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Abstract

Cardiac arrhythmia, one of the most common causes of death in the world

today, is not always effectively detected by regular examinations, as it usually

occurs infrequently and suddenly. Therefore, real-time, continuous monitor-

ing of the heart rate is needed to detect arrythmia problems sooner and

prevent their severe consequences. To make continuous monitoring possible

and give it widespread acceptance, a portable heart rate monitoring sys-

tem must have three key characteristics: (1) accuracy, (2) portability, and

(3) long battery life. Previous studies have focused on addressing these prob-

lems separately, either improving the accuracy of the monitoring algorithm

or the efficiency of the underlying hardware.

This thesis proposes a robust and reliable heart rate monitoring system

(RRHMS), in which both algorithm accuracy and hardware efficiency are con-

sidered. As a result, algorithmic optimizations are exploited to enable further

hardware efficiency. In the RRHMS, robust heart rate monitoring is achieved

by extracting heart rates from both electrocardiogram (ECG) and arterial

blood pressure (ABP) signals and fusing them based on the signal qualities.

Therefore, accurate heart rate data can be provided continuously, even when

one signal is severely corrupted. Algorithmic optimizations are applied to

merge the separate ECG and ABP processing steps into shared ones, which

allows shared hardware modules and hence low-area (portable) hardware

design. Also, an embedded hardware architecture framework is proposed

for the design of the RRHMS hardware system. Coarse-grained functional

units (FUs) can be easily added or removed in this framework, allowing for

application-specific hardware optimization. Further, the application invari-

ant properties are used to achieve low-overhead fault tolerance in the FUs to

enhance reliability. Both ASIC and FPGA implementations of the RRHMS

are able to accurately detect heart rates in real time while consuming only

1/2870 and 1/923 of the energy required by the Android implementation.

ii



To my family and friends, for their love and support

iii



Acknowledgments

I would like to express the deepest appreciation to my advisers, Professor

Zbigniew Kalbarczyk and Professor Ravishankar Iyer. Not only did they

patiently impart to me the knowledge needed in my thesis work, but more

importantly, they taught me how to conduct research, which I believe will

have a profound influence in my future career.

I would like to thank Homa Alemzadeh, a senior PhD student in our re-

search group, who started this project and collaborated with me on it. She

has provided me with tremendous help to start my thesis work and is al-

ways willing to spend time discussing the direction and next next step as the

project moves along. I would also like to thank Yangyang Yu, an undergrad-

uate research intern in our group, for her great help in the implementation of

RRHMS as well as the ASIC experiments. My sincere thanks also go to my

other groupmates — Catello Di Martino, Arjun Prasanna Athreya, Cuong

Manh Pham, Phuong Minh Cao, Zachary Estrada, Zachary Stephens, Sub-

ho Sankar Banerijee, Hui Lin, Safa Messaoud, Yogatheesan Varatharajah,

Daniel Chen, Zhihao Hong, Dao Lu, and Key Whan Chung — for the en-

joyable and insightful group retreats with them, as well as the birthday cake

they prepared for me.

In addition, I would like to thank my roommate, Xiaobin Gao, who has

been my classmate and friend for six years, for his company, help, and en-

couragement in both classes and life. He has sacrificed a large amount of

time to take care of me when I was ill and had operations at the hospital.

Last but not least, I would like to express my deep gratitude to my parents,

Junfeng Li and Caifeng Hu, and my girlfriend, Shan Liang, for their endless

love, support, and encouragement. Although my parents are far away in

China, a phone call to them at any time always brings me confidence and

energy to face any difficulty. My girlfriend often provides good advice in my

research, and always brings me endless happiness and motivation.

iv



Table of Contents

Chapter 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2 BACKGROUND AND RELATED WORK . . . . . . . . . 8
2.1 Biomedical Signals . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Biomedical Monitoring Algorithm . . . . . . . . . . . . . . . . 11

2.2.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Peak/Onset Detection . . . . . . . . . . . . . . . . . . 13
2.2.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . 15
2.2.4 Signal Quality Assessment . . . . . . . . . . . . . . . . 17
2.2.5 Multi-Signal Analysis and Fusion . . . . . . . . . . . . 19

2.3 Biomedical Monitoring Hardware . . . . . . . . . . . . . . . . 23
2.4 Hardware Fault Tolerance . . . . . . . . . . . . . . . . . . . . 29

Chapter 3 RRHMS HEART RATE ALGORITHM . . . . . . . . . . . 32
3.1 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Peak Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Signal Quality Evaluation . . . . . . . . . . . . . . . . . . . . 37
3.4 Heart Rate Estimation and Fusion . . . . . . . . . . . . . . . 43
3.5 Shared Processing . . . . . . . . . . . . . . . . . . . . . . . . . 44

Chapter 4 RRHMS HARDWARE SYSTEM . . . . . . . . . . . . . . 47
4.1 Hardware System Overview . . . . . . . . . . . . . . . . . . . 47
4.2 Functional Unit Design and Configuration . . . . . . . . . . . 49
4.3 MIPS Controller . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 Robust Heart Rate Application Mapping . . . . . . . . . . . . 56

Chapter 5 RRHMS FAULT TOLERANCE DESIGN . . . . . . . . . 59
5.1 Fault Model and Injection . . . . . . . . . . . . . . . . . . . . 59
5.2 Hardware Coverage . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Fault Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.5 Fault Tolerance Coverage Discussion . . . . . . . . . . . . . . 68

v



Chapter 6 EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . 72
6.1 Heart Rate Detection Accuracy . . . . . . . . . . . . . . . . . 72
6.2 Hardware Experiment Setup . . . . . . . . . . . . . . . . . . . 75
6.3 Baseline RRHMS Evaluation . . . . . . . . . . . . . . . . . . . 77

6.3.1 Comparison of Android, FPGA, and ASIC . . . . . . . 77
6.3.2 RRHMS Resource Utilization . . . . . . . . . . . . . . 81
6.3.3 Runtime, Resource, and Power Breakdown . . . . . . . 81

6.4 Fault Tolerance Evaluation . . . . . . . . . . . . . . . . . . . . 84
6.4.1 FDRU Overheads . . . . . . . . . . . . . . . . . . . . . 84
6.4.2 Fault Injection Methodology . . . . . . . . . . . . . . . 86
6.4.3 Fault Tolerance Coverage . . . . . . . . . . . . . . . . . 88
6.4.4 Discussion of Fault Coverage . . . . . . . . . . . . . . . 92

Chapter 7 CONCLUSION AND FUTURE WORK . . . . . . . . . . 97
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.2.1 Software/Hardware Partitioning . . . . . . . . . . . . . 98
7.2.2 Fault Behavior Analysis . . . . . . . . . . . . . . . . . 99
7.2.3 Functional Units Pipelining . . . . . . . . . . . . . . . 101

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

vi



Chapter 1

INTRODUCTION

This thesis presents a Robust and Reliable Heart Rate Monitoring System

(RRHMS) to provide portable and real-time monitoring at low energy con-

sumption. The proposed RRHMS includes: (1) a robust heart rate detection

algorithm with multiple signal analysis and fusion, and (2) a reliable embed-

ded hardware design that efficiently runs the heart rate detection algorithm

and is able to tolerate low-level hardware faults.

Continuous monitoring of heart rate is key to detecting cardiac arrhythmia

problems, which affect more than 5 million Americans and result in more than

1.2 million hospitalizations and 400,000 deaths each year in the U.S. alone

[1]. Arrhythmias may occur at any age, and some of them are barely percep-

tible until a problem occurs [2]. Moreover, arrhythmia problems are often

characterized by suddenness and unpredictability. To realize the required

continuous monitoring and receive wide acceptance, three qualities are key

to heart rate monitoring systems: accuracy, portability, and battery life.

According to [3], the accuracy of the monitoring system depends on:

(1) correctness and quality of the raw input signal collected from sensors,

(2) adequacy of the signal analysis algorithm (e.g., removes signal noise,

correctly extracts features, has no bugs, etc.), and (3) correctness of the

underlying hardware that runs the monitoring algorithm. Addressing the first

issue with better sensor technology is not the focus of this thesis. However,

the proposed RRHMS considers the effect of sensor signal quality and is able

to provide continuous monitoring in scenarios with low-quality signals.

Impact of the Quality of Monitored Signals. Traditionally, heart rate in-

formation is acquired by detecting peaks (location of the highest magnitude

in the signal period) from the electrocardiogram (ECG) or arterial blood

pressure (ABP) signals; arrhythmia is detected by thresholding on the heart

rate. However, signal corruptions in ECG and ABP (such as noise, artifacts,

missing data, etc.) often result in inaccurate detection of peaks and then to
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false diagnoses [4]. The large number of false alarms in intensive care units

(ICUs) is an example of this problem. Studies [5, 6, 7] show that more than

80% of the alarms generated in ICU monitors are false and clinically insignif-

icant due to corruptions in the sensor signals and the simple thresholding

policy on a single signal. Although sophisticated signal filtering and analysis

techniques [8, 9, 10] can alleviate this problem to an extent, they do not work

when the signal corruption is severe. However, since noise and artifacts in

different signals are weakly correlated [11], robust heart rate estimation is

achieved in RRHMS by analyzing both ECG and ABP signals, as heart rate

can be estimated from both of them. Figure 1.1 shows three segments of

patient data from the MIMIC II database [12]. In Figure 1.1a, ABP signal is

good while ECG signal is corrupted by sensor noise and disconnection, and

during this period, the patient is experiencing the tachycardia problem. This

problem cannot be detected if only ECG is being monitored. However, if the

monitoring system considers both ABP and ECG signals, and if it detects

that ECG is currently having low signal quality while ABP signal is good

(Section 2.2.4 gives an overview of signal quality assessment methods), then

it can detect the problem by ignoring ECG and using only ABP. Figure 1.1b

shows the opposite case: the beginning part of ABP is noisy, but ECG is

good. Similarly, during that period, the monitoring system needs to ignore

ABP and use ECG to provide continuous heart rate monitoring. At last,

both ABP and ECG are good in Figure 1.1c, where a strong correlation be-

tween the two signals for providing heart rate information is shown by the

dotted lines. When both signals are good, the monitoring system can have

high confidence in estimating the heart rate.

Impact of Hardware Faults. On the other hand, even if the monitoring

algorithm is highly accurate, along with the scaling of transistor technology,

hardware components become increasingly susceptible to low-level transis-

tor faults that may propagate to cause the electronic systems to produce

incorrect results, hangs, or crashes [13]. Transient faults or soft errors are

the most common hardware faults, the rate of which is expected to have an

8% increase per logic state bit in each technology generation [14, 15]. For

heart rate monitoring, this may cause the system to generate incorrect heart

rate information or hang without notice. Therefore, enabling fault tolerance

capability, especially tolerance of transient faults, is important (sometimes

even life-critical) for heart rate monitoring systems. In addition, fault toler-
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(a) ABP is good while ECG is corrupted (patient is experiencing tachycardia)

(b) ABP is noisy while ECG is good

(c) Both ABP and ECG are good (ABP and ECG peak locations are correlated)

Figure 1.1: Three scenarios of ABP and ECG signals from the MIMIC II
database (patient a40050)

ance should not introduce large hardware area and power overheads (as with

the traditional double and triple modular redundancy techniques), which

jeopardize the portability and battery life of the monitoring system.

Portability and battery life are usually translated to hardware area and

power consumption. As discussed above, accurate real-time monitoring of the

heart rate requires concurrent recording and analysis of multiple biomedical

signals (ABP and ECG) collected at relatively high sampling rates (up to 10

kHz [16]). Therefore, portable monitoring systems often face challenges in

real-time processing of large amounts of biomedical signal data under tight

area and power constraints. Commercial off-the-shelf embedded processors,

such as the ARM microprocessor and DSP (digital signal processor), are not

the best solutions to provide continuous and portable biomedical monitor-
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ing. They are designed for general embedded applications with instruction-

level optimizations, but they lack the application-specific optimizations for

biomedical monitoring, and therefore, they do not offer the best performance

and power efficiency for running biomedical monitoring applications. The

comparison results in Section 6.3.1 between the proposed RRHMS and the

Qualcomm Krait processor [17] (architecturally similar to ARM Cortex-A15)

are proofs of this. In addition, higher power consumption drains the battery

faster, and as a result, a bigger and heavier battery is required, which affects

portability as well.

Existing studies and techniques have provided good solutions to the sep-

arate problems of monitoring accuracy and processing efficiency. For ex-

ample, studies in [8, 9, 10] have focused on developing noise filtering and

signal quality assessment techniques to obtain clean signals and the signal

quality information needed for improving the analysis accuracy. Other works

[18, 19] presented signal analysis algorithms for accurate peak detection of

either ECG or ABP signals. The algorithms proposed in [11, 20, 21, 22]

separately analyzed multiple signals, including ABP and ECG, and fuse the

analysis results to detect robust heart rate and reduce false alarm rates in

the detection of different cardiac arrhythmia problems. Moreover, Khatib et

al. [16] explored using ARM and DSP embedded processors to optimize an

autocorrelation-based ECG peak detection algorithm, and customized hard-

ware modules were applied by [23, 24, 25] to achieve further performance and

energy efficiency for previously developed ECG peak detection algorithms.

However, none of the previous works has considered addressing algorithm ac-

curacy and processing efficiency issues at the same time by including multiple

signal analysis and fusion techniques along with both software and hardware

design and optimizations. As a result, some software/hardware optimiza-

tion opportunities have been overlooked. In addition, none of the previous

biomedical monitoring hardware research has considered the important fea-

ture of hardware fault tolerance.

Design Overview. This thesis introduces RRHMS to address issues of both

monitoring accuracy and processing efficiency in order to achieve accuracy,

portability, and long battery life in heart rate monitoring. Figure 1.2 depicts

the overview of the proposed heart rate monitoring system. In RRHMS,

both ABP and ECG signals are analyzed and fused to achieve robustness.

Unlike previous signal-fusion systems, such as [20, 21], which extract heart
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Figure 1.2: The proposed robust and reliable heart rate monitoring system

rate feature from ABP and ECG separately with different processing steps,

RRHMS considers both algorithm and hardware system design. Algorith-

mic optimizations are applied to estimate heart rates in both signals with

shared processing steps to allow hardware module sharing for efficient and

low-area (portable) hardware design. After extracting heart rates from both

signals, RRHMS evaluates their signal qualities and puts more weight (trust)

on the heart rate information extracted from the signal with the higher sig-

nal quality. In addition, to efficiently support the processing steps of the

heart rate detection algorithm, an embedded hardware architecture frame-

work with coarse-grained configurable functional units (FUs) is proposed

in which FUs can be added or removed in the architecture framework for

application-specific hardware optimizations. The reliability of RRHMS is

achieved by introducing a hardware fault tolerance technique that uses the

application-specific invariant property [26] for low-overhead fault detection

and recovery. The proposed fault tolerance technique is able to detect both

permanent and transient hardware faults in the FUs and dynamically recover

from transient faults in real time. To the best of our knowledge, RRHMS is

the first low-energy and fault tolerant hardware implementation for real-time

robust heart rate estimation by multiple signal analysis and fusion.

Experiments show that the algorithmically optimized peak detection algo-

rithm is able to match the results of the originally separate ABP and ECG

peak detection algorithms, and the applied fusion algorithm [21] provides

continuous robust heart rate information even when one signal is corrupted.

The proposed RRHMS is implemented in both the ASIC design using the

Synopsys Design Compiler [27] and on the FPGA platform with the Virtex 5
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ML507 board. The results of the implemented hardware on both platforms

are compared with MATLAB simulations to ensure implementation correct-

ness. The same algorithm is also implemented as an Android application on

a Nexus 7 tablet (equipped with the Qualcomm Krait processor) for compar-

ison. The simulation results show that, compared with Android, both ASIC

and FPGA implementations achieve better runtime performance (20.6 and

13.7 times speedup, respectively) at much lower power consumptions (1/139

and 1/67 of Android’s power, respectively). Moreover, the proposed fault tol-

erance technique enhances system reliability by increasing the correct output

percentage under injected hardware faults. It is able to reduce more than

55% of incorrect outputs and system failures under all tested fault rates. In

addition, the proposed fault tolerance mechanism has only about a 15% area

(resource) overhead in the hardware logics, and during normal monitoring

when no fault occurs, it only introduces about a 34% power overhead (due

to fault detection checking) and does not incur any performance overhead.

1.1 Contributions

The specific contributions of this thesis are summarized as follows:

• We apply algorithmic optimizations to ECG and ABP heart rate de-

tection algorithms developed by [18] and [28], respectively. The opti-

mizations enables shared processing steps between the two originally

separate processing flows. As a result, some hardware modules that

are used to efficiently support ECG and ABP processing are shared.

The shared modules account for about 45% of the hardware logics,

effectively cutting the hardware area in half.

• We propose an embedded hardware architecture framework with coarse-

grained configurable functional units (FUs) to perform energy-efficient

computations. The FUs can be configured within a few cycles to switch

between ABP and ECG analysis or between different patients. Ad-

ditionally, FUs are designed following a framework design template,

which gives them the same interfaces. This makes it easy to add or re-

move FUs in the architecture framework to achieve application-specific

hardware optimizations for the target embedded application.
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• We propose and design a low-overhead hardware fault detection and

recovery engine that monitors the activities of the FUs and applies

invariant checking and heartbeats to detect hardware faults. Upon

detection of faults, the corresponding FU is reset and re-executed by

the fault detection and recovery engine in real time to dynamically

recover from the transient fault. Permanent faults, however, can only

be detected, not recovered from.

• We implement the RRHMS prototype both in the ASIC design and on

the FPGA platform to evaluate runtime performance, power and energy

consumption, and fault tolerance coverage and overheads of the pro-

posed fault detection and recovery engine. ASIC is the target platform

for the final product of RRHMS, while in the FPGA implementation,

the proposed hardware architecture is evaluated as the framework to

support the target embedded application.

Homa Alemzadeh and Yangyang Yu are my collaborators in this thesis

work. In particular, Alemzadeh has helped in (1) the proposal and im-

plementation of the multiple signal (ECG and ABP) analysis and fusion

algorithm, (2) the algorithmic optimizations to merge the separate ECG and

ABP analysis algorithms, and (3) the design of the RRHMS hardware ar-

chitecture framework. Yangyang has helped with the implementation of the

coarse-grained FUs and the ASIC synthesis of the RRHMS.

1.2 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 provides the back-

ground of biomedical signal monitoring as well as the work in this field that

motivates the development of RRHMS. Chapter 3 introduces each process-

ing step of the RRHMS heart rate detection algorithm, including the applied

algorithmic optimization. Chapter 4 discusses in detail the proposed base-

line RRHMS hardware system without fault tolerance features, followed by

discussion of the proposed low-overhead fault tolerance design in Chapter 5.

Chapter 6 introduces the experiments performed and the results obtained

in evaluating RRHMS. The thesis concludes and future work is described in

Chapter 7.
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Chapter 2

BACKGROUND AND RELATED WORK

In this chapter, we provide an overview of the background of biomedical mon-

itoring. First, common biomedical signals used in the monitoring are briefly

introduced, followed by discussion of software and hardware approaches pre-

viously proposed to analyze and extract features from those biomedical sig-

nals. Previous work provides us with valuable insights of the characteristics

of different biomedical signals, as well as useful analysis of the efficiency of

different hardware systems for biomedical signal processing. However, the

related previous work, such as the work in signal beat detection and signal

fusion, focuses on developing and applying separate signal processing steps

to extract features from different signals. Additionally, previous biomedical

hardware work only uses the hardware capability for efficient computations

of previously developed algorithms. None of the work considers software op-

timizations for efficient hardware design or the fault tolerance capability of

the hardware.

2.1 Biomedical Signals

Biomedical (or physiological) signals are the signals produced by the body

during the functioning of various physiological systems [29]. Information

about the state of the physiological system can be extracted from the cor-

responding biomedical signals. The common biomedical signals being moni-

tored and checked in hospitals are: electrocardiogram (ECG), arterial blood

pressure (ABP), peripheral capillary oxygen saturation (SpO2), and respira-

tory rate. These four commonly used signals are the ones typically studied

in the literatures of biomedical monitoring algorithms. Figure 2.1 shows an

example segment of each of these four biomedical signals. Each signal is

collected by a different bio-sensor. Table 2.1 lists the sensors used to collect

8



Figure 2.1: Commonly used biomedical signals (from the MIMIC database)

Table 2.1: Bio-sensors used to collect different biomedical signals

Biomedical
Signal Sensor Working Principle

ECG ECG electrodes Detect the rise and fall of voltage caused
by heart muscle depolarizing between
the two electrodes placed at either side
of the heart.

ABP Pulse oximeters
with pressure sensor

Control and measure counter pressure to
keep constant finger blood volume.

SpO2 Pulse oximeters Measure and calculate the emitted light
absorbed by the finger tip.

Respiratory
rate

1. Capnography
or
2. Pneumatograph

1. Monitor the concentration or partial
pressure of carbon dioxide (CO2) in the
respiratory gases.
2. Record velocity and force of the chest
movements during respiration.

each signal, along with a brief description of each sensor’s working principles.

ECG signal records the electrical activity of the heart. Up to 12 leads

of ECG signals can be obtained by placing electrodes at different places

on the body [30], and they together provide accurate ECG analysis [16].
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ECG signals are often used to detect various cardiac diseases and problems

[31, 32, 33], including coronary heart disease, pericardium disease, cardiac

arrhythmias, etc. ABP signal indirectly indicates information about the

health state of the heart and blood vessels. Low blood pressure, or clinical

shock, usually indicates a medical emergency situation in the intensive care

unit or during the surgery operation, and high blood pressure is a sign of

chronic condition hypertension [34]. Heart rate and cardiac output (which

is a key parameter in assessing circulatory function) can be estimated from

ABP waveforms as well [35]. SpO2 signal measures the blood oxygen

saturation level, which is the percentage of hemoglobin in the blood that is

saturated with oxygen, and indicates if sufficient oxygen is being supplied to

the body, especially to the lungs [36]. Respiratory rate is the number of

breaths taken within a set amount of time. Monitoring of respiratory rate

is important in postoperative care, because some operations, like abdominal

operations, might cause central or obstructive apnoea [37, 38]. In addition,

Fieselmann et al. [39] show that monitoring respiratory rates is helpful in

reducing the chance of cardiopulmonary arrest.

Processing and operations on those biomedical signals follow the same gen-

eral operation flow depicted in Figure 2.2. First, the raw biomedical signals

are collected from the body using bio-sensors (Table 2.1). After collection

of the raw signals, signal processing methods are applied to extract useful

features from the signals to identify patient problems and make diagnostic

decisions (for example, the QRS complex feature extracted from ECG is used

in [22, 40, 41] to identify asystole, ventricular tachycardia, coronary artery

disease, and so on). In addition, the processing of the raw biomedical signals

Figure 2.2: General operation flow of biomedical signals
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also follows the four general processing steps as shown in Figure 2.2 (in the

dash-line box): preprocessing, peak/onset detection, feature extraction, and

diagnosis. (Section 2.2 discusses each step in detail.)

This thesis focuses on heart rate monitoring. ECG, ABP, and SpO2 signals

all contain information about heart rate, as the electrical activity recorded by

ECG, the blood pressure waveform in ABP, and the pulse oximeter’s plethys-

mograph for SpO2 calculation are periodic with the heart beats. Only ECG

and ABP signals are used in this thesis because we found few patient SpO2

signals during the period in which both ECG and ABP signals were valid in

the MIMIC II database. However, since SpO2 has waveform shapes similar

to ABP, we believe the RRHMS heart rate detection and fusion algorithm,

as well as the RRHMS hardware system, can be used to efficiently process

the SpO2 signal and fuse the heart rate extracted from it as well. If SpO2

is included in RRHMS, the heart rate estimation would be more robust, for

it could then tolerate severe signal corruptions in up to two out of the three

signals.

2.2 Biomedical Monitoring Algorithm

Numerous algorithms to extract and analyze features from biomedical sig-

nals have been proposed and studied, especially with ECG and ABP signals.

Different works focus on the different processing steps shown in the dash-

line box of Figure 2.2. This section discusses in detail the purpose of each

processing step and the techniques used or developed for each step in the

literature, along with a brief introduction to the technique applied for each

processing step in RRHMS. We were motivated by the literature to devel-

op them, and at the same time, we considered the effect of the processing

algorithm development on the hardware design and optimization.

2.2.1 Preprocessing

The raw biomedical signals obtained from the bio-sensors often contain a lot

of noise, making the features difficult to extract correctly from the signal.

So the preprocessing stage is applied to (1) reduce the noise in the signal (to

maximize the signal-to-noise ratio), and (2) highlight the interested feature
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Figure 2.3: Noise in ECG signal and filtered ECG signal [42]

information.

Figure 2.3 illustrates an example of ECG signal before and after noise

removal. Signal noise is normally caused by different types of artifacts and

interferences in the sensors [43, 44], such as power line interference, electrode

contact noise, motion artifacts, etc. Digital filters, such as low-pass, high-

pass, and median filters, are the most commonly used method for signal noise

removal, as used in [45, 46, 47, 48]. To simplify the digital filter design and

realize fast computation on small computers, Lynn [8] proposed the “fast

designs” for a class of digital filters for biomedical signals, including the

recursive and non-recursive low-pass, high-pass, band-pass, and band-stop

filters. In addition, digital differentiation and squaring are used in [18, 49] to

further remove noise and highlight peak locations for ECG QRS detection.

More recent studies [10, 50, 51, 52] use adaptive filters (with electrode-skin

impedance as the reference signal) and wavelet-based techniques for the noise

removal in ECG signals. The extended Kalman filter is applied on the ABP

signal in [53] for signal artifact smoothing. RRHMS applies the digital filter

method to remove noise in ABP and ECG signals. It is designed following the

method developed by [8], based on its efficiency and simplicity of hardware

implementation.

As for feature highlighting, slope sum has been used in [20] to highlight

and smooth the rising portion of the ABP signal. It has an effect similar

to the moving-window integration used in [18]. But since the two works
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[18, 20] focus on the processing of ABP and ECG signals, respectively, two

separate feature highlighting methods with similar effect were developed.

Since RRHMS considers the processing of both signals, as well as hardware

optimization, we optimized by algorithmically merging these two separate

processing steps into a single step that highlights the rising portions of both

ABP and ECG signals. As a result, RRHMS requires only a single, shared

hardware module for efficient feature highlighting.

2.2.2 Peak/Onset Detection

Many biomedical signals, such as ECG, ABP, SpO2, etc., are periodic with

the heart beat. Features extracted within a beat (e.g., systolic/diastolic

blood pressure values, ECG QRS shape, beat-to-beat interval, etc.) and

their changes from beat to beat are the foundations of detecting diseases and

problems. Therefore, it is critical to accurately identify the beat or period

of the biomedical signals to accurately extract features used for diagnosis

[54, 55]. Signal peak/onset detection techniques were developed for this pur-

pose, and three detection techniques are commonly used: (1) threshold-based

detection, (2) frequency analysis detection, and (3) template matching de-

tection.

Many works [18, 28, 56, 57, 58] apply the threshold-based peak/onset de-

tection method by thresholding on the signals in the time domain, combined

with local maximum and minimum searching. For example, Zong et al. [28]

designed the ABP onset decision rules in this way. First, adaptive thresh-

olding is applied on the slope summed signal (used to highlight the rising

portion of the raw ABP signal) to detect the onset. Then, local maximum

and minimum searching is applied around the onset point to decide whether

to accept the detected onset based on the difference between the maximum

and minimum values. In [18], the ECG peak or QRS detection algorithm

uses two thresholds to detect the ECG QRS complex. The higher threshold

is used for the first-time analysis of the signal, while the lower threshold is

applied if no QRS is detected within a certain amount of time; this enables

back-searching for the QRS complex. The threshold values are usually dy-

namically updated to adapt to the on-the-fly signal changes. This is done

according to different rules and conditions, such as signal quality and noise
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level. A common method used in the literature to update the threshold values

is to use the weighted sum function. When a peak is detected, the threshold

values are updated by applying the weighted sum to the old threshold values

and the new values that come from the newly detected peak.

Frequency domain analysis, such as filter bank, power spectrum, and en-

ergy analysis, is another popular method to detect beats. Power spectrum

analysis has been applied as an intermediate step in [59] for beat detection

of the pressure signals, such as the intracranial pressure, ABP, and SpO2

signals. Pachauri and Bhuyan [19] applied the window-based energy analysis

technique, combined with the amplitude and interval thresholds, to detec-

t peaks in the ABP signal. In addition, the filter bank based ECG beat

detection algorithms have been introduced in [54, 60, 61]. Generally, the

filter bank based algorithm involves (1) decomposing the signal into fre-

quency subbands, (2) processing the subbands according to the application,

and (3) reconstructing the processed subbands for further analysis. The fre-

quency domain analysis methods use the fact that signal peaks are usually

concentrated in a different frequency range from the signal noise and other

uninteresting segments. For example, the energy of ECG peaks usually con-

centrates around the frequency of 40 Hz [61]. As a result, the ECG peaks

are detected in the filter bank techniques by analyzing the corresponding

frequency subband.

In addition, the template matching method is used in [16, 62] for ECG beat

detection. Template matching evaluates the similarity between the input

signal in with a template signal period by performing auto-correlation or

cross-correlation calculations. The template signal period is predefined or

trained, and the calculated local maximum correlation value indicates the

detection of a signal period (beat) in the input signal.

Even though the previously proposed beat detection algorithms obtain

good results with high accuracy, they are developed for specific signals (e.g.,

some algorithms are only developed for ECG, while others are developed for

ABP). Therefore, if both ABP and ECG beats need to be detected, separate

beat detection algorithms have to be used for each type of signal. This is not

a big problem if a general purpose processor is applied as the platform for

the processing involved in beat detection. However, if application-specific

hardware is used for highly efficient and portable processing, separate al-

gorithms require separate coarse-grained hardware modules, and therefore
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would occupy more hardware area and consume more power. To solve this

problem, as in the case if the preprocessing steps, we developed a single

peak detection algorithm in RRHMS by applying algorithmic optimizations

to merge (1) the threshold-based ABP onset detection algorithm proposed in

[28], and (2) the ECG QRS complex detection algorithm (threshold-based)

developed by [18]. We chose the threshold-based detection algorithm, be-

cause it can achieve good runtime and accuracy performance with less com-

plicated hardware design. On the other hand, the frequency-based analysis

is computation-intensive and requires complicated hardware modules to per-

form transformations between time and frequency domains. Further, the

template matching method does not adapt well to detecting nonstationary

patterns (its accuracy decreases when the signal pattern changes).

2.2.3 Feature Extraction

After the beat is detected, features can be extracted from the signal period.

At this stage, many diseases and problems can be detected by simply thresh-

olding on their corresponding feature values. For example, hypotension and

hypertension problems are detected by thresholding on the systolic and dias-

tolic blood pressures, where systolic blood pressure is the peak ABP value of

the period and diastolic blood pressure is the valley ABP value of the period.

The heart rate feature is computed with the beat-to-beat interval, which is

the interval between detected beats, and cardiac arrhythmias are detected

by thresholding on the heart rate. In addition, the ABP pulse pressure (the

difference between systolic and diastolic pressures), ECG beat shape, ECG

ST and QT intervals, and other values contain information about a person’s

cardiac health [63, 64, 65].

The above features are directly extracted from each beat, so we call them

first-level features. However, simply thresholding on the first-level features

often results in a large number of false alarms. This is because first-level

features tend to be sensitive to signal noise or artifacts. Even with sophisti-

cated preprocessing techniques, some noise may not be completely eliminat-

ed, which may result in incorrect first-level feature extractions and therefore

false alarms. On the other hand, although the alarms generated by some

sudden changes in the signals (that quickly come back to normal) are techni-
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cally true alarms in the beat period where the change happens, those alarms

are often clinically insignificant. The observation has been made in [66] that

“rapid changes in the readings that swiftly return to normal are more likely

non-physiological than those which are persistent and form a trend.” In addi-

tion, the similar claim has been made in [67] that “false alarms tend to occur

fleetingly, while true alarms tend to develop more slowly.” Therefore, many

methods do not rely only on first-level features to make diagnostic decisions

but use second-level features as well.

Second-level features (defined by us) are features that are computed based

on first-level features but are usually more robust to random noise and less

sensitive to sudden non-physiological signal changes. For example, a second-

level feature can be obtained by the statistical computation of first-level

features within a time interval, such as the average, maximum, or minimum.

In [66], the difference between the average heart rate in the current minute

and that of three minutes ago is used to detect any change or trend in the

heart rate, which helps filter false alarms. In [67], first-level features, such

as ECG heart rate, respiratory rate, ABP mean and systolic pressures, are

analyzed by windows of 10, 20, and 45 seconds. Within each interval, second-

level features such as the mean, median, maximum, minimum, or standard

deviation are computed for each first-level feature. The second-level features

then are used by a machine learning algorithm to discover medical events,

such as decreases in blood pressure, that require clinical attention. Seventeen-

second ABP and ECG waveform segments are analyzed in [22], within which

maximum, minimum, and mean heart rates are computed to reduce false

alarms in detecting critical arrhythmias. Apiletti et al. [68] use the moving

average on the first-level features of systolic and diastolic pressures, heart

rate, and SpO2 to obtain second-level features for assessment of health status.

In addition, some problems can be detected only by looking at second-

level features. For example, some current and potential cardiac diseases are

undetectable using only the first-level heart rate feature but can be detected

through analysis of the second-level feature of heart rate variability (HRV)

over time [69].

To achieve robust heart rate monitoring, RRHMS calculates a second-level

heart rate feature using the average heart rates of 10-second windows. This

is key to accurately detecting several kinds of cardiac arrhythmia problems

as well as to correctly analyzing the HRV. Table 2.2 lists some critical cardiac
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Table 2.2: Arrhythmia problems that can be detected with RRHMS

Arrhythmia
Type Definition Example Pattern

Asystole No cardiac output
for 4 seconds

Extreme
Bradycardia

Resting heart rate
below 40 bpm

Extreme
Tachycardia

Resting heart rate
above 140 bpm

arrhythmias that can be detected with heart rate monitoring, along with a

brief problem description and example signal pattern of the corresponding

problem. The window interval chosen for use in RRHMS is large to minimize

the effect of signal noise and non-physiological changes. Also, 10 seconds

is the maximum delay allowed to meet the real-time arrhythmia detection

criterion of AAMI-EC-13 Cardiotach Standard [22].

2.2.4 Signal Quality Assessment

Some signal noises, artifacts, and abnormalities (e.g., those due to sensor

movement or disconnection) can hardly be removed or fixed by signal filtering

techniques. Figure 2.4, reproduced from [9], shows an example of a clinical

ABP signal with abnormal regions, where the abnormalities are caused by

sensor movements, not by problems in patient. When such an abnormality

occurs, false alarms are very likely. Therefore, signal quality assessment

techniques are developed to help identify the regions of the biomedical signals

where noise or abnormality occurs and thus to further improve the accuracy

of the signal analysis and diagnosis.

By observing and studying the nature of the normal signals, as well as

the characteristics of different kinds of noise and artifacts, previous work

[9, 20, 21, 70, 71] has developed various methods to evaluate signal quality

and identify signal noise level. Sun et al. [9] flag the abnormal beats in

the ABP signal by thresholding on the first-level features extracted from the

beat, including systolic, diastolic, mean, and pulse pressures, beat duration,
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Figure 2.4: ABP waveform with abnormal regions [9]

and their differences between consecutive beats. Thresholds are set based

on normal physiological ranges. For example, systolic blood pressure never

exceeds 300 mmHg, so if an ABP beat has a peak value larger than 300,

the beat is flagged as abnormal. Fuzzy logic is used in [20] to assess the

quality of ABP beats by measuring how much the features of a detected beat

deviate from the model features. Model features are trained using normal

ABP signals and averaging the feature values extracted from each beat in

the training period. Zong et al. [20] compute additional APB beat features

based on those used in [9], including maximum positive and negative pres-

sure slope, maximum up-slope duration, and so on. Kurtosis and spectral

distribution analysis are applied by [21] to evaluate the signal quality of the

ECG signal. Kurtosis is the fourth standardized moment and measures the

peakedness of a distribution. A low kurtosis value in an ECG signal indicates

the low-frequency baseline wonder noise and the high-frequency power-line

interference noise. Spectral distribution analysis relies on the fact that ECG

peaks and noise are concentrated in different frequency bands. So the ener-

gy ratio of the frequency band containing ECG peaks indicates the quality

of the ECG signal. Besides kurtosis, He et al. [70] use the variance index

as an extra measure of ECG noise and abnormality level. In [71], the area

differences between successive ECG beats, including adjacent beats, every

other beat, every third beat, etc., are calculated to generate the statistical

distributions used to assess ECG signal quality.

RRHMS evaluates the signal quality of both ABP and ECG and uses this

information in fusing the heart rates extracted from the two signals. This

minimizes the chance of incorrect heart rate estimations caused by signal

noise or abnormality that cannot be fixed in the preprocessing step. RRHMS
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signal qualities are calculated based on the previously developed methods

[9, 20, 21].

2.2.5 Multi-Signal Analysis and Fusion

The fact that the causes of noise and artifacts in different bio-sensors are dif-

ferent and independent [11], inspired proposal of multi-parameter biomedical

signal analysis and fusion methods to:

(1) suppress false alarms generated by a single signal by exploiting the

relationship between different sensor signals,

(2) improve the accuracy of disease and problem detection by fusing the

features extracted from different signals, and

(3) provide robust and continuous monitoring, even when some signals are

erroneous or corrupted, by using the redundant information in different

signals.

The techniques used to fuse the analysis of different signals can be catego-

rized as: (1) rule-based fusion , which establishes rules and thresholds to

fuse the results of different signals, (2) numeric-based fusion , which fuses

the features extracted from different signals with numeric calculations, such

as weighted sum (or weighted average), and (3) machine learning-based

fusion , which combines the features acquired from different signals into the

feature vectors and applies machine learning techniques to train and classify

for specific problem detection. Table 2.3 lists some fusion techniques in each

category.

The rule-based fusion method is applied by [22] and [72], using ABP and

PLETH signals respectively, to reduce false alarms of arrhythmia in the ECG

monitors used in intensive care units. The approach is to analyze the other

signal (ABP and PLETH) whenever the ECG monitor raises an arrhythmi-

a alarm, since it should contain redundant information. If the arrhythmia

problem indicated by the ECG monitor’s alarm is also detected in the re-

dundant signal, the ECG alarm is accepted, otherwise it is rejected. Using

the same rule-based method but in an opposite manner, Zong et al. [20] try

to suppress the false alarms generated by the commercial ABP monitors by

incorporating the ECG signal in computing the signal quality of ABP beats

based on some rules and thresholds, such as thresholding on the ECG-ABP
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Table 2.3: Previous multi-signal analysis and fusion work

Signal
Fusion
Works

Application
Purpose

Raw
Signal Features Technique Description

Rule-Based Fusion

Aboukhalil
et al. [22]

Reduce false
alarms in ECG
monitors by using
ABP signal.
Alarms include:
- Asystole
- Extreme bradycardia
- Extreme tachycardia
- Ventricular

tachycardia

- ABP
- ECG

- Heart rate
- Beat-to-beat interval
- Max. interval within a window
- Min. interval within a window
- Average heart rate in a window
- Signal abnormality index [20]

- Reject ECG alarms by
thresholding on the features
extracted from ABP signal
within the analysis window.

- Design different threshold
rules for different life-
threatening alarms listed in
the application purpose cell.

Zong
et al. [20]

Reduce false alarms
in the commercial
ABP monitor by
using ECG signal.

- ABP
- ECG

- Heart rate
- Systolic, diastolic, mean, and

pulse blood pressures
- Max. positive pressure slope
- Max. negative pressure slope
- Max. up-slope duration
- Max. duration above threshold
- ECG-ABP peak delay time

- Calculate both signal
qualities of ABP and ECG.

- Apply ECG signal to
adjust the beat qualities
computed for ABP signal.

- Use the adjusted ABP
signal quality as criteria
to suppress alarms generat-
ed by ABP monitor.

Deshmane
[72]

Suppress false alarms
generated by the
ECG monitor.

- ECG
- PLETH

- Heart rate
- Beat-to-beat interval
- Max. interval within a window
- Min. interval within a window
- Average heart rate in a window
- Signal quality of PLETH

- Suppress ECG alarms by
thresholding on the features
extracted from PLETH
within the analysis window.

- Design the threshold rules
and alarm reduction
framework similar to [22].

Numeric-Based Fusion

Li et al.
[21]

Provide robust heart
rate estimation.

- ABP
- ECG

- Heart rate
- ABP and ECG signal qualities

obtained by applying previously
developed methods
[9, 20, 70, 71]

- Apply Kalman filter on the
ABP and ECG heart rates.

- Obtain robust heart rate by
applying weighted sum on
the two estimated heart
rates based on the signal qu-
alities and Kalman residues.

Ebrahim
et al. [11]

Provide robust heart
rate estimation.

- ABP
- ECG
- PLETH

- Heart rate

- Identify erroneous sensor
estimates by analyzing: a)
consensus between sensors,
b) comparison between curr-
ent measurement and the
predicted value, and c)
physiologic consistency of
the estimates.

- Fuse sensor heart rates by
weighted sum, excluding the
erroneous estimate.

Apiletti
et al. [68]

Propose frame work to
classify health severity
levels.

- ABP
- ECG
- PLETH

- Heart rate
- Systolic and diastolic blood

pressures
- SpO2

- Compute risk component
for each signal feature,
such as sharp changes, long-
term trends, and distance
from normal behaviors
(similar to second-level
feature computations).

- Estimate health severity
level by applying weighted
sum on all computed risk
components.

(Continued on next page)
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Table 2.3 (cont.): Previous multi-signal analysis and fusion work

Signal
Fusion
Work

Application
Purpose

Raw
Signal Features Technique Description

Numeric-Based Fusion - continued

Kannathal
et al. [73]

1. Detect:
- left ventricular failure
- right ventricular

failure
- pulmonary oedema
2. Derive patient
deterioration index.

- ABP
- ECG
- PLETH
- RESP

- Heart rate
- systolic, diastolic, and

mean blood pressures
- SpO2
- respiratory rate

- Apply fuzzy logic function
with the input of quantized
feature values to calculate the
fuzzy probability of each failure.

- Use weighted sum for each
failure probability to obtain
the deterioration index.

Machine Learning-Based Fusion

Biosign
[74]

Identify adverse trends
in the patient health
status and provide early
warning of changes.

- ABP
- ECG
- PLETH
- RESP
- Temper-
ature

- Heart rate
- Systolic blood pressure
- SpO2
- Respiratory rate

- Apply k-means clustering on
the feature vectors to select
500 cluster centers.

- Use Parzen window with the
500 prototype patterns as
kernels to estimate the
unconditional probability
density function, which is
used to derive the patient
status index.

Tsien [67]

Detect medical event,
such as ECG lead
apnea, false alarms
due to patient motion,
blood pressure decrease,
etc.

- ABP
- ECG
- PLETH
- RESP

- Heart rate
- Systolic and mean blood

pressures
- SpO2
- Respiratory rate

- Apply supervised machine
learning method (decision tree)
to classify the feature vectors
for the detection of different
medical events with the corres-
pondingly trained models, where
feature vectors are composed
of the computed second-level
features (min., max., median,
etc. of a window).

Li and
Clifford
[75]

Suppress false
arrhythmia alarms
to improve detection
accuracy.

- ABP
- ECG
- PLETH

- Heart rate
- Systolic, diastolic, mean,

and pulse blood pressures
- SpO2
- Area difference of beats

- Use a genetic algorithm to
select pertinent features from
a large set of feature pool
(second-level features computed
within window intervals, such
as maximum, minimum, median,
variance, gradient, etc.).

- Apply relevance vector
machine to train and classify
the selected feature vectors to
improve detection accuracy.

beat delay time. The alarm generated by the the ABP monitor is judged by

the ECG-adjusted ABP signal quality for acceptance. So rule-based, multi-

signal analysis is not strictly a fusion method, as it does not actually fuse

any features. It just uses other signals to judge the alarm raised by a single

signal.

Work in robust heart rate detection [11, 21] and patient health status iden-

tification [68, 73] apply the numerical-based fusion method. In [11, 21], the

robust heart rate is obtained by computing the weighted sum of the heart

rates estimated from each sensor signal. Ebrahim et al. [11] first identify

artifacts or erroneous sensor estimates and excludes them from the process

21



of the weighted sum. The sensor to be excluded is identified using the three

metrics listed in the corresponding technique description cell in Table 2.3.

[21] uses the previously developed signal quality assessment methods and

proposes a novel use of the Kalman filter to compute the weights of different

sensor signals. Risk components, such as sharp changes, long-term trends,

and distance from normal behaviors, for each signal feature are quantified

in [68]. The overall health severity level is derived by applying the weighted

sum of the risk levels calculated using the risk components. In addition,

Kannathal et al. [73] apply fuzzy logic functions to obtain the fuzzy proba-

bilities of different cardiac failures. It uses a weighted sum with all the failure

probabilities to derive a patient deterioration index to detect clinical status

changes. The numeric-based fusion method is simple and flexible, as the fea-

tures obtained from different sensor signals are easily fused through simple

numerical calculations (yielding the weighted sum) and the signal weights

can be adjusted using knowledge of the signals, such as their qualities and

noise levels.

Machine learning-based fusion has been used for detecting broad medical

conditions. In this approach, all the features extracted from different signals

are grouped in feature vectors. Machine learning techniques are then applied

to cluster or classify the vectors to detect various problems. For example,

[74] uses k-means clustering with the features of heart rate, systolic blood

pressure, SpO2, respiratory rate, and temperature to select 500 cluster cen-

ters. It then applies the Parzen window to derive a patient status index

that can provide early warning of the patient status changes. Tsien [67]

extracts 120 features from four raw signals and applies the supervised learn-

ing method to classify the feature vectors for different medical events with

correspondingly trained models. Similarly, 114 signal features are extracted

in [75], and a genetic algorithm is applied to select useful features from the

large feature pool. The selected features are input to a trained relevance

vector machine that classifies the feature vectors for detection of different

arrhythmia problems. The works that apply machine learning-based fusion

methods can obtain good results but have very high computation complex-

ity, especially when on-line training is needed. Therefore, they may not be

applicable in real-time monitoring when online model training is needed to

adapt to signal changes or for patient-specific monitoring.
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Multi-signal analysis and fusion are applied in RRHMS to provide robust

and continuous monitoring. The previous work provide us with insights in-

to different ways to fuse the analysis of multiple signals. We applied the

numeric-based fusion method used in [21] to fuse the heart rates acquired

from the ABP and ECG signals. We chose this method for its simplicity and

flexibility when implemented in portable hardware for patient-specific mon-

itoring in real time. However, the previous multi-signal analysis and fusion

efforts only focus on the fusion itself; they acquire the raw features (such as

heart rate) directly from the monitoring machines or calculate them using

the previously developed noise filtering and beat-detection methods (differ-

ent methods are used to process different signals with separate processing

flows). In contrast, RRHMS deals with the whole computation, from signal

preprocessing, to beat detection, to feature extraction and fusion, as well

as the hardware design for real-time portable monitoring. So RRHMS can

optimize the processing of separate signals for portable hardware design by

developing shared processing steps for multiple signals, which in turn enables

shared hardware modules. This takes us beyond the scope of the previous

work in signal fusion.

2.3 Biomedical Monitoring Hardware

To enable efficient biomedical signal processing and analysis in real time,

biomedical monitoring hardware has been developed. Based on the applied

hardware platform, the work dealing with hardware is classified into four cat-

egories: (1) embedded-processor (DSP and ARM) based, (2) coarse-grained

reconfigurable array (CGRA) based, (3) FPGA-based, or (4) ASIC-based.

Table 2.4 compares the hardware work in each category.

Embedded-processor based approaches [16, 76, 77] propose system-on-chip

(SoC) solutions to optimize the biomedical signal processing algorithms on

off-the-shelf embedded processors, such as DSP and ARM. ARM micropro-

cessors are used in [77] as the processing unit of the proposed SoC platform

for efficient implementation of the Pan & Tompkins ECG QRS detection al-

gorithm [18]. The auto-correlation based ECG peak detection algorithm is

optimized by [16] on the DSP processor, and a SoC design is proposed to

connect multiple DSP processors for parallel processing of the ECG signals
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Table 2.4: Previous biomedical monitoring hardware work

Hard-
ware
Work

Signal
to
process

Target
Applic-
ation

Hardware
Design
Description

Perf.
and
Energy
Effcy.

Flexi-
bility*

Multi-
Signal
Fusion

Fault
Tole-
rance Comment

Embedded Processors (DSP and ARM)

Khatib
et al.
[16]

ECG

Auto-
correlation
based
peak
detection

VLIW DSP process-
ors are connected to
the system bus to
access on-chip and
off-chip memories.
Up to 12 lead ECG
can be analyzed and
each lead can be
assigned to a DSP
for processing.

Med.
Low

High No No - DSP and ARM do not
offer the best perfor-
mance and energy
efficiency for portable
biomedical monitor-
ing, as they are
designed for general
embedded applica-
tions with fine-grained
instruction-set level
optimizations, such as
VLIW instruction
issue, circular buffer
operations, etc.
However, they do not
have coarse-grained
hardware optimiza-
tions specifically
designed for the
biomedical
applications.

Kim
et al.
[76]

ECG

Wavelet-
based
peak
detection

It is composed of:
a) analog front-
end to obtain raw
ECG signal, and
b) DSP back-end
to process the
collected ECG.

Med.
Low

High No No

Chang
et al.
[77]

ECG

Pan &
Tompkins
QRS
detection

A system-on-chip
design architecture
is proposed for ECG
QRS detection,
which incorporates
an ARM992T
macrocell and other
components
connected by the
system AMBA bus.

Low High No No

Coarse-Grained Reconfigurable Array (CGRA)

SYS-
CORE
[78]

General
bio-
signals

General
biomedical
applica-
tions

Novel CGRA funct-
ional unit and array
interconnections are
designed for energy-
efficient DSP
computations,
such as FIR filter,
matrix multipli-
cation, FFT, etc.,
that may be useful
for the biomedical
applications.

Med. High No No - CGRA provides extra
data parallelism and
efficiency than DSP
and ARM to perform
data intensive digital
signal processing, but
its efficiency depends
on the compiler tech-
niques to map the
application to the
functional unit array.

- CGRA configuration
is fine-grained and
has non-negligible
overhead to send the
configuration bits.

- Many beat detection
algorithms are control
intensive, instead of
data intensive, which
CGRA cannot effic-
iently support.

ULP-
SRP
[79]

General
bio-
signals

General
biomedical
applica-
tions

CGRA is used for
general biomedical
applications by
efficiently execut-
ing DSP functions.
Three execution
modes are designed:
VLIW and CGRA
low/high perform-
ance modes, which
can be dynamically
switched between
each other according
to the runtime
application needs
and requirements.

Med. High No No

(Ccontinued on next page)

* Flexibility means how flexible the hardware can be in supporting biomedical applications other than the one it is
designed or optimized for.
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Table 2.4 (cont.): Previous biomedical monitoring hardware work

Hard-
ware
Work

Signal
to
process

Target
Applic-
ation

Hardware
Design
Description

Perf.
and
Energy
Effcy.

Flexi-
bility*

Multi-
Signal
Fusion

Fault
Tole-
rance Comment

FPGA

Ieong
et al.
[24]

Stojan-
ović
et al.
[25]

ECG

Wavelet-
based
QRS
detection

Specialized
hardware blocks
are designed and
implemented on
FPGA for efficient
pipelined wavelet
decomposition.

Med.
High

Low No No - These works just apply
FPGA optimizations for
the previously developed
ECG beat detection
algorithms, and have not
considered the case when
the signal being
monitored has low signal
quality or the possible
algorithm optimizations
for further hardware
efficiency.

Cvikl
and
Zemva
[80]

ECG

ECG
beat
detection
and
classi-
fication

An FPGA-based
system-on-chip
design is imple-
mented, which
uses the FPGA
logics for ECG
beat detection
and uses the
embedded Power-
PC processor on
the FPGA board
for heart beat
classification.

Med.
High

Low No No

ASIC

Pavl-
atos
et al.
[23]

ECG

Pan &
Tompkins
QRS
detection

ASIC hardware
blocks are design-
ed for each proce-
ssing stage of Pan
& Tompkins ECG
ECG QRS deteti-
ion algorithm, and
they are controll-
ed by a central
hardwired unit.

High Low No No

- Only the Pan & Tomkins
algorithm can run on
this proposed ASIC
hardware (very low
flexibility).

Alem-
zadeh
et al.
[62]

ECG
ABP
HR

Mean,
variance,
and corr-
elation
analysis
of the
signals

Coarse-grained
processing eleme-
nts are designed,
that can be confi-
gured to perform
mean, variance,
and correlation
analysis. A maj-
ority voter is used
to fuse the alarms
from different
signal analyses.

High
Med.
Low

Yes No

- The applied majority
voting scheme is not
robust to signal noise.
If two signals out of the
three are noisy and
generate false alarms,
even if the third signal
is good, false system
alarm would be
generated, because the
applied majority voting
does not consider signal
qualities.

RR-
HMS

ECG
ABP

Robust
heart
rate
esti-
mation

Coarse-grained
functional units
(FUs) are desig-
ned, which can be
configured to swi-
tch between ECG
and ABP analysis,
as well as for
patient-specific
monitoring.
Weighted sum is
used to fuse diff-
erent signal analy-
ses, where signal
qualities are
considered.

High Med. Yes Yes

- The efficiency is high,
because FUs are coarse
grained with application-
specific ASIC hardware
optimizations.

- The flexibility is medi-
um, as it can efficiently
support the applications
that are able to use
the designed FUs.

- Hardware fault tolerance
is designed with low area
and power overheads,
by utilizing the
application’s invariant
property.

* Flexibility means how flexible the hardware can be in supporting biomedical applications other than the one it is
designed or optimized for.
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from different leads. In addition, Khatib et al. [16] show that DSP has

both higher runtime performance and lower energy consumption than ARM

when executing the same ECG peak detection algorithm. Similarly, Kim

et al. [76] build the SoC design with DSP processors for a wavelet-based

ECG peak detection algorithm developed by [81]. DSP and ARM proces-

sors are designed and optimized for general DSP and embedded applications

with the instruction-level optimizations (such as the VLIW instruction issue,

multiply-add operation, circular buffer operation, and others), so they have

high flexibility to implement a broad range of applications with relative ef-

ficiency. However, as for the specific biomedical monitoring applications or

algorithms, DSP and ARM do not offer the best performance and energy ef-

ficiency. This is especially important in portable monitoring, which requires

higher-level application-specific optimizations beyond the instruction-level

optimization.

Coarse-grained reconfigurable array (CGRA) architecture is composed of

an array of FUs that execute ALU operations based on the given opcode,

such as addition, subtraction, or multiplication. Both the FU operations

and array data path are configurable for coarse-grained operations on the

data as it flows through the data path. Novel CGRA FU and interconnec-

tion designs are proposed in [78] to enable the FU operations and data path

interconnections that are useful to efficiently support the DSP operations

commonly used in the biomedical signal processing, such as fir filter, matrix

multiplication, FFT, and others. In [79], the Samsung reconfigurable proces-

sor (with CGRA architecture) is used for low-power biomedical applications,

and three operation modes are designed that can be dynamically switched

between each other according to the runtime application needs and require-

ments. The three modes are: CGRA low- and high-performance modes for

CGRA operations, and VLIW mode for operations that cannot be mapped

to CGRA. The CGRA designs for the biomedical monitoring target gener-

al biomedical applications by proposing the hardware architecture for the

efficient computations (such as DSP computations) that may be useful in

biomedical applications. Compared with DSP and ARM, extra data par-

allelism and efficiency can be exploited through the function operation and

data path configurations in CGRA. CGRA is flexible, but its efficiency highly

depends on the compiler techniques to map the application to the array FUs,

and frequent configurations are needed in CGRA during the application’s ex-
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ecution to change the data path for different computations, while CGRA’s

configuration is fine grained and has non-negligible configuration overheads

(both ALU operations and data path need to be configured). In addition,

many heart beat detection algorithms [18, 20, 28] are control intensive by ap-

plying thresholds, instead of data intensive, which CGRA cannot efficiently

support.

To achieve higher performance and energy efficiency for specific biomedical

applications, FPGA platforms are applied by [24, 25, 80]. Specialized hard-

ware modules for wavelet-based ECG QRS detection algorithms are built in

[24, 25] and implemented on FPGA for the efficient processing of wavelet

decomposition and transformation. The ECG beat detection and classifica-

tion algorithms are partitioned in [80] on the FPGA board, where hardware

modules are implemented in FPGA logics for efficient beat detection. Here

the embedded PowerPC processor on the FPGA board is used to classify

the detected beat as normal or premature ventricular contractions. These

FPGA-based systems achieve high efficiency due to the application-specific

hardware optimization, but they have low flexibility because the optimized

hardware modules are used only for the specific optimized application and

cannot be used by other biomedical monitoring applications. In addition, the

above FPGA-based systems only use the FPGA capability to optimize the

previously developed ECG beat detection algorithms. They do not consider

the case when the quality of the single signal being monitored is low, nor do

they use algorithm optimizations for hardware efficiency.

The application-specific integrated circuit (ASIC) provides the highest per-

formance and energy efficiency because the specialized hardware modules in

ASIC are directly implemented with logic gates, instead of being kept in look-

up tables, as in FPGA. Pavlatos et al. [23] implement the Pan & Tompkins

ECG QRS detection algorithm with ASIC hardware blocks, where each block

is responsible for a different stage of the algorithm, and the blocks are con-

trolled and scheduled by a hardwired ASIC control unit. As a result, Pavlatos

et al. [23] achieve very high efficiency but low flexibility. It cannot support

any other biomedical applications, even though some of the algorithm stages

in other applications could potentially use some ASIC blocks in [23]. In

[62], coarse-grained processing elements that can be configured to perform

mean, variance, and correlation analysis are designed. The only biomedical

monitoring hardware work we found that considers multi-signal analysis and
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fusion is [62]. In [62], ECG, ABP, and heart rate (HR) signals are analyzed

in the proposed ASIC processing element, and each signal would raise a local

alarm if the corresponding analysis detects a problem. The system alarm is

raised through majority voting when two or more of the three signals raise

local alarms at the same time. However, the applied majority voting mecha-

nism is not always robust to signal noise. If two signals are noisy and cause

false local alarms, the false system alarm is generated.

In addition to the work mentioned in Table 2.4, other biomedical monitor-

ing research [82, 83, 84, 85] focuses on signal data acquisition and transmis-

sion instead of processing and analysis.

The proposed RRHMS focuses on biomedical signal processing and anal-

ysis. It estimates heart rates with multi-signal analysis and fusion. Heart

rates are extracted from both ABP and ECG signals, and the final heart rate

is obtained by the weighted sum of the two heart rates, where the weights

are calculated based on the signal qualities. As a result, RRHMS is more

robust to signal noise than the majority voting used in [62] because signal

qualities are considered. Coarse-grained ASIC FUs in RRHMS are designed

and optimized for high performance and energy efficiency to achieve long bat-

tery life. Each FU is responsible for a processing step (stage) of the RRHMS

heart rate monitoring algorithm. But unlike the previous work, RRHMS uses

algorithmic optimizations to merge the separate ABP and ECG processing

steps into shared steps. This allows shared FUs to reduce the hardware area

for portable monitoring. Also, RRHMS FUs are controlled and scheduled

by a lightweight MIPS processor through the C program with intrinsic func-

tions to invoke FU executions. Therefore, RRHMS is more flexible than the

hardwired controller used in [23]. In addition, none of the previous biomed-

ical hardware work has considered hardware fault tolerance. Even though

general fault tolerance techniques have been proposed in CGRA and FPGA

platforms (introduced in the next section), they usually incur large over-

heads. In contrast, RRHMS uses its FU design and application invariants to

achieve low-overhead fault tolerance.
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2.4 Hardware Fault Tolerance

Since none of the previous biomedical monitoring hardware works has con-

sidered fault tolerance for the processing of biomedical signals, traditional

hardware fault tolerance techniques for embedded systems are introduced in

this section. These techniques motivate the proposed RRHMS fault tolerance

design.

Fault tolerance techniques may exploit redundancy in space (hardware) or

in time. Double modular redundancy (DMR) and triple modular redundancy

(TMR) are traditional hardware redundancy techniques. They are largely

used in embedded hardware designs with ASIC, FPGA, and CGRA [86, 87,

88, 89, 90, 91]. DMR dispatches the same computation to two copies of the

hardware and compares the results to detect faults. Similarly, TMR sends

computations to three copies of the hardware and compares their results. If

the results of the duplicated computations do not match, the fault is detected.

In DMR, since it does not know which one of the two executions is faulty, re-

execution is needed to recover from the fault [86]. If the fault is transient and

does not happen again in re-execution, the two results in re-execution would

match and the application proceeds. But if the fault continuously occurs or is

permanent, DMR can detect it but not fix it. In TMR, if the fault happens in

a single hardware copy while the results of the other two match, the majority

voter directly masks the fault without stalling the application (such as by

re-execution). If the fault is permanent, TMR can be downgraded into DMR

for operations and thus mask the single permanent fault [89].

However, DMR and TMR normally introduce large hardware area and

power overheads due to the additional hardware copies and executions. Tech-

niques [89, 90, 91, 92] have been proposed to reduce the hardware area over-

heads in applying TMR in CGRA and FPGA platforms. However, if the idle

resources (spare FUs in CGRA or configuration logic blocks in FPGA) are

used, the large power overhead caused by duplicate executions still exists.

In addition, the techniques proposed in [93, 94, 95] use the spare resources

for data path reconfiguration in FPGA and CGRA to circumvent the logics

with permanent faults.

Time redundancy techniques [96, 97, 98, 99, 100] are used to tolerate tran-

sient faults while saving overhead in both hardware area and power. They

take advantage of the temporal nature of transient faults. Unlike TMR, which
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detects and recovers (masks) the fault at the same time, time redundancy

techniques usually separate the detection and recovery processes. DMR can

be seen as a costly time redundancy technique, as used in [86], where the

fault is detected by comparing the results of the DMR processors. On de-

tection of the fault, the two processors are rolled back and re-executed for

recovery. This apporach is simple in terms of design (just duplicating the

hardware modules), but it incurs large hardware area and power overheads.

To reduce the overheads in fault detection, [96, 97] proposed a self-checking

scheme to distinguish correct and incorrect output values based on the pre-

served output states. In addition, Jafri et al. [98] use the technique of residue

code modulo 3 for low overhead fault detection in the fine-grained arithmetic

operations, such as addition and subtraction, by exploiting the modulo 3 re-

lationship between the inputs and outputs. After the fault is detected, time

redundancy techniques usually apply re-execution for recovery. Depending

on the fault detection delay and hardware implementation, there are three

kinds of re-execution [99]:

(1) Retry : the faulty instruction(s) are directly re-executed if the inputs

have not been changed or overwritten.

(2) Checkpoint and roll-back : the system state of the previous checkpoint

is restored before re-execution (the checkpoint is needed if the input

states may be modified before the fault is detected).

(3) Restart : the system needs to be restarted and the whole application

re-executed if the fault is detected too late and cannot be recovered

through partial application re-execution.

Retry has been applied in [98, 99] to commit the instructions only when no

fault is detected during the execution. The checkpoint and roll-back scheme

have been applied in [86, 100], and to derive the optimal checkpointing inter-

val, Li and Jiang [86] analytically modeled the system. Restart is used when

the fault detection is not effective enough, and it is usually not acceptable in

real-time embedded systems, such as the proposed RRHMS.

Therefore, compared with hardware redundancy, such as TMR, time re-

dundancy techniques trade off performance (especially when re-execution is

needed) for hardware area and power. We focus on tolerance of transient

faults and apply time redundancy for low-overhead fault tolerance design.

This is because hardware area and power are crucial for the portability and
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battery life of the monitoring system. Additionally, thanks to the RRHMS

FU design and optimization, the RRHMS hardware system’s performance

easily meets the real-time performance constraint. During normal monitor-

ing without fault, the proposed fault tolerance mechanism does not introduce

any performance overhead.

Since traditional fault detection techniques, such as the above introduced

ones, try to detect fault in the operations of general applications, they still

incur large overheads, though some of them are smaller than the overheads

of DMR and TMR. RRHMS exploits application-specific properties to de-

tect faults at low overheads. The following properties of RRHMS are used

to achieve this low overhead: (1) coarse-grained FU design, and (2) the

application-specific invariant property [26]. Since RRHMS FUs are coarse

grained and represent high-level application processing steps, the concept of

software invariants proposed in [26] is applicable to the FU outputs. FU

output invariants are patient-specific, obtained by application profiling using

the patient data. The FU invariants are checked in parallel with normal FU

executions and therefore do not introduce performance overhead. An FU

finishes the execution only if no fault is detected, otherwise retry is applied

to re-execute the FU for transient fault recovery. No extra checkpoint and

roll-back schemes are needed in RRHMS, because the inputs of an FU can-

not be modified before the completion of its execution (its input states are

inherently checkpointed). Similar to the traditional time redundancy tech-

niques, RRHMS only recovers transient faults, even though both transient

and permanent faults can be detected.
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Chapter 3

RRHMS HEART RATE ALGORITHM

In this chapter, the robust heart rate detection algorithm used in RRHMS

is introduced. The overview of the algorithm is given first, followed by the

detailed explanations of each step in the algorithm, including peak detection,

signal quality evaluation, and heart rate estimation and fusion. In the end,

the shared processing steps enabled by the algorithmic optimizations are

described and discussed.

3.1 Algorithm Overview

The robust heart rate is obtained by analyzing both ABP and ECG signals.

Algorithmic-level optimizations have been applied to allow shared processing

steps between the two signals. Figure 3.1 shows the overall heart rate detec-

tion flow, with shared processing steps in grey boxes. There are two main

Figure 3.1: Robust heart rate detection flow
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stages in the heart rate detection flow:

(1) peak detection on the raw ABP and ECG signals, which includes signal

preprocessing to remove signal noises and highlight approximate peak

locations, as well as the threshold-based peak identification, and

(2) heart rate estimation on each signal and fusion of the two heart rates

by a weighted voter (weighted sum) that uses the signal qualities.

Both ABP and ECG signals are collected and analyzed based on 10 s win-

dows. For each 10 s period, the newly collected signals are input to this flow

to estimate an average heart rate. This chapter introduces in detail each

processing step in this heart rate detection flow.

3.2 Peak Detection

Peak detection of both signals starts with a low-pass filter (LPF) to remove

high-frequency noises. The LPFs are slightly different for ABP and ECG

signals, as they have different natural frequencies in the peaks and surround-

ing noise interference. We designed the LPFs to be lightweight and easy for

computation in an energy efficient portable hardware of the RRHMS, fol-

lowing the fast digital filter design proposed in [8]. The two LPFs for our

ABP and ECG signals at 125 Hz sampling frequency are described by the

following formulas:

for ABP: yn = (xn + 2xn−1 + xn−2)/4

for ECG: yn = (xn + 2xn−1 + 3xn−2 + 2xn−3 + xn−4)/9

Since the two LPFs have the same computation structure with different pa-

rameters, they can share the hardware computation block with muxes to

select parameters.

After the low-pass filter, ECG needs two more steps than ABP does, deriva-

tive and squaring. This is because ECG tends to have more low-frequency

noise, such as the baseline wonder noise. The derivative is used to differen-

tiate the ECG QRS slope information from the low-frequency noise, and the

squaring further emphasizes the higher frequency peaks of ECG. These two

steps are part of the ECG preprocessing in the Pan & Tompkins ECG peak

detection algorithm [18] to preprocess the ECG signal and highlight its peak
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locations.

Next, slope sum is applied on both signals to enhance and smooth the

rising portion of the signal for the benefit of the later threshold-based peak

detection step. Slope sum was originally used only for the preprocessing of

the ABP signal in [20]. However, we found it has similar (sometime even

better) effects as the moving-window integration step in the Pan & Tomp-

kins algorithm. Therefore, we applied slope sum for ECG analysis as the

replacement for the moving-window integration. Thus, these two originally

separate ABP and ECG processing steps are merged into a single step based

on their algorithmic purpose. Slope sum is defined in [20] as

SSF (k) =
k∑

i=k−w

∆yi, b =

∆xi, if ∆xi > 0

0, if ∆xi ≤ 0

where k is the current sample index and w is the slope sum window (w should

be set as the duration of the signals rising portion). We chose w = 15 (120

ms) for ABP and w = 10 (80 ms) for ECG because ECG has sharper peaks

and rises faster than ABP.

After the slope sum, a threshold-based peak detection technique is applied

to locate the peaks of the two signals. We developed a peak detection tech-

nique that works for both ABP and ECG signals by combining and modifying

two previously developed methods for ABP and ECG: threshold-based ABP

onset detection [28] and Pan Tompkins threshold-based ECG peak detection

[18]. Both of these are among the most popular beat detection methods for

ABP and ECG signals, respectively. After the modification, our peak de-

tection method consists of three steps, summarized by the pseudo codes in

Algorithm 1. First, detect onset of the slope summed signal by checking a

threshold value (Thonset) against each slope sum data point. When Thonset

is crossed by a data point, the local search is applied around this point to

find the local maximum (slope sum peak) and minimum values. The local

searching diameter is half of the estimated peak-to-peak interval (Test), cen-

tered at the threshold crossing point. Second, check the difference between

the local maximum and minimum values, which are found by local searching.

If their difference exceeds another threshold (Thdiff ), the slope sum peak is

accepted. Then, back searching is applied in the original signal around the

slope sum’s peak location to detect the peak in the original signal (ABP or
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Algorithm 1 Threshold-Based Peak Detection

1: procedure PeakDetection(slope, originSig)
2: i← 0
3: while i < size of slope (slope summed signal) do
4: step 1: detect onset of the slope summed signal
5: if slope[i] > thonset then
6: // local search for max. and min. in the slope summed signal
7: [slopemax, slopemin]← local search value(slope, i, 1

2
Test);

8: // eye closing for half window
9: i← i+ floor(1

2
∗ Test);

10: step 2: check difference and back search for peak
11: if slopemax − slopemin > Thdiff then
12: // back search in original signal if the peak is accepted
13: peakidx ← local search index(originSig, i, 1

4
Test);

14: // eye closing for another half window
15: i← i+ floor(1

2
∗ Test);

16: step 3: update parameters if the peak accepted
17: if peakidx > last peakidx then
18: insert peak (peakidx);
19: // calculate new parameter values of the detected peak
20: new thonset ← 1

2
slopemax

21: new thdiff ← 1
2
(slopemax − slopemin)

22: new Test ← peakidx − last peakidx
23: // update using weighted sum with the above new values
24: thonset ← 7

8
∗ thonset + 1

8
∗ new thonset

25: thdiff ← 7
8
∗ thdiff + 1

8
∗ new thdiff

26: Test ← 7
8
∗ Test + 1

8
∗ new Test

27: i← i+ 1

ECG) and its location index. The back searching diameter is a quarter of

Test. Back searching has a smaller diameter than local searching for the peaks

in the slope summed signal. This is because the peak location of the orig-

inal signal is close to the corresponding peak location of the slope summed

signal. A quarter of Test is chosen based on experiments with different pa-

tient data from the MIMIC II database. At last, check whether the location

index of the newly detected peak in the original signal is greater than that

of the previously detected peak. This check makes sure that a peak is not

detected twice. It is possible that two consecutive peaks may occur within

an interval less than a quarter of Test, such as when the patient starts to have

tachycardia. If this check is passed (the newly detected peak is not the dou-
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ble detection of an old peak), the new peak is recorded as one of the signal

peaks to be output from this peak detection step. Additionally, the three

parameters (Thonset, Thdiff , and Test) are updated with the new parameter

values calculated from the newly detected peak, as shown in the pseudo code.

This update is used for the dynamic adaption to normal signal changes (e.g.,

the normal heart rate of the same patient may be different in the morning

and in the evening with gradual changes). Weighted sum is applied as the

function for updates. Seven-eighths weight is put on the old parameter value

and only one-eighth is put on the new value, so that even if the new value

is not correct (as when the peak is incorrectly detected from a noisy signal),

it does not corrupt the parameters. This is important, because only correct

parameters (Thonset, Thdiff , and Test) enable correct peak detection.

(a) ABP peak detection

(b) ECG peak detection

Figure 3.2: Output of each processing step of peak detection
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The initial values of the three parameters (Thonset, Thdiff , and Test) are

trained using the first 20 windows of the patient’s data. Thonset is initialized

to be twice the mean slope sum value in the training period, and Test is the

mean peak-to-peak interval. Thdiff is initialized to be half of the average

of the maximum and minimum slope sum differences in the entire training

period.

Figure 3.2 shows the output of each peak detection processing step for a

window of ABP and ECG signals (1250 samples at 125 Hz sampling frequen-

cy). From the figure, we can see that all peaks are correctly detected for

both ABP and ECG signals.

3.3 Signal Quality Evaluation

Signal qualities of the two signals are evaluated and used for the heart rate

fusion. The signal qualities are evaluated on the basis of detected beats. ABP

signal quality is obtained by combining two previously proposed methods:

fuzzy signal quality assessment [20] and signal abnormality assessment [9].

Both methods assign a signal quality value to each detected beat. Fuzzy

assessment assigns a fuzzy quality value between 0 and 1 to each beat (the

higher the value is, the better quality the beat has). The definition of the

fuzzy function is as follow:

fuzzy(x, a, b) =



0, if x ≤ a

2 ∗
(x− a
b− a

)2
, if a < x ≤ a+ b

2

1− 2 ∗
(x− a
b− a

)2
, if

a+ b

2
< x ≤ b

1, if b < x

Figure 3.3 illustrates the shape of the fuzzy function output. Instead of

only output 0 or 1 (binary values), the fuzzy function defines a range ([a, b])

where the output is continuous between 0 and 1. Therefore, instead of only

classifying a beat as good or bad, the fuzzy function allows the beat quality

value to be in between, such as 30% good.

To compute the fuzzy quality, a set of features is extracted from each ABP
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Figure 3.3: Shape of the fuzzy function output [20]

beat: systolic blood pressure (ABP peak value), diastolic blood pressure

(ABP valley value), maximum positive blood pressure slope, maximum neg-

ative blood pressure slope, maximum up-slope duration, pulse blood pressure

(difference between systolic and diastolic blood pressures), and peak-to-peak

interval. Each feature value is used as the input (parameter x) to a fuzzy

function, and the other two fuzzy function inputs (parameter a and b) are

either pre-set thresholds or trained base model values. Therefore, a set of

fuzzy quality values is computed based on the beat features, and each fuzzy

quality computed represents the beat quality in a different aspect. Table 3.1

Table 3.1: Fuzzy functions and their representations of beat quality [20]

Variable
Name Representation and Definition Parameter Explanation

ATL ABP amplitude too large: SBP : systolic BP, mmHg;
µATL = fuzzy(SBP − SBPa; 20, 60) SBPa: systolic BP base

ATS ABP amplitude too small: DBP : diastolic BP, mmHg
µATS = 1− fuzzy(DBP ; 0, 20)

STL ABP slope too large: MPPS: maximum positive
µSTL = fuzzy(MPPS/MPPSa; 1, 3) BP slope; MPPSa: MPPS base

STS ABP slope too small: MNPS: maximum negative
µSTS = fuzzy(MNPS/MNPSa; 1, 3) PB slope; MNPSa: MNPS base

KRTL ABP keeps rising too long MUSD: maximum up-slope
µKRTL = fuzzy(MUSD; 200, 500) duration, ms

SHTL ABP stays high too long MDAT : maximum duration
µSHTL = fuzzy(MDAT ; 400, 800) above threshold, ms

PPD ABP pulse pressure decrease PBP: pulse blood pressure;
µPPD = 1− fuzzy(PBP/PBPa; 0.5, 0.9) PBPa: PBP base

DBPI ABP diastolic pressure increase DBP : diastolic blood pressure:
µDBPI = fuzzy(DBP/DBPa; 0.8, 1.1) DBPa: DBP base

PrP Premature ABP pulse: T : pulse-pulse interval;
µPrP = 1− fuzzy(T/Ta; 0.75, 0.95) Ta: T base
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lists all the fuzzy functions we used (similar to Table 1 in [20]), along with

their representations for the beat quality. The base model values listed in the

parameter explanation column of the table are trained as the average value

of the corresponding features. Similar to the parameters in the threshold-

based peak detection step (Thonset, Thdiff , and Test), the first 20 windows

of patient data are used to train the base model values as well, and the base

model values are updated with the weighted sum function:

V = 0.875 ∗ V + 0.125 ∗ Vnew

where V on the right of the equal sign is the previous base model value and

V on the left of the equal sign is the updated base model value. Vnew is the

feature value extracted from the current beat. The base model values are up-

dated only if the beat is not classified as abnormal by the signal abnormality

assessment (introduced later).

With all of the fuzzy values (in Table 3.1) computed from each beat fea-

ture, three composite quality values are defined by using fuzzy conditional

statements: ABP amplitude normal, ABP slope normal, and ABP with

blocked transducer. The composite quality values are the intermediate val-

ues used to derive the final beat quality. The following definitions to compute

the composite values and final fuzzy quality value are from [20]. We used

the same method as in [20] to derive the final fuzzy quality for the beat in

RRHMS. ABP amplitude normal is defined as:

IF [not ABP amplitude too large (ATL)] and

[not ABP amplitude too small (ATS)]

THEN ABP amplitude normal (AN)
µAN = (1− µATL) ∧ (1− µATS)

where ∧ stands for fuzzy intersection and is defined as µA∧µB = min[µA, µB].

Similarly, the other two composite quality values are computed as follows:

IF [not ABP slope too large (STL)] and

[not ABP slope too small (STS)]

THEN ABP slope normal (SN)

µSN = (1− µSTL) ∧ (1− µSTS)
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IF [ ABP pulse pressure decrease (PPD)] and

[ ABP diastolic pressure increase (DBPI)] and

[not premature ABP pulse (PrP)]

THEN ABP with blocked transducer (WBT)

µWBT = µPPD ∧ µDBPI ∧ (1− µPrp)

In the end, the final fuzzy quality of the beat is defined as:

IF [ ABP amplitude normal (AN)] and

[ ABP slope normal (SN)] and

[not ABP keeps rising too long (KRTL)] and

[not ABP stays high too long (SHTL)] and

[not ABP with blocked transducer (WBT)]

THEN ABP signal quality good (SQG)

µSQG = µAN ∧ µSN ∧ (1− µKRTL)

∧ (1− µSHTL) ∧ (1− µWBT )

On the other hand, the signal abnormality assessment of ABP gives a

binary value, 0 or 1, to each beat (0 means normal beat, 1 means abnormal

beat). The beat is classified as normal or abnormal by checking the features

extracted from the beat with the pre-set thresholds. Table 3.2 lists the

abnormality criteria used in [9]. The listed thresholds are chosen to be the

Table 3.2: Criteria for abnormal beat detection [9]

Abnormality
Feature Description Criteria

SBP systolic blood pressure SBP > 300 mmHg
DBP diastolic pressure DBP < 20 mmHg
MBP mean blood pressure MBP < 30 or

MBP > 200 mmHg
HR heart rate HR < 20 or

HR > 200 bpm
PBP pulse blood pressure PBP < 20 mmHg
w mean negative slopes w < –40 mmHg/100 ms

SBP [k]− SBP [k − 1] systolic BP difference |∆SBP | > 20 mmHg
DBP [k]−DBP [k − 1] diastolic BP difference |∆DBP | > 20 mmHg
T [k]− T [k − 1] peak interval difference |∆T | > 2/3 s
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physiological limits of human beings. For example, the systolic blood pressure

never exceeds 300 mmHg and diastolic blood pressure never drops below 20

mmHg. So if any criterion is violated, it means the detected beat is abnormal.

We modified the abnormality criteria in RRHMS. Instead of using the pre-

set thresholds, we use the trained base models for each of the features listed

in Table 3.2 except the last three difference features. Table 3.3 shows the

modified criteria used in RRHMS, where Xa means the base model value

of feature X (similar to the notation used in Table 3.1). Since most of the

features used in abnormality detection are also used in the fuzzy signal quality

assessment discussed above, the training and updating of the base models

for abnormality detection can share the computations in the fuzzy quality

assessment and therefore not add much computation complexity. We replace

each upper limit threshold with twice the corresponding trained base model

value and replace the lower limit threshold with half of the corresponding

trained base model value, making our modified criteria are more patient-

specific. The criteria for the last three difference features are not modified,

because they are very sensitive to the data in the training period. If during

the training period, the patient’s ABP waveform does not change much, then

the difference features are close to 0. As a result, during the monitoring, a

small change in the ABP waveform (even within normal physiological range)

may cause violations in the criteria of the difference features. So we used

the same pre-set thresholds as in [9] for those three difference features. The

other features do not have this problem because they are not affected by the

Table 3.3: Modified criteria for abnormal beat detection used in RRHMS

Abnormality
Feature Description Criteria

SBP systolic blood pressure SBP > 2∗SBPa

DBP diastolic pressure DBP < 0.5∗DBPa

MBP mean blood pressure MBP < 0.5∗MBPa or
MBP > 2∗MBPa

HR heart rate HR < 0.5∗HRa or
HR > 2∗HRa

PBP pulse blood pressure PBP < 0.5∗PBPa

w mean negative slopes w < 2∗wa

SBP [k]− SBP [k − 1] systolic BP difference |∆SBP | > 20 mmHg
DBP [k]−DBP [k − 1] diastolic BP difference |∆DBP | > 20 mmHg
T [k]− T [k − 1] peak interval difference |∆T | > 2/3 s
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changes in the training period. For example, if the average systolic blood

pressure of a patient in the training period is 120 mmHg, a newly detected

systolic blood pressure of more than 240 mmHg or less than 60 mmHg is

always an indicator of abnormality. As mentioned above, all the base model

values are updated only if the beat is classified as normal (i.e., if no criteria

are violated).

From the two signal quality values (fuzzy signal quality and signal abnor-

mality), the overall quality of each beat is calculated as follows: if the beat

is evaluated as normal (abnormality value is 0), the fuzzy quality value is di-

rectly used as the beat quality. Otherwise, the fuzzy quality value multiplied

by 0.7 is used as the beat quality. At last, the overall ABP signal quality

for the window, SQABP , is judged by the qualities of all the detected beats

within this window. If there is no beat detected in the window, it means

either the patient is having the asystole problem or the sensor is disconnect-

ed (sensor disconnection is not a rare problem in the MIMIC II database).

For either case, we assign the window signal quality to 0. If both ABP and

ECG window signal qualities are zero for either reason, a flag will be raised

in the heart rate fusion step that fuses the heart rate based on both signal

qualities. This is the best we can do because currently we have no way to

differentiate asystole and sensor disconnection. The ABP signal quality of

the window is defined as the percentage of the detected beats whose quality

is beyond a threshold (SQ TH):

SQABP =
1

N

N−1∑
i=0

1{xi>SQ TH}

where 1{cond} is an indicator function, which outputs 1 if cond is evaluated to

be true, otherwise 0. N is the total number of beats detected in this window,

and xi is the final fuzzy quality of the ith beat. SQ TH is set to be 0.5 in our

implementation, which is also the value used in [20] to indicate good quality

ABP beat.

Similarly, the kurtosis value is computed for each detected ECG beat to

evaluate the beat quality. Kurtosis is the fourth standardized moment, de-

fined by the formula

kurtosis =
E[(X − µ)4]

(E[(X − µ)2])2
=
µ4

σ4
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where µ is the mean value of the array (raw ECG data values) and σ is the

standard deviation. The kurtosis value of an ECG beat is computed using

two periods around the current beat (from the previous detected beat to the

next detected beat). Low kurtosis value indicates low-frequency noise in the

ECG signal [70]. Therefore, the final ECG signal quality of the window,

SQECG, is defined as the percentage of the beats whose kurtosis value is

above a threshold. The same formula used to compute the final ABP signal

quality can be also used for computation of the final ECG signal quality,

where xi in this case stands for the kurtosis value of the ith ECG beat, and

SQ TH is set to 5 to differentiate the good and noisy ECG beats, according

to [70].

3.4 Heart Rate Estimation and Fusion

After peak detection, the average heart rate is calculated from each signal

using the formula

HR =
60

N

N∑
i=1

Ti (beats/min)

where Ti is the peak to peak interval (in seconds) between the ith and (i−1)th

peak. Then, the Kalman filter is applied to remove high-frequency noise in

the heart rate estimations between the signal windows [21].

In the end, the Kalman-filtered heart rates from the two signals (HRABP

and HRECG) are weighted to obtain the final heart rate estimation for this

window. Weights are calculated based on four parameters: ABP and ECG

signal qualities (SQABP and SQECG) and their Kalman residuals obtained

from the Kalman filtering process (rABP and rECG). Similar to [21], the

weights and final weighted heart rate are calculated by

weighted HR =
ω2

ω1 + ω2

∗HRABP +
ω1

ω1 + ω2

∗HRECG

where, ω1 = (
rABP

SQABP

)2 and ω2 = (
rECG

SQECG

)2

Interested readers can refer to [21] for more details on weighted heart rate

estimation using the Kalman filter and signal qualities. Figure 3.4 and Figure

3.5 show two examples of the Kalman filtered heart rate and final weighted
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heart rate for 500 windows of ABP and ECG data, collected from the MIMIC

II database (patient number a41709 and a41178, respectively). In both ex-

amples, we see that the Kalman filter is able to remove high-frequency noise

and smooth the heart rate estimations between windows. In Figure 3.4, at

around window 128, the ABP signal is corrupted by large artifacts and noise,

so no peaks are detected and the signal quality is low. Similarly, the ECG

signal is corrupted around window 187. These two segments are cases where

one signal is corrupted while the other signal is good. The same scenario

happens in Figure 3.5 at around window 50 as well, where ECG is corrupted

while ABP is good. In the end, the weighted sum voter fixes these problems,

by weighting less on the low-quality signals at the corresponding segments,

and therefore it enables accurate and continuous heart rate monitoring.

3.5 Shared Processing

As highlighted in the gray boxes of Figure 3.1, most of the processing steps

are shared for ABP and ECG analyses. The shared processing steps have the

same computations but with different parameters for ABP and ECG signals

(e.g., w value in slope sum, Thonset, Thdiff , Test values in peak detection,

etc.). In addition, some parameters are different for different patients, such

as the base model values in the ABP signal quality assessment. The shar-

ing allows shared hardware modules for performance- and energy-efficient

computation within a tight area constraint. The signal- and patient-specific

parameters can be passed to the hardware modules through configuration

registers in the module. Therefore, within only a few cycles, a module is able

to be configured to switch between ABP and ECG computations, as well as

between different patients. The fast configuration reduces the overhead of

shared hardware modules for the computations of different biomedical signals

and enables fast overall processing speed, which allows frequency scaling to

reduce the average power consumption. More details of the hardware design

are introduced in the following section (Chapter 4).
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(a) Kalman filtered ABP heart rates

(b) Kalman filtered ECG rates

(c) Weighted heart rate

Figure 3.4: Kalman filtered ABP and ECG heart rates for 500 windows,
and final weighted heart rates of the corresponding windows (data from the
MIMIC II database patient a41709)
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(a) Kalman filtered ABP heart rates

(b) Kalman filtered ECG rates

(c) Weighted heart rate

Figure 3.5: Kalman filtered ABP and ECG heart rates for 500 windows,
and final weighted heart rates of the corresponding windows (data from the
MIMIC II database patient a41178)
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Chapter 4

RRHMS HARDWARE SYSTEM

This chapter introduces the baseline design of the RRHMS hardware system

without fault tolerance features (fault tolerance is introduced in Chapter 5).

It begins with an overview of the hardware architecture, followed by the

detailed description of the configurable FU design. The FUs are configured

and controlled by a central MIPS controller, which is discussed after FU

design. We conclude by explaining the mapping and implementation of the

robust heart rate estimation algorithm (introduced in Chapter 3) for the

proposed hardware system.

4.1 Hardware System Overview

The proposed hardware system consists of three main parts, as shown in

Figure 4.1: (1) an FU ASIC accelerator composed of a set of configurable

FUs, (2) a lightweight MIPS controller, and (3) a shared on-chip memory

system.

The FUs efficiently execute the processing steps of the robust heart rate

estimation algorithm (processing steps are summarized in Figure 3.1). There-

fore, the FUs are coarse grained, and ASIC optimizations can be applied to

each FU at a large computation scope to achieve high performance and en-

ergy efficiency. As mentioned in Section 3.5, the FUs are designed by taking

advantage of the algorithmic optimizations, where the separate processing

steps of ABP and ECG signals are shared. As a result, most FUs are re-

sponsible for both ABP and ECG computations. Different parameters used

in ABP and ECG computations are passed to the FUs through the configu-

ration registers inside them.

The FUs are controlled by a lightweight MIPS controller, which is modified

from a 16-bit open source MIPS processor downloaded from the OpenCores
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Figure 4.1: RRHMS hardware system overview

Community [101]. Two instructions are extended from the MIPS baseline

instruction set to configure and execute the FUs. The two instructions are

sent from the MIPS controller to the corresponding FUs through the system

coordination and configuration bus, as illustrated by Figure 4.1 (lower right

part). The MIPS controller is also responsible for other computations that

are not supported by the coarse-grained FUs, such as control flows.

The shared on-chip memory is used for three purposes: (1) general memory

for FUs and MIPS controller to store and load computation data, (2) commu-

nication channel for FUs and MIPS controller to pass data and computation

results to each other, and (3) interface to collect the input biomedical signals

and output the computed heart rate. To support real-time processing, the

input signals are stored in a double buffer. When a window of signal data

is ready, the MIPS controller is notified to start the processing of this win-

dow. At the same time, the next window of incoming signal data is stored

in the other half of the double buffer through direct memory access. In this

way, processing is not interrupted by the incoming data, and if the hardware

fault is detected, the current window can be re-processed for transient fault

recovery (discussed in Chapter 5), since the current window’s data have not

been overwritten by new data.

All FUs are designed following the same template and have the same in-
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terfaces (connected to system bus and memory). The only difference is the

computations they support. Therefore, it is easy to remove and add FU

components to modify the proposed hardware system for other embedded

applications. In this sense, not only can the proposed hardware system be

used in RRHMS to efficiently run the robust heart rate detection application,

it can also be used as a framework for embedded hardware designs.

In RRHMS, the proposed hardware system runs the robust heart rate

detection algorithm discussed in Chapter 3. As depicted in Figure 4.1 (left

part), the inputs to the hardware system are raw ABP and ECG signals

collected from the bio-sensors, and they are stored in the dedicated memory

locations (double buffer). The output is the weighted heart rate estimation

obtained from the analysis of the ABP and ECG signals. The output is also

stored in the dedicated memory location so that other systems can read it

from the RRHMS to make sure of the heart rate information, such as the

heart rate variability analysis system.

4.2 Functional Unit Design and Configuration

Functional units (FUs) are a set of coarse-grained accelerators to support

efficient ABP and ECG processing. Each processing step shown in Figure

3.1 has a corresponding FU implementation. With the computation sharing

enabled by the algorithmic optimization, there are a total of 11 FUs needed

for our heart rate detection algorithm. (FU numbers are listed next to the

corresponding processing steps in Figure 3.1). All FUs are designed to have

the same interface and follow the same design template as depicted in Figure

4.2. Each FU is composed of three parts: (1) interfaces (bus and memory

interface), (2) configuration registers (CRs), and (3) computation logics (data

path and state machine controller).

The FU bus interface connects to the system coordination and configu-

ration bus (between MIPS controller and ASIC accelerator). It monitors

the configuration and execution instructions sent from the MIPS controller.

Upon receiving a configuration instruction corresponding to its FU, the bus

interface reads the instruction from the bus, parses the configuration param-

eters, and configures the CR in its FU as specified by the instruction. When

the execution instruction is received, the bus interface notifies the FU com-
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Figure 4.2: Template of functional unit design

putation logics to start execution. When the computation logics finish the

FU execution, the bus interface sends a DONE signal with its FU number

to the coordination and configuration bus to let the MIPS controller know

about its completion. FU memory interface, on the other side, is responsible

for reading and writing data from and to the on-chip memory shared between

the MIPS controller and FU ASIC accelerator. All FU memory interfaces

connect to the memory arbiter, which is a priority selector used to schedule

memory requests from all FUs. FU priorities can be set by users to over-

write the default round robin priority setting. Similarly, FU priorities are

also used on the bus interface side to resolve contention in the DONE signals

when multiple FUs finish executions at the same time, as the lightweight

MIPS controller can handle only one DONE signal in a cycle. There is also a

priority selector for FU DONE signals, but its complexity is much less than

that of the memory arbiter. When the request of an FU, either to memory

arbiter or to DONE arbiter, is granted, the FU is notified to continue its

execution. Otherwise, the FU keeps sending the request and waiting for its

feedback. The priority and arbiter features have been implemented in the

current design but are not in use because currently the FUs are scheduled

to be executed one by one, not in parallel. For these reasons, there is no

contention for either memory requests or DONE signals. However, pipelin-

ing the FU executions is planned for future work. With pipelined execution,

multiple FUs may request memories or finish executions in the same cycle,

but the priority scheme will effectively resolve these contentions. An FU
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whose result is waited for by other FUs should be set with higher priority.

Therefore, the FU interfaces are designed for the scalability of the system,

and more FUs can be easily added.

FU configuration registers (CRs) function as the bridge for passing the

needed input parameters into the FU computation logics. The most com-

mon parameters used by FUs (listed in Figure 4.2) are: memory address to

read input data, memory address to store computation result(s), and size of

the input data to process. These parameters provide the FU with the basic

information about the input data and the way to output the result. Addition-

ally, more CRs can be added in an FU for passing other useful parameters,

such as the slope sum window size (w) in slope sum computation, threshold

and estimated period values (Thonset, Thdiff , Test) in peak detection, base

model values in ABP signal quality assessment, and others. Therefore, each

FU may have a different number of CRs (up to eight are allowed in our

implementation). If the FU needs more input parameters than are allowed,

some inputs can be grouped into a consecutive memory chunk. A CR can

then pass the starting address of the memory chunk to the FU for loading

and computation. Table 4.1 shows all the configuration registers in each of

the 11 FUs implemented in the RRHMS.

FU computation logics are made up of two parts: (1) computation data

path, and (2) state machine controller. The computation data path is FU-

specific and implements the ASIC logic of the corresponding FU computa-

tion. The state machine is the hardwired controller that

• schedules the computation in the data path,

• reads configuration registers for input parameters,

• sends memory requests through the memory interface, and

• listens to the bus interface for execution start signal and notifies the

bus interface to send the DONE signal when the execution completes.

The state machine controllers (SMCs) are similar in all FUs and follow the

same scheduling pattern. At the beginning, the SMC is in the IDLE state.

When an execution signal is sent from the MIPS controller corresponding

to its FU, the SMC is notified by the bus interface to start execution. In

the execution, SMC first switches to READMEM state, where it checks the

corresponding configuration register for the input data address and notifies

the memory interface to send the memory request to read the first input
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Table 4.1: Functional units and their configuration registers (CR)

FU
No.

FU
Name FU Description Configuration Registers

0 low-pass
filter

Remove high-
frequency noise
in ABP and ECG
signals.

CR0: address to read raw ABP/ECG signal
CR1: address to store filtered signal
CR2: signal size, last bit (0 - ECG or 1 - ABP)

1 slope sum Compute the slope
sum values according
to the slope sum fun-
ction (Section 3.2).

CR0: address to read the signal
CR1: address to store slope sum result
CR2: signal size
CR3: slope sum window size

2 peak
detection

Detect the peak
locations (or indexes)
for the input signal
(ABP or ECG) of
the current window.

CR0: address to read raw ABP/ECG signal
CR1: address to store detected peak indexes
CR2: signal size
CR3: address to read the slope summed signal
CR4: address of model parameters (Thonset, Thdiff , Test)
CR5: address to store detected peak number
CR6: address to store detected valley indexes

3 heart rate Calculate the average
heart rate of the
current window.

CR0: address to read peak locations
CR1: address to store computed heart rate
CR2: number of peaks

4 Kalman
filter

Filter the high-
frequency noise in the
heart rate estimations
between windows.

CR0: address to store filtered (estimated) heart rate
CR1: address of input parameters (posteriori value,

measured heart rate, last estimated heart rate)
CR2: address to store computed Kalman residue

5 final
signal
quality

Calculate the
percentage of high-
quality beats in the
current window.

CR0: address to read signal quality of each beat
CR1: address to store signal quality (percentage) result
CR2: number of beats
CR3: threshold for high quality beat (upper 16 bits)
CR4: threshold for high quality beat (lower 16 bits)

6 derivative Compute the
derivative value of
the input signal.

CR0: address to read the input signal
CR1: address to store the computed derivative values
CR2: signal size

7 squaring Compute the
squaring value of
the input signal.

CR0: address to read the input signal
CR1: address to store the computed squaring values
CR2: signal size

8 ABP beat
quality

Evaluate the signal
quality for a detected
ABP beat (combining
techniques developed
in [9] and [20]).

CR0: address to read ABP signal
CR1: address to store the computed beat quality
CR2: peak index for the current evaluated beat
CR3: last peak index
CR4: valley index for the current beat
CR5: next valley index
CR6: address to read base model parameters

9 ECG beat
quality

Evaluate the signal
quality for a detected
ECG beat (kurtosis
value).

CR0: address to read ECG signal (from the previous
beat peak to next beat peak)

CR1: address to store the beat quality result (computed
kurtosis value)

CR2: signal size from the previous to next beat peak

10 heart rate
(HR)
fusion

Fuse the heart rates
computed from ABP
and ECG signals (by
weighted sum).

CR0: address to load the input parameters (signal
qualities, Kalman residues, and heart rates of
both ABP and ECG signals)

CR1: address to store the fused heart rate

Note: address in the table means memory address, and CR means configuration register (16 bit).
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data. The input data come in after a cycle from the on-chip memory (Block

RAM in FPGA implementation or SRAM in ASIC implementation). After

getting the first input data, SMC jumps to the READMEM AND COMP

state to continue sending memory requests to read the following input data.

At the same time, it notifies the computation logics to process the new input

data that come in due to the memory request previously sent. Therefore, the

computations are pipelined with the memory reads. If in a cycle, no input

data come in due to the scheduling of the memory arbiter, no notification

is sent to the computation logics to process the input data, and the same

memory request is sent again. After all the input data have been read, SMC

enters WAIT COMP state to wait for the computation logics to finish the

computation. During this time, the SMC may still send different control bits

to computation logics according to the computation stage. When the compu-

tation is finished and the result(s) have been written to the memory through

the memory interface, SMC goes to WAIT DONE state. In this state, it

lets the bus interface keep sending the DONE signal until its DONE signal is

processed by the MIPS controller. After this, the SMC jumps back to IDLE

state and waits for the next round of execution. This is the general SMC

scheduling pattern followed by all the FU SMCs, and all FU computation

logics are pipelined and optimized in all FU implementations as well. The

only difference between the FUs is the specific data path computation and

number of data path stages.

Since all FUs have the same interface and follow the same design tem-

plate, the proposed hardware system can be used as a framework that can

be tailored (by adding or removing FU modules) to support other embedded

applications.

4.3 MIPS Controller

The MIPS controller is lightweight. It occupies about only 5% of the pro-

cessing area (total area except memory: FU ASIC accelerator + MIPS con-

troller). We designed the MIPS controller in the RRHMS by making the

following modifications on the 16-bit open source MIPS processor download-

ed from the OpenCores Community [101]:

• Changed the data path from 16-bit to 32-bit to allow higher precision
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of computations (instruction width is kept as 16 bit).

• Added forwarding logic to resolve the read-after-write (RAW) hazard in

fewer cycles compared with stalling the pipeline in the original design.

• Extended the baseline instruction set with two more instructions to con-

figure and execute FUs (by adding logics in the ID and MEM pipeline

stages).

The MIPS controller is responsible for: (1) configuring the FUs by sending

them configuration parameters, (2) scheduling the execution of FUs by send-

ing them execution instructions, and (3) executing the basic MIPS instruc-

tions needed between FU executions, such as the control flows and glue-logic

computations.

The FU configuration and execution instructions sent from the MIPS con-

troller are realized by extending the MIPS instruction set. Two instructions

are added to the base instruction set, as shown in Figure 4.1 (lower right

part):

(1) FU configuration (FU CFG) instruction which moves a configuration

parameter from a MIPS register (reg id) to a configuration register (fu

conf reg id) of an FU (fu id), and

(2) FU execution (FU START) instruction which notifies an FU (speci-

fied by fu id field) to start execution.

Once an FU finishes the execution and stores the results to the shared mem-

ory, the MIPS controller is notified by the FU’s bus interface, which sends a

DONE signal to the system coordination and configuration bus.

To illustrate how the two extended instructions work, Figure 4.3a shows

an example C code running on the MIPS controller. This simple example

shows how the FUs are executed from the C code. In the example, the C

code first reads a window of signal data into the signal array (1250 samples

for a 10-second window of the signal sampled at 125 Hz) and then computes

the slope sum value of the signal array and stores the slope sum result

into the slope result array. The FU executions are invoked in the C code

by intrinsic functions recognizable by the compiler. An extended version of

the MIPS C compiler can be used to generate the assembly code from C

programs. To map the C intrinsic function to the corresponding FU, the

compiler needs to maintain a table of this mapping and know the meaning of
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(a) Example C code running in the MIPS controller

(b) Assembly code of the compiled Slope Sum intrinsic function that runs on FU1

Figure 4.3: Example code running in MIPS controller

the FU configuration registers. In the example, Slope Sum is an intrinsic

function, and by looking up the intrinsic function to the FU mapping table,

the compiler finds it is mapped to FU1, which is the FU responsible for slope

sum computation. As a result, the assembly code shown in Figure 4.3b is
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generated by the compiler for the Slope Sum function. In lines 1 to 8 of

Figure 4.3b, FU1 is configured through the FU CFG instructions. In line 9,

the execution is started by the FU START instruction. During the execution,

FU1

(1) reads the data of the signal array from the memory, whose address is

specified by the configuration register 0 (CR0) of FU1,

(2) computes the slope sum values with the configured slope sum window

size specified by CR3, and

(3) writes the computed slope sum result to the result array, whose mem-

ory address is specified by CR1.

The above execution steps are pipelined inside FU1, and the total size of the

signal array data to read and process is specified by CR2.

4.4 Robust Heart Rate Application Mapping

In the initial prototype implementation, FUs are implemented for each pro-

cessing step of the robust heart rate detection algorithm (Figure 3.1). So

the application mapping on the hardware system is supposed to be straight-

forward, done simply by calling the intrinsic functions following the order

of the heart rate detection flow and passing the corresponding parameters

to the FU configuration registers. But since we do not have the modified

MIPS compiler yet to generate the assembly code from the C program, we

manually wrote the assembly code to configure and execute the FUs for heart

rate detection. We modified the assembler that comes with the open source

MIPS processor to support the extended instructions and used it to assem-

ble the manually written assembly code. After the assembling process, the

assembled machine code is put into the instruction memory of the hardware

system. Then the heart rate detection application starts to run after resetting

the program counter (PC) to point to the first machine code instruction.

In the application, the FUs are first configured for ABP processing to

extract all the ABP features used for heart rate fusion: ABP Kalman filtered

heart rate (HRABP ), ABP Kalman residue (rABP ), and ABP window signal

quality (SQABP ). Then the FUs are configured with ECG parameters for

ECG processing to extract the corresponding ECG features: (HRECG, rECG,
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Figure 4.4: Memory layout of robust heart rate application in the hardware

and SQECG). In the end, the ABP and ECG features are passed to the FU10

(heart rate fusion) to compute the weighted heart rate. The computation

processes are introduced in Chapter 3.

Figure 4.4 illustrates the memory layout of the application in the RRHMS

hardware system. The numbers in the figure are the memory addresses.

The memory system of the RRHMS is word-addressable, so each memory

location is 4 bytes. The variables in the format of X addr are pointers to the

memory address of X. So the inputs (raw ABP and ECG signals) are loaded

into the memory locations of 30-1279 and 1280-2529, respectively, which are

pointed to by the pointer variables in the memory locations of 1 and 2,

respectively. The output (weighted heart rate) is stored in memory location

16. Some memory entries are shared for both ABP and ECG computations.

For example, the variable in memory location 3 is a pointer to the low-
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pass filtered values of both ABP and ECG signals. Therefore, both low-

pass filtered values (with 1250 data points) of ABP and ECG signals are in

the memory location of 1280-2529. Similarly, the other memory variables in

parentheses in the figure are interpreted in the same way. The shared memory

entries are usually used to store intermediate results in the ABP and ECG

computations. Since the two signals are not processed in parallel, memories

of the intermediate results are shared to reduce the memory footprint. As

a result, the total amount of memory needed in the RRHMS is 6497*4 =

25,988 bytes. So the 32 KB Block RAM in FPGA implementation or 32 KB

SRAM in ASIC implementation is enough for the RRHMS memory system.
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Chapter 5

RRHMS FAULT TOLERANCE DESIGN

This chapter introduces the low-overhead hardware fault detection and re-

covery mechanism used in RRHMS. We describe the hardware fault models

and fault injections and then the hardware coverage of the proposed fault

tolerance mechanism. Following that, the fault detection and recovery tech-

niques are explained. At the end, the proposed fault tolerance technique is

described, and various tradeoffs are discussed.

5.1 Fault Model and Injection

The fault model applied in this thesis is the independent low-level transistor

fault. This fault may flip the result of its logic gate and then propagate to

affect the application’s output. We focus on transient fault detection and

recovery. As for permanent faults, the proposed fault tolerance mechanism

can detect them but cannot recover from them. To simulate faulty behavior

in the hardware, we use fault injection at different levels, as follows:

(1) Application: inject faults into the application code, such as flip a bit

in the application variable or change the application control flows.

(2) Assembly/machine code: change the bit in the instruction code, which

may affect the instruction opcode, register value, branch direction, etc.

(3) Behavior hardware: inject faults into the behavior hardware description

code in Verilog/VHDL, such as flip the bit in the pipeline data path,

in the program counter, in the decoder, etc.

(4) Hardware gate: inject faults into the gate-level hardware code that is

obtained from the hardware synthesis, such as flip the output of a logic

gate.

(5) Transistor : inject faults into the hardware transistors after the hard-

ware synthesis and place-and-route, such as change the output current
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or resistance of a transistor.

The application and assembly/machine code level fault injections are easy to

implement and allow fast simulation, but they are only able to simulate faults

that have a direct impact on the application. There are many low-level faults

they cannot simulate, such as the fault that occurs in the hardware control

logics and causes the hardware to hang in an infinite state loop. Behavior

hardware level fault injection can simulate most low-level faults, but it is

difficult to implement this fault injector to cover all the signal bits. This is

because different signals written in the behavior hardware code have different

formats, naming conventions, and bit widths. Therefore, the fault injection

process (adding MUXs to the signal for fault simulation) cannot be auto-

mated. Transistor level fault injection best simulates the fault behavior that

occurs in real life in the transistors. It can also realistically simulate how

low-level transistor faults may propagate to affect the application results.

However, the large amount of simulation time needed for analog level simu-

lations (e.g., it may take days or even months to simulate just one second of

hardware execution) makes it unfeasible for our experiment. As a result, we

selected hardware gate level fault injection and inject random faults into the

synthesized logic gates of the RRHMS. This choice is based on the following

reasons:

(1) It simulates low-level faults with high fidelity. Normally, a faulty tran-

sistor causes its logic gate (and, or, xor, etc.) to output the incorrect

result.

(2) The process is easy to automate, since the output of the synthesized

logic gate is a single bit.

(3) Even though the simulation time is long, it can complete in a reasonable

amount of time for our purposes, i.e., in a matter of hours.

Since we focus on transient fault detection and recovery, we inject tran-

sient faults into the RRHMS hardware by randomly flipping the output of

the synthesized logic gates. The logic gates are flipped independently at the

adjustable fault injection rate. More details of the fault injection implemen-

tation can be found in Section 6.4.2.
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5.2 Hardware Coverage

The low-overhead fault detection and recovery mechanism proposed in this

thesis protects all the FUs in the RRHMS hardware system, as highlighted

in the yellow box of Figure 5.1. Table 5.1 lists the percentages of the area,

power consumption, and runtime of all the FUs in the hardware processing

part for both FPGA and ASIC implementations. The hardware processing

part (FU ASIC accelerator + MIPS controller) is the RRHMS hardware

system without the shared on-chip memory. From the table, we see that the

FUs account for more than 94% of the hardware area, more than 92% of the

power consumption, and more than 97% of the application execution time.

Therefore, the proposed low-overhead fault tolerance mechanism is able to

protect most (or almost all) of the processing hardware for the robust heart

rate detection application. The fault tolerance for the remaining part of the

hardware system (MIPS controller, system coordination and configuration

bus, memory arbiter, and shared on-chip memory) is not the focus of this

thesis. Since the remaining processing hardware only accounts for small area

Figure 5.1: Hardware coverage of the proposed fault tolerance mechanism

Table 5.1: Percentages of all FUs in FPGA and ASIC implementations

FPGA ASIC

Area (%) 94.46 93.28

Power (%) 92.82 92.83
Runtime(%) 97.22

Note: the percentages are for the processing hardware part
(RRHMS hardware except memory: FU ASIC accelerator and
MIPS controller).
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and power percentages, simply applying double or triple modular redundancy

(DMR or TMR) to enhance their reliability does not introduce much area

and power overhead (less than 10% in DMR and less than 20% in TMR).

In addition, the on-chip memory can be protected by applying the popular

error-correction coding (ECC) technique [102].

5.3 Fault Detection

FU hardware faults are detected using heartbeats and invariant checking

[26] techniques in the hardware. The heartbeat is recorded by the heartbeat

counter to detect FU hangs during the execution. In the RRHMS, normal FU

executions never result in FU hangs. Therefore, an FU hang is an indicator

of a hardware fault. One possible cause of FU hangs is the hardware fault

that occurs in the control logics of the FU state machine controller and

results in an infinite state loop. When the FU execution starts, the heartbeat

counter is reset and starts to count the number of cycles of the FU execution.

There is a timeout register for each FU that can be configured to set the

limit of the cycle number allowed for the FU’s execution. In each cycle

during the execution, the value of the heartbeat counter is checked with the

corresponding FU timeout register. If the value of the heartbeat counter is

larger than the value set in the timeout register, an FU hang, and hence an

FU fault, is detected.

In addition to heartbeat, the invariants are checked to detected faults that

may not result in FU hangs but do cause the FU to behave incorrectly in

writing results. According to [26], program invariants are the conditions

that hold true during the program’s execution. Therefore, if any invariant is

violated, it means a fault has occurred. Two kinds of invariants are used in

the proposed fault detection mechanism: address invariants, which are in the

FU result writing address, and result invariants, which are in the FU result.

Address invariants are obtained during the compiling of the applica-

tion, when the compiler assigns the memory locations at which each FU

will write its final computation results. Since in our prototype we write the

assembly code for the application, the memory locations of FU results are

manually set, and the address invariants are obtained directly during the as-

sembly implementation of the application. Some FUs only generate a single
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Table 5.2: FU result invariants, profiled with 1000 windows (2.78 hours) of
patient data (a40050) from the MIMIC II database

Result Invariant
Functional Unit min max mindiff maxdiff

FU0 - low-pass
for ABP 32.40 176.10 –18.60 23.40
for ECG –6.32 7.25 –4.16 –4.16

FU1 - slope sum
for ABP 0.00 87.30 –20.70 52.20
for ECG 0.00 18.18 –16.62 18.18

FU2 - peak detection
peak index 0.00 1240.00 45.00 322.00
peak number 1.00 17.00 –8.00 13.00

FU3 - heart rate 53.35 104.53 –37.19 40.40

FU4 - Kalman filter
filtered value 26.35 100.55 –25.09 17.99
residue –92.87 66.60 - -

FU5 - signal quality 0.00 1.00 - -

FU6 - derivative –4.16 4.02 –6.38 8.18

FU7 - squaring 0.00 17.31 –11.14 16.62

FU8 - ABP beat quality 0.00 1.00 - -

FU9 - ECG beat quality 2.16 8.98 - -

FU10 - heart rate fusion 86.73 100.51 –1.50 2.58

Note: the following conditions hold true during the corresponding FU execution:
yi ≥ min, yi ≤ max, yi− yi−1 ≥ mindiff , and yi− yi−1 ≤ maxdiff , where yi
is the current result value and yi−1 is the previous result value.

result, such as FU3 (heart rate), FU5 (signal window quality), FU10 (heart

rate fusion), and others. So the result address for each of them is an exact

memory location, and this is used as the corresponding FU’s address invari-

ant. The other FUs generate result arrays instead of single results, such as

FU0 (low-pass filter), FU1 (slope sum), FU2 (peak detection), and others.

The result address for each of them is a memory range. Additionally, since

they write the result elements one by one from the lower index, the memory

addresses of two consecutive writes differ only by one. Therefore, for these

FUs, both the result memory ranges and address differences between con-

secutive writes serve as their address invariants. Therefore, if an FU tries to

write its result to a memory location other than the one it is assigned, the

cause must be a hardware fault in the FU. Such behavior is considered an

address invariant violation and a hardware fault indicator. Once the appli-

cation is compiled, the FU address invariants do not change with changing

patient data. However, this is not the case for the result invariants.

Result invariants are obtained by application profiling using patient

data. Since each FU is responsible for a processing step in the heart rate
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detection flow (Figure 3.1), the output of each FU has a specific high-level

application meaning. This contrasts with the output of basic instructions,

like addition, and subtraction, in a general-purpose processor. Therefore,

meaningful patterns can be found in the FU results of the proposed hard-

ware system. For example, the results of the low-pass filter FU are the

biomedical signals with high-frequency noise removed. So they must be

within a meaningful range, based on physiological limitations, such as the

highest and lowest possible blood pressures. In addition, since the biomed-

ical signals are sampled at a specific frequency (125 Hz for our data), the

difference between two consecutive low-pass filtered data should be within

another range, according to the slope of the signal waveform. We use this

property to obtain the FU result invariants to detect FU faults. The FU re-

sult invariants are profiled with the target patient’s data for patient-specific

fault detection. Table 5.2 lists the example result invariants of the 11 FUs

in the RRHMS, obtained by profiling 1000 windows (2.78 hours) of patient

data (a40050) from the MIMIC II database. Similar to address invariants,

both the result range and difference between consecutive computed results

are profiled and used as result invariants. The first two columns of the re-

sult invariants in Table 5.2 are the minimum and maximum values of the

corresponding FU results (lower and upper bound of the result range), and

the other two columns of result invariants are the minimum and maximum

values of the difference between consecutive computed results. Both of the

two kinds of result invariants are not profiled for every FU, as some of them

are meaningless for fault detection. For example, the Kalman residue value

computed in FU4 and signal quality value computed by FU5 represent the

quality of the signal in the current window. So the difference between the

consecutive results of those FUs indicates the difference of the signal qualities

between consecutive windows, which depends on the bio-sensors. Using them

as result invariants may mistakenly detect sensor changes as FU faults. This

also explains the missing result invariants of FU8 and FU9, which evaluate

signal beat qualities. The result invariants are signal- and patient-specific,

similar to some FU parameters (like threshold parameters for peak detec-

tion). Therefore, they are designed to allow configurations using the same

bus interface as the FU configuration registers.

With the heartbeats and invariant checking, the proposed fault detection

mechanism is able to detect the hardware faults (both transient and perma-
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nent) that cause the FU to:

(1) hang (enter infinite state loop and unable to finish execution within

the amount of time specified by its timeout register),

(2) write result to a memory location that violates its address invariants,

or

(3) produce incorrect results that violate its result invariants.

The FUs in the existing hardware system do not need to be modified for the

proposed fault detection mechanism or for the proposed recovery mechanism

introduced in the next section. The proposed fault detection and recovery

are handled by a specialized hardware module, the fault detection and re-

covery unit (FDRU), depicted in Figure 5.2, The FDRU sits in the FU ASIC

accelerator. It both monitors the system coordination and configuration bus

for FU commands (configuration and execution) and listens to the memory

arbiter for FU memory requests.

Figure 5.3 illustrates the operation flow of FDRU. When no FU is exe-

cuting, FDRU is in State 1, waiting for FU instructions sent from the MIPS

controller. When the FU configuration instruction (FU CFG) is sent, FDRU

stores these values for the FU configuration register at the time of the con-

figuration of the corresponding FU (State 2 ). This way, FDRU keeps a syn-

chronized copy of the configuration register values of all FUs; these values are

used for the recovery process. Upon receiving the FU execution instruction

(FU START) from the MIPS controller, FDRU enters State 3 and starts

Figure 5.2: Fault detection and recovery unit (FDRU) in hardware system
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the heartbeat counter. During the FU execution, FDRU stays in State 3,

where it checks the heartbeat counter for FU hang detection and monitors

the FU memory write request address and result invariants. When there is

either an invariant violation during the FU memory write or a time out in

the heartbeat counter, FDRU starts the fault recovery process. If neither is

detected and the FU finishes normally (sends a DONE signal to the system

coordination and configuration bus), FDRU goes back to State 1 to wait for

new FU instructions.

5.4 Fault Recovery

To recover from a detected FU fault, the corresponding FU is re-executed

after being reset and reconfigured. If the fault is transient, re-execution is

enough to recover from it, since the same fault is unlikely to occur in the

re-execution. However, if the detected fault is permanent, re-execution will

result in detection of the same fault. After three re-executions, if the fault

Figure 5.3: Fault detection and recovery unit (FDRU) operation flow
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still exists, the application is aborted and the user is notified. The proposed

fault recovery mechanism is able to recover from the detected transient fault,

but not from the permanent one.

Similar to the fault detection mechanism, the proposed fault recovery

mechanism does not need FU modifications; it is also handled by FDRU. On

detecting an FU fault, FDRU starts the fault recovery process. For either

invariant violation or heartbeat timeout, three chances are allowed. This

means that if, in a single FU execution, an invariant violation is detected

three times or an FU hang is detected three times, the fault is considered to

be unrecoverable, and the application is aborted and the user notified. This

phenomenon may be caused either by a permanent fault or by a transient

fault that continually occurs in re-executions, signifying that the transient

fault rate is high. As shown in Figure 5.3, FDRU maintains two variables,

violate# and hang#, to track the number of times each kind of fault has oc-

curred. Both variables are reset to 0 when the FU is about to start execution

and before FDRU enters State 3. If the detected fault has not occurred three

times in the current execution, the corresponding variable is incremented for

this detection and FDRU goes to State 4. Here it resets the FU to stop the

current execution by sending it the reset signal and reconfigures all config-

uration registers of the FU with the copy it has stored in State 2. The FU

reconfiguration is achieved by the FU configuration instructions (FU CFG)

sent from FDRU. This is necessary because the fault may corrupt some con-

figuration register values, either directly in the configuration register bits or

indirectly by propagating to change the configuration register values. After

reset and reconfiguration, FDRU enters State 5 to restart the FU execution

by sending it the FU execution instruction (FU START), after which it goes

back to State 3 and monitors the re-execution in the same way.

Therefore, FDRU is designed for the existing hardware architecture by

using the same system bus used by the MIPS controller for FU operations

to implement fault recovery. It also uses the memory arbiter design that

collects the FU memory requests to do invariant checking. As a result, no

major modification is needed in the baseline hardware system to incorporate

FDRU to enable fault tolerance in FUs. In addition, the overhead of FDRU

is low. For hardware area (resource) overhead, besides the simple state logics

(Figure 5.3), FDRU only needs to maintain (1) a copy of the values of all

FU configuration registers (Table 4.1), (2) timeout registers for each FU and
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a heartbeat counter, (3) address and result invariants of each FU (Table

5.2) and invariant checkers (hardware comparators). As for performance,

FDRU does not introduce any overhead. Its operations, shown in Figure

5.3, are completely in parallel with the baseline hardware executions. Any

power overhead results from the parallel updates of configuration registers

and fault detections (invariant and heartbeat checking). This overhead is

much smaller than the power consumption of the baseline hardware. In

addition, the FDRU module does not decrease the reliability of the baseline

RRHMS hardware system. If FDRU fails, the baseline system continues to

operate normally, just as if there were no fault tolerance protection.

5.5 Fault Tolerance Coverage Discussion

The proposed fault detection and recovery mechanism with FDRU has much

smaller area and power overheads than the traditional fault tolerance tech-

nique using double modular redundancy (DMR), which is only able to recover

from transient fault through re-execution. The area and power overheads in

DMR are each over 100% because the hardware modules and operations need

to be duplicated. The detailed FDRU overhead results are discussed in Sec-

tion 6.4.1. The tradeoff for this small overhead is in fault detection coverage.

DMR is able to detect any fault that causes a result mismatch between du-

plicate executions. FDRU is only able to detect faults that result in an FU

hang, address invariant violation, or result invariant violation. But a fault

may lead to an incorrect FU result without causing an FU hang or violating

any invariant conditions. For example, if the result invariants listed in Ta-

ble 5.2 are used, a fault that occurs in FU0 during ABP computation may

generate a result that (1) is written to the correct memory location, (2) is

within the range of [32.40, 176.10], and (3) has a difference within the range

of [–18.60, 23.40] between its consecutive results (the results before and after

it). Nonetheless, this incorrect low-pass filtered result may cause incorrect

peaks to be detected and result in an incorrect final heart rate estimation.

The proposed fault detection mechanism in FDRU cannot detect this kind

of fault. Fortunately, this kind of fault is rare, even under a high fault rate,

as shown in Section 6.4.3.

In addition, fault detection by FDRU depends on profiling of the result
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(a) Range of the low-pass filtered ABP values

(b) Range of the low-pass filtered ECG values

(c) Range of the detected peak number in a window

Figure 5.4: Relationship between result invariants and profiled window
number with patient (a40050) data from the MIMIC II database (the range
becomes larger with more profiled data)
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invariants. It should be noted that there is a tradeoff between fault detection

coverage and the false positive rate. A false positive may be caused by an

non-profiled scenario that causes a result invariant violation. For example,

abnormal signal inputs may cause out-of-range low-pass filtered results, not

just by hardware faults. If this particular abnormal scenario did not occur

during invariant profiling, the invariant range may not include the corre-

sponding results. The basic problem is that if result invariants are set too

tightly (include only the few profiled data), FU faults caused by new da-

ta scenarios may generate false alarms; on the other hand, if they are set

too loosely (include the full range of all possible integer values), invariant

checking becomes useless.

This tradeoff is illustrated in Figure 5.4, which shows three examples of

the relationship between the profiled invariant range and number of profiled

windows. The blue area in the figure is the range of the invariant profiled

with the number of windows specified by the x-axis value. The lower edge of

the blue area is the lower bound of the invariant range, and the upper edge is

the upper bound. As the number of profiled windows increases, the profiled

invariant range becomes larger (the lower bound becomes smaller, and the

upper bound becomes larger) because more data scenarios are included. For

example, in Figure 5.4a, if only the first 500 windows of patient data are

profiled, the invariant range obtained for the low-pass filtered ABP value

(result of FU0) is [34.20, 128.70] (range1). If the first 1000 windows of patient

data are profiled, the range is [32.40, 176.10] (range2). When 4000 windows

(11.11 hours of patient data) are profiled, which include 11 occurrences of

arrythmia problems, the range becomes [30.00, 176.10] (range3). Therefore,

if range1 is used as the result invariant of FU0 for ABP processing, the

result of 176.10 caused by the new input scenario will be mistakenly detected

as an FU fault. On the other hand, if range3 is used as the invariant,

the detection coverage becomes smaller. In this case, the result of 176.10

when processing the first 500 windows must be caused by the FU fault, but

since it does not violate any invariant range, it will go detected. Section

6.4.4 analyzes detection coverage with different invariant ranges obtained by

profiling different numbers of windows. Since the probability of the above

undetected case is low, profiling should include as much data as possible to

prevent false positives.

However, sometimes it is impossible to include all scenarios in profiling be-
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cause the signal changes and patient problems are rare in real life. Therefore,

to reduce false positives, the doctor’s knowledge of the patient can be com-

bined with profiling to set the result invariants in some FUs whose invariants

depend on the input signals, such as low-pass filter (FU0), slope sum (FU1),

heart rate (FU3), and others. For those FUs, the patient’s physiological lim-

itations can be used to find the invariants (e.g., the patient’s heart rate never

exceeds 250 bpm nor drops below 30 bpm). The other FUs do not have this

problem, such as signal quality (FU5), ABP and ECG beat qualities (FU8

and FU9), and others. For example, the result of FU5 (percentage of good

beats in the window) should always be between 0 and 1, no matter what the

inputs are.

A false positive, on the other hand, is not always harmful. Sometimes it

is an indication of severe signal corruptions that may be caused by sensor

disconnection. If the invariants are set by profiling long periods of data with

the patient’s physiological limitations considered, and if a detected fault is

not actually caused by a hardware fault, then it is certain that the detected

fault is caused by input that is beyond the patient’s physiological limitation,

which is very likely due to severe signal corruption and is worth the user’s

attention.
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Chapter 6

EXPERIMENTAL RESULTS

This chapter starts with a discussion of the accuracy of the heart rate de-

tection algorithm introduced in Chapter 3, followed by an evaluation the

proposed RRHMS hardware system implemented on both ASIC and FPGA

platforms. The same application is also implemented on a Nexus 7 tablet

for comparison with the embedded processors on the market. At the begin-

ning of the hardware evaluation, experiment setups are introduced for the

implementations on the three platforms (Android, FPGA, and ASIC). Then

the baseline RRHMS without fault tolerance features is evaluated, and the

three platform implementations are compared. Then follows an evaluation

of the proposed fault tolerance technique using FDRU, where the overheads

and fault tolerance coverage under injected hardware faults are discussed.

6.1 Heart Rate Detection Accuracy

The heart rate detection algorithm introduced in Chapter 3 is implemented

in MATLAB to evaluate its accuracy. The hardware implementations are

compared with the results of the MATLAB code to check the implementation

correctness. We first compared the algorithmically optimized ABP and ECG

beat detection algorithm with the original algorithms [18] and [28] for ECG

and ABP beat detections, respectively. We used the patient data from the

MIMIC II database with 24 patients, totaling 270.9 hours of ECG and ABP

data. Both ECG and ABP beats detected by our optimized algorithm match

the results of the original algorithms. In addition, we manually inspected

several segments of the raw data with the detected beats marked, and all the

inspected detected beats match our manual annotations.

The heart rate fusion algorithm that we applied, by weighting on the signal

qualities and Kalman residues, was proposed and validated in [21]. Our ex-
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(a) Kalman filtered ABP heart rates

(b) Kalman filtered ECG rates

(c) Weighted heart rate

Figure 6.1: Kalman filtered ABP and ECG heart rates for 1000 windows,
and final weighted heart rates of the corresponding windows (data from the
MIMIC II database patient a40050)
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Figure 6.2: ABP and ECG signal qualities (the corresponding signal
qualities that are used to obtain the heart rate fusion results in Figure 6.1)

periments also prove its effectiveness. The heart rate fusion examples shown

in Figure 3.4 and Figure 3.5 illustrate that the fusion algorithm is able to

provide continuous robust heart rate monitoring even when one signal is

corrupted by noise and artifacts. In addition, Figure 6.1 provides another

example with 1000 windows of patient (a40050) data, where the ABP signal

is corrupted around window 360 and window 570, and the fusion algorithm

fixes the ABP corruption by weighting more on the better quality ECG sig-

nals during the two window segments. Figure 6.2 explains the reason behind

the effectiveness of the fusion algorithm in Figure 6.1 by showing and com-

paring the signal qualities of ABP and ECG for the corresponding windows.

The figure shows that at around window 360 and window 570, ABP quality

becomes low while ECG quality is high. Therefore, more weight is put on

the heart rate extracted from the ECG signal.
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6.2 Hardware Experiment Setup

The proposed RRHMS is implemented both in ASIC design using the Synop-

sys Design Compiler and on the Xilinx FGPA platform. ASIC is the target

platform for the final product of the RRHMS to provide heart rate monitor-

ing with low energy. FPGA is the platform that uses the proposed hardware

system as a framework for efficient embedded system designs (by adding and

removing FUs for the target embedded application). Therefore, both ASIC

and FPGA implementations are evaluated in this thesis. For comparison

with the embedded processors on the market, the same heart rate detection

application is implemented as an Android application on the Asus Nexus 7

tablet (2013 model).

Table 6.1 lists the experiment setups of the three platforms: Android,

FPGA, and ASIC. For the Android implementation, the Android software

development kit downloaded from the Android developer’s website [103] is

used to compile and load the application to the target hardware, a Nexus 7

tablet. The Nexus 7 tablet is equipped with the Qualcomm Snapdragon S4

chipset running at 1.5 GHz. The Android application on the tablet runs in

the Krait processor on the chipset, which is architecturally similar to the AR-

M processor. The execution time of the application is recorded by inserting

time measure functions in the code before and after the heart rate detection

Table 6.1: Experiment setup on the three platforms

Platform Frequency Design Tools Evaluation Tools

Android Snapdragon
S4 @ 1.5
GHz

Android SDK [103] (test
and evaluate on the 2013
Asus Nexus 7 tablet)

Qualcomm Trepn Pro-
filer [104] and

FPGA 66.6 MHz Xilinx ISE Design Suite
14.2 (test and evaluate
on the Virtex 5 ML507
(XC5VFX70T) FPGA
board)

Modelsim SE 10.1a,
Xilinx ISE, and Xilinx
Power Analyzer

ASIC 100 MHz
(up to
222.2 MHz)

Processing logics: Syn-
opsys Design Compiler [27]
with NanGate 45 nm Open
Cell Library [105]. On-
chip memory: Synopsys
Generic Memory Compiler
(32 nm) [106]

Modelsim SE 10.1a and
Synopsys Design Com-
piler with NanGate 45
nm and Generic Mem-
ory Compiler 32 nm
SRAM libraries [105,
106]
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portion. The power consumption on the Android platform is profiled using

the Qualcomm Trepn Profiler [104]. To obtain accurate power consumption

of only the heart rate detection, the baseline power of the application without

starting heart rate detection is measured first. Then the total power is mea-

sured with the heart rate detection executing. The power difference between

the two measurements is the power consumption of the heart rate detection

on Android. During both execution time and power measurements, all the

other Android applications and services are turned off.

The Xilinx Virtex 5 ML507 board (XC5VFX70T) is used for FPGA imple-

mentation. The RRHMS run on the actual FPGA board, while the reported

results are collected from the simulation of the FPGA-synthesized design of

the hardware. The Xilinx ISE Design Suite is an integrated Xilinx software

platform for Xilinx FPGA synthesizing, mapping, and routing. We use the

14.2 version of Xilinx ISE to implement the RRHMS hardware that is written

in VHDL and Verilog. The processing logic of the hardware system (non-

memory part: FU ASIC accelerator and MIPS controller) is implemented in

the FPGA logics, and the on-chip memory is implemented as Block RAM

on the FPGA board. The application’s execution time on FPGA is calcu-

lated by the multiplication of the hardware cycle number and clock period.

The hardware cycle number is obtained from cycle-accurate simulation in

Modelsim SE 10.1a, and the clock period is obtained from the timing report

generated by Xilinx ISE after FPGA routing. In the FPGA implementation,

the maximum clock frequency achieved is 66.6 MHz (15 ns clock period).

The power consumption of FPGA is profiled using the Xilinx Power Ana-

lyzer. To obtain accurate power results, signal activities are collected from

the post-routing simulation in the Modelsim simulator. With the signal ac-

tivities provided, the Power Analyzer shows high confidence in the profiled

power number, which we use as the FPGA power consumption.

In ASIC implementation, separate tools are applied to synthesize the on-

chip memory and processing logic (FU ASIC accelerator and MIPS con-

troller) of the RRHMS. The Synopsys Design Compiler [27] is used to syn-

thesize the processing logic with the 45 nm NanGate Open Cell Library [105].

The Synopsys Generic Memory Compiler [106] is used to synthesize the on-

chip memory using 32 nm SRAM technology. (There is no 45 nm SRAM in

the Generic Memory Compiler, and 32 nm is the closest available technology

process to the 45 nm used for the processing logic.) The ASIC implementa-
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tion of the RRHMS is only simulated (not tested on the real taped-out chip).

Similar to FPGA implementation, the execution time of ASIC is obtained by

the multiplication of the hardware cycle number from Modelsim simulation

and the clock period from the ASIC synthesis process. To compare the three

platforms, the 100 MHz clock frequency of ASIC is chosen; its maximum

synthesized clock frequency is 222.2 MHz. The power of ASIC is profiled

from the tools in the Design Compiler, which takes three kinds of input files

for accurate power estimation: (1) synthesized netlist files, (2) technology

library files (NanGate 45 nm cell library and Generic Memory Compiler 32

nm SRAM library), and (3) signal activities (processing logic and memory

activities) collected from the post-synthesis simulation in Modelsim.

6.3 Baseline RRHMS Evaluation

This section evaluates the baseline RRHMS without fault tolerance features.

The runtime performance, power, and energy consumptions of the Android,

FPGA, and ASIC implementations are compared. Then, the total resource

utilizations of the FPGA and ASIC implementations are introduced. Finally,

the breakdowns of runtime, resource utilization, and power consumption of

the processor logics (FU ASIC accelerator and MIPS controller) on the FPGA

and ASIC platforms are discussed.

6.3.1 Comparison of Android, FPGA, and ASIC

The application results of Android, FPGA, and ASIC implementations are

compared with MATLAB simulations to ensure the implementation correct-

ness. For comparison, 1000 windows of patient data (both ABP and ECG

data collected at 125 Hz frequency) are processed for robust heart rate es-

timation. Table 6.2 lists the results of runtime performance, power, and

energy consumption of the ASIC implementation to process the 1000 win-

dows of data. Figure 6.3 compares the different results on the three platforms

(all platform results are normalized to the results of ASIC).

As shown in Table 6.2, ASIC finishes processing 1000 windows of data in

only 0.211 s. So on average, ASIC only takes about 0.211 ms to process a

single window containing 10 s of patient data. Therefore, for each 10 s of
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Table 6.2: Runtime, power, and energy results of ASIC implementation (run
of 1000 windows of patient data (a40050) from the MIMIC II database)

Runtime (s) Power (mW) Energy (mJ)

Processing logic* - 6.887 1.453

On-chip memory - 0.4541 0.0958

Total 0.211 7.341 1.549

*Processing logic: FU ASIC accelerator and MIPS controller (non-memory part).

patient data collected from the sensors, the ASIC implementation can es-

timate an average heart rate in 0.211 ms (active in 0.00211% of the time).

As a result, ASIC works in the duty cycle manner to save energy consump-

tion. It only needs to be woken up every 10 s when a new window of data

is ready. After processing, it can be put in sleep mode with the power gat-

ing technique. The power consumptions of the processing logic and on-chip

memory are profiled separately. The power number reported in the table is

the active power consumption, including both dynamic and static (leakage)

powers, during the processing of the 1000 windows of data. Most of the pow-

er (93.82%) is consumed in the processing logic because the computation is

not memory-intensive and the memory is synthesized with a more advanced

technology library (32 nm). In total, the ASIC active power consumption

during the processing is only 7.341 mW. “Energy consumption” in the table

means the total energy consumed to process the 1000 windows of data. It is

calculated by multiplying the active power consumption with the runtime.

The total energy consumed to process 1000 windows (10,000 s) of patient

data is only 1.549 mJ. Therefore, if the ASIC implementation is duty cycled

with power gating, the approximate average power consumption during daily

monitoring is calculated as 1.549 mJ / 10,000 s = 0.1549 µW (patient data

is sampled at 125 Hz).

Compared with ASIC, the execution times needed to process the same

amount of data (1000 windows) on Android and FPGA platforms are 20.62

and 1.50 times longer, respectively, as illustrated by Figure 6.3a. The speedup

of ASIC compared to Android implementation is mainly due to: (1) the

efficiency of the RRHMS FU modules that are optimized with ASIC logics,

and (2) the faster memory access with the on-chip memory design. On the

other hand, since the same underlying register transfer level (RTL) hardware
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(a) Runtime performance comparison

(b) Power consumption comparison

(c) Energy consumption comparison

Figure 6.3: Comparison of the Android, FPGA, and ASIC implementations
(run of 1000 windows of patient data from the MIMIC II database)
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design is used in both the FPGA and ASIC implementations, the hardware

cycles to run the same application with the same input data on these two

platforms are also the same. The speedup of ASIC compared to FPGA is

due only to the higher clock frequency.

ASIC also achieves the lowest power consumption in the comparison (Fig-

ure 6.3b). The power consumption compared in the figure is also the active

power during the processing of the data. The power consumption of Android

is 139.25 times that of ASIC, while the power consumption of FPGA is 2.08

times that of ASIC. This is because ASIC has the least hardware complexi-

ty. The Android implementation runs on the Krait processor of the Nexus 7

tablet, a general purpose embedded processor that has complicated process-

ing pipelines and hierarchical memory systems. It is designed to reduce the

processing latency of general applications. On the other hand, the ASIC im-

plementation of the RRHMS hardware system is composed of FUs designed

especially for computation of the target application, and it is directly synthe-

sized with logic gates. Furthermore, due to the small memory size required,

the on-chip memory implemented with SRAM is directly used as the main

memory of ASIC. This greatly simplifies the memory system and reduces

the corresponding power consumption. The FPGA implementation benefits

from the same FU designs to efficiently support computations and from the

small memory footprint to reduce the complexity of memory system. As a

result, FPGA also achieves good power efficiency (about 1/67 of Android’s

power). However, FPGA logics are realized with look-up tables instead of

logic gates, which adds some complexity and overhead. Therefore, the FPGA

implementation consumes more power than the ASIC implementation does.

The energy comparison in Figure 6.3c compares the total energy consumed

to process the 1000 windows of data on the three platforms. Energy consump-

tion, calculated by multiplying execution time and active power consumption,

directly affects the battery life. Since compared with Android, both FPGA

and ASIC implementations can finish the processing in less time and at

smaller power consumptions, they both achieve much better energy efficien-

cy than Android (about 1/923 and 1/2871 of Android’s energy consumption,

respectively). Therefore, given the same battery capacity, the FPGA and

ASIC platforms of the RRHMS are able to achieve as much as 923 and 2871

times more battery life of the Android platform, assuming the inactive power

is negligible, which can be achieved with power gating in the sleep mode.
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In summary, the comparison results show that the proposed RRHMS in

both FPGA and ASIC implementations is much more energy-efficient than

the general-purpose embedded processor, such as Krait, to provide real-time

heart rate monitoring. This enables RRHMS to achieve longer battery life,

as well as portability, by not requiring a big, heavy battery to support it.

6.3.2 RRHMS Resource Utilization

Table 6.3 lists the resource utilizations of RRHMS in the FPGA and ASIC

implementations. In the FPGA implementation, resource utilization data

are obtained from the module-level utilization report generated from the

FPGA mapping process in Xilinx ISE. The total processing logic occupies

11,856 look-up tables (LUTs) and 22 DSP48E slices of the FPGA resource.

The RRHMS on-chip memory is implemented using the 32 KB Block RAM

on the FPGA board. In the ASIC implementation, the processing logic is

synthesized with 53,697 cell gates and occupies 0.121 mm2 of the die area.

The on-chip memory in ASIC is synthesized as 32 KB SRAM with the 32

nm library of the Generic Memory Compiler (different from the 45 nm cell

library for processing logic), which accounts for 0.195 mm2 of the die area.

Table 6.3: Resource utilizations of the RRHMS on FPGA and ASIC

FPGA ASIC

Processing logic* 11,856 LUTs** + 22 DSP48E 53,697 cell gates (0.121 mm2)

On-chip memory 32 KB Block RAM 32 KB SRAM (0.195 mm2)

*Processing logic: FU ASIC accelerator and MIPS controller (non-memory part).
**LUT means look-up table (LUT is 6-input for the Virtex 5 FPGA family).

6.3.3 Runtime, Resource, and Power Breakdown

Table 6.4 lists the breakdown of the runtime, resource utilization, and power

consumption of the processing logics (FU ASIC accelerator and MIPS con-

troller) in both FPGA and ASIC implementations. The breakdown of each

result is in terms of percentage. The absolute result of each part in the

table can be calculated with the total execution time, resource utilization,

and power consumption of the corresponding platform, which can be found
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Table 6.4: Runtime, resource utilization, and power breakdown

Runtime Resource (%) Power (%)

(%) FPGA ASIC FPGA ASIC

FUs

0: low-pass filter 11.88 4.08 3.76 10.65 4.68

1: slope sum 11.84 7.64 5.74 23.79 9.08

2: peak detection 24.32 14.65 7.14 8.67 5.78

3: heart rate 1.00 4.64 3.24 0.25 4.13

4: Kalman filter 0.29 6.34 9.77 0.05 7.93

5: signal quality 0.32 1.55 1.72 0.10 2.37

6: derivative 5.92 2.16 1.11 1.49 1.43

7: squaring 5.94 2.18 7.66 4.46 5.78

8: ABP beat quality 9.02 32.87 16.90 12.88 15.13

9: ECG beat quality 25.78 13.72 21.46 30.23 19.55

10: heart rate fusion 0.89 4.64 14.78 0.25 16.98

Memory arbiter - 1.75 0.97 1.73 0.59

MIPS 2.78 3.79 5.74 5.45 6.58

Note: the percentages are for the processing logic part (RRHMS hardware except
memory: FU ASIC accelerator and MIPS controller).

or derived from Table 6.2, Table 6.3, and Figure 6.3. The highest three

percentages of each breakdown result in the table columns (Table 6.4) are

highlighted.

The runtime breakdowns of the FPGA and ASIC implementations are the

same, as they are implemented with the same hardware design. In the cur-

rent prototype, the FUs are executed one by one (an FU starts execution

after the previous one finishes). So there is no overlap in the runtime of

the FUs. The runtime breakdown of the memory arbiter is not profiled be-

cause its operation is in parallel with the FU executions. From the runtime

breakdown, we can see that the FUs are responsible for most (97.22%) of the

computations. This is expected, as the FUs are designed to support the ma-

jor processing steps of the RRHMS heart rate detection application, and the

MIPS controller is mainly responsible for FU configurations and the schedul-

ing of FU executions. Among the FUs, FU0 (low-pass filter), FU2 (peak

detection), and FU9 (ECG beat quality) have the highest runtime percent-

ages. Both low-pass filter and ECG beat quality (kurtosis computation) are
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computation intensive, as they have to process a large amount of input data.

Peak detection is control intensive due to the threshold-based detection rules

(described by Algorithm 1 in Section 3.2).

The breakdowns of the resource utilization and power consumption are

different in the FPGA and ASIC implementations. The resource breakdown

of FPGA is based on the number of look-up tables (LUTs) used to implement

the corresponding module. The ASIC resource breakdown is calculated using

the area of each module. Most of the hardware resources are used for FU

implementations in both platforms (94.46% in FPGA and 93.28% in ASIC).

Therefore, although the proposed fault tolerance mechanism only protects the

FUs, most parts of the RRHMS hardware system are covered as discussed in

Section 5.2. Additionally, the total resource utilizations of the FU modules

shared between ABP and ECG processing (as highlighted in Figure 3.1) are

43.53% and 46.16% in FPGA and ASIC, respectively. This proves the effec-

tiveness of the algorithmic optimizations for sharing between ABP and ECG

processing, without which those resources might be double what they are.

The difference between the resource breakdown in the two implementations

is due to differences in the ways their hardware logics are synthesized and

implemented. In the ideal case, more hardware resources should be allocated

to the module that has the higher computation utilization (higher runtime

percentage). This is not the case in either FPGA or ASIC because some FUs

(processing steps) are not mathematically complicated but their input data

size and computation iteration number are large. FU0 (low-pass filter) and

FU1 (slope sum) are examples.

The power breakdowns for FPGA and ASIC implementations are direct-

ly obtained from the power report generated by the Xilinx Power Analyzer

and Synopsys Design Compiler, respectively. Similar to resource utilization,

most of the hardware power is consumed in the FUs (92.82% in FPGA and

92.83% in ASIC). This makes sense because most of the computations are

completed by the FUs. In general, the modules that have higher runtime

percentages consume more power. However, there are exceptions. For ex-

ample, the runtime percentage of FU2 (peak detection) is high (24.43%),

but it is not among the highest three power consuming modules. This is

because its execution contains several serialized threshold-based steps, and

in each step, only a small subset of its logics is active. On the other hand,

FU10 (heart rate fusion) has a very small runtime percentage (0.89%), but
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in ASIC implementation, it both has high resource utilization (14.78%) and

consumes a large amount of power (16.98%). No clear reason for this is found

by the initial inspection in the ASIC code; further investigation is needed to

explain it. The breakdown results provide guidance to further optimize the

RRHMS design, such as hardware resource allocation and software/hardware

partitioning (Section 7.2).

6.4 Fault Tolerance Evaluation

The proposed fault tolerance mechanism with the hardware fault detection

and recovery unit (FDRU) is evaluated in this section. First, the overheads

of FDRU in resource, power consumption, and performance are discussed,

followed by an introduction to the fault injection method used. The fault

tolerance coverage of FDRU is then analyzed by comparing the correctness of

heart rate detection under injected faults when FDRU is and is not applied.

Finally, the fault tolerance coverage is discussed, including the relationship

between the amount of data used for result invariant profiling and FDRU

coverage.

6.4.1 FDRU Overheads

As introduced in Chapter 5, the proposed fault tolerance mechanism is im-

plemented in FDRU. The overheads of FDRU in resource utilization, power

consumption, and performance are listed in Table 6.5. For resource overhead,

the FDRU implementation needs an extra 14.54% of the look-up tables used

by the baseline RRHMS hardware system on the FPGA platform. In ASIC,

FDRU needs an extra 15.54% of cell gates to implement, which accounts for

a 12.65% increase in die area. The resource overhead is due to:

(1) FDRU’s controlling state machine logics (illustrated by Figure 5.3),

(2) all FU configuration registers (listed in Table 4.1),

(3) timeout registers for each FU and a heartbeat counter (16-bit each),

and

(4) address and result invariants of each FU, as well as invariant checkers

for each invariant (hardware comparators).
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Table 6.5: FDRU overheads in FPGA and ASIC implementations

FPGA ASIC

Resource 14.54% look-up tables 15.54% cell gates (12.65% area)

Power* 37.01% 33.89%

Performance* 0%

*Power and performance overheads in the table are the overheads during normal
monitoring when no fault is detected. If there are faults, more overhead is introduced
by fault recovery (FU reconfiguration and re-execution).

During normal monitoring, when there is no fault, FDRU consumes 37.01%

and 33.89% more power in FPGA and ASIC implementations, respectively.

The extra power consumption is due mainly to the invariant and heartbeat

checking for FU fault detection. In addition, FDRU does not introduce

any performance overhead during normal monitoring because all the fault

detection checking is executed in parallel with FU executions. As a result,

FDRU does not incur extra cycles during the normal FU execution. Besides,

none of the fault detection checking is on the critical path of the RRHMS

hardware system, and therefore the clock frequency is not affected by FDRU

either. When faults are detected during the FU execution, extra power and

performance overheads are introduced by the fault recovery process, as FDRU

needs to reconfigure and re-execute the faulty FU to recover from the fault.

The specific numbers of the extra overheads depend on two factors:

(1) The frequency of FU fault detection. This is affected by the manifested

FU fault rate. When an FU fault is detected, the FU is reconfigured

and re-executed by FDRU, which consumes extra power.

(2) The specific FU involved. Different FUs have different numbers of

configuration registers and are responsible for different computations,

so the performance and power overheads incurred by them vary.

If the two factors are known (by simulation or in real-life testing), the specific

extra overheads can be calculated with the combined information of the FU

runtime and power breakdowns (Table 6.4).

Compared with the traditional fault tolerance technique of double modular

redundancy (DMR), where each FU must be duplicated, FDRU introduces

much smaller resource and power overheads. The resource and power over-

heads in DMR are over 100% for each, as DMR requires duplicate modules
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and operations for fault detection. The performance overheads during nor-

mal execution without fault are the same (0%) in DMR and FDRU. When

a fault occurs in DMR, only the transient fault is recoverable through re-

execution, as in the proposed FDRU. However, the tradeoff for the small

overheads of FDRU is lower fault detection coverage. DMR can detect any

fault that causes a result mismatch in the duplicate executions, while FDRU

is only able to detect a fault that results in an FU hang or invariant violation.

Detailed discussions of FDRU’s fault tolerance coverage are provided in the

following sections.

6.4.2 Fault Injection Methodology

To simulate the behavior of low-level hardware faults with high fidelity, we

applied hardware gate-level fault injection, as discussed in Section 5.1. We

modified the CrashTest fault injection framework [107] to inject the gate-level

fault to the RRHMS hardware system.

Figure 6.4 outlines the simulation flow for the fault injection experiment.

The flow starts with the synthesis of the hardware design written in hardware

description language (HDL). For RRHMS, the hardware is written in both

VHDL and Verilog. GTECH library (a technology-independent library) is

used for hardware synthesis. The Synopsys Design Compiler is used for syn-

thesis of fault injection as well, but with a different technology library. After

synthesis, a netlist file is generated with GTECH gate cells that implement

the RRHMS hardware logics.

The netlist file is then input to the Perl script in the CrashTest framework

to inject faults into the logic gates. Since the name of each GTECH cell gate

Figure 6.4: Fault injection simulation flow
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Figure 6.5: Fault injection to logic gate

Figure 6.6: Fault enable generation

starts with GTECH (such as GTECH AND and GTECH NOT), it is easy

for the Perl script to find all the logic gates. In CrashTest, the number of

logic gates into which to inject faults can be specified by the user, and then

the Perl script randomly selects the gate for fault injection. Since RRHMS

hardware is not very big (around 43,000 GTECH gates for fault injection), we

inject the fault into every logic gate for high fidelity fault injection simulation,

as a fault may happen to any gate in real life. Figure 6.5 illustrates how the

fault is injected by the Perl script. A 2-to-1 MUX is inserted into the output

of the logic gate. One of the inputs of the MUX is directly connected with

the original output of the logic gate, and the other input is connected to the

inversion of the original output. So the selection signal of the MUX is used as

the fault enable signal. When the fault enable signal is 0, the fault-injected

gate outputs its original result (as if no fault has occurred). Otherwise, it

outputs its inversion (as if a fault has occurred and flipped its output). All

the fault enable signals are ported as the inputs of the top-level module, and

the fault of each injected logic gate can be disabled or triggered in any cycle

during the simulation by setting the corresponding fault enable signal.

After fault injection, the faulty behavior of the hardware can be simulated

with the fault-injected netlist file. We use Modelsim for cycle-accurate simu-

lation instead of applying the FPGA simulation as proposed in the CrashTest
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Figure 6.7: Fault injection area of the RRHMS hardware system

framework. This is done because FPGA does not have enough programmable

ports to control all the fault enable signals (around 43,000) during RRHMS

simulation. Since we focus on transient fault detection and recovery, only

transient faults are injected, by transiently setting the fault enable signal to

1. This is realized using a random number generator and comparator as de-

picted in Figure 6.6. In each simulation cycle, the random number generator

generates an integer value r uniformly distributed between a (inclusive) and

b (exclusive). This value is compared with a pre-set value c by the compara-

tor. If r < c, the fault enable signal is set to 1, otherwise to 0. Therefore the

simulated transient fault rate is

simulated transient fault rate =
c− a
b− a

In the RRHMS fault injection simulation, each fault enable signal is con-

nected to a separate set of the fault generation system in Figure 6.6. So the

transient faults are injected into every logic gate independently. With each

pre-set fault rate (c value), the RRHMS is simulated 500 times with different

random seeds set in each simulation to collect the statistics of the simulation

results. The next section discusses the simulation results in detail.

6.4.3 Fault Tolerance Coverage

To evaluate the coverage of the proposed FDRU, we inject transient faults

at different rates into the FU area using the fault injection framework in-
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troduced in the previous section. Figure 6.7 depicts the fault injection area

of the RRHMS hardware system. Since FDRU only protects FUs, only the

logic gates of FUs are injected. This accounts for more than 93% of the

processing logics in RRHMS (FU ASIC accelerator and MIPS controller).

For comparison, faults are injected into both the baseline hardware system

without FDRU and the fault tolerant hardware system with FDRU.

The comparison results are shown in Figure 6.8. The results are collected

by injecting transient faults with six fault rates, from 4∗10−9 to 24∗10−9. The

fault rate here indicates how frequently the output of a logic gate is flipped

(by setting the corresponding fault enable signal to 1). For example, the

fault rate of 4∗10−9 means that each faulty logic gate, on average, is injected

with four faults in every 109 cycles of the hardware execution, where a fault

is injected by flipping the output of a logic gate for one cycle. This is realized

by setting the values of a, b, and c in Figure 6.6 to 0, 109, and 4, respectively.

It should be noted that the fault rate is for each single logic gate and that

the faults are injected independently for each gate. Therefore, in RRHMS

fault injection, since the FUs are synthesized to around 43,000 logic gates, at

the fault rate of 4 ∗ 10−9, a total of 43, 000 ∗ 4 = 172, 000 faults are injected

into the FUs on average in every 109 cycles of hardware execution. Faults

may be injected to an FU during its re-execution for recovery from previously

detected faults. When this happens, the new faults can be detected in the

same way by FDRU during the re-execution, as FDRU handles a re-execution

in exactly the same way it handles a normal execution (as discussed in Section

5.4).

Table 6.6: Output of the RRHMS in fault injection simulation

Fault Tolerance System
Baseline System (with FDRU)

Correct The hardware finishes execution in time,
Result and the heart rate detected is correct.
Incorrect The hardware finishes execution in time,
Result but the heart rate detected is incorrect.
System Failure The hardware does not

finish execution in time.
Either FU hang or invariant vio-
lation is detected three times in
a single MIPS-scheduled execu-
tion of the FU.

Note: In time means within five times of the supposed execution time (obtained by the
same application simulation without fault injection).
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Figure 6.8: Fault injection results comparison between baseline and fault
tolerance hardware systems (result invariants are profiled with 1000
windows of patient data (a40050 of the MIMIC II database))

For each fault rate, RRHMS is simulated 500 times with different random

seeds set for the random number generators used to enable faults (Figure

6.6). The number in parentheses in Figure 6.8 below the fault rate is the

average number of faults triggered (enabled) in the 500 simulations under the

corresponding fault injection rate. The application that runs on the fault-

injected RRHMS hardware is the RRHMS heart rate detection application

developed in this thesis (Chapter 3). Only one window of the patient data

(patient a40050 from the MIMIC II database) is used in the fault injection

simulation to save simulation time. This is because post-synthesis simulation

with 43,000 random number generations in every cycle to control the injected

faults is slow. So the output of the application is the heart rate detected

from the window by the analysis of both ABP and ECG signals. Since the

application is short (only processing one window of patient data), the fault

rate is set to be high to magnify the effects of the fault. For the fault tolerance

system, the result invariants are profiled using 1000 windows of patient data

(the result invariants of all FUs are listed in Table 5.2).
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There are three possible outputs (as listed in Table 6.6) for the fault in-

jection simulation: correct result, incorrect result, or system failure. In both

baseline and fault tolerance hardware systems, the correct result indicates

that the hardware system finishes the execution within five times the sup-

posed execution time and that the detected heart rate of the window is correct

(every output bit matches the golden result). The supposed execution time

and golden result are obtained by simulating the same application without

fault injection. The correct result happens when the injected fault does not

manifest or propagate to affect the application result. This is possible in

these cases:

(1) The fault is injected into a logic gate that is not in use in the cycle

during which its output is flipped by the injected fault.

(2) The fault affects some intermediate results but does not propagate to

the final result. For example, if the fault changes the quality of one

ABP beat from 0.9 to 0.6, the beat is still counted as good and does

not affect the ABP signal quality of the window; therefore, it does not

affect the final heart rate estimation.

(3) The injected fault is detected and fixed through re-executions in the

case of the fault tolerance system with FDRU.

On the other hand, the incorrect result in both systems means that the

hardware execution finishes within five times the supposed execution time,

but the detected heart rate is incorrect (at least one of the output bits does

not match the golden result). System failure has different meanings in the

two systems. In the baseline system, system failure means the system does

not finish the execution within five times the supposed execution time, which

is an indicator of FU hang. FU hang is usually caused by one of two scenarios:

(1) The fault is injected into the FU state controller and results in infinite

FU state loops.

(2) The fault corrupts an intermediate value used for FU control logics,

such as the loop iteration variable.

In the fault tolerance system, system failure indicates that either an FU

hang or an invariant violation is detected three times in an MIPS-scheduled

execution of the FU (FDRU enters State 5 in Figure 5.3). The fault tolerance
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hardware system never fails by exceeding five times the supposed execution

time. This is because FDRU would have detected the corresponding FU hang

before that happens.

As shown in Figure 6.8, for both baseline and fault tolerance systems, as

the fault rate increases, the percentages of the correct results in 500 simula-

tions (with different random fault injections) decrease and the percentages

of incorrect results increase. This is because with the higher fault rate, the

probability that the injected faults will impact the critical gates is higher.

The proposed fault tolerance mechanism is able to increase the correct result

percentages under each fault injection rate by detecting the FU fault and

recovering from it through re-executions. A large number of both incorrect

results and system failures (FU hangs) in the baseline system are detected

and recovered by FDRU. System failures are almost eliminated in the fault

tolerance system due to the FU hang detection with heartbeat, and the total

percentages of incorrect system behaviors (incorrect results and system fail-

ures) are reduced by at least 55.95% in all fault injection rates (e.g., reduced

from 7% to 2.4% under the 4∗10−9 fault rate). So at the fault rate of 24∗10−9,

the percentage of correct results increases from 61.00% to 85.00%. In addi-

tion, it should be noted that system failures are detected in the fault tolerance

system. Therefore, the user can be notified of the failure, even though the

baseline system cannot detect it. However, there are still incorrect results in

the fault tolerance system, since some faults may cause incorrect results that

are within the variant range and therefore not detectable by the invariant

checking of FDRU. This is the tradeoff of the FDRU’s low area (resource)

and power overheads compared with the DMR mechanism. DMR may still

have incorrect results if the faults cause the duplicated modules to give the

same incorrect results or occur to the DMR voters, but the percentage is

expected to be smaller. Implementing DMR to protect FUs for comparison

with FDRU is part of our future work.

6.4.4 Discussion of Fault Coverage

As discussed in Section 5.5, the fault detection coverage of the proposed

FDRU mechanism depends on result invariant profiling. If the profiling data

size is small, the profiled result invariant range is small, and false positives
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may occur if a new input data scenario appears. On the other hand, if the

profiling data size is large, the profiled result invariant range is likewise large,

and as a result, faults that cause a result that is incorrect but not out of range

cannot be detected. This section discusses the effect of the profiling data size

on fault tolerance coverage.

The fault tolerance results shown in Figure 6.8 are obtained by profiling

the result invariant with 1000 windows of patient (a40050) data, which are

used to run the heart rate detection application for one-window heart rate

detection. The result invariants of all FUs profiled by 1000 windows are listed

in Table 5.2. To compare fault coverage when different profiling data sizes

are used, the result invariants are also profiled with one window (just the

window used in fault injection simulations) and with 4000 windows (11.11

hours of the patient data that includes 11 arrythmia problems). Table 6.7

and Table 6.8 show the result invariants of all FUs profiled with 1 and 4000

windows, respectively. Comparing the three tables (Table 5.2, Table 6.7, and

Table 6.8), we can see that the range of each result invariant increases (the

lower bound becomes smaller and the upper bound becomes larger) as the

Table 6.7: FU result invariants, profiled with one window (10 s) of patient
data (a40050) from the MIMIC II database

Result Invariant
Functional Unit min max mindiff maxdiff

FU0 - low-pass
for ABP 49.20 97.20 –3.00 7.20
for ECG –5.24 3.60 –2.03 0.81

FU1 - slope sum
for ABP 0.00 45.00 –7.20 7.20
for ECG 0.00 4.74 –2.75 2.75

FU2 - peak detection
peak index 44.00 1178 80.00 82.00
peak number 14.00 15.00 - -

FU3 - heart rate 92.51 92.59 - -

FU4 - Kalman filter
filtered value 90.23 90.24 - -
residue 0.23 0.24 - -

FU5 - signal quality 1.00 1.00 - -

FU6 - derivative –2.03 0.81 –1.10 1.14

FU7 - squaring 0.00 4.12 –2.82 2.75

FU8 - ABP beat quality 0.99 1.00 - -

FU9 - ECG beat quality 4.64 5.45 - -

FU10 - heart rate fusion 90.23 90.23 - -

Note: the following conditions hold true during the corresponding FU execution:
yi ≥ min, yi ≤ max, yi − yi−1 ≥ mindiff , and yi − yi−1 ≤ maxdiff , where yi
is the current result value and yi−1 is the previous result value.
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Table 6.8: FU result invariants, profiled with 4000 windows (11.1 hours) of
patient data (a40050) from the MIMIC II database, during which there are
11 doctor annotated arrhythmia problems

Result Invariant
Functional Unit min max mindiff maxdiff

FU0 - low-pass
for ABP 30.00 176.10 –26.10 26.40
for ECG –9.05 8.76 –4.16 4.88

FU1 - slope sum
for ABP 0.00 110.40 –26.40 67.20
for ECG 0.00 24.07 –18.05 24.07

FU2 - peak detection
peak index 0.00 1250.00 37.00 354.00
peak number 1.00 28.00 –18.00 21.00

FU3 - heart rate 53.35 175.52 –58.43 64.31

FU4 - Kalman filter
filtered value 11.58 160.10 –35.68 22.56
residue –132.05 83.49 - -

FU5 - signal quality 0.00 1.00 - -

FU6 - derivative –4.16 4.88 –8.46 8.18

FU7 - squaring 0.00 23.81 –14.75 18.05

FU8 - ABP beat quality 0.00 1.00 - -

FU9 - ECG beat quality 1.00 34.09 - -

FU10 - heart rate fusion 71.19 160.10 –42.25 16.98

Note: the following conditions hold true during the corresponding FU execution:
yi ≥ min, yi ≤ max, yi − yi−1 ≥ mindiff , and yi − yi−1 ≤ maxdiff , where yi
is the current result value and yi−1 is the previous result value.

profiling data size increases. There are a few extra missing invariant values in

Table 6.7 compared with the other two tables. This is because only a single

result is calculated from a window for some invariant variables (such as peak

number and signal quality), so just profiling one window cannot obtain the

consecutive result difference of those variables. Therefore, those invariants

are ignored in the simulations using invariants profiled with one window.

The invariants profiled with one and 4000 windows are used to run the same

application with the same input data as with 1000 windows for fault injection

simulations. Figure 6.9 illustrates the comparisons of the transient fault

injection results between the baseline system and the fault tolerance systems

with different profiling data sizes. The result bars of each fault injection

rate are (from left to right): baseline system, fault tolerance system profiled

with one window, fault tolerance system profiled 1000 windows, and fault

tolerance system profiled with 4000 windows. The three outputs (correct

result, incorrect result, and system failure) are the same as used in Figure

6.8 and explained in Table 6.6. Similarly, each fault rate is simulated 500
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Figure 6.9: Fault injection result comparison between baseline and fault
tolerance hardware systems with different profiled data sizes

times in each system with different fault injection random seeds.

As expected, fault tolerance coverage decreases as the profiling data size

increases. This is because a larger invariant range fails does not detect faults

that cause the result to be incorrect but still within the range. However,

the coverage difference between the fault tolerance systems with different

profiling data size is small. This is because in most cases of incorrect results

caused by hardware faults the result is greatly changed by the fault and goes

out of the invariant range by a large amount. Therefore, even though the

invariant ranges are increased with more profiling data, they are still effective

in detecting most of the faults that can be detected with less profiling data.

With the profiling data size of 4000 windows, which includes 11.11 hours

of the patient data and 11 arrythmia occurrences, FDRU is still able to

reduce the incorrect system behaviors (incorrect results and system failures)

by at least 51.58% compared to the baseline system. For example, the total

percentage of incorrect results and system failures at the fault rate of 12∗10−9

is reduced from 19% to 9.2%). So, result invariants should be profiled with

long periods of patient data to reduce false positives. It is fine to set the

result invariants based on the patient’s physiological limitations, as increasing
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the result invariant range within the patient’s physiological range does not

decrease the fault coverage by much.

Another interesting result is that as profiling data size increases, the system

failure percentage decreases (e.g., when the fault rate is 8∗10−9 and 24∗10−9

in Figure 6.9). This is because as the invariant range becomes larger, the

probability of three result invariant violations in a single MIPS scheduled FU

execution becomes smaller. Therefore, some of the previous system failures

change to incorrect results.

The fault injection results presented and discussed here are obtained with

the data of only one patient (patient a40050 from the MIMIC II database).

This is done because of the long fault injection simulation time; it takes about

a week to simulate with one patient’s data on a single computer. For the

monitoring of other patients, the result invariants need to be profiled with

the new patient data, as the physiological ranges, such as the blood pressure

range, may vary for different patients. Fault coverage results similar to those

in Figure 6.8 and Figure 6.9 are expected when other patient data is used,

because even though the physiological ranges of different patients differ, the

faulty behavior of the hardware system is similar. Most faults would result in

FU hangs and incorrect results that are far beyond the physiological ranges

and which can be easily detected and recovered from using the proposed

FDRU scheme.
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Chapter 7

CONCLUSION AND FUTURE WORK

This chapter concludes the thesis work introduced in the previous chapters

and discusses future work to further improve the efficiency and fault tolerance

of the proposed RRHMS.

7.1 Conclusion

This thesis presents the robust and reliable heart rate monitoring system

(RRHMS). RRHMS provides accurate, portable, and long battery life for

heart rate monitoring in real time. It is robust because it estimates the heart

rate from both ABP and ECG signals and fuses the results according to

their signal quality. It is reliable because it applies a low-overhead fault tol-

erance mechanism in the underlying hardware to provide reliable processing

for heart rate detection even with hardware faults. Design and optimization

in both algorithm and hardware have been considered in developing RRHMS.

Its heart rate detection algorithm is developed by applying algorithmic opti-

mizations to merge the separately developed ABP and ECG beat detection

steps into shared steps. The shared steps enable shared hardware modules

for efficient and portable RRHMS hardware design. The algorithmically op-

timized ABP and ECG beat detection can match the results of the original

algorithms, and the heart rate fusion applied provides continuous heart rate

monitoring when a single signal is corrupted. To efficiently support the pro-

cessing of ABP and ECG signals, an embedded hardware framework with

configurable functional units (FUs) is proposed. FUs are ASIC accelerators

that support each processing step and can be quickly configured for ABP

and ECG computations as well as for patient-specific monitoring. The pro-

posed RRHMS hardware system is implemented both on ASIC and FPGA

platforms. Compared with the Android implementation that runs on the
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Qualcomm Krait processor, both ASIC and FPGA implementations achieve

better runtime performance (20.6 and 13.7 time speedups to Android, respec-

tively) with lower power consumption (1/139 and 1/67 of Android’s power,

respectively). In the end, a fault detection and recovery unit (FDRU) is

proposed to provide low-overhead fault tolerance in FUs by applying invari-

ant checking and heartbeats. Both transient and permanent faults can be

detected by FDRU, but only transient faults can be recovered from. FDRU

improves the reliability of the RRHMS hardware system by increasing cor-

rect output percentages under injected transient hardware faults. It is also

able to reduce 55.95% of incorrect output and system failure cases at all

tested fault rates while incurring only about a 15% area (resource) overhead

in the hardware logics. During normal monitoring without hardware faults,

FDRU incurs only a 34% power overhead (due to fault detection checking)

and introduces no performance overhead.

7.2 Future Work

This section discusses the future directions we plan to explore to further opti-

mize the performance, resource utilization, and power efficiencies of RRHMS,

as well as to improve the RRHMS fault tolerance capability at with minimum

overhead.

7.2.1 Software/Hardware Partitioning

Even though the proposed RRHMS hardware system achieves much better

performance and power efficiency than the Android implementation on the

Qualcomm Krait processor, the runtime, resource, and power breakdowns

of the RRHMS hardware modules (in Table 6.4) may not achieve the best

efficiency. For example, FU8 (ABP beat quality) accounts for a large per-

centage of resource utilization (32.87% in FPGA and 16.90% in ASIC), but

its runtime percentage (9.02%) is high. This means that among the hardware

modules, FU8 spends a large amount of the resource budget, but the amount

of work it completes does not seem to justify all the resources it takes up.

Similarly, FU4 accounts for 6.34% and 9.77% of the resources in FPGA and

ASIC, respectively, but only contributes 0.29% of the application cycles. On
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the other hand, FU0 (low-pass filter) accounts for 11.88% of the application

runtime, while it takes up only 4.08% and 3.76% of the FPGA and ASIC

resources, respectively. Therefore, the current hardware modules may not

achieve the best efficiency in balancing the tradeoffs among performance,

resource utilization, and power consumption. For instance, since FU4 only

accounts for 0.29% of the runtime while using a relatively large portion of the

resource, it may be better to put its execution in the MIPS controller as the

software program. As a result, even though MIPS is not as efficient as FU4

in supporting its execution (e.g., MIPS may take five times FU4’s execution

time and expend more energy than FU4), the resources used by FU4 (6.34%

in FPGA and 9.77% in ASIC) can be saved. This boils down to trading

performance for resources (or hardware area), so the question arises: what is

the best tradeoff, the best software/hardware partitioning point? To answer

this question, a metric needs to be developed that puts different weights on

performance, resource utilization, and power consumption, and then these

weights need to be set according to the specific application requirements.

With such a metric, we can do more numeric analysis and experiments to

explore the design space to optimize the RRHMS design for efficiency.

7.2.2 Fault Behavior Analysis

The proposed fault detection and recovery mechanism of FDRU is effective

in reducing incorrect system behavior (incorrect results and system failures)

by 55.95%. However, there is still room for improvement, as the injected

faults still cause a lot of incorrect system behavior in the fault tolerance

system, especially when the fault rate is high (15% at fault rate of 24∗10−9).

Therefore, further analysis of FU fault behavior will help to improve fault

coverage at low overhead. We plan to do the following:

(1) Analyze which FU and which part of the FU is most susceptible to

hardware faults.

(2) Analyze how faults propagate to affect the application result and cause

the system to behave incorrectly.

Since the FUs are built to support the specific heart rate monitoring applica-

tion, FU behaviord, such as execution and output patterns, are application-

specific. Therefore, FU fault behaviors should be application-specific as well,
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and patterns may be found. The above two analyses are useful in finding

such patterns.

Understanding which FUs are more susceptible to hardware faults helps us

to better provide fault tolerance and allocate hardware resource. To gain this

understanding, we can inject faults at the same rate to each FU separately

and collect the output statistics. If an FU causes much higher percentages of

incorrect results and system failures, it needs more fault tolerance support.

On the other hand, if an FU causes much lower percentages of incorrect

results and system failures, its fault tolerance support can be reduced. In-

tuitively, FU8 (ABP beat quality) and FU9 (ECG beat quality) are less

susceptible to hardware faults, because a beat is classified as good as long as

its quality is above a certain threshold. So for example, if the threshold for

a good ABP beat is 0.5 and a beat’s quality is supposed to be 0.9, then as

long as the beat quality is computed to be larger than 0.5, the beat will be

classified as good and not affect the final heart rate output. This will remain

the case even if the fault causes the beat quality to be incorrectly computed

as 0.6 or 100). If this intuition is true, less hardware can be allocated for

the fault detection checking in FU8 and FU9. The saved hardware resource

can be used to strengthen the protection for FUs that are more vulnerable to

faults. As a result, with the same FDRU hardware resource budget, the sys-

tem can be made more resilient to tolerate faults. Similarly, since the FUs are

designed to be modular and follow the same design template, understanding

which part of the FU (bus/memory interface, configuration register, compu-

tation data path, state machine controller) is more vulnerable to faults helps

us to better design the FU template or to guide the fault tolerance FU design

for using the proposed hardware system architecture as the framework.

Analyzing the fault propagation path helps us find the data paths that

are most susceptible to faults so that we can select the most vulnerable ones

to protect without introducing much overhead. For example, if a data path

segment is on all the fault propagation paths that lead to incorrect outputs,

protecting this segment does not incur much overhead and can improve the

system fault tolerance capability. Analysis of fault propagation is difficult,

however. It requires back-tracing from the final incorrect output to the source

of the fault, and this process needs to be repeated with a large number of

simulations. As a result, the statistics of the data path segments can be

generated to show which segments have appeared on the most paths that
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lead to incorrect outputs.

7.2.3 Functional Units Pipelining

Currently, the FUs are scheduled by the MIPS controller to be executed one

by one. An FU is scheduled for execution only when the previous FU’s execu-

tion finishes. Even though the current design is already fast enough to meet

the real-time constraint, pipelining FU executions may gain further runtime

efficiency and allow aggressive frequency and voltage scaling to save total en-

ergy consumption and achieve longer battery life. But this is currently just

speculation and needs more analysis or experiments to verify. Pipelining FU

executions would introduce extra hardware complexity, and as a result, the

energy saving through performance gain may be paid for by the energy con-

sumed in the extra hardware logics. Although the current hardware already

has some features to support parallel FU executions, such as the design of the

memory arbiter and bus arbiter, the following modifications are still needed

for FU pipelining:

(1) Modification of the FU execution instruction to include information on

FU dependency to prevent RAW (read-after-write) hazard.

(2) Maintenance of a table in the MEM stage of the MIPS controller to

keep track of which FUs are executing and which are idle.

(3) Modification of FDRU to allow parallel FU invariant and heartbeat

checking to support parallel fault tolerance in FU executions.
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