambling from 

blocky to random copolymers is an exergonic and irreversible process. 

 

Scheme 3.3 | Proposed mechanism of cationic scrambling copolymerization reaction. 
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3.4 Conclusions 

 It was demonstrated that cyclic homopolymer mixtures could be transformed into multi-block and 

random cyclic copolymers through the manipulation of dynamic, reversible covalent bonds. The cationic 

polymerization of phthalaldehyde derivatives produces cyclic homopolymer of well-defined molecular 

weight; mixtures of these homopolymers are dynamically scrambled to produce a diversity of copolymer 

microstructures. Copolymerization was monitored and verified by GPC analysis and MALDI-TOF mass 

spectrometry, and 13C NMR spectroscopy was used to elucidate copolymer structures. The entropically-

driven scrambling technique enables easy access to a range of copolymer microstructures, from pure 

homopolymer to blocky and eventually random structures. 

 These cPPA polymers represent a new class of dynamic covalent macrocyclic polymers based on 

the chemically labile polyacetal motif. One could envision incorporating a template into scrambling 

reactions to selectively amplify specific macrocycles and obtain desired polymer products in extremely 

high purity. Further, the use of boron trifluoride, a relatively ubiquitous cationic initiator, introduces the 

potential to scramble other monomers into cPPA that are also polymerized by boron trifluoride. This may 

provide a quick and convenient method for the production of cyclic multi-block copolymers from other 

polyacetals such as polyoxymethylene or other aliphatic aldehyde polymers.  Such scrambling reactions 

could rapidly produce a vast array of macrocyclic copolymer products that are either impossible or difficult 

to produce through other, more conventional routes. These matters are currently under investigation in an 

effort to expand the utility of the scrambling copolymerization technique. 

 Finally, this work exposes a significant limitation (and opportunity) in current analytical 

techniques. Without an effective method to probe block sizes and number of blocks in complex copolymer 

products, we do not know the full range of copolymer products produced by the reaction. An analytical 

technique capable of addressing such sequencing issues would be quite enabling in synthetic polymer 

chemistry, as we ultimately desire to attain control over block sizes and number of blocks in this scrambling 

copolymerization reaction. 
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3.5 Synthetic Procedures 

 

Scheme 3.4 | 4-bromo phthalaldehyde synthesis. 

 

4-bromo-1,2-bisdibromomethylbenzene: 

To a stirring mixture of 4-bromo-o-xylene (8.00 g, 43 mmol) in 105 mL CCl4 was sequentially added           

N-bromo succinimide (32.00 g, 180 mmol) and benzoyl peroxide (1.00 g, 4 mmol). The mixture was heated 

to reflux for 14 h, then cooled to 0 °C and the precipitate filtered off and washed with diethyl ether. The 

solvent was removed in vacuo, redissolved in dichloromethane (100 mL), and washed with water (2 x       

200 mL) and brine (200 mL). The organic phase was dried over MgSO4 and concentrated to give a yellow 

solid. Recrystallization from diethyl ether and hexanes gave 4-bromo-1,2-bis-dibromomethylbenzene as a 

pale yellow powder (11.4 g, 53% yield). 1H NMR (500 MHz, CDCl3) δ 8.07 ppm (m, 2H, Ar-H), 7.64 ppm 

(m, 1H, Ar-H), 7.50 ppm (m, 2H, CH). LR FD-MS (m/z): [C8H5Br5]+ Found 499.8; Calculated 499.6. 

 

4-bromophthalaldehyde: 

In a flask cooled to 0 °C, 4-bromo-1,2-bisdibromomethylbenzene (5.00 g, 10 mmol) was dissolved in 

fuming sulfuric acid (7 mL, 140 mmol). The mixture was stirred at 0 °C for 10 min, followed by 20 min at 

room temperature. Then, the mixture was cooled back to 0 °C and sat. aq. NaHCO3 (60 mL) was slowly 

added and stirred until bubbling ceased. The solution was extracted with ethyl acetate (3 x 125 mL), washed 

with sat. aq. NaHCO3 (2 x 60 mL) and brine (100 mL), dried over MgSO4 and concentrated to give a yellow 

residue. The residue was recrystallized from hexanes to give 4-bromophthalaldehyde as a yellow powder 

(1.08 g, 51% yield). 1H NMR (500 MHz, CDCl3) δ 10.51 ppm (s, 1H, CHO), 10.44 ppm (s, 1H, CHO), 

8.09 ppm (d, 1H, Ar-H, J = 3 Hz), 7.90 ppm (dd, 1H, Ar-H, J = 3 Hz, 10 Hz), 7.84 ppm (d, 1H, Ar-H,            

J = 10 Hz). 13C{1H} NMR (125 MHz, CDCl3) δ 191.3 ppm, 190.8 ppm, 136.8 ppm, 134.9 ppm, 133.9 ppm, 

133.0 ppm, 132.0 ppm, 129.3 ppm. LR FD-MS (m/z): [C8H5BrO2]+ Found 212.2; Calculated 211.9. 
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Scheme 3.5 | 4-methyl phthalaldehyde synthesis. 

4-methyl-1,2-bishydroxymethylbenzene: 

A suspension was prepared of lithium aluminum hydride (3.80 g, 100 mmol) and zinc chloride (4.10 g,     

30 mmol) in 200 mL dry tetrahydrofuran. The suspension was cooled to 0 °C and 4-methyl phthalic 

anhydride (8.00 g, 50 mmol) in 50 mL dry tetrahydrofuran was added dropwise. The mixture was then 

warmed to room temperature and left stirring for 6 h. Quenching was done by dropwise addition of 30 mL 

ice water followed by 60 mL 2 M aq. HCl. The product was extracted into ethyl acetate (3 x 100 mL), 

washed with brine (2 x 200 mL), dried over MgSO4 and concentrated to give a yellow oil. The crude oil 

was purified by flash column chromatography in 3:2 ethyl acetate:hexanes (Rf = 0.4) to give 4-methyl-1,2-

bis-hydroxymethylbenzene as a white solid (2.93 g, 79%). 1H NMR (500 MHz, CDCl3) δ 7.20-7.09 ppm 

(m, 3H, Ar-H), 7.78 ppm (d, 1H, Ar-H, J = 3 Hz), 7.57 ppm (dd, 1 H, Ar-H, J = 3 Hz, 5 Hz), 4.60 ppm (s, 

4H, Ar-CH2) 3.72 ppm (br, OH) 2.34 ppm (s, 3H, CH3). HR ESI-MS (m/z): [C9H12NaO2]+ Found 175.0730; 

Calculated 175.0735. 

 

4-methylphthalaldehyde: 

A solution of oxalyl chloride (3 mL, 35 mmol) in 100 mL dry dichloromethane was cooled to -78 °C. To 

the stirring solution was added DMSO (5 mL, 70 mmol) and stirring was continued 5 min. Then, 4-methyl-

1,2-bishydroxymethylbenzene (1.98 g, 13 mmol) in 80 mL dry dichloromethane was added and stirring 

continued 20 min at -78 °C. Finally, triethylamine (21 mL, 150 mmol) was added and the mixture left 10 

min at -78 °C, then warmed to room temperature and left an additional 2 h. The reaction was quenched with 

150 mL 0.1 M aq. HCl, extracted into dichloromethane (3 x 70 mL), and washed with brine (200 mL). The 

organic phase was dried over MgSO4 and concentrated to give a yellow oil. The crude oil was purified by 

flash column chromatography in 3:7 ethyl acetate:hexanes (Rf = 0.5) to give 4-methylphthalaldehyde as a 

yellow solid (1.67 g, 87%). 1H NMR (500 MHz, CDCl3) δ 10.56 ppm (s, 1H, CHO), 10.47 ppm (s, 1H, 

CHO), 7.88 ppm (d, 1H, Ar-H, J = 5 Hz), 7.78 ppm (d, 1H, Ar-H, J = 3 Hz), 7.57 ppm (dd, 1H, Ar-H,            

J = 3 Hz, 5 Hz), 2.52 ppm (s, 3H, CH3). 13C{1H} NMR (125 MHz, CDCl3) δ 192.4 ppm, 191.9 ppm, 144.8 

ppm, 136.1 ppm, 134.0 ppm, 133.7 ppm, 131.4 ppm, 131.2 ppm, 21.3 ppm.  LR FD-MS (m/z): [C9H8O2]+ 

Found 148.0; Calculated 148.1. 
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Scheme 3.6 | General cationic homopolymerization.  

 

The respective phthalaldehyde monomer (2 mmol) is weighed into a Schlenk flask and dissolved in dry 

dichloromethane (3 mL). The solution is cooled to -78 °C and boron trifluoride etherate is added (0.02 mL, 

0.16 mmol). The reaction is left stirring at -78 °C for 2 h, then pyridine (0.08 mL, 1 mmol) is added. The 

mixture is left stirring 2 h at -78 °C, then brought to room temperature and the polymer precipitated by 

pouring into methanol (100 mL). The product is collected by filtration, then further purified by dissolving 

in dichloromethane and re-precipitating from methanol and washing in diethyl ether.  

 

cPPA (97% yield): 1H NMR (500 MHz, DMSO-d6) δ 7.75-7.05 ppm (br, 4H, aromatic), 7.05-6.25 ppm (br, 

2H, acetal). 13C{1H} NMR (125 MHz, DMSO-d6) δ 138.4 ppm, 129.6 ppm, 123.0 ppm, 105.0-101.0 ppm. 

cPBPA (42% yield): 1H NMR (500 MHz, DMSO-d6) δ 8.25-7.00 ppm (br, 3H, aromatic), 7.00-6.10 ppm 

(br, 2H, acetal). 13C{1H} NMR (125 MHz, DMSO-d6) δ 140.6 ppm, 137.4 ppm, 132.7 ppm, 126.5 ppm, 

125.7 ppm, 122.8 ppm, 106.0-100.0 ppm. 

cPMPA (54% yield): 1H NMR (500 MHz, DMSO-d6) δ 7.65-6.95 ppm (br, 3H, aromatic), 6.95-6.10 ppm 

(br, 2H, acetal), 2.45-1.75 ppm (br, 3H, CH3). 13C{1H} NMR (125 MHz, DMSO-d6) δ 139.2 ppm, 138.9 

ppm, 135.8 ppm, 130.4 ppm, 123.1 ppm, 122.7 ppm, 105.5-100.3 ppm, 20.8 ppm. 

 

 

Table 3.2 | Homopolymer samples. 
Entry Polymer [M]0 [M]0/[I]0 Yield Mn 

(kDa)a 

Mp 

(kDa)a 

PDIa 

1 cPPA 0.7 M 5 / 1 97% 31.7 90.4 2.6 

2 cPBPA 0.6 M 8 / 1 42% 2.1 5.4 2.9 

3 cPMPA 0.6 M 12 / 1 54% 3.8 8.5 2.5 

aAverage molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated 

with monodisperse polystyrene standards. 
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Scheme 3.7 | General cationic copolymerization. 

 

Phthalaldehyde monomer 1 (1 mmol) and phthalaldehyde monomer 2 (1 mmol) are weighed into a Schlenk 

flask and dissolved in dry dichloromethane (2 mL). The solution is cooled to -78 °C and boron trifluoride 

etherate is added (0.02 mL, 0.16 mmol). The reaction is left stirring at -78 °C for 2 h, then pyridine (0.08 

mL, 1 mmol) is added. The mixture is left stirring 2 h at -78 °C, then brought to room temperature and the 

polymer precipitated by pouring into methanol (100 mL). The product is collected by filtration, then further 

purified by dissolving in dichloromethane and re-precipitating from methanol and washing in diethyl ether.  

 

r(PPA/PBPA) (58% yield): 1H NMR (500 MHz, DMSO-d6) δ 8.30-7.05 ppm (br, 3.6H, aromatic), 7.05-

6.20 ppm (br, 2H, acetal). 13C{1H} NMR (125 MHz, DMSO-d6) δ 140.8 ppm, 138.3 ppm, 137.7 ppm, 132.6 

ppm,  129.6 ppm, 126.5 ppm, 125.7 ppm, 123.4 ppm, 122.8 ppm, 106.0-100.2 ppm. 

r(PPA/PMPA) (55% yield): 1H NMR (500 MHz, DMSO-d6) δ 7.95-7.00 ppm (br, 3.4H, aromatic), 7.00-

6.15 ppm (br, 2H, acetal), 2.45-1.70 ppm (br, 1.5H, CH3). 13C{1H} NMR (125 MHz, DMSO-d6) δ 139.3 

ppm, 138.9 ppm, 138.5 ppm, 135.7 ppm, 130.4 ppm, 129.6 ppm, 123.0 ppm, 106.0-100.4 ppm, 20.8 ppm. 

r(PBPA/PMPA) (50% yield): 1H NMR (500 MHz, DMSO-d6) δ 8.30-7.00 ppm (br, 3H, aromatic), 7.00-

6.10 ppm (br, 2H, acetal), 2.45-1.75 ppm (br, 1.8H, CH3). 13C{1H} NMR (125 MHz, DMSO-d6) δ 140.9 

ppm, 139.3 ppm, 138.7 ppm, 137.7 ppm, 135.6 ppm, 132.6 ppm, 130.4 ppm, 126.5 ppm, 125.8 ppm, 122.7 

ppm, 105.8-100.4 ppm, 20.9 ppm. 

 

Table 3.3 | Copolymer samples. 
Entry Polymer [M]0 [M]0/[I]0 Yield Mn 

(kDa)a 

Mp 

(kDa)a 

PDIa 

1 r(PPA/PBPA) 1.0 M 8 / 1 58% 8.1 14.2 1.8 

2 r(PPA/PMPA) 1.0 M 8 / 1 55% 8.7 16.8 1.9 

3 r(PBPA/PMPA) 1.0 M 12 / 1 50% 2.4 4.9 2.2 

aAverage molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated 

with monodisperse polystyrene standards. 
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Scheme 3.8 | Polymer scrambling reactions. 

 

Polymer 1 (0.5 mmol monomer) and Polymer 2 (0.5 mmol monomer) are weighed into a Schlenk flask and 

dissolved in dichloromethane (1.5 mL). The solution is cooled to -78 °C and boron trifluoride etherate is 

added (0.02 mL, 0.16 mmol). The reaction is left stirring at -78 °C for 0.75-10 h, then pyridine (0.08 mL, 

1 mmol) is added. The mixture is left stirring 2 h at -78 °C, then brought to room temperature and then the 

polymer precipitated by pouring into methanol (100 mL). The product is collected by filtration, then further 

purified by dissolving in dichloromethane and re-precipitating from methanol and washing in diethyl ether. 

 

s(PPA/PBPA)1 (78% yield): 1H NMR (500 MHz, DMSO-d6) δ 8.25-7.05 ppm (br, 3.5H, aromatic), 7.05-

6.20 ppm (br, 2H, acetal). 13C{1H} NMR (125 MHz, DMSO-d6) δ 140.7 ppm, 138.4 ppm, 137.5 ppm, 132.7 

ppm,  129.6 ppm, 126.5 ppm, 125.8 ppm, 123.5 ppm, 122.9 ppm, 106.0-100.5 ppm. 

s(PPA/PMPA)1 (62% yield): 1H NMR (500 MHz, DMSO-d6) δ 7.85-7.00 ppm (br, 3.5H, aromatic), 7.00-

6.15 ppm (br, 2H, acetal), 2.45-1.70 ppm (br, 1.2H, CH3). 13C{1H} NMR (125 MHz, DMSO-d6) δ 139.2 

ppm, 138.8 ppm, 138.5 ppm, 135.8 ppm, 130.4 ppm, 129.6 ppm, 123.5 ppm, 122.9 ppm, 106.0-100.6 ppm, 

20.8 ppm. 

s(PBPA/PMPA)1 (75% yield): 1H NMR (500 MHz, DMSO-d6) δ 8.30-7.00 ppm (br, 3H, aromatic), 7.00-

6.15 ppm (br, 2H, acetal), 2.45-1.75 ppm (br, 1.5H, CH3). 13C{1H} NMR (125 MHz, DMSO-d6) δ 140.7 

ppm, 139.2 ppm, 138.8 ppm, 137.5 ppm, 135.8 ppm, 132.7 ppm, 130.4 ppm, 126.5 ppm, 125.8 ppm, 122.9 

ppm, 105.8-100.5 ppm, 20.8 ppm. 
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Table 3.4 | Scrambled copolymer samples. 
Entry Copolymer [M]0 [M]0/[I]0 Reaction 

Time 

Yield Mn 

(kDa)a 

Mp 

(kDa)a 

PDIa 

1 s(PPA/PBPA)1 0.7 M 5 / 1 0.75 h 78% 5.9 13.8 2.3 

2 s(PPA/PBPA)2 0.7 M 4 / 1 4 h 80% 5.1 8.8 2.1 

3 s(PPA/PBPA)3 0.9 M 2 / 1 10 h 63% 3.6 6.5 1.9 

4 s(PPA/PMPA)1 1.0 M 6 / 1 0.75 h 62% 11.2 23.5 2.0 

5 s(PPA/PMPA)2 0.7 M 5 / 1 4 h 60% 10.6 20.5 2.0 

6 s(PPA/PMPA)3 1.0 M 2 / 1 10 h 51% 5.4 11.1 2.0 

7 s(PBPA/PMPA)1 1.0 M 6 / 1 0.75 h 75% 6.6 9.9 1.7 

8 s(PBPA/PMPA)2 0.9 M 2 / 1 10 h 40% 2.6 4.7 1.8 

aAverage molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated 

with monodisperse polystyrene standards. 

 

Scheme 3.9 | cPPA/cPMPA scrambling time series. 

 

cPPA (40 mg) and cPMPA (40 mg) are weighed into a Schlenk flask and dissolved in dichloromethane  

(1.0 mL). The solution is cooled to -78 °C and boron trifluoride etherate is added (0.02 mL, 0.16 mmol). 

The reaction is left stirring at -78 °C for an allotted time, then pyridine (0.08 mL, 1 mmol) is added. The 

mixture is left stirring 2 h at -78 °C, then brought to room temperature and then the polymer precipitated 

by pouring into methanol (100 mL). The product is collected by filtration, then further purified by 

dissolving in dichloromethane and re-precipitating from methanol and washing in diethyl ether. 

Table 3.5 | Scrambled cPPA/cPMPA samples. 
Entry Reaction 

Time 

[M]0 [M]0/[I]0 Yield Mn 

(kDa)a 

Mp 

(kDa)a 

PDIa Notes 

1 0 min - - - - - - - - - 14.5 125 8.7 Bimodal 

2 10 min 0.6 M 4 / 1 64% 11.6 50.1 3.8 Bimodal 

3 30 min 0.6 M 4 / 1 60% 13.3 33.6 2.2 Shouldering 

4 45 min 1.0 M 6 / 1 62% 11.2 23.5 2.0 Monomodal 

5 60 min 0.6 M 4 / 1 58% 12.5 23.2 1.7 Monomodal 

6 240 min 0.7 M 5 / 1 60% 10.6 20.5 2.0 Monomodal 

aAverage molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated 

with monodisperse polystyrene standards. 
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3.6 NMR Spectra, MALDI Spectra and 13C NMR Spectral Overlays. 

 

Figure 3.8 | 1H NMR spectra of cPPA in DMSO-d6. 

 

 

 

Figure 3.9 | 13C NMR spectra of cPPA in DMSO-d6. 
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Figure 3.10 | 1H NMR spectra of cPBPA in DMSO-d6. 

 

 

Figure 3.11 | 13C NMR spectra of cPBPA in DMSO-d6. 
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Figure 3.12 | 1H NMR spectra of cPMPA in DMSO-d6. 

 

 

 

Figure 3.13 | 13C NMR spectra of cPMPA in DMSO-d6. 

 



62 

 

Figure 3.14 | MALDI-TOF MS spectrum of cPPA: Peaks match sodium adduct of cPPA (Table 3.2, Entry 

1). DHB (2,5-dihydroxybenzoic acid) was used as the matrix and sodium iodide as the cationization agent. 

 

 

Figure 3.15 | MALDI-TOF MS spectrum of cPBPA: Peaks match sodium adduct of cPBPA (Table 3.2, 

Entry 2). DHB (2,5-dihydroxybenzoic acid) was used as the matrix and sodium iodide as the cationization 

agent. 
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Figure 3.16 | MALDI-TOF MS spectrum of cPBPA, zoom on tetramer: Peaks match sodium adduct of 

cPBPA4 (Table 3.2, Entry 2), and display pattern consistent with tetrabrominated product. DHB (2,5-

dihydroxybenzoic acid) was used as the matrix and sodium iodide as the cationization agent. 

 

 

 

Figure 3.17 | MALDI-TOF MS spectrum of cPMPA: Peaks match sodium adduct of cPMPA (Table 3.2, 

Entry 3). DHB (2,5-dihydroxybenzoic acid) was used as the matrix and sodium iodide as the cationization 

agent. 
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Figure 3.18 | 13C NMR spectra of (a) random PPA/PBPA copolymer (red) in DMSO-d6 overlayed with 

cPPA (green) and cPBPA (blue) homopolymers; and (b) scrambled PPA/PBPA copolymer (red) in    

DMSO-d6 overlayed with cPPA (green) and cPBPA (blue) homopolymers. 

 

 

Figure 3.19 | 13C NMR spectra of (a) PPA/PBPA copolymer scrambled 45 min (red) in DMSO-d6 overlayed 

with cPPA (green) and cPBPA (blue) homopolymers; and (b) PPA/PBPA copolymer scrambled 10 h (red) 

in DMSO-d6 overlayed with cPPA (green) and cPBPA (blue) homopolymers. 

 

 

Figure 3.20 | 13C NMR spectra of (a) random PPA/PMPA copolymer (red) in DMSO-d6 overlayed with 

cPPA (green) and cPMPA (blue) homopolymers; and (b) scrambled PPA/PMPA copolymer (red) in 

DMSO-d6 overlayed with cPPA (green) and cPMPA (blue) homopolymers. 
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Figure 3.21 | 13C NMR spectra of (a) PPA/PMPA copolymer scrambled 45 min (red) in DMSO-d6 overlayed 

with cPPA (green) and cPMPA (blue) homopolymers; and (b) PPA/PMPA copolymer scrambled 10 h (red) 

in DMSO-d6 overlayed with cPPA (green) and cPMPA (blue) homopolymers. 

 

 

Figure 3.22 | 13C NMR spectra of (a) random  PBPA/PMPA copolymer (red) in DMSO-d6 overlayed with 

cPMPA (green) and cPBPA (blue) homopolymers; and (b) scrambled PBPA/PMPA copolymer (red) in 

DMSO-d6 overlayed with cPMPA (green) and cPBPA (blue) homopolymers. 

 

 

Figure 3.23 | 13C NMR spectra of (a) PBPA/PMPA copolymer scrambled 45 min (red) in DMSO-d6 

overlayed with cPMPA (green) and cPBPA (blue) homopolymers; and (b) PBPA/PMPA copolymer 

scrambled 10 h (red) in DMSO-d6 overlayed with cPMPA (green) and cPBPA (blue) homopolymers. 
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Chapter 4: Divergent Macrocyclization Mechanisms in the 

Cationic Polymerization of Ethyl Glyoxylate* 

4.1 Abstract 

The cationic polymerization of o-phthalaldehyde was found to generate cyclic 

poly(phthalaldehyde) in high yield, high molecular weight, and a high degree of cyclic purity. Given this 

surprising result, we pursued the cationic polymerization of ethyl glyoxylate to determine if the 

macrocyclization outcome is, in fact, a general trend of low ceiling temperature polyacetals. Using NMR 

spectroscopy, MALDI-TOF mass spectrometry, and triple detection GPC, we have uncovered divergent 

macrocyclization mechanisms in the cationic polymerization of ethyl glyoxylate. Back-biting is observed 

either via the backbone acetal or via the pendant ester to give disparate polymer products and unique 

polymer architectures. The favored route for cyclization is found to depend both on the monomer 

concentration as well as the initiating species. Understanding the underlying mechanisms of polymerization 

and the ability to rigorously control polymer structure has important implications for the design of new 

transient materials. 

 

4.2 Introduction 

 Low ceiling temperature (Tc) polymers, a class of organic materials that are capable of triggered 

depolymerization, have generated growing interest in recent years.1 Polyaldehydes, in particular, have been 

shown to possess widespread utility due to their capacity to undergo complete and rapid depolymerization 

on command.2 For instance, poly(phthalaldehyde) (PPA, Tc = -40 °C)3 has been employed in lithography4, 

shape-changing materials5, degradable thin films6, and degradable microcapsules7. Recently, we 

investigated the cationic polymerization of o-phthalaldehyde and discovered that macrocyclic polymer is 

obtained in high yields and with high cyclic purity.8 Given the surprising cyclic structure, we were interested 

in pursuing the cationic polymerization of other aldehydes to identify if the macrocyclization9-12 

phenomenon is, in fact, a general trend of low ceiling temperature polyaldehydes. 

 Polyethyl glyoxylate (PEtG) is a similar low ceiling temperature polyaldehyde (Tc = 37 °C) that 

has been prepared by anionic polymerization.13 Ethyl glyoxylate (EtG) was selected as a suitable candidate 

                                                           
* Portions of this chapter have been published: Kaitz, J. A.; Diesendruck, C. E.; Moore, J. S. 

Macromolecules 2014, 47, 3603-3607. 
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monomer for studies due to its lack of an α-proton, preventing elimination side reactions, and the polymer’s 

reported good solubility in common organic solvents.13 The anionic polymerization of methyl and ethyl 

glyoxylate initiated by triethylamine produces linear polymers.13-14 The cationic polymerization of methyl 

glyoxylate, on the other hand, is only known to produce low molecular weight species due to inter- and 

intramolecular chain transfer processes.14a We thus set out to investigate the cationic polymerization of 

ethyl glyoxylate in an effort to rigorously characterize the resulting polymer structure. 

 

4.3 Results and Discussion 

4.3.1 Anionic and Cationic Polymerizations of EtG 

 PEtG was prepared by anionic polymerization following reported procedures using triethylamine 

or n-BuLi as initiator at -15 °C (Table 4.1).13 The reaction is rapid, transforming from a yellow solution to 

a viscous, colorless mixture within minutes of adding either initiator. After 1 h reaction time, the polymer 

is stabilized from depolymerization by end-capping with a mixture of phenyl isocyanate and dibutyl tin 

dilaurate (DBTL) as catalyst.13-14 The cationic polymerization of EtG was effected in a nearly identical 

manner to its anionic polymerization with a variety of Lewis acids and cationic initiators (Table 4.2). The 

reaction also rapidly reaches completion, but is similarly left for 1 h prior to quenching with pyridine. 

 

Table 4.1 | Anionic polymerization of EtG and resulting polymers used in this study. 

 

 

Entry Initiator [EtG]0 

(M) 

[M]0/[I]0 Mw (kDa)a
 Mp (kDa)a PDIa 

1 Et3N 6 120 170 97 1.9 

2 Et3N 3 90 77 79 1.8 

3 Et3N 1 50 24 23 1.6 

4 Et3N 1 20 6.2 6.0 1.9 

5 n-BuLib 1 20 4.1 2.9 1.8 

aAverage molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated with 

monodisperse polystyrene standards. bReaction run in THF. 

 

 Molecular weights of PEtG polymerized by anionic initiation range from 4-170 kDa with 

polydispersities (PDIs) ranging from 1.6-1.9 (Table 4.1, Entries 1-5). The molecular weights track closely 
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with monomer-to-initiator ratios and initial monomer concentration. In contrast, the molecular weights of 

PEtG synthesized by cationic polymerization do not correlate with either monomer concentration or 

monomer-to-initiator ratios, as reported for polymethyl glyoxylate.14a Irrespective of concentration, 

initiator, or temperature15, the cationic polymerization of EtG gives polymer products with molecular 

weights in the range 2-13 kDa and PDIs of 1.3-1.8 (Table 4.2, Entries 1-8). 

 

Table 4.2 | Cationic polymerization of EtG and resulting polymers used in this study. 

 
 

Entry Initiator [EtG]0 

(M) 

[M]0/[I]0 Mw 

(kDa)a 

Mp 

(kDa)a 

PDIa MALDI observations  

(main peak series) 

1 BF3∙OEt2 10 80 3.6 3.4 1.3 Ester back-biting 

2 BF3∙OEt2 6 80 5.6 4.4 1.7 Ester back-bitingb 

3 BF3∙OEt2 4 80 4.9 4.0 1.6 Main-chain back-bitingb 

4 BF3∙OEt2 2 80 5.3 4.2 1.6 Main-chain back-bitingb 

5 SnCl4 9 130 5.0 4.0 1.7 Ester back-biting 

6 Ph3CBF4 6 100 2.1 1.6 1.3 Main-chain back-biting 

7 Et3OBF4 9 100 6.3 5.8 1.8 Main-chain back-bitingb 

8 CH3COCl/AlCl3 7 70 5.1 4.4 1.8 Ester back-biting 

aAverage molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated with 

monodisperse polystyrene standards. bSecondary MALDI peak series observed corresponding to alternative cyclization 
mechanism. 

 

4.3.2 Characterization of Polyethyl Glyoxylates 

 1H NMR was employed to elucidate end-group structures of PEtGs synthesized by anionic and 

cationic polymerizations. To characterize the anionic polymerizations, the smallest sample with a molecular 

weight of 4 kDa was chosen for analysis (Table 4.1, Entry 5). The phenyl peaks corresponding to the 

urethane capping group are clearly evident in the NMR spectrum, in agreement with prior reports that 

document carbamate end-groups on both termini due to chain-transfer with monomer hydrate species 

(Figure 4.1a).13 However, there is no evidence of any end-group structure for PEtG of corresponding 

molecular weight synthesized by cationic polymerization (Table 4.2, Entry 6; Figure 4.1b). The lack of a 

discernible end group signaled the possibility of a macrocyclic structure for PEtG, akin to the cationic 

polymerization of o-phthalaldehyde.8 
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Figure 4.1 | 1H NMR characterization of PEtG in CDCl3: PEtG prepared by (a) anionic polymerization 

(Table 4.1, Entry 5) and (b) cationic polymerization (Table 4.2, Entry 6). Phenyl protons consistent with 

end-groups are clearly observed from 6.0-7.5 ppm in the anionic polymerization of EtG. There are no 

readily apparent end-groups in the cationic polymerization of EtG. 

 

We employed two independent analytical techniques to study the polymer architecture in the 

cationic polymerization of EtG: MALDI-TOF mass spectrometry and triple-detection GPC. Intriguingly, 

mass spectra of PEtG synthesized in bulk with boron trifluoride etherate (Table 4.2, Entry 1) do not match 

the expected cyclic structure that corresponds to back-biting by attack of the acetal functional group. It was 

recognized, however, that the peak series matches perfectly with the sodium adduct of a cyclic product 

missing a single ethyl group (Figure 4.2a; secondary peaks correspond to cyclic product missing two ethyl 

groups). This major peak series is also observed in several additional samples (Table 4.2, Entries 2, 5, 8), 

and can be explained by intramolecular back-biting via the pendant ester of EtG followed by loss of the 

ethyl group to give the peak series observed. 

 Cyclization via the pendant ester functionality leaves the initiating species intact at the chain end. 

Thus, we anticipated that initiation with triphenylcarbenium tetrafluoroborate (Table 4.2, Entry 6) would 

generate mass spectra corresponding to an identical cyclic structure but containing triphenylmethyl end 

groups. Much to our surprise, the mass spectra from the resulting products perfectly matched the sodium 

adduct of cyclic PEtG formed by acetal main-chain back-biting (Figure 4.2b; secondary peaks correspond 

to cyclic product missing two ethyl groups). 
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Figure 4.2 | MALDI-TOF mass spectra of PEtG: (a) cyclized PEtG by ester back-biting (Table 4.2, Entry 

1), and (b) cyclized PEtG by main-chain back-biting (Table 4.2, Entry 6). Peaks in the predominant 

molecular weight series match the sodium adducts of polymer structures shown. DHB (2,5-

dihydroxybenzoic acid) was used as the matrix and sodium iodide as the cationization agent. 

 

To explain the differing mass spectra, we hypothesized two divergent cyclization mechanisms to 

be operative in the cationic polymerization of EtG (Scheme 4.1). At high concentrations and with Lewis 

acid initiators (Table 4.2, Entries 1, 2, and 5), the favored cyclization route is via the pendant ester with 

concomitant loss of an ethyl group (Scheme 4.1a). These reaction conditions result in rapid formation of a 

solid gel, and we hypothesize that solidification of the reaction mixture prevents dynamic ring-opening and 

equilibration to form the alterative macrocyclic product. In fact, diluting the reaction mixture from 10 M to 

2 M to solubilize the polymer product prior to quenching affords a mixture of both macrocyclic products, 

the same outcome observed when the reaction is run at 2 M. The macrocyclization phenomenon is thus 

dynamic; the final polymer structure can be altered by changing reaction conditions prior to catalyst 

quenching, much like the cationic polymerization of o-phthalaldehyde.8 

On the other hand, at lower concentrations or with carbocationic initiators (Table 4.2, Entries 3, 4, 

6, 7), gelation does not occur and back-biting via the acetal main-chain oxygen is observed (Scheme 4.1b). 

For these cases, reaction conditions actually dictate whether end-to-end macrocyclization or statistical back-

biting to form the cyclic product is favored. At low EtG concentrations with Lewis acidic initiators, the 

polymerization equilibrates to a statistical distribution with both polymer structures evidenced in the 

MALDI-TOF spectra, with the main-chain back-biting product slightly predominating. For carbocationic 

initiators, the main-chain back-biting is favored to a significantly greater extent, suggesting that end-to-end 

macrocyclization is the major cyclization pathway due to the increased nucleophilicity of backbone acetal 

oxygens near the electron-donating chain-end. The divergent cyclization pathway is thus dependent on both 

initiator and concentration. 
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Scheme 4.1 | Proposed macrocyclization mechanisms in the cationic polymerization of EtG. Cyclization 

occurs via (a) pendant ester groups, or (b) the acetal backbone oxygen to generate two unique cyclic 

structures. “R” corresponds to either the initiating species or polymer chains bound with initiating species 

at the end-group. 

 

 

4.3.3 Evidence for Macrocyclization Mechanisms 

 Given the proposed divergent cyclization mechanisms, the cationic polymerization can produce 

two unique PEtG architectures. For main-chain back-biting products, the structure is perfectly cyclic. 

However, polymer products generated by ester back-biting may make lariat shapes due to non-terminal 

ester back-biting, or even more complex structures due to multiple ring-opening and re-cyclization events. 

In fact, a peak series is observed in several mass spectra corresponding to the loss of two ethyl groups, 

which could occur from either ester back-biting followed by ring-opening and re-cyclization at a different 

location or intermolecular termination events, generating an exquisitely complex polymer product.  

Triple-detection GPC was employed to explore the solution behavior of the various polymer 

architectures. Owing to differences in hydrodynamic volume, cyclic polymers have lower intrinsic 

viscosities (η) than linear polymers at identical molecular weights,9 and we hypothesized that lariat shapes 

(or a more complex cyclic structure) may have hydrodynamic characteristics intermediary to linear and 
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cyclic samples. The results are shown in Figure 4.3, with η plotted against absolute molecular weight for 

each reaction mechanism. Polymers prepared by cationic polymerization were injected at high 

concentrations in order to compare high molecular weight chains, which present less error in their light-

scattering data. The η ratio of cyclic to linear PEtG is 0.7, indicative of its macrocyclic structure,8a, 9 and 

both cyclic and linear present a similar slope. The more complex lariat structure, on the other hand, has 

viscosities in between that of cyclic or linear PEtG at all molecular weights plotted. Interestingly, the slope 

of the ester back-biting PEtG sample differs from the linear and cyclic polymers, reflecting its unique 

architecture. The small slope observed in the lariat structure closely resembles that of single-chain polymer 

nanoparticles, indicating a higher number of back-biting reactions with increasing molecular weight.16 

 

Figure 4.3 | Mark-Houwink-Sakurada plot of PEtG architectures in THF: linear PEtG (blue), cyclic 

PEtG (green), and lariat PEtG (red). The intrinsic viscosity ratio of cyclic to linear PEtG is 0.7, indicative 

of a cyclic structure. Lariat PEtG has an intermediary intrinsic viscosity and a different slope in comparison 

to linear and cyclic polymers, consistent with a unique architecture. 

 

 Since the lariat PEtGs were expected to contain at least a single hydroxyl terminus, we tested for 

this possibility by end-capping the polymers in an analogous manner to that for the anionic polymerization. 

The cationic polymerization was initiated by boron trifluoride and quenched with pyridine (identical 

conditions to Table 4.2, Entry 2). Following quenching, phenyl isocyanate and the DBTL catalyst were 

added to the reaction mixture. MALDI-TOF MS and NMR spectroscopy confirm the unambiguous 

incorporation of the phenyl group into the polymer at a composition consistent with end groups. Also of 

significance is the difference in thermal stability between the various polymer architectures. Heating at      

10 °C/min in a nitrogen atmosphere, the linear and cyclic PEtGs are stable up to approximately 200 °C and 
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230 °C, respectively. The lariat product, on the other hand, begins degrading just above room temperature 

due to its unprotected hydroxyl end-group, consistent with the degradation of uncapped linear polymer at 

temperatures below 100 °C.13a After end-capping with phenyl isocyanate, though, the lariat polymers 

display stability up to temperatures approaching 150 °C (Figure 4.4). 

 

Figure 4.4 | Thermal gravimetric analysis of PEtG architectures: (a) linear (green), (b) cyclic (blue), (c) 

lariat (red), and (d) end-capped lariat (orange) PEtGs. Polymers are heated at 10 °C/min under a nitrogen 

atmosphere. Different polymer structures each display differing thermal stability, with cyclic PEtG showing 

the greatest stability and uncapped lariat PEtG showing the least. 

 

We sought to address why different initiators yield different polymer architectures. We surmised 

that at high concentration, the electronics of the initiating species determine the cyclization route. With 

Lewis acids, which readily react with trace water or monomer hydrate species present in solution13, the 

initiator is a proton. Alternatively, the carbocationic initiators remain on chain ends and act as electron-

donating groups, pushing electron density into the acetal backbone and favoring main-chain back-biting.  

To test this hypothesis, the cationic polymerization was initiated instead by an electron-

withdrawing carbocation, the acylium ion formed by reaction of acetyl chloride with aluminum chloride 

(Table 4.2, Entry 8). Ester back-biting should be favored in this case, which is precisely what was observed 

by MALDI-TOF MS. The two main mass spectrum peaks correspond to ester back-biting with an H- end 

group (from H+ initiation after reaction with trace water or monomer hydrate) and ester back-biting with an 

acyl end group, as expected. Furthermore, a peak corresponding to an acyl end-group was observed by 

NMR, confirming that the cyclization mechanism is determined by the electronics of the initiating species. 

To test for the possibility of acetyl chloride reacting as an end-capping reagent similar to phenyl isocyanate, 

as described above, we ran a control reaction where the polymerization was initiated by boron trifluoride 
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(identical conditions to Table 4.2, Entry 2), followed by quenching with pyridine and an attempted end-

capping with acetyl chloride. MALDI-TOF MS demonstrated that the acetyl group is not incorporated at 

the polymer chain-end in this case, confirming that the acetyl end-group is generated via initiation and not 

end-capping. 

 

4.4 Conclusions 

 In conclusion, we studied the cationic polymerization of EtG and showed it generates cyclic and 

lariat shaped polymer of low molecular weight. The molecular weight does not correlate to theoretical 

values due to significant transfer reactions from intramolecular cyclization. Two divergent routes for 

cyclization were identified, either via main-chain back-biting or pendant ester back-biting to give the 

different polymer architectures. The favored route for cyclization was found to depend both on the 

monomer concentration as well as the electronics of the initiating species.  

 Understanding the underlying mechanisms of polymerization and the ability to rigorously control 

polymer structure has important implications toward the design of new materials. As demonstrated, the 

different polymer architectures display unique physical properties, differing in terms of thermal stabilities, 

hydrodynamic radii, and intrinsic viscosities. Manipulation of polymer architecture is thus a useful tool in 

materials design, and additional strategies toward the rational development of complex architectures are 

needed. These results will prove instructive in the future development of transient materials. 

 

 

4.5 Synthetic Procedures 

Scheme 4.2 | General anionic polymerization of ethyl glyoxylate. 

 

Distilled ethyl glyoxylate (EtG, 1.0 mL, 10 mmol) is added to a Schlenk flask and dissolved in 

dichloromethane (9 mL). The solution is cooled to -15 °C and triethylamine is added (0.03 mL, 0.2 mmol). 

The reaction turns colorless and viscous within minutes. After 1 h at -15 °C, phenyl isocyanate (0.15 mL, 

1.4 mmol) and dibutyl tin dilaurate (0.02 mL, 0.03 mmol) are added. The mixture is left stirring and allowed 

to warm to room temperature overnight (~18 hours). The polymer is then precipitated into n-pentane (100 
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mL) and collected as a gummy white solid (0.95 g, 92%). 1H NMR (500 MHz, CDCl3) δ 7.50-6.10 ppm 

(br, phenyl), 5.75-5.45 ppm (br, 1H, acetal), 4.30-4.05 ppm (br, 2H, -OCH2-), 1.35-1.15 ppm (br, 3H, CH3). 

13C{1H} NMR (125 MHz, CDCl3) δ 166.5-165.0 ppm, 130.0-127.5 ppm, 94.5-91.0 ppm, 62.3 ppm, 14.1 

ppm. 

 

Table 4.3 | Anionic polymerization reactions. 
Entry Initiator [EtG]0 (M) [M]0/[I]0 Mw 

(kDa)a 

Mp 

(kDa)a 

PDIa 

1 Et3N 6 120 170 97 1.9 

2 Et3N 3 90 77 79 1.8 

3 Et3N 1 50 24 23 1.6 

4 Et3N 1 20 6.2 6.0 1.9 

5 n-BuLib 1 20 4.1 2.9 1.8 

aAverage molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated with 

monodisperse polystyrene standards. bReaction run in THF. 

 

 

Scheme 4.3 | General cationic polymerization of ethyl glyoxylate. 

 

Distilled ethyl glyoxylate (EtG, 2.0 mL, 20 mmol) is added to a Schlenk flask and dissolved in 

dichloromethane (1.5 mL). The solution is cooled to -15 °C and boron trifluoride etherate is added           

(0.03 mL, 0.24 mmol). The reaction turns colorless and viscous within minutes. After 1 h at -15 °C, pyridine 

(0.08 mL, 1.0 mmol) is added. The mixture is left for 2 h and then warmed to room temperature. The 

polymer is then precipitated into n-pentane (100 mL), and the separated material collected as a colorless oil 

(1.7 g, 83%). 1H NMR (500 MHz, CDCl3) δ 5.75-5.45 ppm (br, 1H, acetal), 4.30-4.05 ppm (br, 2H, -OCH2), 

1.35-1.15 ppm (br, 3H, -CH3). 13C{1H} NMR (125 MHz, CDCl3) δ 166.5-165.0 ppm, 94.5-91.0 ppm, 62.3 

ppm, 14.1 ppm. 

The procedure with solid initiators (Ph3CBF4, Et3OBF4, and AlCl3) is identical to the above, except initiators 

are weighed and dissolved in a minimal amount of dichloromethane in a glovebox prior to addition. 

Reactions were repeated with the identical procedure at two alternative temperatures, -78 °C (Mw < 1 kDa) 

and 25 °C (Mw = 2.9 kDa). Furthermore, the procedure was repeated with toluene as solvent in place of 

dichloromethane (Mw = 3.5 kDa). 
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Table 4.4 | Cationic polymerization reactions. 
Entry Initiator [EtG]0 (M) [M]0/[I]0 Mw 

(kDa)a 

Mp 

(kDa)a 

PDIa MALDI observations  

(main peak series) 

1 BF3∙OEt2 10 80 3.6 3.4 1.3 Ester back-biting 

2 BF3∙OEt2 6 80 5.6 4.4 1.7 Ester back-bitingb 

3 BF3∙OEt2 4 80 4.9 4.0 1.6 Main-chain back-bitingb 

4 BF3∙OEt2 2 80 5.3 4.2 1.6 Main-chain back-bitingb 

5 SnCl4 9 130 5.0 4.0 1.7 Ester back-biting 

6 Ph3CBF4 6 100 2.1 1.6 1.3 Main-chain back-biting 

7 Et3OBF4 9 100 6.3 5.8 1.8 Main-chain back-bitingb 

8 CH3COCl/AlCl3 7 70 5.1 4.4 1.8 Ester back-biting 

aAverage molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated with 

monodisperse polystyrene standards. bSecondary MALDI peak series observed corresponding to alternative cyclization 

mechanism. 

 

 

Scheme 4.4 | Cationic polymerization of ethyl glyoxylate with end-capping. 

 

Distilled ethyl glyoxylate (EtG, 2.0 mL, 20 mmol) is added to a Schlenk flask and dissolved in 

dichloromethane (1.0 mL). The solution is cooled to -15 °C and boron trifluoride etherate is added           

(0.03 mL, 0.2 mmol). The reaction turns colorless and viscous within minutes. After 1 h at -15 °C, pyridine 

(0.08 mL, 1.0 mmol) is added, followed by phenyl isocyanate (0.09 mL, 0.8 mmol) and dibutyl tin dilaurate 

(0.02 mL, 0.03 mmol). The mixture is left stirring and then allowed to warm to room temperature overnight 

(~18 hours). The polymer is then precipitated into n-pentane (100 mL) and collected as a yellow oil (1.6 g, 

79%). 1H NMR (500 MHz, CDCl3) δ 7.50-6.10 ppm (br, phenyl), 5.75-5.45 ppm (br, 1H, acetal), 4.30-4.05 

ppm (br, 2H, -OCH2-), 1.35-1.15 ppm (br, 3H, -CH3). 13C{1H} NMR (125 MHz, CDCl3) δ 166.5-165.0 

ppm, 130.0-127.5 ppm, 94.5-91.0 ppm, 62.3 ppm, 14.1 ppm. 

 

Table 4.5 | End-capped cationic polymerization reactions. 
Entry Initiator [EtG]0 (M) [M]0/[I]0 Mw 

(kDa)a 

Mp 

(kDa)a 

PDIa MALDI observations  

(main peak series) 

1 BF3∙OEt2 7 80 4.0 3.6 1.5 Ester back-biting 

aAverage molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated with 

monodisperse polystyrene standards. 
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Scheme 4.5 | Varying initiator concentration in the cationic polymerization of ethyl glyoxylate. 

 

Distilled ethyl glyoxylate (EtG, 1.0 mL, 10 mmol) is added to a Schlenk flask and dissolved in 

dichloromethane (0.6 mL). The solution is cooled to -15 °C and boron trifluoride etherate is added          

(0.01-0.20 mL, 0.08-1.6 mmol). With low initiator concentrations, the reaction remains stirring for at least 

15 min, but with high initiator loadings, the reaction turns colorless and stirring is halted within seconds. 

After 1 h, pyridine (0.05-0.30 mL, 0.6-3.7 mmol) is added. The mixture is left for 2 h and then warmed to 

room temperature. The polymer is then precipitated into n-pentane (100 mL), and the separated material is 

collected as a colorless oil (64-80% yields). 

 

Table 4.6 | Cationic polymerization reactions. 
Entry Initiator [EtG]0 

(M) 

[M]0/[I]0 Mw 

(kDa)a 

Mp 

(kDa)a 

PDIa MALDI observations  

(main peak series) 

1 BF3∙OEt2 6 120 2.6 0.9 2.8 Main-chain back-bitingb 

2 BF3∙OEt2 6 80 5.6 4.4 1.7 Ester back-bitingb 

3 BF3∙OEt2 6 20 10.9 11.4 2.6 Main-chain back-bitingb 

4 BF3∙OEt2 6 12 13.6 10.8 1.4 Main-chain back-bitingb 

5 BF3∙OEt2 6 6 13.0 10.2 1.6 Ester back-bitingb 

aAverage molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated with 

monodisperse polystyrene standards. bSecondary MALDI peak series observed corresponding to alternative cyclization 

mechanism. 

 

 

Scheme 4.6 | Testing dynamic nature of cationic polymerization of ethyl glyoxylate. 

 

Distilled ethyl glyoxylate (EtG, 1.0 mL, 10 mmol) is added to a Schlenk flask. The solution is cooled to      

-15 °C and boron trifluoride etherate is added (0.10 mL, 0.8 mmol). The reaction turns colorless and stirring 

is halted within seconds. After 1 h, dichloromethane (4 mL) is added, and the mixture left another 2 h at             

-15 °C. The solid gel takes 1 h to dissolve, and is left an additional 1 h to react at the new concentration. 

Then, pyridine (0.20 mL, 2.5 mmol) is added. The mixture is left stirring for 2 h and warmed to room 
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temperature. The polymer is then precipitated into n-pentane (100 mL), and the separated material collected 

as an opaque oil (0.57 g, 55% yield). 

 

Table 4.7 | Cationic initiated polymerization reactions. 
Entry Initiator [EtG]0 (M) [M]0/[I]0 Mw 

(kDa)a 

Mp 

(kDa)a 

PDIa MALDI observations  

(main peak series) 

1 BF3∙OEt2 10 M  2 M 12 10.4 8.7 1.3 Main-chain back-bitingb 

aAverage molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated with 

monodisperse polystyrene standards. bSecondary MALDI peak series observed corresponding to alternative cyclization 

mechanism. 

 

 

 

 

 

4.6 NMR and MALDI Spectra 

 

Figure 4.5 | 1H NMR spectrum of anionic initiated PEtG: NMR spectrum of Mn = 43 kDa PEtG (Table 

4.3, Entry 2) prepared by anionic polymerization in CDCl3. 
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Figure 4.6 | 1H NMR spectrum of anionic initiated PEtG: NMR spectrum of Mn = 2.3 kDa PEtG (Table 

4.3, Entry 5) prepared by anionic polymerization in CDCl3. Phenyl groups are observed, consistent with 

the capping reaction. 

 

 

Figure 4.7 | 1H NMR spectrum of cyclic PEtG: NMR spectrum of Mw = 2.1 kDa PEtG (Table 4.4, Entry 

6) prepared by cationic polymerization with triphenylcarbenium tetrafluoroborate initiation in CDCl3. End 

groups are not discernible. 
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Figure 4.8 | 1H NMR spectrum of lariat PEtG: NMR spectrum of Mw = 3.6 kDa PEtG (Table 4.4, Entry 1) 

prepared by cationic polymerization with boron trifluoride etherate initiation in CDCl3. Spectrum displays 

additional peaks corresponding to partial depolymerization from uncapped hemiacetal chain ends and 

residual pyridinium salts. 

 

Figure 4.9 | 1H NMR spectrum of end-capped lariat PEtG: NMR spectrum in CDCl3 of Mw = 4.0 kDa 

PEtG (Table 4.5, Entry 1) prepared by cationic polymerization with boron trifluoride etherate initiation 

and phenyl isocyanate end-capping. Partial depolymerization and residual pyridinium salts can be seen, 

as in Figure S7, but majority of polymer is end-capped and phenyl end-group is observed. 
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Figure 4.10 | MALDI-TOF mass spectrum of lariat PEtG: Spectrum of PEtG polymerized with boron 

trifluoride etherate at 10 M (Table 4.4, Entry 1, GPC Mw = 3.6 kDa). Peaks match sodium adduct of cyclic 

PEtG missing a single ethyl group (ester back-biting cyclization). Minor secondary peaks match sodium 

adduct of cyclic PEtG missing two ethyl groups (double ester back-biting series). 

 

 

Figure 4.11 | MALDI-TOF mass spectrum of lariat PEtG: Expansion of mass spectrum of PEtG 

polymerized with boron trifluoride etherate at 10 M (Table 4.4, Entry 1, GPC Mw = 3.6 kDa). Peaks match 

sodium adduct of cyclic PEtG missing a single ethyl group (ester back-biting cyclization). 
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Figure 4.12 | MALDI-TOF mass spectrum of cyclic PEtG: Spectrum of PEtG polymerized with Ph3CBF4 

(Table 4.4, Entry 6, GPC Mw = 2.1 kDa). Peaks match sodium adduct of cyclic PEtG (main-chain back-

biting cyclization). Minor secondary peaks match sodium adduct of cyclic PEtG missing two ethyl groups 

(double ester back-biting series). 

 

Figure 4.13 | MALDI-TOF mass spectrum of cyclic PEtG: Expansion of spectrum of PEtG polymerized 

with Ph3CBF4 (Table 4.4, Entry 6, GPC Mw = 2.1 kDa). Peaks match sodium adduct of cyclic PEtG (main-

chain back-biting cyclization). 
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Figure 4.14 | MALDI-TOF mass spectrum of end-capped lariat PEtG: Spectrum of PEtG polymerized by 

boron trifluoride etherate with phenyl isocyanate end-caps (Table 4.5, Entry 1, GPC Mw = 4.0 kDa). Peaks 

match sodium adduct of cyclic PEtG missing two ethyl groups plus phenyl isocyanate end-group (double 

ester back-biting cyclization with end-capping). 
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Chapter 5: Cationic Copolymerization of o-Phthalaldehyde 

and Ethyl Glyoxylate: Cyclic Macromolecules with 

Alternating Sequence and Tunable Thermal Properties* 

5.1 Abstract 

 Aldehyde polymers have gained attention in recent decades as a class of stimuli-responsive 

materials capable of rapid, triggered depolymerization to monomer. Exploitation of the most prominent 

polyaldehydes for various solid-state applications, however, is limited by poor thermal and mechanical 

properties of the materials. To address these limitations, we pursued the copolymerization of ethyl 

glyoxylate, precursor to tacky polymers, with o-phthalaldehyde, precursor to brittle materials. Using NMR 

spectroscopy and MALDI-TOF mass spectrometry, we have discovered the surprising tendency of these 

sequences to alternate, resulting in alternating cyclic copolymers in certain feed ratios. We also report the 

ability to tailor the thermal properties of the solid copolymers by varying copolymer composition, enabling 

the selective tuning of copolymer glass transition and degradation temperatures to meet application 

demands. We envision that this copolymer system, which blends the properties of the tacky and brittle 

homopolymers, will find use as depolymerizable polyaldehydes for solid-state applications. 

 

5.2 Introduction 

 Aldehyde polymers have emerged in recent years as a class of stimuli-responsive polymers, 

generating interest due to their low ceiling temperatures (Tc), which endow them with the capacity to 

undergo triggered depolymerization.1 Much like other self-immolative polymers,2-3 this class of polymers 

is prized due to their ability to respond immediately and specifically to fleeting stimuli with an amplified 

output. Low Tc aldehyde polymers have already found use in a variety of applications. For instance, 

poly(phthalaldehyde) (PPA, Tc = -40 °C)4 has been employed in lithography,5 shape-changing materials,6 

as a degradable thin film,7 and as a shell wall material for degradable microcapsules.8 However, PPA is 

limited in solid-state applications due to its brittle nature. From our own experience, unplasticized PPA 

                                                           
* Portions of this chapter have been published: Kaitz, J. A.; Moore, J. S. Macromolecules 2014, 47, 5509-

5513. 
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films are prone to cracking and suffer from poor mechanical toughness, even though molecular weights can 

exceed 250 kDa. 

 Polyethyl glyoxylate (PEtG) is a similar low ceiling temperature polyaldehyde (Tc = 37 °C) that 

has been reported in the literature.9 Both PEtG and its counterpart polymethyl glyoxylate (PMeG,                   

Tc = 26 °C) are reported as soft materials with glass transition temperatures (Tg) near or below room 

temperature.9-10 Pioneering work on the cationic copolymerization of methyl glyoxylate with cyclic acetals 

produced thermally stable polyacetals that were further modified for use as functional materials.11 However, 

the thermal properties of the copolymers were not fully investigated. 

 In order to employ depolymerizable aldehyde polymers in solid-state applications without the need 

for plasticization, we set out to copolymerize o-phthalaldehyde (OPA, precursor to brittle PPA) with ethyl 

glyoxylate (EtG, precursor to tacky PEtG). The goal was to provide a suitable material with an intermediate 

Tg between those of the homopolymers. The present chapter discusses the synthesis and complete solution 

and solid-state characterization of the resulting PPA/PEtG copolymers. 

 

5.3 Results and Discussion 

5.3.1 Cationic Copolymerization of OPA and EtG and Chemical Characterization of 1:1 Copolymer 

 PPA/PEtG copolymers were prepared by a cationic polymerization initiated by boron trifluoride 

etherate at -78 °C (Scheme 5.1). The cationic homopolymerization of both OPA and EtG monomers has 

been studied extensively by our group and served as the basis for conditions for the copolymerization 

reaction.12 The solution polymerization transforms from a yellow to a colorless mixture within ten minutes, 

but is left for two hours to fully equilibrate. Finally, excess pyridine is added to quench the Lewis acid 

initiator, and the polymer is collected by precipitation into methanol and n-pentane. 

Scheme 5.1 | Copolymerization reaction of o-phthalaldehyde and ethyl glyoxylate. 

 

 Copolymers starting from 1:1 monomer feed ratios were initially prepared for analysis. 

Qualitatively, it was apparent that the copolymer differed from either homopolymer, as it was collected as 

a white, sticky solid. Molecular weights of the copolymer ranged from Mw = 11-15 kDa (two repititions, 

degree of polymerization ca. 90-130), with polydispersities of ca. 1.8-2.2. 
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 1H and 13C NMR spectroscopy were employed to determine copolymer compositions and 

investigate copolymer microstructure, respectively. Polyacetal backbone protons corresponding to EtG       

(δ = 5.3-6.1 ppm) or OPA (δ = 6.3-7.1 ppm) units are resolved in the copolymers, enabling accurate 

calculation of copolymer composition (see section 5.6). The copolymer composition of PPA/PEtG starting 

from 1:1 monomer feed ratios was determined to be 53/47 PPA/PEtG, averaged from the two runs. That 

this value is quite close to the monomer feed ratios suggested that the copolymerization successfully 

incorporates both monomers with similar reactivity. 

Intriguingly, 13C NMR spectra of the copolymers suggest that a microstructure entirely distinct 

from either homopolymer is produced in the copolymerization reaction. When copolymer spectra are 

compared to either homopolymer 13C NMR spectra, a noticeable shift in resonance for all of the peaks is 

observed, with carbons assigned to the polymer backbone and adjacent to the polymer backbone 

demonstrating the largest shifts (Figure 5.1). Shifts in resonance are not unexpected for random 

copolymers,12b but most surprising was that acetal carbons from EtG (δ = 90-94 ppm) collapse to a single 

resonance and ester carbons (δ = 164-166 ppm) collapse to a single peak at 167 ppm, downfield from PEtG 

homopolymer peaks. In fact, ester peaks corresponding to EtG-EtG diads are not observed at all in the 

copolymer spectra, suggesting that the sequence is exclusively composed of EtG residues flanked on both 

sides by OPA units. OPA backbone (δ = 102-105 ppm) and adjacent carbons (δ = 138-140 ppm) likewise 

shift upfield, corroborating the possibility of an alternating copolymer sequence. 

 

Figure 5.1 | 13C NMR spectra of poly(phthalaldehyde-co-ethyl glyoxylate) copolymer: PPA/PEtG 

copolymer produced from copolymerization reaction with 1:1 monomer feed ratio (green), overlaid with 

PEtG (red) and PPA (blue) homopolymers. Shifts in resonance are observed most prominently for backbone 

and adjacent carbons for PPA and PEtG units, suggesting a microstructure distinct from either 

homopolymer. All NMR spectra collected in CDCl3 solvent. 

 

 To further investigate the possibility of an alternating copolymer, MALDI-TOF mass spectrometry 

was utilized to probe the copolymer microstructure. An immediate pattern was recognized in the mass 

spectra thus obtained, which showed far fewer peaks than what would be expected for a true random 

copolymer.12b The major peaks correspond to cyclic copolymers with a 1:1 composition of EtG and OPA, 
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and the main peak series of 236 mass units correlates to the sum of both monomer units (Figure 5.2, red 

arrows). Furthermore, two major secondary peaks are observed, which are identified as being an additional 

OPA or EtG monomer unit added to the main peak series (Figure 5.2, blue and green arrows). Taken 

collectively with NMR data, these results suggest that the PPA/PEtG thus formed is a near-perfect 

alternating cyclic copolymer. To the best of our knowledge, this is the first example of such a macrocyclic 

alternating copolymer. 

 

 

Figure 5.2 | MALDI-TOF mass spectra of poly(phthalaldehyde-co-ethyl glyoxylate) copolymer: Main 

repeat series (red arrows) corresponds to sodium adduct of cyclic structure containing both monomer units; 

secondary peaks observed corresponding to main repeat series plus ethyl glyoxylate monomer (blue 

arrows) or o-phthalaldehyde monomer (green arrows). Inset structure corresponds to cyclic alternating 

decamer (theoretical m/z = 1203.33; observed m/z = 1203.45; error = 0.01%). DHB (2,5-dihydroxybenzoic 

acid) was used as the matrix and sodium iodide as the cationization agent. 

 

5.3.2 Investigation of Alternating Tendency in PPA/PEtG Copolymers 

 To further elucidate the alternating behavior of PPA/PEtG copolymers, a full series of copolymers 

with varying monomer feed ratios was prepared by cationic copolymerization under identical conditions. 

Copolymerization conditions and copolymer properties are summarized in Table 5.1, with all copolymers 

prepared in duplicate. It is noteworthy that as the ratio of EtG in comonomer feeds increases, the molecular 

weight and yield of copolymers drop substantially. This is attributed to significant transfer reactions that 

occur in the cationic polymerization of EtG, as well as poor precipitation of the low molecular weight and 

thermally unstable polymers produced at high EtG feeds.12c 
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Table 5.1 | PPA/PEtG copolymerization reactions and polymers used in this study. 
Entry [OPA]0 

(M) 
[EtG]0 

(M) 

[OPA]0/ 
[EtG]0 

[M]0/[I]0 Yield (%) Mw 

(kDa)a 

Mp 
(kDa)a 

PDIa % OPA in 
copolymerb 

% EtG in 
copolymerb 

Tg (°C)c 

1 1.0 - - - - - - 30 / 1 92 320 255 2.4 100 0 - - - 

2 0.8 0.2 4 / 1 26 / 1 85 19.6 21.6 2.7 73 27 129 

3 0.6 0.4 3 / 2 26 / 1 78 15.4 18.2 2.6 61 39 100 

4 0.5 0.5 1 / 1 26 / 1 76 15.1 15.8 2.2 53 47 97 

5 0.4 0.6 2 / 3 26 / 1 73 14.5 14.3 2.0 50 50 84 

6 0.2 0.8 1 / 4 26 / 1 48d 8.3 6.8 2.5 38 62 40 

7 - - - 5.0e - - - 60 / 1 57d 1.4 1.3 1.2 0 100 -19 

aAverage molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated with 

monodisperse polystyrene standards. bDetermined by 1H NMR integrations (average of 2 runs). cDetermined by DSC, average of 

2 runs. dProduct does not readily precipitate from n-pentane so yield data unreliable. eEtG polymerization at 1.0 M results in multi-
modal GPC traces due to intermolecular termination events.12c 

 

As with copolymers prepared from 1:1 monomer feed ratios, copolymer compositions were readily 

calculated from 1H NMR integrations of acetal protons. Copolymer compositions deviate significantly from 

the 1:1 PPA/PEtG ratio that would be expected for a strictly alternating copolymer. However, when 

copolymer composition is plotted against comonomer feed, there is a noticeable preference toward 

alternation in the copolymers (Figure 5.3). At low EtG feeds, the copolymers deviate slightly from an ideal 

random copolymer and have a greater incorporation of EtG than in the feed. 13C NMR resonances for EtG 

residues are comparable to those observed for 1:1 copolymers, indicating that EtG units are not incorporated 

sequentially into the copolymer but are rather flanked by OPA units or stretches. At high EtG feeds, there 

is an even more pronounced tendency for alternation, with the copolymer composition again strongly 

deviating toward what would be expected for an alternating copolymer. Incredibly, in the case of 4:1 

EtG/OPA feed, 13C NMR peaks corresponding to EtG-EtG diads are finally observed alongside the EtG-

OPA peaks. While these results reveal that the PPA/PEtG copolymers are not strictly alternating 

copolymers, they do apparently have an alternating tendency at suitable monomer ratios. In fact, between 

50% and 60% EtG feeds, the slope in the composition plot is nearly zero, and MALDI-TOF mass spectra 

corroborate that these copolymers display mostly alternating macrocyclic structures in this range (see 

section 5.6). 
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Figure 5.3 | Copolymer composition plot for poly(phthalaldehyde-co-ethyl glyoxylate) copolymers: 

Percent EtG incorporation into copolymer plotted versus EtG monomer feed ratios (blue, averaged from 

two runs). Overlaid dashed lines correspond to theoretical composition plots for ideal random copolymer 

(green) and true alternating copolymer (red). Two regions are observed for PPA/PEtG copolymers; at low 

EtG ratios, EtG fully incorporated into copolymer and flanked by OPA units; at high EtG ratios, partially 

alternating copolymer is observed. Copolymer ratios are determined by 1H NMR integrations of polyacetal 

backbone protons. 

 

 To explain the alternating behavior, we anticipated the potential involvement of both electronic and 

steric factors. It was already suggested that there is a similar alternating tendency in the copolymerization 

of methyl glyoxylate with cyclic acetals due to steric repulsion between bulky glyoxylate units.11 This is 

likely also a strong driver in the copolymerization of EtG and OPA. However, we reasoned that there could 

also be an electronic preference for alternation in this system. It is known that alternating copolymers are 

produced in the copolymerization of electron-rich and electron-poor monomers due to the pre-coordination 

of monomers to form charge-transfer complexes, as in the case of styrene copolymerization with electron-

poor olefins.13 To investigate possible pre-coordination, 1H NMR spectra of both monomers were collected 

individually as well as mixed together in a 1:1 ratio in different solvents. In chloroform and 

dichloromethane, both non-polar solvents, shifts in resonance for both monomers were observed ranging 

from δ = 0.01-0.05 ppm when mixed. On the other hand, in polar aprotic solvents such as DMSO, shifts are 

not observed between the monomers individually and when mixed (δ < 0.01 ppm), suggesting that non-

covalent complexation is impeded in disruptive solvents. The results thus indicate that a combination of 

both electronic and steric factors promote the alternating tendency observed in PPA/PEtG copolymers. 
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5.3.3 Thermal Characterization of PPA/PEtG Copolymers 

Thermal characterization of the solid copolymers was investigated. Dynamic scanning calorimetry 

(DSC) was performed in duplicate to determine copolymer glass transition temperatures (Tg), and thermal 

gravimetric analysis (TGA) was performed to identify copolymer degradation temperatures (Td). The 

thermal properties are summarized in Figure 5.4. 

As expected, based on the soft, sticky nature of the PPA/PEtG copolymers that were prepared, the 

Tg of all copolymers was lower than that of PPA homopolymer. In fact, no Tg is observed for PPA as the 

polymer degrades before evidence of any transition. The Tg of the tacky PEtG homopolymer is -19 °C,14 

and Tg’s of PPA/PEtG copolymers range from 40 °C for 62% EtG incorporation to 129 °C for 27% EtG 

incorporation. A linear trend is observed when Tg is plotted versus copolymer composition, where 

increasing OPA incorporation causes a concomitant increase in Tg (Figure 5.4, blue trace).15 Based on this 

trendline, a virtual Tg was calculated for PPA to be 184 °C, higher than its Td, and in agreement with the 

lack of experimental observation of the transition. 

 

 

 

 

  

Figure 5.4 | Thermal characterization of poly(phthalaldehyde-co-ethyl glyoxylate) copolymers: Glass 

transition temperature (Tg, blue, average of two runs) and degradation temperature (Td, red) plotted 

against OPA copolymer ratio. Trendlines intersect at PPA/PEtG copolymer ratio of 95/5, suggesting that 

above this ratio, degradation occurs before observation of Tg. Virtual Tg calculated for PPA homopolymer 

is 184 °C. Degradation temperature for end-capped PEtG homopolymer prepared by anionic 

polymerization used because cationic polymerization yields thermally unstable oligomers. 

 

 An inverse relationship is observed for Td’s, as increasing OPA incorporation results in decreasing 

Td in an almost linear fashion (Figure 5.4, red trace). As we have previously shown, PEtG prepared by 

cationic polymerization results in thermally unstable, low molecular weight lariat polymer structures.12c 
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Thus, an end-capped PEtG sample prepared by anionic polymerization was employed to determine an 

accurate Td for PEtG.14 Like the PEtG homopolymer, PPA/PEtG copolymers with 62% EtG incorporation 

also demonstrated thermal instability likely due to an analogous transfer reaction to produce lariat species, 

so these polymers were excluded from the trendline. With increasing OPA incorporation in the PPA/PEtG 

copolymers, the Td drops to ~200 °C, and finally down to 170 °C for PPA homopolymer. The Tg and Td 

trendlines intersect at a copolymer ratio of 95/5 PPA/PEtG, suggesting that degradation will be observed 

before appearance of a Tg for all copolymers with that ratio or more of OPA units in the chain. 

 

5.4 Conclusions: 

 The PPA/PEtG copolymers disclosed here represent a new, potentially important polyaldehyde 

family of depolymerizable materials that we anticipate will find use in solid-state applications. The 

copolymers are not strictly alternating but show alternating tendency at suitable monomer ratios based on 

NMR spectroscopic and MALDI-TOF mass spectrometry findings. To the best of our knowledge, the 

copolymers based on 1:1 comonomer feeds represent the first example of an alternating macrocyclic 

copolymer. Significantly, it is possible to tailor the Tg of PPA/PEtG copolymers by varying comonomer 

ratios; as the percent incorporation of OPA increases, the Tg likewise increases in a linear fashion. On the 

other hand, with increasing OPA incorporation into the copolymers, thermal stability decreases to the point 

that degradation occurs before a Tg is observed, as is the case in PPA homopolymer. 

 One could envision lowering Tg further to form even softer depolymerizable materials by 

incorporating alternative, bulkier glyoxylate monomers with various ester substituents.16 The incorporation 

of the ester functional group into these polyacetal copolymers additionally permits their functionalization 

for advanced applications, as has been demonstrated by amide formation in polymethyl glyoxylate 

copolymers.11b PPA/PEtG copolymers thus represent a new class of soft, depolymerizable polymers that 

open avenues for further research. For our own purposes, the copolymers will be employed in the 

preparation of films with improved properties compared to those of brittle PPA homopolymer. 
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5.5 Synthetic Procedures 

Scheme 5.2 | General cationic polymerizations of ethyl glyoxylate and o-phthalaldehyde. 

 
In a glovebox, purified o-phthalaldehyde (540 mg, 4.0 mmol) is weighed into a Schlenk flask and dissolved 

in dichloromethane (8 mL). The solution is removed from the glovebox and charged with distilled ethyl 

glyoxylate (0.40 mL, 4.0 mmol). The solution is cooled to -78 °C and boron trifluoride etherate is added 

(0.04 mL, 0.32 mmol). The reaction turns colorless within minutes, but is left stirring at -78 °C for 2 h. 

Then, pyridine (0.10 mL, 1.2 mmol) is added. The mixture is left stirring at -78 °C for 2 h and then warmed 

to room temperature. The polymer is precipitated by pouring into methanol (100 mL) and adding n-pentane 

until solid particles coagulate (~20-100 mL). 

 

Table 5.2 | PPA/PEtG copolymerization reactions and polymers used in this study. 
Entry [OPA]0 

(M) 

[EtG]0 

(M) 

[OPA]0/ 

[EtG]0 

[M]0/

[I]0 

Yield 

(%) 

Mw 

(kDa)a 

Mp 

(kDa)a 

PDIa Physical Appearance 

1 1.0 - - - - - - 30 / 1 92 320 255 2.4 White brittle solid 

2 0.8 0.2 4 / 1 26 / 1 85 19.6 21.6 2.7 White powder 

3 0.6 0.4 3 / 2 26 / 1 78 15.4 18.2 2.6 White tacky solid 

4 0.5 0.5 1 / 1 26 / 1 76 15.1 15.8 2.2 White tacky solid 

5 0.4 0.6 2 / 3 26 / 1 73 14.5 14.3 2.0 White tacky solid 

6 0.2 0.8 1 / 4 26 / 1 48b 8.3 6.8 2.5 Gummy semi-solid 

7 - - - 5.0 - - - 60 / 1 57b 1.4 1.3 1.2 Colorless viscous oil 

aAverage molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated with 

monodisperse polystyrene standards. bProduct does not readily precipitate from n-pentane so yield data unreliable. 

Table 5.3 | PPA/PEtG copolymerization results. 
Entry Monomer Feed 

Ratio (OPA/EtG) 

Copolymer Ratio 

Run 1 (OPA/EtG)a 

Copolymer Ratio 

Run 2 (OPA/EtG)a 

Tg (°C) 

(Run 1)b 

Tg (°C) 

(Run 2)b 

Td (°C)c  

1 1 / 0 100 / 0 100 / 0 None None 171 

2 4 / 1 75 / 25 72 / 28 129.5 127.5 193 

3 3 / 2 62 / 38 61 / 39 100.1 99.5 206 

4 1 / 1 51 / 49 56 / 44 98.7 96.0 207 

5 2 / 3 48 / 52 52 / 48 81.3 87.0 195 

6 1 / 4 41 / 59 35 / 65 27.4 52.2 118e 

7d 0 / 1 0 / 100 0 / 100 -19.4 -19.6 133e 

aDetermined by 1H NMR integrations. bDetermined by DSC. cDetermined by TGA. dPEtG homopolymer prepared by cationic 

polymerization. eThermally unstable species show immediate drop in mass on warming. TGA results not indicative of degradation 

temperature for end-capped polymers. 
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5.6 NMR Spectra and 13C NMR and MALDI Spectral Overlays  

 
Figure 5.5 | 1H NMR spectrum of PPA/PEtG copolymer: NMR spectrum of Mw = 19.6 kDa PPA/PEtG 

(Table 5.2, Entry 2) prepared by cationic polymerization in CDCl3. Starting comonomer feed: 4/1 

OPA/EtG; copolymer ratio: 72/28 PPA/PEtG. 

 
Figure 5.6 | 1H NMR spectrum of PPA/PEtG copolymer: NMR spectrum of Mw = 15.4 kDa PPA/PEtG 

(Table 5.2, Entry 3) prepared by cationic polymerization in CDCl3. Starting comonomer feed: 3/2 

OPA/EtG; copolymer ratio: 61/39 PPA/PEtG. 
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Figure 5.7 | 1H NMR spectrum of PPA/PEtG copolymer: NMR spectrum of Mw = 15.1 kDa PPA/PEtG 

(Table 5.2, Entry 4) prepared by cationic polymerization in CDCl3. Starting comonomer feed: 1/1 

OPA/EtG; copolymer ratio: 56/44 PPA/PEtG. 

 
Figure 5.8 | 1H NMR spectrum of PPA/PEtG copolymer: NMR spectrum of Mw = 14.5 kDa PPA/PEtG 

(Table 5.2, Entry 5) prepared by cationic polymerization in CDCl3. Starting comonomer feed: 2/3 

OPA/EtG; copolymer ratio: 52/48 PPA/PEtG. 
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Figure 5.9 | 1H NMR spectrum of PPA/PEtG copolymer: NMR spectrum of Mw = 8.3 kDa PPA/PEtG 

(Table 5.2, Entry 6) prepared by cationic polymerization in CDCl3. Starting comonomer feed: 1/4 

OPA/EtG; copolymer ratio: 35/65 PPA/PEtG. Partial depolymerization and presence of pyridinium salts 

are observed for thermally unstable, non-end-capped sample. 

 

 

 

 

 
Figure 5.10 | 13C NMR spectrum overlays of PPA, PEtG, and PPA/PEtG copolymer: NMR spectrum in 

CDCl3 of PPA/PEtG copolymer (Table 5.2, Entry 2, green), overlayed with PPA homopolymer (blue) and 

PEtG homopolymer (red). Peak shifts are clearly observed for EtG resonances in copolymer, attributed to 

EtG units flanked by OPA residues. 
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Figure 5.11 | 13C NMR spectrum overlays of PPA, PEtG, and PPA/PEtG copolymer: NMR spectrum in 

CDCl3 of PPA/PEtG copolymer (Table 5.2, Entry 3, green), overlayed with PPA homopolymer (blue) and 

PEtG homopolymer (red). Peak shifts are clearly observed for EtG resonances in copolymer, attributed to 

EtG units flanked by OPA residues. 

 

 

 
Figure 5.12 | 13C NMR spectrum overlays of PPA, PEtG, and PPA/PEtG copolymer: NMR spectrum in 

CDCl3 of PPA/PEtG copolymer (Table 5.2, Entry 4, green), overlayed with PPA homopolymer (blue) and 

PEtG homopolymer (red). Peak shifts are clearly observed for EtG resonances in copolymer, attributed to 

EtG units flanked by OPA residues. 

 

 

 

Figure 5.13 | 13C NMR spectrum overlays of PPA, PEtG, and PPA/PEtG copolymer: NMR spectrum in 

CDCl3 of PPA/PEtG copolymer (Table 5.2, Entry 5, green), overlayed with PPA homopolymer (blue) and 

PEtG homopolymer (red). Peak shifts are clearly observed for EtG resonances in copolymer, attributed to 

EtG units flanked by OPA residues. 
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Figure 5.14 | 13C NMR spectrum overlays of PPA, PEtG, and PPA/PEtG copolymer: NMR spectrum in 

CDCl3 of PPA/PEtG copolymer (Table 5.2, Entry 6, green), overlayed with PPA homopolymer (blue) and 

PEtG homopolymer (red). Peak shifts are clearly observed for EtG resonances in copolymer, attributed to 

EtG units flanked by OPA residues. Peaks correlating to PEtG homopolymer also appear in this copolymer, 

attributed to successive EtG residues in copolymer. 

 

 

 

 
Figure 5.15 | MALDI-TOF mass spectra overlays of PPA/PEtG copolymers: Dashed lines correspond to 

potential alternating cyclic copolymer peaks (red), and alternating copolymer plus EtG (blue) or OPA 

(green). At high OPA or EtG feeds, full series of copolymer peaks is observed. However, for copolymers 

with 40-50/50-60 OPA/EtG feeds, main peaks correspond to potential alternating cyclic copolymers and 

other copolymer peaks are diminished or not observed. 
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Chapter 6: Functional Phthalaldehyde Polymers by 

Copolymerization with Substituted Benzaldehydes* 

6.1 Abstract 

End-capped poly(phthalaldehyde) (PPA) is a well studied depolymerizable polymer that has 

attracted interest due to its ease of synthesis and rapid depolymerization. PPA is limited, however, in the 

type of macromolecular, cross-linked architectures accessible, as functionalizable phthalaldehyde 

derivatives are not commercially available and their synthesis is cumbersome. To this end, a general route 

toward phthalaldehyde-benzaldehyde copolymers was developed, as benzaldehyde comonomers with 

various pendant functionalities are readily available. It was found that copolymers are synthesized by an 

anionic polymerization of phthalaldehyde and electron-deficient benzaldehydes. The comonomer 

reactivities are shown to be sensitive to the benzaldehyde electronics; the relative reactivities of 

phthalaldehyde-benzaldehyde comonomer pairs strongly correlate with the Hammett values of the 

benzaldehyde monomers. These copolymers are then further modified to yield cross-linked, acid-

degradable polymer networks in just a two-step sequence. This work highlights the functionalization of 

depolymerizable polymers by incorporating substituted benzaldehydes into PPA and the subsequent 

development of polymer networks capable of triggered degradation. 

 

6.2 Introduction 

Stimuli-responsive, depolymerizable polymers have garnered significant interest in recent years.1 

By virtue of being above the polymer’s ceiling temperature yet kinetically stabilized by end-capping, 

depolymerizable polymers are a unique class of materials in that they are capable of complete and 

spontaneous head-to-tail depolymerization after triggering.1-2 These polymers harness a single chemical or 

physical signaling event to initiate a depolymerization cascade that reverts an entire polymer chain to 

monomers or other small molecule analogs. Advantages of depolymerizable polymers in stimuli-responsive 

applications include their high sensitivity to sensory input, the broad range of specific triggering moieties 

that are readily incorporated into polymer chains, and the inherent signal amplification that accompanies 

their depolymerization. 

                                                           
* Portions of this chapter have been published: Kaitz, J. A.; Moore, J. S. Macromolecules 2013, 46, 608-

612. 
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Poly(phthalaldehyde) (PPA) is one such polymer with a ceiling temperature around -40 °C.3 Since 

the first PPA syntheses in the 1960s, it has primarily been used as an acid-, radiation-, or heat-sensitive 

degradable film for lithography.4 It was recently demonstrated that by end-capping with specific triggering 

moieties, a head-to-tail depolymerization cascade is selectively initiated in the presence of specific chemical 

reagents.5 Relative to other depolymerizable polymers, PPA benefits from its ease of synthesis4c and rapid 

and complete degradation. However, the system is limited in the type of macromolecular architectures 

accessible, as functionalizable phthalaldehyde derivatives are not commercially available and their 

synthesis is cumbersome. To this end, a general route to phthalaldehyde-benzaldehyde copolymers was 

developed, as benzaldehyde comonomers with various pendant functionalities are commercially available 

and easily synthesized. These copolymers have only been briefly mentioned in the literature, rigorous 

chemical characterization has not been reported, and no systematic studies have been undertaken.6 The 

present chapter discusses the synthesis, characterization, and functionalization of such copolymers. 

 

6.3 Results and Discussion 

6.3.1 Phthalaldehyde-Benzaldehyde Copolymerization 

Homopolymerization of aromatic aldehydes other than o-phthalaldehyde (OPA) is known to be 

difficult, and only a few reports even discuss copolymerizing benzaldehyde (BA) with other monomers.3a, 

6-7 This difficulty is a thermodynamic phenomenon. The ceiling temperature of PPA is significantly higher 

than that of poly(BA) because it possesses two aldehydes that form a stable five-membered ring repeat unit, 

making the polymerization considerably more exothermic than BA. The entropic cost of BA polymerization 

therefore overrides its more modest enthalpic gain and drives the ceiling temperature below accessible 

levels. By comparing the enthalpies of reaction for forming the dimethyl acetals of OPA and BA, a ceiling 

temperature of -190 ºC was estimated for poly(BA) (calculations by T1 Thermochemical Recipes on 

Spartan V10.0). 

Experimental and computational data have established an equilibrium shift to hydrate formation 

for the reaction of electron-deficient BAs with water.8 The more exothermic nature of electron-deficient 

BA hydration compared to their electron-rich BA counterparts suggests the higher polymerizability of the 

former. To probe this hypothesis, initial efforts focused on the copolymerization of 4-nitro BA with OPA, 

but only PPA homopolymer was obtained with either anionic or cationic initiating systems. It was 

discovered, however, that BAs with multiple electron-withdrawing substituents, all of which have Hammett 

parameters greater than that of a single para-nitro group (0.78, See Table 6.1), underwent 

copolymerization.9 
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Table 6.1 | Synthesis of poly(phthalaldehyde-co-benzaldehyde) copolymers and corresponding 

benzaldehyde monomers used in this study. 

 

Benzaldehyde 

Monomer 

R2 R3 R4 R5 Hammett 

Valuea 

2-DNBA NO2 H NO2 H 1.56 

3-DNBA H NO2 H NO2 1.42 

NFBA NO2 H CF3 H 1.32 

BNBA H Br H NO2 1.10 

DFBA CF3 H CF3 H 1.08 

NIPA H NO2 H CHO 1.06 

CNBA H NO2 Cl H 0.94 

        aPara Hammett values used for ortho-substituents, per literature precedence.9 

For each BA monomer, a series of polymerizations initiated by n-BuLi with molar feed ratios of 

OPA/BA ranging from 9/1 to 3/2 was run in triplicate. The copolymers were fully characterized by NMR 

and GPC (also TGA and DSC on selected series). Molecular weights (Mn) ranged from 4-6 kDa with PDIs 

of 1.1-1.4 (degree of polymerization ca. 25-40). Copolymer ratios were readily calculated by 1H NMR 

spectroscopy since peaks corresponding to BA were resolved from OPA due to the electron-deficient nature 

of each BA comonomer used. The BA protons are found at δ = 8.0-8.9 ppm while the OPA protons are 

found at δ = 7.05-7.75 ppm. Other peaks correspond to backbone protons, initiator, and acetate end-cap 

(Figure 6.1 and Section 6.6). 

Reactivity ratios for copolymer systems in which both monomers reversibly add to the chain end 

are difficult to compute and rely on a large number of assumptions and unknown parameters.10 This 

difficulty is a result of the multiple unique depolymerization reactions that occur on the growing chain end, 

each having its own depropagation rate coefficient (Scheme 6.1). Given this complexity, a simple 

experimental parameter, the incorporation ratio, was devised to describe the poly(phthalaldehyde-co-

benzaldehyde) system. The incorporation ratio is defined as the slope of the line obtained by plotting 

copolymer composition against comonomer feed ratio for each BA monomer (Figure 6.2a). It simply 

corresponds to the fraction of BA that is actually incorporated into the copolymer. At low conversion, for 

example, an incorporation ratio of one would indicate equal reactivity between OPA and BA. However, 

even the most electron-deficient BA exhibits a slope below one, signifying that OPA is more 

thermodynamically favorable to polymerize than any of the BA monomers. 
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Figure 6.1 | Representative 1H NMR spectra of a series of poly(phthalaldehyde-co-3,5-

dinitrobenzaldehyde) copolymers in DMSO-d6. Integrated areas correspond to copolymer ratios of 

(OPA/BA): 95/5 (red), 89/11 (green), 85/15 (blue), and 81/19 (purple). Sharp peaks correspond to residual 

monomer. 

 

Scheme 6.1 | Kinetic reaction scheme for anionic copolymerization with monomers A and B both capable 

of depolymerization. 

 

A strong correlation exists between incorporation ratio and the electron-deficiency of the BA; BAs 

with larger Hammett values have larger incorporation ratios (Figure 6.2b). The x-intercept, 0.92, 

corresponds to the Hammett value at which the incorporation ratio is zero, indicating that the BA does not 

copolymerize. Below this threshold, BA is not reactive in the polymerization conditions, matching the 

experimental finding that 4-nitro-BA did not polymerize. In order to examine OPA reactivity, the Kelen-

Tudos model was applied to give a rough estimation of reactivity ratios.11 A clear pattern emerged from 

these data as well, as the reactivity ratio for OPA climbs monotonically as the BA comonomer approaches 

the Hammett value threshold for copolymerization (Figure 6.2c). This result effectively indicates that as 

the BA becomes less electron-deficient, OPA preferentially forms homopolymer, in agreement with 

experimental observations. 
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Figure 6.2 | Reactivity studies on PPA-BA copolymers. (a) Experimental copolymer compositions in 

relation to comonomer feed ratio, where the slope is the incorporation ratio; (b) the incorporation ratio 

plotted against the Hammett values of benzaldehyde monomers (line of best fit: y=1.05x-0.97, R2=0.98); 

(c) approximate reactivity ratio of phthalaldehyde plotted against the Hammett value of the benzaldehyde 

comonomer (see text for details); (d) log of Khydration plotted against the Hammett values of various 

benzaldehydes (line of best fit: y=1.65x-2.19, R2=0.99; Khydration values obtained from literature8, 12-13). 

 

To compare these findings to literature precedent, the well studied hydration of substituted BAs 

was employed as a model reaction for the polymerization (Scheme 6.2).8, 12-13 BA comonomer uptake 

correlates to the established trend that stronger electron-withdrawing substituents make hydrate formation 

more favorable, as evidenced by the relationship between Hammett value and the equilibrium of hydration 

for substituted BAs (Figure 6.2d). The aforementioned polymerization threshold for BA corresponds to a 

Khydration value of 0.22, which is an order of magnitude lower than the Khydration for OPA.12 Even the most 

highly electron-deficient BA studied in this work exhibits a Khydration value lower than that of OPA, 

corroborating the incorporation ratio below one. 
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Scheme 6.2 | Benzaldehyde hydration model reaction. 

 

A bifunctional aldehyde monomer was conceived to test the validity of the Hammett value 

threshold. Isophthalaldehyde (Hammett value 0.35) was found to be unreactive in the n-BuLi-initiated 

polymerization. However, 5-nitroisophthalaldehyde (NIPA) should theoretically polymerize due to its 

Hammett value (1.06) when regarded as a disubstituted BA. Interestingly, the monomer would not be 

expected to act as cross-linker because the Hammett value drops below the polymerization threshold 

(0.76)14 after the first aldehyde adds to the polymer. As expected, copolymerization of OPA and NIPA 

yielded linear PPA-BA copolymer with pendant aldehyde groups (Figure 6.5). 

 

6.3.2 Functionalization of Phthalaldehyde-Benzaldehyde Copolymers 

The utility of these phthalaldehyde-benzaldehyde copolymers was probed by executing several 

post-polymerization modification reactions to further functionalize the BA component. Unfortunately, nitro 

group reduction, which would have provided a reactive aniline amino group, was not achieved with either 

PPA-2-DNBA or PPA-3-DNBA copolymers due to polymer degradation or limited reactivity toward 

heterogeneous hydrogenation catalysts. Several cross-coupling reactions, on the other hand, proceeded in 

moderate yield (Scheme 6.3). Stille couplings successfully vinylated poly(phthalaldehyde-co-3-bromo-5-

nitrobenzaldehyde) (1) with 48% polymer recovery and 93% coupling conversion (Polymer 2). Sonogashira 

coupling reactions on the same copolymer affixed trimethylsilyl acetylene to the copolymer with 40% 

recovery and 62% coupling conversion (Polymer 3). Polymer vinylation opens avenues for radical- or 

photo-mediated cross-linking, while alkyne coupling enables “click” functionalization via copper-catalyzed 

alkyne-azide cycloaddition. 

 

Scheme 6.3 | Functionalization reactions performed on PPA-BNBA copolymers (1). Both acetyl and 

trichloroacetyl isocyanate end-caps (X) were utilized to end-cap the copolymers. 
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NIPA copolymers containing a reactive pendant aldehyde (4) were found to be an even more 

versatile choice for functionalization (Scheme 6.4). Polymer was recovered in high yields after Wittig 

reactions with various phosphonium salts (60%, Polymer 5), imine formation occurred with amines and 

diamines (82% yield, Polymer 6), and sodium borohydride-mediated reduction afforded the corresponding 

alcohol (68% yield, Polymer 7). Reduction to hydroxy-functionalized polymer (7) permitted further 

modification of the polymers. For instance, isocyanate reagents were coupled to the polymers in nearly 

quantitative yields (Polymers 8-10), and polylactide (PLA) was grafted to the copolymers via anionic ring-

opening polymerization of lactide with a phosphazene base catalyst (Polymer 11).15 Notably, even though 

the copolymer molecular weights were relatively low, cross-linking of 7 was achieved by reaction with a 

multi-functional isocyanate reagent, poly[(phenyl isocyanate)-co-formaldehyde], and annealing the mixture 

at 80 ºC overnight (Polymer 10). The resulting yellow, insoluble film was analyzed by IR spectroscopy and 

solid state NMR spectroscopy, both of which confirmed the formation of carbamate groups in the cross-

linking reaction. 

 

Scheme 6.4 | Functionalization reactions performed on PPA-NIPA copolymers (4) and hydroxylated 

analog (7). Both acetyl and trichloroacetyl isocyanate end-caps (X) were utilized to end-cap the 

copolymers. 

 

To evaluate the degradability of cross-linked PPA, the polymer network was exposed to acid in 

order to hydrolyze the acetal main-chain linkages and trigger complete depolymerization. Cross-linked PPA 

was ground into a powder, suspended in chloroform, and mixed with one drop of deuterium chloride. Within 

seconds, the insoluble suspension transformed to a yellow solution, which was identified as majority OPA 

and other small molecule impurities, presumably the coupling products between the BA comonomer and 

the isocyanate reagent (Figure 6.3). Importantly, this result demonstrates that cross-linked PPA polymers 

are still susceptible to triggered depolymerization. Robust covalent networks can therefore be constructed 

and deconstructed in response to an external stimulus. 
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Figure 6.3 | (a) Insoluble cross-linked PPA network suspended in chloroform, red arrow points to insoluble 

powderized polymer, and (b) degraded polymer network after addition of one drop deuterium chloride. 

 

 

6.4 Conclusions 

Phthalaldehyde-benzaldehyde copolymers were prepared and shown to present a convenient route 

toward functionalizable, stimuli-responsive, depolymerizable polymers. In just two steps, it is possible to 

synthesize copolymers with specific end-caps, then install reactive functional groups into those copolymers 

by post-polymerization modification reactions. A new parameter, the incorporation ratio, was established 

and verified to predict the composition of these equilibrium copolymers. Cross-linking reactions and graft 

copolymerizations were performed on the copolymers to demonstrate their utilities toward developing of 

depolymerizable nanostructures of higher order. These materials may pave the way to new triggerable, 

depolymerizable architectures such as microcapsules, which will be explored in further work. 
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6.5 Synthetic Procedures 

Scheme 6.5 | General copolymerization initiated by n-BuLi. 

 

To a Schlenk flask were added o-phthalaldehyde (1.8-3.0 mmol) and the benzaldehyde comonomer         

(0.0-1.2 mmol). The solids were dissolved in THF (5 mL) and the solution cooled to -78 °C. Then, 1.6 M 

n-BuLi in hexanes (0.08 mL, 0.13 mmol) was added and the reaction mixture stirred at -78 °C for 8 h. 

Acetic anhydride (0.14 mL, 1.5 mmol) and pyridine (0.12 mL, 1.5 mmol) were then added and the mixture 

stirred overnight at -78 °C. The polymer was precipitated in methanol and washed in methanol and diethyl 

ether. If necessary, the polymers were further purified by dissolving in dichloromethane and re-precipitating 

into methanol. The white solid powders were characterized by GPC (for molecular weight and 

polydispersity; eluent = THF) and NMR spectroscopy. 1H NMR (500 MHz, DMSO-d6) δ 8.90-8.00 (b, 3H, 

benzaldehyde), 7.75-7.05 (b, 4H, phthalaldehyde), 7.05-6.25 (b, acetal), 2.15-2.00 (b, acetate), 1.55-1.15 

(b, initiator), 0.90-0.60 (b, initiator). 

 

 

Table 6.2 | Data for copolymer samples with 2,4-dinitrobenzaldehyde (2-DNBA, Hammett value 1.56). 

Feed Ratio 

(OPA/BA) 

Copolymer 

Composition 

(Series 1) 

Copolymer 

Composition 

(Series 2) 

Copolymer 

Composition 

(Series 3) 

Average 

Yield 

Mn 

(kDa)a 

PDIa 

90/10 93/7 94/6 92/8 54% 4.7 1.2 

80/20 82/18 87/13 86/14 48% 4.6 1.2 

70/30 80/20 79/21 79/21 17% 3.9 1.2 

60/40 73/27 76/24 66/34 11% 3.7 1.1 

aAverage molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated 

with monodisperse polystyrene standards. 

 

 

 

 



113 

 

Table 6.3 | Data for copolymer samples with 3,5-dinitrobenzaldehyde (3-DNBA, Hammett value 1.42). 

Feed Ratio 

(OPA/BA) 

Copolymer 

Composition 

(Series 1) 

Copolymer 

Composition 

(Series 2) 

Copolymer 

Composition 

(Series 3) 

Average 

Yield 

Mn 

(kDa)a 

PDIa 

90/10 94/6 95/5 95/5 46% 4.9 1.2 

80/20 89/11 89/11 89/11 45% 4.7 1.2 

70/30 85/15 85/15 86/14 31% 4.4 1.1 

60/40 81/19 81/19 82/18 19% 4.0 1.1 

aAverage molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated 

with monodisperse polystyrene standards. 

 

Table 6.4 | Copolymers with 2-nitro-4-trifluoromethylbenzaldehyde (NFBA, Hammett value 1.32). 

Feed Ratio 

(OPA/BA) 

Copolymer 

Composition 

(Series 1) 

Copolymer 

Composition 

(Series 2) 

Copolymer 

Composition 

(Series 3) 

Average 

Yield 

Mn 

(kDa)a 

PDIa 

90/10 98/2 99/1 97/3 43% 5.7 1.3 

80/20 93/7 95/5 93/7 32% 4.8 1.2 

70/30 88/12 92/8 88/12 17% 4.7 1.2 

60/40 86/14 81/19 83/17 4% 4.6 1.1 

aAverage molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated 

with monodisperse polystyrene standards. 

 

Table 6.5 | Data for copolymers with 3-bromo-5-nitrobenzaldehyde (BNBA, Hammett value 1.10). 

Feed Ratio 

(OPA/BA) 

Copolymer 

Composition 

(Series 1) 

Copolymer 

Composition 

(Series 2) 

Copolymer 

Composition 

(Series 3) 

Average 

Yield 

Mn 

(kDa)a 

PDIa 

90/10 98/2 100/0 99/1 41% 5.0 1.3 

80/20 96/4 97/3 98/2 36% 4.5 1.2 

70/30 93/7 95/5 96/4 24% 4.6 1.2 

60/40 90/10 95/5 95/5 13% 4.0 1.2 

aAverage molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated 

with monodisperse polystyrene standards. 
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Table 6.6 | Copolymers with 2,4-bis(trifluoromethyl)benzaldehyde (DFBA, Hammett value 1.08). 

Feed Ratio 

(OPA/BA) 

Copolymer 

Composition 

(Series 1) 

Copolymer 

Composition 

(Series 2) 

Copolymer 

Composition 

(Series 3) 

Average 

Yield 

Mn 

(kDa)a 

PDIa 

90/10 99/1 99/1 99/1 48% 5.2 1.3 

80/20 97/3 98/2 97/3 24% 4.6 1.2 

70/30 95/5 98/2 95/5 16% 4.4 1.2 

60/40 93/7 94/6 92/8 2% 3.9 1.2 

aAverage molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated 

with monodisperse polystyrene standards. 

 

Table 6.7 | Data for copolymers with 4-chloro-3-nitrobenzaldehyde (CNBA, Hammett value 0.94). 

Feed Ratio 

(OPA/BA) 

Copolymer 

Composition 

(Series 1) 

Copolymer 

Composition 

(Series 2) 

Copolymer 

Composition 

(Series 3) 

Average 

Yield 

Mn 

(kDa)a 

PDIa 

90/10 99.5/0.5 99.5/0.5 99.5/0.5 46% 5.0 1.2 

80/20 99/1 99/1 99/1 32% 4.4 1.2 

70/30 98.5/1.5 98.5/1.5 99/1 22% 4.2 1.2 

60/40 98/2 99/1 98/2 16% 4.0 1.2 

aAverage molecular weights and polydispersity determined by gel permeation chromatography (GPC), calibrated 

with monodisperse polystyrene standards. 

 

Scheme 6.6 | Oligomers for end-group analysis. 

 

O-phthalaldehyde (0.50 g, 3.7 mmol) was dissolved in THF (5 mL) and cooled to -78 °C. Then, 1.6 M        

n-BuLi in hexanes (0.30 mL, 0.48 mmol) was added and the reaction mixture stirred at -78 °C for 4 h. 

Acetic anhydride (0.18 mL, 1.9 mmol) or methacrylic anhydride (0.28 mL, 1.9 mmol) and pyridine         

(0.15 mL, 1.9 mmol) were then added, and the mixture stirred for 3 hours at -78 °C before it was warmed 

to room temperature. The polymer was precipitated in methanol and washed in methanol and diethyl ether. 

The polymers were purified by twice dissolving in dichloromethane and re-precipitating into methanol. The 

white solid powders were characterized by GPC (for molecular weight and polydispersity) and NMR 

spectroscopy. 
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Acetate: 1H NMR (500 MHz, CDCl3) δ 7.80-7.18 (b, Ar-H), 7.18-6.35 (b, -O-CH-O-), 5.60-5.51 (b, -CH2-

CH-O-), 5.36-5.27 (b, -CH2-CH-O-), 2.28-2.11 (b, COCH3), 2.10-1.35 (b, -CH2-), 1.13-0.83 (b, -CH3). 

13C{1H} NMR (500 MHz, CDCl3) δ 170.5 ppm, 143.1 ppm, 138.7 ppm, 137.4 ppm, 129.7 ppm, 127.7 ppm, 

123.1 ppm, 120.9 ppm, 101.5-104.3 ppm, 99.4 ppm, 84.4 ppm, 82.9 ppm, 37.5 ppm, 35.0 ppm, 27.8 ppm, 

27.0 ppm, 22.7 ppm, 21.2 ppm, 14.0 ppm. GPC (THF, RI): Mn = 2.1 kDa, PDI = 1.1. 

Methacrylate: 1H NMR (500 MHz, CDCl3) δ 7.80-7.18 (b, Ar-H), 7.18-6.35 (b, -O-CH-O-), 6.29-6.11 (b, 

=CH), 5.76-5.61 (b, =CH), 5.60-5.51 (b, -CH2-CH-O-), 5.37-5.27 (b, -CH2-CH-O-), 2.08-1.99 (b, -C-CH3), 

1.99-1.31 (b, -CH2-), 1.07-0.82 (b, CH3-). 13C{1H} NMR (500 MHz, CDCl3) δ 166.7 ppm, 143.2 ppm, 138.5 

ppm, 137.5 ppm, 135.8 ppm, 129.8 ppm, 127.7 ppm, 126.8 ppm, 123.1 ppm, 120.9 ppm, 101.5-104.7 ppm, 

99.7 ppm, 84.3 ppm, 82.8 ppm, 37.5 ppm, 35.0 ppm, 27.8 ppm, 27.0 ppm, 22.7 ppm, 18.1 ppm, 14.0 ppm. 

GPC (THF, RI): Mn = 2.1 kDa, PDI = 1.1. 

 

 

Scheme 6.7 | Copolymerization of phthalaldehyde and 5-nitroisophthalaldehyde (4). 

 

To a Schlenk flask were added o-phthalaldehyde (0.68 g, 5.1 mmol) and 5-nitroisophthalaldehyde (0.38 g, 

2.1 mmol). The solids were dissolved in THF (10 mL), and the solution cooled to -78 °C. Then, 1.6 M        

n-BuLi in hexanes (0.17 mL, 0.27 mmol) was added and the reaction mixture stirred at -78 °C for 10 h. 

Trichloroacetyl isocyanate (0.10 mL, 0.8 mmol) was then added and the mixture stirred overnight at                 

-78 °C. The polymer was precipitated in methanol and washed in methanol and diethyl ether (0.65 g yield, 

61%). The white solid powder 4 was characterized by GPC (for molecular weight and polydispersity) and 

NMR spectroscopy. 1H NMR (500 MHz, DMSO-d6) δ 10.25-9.75 (b, 1H, aldehyde), 8.80-8.15 (b, 3H, 

benzaldehyde), 7.75-7.05 (b, 4H, phthalaldehyde), 7.05-6.25 (b, acetal), 1.95-1.15 (b, initiator), 0.90-0.60 

(b, initiator). 13C{1H} NMR (500 MHz, CDCl3) δ 192.2 ppm, 148.3 ppm, 138.5 ppm, 135.9 ppm, 133.5 

ppm, 130.8 ppm, 129.6 ppm, 127.9 ppm, 126.8 ppm, 123.0 ppm, 105.0-100.5 ppm, 22.3 ppm. GPC (THF, 

RI): Mn = 4.6 kDa, PDI = 1.3. 

 

 

4 
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Scheme 6.8 | Sonogashira Coupling: poly(phthalaldehyde-co-3-nitro-5-trimethylsilylalkynyl-

benzaldehyde) (Polymer 3). 

 

To a 20-mL flask were added bis(triphenylphosphine)palladium(II) dichloride (1.1 mg, 1.6 µmol), copper(I) 

iodide (0.4 mg, 2.1 µmol), poly(phthalaldehyde-co-3-bromo-5-nitrobenzaldehyde) (1, 62.0 mg, 94/6 molar 

ratio, 25 µmol bromide), and trimethylsilylacetylene (0.04 mL, 0.28 mmol). The reagents were dissolved 

in a mixture of THF (2.5 mL) and triethylamine (2.5 mL) and heated to 70 °C for 4 h. The mixture was then 

cooled to room temperature, and the polymer was precipitated by pouring into methanol (100 mL). The 

polymer was washed in methanol and diethyl ether and collected in 25.0 mg yield (40% recovery, 62% 

coupling conversion). The gray solid powder 3 was characterized by GPC (for molecular weight and 

polydispersity) and NMR spectroscopy. 1H NMR (500 MHz, DMSO-d6) δ 8.50-8.00 (b, 3H, benzaldehyde), 

7.75-7.05 (b, 4H, phthalaldehyde), 7.05-6.25 (b, acetal), 2.15-2.00 (b, acetate) 1.55-1.15 (b, initiator), 0.90-

0.60 (b, initiator), 0.35-0.05 (b, trimethylsilyl). GPC (THF, RI): Mn = 5.1 kDa, PDI = 1.1. 

 

Scheme 6.9 | Stille Coupling: poly(phthalaldehyde-co-3-nitro-5-vinylbenzaldehyde) (Polymer 2). 

 

To a 20-mL flask were added tetrakis(triphenylphosphine)palladium(0) (2.2 mg, 1.9 µmol), 

tributyl(vinyl)tin (12.0 mg, 38 µmol), and poly(phthalaldehyde-co-3-bromo-5-nitrobenzaldehyde) (1,     

60.1 mg, 94/6 molar ratio, 21 µmol bromide). The reagents were dissolved in 1,4-dioxane (5 mL), and the 

mixture was heated to 80 °C for 2 h. The mixture was then cooled to room temperature, and the polymer 

was precipitated by pouring into methanol (100 mL). The polymer was washed in methanol and diethyl 

ether and collected in 29.0 mg yield (48% recovery, 93% coupling conversion). The off-white solid powder 

2 was characterized by GPC (for molecular weight and polydispersity) and NMR spectroscopy. 1H NMR 

(500 MHz, DMSO-d6) δ 8.50-8.00 (b, 3H, benzaldehyde), 7.75-7.05 (b, 4H, phthalaldehyde), 7.05-6.25 (b, 

acetal), 6.10-5.85 (b, vinyl), 5.50-5.15 (b, vinyl), 2.15-2.00 (b, acetate), 1.55-1.15 (b, initiator), 0.90-0.60 

(b, initiator). GPC (THF, RI): Mn = 5.5 kDa, PDI = 1.2. 

1 2 

1 3 
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Scheme 6.10 | Aldehyde reduction: poly(phthalaldehyde-co-3-hydroxymethyl-5-nitrobenzaldehyde) 

(Polymer 7). 

 

To a 20-mL flask were added sodium borohydride (3.0 mg, 79 µmol) and poly(phthalaldehyde-co-5-

nitroisophthalaldehyde) (4, 104.7 mg, 92/8 molar ratio, 61 µmol aldehyde). The reagents were dissolved in 

a mixture of dichloromethane (4 mL) and methanol (1 mL), and the reaction contents were stirred at room 

temperature for 1 h. The polymer was precipitated by pouring into methanol (100 mL), washed in methanol 

and diethyl ether, and collected in 71.0 mg yield (68% recovery, quantitative reduction). The white solid 

powder 7 was characterized by GPC (for molecular weight and polydispersity) and NMR spectroscopy.    

1H NMR (500 MHz, DMSO-d6) δ 8.40-7.80 (b, benzaldehyde), 7.75-7.05 (b, phthalaldehyde), 7.05-6.25 

(b, acetal), 5.65-5.45 (b, hydroxyl), 4.70-4.40 (b, benzyl) 1.55-1.15 (b, initiator), 0.90-0.60 (b, initiator). 

13C{1H} NMR (500 MHz, CDCl3) δ 143.4 ppm, 140.9 ppm, 138.5 ppm, 131.0 ppm, 129.7 ppm, 127.6 ppm, 

123.0 ppm, 121.2 ppm, 120.8 ppm, 105.0-100.5 ppm, 62.9 ppm, 22.3 ppm. GPC (THF, RI): Mn = 4.5 kDa, 

PDI = 1.2. 

 

Scheme 6.11 | Wittig Reaction (Polymer 5). 

 

To a 20-mL flask were added tetramethylene bis(triphenylphosphonium bromide) (22.6 mg, 31 µmol) and 

poly(phthalaldehyde-co-5-nitroisophthalaldehyde) (4, 103.5 mg, 92/8 molar ratio, 60 µmol aldehyde). The 

reagents were dissolved in THF (2.5 mL), and 1.6 M n-BuLi in hexanes was added (0.06 mL, 96 µmol). 

The mixture was stirred at room temperature overnight, and the polymer was precipitated by pouring into 

methanol (100 mL). The polymer was washed in excess methanol and diethyl ether and collected in          

62.0 mg yield (60%). The yellow solid powder 5 was characterized by GPC (for molecular weight and 

polydispersity) and NMR spectroscopy. 1H NMR (500 MHz, DMSO-d6) δ 8.70-7.90 (b, benzaldehyde), 

4 
7 

4 5 
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7.87 (b, Ph3P=O), 7.75 (b, Ph3P=O), 7.70-7.05 (b, phthalaldehyde), 7.05-6.25 (b, acetal), 5.75-5.50 (b,            

-C=CH-), 4.70-4.40 (b, benzyl), 3.70-3.55 (b, -C=C-CH2-), 2.00-1.55 (b, -CH2-) 1.55-1.15 (b, initiator), 

0.90-0.60 (b, initiator). GPC (THF, RI): Mn = 6.1 kDa, PDI = 1.7. 

 

Scheme 6.12 | Imine Formation (Polymer 6). 

 

To a 20-mL flask were added hexamethylene diamine (4.0 mg, 34 µmol) and poly(phthalaldehyde-co-5-

nitroisophthalaldehyde) (4, 103.3 mg, 92/8 molar ratio, 60 µmol aldehyde). The reagents were dissolved in 

a mixture of N-methyl pyrrolidone (2 mL) and hexamethyl phosphoramide (1 mL), and the reaction 

contents were stirred 7 h at room temperature. The polymer was precipitated by pouring into methanol   

(100 mL), washed in excess methanol and diethyl ether, and collected in 85.0 mg yield (82% recovery). 

The pink solid powder 7 was characterized by GPC (for molecular weight and polydispersity) and NMR 

spectroscopy. 1H NMR (500 MHz, DMSO-d6) δ 8.70-8.10 (b, benzaldehyde), 7.75-7.05 (b, 

phthalaldehyde), 7.05-6.25 (b, acetal), 3.90-3.35 (b, =N-CH2-), 2.15-1.55 (b, -CH2-), 1.55-1.15 (b, initiator), 

0.90-0.60 (b, initiator). GPC (THF, RI): Mn = 5.7 kDa, PDI = 1.6. 

 

Scheme 6.13 | Reaction with methylene diphenyl diisocyanate (Polymer 8). 

 

4 6 

7 8 
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To a 20-mL flask were added 4,4’-methylene diphenyl diisocyanate (4.1 mg, 16 µmol) and 

poly(phthalaldehyde-co-3-hydroxymethyl-5-nitrobenzaldehyde) (7, 51.6 mg, 92/8 molar ratio, 30 µmol 

alcohol). The reagents were dissolved in dichloromethane (1.5 mL) and stirred at room temperature for        

6 h. The solvent was slowly evaporated and the residue was heated to 80 ºC overnight. The residue was 

dissolved in dichloromethane, and the polymer was precipitated by pouring into methanol (100 mL). The 

polymer was washed in excess methanol and diethyl ether and collected in 31.0 mg yield (60% recovery, 

quantitative conversion). The white solid powder 8 was characterized by GPC (for molecular weight and 

polydispersity) and NMR spectroscopy. 1H NMR (500 MHz, DMSO-d6) δ 9.90-9.50 (b, NH) 8.40-7.80 (b, 

benzaldehyde), 7.75-7.05 (b, phthalaldehyde), 7.05-6.25 (b, acetal), 5.65-5.45 (b, hydroxyl), 4.70-4.35 (b, 

benzyl), 3.90-3.65 (b, methylene), 3.65-3.55 (b, NH2), 1.55-1.15 (b, initiator), 0.90-0.60 (b, initiator). GPC 

(THF, RI): Mn = 5.5 kDa, PDI = 1.6. 

 

Scheme 6.14 | Reaction with toluene diisocyanate (Polymer 9). 

 

To a 20-mL flask were added 2,4-diisocyanato-1-methyl-benzene (19.9 mg, 0.11 mmol) and 

poly(phthalaldehyde-co-3-hydroxymethyl-5-nitrobenzaldehyde) (7, 66.2 mg, 92/8 molar ratio, 38 µmol 

alcohol). The reagents were dissolved in THF (1 mL) and warmed to 40 ºC for 5 h. The solvent was slowly 

evaporated and the residue was heated to 80 ºC overnight. The residue was dissolved in dichloromethane, 

and the polymer was precipitated by pouring into methanol (100 mL). The polymer was washed in excess 

methanol and diethyl ether and collected in 75.0 mg yield (quantitative recovery and conversion). The white 

solid powder 9 was characterized by GPC (for molecular weight and polydispersity) and NMR 

spectroscopy. 1H NMR (500 MHz, DMSO-d6) δ 10.15-9.45 (b, NH) 8.40-7.80 (b, benzaldehyde), 7.75-7.05 

(b, phthalaldehyde), 7.05-6.25 (b, acetal), 5.50-4.90 (b, benzyl), 3.70-3.50 (b, NH2), 2.40-1.85 (b, -CH3), 

1.55-1.15 (b, initiator), 0.90-0.60 (b, initiator). GPC (THF, RI): Mn = 4.7 kDa, PDI = 36.7. 

 

7 9 
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Scheme 6.15 | Cross-linking of poly(phthalaldehyde-co-3-hydroxymethyl-5-nitrobenzaldehyde) (Polymer 

10). 

To a 20-mL flask were added poly[(phenyl isocyanate)-co-formaldehyde] (avg. Mn 400, 3.2 isocyanate 

groups/molecule, 6.0 mg, 15 µmol) and poly(phthalaldehyde-co-3-hydroxymethyl-5-nitrobenzaldehyde) 

(7, 65.0 mg, 92/8 molar ratio, 38 µmol alcohol). The reagents were dissolved in THF (1 mL) and warmed 

to 40 ºC for 5 h. The solvent was slowly evaporated and the residue was heated to 80 ºC overnight. The 

resulting insoluble yellow film (10) was grinded into a powder and washed with methanol and 

dichloromethane, leaving 34 mg insoluble solid (52% recovery). The solid was characterized by CP-MAS 

13C NMR spectroscopy. 13C NMR (500 MHz) δ 161-152 ppm, 152-147 ppm, 145-136 ppm, 136-128 ppm, 

128-116 ppm, 115-99 ppm, 72-64 ppm, 19-14 ppm. 

 

Scheme 6.16 | Cross-linked PPA-BA copolymer degradation. 

10 mg of cross-linked PPA-BA copolymer (10) was suspended in CDCl3 (1 mL). One drop of deuterium 

chloride (35 wt. % in D2O) was added to the suspension, which immediately became a homogeneous yellow 

solution. The mixture was directly analyzed by NMR spectroscopy and ESI-MS. 1H NMR (500 MHz, 

CDCl3) δ 10.54 (2H, s, CHO), 7.98 (2H, dd, Ar-H), 7.78 (2H, dd, Ar-H). 13C{1H} NMR (500 MHz, CDCl3) 

δ 192.3 ppm, 136.4 ppm, 133.7 ppm, 131.1 ppm. HR ESI-MS (m/z): calcd for C8H7O2 [M+H]+, 135.0446; 

found 135.0452. 

 

 

Scheme 6.17 | Graft copolymerization: poly(phthalaldehyde-co-3-hydroxymethyl-5-nitrobenzaldehyde-

graft-poly lactic acid) (Polymer 11). 

 

7 11 
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To a Schlenk flask were added poly(phthalaldehyde-co-3-hydroxy-5-nitrobenzaldehyde) (7, 30.0 mg, 92/8 

molar ratio, 17 µmol alcohol) and lactide (90-280 mg, 0.6-1.9 mmol). The solids were dissolved in THF   

(8 mL) and cooled to -78 °C. P2-t-Bu phosphazene base (2.0 M in THF, 10 µL, 20 µmol) was added to 

initiate polymerization. The reaction mixture was stirred at -78 °C for 3 h, then quenched with 

trichloroacetyl isocyanate (0.08 mL, 0.8 mmol) and left to stir for another 1 h at -78 °C. The mixture was 

then brought to room temperature, and the polymer was precipitated in methanol. The polymer was washed 

in excess methanol and collected in quantitative yield as a white solid. Polymer 11 was characterized by 

TGA and NMR spectroscopy. 1H NMR (500 MHz, CDCl3) δ 7.70-7.10 (b, phthalaldehyde), 7.10-6.20 (b, 

acetal), 5.30-5.00 (b, 1H, -CH-), 1.65-1.50 (b, 3H, -CH3). 

 

 

 

 

6.6 NMR Spectra 

 

 

Figure 6.4 | 1H NMR spectrum of poly(phthalaldehyde-co-3-bromo-5-nitrobenzaldehyde) (Polymer 1) in 

DMSO-d6. 
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Figure 6.5 | 1H NMR spectrum of poly(phthalaldehyde-co-5-nitroisophthalaldehyde) (Polymer 4) in 

DMSO-d6. 

 

 

 

Figure 6.6 | 1H NMR spectrum of poly(phthalaldehyde-co-3-hydroxy-5-nitrobenzaldehyde) (Polymer 7) in 

DMSO-d6. 
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Chapter 7: Depolymerizable, Adaptive Supramolecular 

Polymer Nanoparticles and Networks* 

7.1 Abstract  

Incorporation of supramolecular cross-linking motifs into low-ceiling temperature (Tc) polymers 

allows for the possibility of remendable polymeric networks and nanoparticles whose structure and 

chemical backbones can be dynamically modified or depolymerized as desired. In this chapter, we 

demonstrate the synthesis of phthalaldehyde-benzaldehyde copolymers bearing a pendant dimerizing          

2-ureido-pyrimidinone (UPy) motif. The UPy moiety promotes single-chain polymeric nanoparticle 

formation through non-covalent cross-linking at intermediate concentrations and results in reversible 

polymer network formation at high concentrations. Furthermore, due to the low Tc polymer backbone within 

such macromolecules, the materials depolymerize to monomer under appropriate conditions. We envision 

that the synthesis of such depolymerizable, adaptive supramolecular polymeric materials may find use in 

materials capable of self-healing and remodeling as well as in triggered release applications or the 

development of nanoporous structures. 

 

7.2 Introduction 

Stimuli-responsive materials that utilize reversible and dynamic supramolecular interactions have 

generated strong interest in recent years.1 These materials acquire their unique properties from non-covalent 

interactions and have promise in self-healing applications.2 Moreover, they have been employed for the 

controlled formation of single-chain polymeric architectures.3 The quadruple hydrogen-bond dimerizing   

2-ureido-pyrimidinone (UPy) motif has been introduced toward the synthesis of robust supramolecular 

polymers and nanoparticles.4 The UPy motif, which dimerizes by a self-complementary DDAA (donor-

donor-acceptor-acceptor) hydrogen bonding array, exhibits a dimerization constant greater than 107 M-1 in 

chloroform at room temperature.4c Due to its ease of synthesis as well as its strong affinity for non-covalent 

cross-linking, the UPy motif has been incorporated into polymers either at the chain-end or as a pendant 

functionality to form stable yet reversible non-covalent cross-links and facilitate the formation of various 

architectures and nanostructures.4 

                                                           
* Portions of this chapter have been published: Kaitz, J. A.; Possanza, C. M.; Song, Y.; Diesendruck, C. E.; 

Spiering, A. J. H.; Meijer, E. W.; Moore, J. S. Polym. Chem. 2014, 5, 3788-3794. 
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Low ceiling temperature (Tc) polymers have likewise garnered significant interest in recent years, 

being attractive materials for triggered release, lithography, and degradable nanostructures.5-7 By virtue of 

being above the polymer’s ceiling temperature, yet kinetically stabilized from depolymerization by end-

capping, these polymers represent a unique class of materials capable of rapid and complete head-to-tail 

depolymerization upon removal of the end-cap.6 Poly(phthalaldehyde) (PPA) is one such low Tc polymer 

that has been extensively studied due to its ease of synthesis and fast, complete depolymerization upon 

triggering.7 We recently demonstrated the copolymerization of phthalaldehyde with various substituted 

benzaldehydes toward the preparation of more complex, depolymerizable nanostructures.8a We have also 

demonstrated the ability to dynamically modify backbone polyacetal linkages within the PPA backbone 

under cationic polymerization conditions.8b-c 

Using these synthetic methods, we sought to make materials which combine the dynamic, 

reversible nature of supramolecular interactions and the stimuli-responsive capabilities of low Tc polymers. 

To the best of our knowledge, there are no examples incorporating supramolecular cross-linking units into 

depolymerizable polymers toward the development of dynamic polymer nanoparticles or networks. Here 

we report the synthesis of phthalaldehyde-benzaldehyde copolymers modified with pendant UPy 

dimerizing functionalities, the characterization of the resulting morphologies, and the demonstration of their 

dynamic reversibility and triggered depolymerization. 

 

7.3 Results and Discussion 

7.3.1 Phthalaldehyde Copolymer Synthesis and Functionalization with Supramolecular Cross-Linker 

 Anionic copolymerization of o-phthalaldehyde with a substituted benzaldehyde monomer,               

5-nitroisophthalaldehyde (NIPA), was carried out in order to prepare a PPA that could be further 

functionalized with a supramolecular cross-linking motif (Scheme 7.1). UPy-functionalized benzaldehyde 

could not be copolymerized directly with o-phthalaldehyde, as the copolymerization requires strongly 

electron-withdrawing substituents for incorporation of the benzaldehyde comonomer.8a To prepare 

polymers of suitably high molecular weight, the copolymerization was initiated by 1,6-hexanediol in 

conjunction with phosphazene base P2-t-Bu, per literature precedent.7i The copolymerization yielded     

PPA-NIPA (1) random copolymers in three hours with a degree of polymerization of ca. 110 and 8% 

incorporation of the NIPA monomer, as determined by 1H NMR. At this molecular weight and composition, 

we expect an average of 8 to 9 UPy units per chain, assuming near quantitative conversion of each step of 

post-polymerization modification. The pendant aldehyde of the PPA-NIPA copolymer was then 

quantitatively reduced to a benzylic alcohol by reaction with sodium borohydride, affording PPA-HMNB 
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polymer (2, HMNB = 3-hydroxymethyl-5-nitrobenzaldehyde) in high yield. A slight increase in molecular 

weight and a decrease in polydispersity were observed in this polymer, which was attributed to the removal 

of low molecular weight species after repeated precipitations (see Table 7.1). 

Finally, PPA-HMNB was functionalized with the 2-ureido-pyrimidinone (UPy) motif by reaction 

with an isocyanate terminated UPy.4e Due to the high sensitivity of PPA polymers toward acid,                     

1,4-diazabicyclo[2.2.2]octane (DABCO) was employed as a catalyst rather than the tin (II) catalysts 

typically used in the reaction.9 The PPA-UPy (3) polymers thus produced show characteristic peaks in the 

1H NMR spectrum corresponding to the three hydrogen-bonded protons in UPy at δ 10.2 ppm, 11.8 ppm, 

and 13.1 ppm (Figure 7.1). Molecular weights and yields of polymers used in this study are summarized in 

Table 7.1. 

 

Scheme 7.1 | Synthesis of UPy-functionalized PPA polymers. Polymer yields and molecular weights are 

summarized in Table 7.1. 
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Figure 7.1 | NMR characterization of polymers in chloroform: PPA-HMNB (Polymer 2, blue trace) 

overlayed with PPA-UPy (Polymer 3, red trace). Characteristic hydrogen-bonded protons corresponding 

to UPy are observed at δ 10.2, 11.8, and 13.1 ppm. 

 

      Table 7.1 | Characterization data for Polymers 1-3.a 
Polymer Name Yield Mn 

(kDa)b 

Mw 

(kDa)b 

PDIb Rh 

(nm)c 

1 PPA-NIPA 68% 13.5 20.0 1.49 - - - 

2 PPA-HMNB 72% 15.7 21.0 1.34 5.9 

3 PPA-UPy 85% 15.3 20.1 1.31 4.9 

ao-Phthalaldehyde purified before use according to literature procedure.7i  bAverage molecular weights and polydispersity 

determined by gel permeation chromatography (GPC), calibrated with monodisperse polystyrene standards. cHydrodynamic radius 

determined by dynamic light scattering. 

 

7.3.2 Characterization of Supramolecular Single-Chain Polymeric Nanoparticles 

 In order to investigate PPA-UPy intramolecular folding into well-defined polymeric nanoparticles, 

triple-detector GPC, dynamic light scattering (DLS), and atomic force microscopy (AFM) characterization 

techniques were utilized. It has previously been demonstrated that at low concentration, UPy functionalized 

polymers undergo reversible intramolecular folding to form single-chain polymeric nanoparticles 

(SCPNs).4 To investigate this phenomenon in PPA-UPy polymers, the polymers were injected onto a triple-

detector GPC at 9 mg/mL in THF. A slight increase in retention time was observed for PPA-UPy compared 

to PPA-HMNB when comparing the raw chromatograms, indicative of a decreased hydrodynamic radius 

and a more compact structure (Figure 7.2a). Even more significant, when absolute molecular weights of the 

two polymers are plotted versus retention time, PPA-UPy gives a greater retention time than PPA-HMNB 

at all molecular weights (Figure 7.2b). Again, this suggests a collapse in hydrodynamic radius consistent 
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with intramolecular association to produce PPA SCPNs. Interestingly, the polymer Mn absolute values 

increase from 20.8 kDa to 22.4 kDa after functionalization of PPA-HMNB with UPy, consistent with 

covalent functionalization of between five and six UPy units per polymer chain (corresponding to a 63% 

incorporation of UPy). Dynamic light scattering analysis confirmed this decrease in hydrodynamic radius, 

as the particles shrank from number-weighted average radii of 5.9 nm to 4.9 nm after functionalization with 

UPy. The observed 17% decrease in hydrodynamic radius is consistent with previous findings for 

intramolecular folding of SCPNs in THF.3e,4e 

 

 

Figure 7.2 | Triple-detection GPC characterization of polymers: (a) Normalized GPC chromatograms of 

PPA-HMNB (Polymer 2, blue trace) overlayed with PPA-UPy (Polymer 3, red trace) in THF at 1 mg/mL. 

(b) Triple detector plot of absolute molecular weight versus retention time for PPA-HMNB (Polymer 2, 

blue trace) and PPA-UPy (Polymer 3, red trace) in THF at 9 mg/mL. Both plots reveal longer retention 

times for PPA-UPy, suggesting a smaller hydrodynamic radius due to intramolecular UPy dimerization. 

 

In order to further characterize the SCPNs, we utilized AFM to visualize their size, morphology, 

and dispersity. Samples were prepared by casting extremely dilute solutions (0.1 µg/mL in THF) on freshly 

cleaved mica and allowing them to air dry under ambient conditions. The low concentration is critical to 

minimize nanoparticle aggregation.4d The micrographs demonstrate that the PPA SCPNs exhibit a 

spherical/round morphology and display a monodisperse distribution, as expected (Figure 7.3). The particle 

heights were found to be 4.2 nm on average, with an average diameter of 46.5 nm. Assuming a half-ellipsoid 

geometry of nanoparticles under AFM conditions4d, the radius of unflattened nanoparticle spheres is 

calculated to be about 16.5 nm. That this radius does not correlate well with DLS results is not surprising, 

as SCPN radii extracted from AFM images are known to yield larger values than expected.3f The AFM 

images, however, serve to qualitatively corroborate GPC and DLS analytical techniques and confirm the 

presence of monodisperse, spherical SCPNs.  
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Figure 7.3 | AFM micrograph of single-chain polymeric nanoparticles: PPA-UPy (Polymer 3) 

nanoparticles on mica, casted from a 0.1 µg/mL solution in THF. Nanoparticles are spherical and 

monodisperse, with heights of approximately 4 nm and average diameters of 46 nm. 

 

7.3.3 Dynamic Reconstitution of Low Tc Polymeric Nanostructures and Polymer Network Formation 

 The utility of PPA as the polymer scaffold was probed by exploring the depolymerization and 

reconstitution of PPA SCPNs. PPA is known to depolymerize when exposed to acid or chemical reagents 

appropriate to the end-group structure.7 Further, we have shown that PPA can be subjected to cationic 

initiators in appropriate conditions and the molecular weight and architecture of the polymer backbone is 

dynamically modified.8 With this knowledge at hand, we exposed PPA-UPy to the Lewis acid boron 

trifluoride etherate at room temperature. As expected, immediate depolymerization to monomer was 

observed and confirmed by NMR (Scheme 7.2c-d; Figure 7.4). Triggered depolymerization of polymeric 

nanoparticles provides a simple approach toward the development of nanoporous structures, where pore 

size is defined by nanoparticle size and number of pores is determined by the concentration of nanoparticles 

in solution.10 
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Scheme 7.2 | Supramolecular polymer reconstitution and depolymerization: a) BF3·OEt2, CH2Cl2, -78 °C; 

b) Pyridine, -78 °C. c) BF3·OEt2, CH2Cl2, 25 °C; d) Pyridine, 25 °C. X represents pendant 

ureidopyrimidinone functionality. 

 

 

  In order to test the reconstitution of the PPA nanoparticle backbone, PPA-UPy was exposed to 

boron trifluoride etherate at -78 °C (Scheme 7.2a-b), a temperature below the PPA Tc (ca. -40 °C).7a When 

the reaction is conducted at low concentration, i.e., below 0.7 M with respect to polymer repeat units, a 

shift toward lower molecular weight is observed in the GPC (Figure 7.4). The molecular weight of the 

product is tuned by varying the initial concentration, as previously demonstrated.8b Interestingly, this 

process makes it possible to dynamically modify supramolecular polymers to achieve desired molecular 

weights, even after their initial formation. These unique polymers can therefore be reversibly tuned by two 

chemically orthogonal methods; both the UPy cross-linker as well as the PPA backbone itself can be 

dynamically controlled. 

 

Figure 7.4 | GPC chromatograms of polymer reconstitution and depolymerization reactions: GPC traces 

of PPA-HMNB (Polymer 2, blue trace), PPA-UPy (Polymer 3, red trace), PPA-UPy reconstituted to lower 

molecular weight (green trace), and after depolymerization (yellow trace). The peak at 32 mL corresponds 

to remainder small molecule in the void volume. 
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Remarkably, an insoluble supramolecular polymer network is formed when PPA-UPy is subjected 

to reconstitution at high concentration, i.e., greater than 1.0 M. The white solid thus collected swelled but 

remained insoluble in typical solvents for PPA, specifically chloroform, dichloromethane, THF, and 

dimethyl sulfoxide. When reconstitution at high concentration is attempted on PPA-HMNB, however, the 

polymer remains soluble throughout the reaction, confirming that the supramolecular UPy cross-linker 

promotes polymer network formation. Figure 7.5 demonstrates triggered degradation of these 

supramolecular polymer networks. The cross-linked samples were initially swollen in deuterated 

chloroform, remaining insoluble opaque gels (Figure 7.5a). A drop of trifluoroacetic acid (TFA), which can 

hydrolyze the backbone acetal linkages, was then added to a single sample, and the polymer sample 

immediately shrunk in size, completely disappearing within 2 min (Figure 7.5b-c, right). The solution was 

collected and analyzed by NMR, confirming depolymerization to monomer. The control sample, on the 

other hand, remains unchanged (Figure 7.5b-c, left). This experiment demonstrates that supramolecular 

PPA networks are not only easily constructed, but unlike typical thermosets, this cross-linked polymer is 

rapidly deconstructed in response to an external stimulus. 

 

Figure 7.5 | Supramolecular PPA-UPy Network and Triggered Depolymerization of Polymer Backbones: 

(a) Image of PPA-UPy polymer networks suspended in CDCl3 before addition of trifluoroacetic acid (TFA); 

(b) Image of PPA-UPy polymer network after one minute exposure to TFA (right) and without exposure to 

TFA (left); and (c) Image of fully depolymerized PPA-UPy network after two minute exposure to acid (right) 

and without exposure to acid (left). 

 

7.4 Conclusions 

The results presented here serve as an initial foray into combining reversible supramolecular cross-

linking reagents with dynamic low Tc polymers. Supramolecular PPA-UPy polymers were prepared by 

taking advantage of a previously reported phthalaldehyde-benzaldehyde copolymerization approach. The 

PPA-UPy polymers exhibit two distinct levels of control, as both the UPy dimerizing motif and the PPA 

backbone are capable of dynamic reorganization. The supramolecular cross-linker was shown to permit the 

preparation of both single-chain polymeric nanoparticles as well as degradable polymer networks. The 

polymer nanoparticles were then reconstituted to various molecular weights, and the polymer networks 

were shown to depolymerize by reaction with an external signal. We envision a wide range of applications 
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for such polymers, from the development of nanoporous structures to potential self-healing materials that 

are also fully recyclable and capable of structural remodeling. 

 

7.5 Synthetic Procedures 

Scheme 7.3 | Synthesis of PPA-NIPA (Polymer 1). 

 

In a glovebox, purified o-PA (2.62 g, 19.5 mmol) and 5-nitroisophthalaldehyde11 (1.01 g, 5.6 mmol) were 

weighed into a Schlenk flask and dissolved in THF (35 mL). The solution was removed from the glovebox 

and degassed by three freeze-pump-thaw cycles. Then, 1,6-hexanediol in THF (0.80 mL of a 0.03 M 

solution, 24 μmol) was added, and the solution stirred 2 minutes then cooled to -78 °C. Finally, P2-t-Bu 

phosphazene base in THF (0.05 mL of a 2.0 M solution, 100 μmol) was added to initiate polymerization. 

The reaction was left stirring at -78 °C for 3 h, then the polymer end-capped by adding trichloroacetyl 

isocyanate (0.65 mL, 5.5 mmol) and allowing the mixture to stir an additional 2 h at -78 °C. The reaction 

mixture was then brought to room temperature and polymer precipitated by pouring into methanol            

(100 mL) and collected by filtration. Polymer 1 was further purified by dissolving in dichloromethane and 

re-precipitating from methanol and washed in diethyl ether (2.46 g, 68%). 1H NMR (500 MHz, DMSO-d6) 

δ 10.25-9.75 (b, 1H, aldehyde), 8.80-8.15 (b, 3H, benzaldehyde), 7.75-7.05 (b, 4H, phthalaldehyde), 7.05-

6.25 (b, acetal). GPC (THF, RI): Mn = 13.5 kDa, PDI = 1.49. 

 

Scheme 7.4 | Synthesis of PPA-HMNB (Polymer 2). 

 

To a Schlenk flask were added 2.41 g PPA-NIPA (Polymer 1, 1.4 mmol –CHO) and sodium borohydride 

(0.10 g, 2.6 mmol). The solids were dissolved in dichloromethane (40 mL) and methanol (8 mL), and the 

reaction mixture left stirring 1 h at room temperature. Polymer 2 was then precipitated into excess methanol 

(200 mL) and washed in methanol and diethyl ether (1.74 g, 72%). 1H NMR (500 MHz, DMSO-d6) δ 8.45-
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7.75 (b, 3H, benzaldehyde), 7.75-7.05 (b, 4H, phthalaldehyde), 7.05-6.25 (b, acetal), 5.70-5.40 (b, CH2-

OH), 4.75-4.25 (b, -CH2-OH). GPC (THF, RI): Mn = 15.7 kDa, PDI = 1.34. 

 

Scheme 7.5 | Synthesis of PPA-UPy (Polymer 3). 

 

In a glovebox, PPA-HMNB (Polymer 2, 0.20 g, 88 μmol –OH) and 1-(6-isocyanatohexyl)-3-(6-methyl-4-

oxo-1,4-dihydro-pyrimidin-2-yl)urea1c (UPy-NCO, 28 mg, 95 μmol) were weighed into a Schlenk flask and 

dissolved in chloroform (60 mL, neutralized by stirring over K2CO3). To this solution was added                 

1,4-diazabicyclo[2.2.2]octane (DABCO, 0.65 mL of a 8.8 mM solution, 6 μmol) and the flask was closed 

and warmed to 60 °C overnight (18 hours). After overnight reaction, 1,6-hexanediamine (50 mg) was added 

to quench the PPA-UPy and the mixture filtered and concentrated in vacuo. The residue was dissolved in 

dichloromethane (20 mL) and filtered, then precipitated into methanol (150 mL) and washed in methanol 

and diethyl ether (0.17 g, 85%). 1H NMR (500 MHz, CDCl3) δ 13.3-12.9 (b, NH), 12.0-11.7 (b, NH), 10.3-

9.9 (b, NH), 8.50-7.75 (b, 3H, benzaldehyde), 7.75-7.05 (b, 4H, phthalaldehyde), 7.05-6.25 (b, acetal), 4.75-

4.00 (b, -CH2-O), 4.00-0.50 (b, aliphatic –CH2-). GPC (THF, RI): Mn = 15.3 kDa, PDI = 1.31. 

 

Scheme 7.6 | Depolymerization of PPA-UPy. 
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In a Schlenk flask, PPA-UPy (Polymer 3, 40 mg) was dissolved in dichloromethane (0.4 mL). To the 

solution was added boron trifluoride etherate (1 drop, ~0.04 mmol) and the reaction mixture stirred for         

5 min at room temperature, turning deep yellow immediately. To the mixture was then added pyridine   

(0.10 mL, 1.2 mmol) and left stirring 2 h. The reaction mixture was concentrated in vacuo and collected as 

a yellow oil, identified as majority o-PA by 1H NMR spectroscopy. 1H NMR (500 MHz, CDCl3) δ 10.54 

(s, 2H, CHO), 7.98 (q, 2H, Ar-H), 7.78 (q, 2H, Ar-H). GPC (THF, RI): No polymer. 

 

Scheme 7.7 | Reconstitution of PPA-UPy. 

 

In a Schlenk flask, PPA-UPy (Polymer 3, 40 mg) was dissolved in dichloromethane (0.4 mL). The solution 

was cooled to -78 °C, and boron trifluoride etherate (1 drop, ~0.04 mmol) was added. The reaction mixture 

was stirred for 2 h at -78 °C, then quenched by adding pyridine (0.10 mL, 1.2 mmol) and left stirring 2 h. 

The solution was then warmed to room temperature and polymer collected by precipitation into methanol 

(50 mL) and washing in methanol and diethyl ether (30 mg, 75%). GPC (THF, RI): Mn = 2.5 kDa,                

PDI = 2.00. 

 

Scheme 7.8 | Formation of PPA-UPy Supramolecular Networks. 
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In a Schlenk flask, PPA-UPy (Polymer 3, 70 mg) was dissolved in dichloromethane (0.4 mL). The solution 

was cooled to -78 °C, and boron trifluoride etherate (0.01 mL, 0.08 mmol) was added. The reaction mixture 

gels almost immediately, but was left for 2 h at -78 °C before quenching with pyridine (0.10 mL, 1.2 mmol) 

and left stirring 2 h. The solution was brought to room temperature and the resulting solid polymer was 

washed in excess methanol and diethyl ether (71 mg, quantitative recovery). The white solid was insoluble 

in chloroform, dichloromethane, THF, and dimethyl sulfoxide (all good solvents for PPA-UPy). 

As a control reaction, the above procedure was repeated with PPA-HMNB (Polymer 2, 70 mg in 0.4 mL 

dichloromethane). The reaction mixture remains soluble and colorless, and the polymer was collected as a 

white powder (34 mg, 49% yield). The polymer is soluble in all typical solvents for PPA. GPC (THF, RI): 

Mn = 2.0 kDa, PDI = 1.80. 

 

Scheme 7.9 | Depolymerization of PPA-UPy Supramolecular Networks (Figure 7.5). 

Cross-linked PPA-UPy (10-20 mg) was suspended in CDCl3 (~3 mL) in a small glass dish, turning to an 

opaque gel. To the suspension was added three drops trifluoroacetic acid. The solid sample shrank in size 

immediately and disappeared completely within 2 min. The solution was collected for analysis and 

identified as majority o-PA monomer by 1H NMR spectroscopy. 1H NMR (500 MHz, CDCl3) δ 10.54 (s, 

2H, CHO), 7.98 (q, 2H, Ar-H), 7.78 (q, 2H, Ar-H). 
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7.6 NMR Spectra 

 
Figure 7.6 | 1H NMR spectrum of PPA-NIPA: NMR spectrum of Mn = 13.5 kDa PPA-NIPA (Polymer 1) 

in DMSO-d6. Additional peak corresponds to water. 

 

 
Figure 7.7 | 1H NMR spectrum of PPA-HMNB: NMR spectrum of Mn = 15.7 kDa PPA-HMNB (Polymer 

2) in DMSO-d6. Additional peaks correspond to monomer and solvent. 
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Figure 7.8 | 1H NMR spectrum of PPA-HMNB: NMR spectrum of Mn = 15.7 kDa PPA-HMNB (Polymer 

2) in CDCl3. Additional peaks correspond to monomer and solvent. 

 

 
Figure 7.9 | 1H NMR spectrum of PPA-UPy: NMR spectrum of Mn = 15.3 kDa PPA-UPy (Polymer 3) in 

CDCl3. Additional peaks correspond to monomer and solvent. 
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Chapter 8: Efforts toward Recyclable, Sustainable 

Depolymerizable Polyesters 

8.1 Abstract 

 With increasing awareness of the environmental burden of plastic production and disposal, there is 

an emerging interest in the identification of polymeric materials that can be produced from renewable 

resources and which can efficiently biodegrade to benign byproducts. Depolymerizable polymers prepared 

from biobased monomers would represent an advantageous route to achieve eco-friendly, recyclable and 

sustainable materials due to their ability to undergo triggered depolymerization on command to unzip 

directly to monomer. Experiments were therefore initiated with the aim of developing a novel 

depolymerizable polyester based on bioavailable lactone monomers. Attempts to polymerize a dimethyl 

substituted δ-valerolactone monomer were unsuccessful owing to an extremely low ceiling temperature for 

the monomer, as elucidated by computational studies. Computational studies were further employed to 

identify potential candidate monomers for such a depolymerizable polyester system, which, if successful, 

would signal a key advance in the development of green, recyclable, and sustainable polymeric materials. 

 

8.2 Introduction 

 The field of sustainable and green materials has notably emerged in the literature in recent years.1 

Recognition of the growing environmental and economic burdens of producing and disposing of 

conventional plastics has increased significantly in the past decade.1-2 Continued exploitation of fossil fuel 

resources for plastic production and further clogging of landfills with non-biodegradable plastic waste is 

simply unsustainable in the long term. We are only now becoming fully aware of the true impact of plastic 

life cycles on the environment, and researchers have thus begun to devote significant resources toward the 

production of environmentally friendly, sustainable, and degradable materials. 

Two main hallmarks have taken shape in the field of green materials chemistry: first, a shift toward 

developing sustainable, biorenewable building blocks from which to prepare materials; and second, a focus 

on degradable materials that break down to benign products and thereby reduce waste buildup.1-2 In terms 

of sustainable starting materials, there has been an emphasis to shift material resource infrastructure away 

from finite fossil fuel feedstocks and toward bioavailable and biorenewable products.3-4 For example, 

several research groups have initiated projects to prepare and study aliphatic polyesters based on bioderived 

lactone monomers.1b Several novel monomers and polymers have been synthesized from bioavailable 
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carvone and menthol precursors, and current efforts are focused on achieving favorable mechanical 

properties akin to commodity plastics with these new sustainable materials.4 Amazingly, the Zhang and 

Hillmyer groups have even demonstrated the ability to engineer bacteria to directly manufacture lactone 

monomers, which could be copolymerized with lactide to produce mechanically robust materials.3c  

 The second major research effort in green materials chemistry aims to reduce waste by preparing 

biodegradable and recyclable materials.2 A wide variety of materials have been prepared and studied with 

triggered degradation mechanisms based on photo-triggering, acid-sensitivity, or susceptibility to 

hydrolysis.5 The Miller group, in fact, has shown that incorporating acetal functionality into polyesters via 

acetal metathesis polymerization yields polyesteracetals that degrade at enhanced rates compared to 

analogous polyesters without the acetal functionality.5c-d While autonomic degradation into benign 

byproducts is of course desirable, it would be more efficient to directly recycle materials back into 

monomers on command. 

 Advanced green materials will surely merge both research strategies and utilize sustainable 

monomers that are not only capable of biodegradation, but can also be recycled and reused. We hypothesize 

that depolymerizable polymers based on renewable monomers could serve this purpose. One could envision 

preparing a low ceiling temperature (Tc) polymer with sustainable and eco-friendly monomer units, which 

would be capable of triggered depolymerization to regenerate monomer for reuse. Depolymerizable 

polymers have advantages compared to typical degradable materials in that they revert to monomer on 

depolymerization rather than alternative small molecule products that need further refinement to convert to 

monomer. Further, numerous triggering events could be employed to effect the unzipping reaction to 

recycle monomer on demand. Finally, the depolymerization process is extremely rapid compared to 

degradation so material recycling can be achieved rapidly on demand. For all of these reasons, we initiated 

a project geared toward identifying potential low Tc polymers based on biorenewable monomers, and to 

prepare and study these eco-friendly, sustainable, depolymerizable polymers. 

 

8.3 Results and Discussion 

8.3.1 Identification of Monomer Target 

 The first aim was to identify a bioderived monomer that would conceivably have a Tc at or below 

room temperature. Lactone monomers were initially targeted due to the breadth of literature concerning 

their preparation and polymerization, as well as their known bioavailability.1, 3-4 Intriguingly, it was 

discovered that substituents in 4- and 6- positions in δ-valerolactones lower the enthalpy of polymerization 
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to be considerably less exothermic, resulting in a decreased Tc for such polyesters compared to the parent 

polymer (Scheme 8.1, Table 8.1).3 For example, unsubstituted poly(δ-valerolactone) is known to have a 

moderately high Tc of 150 °C (Table 8.1, Entry 1).3a However, incorporating a 4-methyl or 6-pentyl 

substituent in the lactone markedly decreased the polymer Tc to 27 °C and 44 °C, respectively (Table 8.1, 

Entries 2-3).3b-c  

It was suggested that, while the entropies of polymerization are not as significantly affected, the 

basis for this decreased enthalpy of polymerization is less ring-strain in the substituted monomers. We 

therefore reasoned that further decreasing the ring-strain in the lactone monomer would yield polymers 

with Tc’s below room temperature, as desired. Based on this rationale, we theorized that incorporating          

4- and 6-methyl substituents in the lactone would generate the desired depolymerizable polyester material 

(Scheme 8.1, Table 8.1, Entry 4).6 In support this hypothesis, it was demonstrated computationally that the 

4-methyl, 6-methyl, and cis-4,6-dimethyl-δ-valerolactones all adopt the same half-chair conformation as 

their most stable conformer.7 

Scheme 8.1 | Hypothesized depolymerizable, sustainable polyesters. 

 

 

Table 8.1 | Thermodynamic data for substituted δ-valerolactone monomers. 
Entry R1 R2 ΔH (kJ/mol) ΔS (J/mol K) Tc (°C)a 

1b H H -27.4 -65 150 

2c CH3 H -13.8 -46 27 

3d H C5H11 -17.1 -54 44 

4e CH3 CH3 - - - - - - - - - 

      aAt 1 M. bRef 3a. cRef 3c. dRef 3b. eThis work. 

 

8.3.2 Synthesis and Ring-Opening Polymerization of 4,6-dimethyl-δ-valerolactone  

The targeted 4,6-dimethyl-δ-valerolactone monomer was prepared in a single step from a 

commercially available precursor (Scheme 8.2). Briefly, 4,6-dimethyl-α-pyrone was reduced by catalytic 

hydrogenation and the monomer was purified by vacuum distillation to yield a viscous, colorless liquid.8 
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As expected for heterogeneous hydrogenation conditions, 1H NMR characterization of the product revealed 

the presence of almost exclusively the cis isomer.8b-c 

Scheme 8.2 | Two-step synthetic route to poly(4,6-dimethyl-δ-valerolactone). 

 

With the monomer in hand, efforts shifted to preparing the polyester via either anionic or cationic 

ring-opening polymerizations (Scheme 8.2).9 Anionic ring-opening polymerizations were conducted either 

in bulk (~8 M monomer) or in dichloromethane, and were initiated by a combination of 1,6-hexanediol and 

triazabicyclodecene. Cationic ring-opening polymerizations followed the same general procedure, but were 

instead initiated by a combination of 1,6-hexanediol and diethylzinc.  

Initial polymerization attempts over a range of concentrations, temperatures, and monomer-to-

initiator ratios did not successfully furnish polymer, so additional steps were taken to purify the monomer. 

It was already known that ring-opening polymerizations can be extremely sensitive to impurities, so a more 

rigorous monomer purification protocol was undertaken, per literature precedent.3c In short, the monomer 

was dried overnight over calcium hydride, followed by two successive vacuum distillations to obtain 

rigorously purified 4,6-dimethyl-δ-valerolactone. 

Attempted polymerization of the purified monomer still did not generate any appreciable quantity 

of polymer. It was hypothesized that the potentially low Tc of the polymer was preventing polymerization, 

so polymerizations were attempted in bulk at 0 °C (the monomer freezes at temperatures below 0 °C). Even 

in bulk at low temperature, monomer was recovered in quantitative yield with no evidence of any polymer 

for either anionic or cationic ring-opening polymerizations. As a control to test reagent efficacy, identical 

polymerizations were set up with lactide as monomer. Poly(lactide) was recovered in good yields, 

confirming catalyst and initiator purity. 

 

8.3.3 Computational Studies and Identification of Candidate Lactone Monomers 

 The reluctance of 4,6-dimethyl-δ-valerolactone to polymerize was probed computationally. The 

insertion of methyl acetate into the lactone was employed as a model reaction for propagation to estimate 

an enthalpy of polymerization, as was previously done to model the polymerization of 1,3-dioxolan-4-one 

and γ-butyrolactone (Scheme 8.3).5d With an estimation of the enthalpy of polymerization, it is possible to 

calculate an approximate Tc for the monomer by assuming an entropy of polymerization similar to 
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analogous lactones. Thus, the corresponding heats of formation for various substituted δ-valerolactones, 

the ring-opened products, and methyl acetate were calculated by the T1 thermochemical recipe 

computational method, and the results are summarized in Table 8.2.  

Scheme 8.3 | Model reaction for lactone ring-opening polymerization for computational studies. 

 

 

Table 8.2 | Computational data for substituted δ-valerolactone monomers. 
Entry R1 R2 ΔH (kJ/mol), 

calc.a 

ΔH (kJ/mol), 

cal.b 

ΔH (kJ/mol), 

expt.c 

Tc (°C)d 

calc. 

Tc (°C) 

expt.c 

1 H H -10.8 -27.5 -27.4 220 150 

2 CH3 H 21.8 -14.8 -13.8 0 27 

3 H CH3 18.5 -16.1 -17.1 20 44 

4 CH3 CH3 38.3 -8.3 - - - -120 - - - 

5 t-Bu H 52.5 -2.8  - - - -220 - - - 

6 H t-Bu 21.3 -15.0 - - - 0 - - - 

7 OCH3 CH3 21.5 -14.9 - - - 0 - - - 

aCalculated by T1 thermochemical recipe computational method. bAfter normalization based on calibration curve. cSee Table 8.1. 
dAt 1 M, with ΔS = 55 J/mol K (average of known values) and ΔH determined by calibration. 

 

 As seen in Table 8.2, some enthalpies are estimated to be endothermic, which would make the 

polymerization thermodynamically impossible. This is not entirely unexpected for such an oversimplified 

model reaction. Importantly, though, the computation accurately predicts the order of enthalpies for known 

monomers, with δ-valerolactone, 4-methyl-δ-valerolactone, and 6-methyl-δ-valerolactone displaying the 

proper order of calculated ΔHp’s (Entries 1-3). Undeterred, a calibration curve was constructed using the 

three known data points for the enthalpy of polymerization and the calculated values from the model 

reaction (Figure 8.1). Incredibly, the calibration curve is quite linear and with a high correlation coefficient, 

suggesting that interpretation of the data in the manner is not unreasonable. In fact, the computed enthalpies 

of polymerization are in close agreement with known values, and estimated Tc’s by this method are 

gratifyingly accurate, even when using an average entropy of polymerization in such estimates rather than 

the known values (Table 8.2, Entries 1-3). 
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Figure 8.1 | Calibration curve for determining ΔHp computationally for various lactones. 

 With this apparent validation of the computational method (and a recognition of its potential 

limitations in accuracy), the method was applied to the 4,6-dimethyl-δ-valerolactone monomer (Table 8.2, 

Entry 4). Not surprisingly, it was found that this lactone has a significantly reduced exotherm of 

polymerization of -8.3 kJ/mol, likely owing to the further decrease in ring-strain with double substitution. 

The Tc is calculated to be approximately -120 °C, explaining the apparent reluctance to polymerize. In fact, 

the Tc for this monomer in bulk is estimated as -50 °C (at 8 M), well below its freezing point. The 

equilibrium monomer concentration at 0 °C can be estimated to be substantially greater than 8 M, again 

corroborating the monomer’s inability to polymerize. 

 An effort was undertaken to identify other potential monomer candidates using this computational 

method. Two monomers with tert-butyl substituents in either the 4- or 6-position were evaluated because it 

was hypothesized that the bulky substituent may further attenuate lactone ring-strain, and 4-methoxy-6-

methyl-δ-valerolactone was also assessed because of its ease of preparation from the parent pyrone, which 

is commercially available (4-methoxy-6-methyl-2H-pyran-2-one).10 Several other substituted 2-pyrone 

starting materials are commercially available, and could be considered in further iterations. 

 As anticipated, tert-butyl substitution does significantly modulate the enthalpy of ring-opening. In 

the 4-position, the enthalpy of polymerization is estimated to be -2.8 kJ/mol, having a Tc of approximately 

-220 °C (Table 8.2, Entry 5), far below what would be considered a viable monomer candidate. The 6-tert-

butyl substituted lactone, on the other hand, has an apparent Tc close to 0 °C, in a range that merits further 

consideration (Table 8.2, Entry 6). Likewise, 4-methoxy-6-methyl-δ-valerolactone has an estimated Tc 

close to 0 °C (Table 8.2, Entry 7). Since these values are only rough estimates, it would certainly be of 

value to prepare the corresponding candidate monomers (depicted in Scheme 8.4) and assess their viability 
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to serve as eco-friendly, sustainable, and depolymerizable polyester systems. Such efforts are currently 

underway. 

Scheme 8.4 | Lactone monomer candidates based on computational analysis. 

 

 

8.4 Conclusions 

 In this chapter, the groundwork was laid for the development of a green, depolymerizable 

polymeric system. A candidate monomer, 4,6-dimethyl-δ-valerolactone, was prepared and its 

polymerizability assessed, but it was discovered that polymerization was thermodynamically unfavorable 

under feasible experimental conditions. To evaluate other candidate monomers, a computational method 

was devised where the ring-opening of lactones by insertion of methyl acetate was used to model a ring-

opening polymerization. This method identified two additional monomer candidates, one of which can be 

prepared in a single step from commercially available starting materials, as viable candidate monomers for 

further exploration. If successful, this type of sustainable, recyclable, depolymerizable polyester would 

signal a key advance in the development of green materials. 

 

 

8.5 Synthetic Procedures 

Scheme 8.5 | 4,6-dimethyl-δ-valerolactone synthesis. 

 

In a round-bottom flask, palladium on carbon (10% Pd, 0.51 g, 0.5 mmol Pd) and 4,6-dimethyl-α-pyrone 

(2.10 g, 17 mmol) are thoroughly degassed under nitrogen. The solids are then dissolved in a 2:1 mixture 

of diethyl ether:methanol (60 mL) and the flask is equipped with hydrogen from four filled balloons. The 

mixture is left stirring overnight at room temperature, then the catalyst is filtered off and the crude product 

concentrated to a yellow oil. The oil is stirred over CaH2 for 24 h, then filtered and distilled twice under 
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vacuum (0.15 Torr, 60 °C). The distillate is collected as a viscous, colorless liquid (1.61 g, 73%, ρ = 1.08 

g/mL).  1H NMR (500 MHz, CDCl3) δ 4.40 ppm (m, 1H, -CH-), 2.65 ppm (dd, 1H, -CH2-), 2.12-2.00 ppm 

(m, 2H, -CH- & -CH2-), 1.96 ppm (m, 1H, -CH2-), 1.91 ppm (dd, 1H, -CH2-), 1.35 ppm (d, 3H, CH3), 1.01 

ppm (d, 3H, CH3). 13C{1H} NMR (500 MHz, CDCl3) δ 171.7 ppm, 77.2 ppm, 39.0 ppm, 38.0 ppm, 27.0 

ppm, 22.1 ppm, 21.8 ppm. HR EI-MS (m/z): calcd for C7H12O2 [M]+, 128.0837; found 128.0838. 

 

Scheme 8.6 | Anionic ring opening polymerization of 4,6-dimethyl-δ-valerolactone. 

 

In a glovebox, 4,6-dimethyl-δ-valerolactone (0.50 g, 3.9 mmol) and 1,6-hexanediol (6 mg, 0.05 mmol,      

2.5 mol% -OH) are weighed into a 20-mL vial. Then, triazabicyclodecene (TBD, 14 mg, 0.1 mmol) is added 

and the vial rapidly sealed, removed from the glovebox, and cooled to 0 °C. The polymerization reaction is 

left stirring at 0 °C for 6 h. Then, phenyl isocyanate (0.05 mL, 0.5 mmol) and dibutyl tin dilaurate (DBTL, 

0.01 mL, 0.02 mmol) are added, and the reaction mixture is allowed to warm to room temperature overnight. 

The resulting mixture is dried overnight on vacuum and analyzed directly by GPC and NMR spectroscopy. 

The analytical results confirm the mixture is majority monomer. GPC (THF, RI): No polymer. 

  

Scheme 8.7 | Cationic ring opening polymerization of 4,6-dimethyl-δ-valerolactone. 

 

In a glovebox, 4,6-dimethyl-δ-valerolactone (0.50 g, 3.9 mmol) and 1,6-hexanediol (6 mg, 0.05 mmol,      

2.5 mol% -OH) are weighed into a 20-mL vial. Then, diethylzinc (15 µL, 0.15 mmol) is added and the vial 

rapidly sealed, removed from the glovebox, and cooled to 0 °C. The polymerization reaction is left stirring 

at 0 °C for 6 h. Then, phenyl isocyanate (0.05 mL, 0.5 mmol) and dibutyl tin dilaurate (DBTL, 0.01 mL, 

0.02 mmol) are added, and the reaction mixture is allowed to warm to room temperature overnight. The 

resulting mixture is dried overnight on vacuum and analyzed directly by GPC and NMR spectroscopy. The 

analytical results confirm the mixture is majority monomer. GPC (THF, RI): No polymer. 
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8.6 Computational Results 

Scheme 8.8 | Model reaction for lactone ring-opening polymerization. 

  

Table 8.3 | Computational data for substituted δ-valerolactone monomers.a 

Entry R1 R2 Hf (kJ/mol), 

methyl acetate 

Hf (kJ/mol), 

lactone 

Hf (kJ/mol), 

di-ester 

ΔH (kJ/mol), 

calc. 
ΔH (kJ/mol), 

cal.b 

Tc (°C) 

expt.c 

1 H H -408.28 -378.82 -797.90 -10.8 -27.5 220 

2 CH3 H -408.28 -409.52 -796.02 21.8 -14.8 0 

3 H CH3 -408.28 -419.05 -808.85 18.5 -16.1 20 

4 CH3 CH3 -408.28 -449.59 -819.53 38.3 -8.3 -120 

5 t-Bu H -408.28 -480.77 -836.55 52.5 -2.8 -220 

6 H t-Bu -408.28 -496.73 -883.70 21.3 -15.0 0 

7 OCH3 CH3 -408.28 -553.57 -940.32 21.5 -14.9 0 

aCalculated by T1 thermochemical recipe computational method. bAfter normalization based on calibration curve. cAt 1 M, with 
ΔS = 55 J/mol K (average of known values) and ΔH determined by calibration. 
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