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ABSTRACT

Automatic speech recognition has matured into a commercially successful

technology, enabling voice-based interfaces for smartphones, smart TVs, and

many other consumer devices. The overwhelming popularity, however, is

still limited to languages such as English, Japanese, and German, where vast

amounts of labeled training data are available. For most other languages,

it is prohibitively expensive to 1) collect and transcribe the speech data

required to learn good acoustic models; and 2) acquire adequate text to

estimate meaningful language models. A theory of unsupervised and semi-

supervised techniques for speech recognition is therefore essential. This thesis

focuses on HMM-based sequence clustering and examines acoustic modeling,

language modeling, and applications beyond the components of an ASR, such

as anomaly detection, from the vantage point of PAC-Bayesian theory.

The first part of this thesis extends standard PAC-Bayesian bounds to

address the sequential nature of speech and language signals. A novel algo-

rithm, based on sparsifying the cluster assignment probabilities with a Renyi

entropy prior, is shown to provably minimize the generalization error of any

probabilistic model (e.g. HMMs).

The second part examines application-specific loss functions such as cluster

purity and perplexity. Empirical results on a variety of tasks – acoustic

event detection, class-based language modeling, and unsupervised sequence

anomaly detection – confirm the practicality of the theory and algorithms

developed in this thesis.
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“Take up one idea. Make that one idea your life – think of it, dream of it,

live on that idea. Let the brain, muscles, nerves, every part of your body be

full of that idea, and just leave every other idea alone. This is the way to

success, and this is the way great spiritual giants are produced.”

–Swami Vivekananda
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CHAPTER 1

INTRODUCTION

Automatic speech recognition (ASR) has evolved from trivial command-and-

control applications to large-vocabulary continuous-speech systems that can

easily run on a smartphone. The underlying theory and algorithms, to this

day, are based on the hidden Markov model (HMM). What has advanced

over the years is therefore not theory, but rather techniques and the comput-

ing power required to leverage increasing amounts of labeled data. Popular

approaches to ASR are almost exclusively designed for English, Japanese,

and other such languages where transcribed speech data is abundant.

Comparable datasets simply do not exist for a majority of the nearly 7000

known languages, and it is prohibitively expensive to 1) collect and transcribe

the speech data required to learn good acoustic models; and 2) acquire ade-

quate text to estimate meaningful language models. In this thesis, we extend

the theory of speech recognition to a zero-resource setting, in which almost

no labeled data are available.

1.1 Motivation

To further motivate the importance of unsupervised and semi-supervised

techniques, we briefly examine the linguistic landscape of India. With over

a billion people distributed across at least 30 major languages (each spoken

by more than a million), India serves as a good case study.

Figure 1.1 provides a ranking of Indian languages by population [1]. Hindi

is a widely spoken language with nearly as many native speakers as English;

however, commercial ASR solutions do not support Hindi, let alone other

significant (by population) languages such as Bengali, Telugu, Marathi, etc.

There are two main reasons for the lack of interest in Indian languages: 1)

English is a lingua franca among the educated Indian elite, and although
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Figure 1.1: Indian languages by population (% of total population)

there are only 85 million Indians who speak English, the segment of the

population already includes many of the financially stable and tech savvy

people; 2) there are very few transcribed datasets that can support non-

trivial applications.

We focus on the second problem. A trivial solution is to collect the nec-

essary data and replicate what is already successful for English; but such an

approach is certainly not scalable, and can also be limited in scope. For ex-

ample, Indian speakers are often bilingual or trilingual, and colloquial speech

consists of code-switching across multiple languages. There are several other

situations, both within and outside the context of Indian languages, that can

benefit from the efficient use of limited and possibly unlabeled data. In this

thesis, we extend the theory of unsupervised techniques to not only address

zero resource speech recognition, but also other related applications such as

audio event detection and anomaly detection.

1.2 Background

The fundamental components of ASR must be revisited if we are to enhance

and extend the technology to settings in which we have very little data.

Figure 1.2 represents the architecture of a typical ASR. Language is highly
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Figure 1.2: Architecture of a typical speech recognition system

structured, as reflected by the architecture: a sentence is made up of words

(language model), which is made up of a sequence of sub-word units such as

phonemes (lexicon), and the phonemes themselves map to a set of sounds

(acoustic model).

1.2.1 Acoustic Model

The acoustic model maps a speech signal into sub-word units such as phones.

The mapping can be either deterministic or probabilistic, with the latter

being far more popular. Given some acoustic features Y ε Y and some

symbol W ε W , the acoustic model estimates P (Y |W ). The hidden Markov

model (HMM) is the most popular statistical tool for acoustic modeling: it

has a history that dates back to the 1960s and is still the de facto approach in

state-of-the-art systems. Efficient implementation, impressive results, and a

natural and intuitive interpretation justify the extensive use of HMMs within

the speech recognition community.

HMMs are graphical models that are characterized by a hidden state space

and an observation space, as shown in Figure 1.3. In the case of an acoustic

model, the hidden states represent symbolic, but acoustically generalizable

units such as phones, and the observations are acoustic feature vectors in

some fixed length vector space (e.g. 39 mel-frequency cepstral coefficients

(MFCCs)). They are fully parameterizable by

λ = {P (Wt), P (Wt|Wt−1), P (Yt|Wt)}

3



Figure 1.3: Graphical model representation of a HMM

Figure 1.4: HMM representation of the word “ONE”

where P (Wt) is a prior on the state space, P (Wt|Wt−1) is the probability

of transitioning from one state to another, and P (Yt|Wt) is the probability

of observing the acoustic vector Yt given that the hidden state (phone or

triphone) is Wt.

We train an acoustic model by estimating λ, the parameters of a HMM.

Since Yt is itself continuous, additional assumptions on P (Yt|Wt) are required;

in most cases, P (Yt|Wt) is modeled with a mixture of Gaussians. In stan-

dard systems, a separate HMM is trained for each phone, and the individual

phone HMMs are stitched together to represent a particular word. Figure

1.4 illustrates this for the word “ONE.” The success of an acoustic model

therefore depends heavily on both the quantity and quality of speech data

and their transcriptions.
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1.2.2 Language Model

The language modeling literature is as vast as all of speech recognition since

it serves many other technologies such as information retrieval and machine

translation. We focus on statistical language models (SLMs), which specify a

prior on language; the prior captures structure in natural language by learn-

ing a distribution over all possible sequences of words (phrases, sentences,

etc.). Given a sentence W = w1w2...wk, the goal is to estimate P (W ).

This is fundamentally a density estimation problem, and therefore unsu-

pervised. However, most natural languages contain large vocabularies, and a

good SLM requires enormous amounts of training data. For languages such

as English, text corpora are readily available online at sources like the Wall

Street Journal, Wikipedia, etc. In other cases, it may be difficult to find

written text.

We do not provide a survey of all possible SLM techniques here. In this

thesis, we focus on n-grams and their variants, which account for some of the

most successful approaches in language modeling. With a Markov assump-

tion, P (W ) can be segmented into several joint probabilities over an n-tuple.

An n-gram is therefore a histogram that simply counts the number of times

a particular word sequence occurs in the training text. It is well understood

that there is no such thing as a “large” dataset – there always exist word

sequences that are not observed in the training set, but may be present in

the test set. Techniques such as clustering, smoothing, and interpolation

ameliorate the impact of data sparsity.

1.2.3 Zero Resource Setting

Automatic speech recognition (ASR) is a mature technology when all three

components – acoustic model, lexicon, and language model – are well-specified.

The purpose of this thesis is to develop rigorous theory and practical algo-

rithms when one or more of these components is missing. In this section,

we briefly review existing techniques that cope with the lack of transcribed

speech data, and then describe a particularly useful framework that lends

itself to the theoretical results presented in subsequent chapters.

Figure 1.5 represents a setting in which there is absolutely no transcribed

speech data, no lexicon, and no text to estimate a language model. In fact, we
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Figure 1.5: A zero resource setting

may not even know what the language is. It is still important to identify re-

curring acoustic patterns that represent meaningful sentence-like structures.

The prevailing approach [2, 3] is based on the acoustic dot plot. A similarity

matrix (time-shifted kernel evaluations of the speech signal) is constructed,

and key off-diagonal patterns are assumed to be meaningful phrases.

We approach this problem in the context of sequence clustering as it is

both intuitive and encapsulates the former approach. The main idea is to

cluster a sequence of phones into another sequence of word-like structures;

zooming in, we can obtain a sequence of phones by clustering a sequence of

acoustic features. The problem as specified, however, is ill-posed; to avoid a

trivial solution, we impose the following intuitive constraints:

1. We want the word-like clusters to be as pure as possible.

2. We want the word transitions to be sparse, so that they reflect structure

in natural language (e.g. words don’t arbitrarily transition between

each other).

Rigorous results from PAC-Bayesian theory will later confirm that sparsity

is not only intuitive, but also essential for provably minimizing generalization

error.

Given some under-resourced language, it may even be possible to find

an acoustic model in another language (e.g. English), that can produce

a noisy sequence of phones. Of course, the level of noise depends on the

phonetic inventory and similarity between the two languages. Nevertheless,

the clustering approach described above can be extended to the almost zero

6



Figure 1.6: An (almost) zero resource setting

Figure 1.7: A transfer learning architecture
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resource setting depicted in Figure 1.6 and the transfer learning approach

shown in Figure 1.7.

1.3 Contributions

This thesis introduces PAC-Bayesian analysis to unsupervised problems in

audio, speech, and language applications; consequently, we develop novel the-

ory and algorithms that improve upon the state-of-the-art in many settings.

Following is a partial list that summarizes the main contributions.

1. Standard PAC-Bayesian bounds are extended to address the sequential

nature of speech and language signals.

2. In the case of clustering – the prevailing approach for organizing un-

labeled data – a novel regularization technique is shown to provably

minimize generalization error.

3. The regularization technique is incorporated into HMM-based sequence

clustering algorithms; as a corollary, it is shown, for the first time,

that sparsification of any HMM with a Renyi entropy prior minimizes

generalization error.

4. The HMM-based sequence clustering algorithm performs remarkably

well on tasks such as language modeling and acoustic event detection.

1.4 Organization

The rest of this thesis is organized in two parts. In the first part (Chapters 2

& 3), standard unsupervised approaches to speech recognition, such as clus-

tering, are re-examined within the PAC-Bayesian framework; this provides

theoretical guarantees and the insight necessary for a novel HMM-based se-

quence clustering algorithm. In the second part (Chapters 4-6), applications

such as language modeling, acoustic event detection, and anomaly detection

are explored as a practical consequence of the theory and algorithms devel-

oped in the first part. The following list provides a short description of each

chapter.
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Chapter 2: PAC-Bayesian Analysis Relevant PAC-Bayesian results for

supervised learning problems (e.g. classification) as well as unsuper-

vised learning problems (e.g. clustering and density estimation).

Chapter 3: Sequence Clustering PAC-Bayesian bounds for clustering are

extended to sequences. A novel HMM-based sequence clustering algo-

rithm that directly minimizes the bound is introduced.

Chapter 4: Class-Based Language Models The bounds are specialized

to the perplexity of a language model, and the clustering algorithm is

tested on the resource management corpus.

Chapter 5: Acoustic Event Detection The algorithm is used effectively

for clustering non-speech audio into meaningful acoustic events. It is

also shown, within the PAC-Bayesian framework, that the algorithm

directly maximizes the purity of a cluster.

Chapter 6: Anomaly Detection Additional theory and results are devel-

oped for unsupervised sequence anomaly detection.

Chapter 7: Discussion An example of an entire end-to-end unsupervised

system for recognizing words in Gujarati.

Chapter 8: Conclusion Summary of key results and possible extensions

to other models (e.g. nonparametric) and applications (e.g. mismatch

between training and test sets).

9



CHAPTER 2

PAC-BAYESIAN ANALYSIS

2.1 Introduction

PAC-Bayesian theory is a useful framework for combining frequentist bounds

with the notion of a prior. Probably approximately correct (PAC) learning

bounds the worst case generalization error of the best hypothesis selected

from a hypothesis space – and therefore treats all hypotheses uniformly [4].

PAC-Bayesian bounds, however, place a prior over the hypothesis space

while making no explicit assumptions on the data generating distribution [5].

Thus, PAC-Bayesian bounds can both 1) incorporate prior information, and

2) provide frequentist guarantees on the expected performance. They have

been successfully applied to classification settings such as the support vec-

tor machine (SVM) [6, 7], yielding significantly tighter bounds. Seldin and

Tishby [8] extend the framework to include unsupervised learning tasks such

as density estimation and clustering.

Given some feature space X , a label space Y , we denote h : X → Y as a

hypothesis h(x) on sample x. We assume h ε H , where H is the hypothesis

space.

For y, y′ ε Y , we define a loss function l(y, y′). In the case of classification,

this is usually the 0-1 loss, quadratic loss, hinge loss (SVM), etc. For an

unsupervised learning task such as density estimation, less intuitive metrics

such as cross entropy can be used. Similar to PAC learning, we can define a

true loss L(h) and the empirical loss L̂(h) for a hypothesis h.

L(h) = E(x,y)[l(y, h(x))]

L̂(h) =
1

N

N∑
i=1

l(yi, h(xi))

10



By defining a distributionQ(h) over the hypothesis spaceH, PAC-Bayesian

analysis allows for a second level of averaging. With some notational over-

load, we can refer to Q as a random predictor that satisfies the following

process:

• Draw h ε H according to Q(h).

• Observe a new sample, x.

• Return h(x).

We can again define loss functions over Q:

L(Q) = Eh∼Q[L(h)]

L̂(Q) = Eh∼Q[L̂(h)]

The goal of PAC-Bayesian analysis is to provide guarantees on the dif-

ference between the true loss (L(Q)) and the empirical loss (L̂(Q)) as a

function of the number of samples N and the model parameters defined by

the hypothesis space H.

The Change of Measure Inequality (CMI) [8] is central to almost every

PAC-Bayesian bound, so we briefly state it here. For any measurable function

φ(h) on H and for any distributions Q(h) and P(h):

EQ(h)[φ(h)] ≤ KL(Q||P) + lnEP(h)

[
eφ(h)

]
(2.1)

where

KL(Q||P) = EQ(h)

[
ln
Q(h)

P(h)

]
is the KL-divergence between Q and P .

Proof Sketch The proof is surprisingly straightforward.

EQ(h)[φ(h)] = EQ(h) ln

(
Q(h)

P(h)

P(h)

Q(h)
eφ(h)

)

= EQ(h) ln

(
Q(h)

P(h)

)
+ EQ(h) ln

(
P(h)

Q(h)
eφ(h)

)
and by the definition of KL-divergence and Jensen’s inequality

≤ KL(Q||P) + lnEQ(h)

[
P(h)

Q(h)
eφ(h)

]
11



The second distribution, P(h), is usually referred to as a “prior” in the PAC-

Bayesian literature. Note that P is not a prior in the Bayesian sense:

• It indicates preference on the structure of the hypothesis, not an as-

sumption on the data generating distribution, although the latter could

be a consequence of the former.

• The inequality holds regardless of P .

• The inequality holds regardless of Q, which is not necessarily the Bayes

posterior.

2.2 Classification

We can measure the performance of any classification task with a loss function

l(y, y′). The 0-1 loss, for example, is the most intuitive one, as it simply

counts the number of misclassifications. It is trivial to measure performance

on a labeled training set, but the ultimate goal of any prediction problem is

to also ensure that the algorithm works well on a previously unobserved test

set. PAC-Bayesian analysis provides provable guarantees on the performance

of an algorithm/a class of algorithms on test data. In this section, we present

one such bound for classification.

Given a training set D = {(xi, yi)}Ni=1, where (xi, yi) are independent and

identically distributed, we learn a random classifier Q, which is a distribution

over classifiers in some hypothesis space H. Unlike standard PAC analysis,

we can also select a prior P that allows us to favor certain classifiers over

others. For example, if H is defined to be the space of all polynomials, P
can be selected to favor polynomials with degree 1. The following bound for

classification is an immediate consequence of CMI in Equation (2.1).

PAC-Bayes-Hoeffding Inequality [8] Assume that l(y, y′) is bounded,

and fix a prior P over H. Then, for any δ ε (0, 1), with probability greater

than 1− δ, for all random classifiers Q:

L(Q) ≤ L̂(Q) +

√
KL(Q||P) + ln 1

δ

2N
(2.2)

In words, the test set error of any random classifier (L(Q)) is bounded by

12



its training error (L̂(Q)) plus an additional term that depends on the model

parameters (KL(Q||P)), confidence level (δ), and the size of the training

set (N). The bound above can be specialized and tightened by selecting an

appropriate hypothesis space and prior.

The proof follows from the change of measure inequality [8]. By setting

φ(h) = λ(L(h)− L̂(h)) in Equation (2.1), we obtain

λ
(
L(Q)− L̂(Q)

)
≤ KL(Q||P) + lnEP(h)

[
eλ(L(Q)−L̂(Q))

]
and the inequality in Equation (2.2) follows after applying the Markov and

Hoeffding inequalities to the RHS above, and optimizing over λ. Similar

bounds can be derived for unsupervised learning problems such as density

estimation and clustering.

2.3 Density Estimation

In unsupervised learning problems, it is difficult to define straightforward loss

functions. Seldin and Tishby show that it is still possible to obtain similar

generalization results by selecting a clever space. We reproduce the result

below and encourage the interested reader to consult Seldin and Tishby [8]

for a thorough proof.

PAC-Bayesian Bound for Density Estimation Let X be the sample

space and p(X) be an unknown distribution over X . Let H be a hypothesis

space, in which h ε H is a mapping h : X → Z where Z is a finite set.

We define ph(Z) = P{h(X) = Z} as a distribution over Z induced by the

unknown distribution p(X) and the hypothesis h. Again, we assume that P
is some prior over the hypothesis space. As with the loss function, we can

have a second level of averaging over Q: pQ = EQ(h)ph(Z). Given N i.i.d.

samples drawn from p(X), let p̂(X) be the empirical distribution. We can

define p̂Q(Z) = EQ(h)p̂h(Z). With probability greater than 1− δ, for all Q:

KL(p̂Q(Z)||pQ(Z)) ≤
KL(Q||P) + (|Z| − 1) ln(N + 1)− ln δ

N
(2.3)

This is a specific realization of the CMI, with φ(h) = λKL(p̂h(Z)||ph(Z)).

Although we do not have an explicit bound on the loss function as in the

13



case of classification, Equation (2.3) still bounds the distance between the

true distribution p(X) and the empirical estimate p̂(X) as a function of the

confidence (δ) and the number of samples (N).

2.4 Clustering

In this section, we present PAC-Bayesian bounds for clustering as a density

estimation problem and briefly discuss the case when labels are available.

2.4.1 Clustered Density Estimation

Given a d-dimensional product space X (1) × ... × X (d) and a collection of

N samples, S, independent and identically distributed (i.i.d.) according to

some unknown distribution p(x1, ..., xd) over the product space, we want to

estimate p(x1, ..., xd) with some model q(x1, ..., xd). In the case of clustering

(e.g. class-based models), we make the following assumption on q(x1, ..., xd)

[Note: we make no assumptions on the true distribution p(x1, ..., xd)]:

q(x1, ..., xd) =
∑
c1,...,cd

q(c1, ..., cd)
d∏
i=1

q(xi|ci) (2.4)

where ci = hi(xi) for some clustering function hi : X (i) 7→ C(i). We refer to

them collectively as a clustering function h, h = {hi}di=1; hence

h : X (1) × ...×X (d) 7→ C(1) × ...× C(d)

We assume that the original space X (1) × ... × X (d) has finite cardinality,

with ni = |X (i)|, and likewise for the clustered space C(1) × ... × C(d), where

mi = |C(i)| is the number of clusters. We define the hypothesis space, H, to

be the space of all possible clustering functions h ε H.

For h εH, we define distributions ph(c1, ..., cd) and p̂h(c1, ..., cd) that depend

on the unknown true distribution p(x1, ..., xd) and the empirical (maximum

likelihood) estimate p̂(x1, ..., xd).

ph(c1, ..., cd) =
∑

x1,...,xd

p(x1, ..., xd)
d∏
i=1

δ(hi(xi) = ci)
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p̂h(c1, ..., cd) =
∑

x1,...,xd

p̂(x1, ..., xd)
d∏
i=1

δ(hi(xi) = ci)

The delta function, δ(arg), takes a value of 1 only when arg is true, and 0

otherwise. We can extend to the original space with the model assumption

in Equation (2.4) as follows:

ph(x1, ..., xd) =
∑
c1,...,cd

ph(c1, ..., cd)
d∏
i=1

q(xi|ci)

p̂h(x1, ..., xd) =
∑
c1,...,cd

p̂h(c1, ..., cd)
d∏
i=1

q(xi|ci)

We can apply the CMI with φ(h) = N · KL(p̂h(x1, ..., xd)||ph(x1, ..., xd))

and simplify the KL-divergence term by recognizing that:

• The set {q(ci|xi)}di=1 defines a distribution over all possible clusterings,

and hence Q = {q(ci|xi)}di=1.

• A specific prior P can be defined without making any explicit assump-

tions on the true distribution p(x1, ..., xd).

The following prior on H makes no assumptions on p(x1, ..., xd). We present

the original prior developed by Seldin and Tishby [8] as well as a more sim-

plified version relevant to the rest of this thesis.

P(h) ≥ 1

exp
[∑d

i=1 (mi − 1) lnni + niH(hist(h|i))
] (2.5)

and hist(h|i) = {|ci1|, ..., |cimi |} is the size of each of the mi clusters in the

ith dimension, H(.) is the Shannon entropy.

The prior is based on a combinatorial argument. In order to select a

clustering function hi for some i, we first need to pick the cardinality profile,

hist(h|i), for the mi clusters. With the assumption that each cluster has at

least one element, we have ni−mi remaining elements that can be assigned to

mi clusters, which can be upper bounded by nmi−1
i . Next, given a cardinality

profile hist(h|i), the number of possible ways that the xi can be assigned to

the clusters is upper bounded by eniH(hist(h|i)). Please refer to Seldin and

Tishby [8] for a detailed proof.
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From the above prior, it is possible to bound KL(Q||P) as follows:

KL(Q||P) ≤
d∑
i=1

[(mi − 1) lnni + niI(Xi; Ci)] (2.6)

where I(.; .) denotes the mutual information. Within the context of an op-

timization problem, it is evident that ni dominates this bound. The mutual

information term I(Xi; Ci) is bounded from above by lnmi, since H(C) is

bounded by lnmi. In this thesis, we assume that ni >> mi and hence loosen

the prior for convenience. We therefore obtain:

KL(Q||P) ≤
d∑
i=1

[(mi − 1) lnni + ni lnmi] (2.7)

Alternatively, we can define an entirely new prior that is based on an even

simpler argument:

P(h) ≥ 1

exp
[∑d

i=1 ni lnmi

] (2.8)

where ni = |X (i)|, mi = |C(i)|, and mni
i is simply the number of ways in which

ni elements can be assigned to mi clusters. We can therefore simplify the

bound on KL(Q||P):

KL(Q||P) ≤
d∑
i=1

ni lnmi (2.9)

The CMI with φ(h) = N · KL(p̂h(x1, ..., xd)||ph(x1, ..., xd)), our modified

prior, and a few information theoretic results lead to the following bound.

PAC-Bayesian Clustering: For any distribution p over X (1)×...×X (d) and

an i.i.d. sample S of size N according to p, with probability at least 1−δ, for

all distributions of cluster functions Q = {q(ci|xi)}di=1, the following holds:

KL(p̂Q(x1, ..., xd)||pQ(x1, ..., xd)) ≤
∑d

i=1 ni lnmi +K1

N
(2.10)

where K1 = (M − 1) ln(N + 1) + ln d+1
δ

, and M =
∏d

i=1mi.

It is immediately obvious from the bound above that clustering is a useful

tool for density estimation. An empirical estimate of p(x1, ..., xd) requires N ,

the number of training examples, to be on the order of
∏d

i=1 ni; however, in
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the case of the bound above, N only needs to be on the order of
∏d

i=1mi,

which is much smaller since mi (the number of clusters) is typically smaller

than ni.

We can assume that in a supervised setting, we have an additional label

space Y and the goal is to estimate the joint probability p(x1, ..., xd, y) where

y ε Y . The idea is to replace this with p(c1, ..., cd, y), and exactly for the

reasons discussed above, a clustered estimate requires fewer examples than

the empirical estimate.
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CHAPTER 3

SEQUENCE CLUSTERING

3.1 Introduction

Unsupervised clustering – grouping the data into clusters – is often a first step

in the organization of unlabeled data, with important speech applications

such as speaker diarization [9, 10] and speaker adaptation [11], to name a

few. Clustering algorithms are useful if the resulting clusters predict the

labels that will eventually be assigned. Performance metrics such as cluster

purity, entropy, and accuracy attempt to quantify the usefulness of a given

algorithm [12]. While many methods (e.g. k-means and spectral clustering)

are known to be effective for producing good clusters, they generally only

work well when the datapoints lie in some fixed length vector space [12].

Clustering sequences is much more challenging.

Most popular sequence clustering methods tend to be either model-based

or distance-based [13, 14, 15, 16]. Model-based approaches make the assump-

tion that the sequences are generated from K different models, each of which

represents a cluster [11, 13]. Distance-based methods rely on computing a

similarity/distance metric between the sequences [16, 17]; a closely related

approach is to extract relevant features and reduce the problem to that of

clustering fixed length vectors [15]. There is, however, significant overlap

between the two types of sequence clustering algorithms – a large subset of

distance-based methods use generative models for obtaining better proximity

measures [15, 16, 17]. In this thesis, we focus on generative models and in

particular, the HMM.

The popularity of HMMs, especially for describing time-varying signals, is

unquestionable. Within the domain of sequence clustering, HMMs have been

successfully used in both model-based and distance-based approaches [13,

14, 15, 16, 17, 18], and are quite natural for speech and audio data [18, 19].

18



Although they allow us to recover structure from sequences and represent

observations of varying lengths, they typically do not favor parsimony. We

argue that especially for the problem of clustering, parsimony or sparsity in

the observation probabilities is essential.

In this chapter, we first extend PAC-Bayesian bounds to a general sequence

clustering setting, independent of the clustering model or algorithm. We then

present a specific HMM-based sequence clustering algorithm that provably

minimizes generalization error.

3.2 PAC-Bayesian Bound for Sequence Clustering

We motivate the sequence clustering problem with an example from language

modeling. Suppose our goal is to estimate the probability of a trigram, for

example, “the cat sat.” Trivially, we can directly estimate the joint proba-

bility p(the, cat, sat). Clustering allows us to reduce the number of required

training examples and there are four possible clustered (class-based) models:

1. p(the, cat, sat) =
∑

c p(c)p(the cat sat|c)

2. p(the, cat, sat) =
∑

c1,c2,c3
p(c1, c2, c3)p(the|c1)p(cat|c2)p(sat|c3)

3. p(the, cat, sat) =
∑

c1,c2
p(c1, c2)p(the cat|c1)p(sat|c2)

4. p(the, cat, sat) =
∑

c1,c2
p(c1, c2)p(the|c1)p(cat sat|c2)

In general, an n-gram has 2n−1 possible segmentations, as illustrated in

the previous example. Suppose f ε F is a particular segmentation from the

space of all possible segmentations, and we explicitly define it as the following

mapping:

f : Vn 7→ X (1) × ...×X (d) (3.1)

where V is some vocabulary, 1 ≤ d ≤ n, and f is simply a segmentation that

does not modify the joint distribution; that is, p(v1, ..., vn) = p(x1, ..., xd). If

f is fixed a priori, we can immediately apply the bounds derived in Equation

(2.10) over the segmented space X (1) × ...×X (d). This is the case where we

decide on a model, such as the standard class-based model (d = 3), and

simply use it.
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Extension to a more general sequence clustering paradigm is straightfor-

ward. We modify the hypothesis space H to not only include all possible

clusterings, but also all possible segmentations. The new random prediction

Q over H works as follows:

• Given an n-gram (v1, ..., vn), draw a segmentation f ε F according

to the distribution π = (π1, ..., π2n−1), where the segmentations are

indexed by j = 1, ..., 2n−1 (the ordering does not matter), and πj is the

probability of drawing segmentation j.

• Pick a clustering as in the random classifier described in Equation (2.10)

for the new segmented space.

• Estimate q(v1, ..., vn) according to the model described by the previous

steps.

The bound, in terms of π, is given below.

PAC-Bayesian Sequence Clustering: For any probability measure p over

Vn, and an i.i.d. sample S of size N drawn according to p, with probability

1−δ for all distributions of segmentations π and for all distributions of cluster

functions Q:

KL(p̂Q(v1, ..., vd)||pQ(v1, ..., vd)) ≤
2n−1∑
j=1

(∑d(j)
i=1 ni(j) lnmi(j) +K1(j)

N

)
πj

(3.2)

Note that all terms such as mi(j), the number of clusters corresponding to

the space, their product M(j), and additional term K1(j)now depend on the

segmentation j since X(i) and d(j) depend on j.

We can favor certain segmentations (e.g. those that require few training

examples), but note that the bound above is true regardless of the distri-

bution over possible segmentations, π. Also, the bound is dominated by

ni(j) since it is polynomial in V for all segmentations except the standard

class-based setting where d(j) = n. For example, if d(j) = n − 1 for some

segmentation j, there exists some i such that ni(j) = V 2 and hence repre-

sents clusters of bigrams. If d(j) = n− 2, there exists some segmentation j,

and a space i such that ni(j) = V 3, and so on until d(j) = 1, and this is the

case of word n-grams where n1(j) = V n.
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When a segmentation j and the number of clusters mi(j) are fixed, ni(j) is

the only term we can attempt to control – it is also the term that dominates

the bound in any non-trivial sequence clustering paradigm.

3.2.1 Bound Minimization

Imposing the restriction ∀j ∀i, ni(j) = V is simple, and although it can

encourage small-sample generalization, it is not a useful strategy for incor-

porating the constraint. Since ni(j) corresponds to the original space X (i) for

a given j, restricting ni(j) would restrict X (i) to an a priori, fixed set of V

elements. To learn the best possible set of V elements, however, we need to

minimize the effective size of X (i). For example, suppose we are estimating

trigrams over V3 using the following segmentation: X (1) = V and X (2) = V2

– i.e. a bigram over clusters of words and clusters of word bigrams. The

unconstrained bound is dominated by X (2). We can restrict the effective size

of X (2) by assigning zero probability to the vast majority of its elements, by

constraining the hypothesis space to consider only cluster assignment func-

tions q(xi|ci) in which n2 << V 2 of the elements have nonzero probability.

Thus, every word sequence in Vd can be generated by the d = n segmen-

tation, but every other segmentation is constrained to generate at most a

subset of Vd with nonzero probability.

We achieve this by imposing the restriction on the random predictor Q.

By Bayes rule, q(ci|xi) = q(xi|ci)q(ci)
q(xi)

and we can alternatively define Q as

Q = {q(ci), q(xi), q(xi|ci)}di=1. Our goal is to learn a Q that minimizes the

RHS of Equation (3.2), which as discussed above, leads to constraining ni.

As expected, q(xi) controls the absolute size of X (i) and q(xi|ci) controls the

effective size based on the clustering. The dominant term in all of our bounds

is ni, which results from the second term in the prior defined in Equation

(2.8), since it bounds the number of ways in which the ni items can be

assigned to the mi clusters. Alternatively, we can represent this quantity

with an upper bound: (∑
ci

‖q(xi|ci)‖0

)
lnmi
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This is because we can write q(xi) and ni as follows:

q(xi) =
∑
ci

q(xi|ci)q(ci)

ni = ‖q(xi)‖0

We therefore have

ni = ‖q(xi)‖0 = ‖
∑
ci

q(xi|ci)q(ci)‖0

By the triangle inequality and scale invariance of the l0 norm, ni satisfies the

inequality

ni ≤
∑
ci

‖q(xi|ci)‖0

We therefore limit the upper bound,
∑

ci
‖q(xi|ci)‖0, by sparsifying q(xi|ci)

for every cluster ci.

The Optimization Problem: Given some segmentation, we want to find

a random predictor Q – a class-based model over the fixed segmentation –

such that the bound in Equation (3.2) is minimized, which is given by the

following optimization problem:

maximize
Q

J(Q)

subject to ‖q(xi|ci)‖0 ≤ V, ∀ ci ε C(i), i = 1, . . . , d
(3.3)

where J(Q) represents a likelihood function based on the model parameters.

Since such optimization problems are known to be NP-complete, we need

to use a computationally tractable proxy. The standard practice is to use

the l1 norm instead of the l0 norm; although non-convex, we resort to the lα

norm, 0 < α < 1, since q(xi|ci) is a probability vector with a fixed l1 norm.

We therefore solve the following problem:

maximize
Q

J(Q)

subject to ‖q(xi|ci)‖α ≤ V, ∀ ci ε C(i), i = 1, . . . , d
(3.4)

We have shown that one way to regularize the bound for a non-trivial

sequence clustering problem, regardless of whether the segmentation is fixed
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or if we are interpolating across all segmentations, is to sparsify the cluster

assignment probabilities for every cluster. There are many ways to sparsify

a probability vector [20, 21, 22], and we select the lα norm, 0 < α < 1, for

its simplicity, success in other applications [23], and a useful interpretation

in the Bayesian context.

3.3 An Efficient HMM-Based Algorithm

HMMs [19] are parameterized by λ = (q(c), q(ci|cj), q(x|c)), where q(c) is a

distribution over the states, q(ci|cj) are the state transition probabilities, and

q(x|c) are the observation probabilities. When the observation space is finite,

we can denote this with a matrix B, where Bij represents the probability of

emitting observation j given state i. We would like to group a set of N

sequences, O = {Oj}Nj=1, into K clusters. We assume that K is known; if

K is unknown, we can draw from a rich set of model selection methods to

estimate it [24].

HMM-based clustering algorithms make some assumptions about the re-

lationship across the K HMMs, each of which generates the samples that

belong to its respective cluster. For example, Smyth makes the following

mixture model assumption:

fK(Oi) =
K∑
j=1

fj(O
i|λj)pj

where Oi is the ith sequence, and λj is the set of model parameters for the

jth HMM fj(.) [13]. The idea in [13] is to construct the following similarity

matrix by training a separate HMM on each of the N sequences:

SNij = P (Oi|λj)i,j=1...N

Given any such matrix S, it is easy to group the sequences into K clusters

using some standard method such as spectral clustering [25]. Smyth then

proposes to train K new HMMs (one for each cluster) with its correspond-

ing set of sequences [13]. The mixture model assumption allows us to fuse

the K HMMs into one big HMM and train on all N sequences [13]. Mixed

approaches do not necessarily focus on learning an overall generative model;
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Figure 3.1: HMM topology for 3 sequence clusters

instead, they use SN or more discriminative estimates of it to directly parti-

tion the data into K clusters [15, 16, 17].

In speech and language applications, data are not naturally segmented

into N different sequences – initialization as described in [13, 15, 16, 17] is

difficult. We therefore allow transitions across the HMMs and train a single

super-HMM that automatically segments and clusters the data. Figure 3.1

illustrates a HMM topology for 3 clusters of varying lengths. A similar model

was used effectively in [11] for the problem of speaker adaptation. In all of the

approaches outlined and cited here, HMMs are trained using the maximum

likelihood criterion; in this section, we show how we can incorporate sparsity

to directly minimize the PAC-Bayesian bound.

To estimate the joint probability q(x1, ..., xd), we previously made the fol-

lowing modeling assumption:

q(x1, ..., xd) =
∑
c1,...,cd

q(c1, ..., cd)
d∏
i=1

q(xi|ci) (3.5)

For an HMM, we can make a Markov assumption on q(c1, ..., cn):

q(x1, ..., xd) =
∑
c1,...,cd

d∏
i=1

q(xi|ci)q(ci|ci−1) (3.6)

where {xi}di=1 is some segmentation of (v1, ..., vn) ε Vn. If we consider each

state of the HMM to be a cluster, then q(ci|xi) = q(xi|ci) q(ci)q(xi)
is a distribu-

tion over all possible clustering functions. To solve the optimization problem

described in Equation (3.4), we need to maximize the likelihood function

J(Q) while satisfying the constraint ‖q(xi|ci)‖α ≤ V . We can rewrite the

constrained optimization problem as an unconstrained problem using a La-
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grangian:

maximize
Q

J(Q)− η‖q(xi|ci)‖α

subject to η ≥ 0
(3.7)

and solve for q(xi|ci) with an lα regularized version of the expectation maxi-

mization (EM) algorithm, similar to Bharadwaj et al. [26].

3.3.1 MAP Estimation to Encourage Sparsity

A popular approach for learning the HMM parameters is Baum Welch es-

timation based on the expectation maximization (EM) algorithm [27]. The

idea is to iterate between computing the expectation (the Q function) and

maximizing it. Q(λ, λ′) is given by

Q(λ, λ′) =
∑
qεS

logP (O, q|λ)P (O, q|λ′) (3.8)

where S is the space of all state sequences, O = {Ot}Tt=1 is the observation

sequence, and λ′ is the previous estimate of the parameters. It is easy to

see that Q(λ, λ′) can be written as a sum of functions of the three types

of parameters: the initial distribution of states (q(c)), the state transition

matrix (Aij = q(ci|cj)), and the matrix of observation probabilities (B) [27].

We can independently optimize over each of the three sets of parameters

(at a given iteration). To incorporate prior knowledge/constraints (sparsity

or otherwise), we use maximum a posteriori (MAP) estimation. Here, we

present the update equations for B with some general prior, g(B). Extension

to other sets of parameters (q(c) and A) is straightforward, but not necessary

for our problem. We maximize

N∑
i=1

T∑
t=1

log bi(Ot)P (O, qt = i|λ′)− ηg(B) (3.9)

where bi(Ot) is the probability that the ith state emits the tth observation

in the sequence {Ot}Tt=1. By setting the gradient to zero and satisfying the
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usual constraints that for each i,
∑

j Bij = 1 and Bij ≥ 0, we get

Bij =
(
∑T

t=1 P (O, qt = i|λ′)1{Ot = j} − ηSij)+∑T
t=1 P (O, qt = i|λ′)− ηSij)+

(3.10)

where (x)+ = max(x, 0), Sij = Bij∇Bijg(B), and 1{arg} is an indicator

function that is 1 if arg is true and 0 otherwise.

Equation (3.10) is a fixed point equation which can be shown to converge

to a local optimum whenever g(B) is convex (making −g(B) concave). The

overall function (likelihood + prior) can be shown to increase irrespective of

how many additional terms we introduce to the likelihood function, as long

as they satisfy Jensen’s inequality [28].

3.3.2 The Appropriate g(B)

Given a vector x in the N -dimensional euclidean space, ‖x‖α, the lα norm of

x is given by ‖x‖α = (
∑N

i=1 x
α
i )

1
α . The l2 norm is the most commonly used

metric for regularization [24]. The intractable l0 norm and its relaxation, the

l1 norm (lasso) encourage sparsity [24]. We, however, cannot directly use

the l1 norm since B is a stochastic matrix – the entries are non-negative and

each row sums to 1; the l1 norm of each row is also 1, thus l1regularization

is meaningless. A few approaches to sparsifying probability vectors (or sim-

plex) exist [21, 22]; for example, the authors in [21] present a new convex

optimization problem that does not use l1. We use the lα norm because it

can be easily integrated into the Baum Welch algorithm.

Intuitively, the lα norm for 0 < α < 1 also encourages sparsity and its use

is theoretically justified in [29]. We minimize the sum of the lα norm of each

row of B. In this work, g(B) = ‖B‖1,α =
∑

i (
∑

j B
α
ij)

1
α . When α < 1, g(B)

is not convex and convergence of Equation (3.10) is not guaranteed; however,

our experiments demonstrate good convergence properties in practice.
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CHAPTER 4

CLASS-BASED LANGUAGE MODELS

4.1 Introduction

The ability to predict unseen events from a few training examples is the holy

grail of statistical language modeling (SLM). Although the final test for any

language model is its contribution to the performance of a real system, task-

independent metrics such as perplexity are popular for evaluating the general

quality of a model. Standard algorithms therefore attempt to minimize per-

plexity on some previously unobserved test set, assumed to be drawn from

the same distribution as the training set. This begets the question of how the

test set perplexity is related to training set perplexity – every paper on SLM

has an answer, with varying levels of theoretical and empirical justification.

The problem of data sparsity and generalization can be traced back to at

least as early as Good [30], and possibly Laplace, who recognizes that the

maximum likelihood (ML) estimate of event frequencies (n-grams) cannot

handle unseen events. Smoothing techniques such as the add-one estima-

tor [31] and the Good-Turing estimator [30] assign a non-zero probability to

events that have never been observed in the training set. Recently, Ohannes-

sian and Dahleh [32] strengthened the theory by showing that Good-Turing

estimation is consistent when the data generating process is heavy-tailed. In

the context of this work, smoothing was perhaps the first attempt to bound

generalization error, in that it successfully guarantees a finite test set per-

plexity.

It is evident that smoothing of the n-gram estimate alone is not suffi-

cient. Techniques that incorporate lower and higher order n-grams, such as

Katz [33] smoothing, Jelinek-Mercer [34] interpolation, and Kneser-Ney [35]

smoothing, have become standard [36]. Chen and Goodman [37] provide

a thorough empirical comparison of smoothing methods and uncover use-
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ful relationships between the test set cross-entropy (log perplexity) and the

size of the training set, model order, etc. A Bayesian interpretation further

explains why some of the techniques (don’t) work. Teh [38] discusses funda-

mental limitations of the Dirichlet process [39] and proposes the hierarchical

Pitman-Yor language model as a better way of generating the heavy-tailed

(power law) distributions exhibited in natural language.

Instead of directly modeling a heavy-tailed distribution over words, class-

based models address data sparsity by estimating n-grams over clusters of

words. Intuitively, clustering is a transformation of the event space from the

space of word n-grams, in which most events are rare, to the space of class n-

grams, which is more densely measured and therefore requires fewer training

examples. Brown et al. [40] show that the clustering function that maximizes

the training data likelihood must also maximize mutual information between

adjacent clusters; although several useful clustering algorithms are based

on this principle, no provable guarantees currently exist. Moreover, word

transitions are never completely captured by the underlying class transitions,

and some tradeoff between accurate estimation of frequent events (word n-

grams) and generalization to unseen events (class n-grams) is desired – class-

based models are therefore often interpolated with word n-grams using some

of the previously described Bayesian methods [36].

Our survey of SLM techniques and their treatment of generalization error

has been rather brief and certainly not comprehensive. We focus primarily

on n-grams and related models since they have dominated SLM over the last

several decades [36], and therefore serve as a good starting point for further

analysis. The existing literature suggests that apart from empirical validation

and intuition, no provable guarantees exist on the generalization error of

language models. Bayesian techniques work well only to the extent the prior

assumptions are valid; in this thesis, we present theoretical guarantees that

hold irrespective of the correctness of the prior.

Model selection approaches such as the Akaike Information Criterion (AIC)

[41] and its variants [42] quantify the tradeoff between complexity and good-

ness of fit. In the context of a language model, it can be shown that test set

cross entropy is approximately the training set cross entropy plus the number

of model parameters. Unfortunately, such bounds are loose and do not pro-

vide significant algorithmic insight – at best, they recommend the smallest

model that works well on the training set. Chen [43] obtained a very accu-
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rate relationship for exponential language models by estimating the test set

performance with linear regression. Although empirical, his approximation

leads to better models based on l1 + l22 regularization. Exponential mod-

els are often motivated with the minimum discrimination information (MDI)

principle, which roughly states that of all distributions satisfying a particular

set of features, the exponential family is the centroid (minimizes distortion

relative to the farthest possible true distribution) [44]. This does not bound

the generalization error in the manner we wish to, but it is nevertheless a

useful property that complements Chen’s observations.

In this thesis, we strive for the best of both worlds – we present PAC-

Bayesian theory as a powerful tool for deriving high probability guarantees

as well as efficient and well-motivated algorithms. We apply the previously

described PAC-Bayesian bounds to n-grams, class-based n-grams, and also

sequence clustering, where classes represent longer context such as phrases.

We show that for sequence clustering, the bound is dominated by the max-

imum number of sequences represented by each cluster, and consequently

requires many more training examples than a class-based model over words.

We address this issue by sparsifying the cluster assignment probabilities us-

ing the lα norm, 0 < α < 1, an effective proxy for the intractable l0 norm.

We validate the theory developed in earlier parts with empirical results on

the resource management corpus.

4.2 PAC-Bayesian Bound for Minimizing Perplexity

In applications such as language modeling, we are interested in directly

bounding the test set perplexity or cross-entropy. Seldin and Tishby [8]

smooth p̂Q(x1, ..., xd) to bound Ep(x1,...,xd)[− ln p̂Q(x1,...,xd)] and provide the fol-

lowing useful result based on Equation (2.10).

Bound on Cross-Entropy: For any probability measure p over X (1)× ...×
X (d) and an i.i.d. sample S of size N according to p, with probability 1− δ
for all distributions of cluster functions Q = {q(ci|xi)}di=1:

Ep(x1,...,xd)[− ln p̂Q(x1, ..., xd)] ≤ −I(p̂Q(c1, ..., cd)) + Eq.(2.10) +K2 (4.1)

where p̂Q(x1, ..., xd) is now the smoothed empirical estimate induced by Q
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and I(p̂Q(c1, ..., cd)) is the multi-information given by

I(p̂Q(c1, ..., cd)) =
d∑
i=1

H(p̂Q(ci))−H(p̂Q(c1, ..., cd))

Eq. (2.10) refers to the bound derived in Equation (2.10), and K2 is an

additional term, K2 ≥ I(p̂Q(c1, ..., cd)), and the bound is non-negative.

4.3 Interpolated Models

Since language modeling is yet another density estimation problem in which

we want to minimize the test set perplexity, the bound in Equation (4.1)

readily applies to both word n-grams and class-based n-grams. Note that the

bounds are on cross-entropy, which is log perplexity, but we use the two terms

almost interchangeably. We are now interested in estimating the unknown

true distribution p(v1, ..., vn) over the space Vn, where V is some vocabulary

consisting of V = |V| words. The degenerate case, d = 1, X (1) = Vn,

is the case of word n-grams and results in a bound that is dominated by

n1 = |X (1)| = V n. This suggests that the number of training samples, N ,

must be on the same order as V n for the bound (and hence the estimate) to

be meaningful.

It is also clear why class-based models are favored whenever they work.

In this case, d = n, X (i) = V for all 1 ≤ i ≤ d, and the bound in Equation

(4.1) reduces to something linear in V (since ∀i, ni = |X (i)| = V ). More-

over, the clustering function is the same for all i – that is, word clusters do

not depend on the position in the n-gram. Assuming K word clusters, the

number of training examples, N , only needs to be on the order of Kn + nV ,

achieving effective small sample generalization especially when K << V . In

the following subsections, we extend the bound to sequences and present a

unique approach to regularize the bound.

4.3.1 Sequence Clustering

We have discussed two extreme cases, namely d = 1 and d = n, that corre-

spond to word n-grams and class-based n-grams, respectively. In practice,
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they are often interpolated to retain the advantages of both, as shown in the

following model:

q(v1, ..., vn) = γq(v1, ..., vn) + (1− γ)
∑

c1,...,cn

q(c1, ..., cn)
n∏
i=1

q(vi|ci) (4.2)

for some 0 < γ < 1. A Bayesian interpretation of the above model is to select

between the n-gram and the class-based model with probabilities γ and 1−γ,

respectively. In other words, for each n-gram (v1, ..., vn), we simply flip an

γ-biased coin to decide on one of the two models. We interpolate across the

entire spectrum, 1 ≤ d ≤ n, instead of just the extreme cases – that is, we

capture clusters over not just words, but also sequences of words (phrases).

Previous results by Deligne and Bimbot [45], Ries et al. [46], and Justo and

Torres [47] indicate that clustering over phrases is practically useful and leads

to significant improvements.

We re-examine the “the cat sat” example from before. In the case of d = 1,

we directly estimate the joint probability p(the, cat, sat). In the standard

class-based model, where d = 3, we estimate with the model

p(the, cat, sat) =
∑
c1,c2,c3

p(c1, c2, c3)p(the|c1)p(cat|c2)p(sat|c3)

The intermediate cases, such as d = 2 in this example, are often neglected.

The theory we subsequently develop interpolates over all four segmentations,

including the missing ones:

p(the, cat, sat) =
∑
c1,c2

p(c1, c2)p(the cat|c1)p(sat|c2)

as well as

p(the, cat, sat) =
∑
c1,c2

p(c1, c2)p(the|c1)p(cat sat|c2)

As discussed earlier, an n-gram has 2n−1 possible segmentations, as illus-

trated in the previous example. Suppose f ε F is a particular segmentation

from the space of all possible segmentations, and we explicitly define it as
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the following mapping:

f : Vn 7→ X (1) × ...×X (d) (4.3)

where 1 ≤ d ≤ n and f is simply a segmentation that does not modify the

joint distribution; that is, p(v1, ..., vn) = p(x1, ..., xd). If f is fixed a priori,

we can immediately apply the bounds derived in Equation (4.1) over the

segmented space X (1) × ... × X (d). This is the case where we decide on a

model, such as the standard class-based model (d = n), and simply use it.

An extension to the case of interpolated models is straightforward. We

modify the hypothesis spaceH to not only include all possible clusterings, but

also all possible segmentations. The new random prediction Q over H works

as follows: given an n-gram (v1, ..., vn), draw a segmentation f ε F according

to the distribution π = (π1, ..., π2n−1), where the segmentations are indexed

by j = 1, ..., 2n−1 (the ordering does not matter), and πj is the probability of

drawing segmentation j; pick a clustering as in the random classifier described

in Equation (4.1) for the new segmented space; and estimate q(v1, ..., vn)

according to the model described by the previous steps. The bound, in

terms of π, is given below.

PAC-Bayes Language Modeling: For any probability measure p over Vn,

and an i.i.d. sample S of size N drawn according to p, with probability 1− δ
for all distributions of segmentations π and for all distributions of cluster

functions Q:

Ep(v1,...,vn)[− ln p̂Q(v1, ..., vn)] ≤
2n−1∑
j=1

(−I(p̂Q(c1, ..., cd)) + Eq.(3.2) +K2(j))πj

(4.4)

where Eq.(3.2) refers to the bound in Equation (3.2), and the dependence on

j, as before, is due to the additional segmentation process. As discussed ear-

lier, the bound is polynomial in V for all segmentations except the standard

class-based setting where d(j) = n.

The main difference between Equations (3.2) and (4.4) is that the latter

directly bounds the cross-entropy of an interpolated language model. Because

of this, we now have a multi-information term in the bound that we need to

minimize, in addition to controlling ni as before.
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4.3.2 Bound Minimization

We need to find a random classifier Q that maximizes the likelihood J(Q) as

well as the multi-information I(p̂Q(c1, ..., cd)). We can rewrite our optimiza-

tion problems as a Lagrangian.

The Optimization Problem: Given some segmentation, we want to find

a random predictor Q – a class-based model over the fixed segmentation –

such that the bound in Equation (4.4) is minimized, which is given by the

following optimization problems:

maximize
Q

J(Q) + ηI(p̂Q(c1, ..., cd))

subject to ‖q(xi|ci)‖0 ≤ V, ∀ ci ε C(i), i = 1, . . . , d
(4.5)

maximize
Q

J(Q) + ηI(p̂Q(c1, ..., cd))

subject to ‖q(xi|ci)‖α ≤ V, ∀ ci ε C(i), i = 1, . . . , d
(4.6)

Within the context of HMMs, we find a clever trick to maximize the multi-

information term I(p̂Q(c1, ..., cd)). Intuitively, sparsifying the state transition

probabilities q(ci|ci−1) should achieve this. This provably works when we use

lα regularization, 0 < α < 1 for sparsifying q(ci|ci−1). The Renyi α-entropy

of a random variable with some probability distribution q is defined to be

Hα(q) =
α

1− α
log ‖q‖α

and there is a useful result we use [48]

lim
α→1

Hα(q) = H(q)

where H(q) is the Shannon entropy. This, coupled with the fact that Hα(q) is

non-increasing in α ensures that multi-information is maximized. For α < 1,

Hα(q) is an upper bound on the Shannon entropy. Since lα regularization

minimizes the Renyi α-entropy, which for 0 < α < 1 is an upper bound on the

Shannon entropy, it effectively maximizes the mutual information between ci

and ci−1, given that

I(q̂Q(ci, ci−1)) = H(q̂Q(ci))−H(q̂Q(ci|ci−1))
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We can again reduce Equation (4.7) to an unconstrained optimization

problem using the Lagrangian:

maximize
Q

J(Q)− η1‖q(xi|ci)‖α1 − η2‖q(ci|cj)‖α2

subject to 0 < α1, α2 < 1, η1, η2 ≥ 0
(4.7)

Thus, we have shown that at least in the context of clustering, sparsifying

both the observation probabilities and the state transition probabilities of an

HMM using the lα prior directly minimizes generalization error.

A Bayesian interpretation of our regularization provides additional insight

into other successful models, such as the hierarchical Pitman-Yor language

model (HPYLM). In our approach, we impose the restriction ‖q(xi|ci)‖α ≤ V ,

0 < α < 1, for every cluster ci. It can be shown that this is equivalent to

a sub-exponential prior on q(xi|ci) [24]. Since q(xi) =
∑

ci
q(xi|ci)q(ci) and

we make the assumption that q(xi|ci) is sub-exponential for every ci, we are

consequently assuming that q(xi) is also sub-exponential. Although PAC-

Bayesian bounds hold regardless of the true distribution, our regularization

technique implicitly assumes that it is heavy-tailed.

The key to HPYLM’s success within the Bayesian setting is a better prior

that matches the heavy-tailed distribution of natural language [38] – the reg-

ularization approach developed in this thesis reassuringly corresponds to the

assumption that the true distribution is heavy-tailed (Figure 4.1 illustrates

this for various values of α). On the other hand, it may be possible to derive

provable guarantees for HPYLM within the context of our clustering model.

The main difference between HPYLM and the less successful Dirichlet process

(DP) is the Chinese restaurant process, which assigns new tables (clusters)

to customers (samples) much more aggressively in the former model than

in the latter [38]. HPYLM therefore has far fewer customers (samples) per

table (cluster) than DP, resulting in significantly sparser q(xi|ci).

4.3.3 Alternate Justification

We can confirm that our regularization technique for minimizing the PAC-

Bayesian bound is well-grounded – at least for the case of class-based lan-

guage modeling using HMMs – with an alternate analysis.

The standard class-based model – in which word transitions are completely
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Figure 4.1: p(X) ∝ e−‖X‖α for various α

governed by the underlying class transitions – is motivated with the intuition

that words are often related with respect to their use in sentences. When we

have limited data and cannot possibly observe all realizations of a particular

structure, we resort to counting occurrences of the underlying classes instead,

and hope that the estimates generalize to similar, but unseen, events [40]. If

the class model is second order (bigram), we can write the probability of a

sentence w1w2...wN as

P (w1, w2, ..., wN) =
N∏
i=1

P (wi|ci)P (ci|ci−1) (4.8)

where cj is the cluster assigned to word wj. This is equivalent to the probabil-

ity of observing {w1w2...wN} given the sequence of hidden states {c1c2...cN}
in a HMM where P (wi|ci) are the observation probabilities and P (ci|ci−1)

are the state transition probabilities [19]. A natural extension is to consider

classes that also represent word sequences. When the number of classes is

small, sequences provide the added benefit of modeling phrases that would

otherwise not be well-represented by words [45].

Suppose {w1w2...wN} is segmented into M subsequences S = {s1s2...sM};
HMM-based sequence clustering algorithms such as [26] make the following

Markov assumption:

P (S,C) =
M∏
i=1

P (si|ci)P (ci|ci−1) (4.9)
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where ci, the unknown true cluster corresponding to si, is drawn from a

set of clusters with unknown cardinality, and C = {c1c2...cM}. When it

is further assumed that the ci are HMMs – that is, the sequences in each

cluster are generated by some HMM – Equation (4.9) can be reduced to a

single HMM with some structural restrictions on the larger state transition

matrix. Such an HMM can automatically segment and cluster the training

sequences; Bharadwaj et al. further show that sparsifying the observation

probabilities leads to purer clusters [26]. In [26], a sparsifying prior (e.g.

Renyi entropy) was used to learn maximum a posteriori (MAP) estimates of

the HMM parameters. We adopt this technique to cluster word sequences

for a language model.

However, purity of the clusters alone does not imply good generalization

in a language model; in the following subsection, we show that to guarantee

low perplexity, we need to further minimize the Renyi entropy of transitions

between clusters.

Minimizing Perplexity

Define πi ∈ {Λ1, . . . ,ΛK} to be the estimated cluster of sequence si, drawn

from a set of K HMMs; thus, πi is an estimate of ci. Our goal is to find

a clustering function π(.), πi = π(si), that minimizes the perplexity per

sentence of our model: L(π) = − 1
M

logP (S,Π), where P (S,Π) denotes the

probability of S and the estimated cluster alignment Π, Π = {π1π2...πM}.
We use the same notation as Brown [40], but π(.) here is more general than

their partition function – it maps sequences of arbitrary length, and does

not have to be deterministic. Such a function clearly exists; for example,

π(si) = arg maxΛε {Λ1,...,ΛK} P (si|Λ) does the trick.

We conveniently rewrite L(π) as L(π) = LA(π) + LB(π), where

LA(π) = − 1

M

M∑
i=1

logP (πi|πi−1) (4.10)

LB(π) = − 1

M

M∑
i=1

logP (si|πi) (4.11)

Let Nπ(k, l) denote the number of sentences that transition from cluster Λk

to Λl, according to the estimated state alignment Π; likewise, we can define
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Nπ(k) to denote the number of sentences that are assigned to cluster Λk. The

subscript π is used to emphasize the dependence of these quantities on the

clustering algorithm π(.). We introduce Pπ(l|k) = Nπ(k,l)
Nπ(k)

and Pπ(k) = Nπ(k)
M

–

the ML estimates of the conditional and marginal probabilities, respectively.

LA(π) is then an average (weighted by Pπ(k)) of the cross entropy between

our estimate Pπ(l|k) and the true transition probability P (l|k).

LA(π) =
K∑
k=1

Pπ(k)
K∑
l=1

−Pπ(l|k) logP (l|k) (4.12)

LA(π) =
K∑
k=1

Pπ(k) (Hπ(l|k) +Dπ(l|k)) (4.13)

whereHπ(l|k) is the conditional entropy of the estimate Pπ(l|k), andDπ(l|k) =

DKL(Pπ(l|k)||P (l|k)) denotes the KL-divergence between our estimate Pπ(l|k)

and the true distribution P (l|k).

Clearly, minimizing the conditional entropy Hπ(l|k) for each k minimizes

LA(π); the KL-divergence term depends on the true distribution and can be

reduced by selecting an appropriate prior for our estimator. The analysis

thus far has been independent of the nature of {Λk} and trivially holds for

clusters that represent words. In fact, the Brown algorithm [40], in which

the mutual information between adjacent clusters Λl and Λk is maximized, is

based on similar analysis. Note that Iπ(l; k) = Hπ(l)−Hπ(l|k). We minimize

Hπ(l|k), which consequently also maximizes Iπ(l; k); but the converse is not

true – maximizing the mutual information can sometimes maximize only the

entropy of a cluster Hπ(l), which does not necessarily help in minimizing

perplexity.

If we now consider {Λk} to be HMMs, we can construct a single HMM

with T hidden states Q = {q1...qT} that emit O words W = {w1...wO}. By

defining N ob
π (w, q) to be the number of times π(.) assigns word w to state q,

N tr
π (r, q) to be the number of times q transitions to r, and Nπ(q) to be the

number of words assigned to q, we can introduce their counterparts P ob
π (w|q),

P tr
π (r|q), and Pπ(q). LB(π) reduces to

LB(π) =
T∑
t=1

Pπ(qt)
(
Hob
π (w|qt) +H tr

π (q|qt) +Dπ

)
(4.14)
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where Hob
π (w|qt) is the conditional entropy of the observation probabilities

given state qt, H
tr
π (q|qt) is the conditional entropy of the transition proba-

bilities, and Dπ simply refers to the KL-divergence between the estimated

probabilities, P ob
π and P tr

π , and their corresponding unknown true values P ob

and P tr. It is now clear that minimizing the conditional entropies Hob
π (w|qt)

and H tr
π (q|qt) for each t minimizes LB(π). Our strategy for minimizing per-

plexity is to therefore minimize entropy in both the observation and the state

transition probabilities of a suitable HMM, and sparsity clearly achieves this.

4.4 Experiments

We test our approach on a subset of the resource management (RM) cor-

pus [49], which consists of naval commands that span approximately V =

1000 words. First, we show that lα regularization works. Figure 4.2 shows

the estimated test set cross-entropy of an unregularized HMM and of an lα-

regularized HMM as a function of the number of training sentences. We vary

the training set size from 10 to 2000 sentences and test the models on 800

sentences; Figure 4.2 reports the average cross-entropy on brackets of train-

ing sizes – 10-100, 110-200, and so on. The lα-regularized HMM requires

additional tunable parameters such as the value of α. To simplify the search

on a separate 300 sentence development set, we make a (rather restrictive)

assumption that α for both the transition and observation probabilities is

the same, and that α is independent of the size of the training set. Our solu-

tions are therefore not optimal, but adequate to demonstrate our claims. To

ensure that the cross-entropy is bounded, we smooth all estimates with add-

one smoothing. For small training datasets, the unregularized HMM learns

models that assign near-zero likelihood to some of the test sentences; hence,

we only present results for training set sizes greater than 500 sentences.

Like many other model selection results, Figure 4.2 suggests that model

sparsity is essential when training datasets are small. In this example, about

900 sentences are required for the unregularized HMM to outperform the

sparse HMM. In the context of the theory developed in earlier sections, it

was shown that test set cross-entropy is proportional to ni
N

, where N is the

number of training examples. In practical settings, N is fixed; hence, the

only strategy for minimizing cross-entropy is to minimize ni. Figure 4.2
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Figure 4.2: Test set cross-entropy of HMM vs lα-regularized (sparse) HMM
as a function of the number of training sentences

confirms that lα regularization successfully sparsifies q(xi|ci), the observation

probabilities of the HMM, thereby minimizing ni.

We also compare how the test set cross-entropy improves as a function of

the training set size for four different models: 1) a baseline bigram model

estimated over words; 2) a baseline class-based model using Brown’s algo-

rithm [40] with K = 20 clusters, learned over the entire dataset so that it is

also representative of knowledge-based approaches in which the true clusters

are known a priori; 3) lα-regularized HMM with 20 ergodic states; and 4) a

special case of 3) in which the state transitions are constrained to artificially

form m1 = 10 word clusters (10 states) and m2 = 5 clusters that represent

word bigrams (10 states, where the 5 clusters are modeled with 2 left-to-

right states each); therefore, the model represents an interpolation between

the standard class-based model and word bigrams, but is of the exact same

complexity as 2) and 3).

Figure 4.3 shows the estimated test set cross-entropy for each of the four

models. The values of α used in our experiments are α = 0.7 for the words

only case and α = 0.9 for sequences. It is clear from Figure 4.3 that lα

regularization helps even in the case of a standard class-based model, the

bound for which is already linear in V . With fewer than 100 sentences, lα

regularization can both learn the clusters and estimate their transitions rea-

sonably well, and surpasses Brown for training set sizes of N ≥ 800 sentences.

Brown’s algorithm in 2) finds clusters such that pairwise mutual information
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Figure 4.3: Test set cross-entropy as a function of the number of training
sentences for the four settings

terms are maximized; in 3), we not only maximize the mutual information,

but we also reduce the effective V by ensuring that each cluster (or state)

specializes and represents as few words as possible. As the number of train-

ing examples increases, estimates of class transitions indeed improve, but

the class-based assumption itself becomes too restrictive. In 4), which rep-

resents an interpolated model, we see the tradeoff achieved by incorporating

sequences: for small training sets, the model achieves better generalization

than word bigrams, but is worse than the class-based model; and for larger

training sets, the interpolated model learns better representations of high

frequency events and outperforms the class-based models represented by 2)

and 3).

The value of α in 3) is 0.7, whereas α in 4) is 0.9; this seems counter-

intuitive at first, but note that a smaller α does not necessarily imply sparser

observation probabilities; however, it implies a heavier distribution in a

Bayesian setting. A Bayesian interpretation therefore suggests that in 4),

the model itself is better equipped to cope with heavy tails, whereas a more

aggressive α is required in 3).
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CHAPTER 5

ACOUSTIC EVENT DETECTION

We treat acoustic event detection as yet another sequence clustering problem,

and so all the previously developed bounds and algorithms naturally extend.

In this chapter, we describe the intuition and show some experimental results

on the BBC sound effects corpus.

Let us consider just one cluster and take purity to be the measure of its

goodness. The purity of a cluster C is given by

purity(C) =
1

|C|
max
i

(|C|class=i)

where |C|class=i denotes the number of items of class i in the cluster, and |C|
is the total size of the cluster. This definition requires us to have access to

ground truth labels. In some applications, however, it is difficult to predefine

a fixed number of classes and even more difficult to assign labels to all of the

datapoints. In such cases, the majority class associated with any given cluster

can be reasonably defined to be the most frequently produced sequence of

symbols, after deleting repetitions [9]. Cluster purity can then be defined

as the fraction of tokens assigned to a cluster that share the same symbol

sequence.

We can maximize purity, as defined above, by minimizing the total number

of different sequences that belong to a particular cluster. Let us consider a

simpler case by making the assumption that the state transition matrix is

left-to-right; note that our argument can be extended to more general cases

and we make this assumption for the sake of simplicity. This structure allows

us to view the observation sequence as a set of symbols emitted by the first

state, followed by a set of symbols emitted by the second state, and so on.

Encouraging sparsity in the observation probabilities allows us to directly

minimize the number of symbols emitted by each state and therefore also

reduces the total number of possible observations generated by the HMM.
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Consequently, this minimizes ni in the PAC-Bayesian bounds and encourages

small-sample generalization.

We test our method on clustering non-speech audio events from the BBC

sound effects corpus [50]. The dataset contains 48 files ranging from 15

seconds to 5 minutes in length. The files consist of common events such

as rain, waterfall, gunshot, birds, dog, baby crying, etc. We assume that

the events can vary drastically in length; for example, a typical gunshot is

much shorter than a baby crying. We hypothesize that there are 35 clusters

uniformly distributed across 7 event lengths, ranging from 3 states per HMM

to 9 states per HMM. In order to detect multiple events per file, we allow

transitions from the last state of one HMM to the first state of another and

we refer to the resulting HMM as super-HMM. Viterbi decoding is used to

segment each audio file into sequences, and to assign each sequence to one of

the 35 cluster HMMs. We discretize the observation space by computing 13

mel-frequency cepstral coefficients (MFCCs) with a window of 250 ms and

an overlap of 100 ms over all 48 files, and group them into 70 clusters using

the k-means algorithm. Each event can then be approximated by a sequence

of integers.

Figure 5.1 shows the observation probability matrices of the super-HMM

for two cases: no sparsity (top) and some sparsity encouraged (bottom).

The exact choice of the parameters (α = 0.4, η = 0.09) is arbitrary and sim-

ply illustrates that our proposed algorithm indeed sparsifies the observation

probabilities.

Although we previously defined majority class to be the most frequently

produced sequence of symbols, we report results on the more realistic and

practical situation in which there are exactly 48 sound classes, each corre-

sponding to a particular file in the dataset. We report results on frame-wise

clustering of the data since it allows for a much easier comparison with k-

means clustering. We use two measures of average purity: unweighted and

weighted.

If we partition the dataset D into K clusters, {Cj}Kj=1,

Punweighted =
1

K

K∑
j=1

purity(Cj)
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Figure 5.1: Observation matrices Bij (displayed as images with i = row
index and j = column index) for η = 0 (top) and α = 0.4, η = 0.09
(bottom)
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Pweighted =
K∑
j=1

|Cj|
|D|

purity(Cj)

A high value of Punweighted implies that most of the individual clusters are very

pure and only a few are impure; Pweighted, however, also takes into account

the number of samples in each cluster – it acts as a check against trivial

solutions such as one in which K − 1 clusters contain one sample each and

the Kth cluster contains everything else in D.

Figure 5.2 shows the dependence of Punweighted on the regularization pa-

rameter η (top) and on α (bottom). It supports our claim (and intuition)

that sparsifying the observation probabilities within each HMM purifies the

cluster and on average, leads to many more pure clusters. The best values

of η (0.05) and α (0.3) indicate that B is neither too sparse nor too dense.

It is intuitively clear that when the observation matrix is dense, clusters are

bound to be less pure; but why does a little more sparsity lead to relatively

less pure clusters? The parameters η and α explicitly control some tradeoff

between likelihood and sparsity, and in extreme situations the model is heav-

ily constrained and learning becomes no more than just randomly picking a

few (sparse) observations for each state.

Table 5.1 contains the best results for all three methods and the two no-

tions of average purity. The values of (α, η) that maximize Punweighted and

Pweighted are (0.3, 0.044) and (0.3, 0.009), respectively, which is in line with

our intuition – as discussed above, the observation matrix cannot be arbi-

trarily sparse when trying to maximize Pweighted. We see that in both cases,

sparse HMMs do significantly better than the baseline HMM and k-means.

A considerably higher value of Pweighted (0.75) especially indicates that when

the parameters are chosen appropriately, sparse HMMs do not just focus on a

handful of samples and dump the rest into highly impure “garbage” clusters;

sparsity is indeed an effective tool for learning purer clusters.

Table 5.1: Purity results

Method Punweighted Pweighted
k-means clustering 0.69 0.66

HMM 0.72 0.57
Sparse HMM 0.88 0.75

These results confirm that lα-regularized Baum Welch algorithm can be

used to learn clusters that are considerably more pure than those obtained
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by standard methods such as the baseline HMM or k-means clustering. Al-

though we restrict our experiments to discrete HMMs in a generative frame-

work, our approach can be extended to more general cases. Methods that

use HMM as a tool for learning good distance metrics can also benefit from

our algorithm; intuitively, sparse observation probabilities must lead to more

discriminative (sparse) similarity matrices and, naturally, to purer clusters.

Our interpretation of Renyi α-entropy also provides for an extension to more

general HMMs; to maximize purity, we can directly minimize the Renyi α-

entropy, 0 < α < 1, of each state.
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CHAPTER 6

ANOMALY DETECTION

6.1 Introduction

Anomaly detection generally refers to a broad class of methods designed to

identify unusual events – events that deviate from their normal or expected

behavior. Despite this simple definition, there are nearly as many different

notions of anomaly as there are applications; hence, it is challenging to for-

mulate a unifying theory that is also practically relevant. In this chapter,

we adopt the PAC-Bayesian framework to derive efficient algorithms as well

as provable bounds in the most general setting, wherein: 1) the algorithms

can be fully unsupervised, which allows us to detect anomalies directly from

test data; 2) the bounds can be extended to sequential data, in which the

anomaly itself can be a sequence of events; and 3) the definition of anomaly

is extended to incorporate a hidden class structure, augmenting the usual

notion of low probability or rareness of an event. All three extensions have

significant value in a number of different application domains (e.g. event

detection, speech and natural language processing), and therefore deserve

a more rigorous treatment than what is currently available in the anomaly

detection literature.

Within the context of learning theory, we can group anomaly detection

algorithms into supervised, semi-supervised, or unsupervised. Supervised set-

tings can be reduced to binary classification, where the classes refer to either

a background event or an anomalous event. This allows us to draw from a

rich set of existing theory for classification problems. For example, Vapnik-

Chervonenkis (VC) theory and probably approximately correct (PAC) learn-

ing provide bounds on the generalization error of an algorithm as well as

methods for provably minimizing them. It is slightly more challenging to

obtain PAC bounds in the semi-supervised case, where we assume that all
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of the training examples belong to the background class, but still possible for

methods like the one-class support vector machine (SVM). The unsupervised

setting is most challenging. Although there are many practical approaches to

unsupervised anomaly detection (e.g. techniques based on mixture models),

there exist almost no guarantees akin to PAC bounds for supervised learn-

ing – we show that PAC-Bayesian analysis is especially useful for obtaining

provable guarantees in the unsupervised case.

We show that these bounds are also practical. We have already seen that in

the case of sequences, generalization error grows multiplicatively as a function

of the length of the sequence. This is undesirable for many applications such

as acoustic event detection, where long sequences are plausible but we still

need to detect anomalies given limited training data. Our main strategy is

a form of regularization that constrains generalization error to grow at-most

linearly with respect to sequence length. Coupled with the notion that an

“anomaly” is not just any rare event, but an event associated with some

hidden class that is infrequent, we successfully extract meaningful anomalies

from the BBC sound effects corpus, a collection of several non-speech acoustic

events.

We treat unsupervised anomaly detection as a sequence clustering problem,

where each cluster is highly pure and representative of either an anomalous

event or a background event. By using PAC-Bayesian results for sequence

clustering, we show that sparsifying the HMM observation probabilities with

an `α prior, 0 < α < 1, minimizes the false alarm in an anomaly detection

problem.

Previously, we introduced PAC-Bayesian bounds for sequences and devel-

oped an HMM-based algorithm for minimizing the perplexity of a language

model. In this chapter, we extend the theory and algorithms to anomaly

detection. Our approach is general and can be applied to any anomaly de-

tection problem, but we present experiments for non-speech acoustic event

detection from the BBC sound effects corpus.

Our work is naturally related to a host of anomaly detection techniques

outlined in [51, 52], and we highlight deviation from standard methods when-

ever appropriate. Since we take a sequence clustering approach to anomaly

detection, our work is also related to general HMM-based clustering tech-

niques such as [11, 13, 14, 15, 16, 17, 18] as well as sparse HMMs [26, 53, 54].

In the next section, we introduce an HMM-based approach for unsuper-
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vised sequence anomaly detection.

6.2 Unsupervised Anomaly Detection

In many real world applications, it is difficult to obtain adequate training

data for the anomalous class, making supervised approaches impractical.

Likewise, semi-supervised methods also require clean data. For example, if

there is an anomaly within the training dataset, a semi-supervised approach

would assume it belongs to the background class and fail to detect future oc-

currences as anomalous. A fully unsupervised approach is therefore essential

for detecting anomalies directly within a dataset, without access to separate,

clean training data.

Eskin [55] first proposed a mixture model approach for unsupervised anomaly

detection. The idea is to make the generative assumption that the data are

drawn from D, a mixture of B and A – the distributions corresponding to

the background data and anomalous data, respectively.

D = λA + (1− λ)B

where λ is the mixture weight. Since λ determines exactly how rare an

anomaly is, it is assumed to be very small. Instead of using the expectation

maximization (EM) algorithm to learn A and B, Eskin exploits the fact

that λ is small and uses a more efficient iterative algorithm. Subsequent

approaches reviewed in [51, 52] rely on a similar model.

In structurally rich datasets, it is difficult to cluster the data into only two

distinct groups – instead, it is much more meaningful to assume that the

data are generated by a few background clusters and a few anomaly clusters.

In this work, we make the following more natural assumption on D.

D =
K∑
k=1

λkAk

We can expect λk to be small if Ak is an anomaly cluster, and large when

Ak is a background cluster. When training such a model, we use the EM

algorithm with the assumption that {λk}Kk=1 is sparse.
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6.2.1 Sequential Data

There are two different notions of anomaly in sequential data:

1. When a sequence among a set of sequences is anomalous.

2. When a subsequence within a sequence is anomalous.

In the first scenario, each event is a sequence (as opposed to a fixed length

vector), but the events themselves are not temporally related. Unsupervised

anomaly detection is therefore equivalent to representing each sequence with

some statistical model (e.g. HMM), and clustering the models with a mixture

approach as discussed in the previous section. That is, a mixture of HMMs

is a reasonable model for this setting.

We focus mostly on the second scenario, where the events transition among

one another and are therefore temporally related. We can make a Markov

assumption for these transitions, and use a nested HMM of smaller HMMs

as shown in Figure 6.1.

6.2.2 HMMs

HMMs have been successfully used in sequence anomaly detection, where

the hidden states are generally found to be more stable and expressive in

detecting anomalous events [52, 56, 57, 58]. In the case of unsupervised

anomaly detection, HMMs can be used as an effective tool for clustering

sequences.

As discussed earlier, the key idea is to group a set of N unlabeled sequences

into K clusters, with the implicit assumption that clusters are much more

representative of the underlying true class. Each cluster is modeled with a

separate HMM, and they can be combined to form a single HMM, as shown

in Figure 6.1 for K = 3. Training a single HMM allows us to automatically

segment the sequences; a similar approach was used in [11, 26, 53] for speaker

adaptation, event detection, and language modeling, respectively.

When the data are fully unsupervised – i.e. contain examples of both

background and anomalous events – the best we can do is to cluster them in

some meaningful way. We need to discriminate between highly pure clusters

that contain anomalous events from those that contain background events.

50



Figure 6.1: HMM-based sequence clustering model

6.3 Theoretical Formulation

Sequential signals such as speech and audio tend to have subsequences that

exhibit drastically different characteristics. In many cases, it is possible to

ascribe some structure to these anomalies. We examine the setting where

there exists an underlying class structure from which the subsequences are

drawn. Let us consider a simple example from the BBC sound effects cor-

pus. Figure 6.2 illustrates time-varying spectral bins for six different acoustic

events; it is evident that the third class (marked with a *) is drastically dif-

ferent. Unlike the rest of the events, it mostly contains long tones with a

few short bursts. Given the true identity of these six events, it would have

been easy to isolate the third class (e.g. doorbell sounds a lot different from

bird chirping or baby crying). Our definition of anomaly is therefore closely

related to the notion of an underlying class structure.

Let us assume that we have some original feature space X (1)×...×X (d) from

which an acoustic event x is drawn. Our clustering algorithm, f(.), assigns

x to one of K clusters, denoted by C = {C1, ..., CK}; we further assume that

x corresponds to one of L sound classes, denoted by Y = {Y1, ..., YL} and

use g(.) to refer to the true class. We say that x is an anomaly if it belongs

to the class that is least frequently assigned to a background cluster. For

some clustering function f(.), we can write average purity as the following

expectation:

Ek
[
max
i
P (f(x) = Ck|g(x) = Yi)

]
(6.1)

In the previous section, we described a model in which the clusters can be

grouped into anomalous or background events; we use CA and CB to denote

the sets of clusters that correspond to the two groups, respectively. Similarly,

we can define sets of classes YA and YB. A very simple rule for partitioning

51



Figure 6.2: Time-varying spectral bins for six different acoustic events.
Each color represents a different cluster centroid of the MFCC coefficients.

the clusters (as background or anomalous) is ordering the number of tokens

assigned to each cluster. We define CB = {Ck : |Ck| ≥ a}, where a is

a predetermined threshold, and of course CA = C − CB. To simplify our

argument, we consider the simplest setting, in which the largest cluster is

assumed to be representative of background events. That is,

CB = arg max
Ck
|Ck| (6.2)

In this case, YB corresponds to the class labels (of tokens) assigned to CB.

YB = {g(x) : ∀x, P (f(x) ε CB) ≥ P (f(x) ε CA)} (6.3)

The false alarm (FA) and missed detection (MD) rates are given by the

following equations:

FA : P (f(x) ε CA|g(x) ε YB) (6.4)

MD : P (f(x) ε CB|g(x) ε YA) (6.5)

We have already seen in the previous chapter that sparsifying the cluster

assignment probabilities increases purity. Our goal is to show why sparsity

also leads to a useful anomaly detection algorithm that minimizes false alarm.

Since cluster purity is a quantity we maximize, let us consider 1−FA and
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1−MD, respectively:

1− FA = P (f(x) ε CB|g(x) ε YB) (6.6)

1−MD = P (f(x) ε CA|g(x) ε YA) (6.7)

To minimize false alarm, we need to maximize 1−FA, and therefore P (f(x) =

CB|g(x) ε YB); this seems to suggest that we would like cluster assignment

probabilities to be dense, thereby contradicting our PAC-Bayesian results.

Anomaly detection requires a slight modification to the theory – we want

the cluster assignment probabilities to be highly sparse for most clusters,

and dense for the one (or few) background cluster(s). We therefore solve the

following optimization problem, where the sparsification terms are summed:

maximize
Q

J(Q)

subject to
∑
ci

‖q(xi|ci)‖0 ≤ V
(6.8)

In the context of PAC-Bayesian theory, this restriction still limits each ni to

V and therefore regularizes the bound; however, it is much more restrictive

than our original constraint of limiting ‖q(xi|ci)‖0 for each ci. In practice,

we solve the following relaxation:

maximize
Q

J(Q)− η
∑
ci

‖q(xi|ci)‖α

subject to η ≥ 0

(6.9)

The key advantage is that by aggressively selecting α and η, we can dis-

tribute observation tokens across the clusters to achieve the exact false alarm

and missed detection rates we desire, while still ensuring that the small-

sample generalization results of PAC-Bayesian theory hold. Note that maxi-

mizing 1−FA such that 1−MD is fixed (and maximizing 1−MD such that

1 − FA is fixed) leads to maximizing average purity as defined in Equation

(6.1). However, maximizing average purity does not necessarily guarantee

that 1 − FA and 1 − MD are maximized. Intuitively, this seems like a

saddle-point type situation that warrants further study.
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6.4 Results

We test our results on the BBC sound effects corpus – please refer to Chapter

5 for a detailed description of the dataset. To identify a token as an anomaly,

we use the simple thresholding strategy described in Equation (6.2). That

is, we take the largest cluster as representative of background events, and

assume that the rest of the clusters represent anomalous events.

Figure 6.3 is a matrix in which entry (i, j) represents the number of tokens

that were assigned to cluster i (of the 35 possible rows), given that their true

class is j (of the 48 possible columns).

It is clear that in the first subplot – where we do not encourage any spar-

sity – it is difficult to isolate any particular cluster as one that is anoma-

lous. Regardless of the threshold we may select, there are always clusters

that represent more than one class; hence, to distinguish an anomaly from a

background event in a fully unsupervised manner is challenging.

In the second subplot, where we encourage some sparsity, we see one back-

ground cluster that represents several classes, and several clusters that rep-

resent only one or two classes.

In the third subplot, we see that there is a huge background cluster to

which almost every token is assigned, and another cluster that contains all of

the tokens from a specific class. In this case, sparsity makes it both visually

and algorithmically obvious as to what exactly an anomaly is.

To quantify the improvement achieved by sparsity, we use the following

decision rule: a token is anomalous if and only if it belongs to the class that

is least frequently assigned to the background cluster, i.e., the conditional

probability of background cluster assignment given reference class label is

smallest. Figure 6.4 is again a matrix in which entry (i, j) represents the

number of tokens assigned to cluster i, given that their true class is j (in

this case, either an anomaly or a regular event). Note that the number of

clusters in both plots is different, and smaller than 35 – as we encourage

sparsity, there are more clusters to which no tokens are assigned.

As expected, sparsity and cluster purity significantly reduce the false alarm

rate, from 0.10 in the case of medium sparsity (α = 0.4) to 0.02 when

the observation probabilities are extremely sparse (α = 0.2). Of course,

such an improvement does not come without a cost – in this case, missed

detection (MD) increases from 0 to 0.02. The advantages and disadvantages
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of this tradeoff depend entirely on the application, but our algorithm and

experiments show that we can provably control the false alarm rate of an

algorithm by adjusting α and η, should we choose to do so.
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CHAPTER 7

DISCUSSION

The theory and experiments from previous chapters indicate that a PAC-

Bayesian approach is promising for learning languages in a fully unsupervised

fashion. In this chapter we show, by example on an artificial dataset, that

this may be possible.

Figure 7.1 describes the architecture. We pass speech samples in Gujarati

to an acoustic model trained on Indian English, under the assumption that

the resulting phone sequence is a noisy approximation of the true Gujarati

phone sequence. This sequence is then passed through our HMM-based clus-

tering algorithm. Figure 7.2 illustrates the purest clusters, as well as a mock

test scenario in which a clean signal is segmented and clustered into mean-

ingful Gujarati words.

While we realize that such a problem is far fetched, it is nevertheless the-

oretically intriguing. The following list summarizes some of the key issues to

address:

• The success of our method needs to be empirically verified on other

corpora. Since our original motivation is small-sample generalization,

we need to run the same experiment on the 22-language dataset, which

has an equally limited vocabulary.

• We need an evaluation metric for this task. It is not clear if purity is

necessarily the most appropriate metric, or if we need to account for

both precision and recall with something like the F-score.

• Regardless of the evaluation metric, the success of our approach de-

pends on the similarity between the unknown language and English. It

is useful to tighten the PAC-Bayes bound by incorporating this rela-

tionship.
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Figure 7.1: An architecture for unsupervised language learning

Figure 7.2: A Gujarati example
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CHAPTER 8

CONCLUSION

8.1 Summary

We have shown that there is some merit in tackling acoustic, speech, and

language processing problems from a learning theoretic point of view. By

extending PAC-Bayesian bounds to sequences, we were able to derive prov-

ably efficient and practical algorithms that achieve good performance on a

variety of tasks – class-based language modeling, acoustic event detection, as

well as anomaly detection. Finally, we showed that on a very small and artifi-

cial dataset, it may even be possible to learn words from unknown languages

in an (almost) unsupervised fashion. Naturally, closing one door opens sev-

eral more, and quite a few extensions of this work are worth exploring. We

summarize some of them below.

8.2 Future Directions

8.2.1 Language Models

The theory developed in this thesis applies to n-grams and class-based lan-

guage models, which form only a small class of all possible language models.

Although n-grams have been popular for several decades, they are now used

more as an academic example rather than a practical solution. State-of-

the-art methods based on Bayesian nonparametrics (e.g. the hierarchical

Pitman-Yor process) as well as neural networks (e.g. recurrent nets) work

exceptionally well in practice, but have limited theoretical justification. We

believe it may be possible to extend our PAC-Bayesian results to also encap-

sulate such models. One technique might be to simply view these models as
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some form of a clustering algorithm, and apply our bounds.

8.2.2 Anomaly Detection

We have merely modified the sparsification technique of our PAC-Bayesian

bound. Anomaly detection has some scope for more rigorous theoretical

results. For example, given some x ε X , our goal is to learn some decision

function h : X → Y , where Y = {background, anomaly}. This would

require training examples for both classes, which is usually not possible.

However, from a theoretical standpoint, it is interesting to decouple N , the

number of training examples, into N1 (background) and N2 (anomalous).

This allows us to characterize exactly how few examples from the anomalous

class are required for good performance.

8.2.3 Zero Resource Speech Recognition

This is the most ambiguously defined problem of the three, and therefore

lends itself to several possibilities. The most interesting (and impactful)

is the problem of mismatch between training and test sets. For example,

clustering a sequence of phones to extract words in Gujarati should benefit

much more from using a Hindi acoustic model rather than an English one.

We can abstract this problem to some notion of a similarity between training

and test signals – perhaps an additional mutual information term in the

bounds will do the trick.
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