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Abstract

The acoustic emission resulting from the reciprocating motion of machinery parts, such as the

movement of pistons and the intake/exhaust of gases in an automotive engine, or the pressure

pulsation generated in compressors cause noise pollution. Passive noise–attenuating devices

such as mufflers are usually employed in the intake or the exhaust flow path of such systems.

A typical muffler element consists of an expansion chamber with inlet and outlet ports for the

passage of the exhaust fluid. The difference in the size of the ports from the chamber dimen-

sions presents an impedance mismatch to the propagating acoustic wave, resulting in partial

or complete reflection of the sound energy. Mufflers can broadly be classified as reactive type

or dissipative type. Reactive mufflers employ the principle of impedance mismatch by incor-

porating area changes in the transmission path. Dissipative mufflers usually have some kind

of absorptive lining that converts sound energy into heat. In comparison to reactive mufflers,

dissipative mufflers usually have a sound attenuation over a wider frequency range. However,

pressure drop and particle clogging limit their application.

The sound attenuation characteristics of a muffler is dependent on various factors like shape

and size of the muffler, orientations of inlet/ outlet ports, and number of inlet/outlet ports. Since

the parameter space involved is potentially very large, only a few muffler geometries have been

extensively studied in the past, viz. circular or rectangular chamber mufflers. More recently,

mufflers having elliptical cross-sections have received some attention. These types of mufflers

require smaller space across one of the dimensions, and are suitable for applications where space

constraints are an important design consideration. The existing literature on elliptic reactive muf-

flers is not extensive; therefore, further attention to this geometry is required. The present work

aims to study the sound attenuation in elliptic reactive mufflers using a perturbation–based ap-

proach. Although exact solutions for such geometries are available in terms of the elliptic eigen-

functions, the perturbation based approach may be implemented for more general asymmetric
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distortions (within moderate eccentricity). Using this approach, the effects of the ellipticity and

port–extensions on the sound attenuation are analyzed in this work. The perturbation method is

then extended to study the breakout noise from distorted ducts. It has been long established that

distortions in ducts significantly alter the sound radiation when subjected to an internal acoustic

field. However, most of the reported work had been confined to very small distortions, and

plane-wave (acoustic) propagation within the duct. The present work aims to improve on these

limitations and provide a solution method for studying the sound radiation from moderately

distorted ducts when excited by a point acoustic source. Using an analytical approach suggested

earlier, the radiated sound field of an elliptic duct (eccentricity e = 0.6) is observed to be much

higher (as much as 30 dB, Lw) than a cylindrical shell of comparable dimensions.

The final part of this dissertation aims to determine the effect of a liquid phase on the sound

attenuation in a muffler geometry. The liquid phase is expected to act like a compliant surface,

thereby affecting the sound transmission. However, analytical study of a simple rectangular duct

and experimental measurement of transmission loss indicate that the wall compliance effects are

negligible and may be neglected.
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Chapter 1

Introduction

The reciprocating motion of engine pistons and the intake/exhaust of gases generate significant

noise in an automotive engine, causing environmental pollution. In order to attenuate such

noise, mufflers are used. Mufflers can be classified as either reactive (or reflective) or dissipa-

tive. Reactive mufflers are passive noise attenuating devices based on the principle of impedance

mismatch. Dissipative mufflers have absorptive lining which converts sound energy into heat.

With the ever increasing requirement of reducing noise pollution, the study of various muffler

geometries is an active area of research. While numerical methods like finite element method

(FEM) or the boundary element method (BEM) have proved to be very useful (especially for

complicated muffler geometries), significant contributions to this field has been made through

analytical/semi–analytical studies. The sound attenuation characteristics of a muffler are depen-

dent on various factors like shape and size of the muffler, orientations of inlet/ outlet ports, and

number of inlet/outlet ports. Since the parameter space involved is potentially very large, only

a few muffler geometries have been extensively studied in the past, viz. circular or rectangular

chamber mufflers. More recently, mufflers having elliptical cross–sections have received atten-

tion. These types of mufflers require smaller space across one of the dimensions, and are suitable

for applications where space constraints are an important design consideration. The existing lit-

erature on elliptic reactive mufflers is not extensive; therefore, further attention to this geometry

is required.

In many applications, distortions in the duct occur either due to manufacturing defects, or

due to some design requirement. The presence of boundary asymmetries may affect the sound

attenuation characteristics of a muffler. The effect of boundary asymmetries on the breakout

noise from cylindrical ducts has been reported in the literature. Research on the sound attenua-

tion in distorted muffler is lacking. While FEM/BEM can be implemented for such asymmetric

geometries, more physical insight can be gained through analytical means. If the distortions are
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not large compared to the unperturbed geometry, approximate methods can be implemented to

develop analytical solutions for such mufflers.

The ‘breakout’ or ‘breakin’ noise from ducts used in heating, ventilation and air–conditioning

(HVAC) or in other gas flowing ducting systems is an important area of study in acoustics. Noise

generated due to the vibration of ducts can be transmitted to the building space, thereby posing

problems. The study of structural noise due to a mechanical excitation, or due to the presence of

a noise source has been detailed in the literature. It has been observed that duct discontinuities

causes increased sound transmission; only few works have been reported on distorted ducts.

1.1 Review of the literature

1.1.1 Analytical study of sound attenuation in mufflers

Analytical study of sound attenuation in mufflers has been an active area of research with exten-

sive work on mufflers having rectangular or circular cross–sections. A typical muffler element

consists of an expansion chamber with inlet and outlet ports for the passage of the exhaust

fluid. The difference in the size of the ports from the chamber dimension presents an impedance

mismatch to the propagating acoustic wave, resulting in partial or complete reflection of the

sound energy. This method of passive attenuation is primarily employed for designing of re-

active mufflers, especially for low frequency applications. The simplest of analytical techniques

assumes plane–wave propagation in the muffler [1]. Based on this assumption, the upstream

condition (acoustic pressure and velocity) is derived in terms of the downstream condition such

that the pressure and volume velocity are same across each region of discontinuity. Although

the continuity of the pressure and volume velocity is fundamental, and is independent of the

plane–wave simplification, the above assumption is made to eliminate mathematical complexi-

ties that arise due to higher–order mode contributions. The plane–wave approach was improved

by Igarashi and Toyama [2]. Using an electrical circuit analogy (Fig. 1.1), they were able to derive

the upstream conditions in terms of the downstream pressure and velocity through a matrix rep-

resentation known as the transfer matrix (or the four–pole parameter). The transfer matrix may

be imagined as an equivalent impedance that maps the pressure and velocity in a muffler. Mun-

jal [3, 4, 5] discussed the basic concepts of four–pole parameters and derived them for different

muffler configurations with rigid–wall boundary conditions. This method is applicable at low
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frequencies, where higher–order modes are not excited. Even at low frequencies, higher–order
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Figure 1.1: Schematic of an expansion chamber muffler, corresponding electrical analogies, and
transfer–matrix representation of the field variables (acoustic pressure and volume velocity) [2]

evanescent modes are generated at duct discontinuities, which may not decay for acoustically

short mufflers. When two tubes of different cross sections are joined together, abrupt change of

area results in an additional impedance [6]. This impedance is of the form of an inductance. The

constriction inductance is usually accounted by an equivalent increase in length of the duct. The

one–dimensional method for mufflers employs these corrected lengths for deriving the trans-

mission loss [TL]. Therefore, the one–dimensional method relies on the accuracy of the predicted

end corrections; extensive work on determining the end corrections for cylindrical chambers with

extended inlet/outlet have been reported in the literature [7, 8, 9, 10].

Eriksson [11] investigated various mechanisms of propagation of excited modes in a cham-

ber. Leakage and tunneling effects (Fig. 1.2), implying excitation of higher–order modes at duct

discontinuities and their incomplete attenuation due to small duct length, was discussed. The

existence of higher–order modes severely restricts the use of the plane–wave model. In order to

accommodate the effects of propagation of these modes on sound attenuation, Kim and Soedel

[12, 13] developed a point–source method to derive four–pole parameter for three dimensional

cavities using modal superposition. The method was based on the assumption that inlet and

outlet ports had relatively small dimensions in comparison to the size of the chamber and wave-

lengths of interest, thereby allowing for point–source assumption. Numerical accuracy of the

point–source method can be improved by considering piston driven sources with uniform veloc-

ity. Ih and Lee [14] formulated a piston–driven–source model to find TL in circular mufflers with
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Figure 1.2: Schematic description of the instantaneous axial pressure field for higher–order
mode propagation, tunneling and leakage of a mode [11]

mean flow effects. The method relied on finding a series solution to Helmholtz equation. The

contribution of each term (coefficients) of the expansion was obtained by imposing boundary

conditions. The pressure at each port was taken as an average over the port area. The mean flow

was observed to cause a shift in cutoff frequencies of different modes. The piston–driven–source

method was implemented by Yi and Lee [15, 16] for a cylindrical reversing chamber, and for

mufflers with side inlet/outlet. The possibility of obtaining broadband attenuation by suitable

location of ports was a key contribution of their work. Similar to piston–driven–source model,

Kim and Kang [17] used a Green’s function solution method (GFM) to calculate four–pole pa-

rameters of a circular muffler. Their work may be considered as an extension of the method

proposed by Kim and Soedel [12, 13]; improvement in the accuracy of the formulation was ob-

tained due to the piston–driven source approximation. Eigensolutions of Helmholtz equation

were derived within the muffler domain. The Helmholtz equation being self–adjoint, yielded an

orthogonal set of eigenvectors. A Green’s function was derived as a series expansion of eigenso-

lutions. Although similar to piston–driven–source method, the GFM was mathematically simpler
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way of deriving TL. Moreover, boundary discontinuities due to the piston sources could be in-

corporated by using the Green’s identities, allowing for the study of various inlet/outlet port

orientations with minimum changes in the formulation. Venkatesham et al. [18] implemented

the GFM method to rectangular geometries having different inlet/outlet locations.

The assumption of uniform velocity piston sources is relaxed in mode matching method

(MMM) [19, 20, 21]. The MMM is based on continuity of acoustic field variables across a section.

It considers higher–order mode propagation in both the chamber and pipe, making it more

accurate than other analytical methods. Some of the earliest work on the sound transmission and

reflection at a duct–discontinuity using the principles of the MMM may be attributed to Miles

[22] and Karal [6]. El–Sharkawy and Nayfeh [19], extended the idea of the MMM in the study

of the TL in a circular expansion chamber muffler. In their approach, the pressure field inside

the muffler expressed in terms of the eigensolutions of the Helmholtz equation were obtained

through orthogonalization. Selamet and co–workers [23, 24, 25, 26] employed the MMM for

a wide range of inlet/outlet port orientations, and wall impedances in a cylindrical geometry.

Unlike Green’s function method, MMM can be implemented for muffler geometries where area

discontinuity occurs within the muffler. However, this method involves solution of theoretically

an infinite number of linear simultaneous equations, truncated up to a suitable order; matrix

ill–conditioning often occurs, making inversion difficult and possibly inaccurate. Similar work

on circular and rectangular geometries can be found in the literature [27, 28].

Unlike circular and rectangular geometries, very few works have been reported in the liter-

ature on sound propagation and attenuation in elliptical chamber mufflers. Elliptical mufflers

though inferior to circular mufflers in attenuating noise, require less space. They are widely

used as automobile mufflers, where clearance from the ground is an important design criterion.

One of the earliest works on sound propagation in elliptic waveguides is due to Lowson and

Bhaskaran [29], who evaluated the cutoff frequencies for various higher–order modes assuming

rigid boundary conditions. Hong and Kim [30] developed a similar solution procedure to de-

termine the mode shapes and natural frequencies in an annular confocal elliptical chamber. The

splitting of eigenvalues due to loss of rotational symmetry was discussed in their work. It was

observed that natural frequency of an odd mode shape (mode shapes that are not symmetric

about the major axis) was higher than to the corresponding even mode shape (mode shapes

that are symmetric about the major axis). Denia et al. [31] detailed TL in an elliptical muffler
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of various lengths with concentric inlet/outlet, reversing, and offset inlet/outlet port locations.

Through their work it was evident that acoustically long elliptical mufflers had poorer sound

attenuation compared to an equivalent circular chamber muffler. This deterioration in sound

attenuation was due to propagation of certain higher–order modes which would not have prop-

agated in a circular muffler with similar inlet/outlet configuration. However, as the walls are

closer in an ellipse, it is expected that by using absorbent liners the sound attenuation in an

elliptical muffler should show better sound attenuation than a similar cylindrical chamber [29].

Research on dissipative elliptical mufflers has not been reported in the literature to validate such

hypothesis. Selamet and Denia [32] studied the TL for short elliptic mufflers with end inlet/ side

outlet port locations, using the finite element method (FEM). Recent works on elliptic mufflers

using the GFM have been reported in the literature [33, 34], where the effects of the higher–order

transverse modes on the sound attenuation were discussed.

1.1.2 Study of boundary perturbation problems

In many applications, geometrical asymmetries may exist due to manufacturing defects. In other

cases, asymmetry may be due to a design requirement. For example, due to space constraints,

most car mufflers are either oval or elliptic in cross–sections and not circular. Sound attenuation

in a muffler is very sensitive to geometry. Depending on the axial length of muffler, cross–

section, and location of inlet/outlet ports, different acoustic modes may be excited or suppressed.

The presence of any boundary asymmetry in an otherwise rotationally symmetric muffler adds

components from other unperturbed mode shapes. Inclusion of these additional modes may

result in an attenuation characteristic very different from the undistorted muffler. The agreement

between the analytical methods and experimental and numerical results, and their relative ease

in implementation, makes them an excellent choice for analyzing the eigenvalue problems with

regular geometries. However, these exact solutions are available only for geometries conforming

to coordinate systems where method of separation of variables is possible. Analysis of eigenvalue

problems in irregular geometries has largely been numerical with a few exceptions. Sewall et

al. [35] developed a Raleigh–Ritz approach to study natural frequencies and mode shapes of

vibrating elliptic shell under different boundary conditions. Nayfeh et al. [36] employed the

method of strained parameters to determine natural frequencies and mode shapes of annular

and circular plates with small perturbations at the boundary. The splitting of eigenvalues due to
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loss of radial symmetry was established in their work. Roberts [37] used a conformal mapping

technique to study the natural frequencies of a perturbed membrane. DiPerna et al. [38] also

used a conformal mapping method to study the far–field scattered pressure due to a plane–wave

incident upon an infinitely long cylinder of noncircular cross section. Their method was observed

to work well over a wide variation in circular cross–section. Parker and Mote [39] implemented

a fifth–order perturbation method similar to the formulations developed by Nayfeh et al. [36] in

determining eigensolutions of two–dimensional wave equation in a distorted circular domain.

Guidelines for occurrences of mode splitting were developed in their work. Distorted cylinders

have been of interest in the study of wall vibrations due to an internal acoustic field [40, 41]

as well. It was concluded through these studies that wall distortions caused structural and

acoustic mode–coupling, which resulted in different sound transmission characteristics from an

ideal undistorted shell. Sarkar and Sonti [42] developed a perturbation–based formulations of

the governing equations for an infinite in–vacuo and fluid–filled elliptical cylindrical shell. The

equations were then solved to give in–vacuo and coupled wavenumbers.

1.1.3 Sound transmission through duct walls

In heating, ventilation and air–conditioning (HVAC) and in other gas flow ducting systems,

acoustic breakout and breakin through the duct walls might be a significant source of noise,

especially if the walls are made of fairly thin sheet metal. Internal noise transmitted through

the walls of ventilation ducts into buildings can pose a problem, particularly at low frequencies.

The study of noise radiated by structural vibration has been a subject of considerable practical

interest. In most applications the vibrating structure can be roughly modeled as flat plates or

a collection of flat plates with appropriate boundary conditions. The flat–plate approximation

along with a simply supported boundary condition, results in relatively simple modeling of the

structural response.

In one of the earlier works on the sound radiation from flat plates, Wallace [43] determined

the acoustic pressure at the farfield from a simply supported rectangular panel in an infinite

baffle. Employing a Rayleigh integral approach, the radiation resistances of various plate modes

were quantified. Fahy and Gardonio [44] presented some interesting observation on the radiation

efficiency based on the modal phase cell patterns that effectively reduce the structural excitation

into ’edge’ and ’corner’ radiators.
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A simplified method for determining the acoustic field in an enclosed cavity was proposed

by Dowell et al. [45]. Using the in–vacuo structural modes and the acoustic modes for a rigid cav-

ity, the structure–acoustic coupled problem was reformulated into an infinite number of ODE’s

in time. Dowell’s method proved extremely useful for harmonic excitations, whereby the ODE’s

could be transformed into a set of linear equations. Extension of Dowell’s work has been suc-

cessfully implemented in the study of radiation from unbaffled plates, rectangular cavities with

flexible surfaces, and sound radiation from shells [46, 47, 48, 49]. Kim and Brennan [47] devel-

oped an impedance–mobility model to study the response of structure–acoustic coupled systems

under the excitation of an internal sound field/ mechanical force. Their formulation was sim-

ilar to the model developed by Dowell et al. with the added advantage of a compact matrix

formulation, thereby providing easy numerical implementation. Venkatesham et al. [48, 49]

implemented the impedance–mobility approach to determine the breakout noise from a rect-

angular plenum under the excitation from a sound source. The impedance–mobility approach

was based on the assumption of a weak coupling between flexible structure and acoustic field

outside the cavity. This assumption holds true if the external fluid is light in comparison to the

structure. However, if the external fluid has density of the same order as the structural material

(e.g. water–aluminum) shell boundary pressure may not be neglected.

Similar to the study of plate–radiation, acoustic radiation from harmonically vibrating cylin-

drical shells is an important subject in the area of noise control. According to Stepanishen [50],

the study of vibro–acoustics for such systems can be classified into two broad categories. In the

first category, the reaction of the fluid to the shell vibration may be considered to be negligible,

allowing for a decoupled solution approach [51, 52]. Usually, light fluids such as air surrounding

a metal shell fall into this category. The decoupled approach allows for the in− vacuo solution

of the shell vibration. The resulting acceleration field on the shell surface may be considered as

acoustic sources for deriving the external pressure field. The second approach is more involved

as the fluid surrounding the shell acts like an added mass. They also modify the structural

damping. This added–mass effect influences the shell vibration, which in turn affects the exter-

nal acoustic field.

The coupled structure–acoustic radiation problem was effectively solved by Stepanishen [50]

using modal expansion. In his approach, a finite cylindrical shell was considered and the shell

displacements were approximated by the modal solutions to the shell equations. A simply–
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supported boundary condition was imposed in order to minimize the mathematical complexity.

The radiation impedance for the shell was derived. It was observed that the shell response

for different axial modes (but same circumferential mode) were coupled through the radiation

impedance imposed by the external fluid. Using the modal approach, Laulagnet and Guyader

[53] examined the sound radiation from a fluid–loaded finite cylindrical shells. In their work,

the cylinder was subjected to a mechanical excitation; the vibratory response was derived using

the shell theory. Though the shell boundary pressure was accounted in their work, the effect of

internal fluid on the structural vibrations was neglected. Similar works on shell vibro–acoustics

may be found in the literature [54, 55, 56].

Analogous to the study of the noise radiation from surfaces due to a mechanical excitation,

the study of sound radiation from shells when excited by an internal acoustic field is important

in HVAC&R applications. A review article on this area of research was published by Cum-

mings [57]. It has been long observed that the experimentally determined transmission loss

from a cylindrical shell varied greatly from the analytical predictions (see Fig. 1.3). This dis-

crepancy led to the idea of ’mode–coupling’ [58, 40], implying that plane–wave excitation within

the shell causes higher–order structural vibration. The mode–coupling effect is only observable

for distorted cylindrical geometries, whereby the generalized acoustic source terms yields non-

zero higher–order modal excitation components. This observation was quantitatively proved by

Yousri and Fahy [58]; the effects of mode–coupling on the radiated acoustic energy were not

considered in their work. Cummings et al. [40] developed on the idea of mode–coupling and

demonstrated the effects of wall distortion on the breakout noise due to a plane–acoustic wave.

The effects of higher–order acoustic modes on the radiated sound power was outside the premise

of their work. Fuller [59] developed an analytical formulation of sound radiation from an infinite

cylindrical shell subject to an internal monopole source. Using the Donnell–Mushtari shell equa-

tion and pressure response due to source as well as the external fluid, the shell displacements

were derived. The effect of offset location of the point–source on the TL was studied in details.

1.1.4 Study of sound propagation in the presence of two–phase fluids

In many muffler applications liquid might accumulate on the bottom of the muffler. This accumu-

lation might be due, for example, to the incomplete combustion of oil, or due to the condensation

of water vapor. In a compressor muffler, two–phase vapor/liquid mixture might exist. The effect
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Figure 1.3: Predicted ( − · − · −) and measured (•) transmission loss of a long–seam circular
duct from ideally circular duct model; —— from distorted circular duct model [40]

of accumulation of liquid in a muffler or a duct has two important consequences on sound atten-

uation. First, the effective shape of the muffler as observed by a propagating wave gets modified

due to the presence of liquid. Secondly, the liquid provides finite impedance, thereby altering the

boundary conditions. The propagation of sound in a two–phase dispersed or stratified mixture

has been extensively studied in the past [60]. However, no significant work has been reported on

the study of sound attenuation due to presence of two–phase in a muffler/duct. The most rele-

vant work on this area may be attributed to Morioka and Matsui [61], who studied the pressure

wave propagation in one–dimensional duct containing a stratified gas–liquid layer. Dispersive

relations for the mode propagation were obtained. It was observed that unlike a single phase sys-

tem, the two–phase fluid showed dispersive effects even for the fundamental mode. The study

of vibration in partially filled shells has been relatively more extensive compared to the acoustic

analysis of such problems. Of particular interest to the present work is partially filled horizontal

shells; therefore, the liquid free surface is parallel to the shell axis. Amabali [62, 63] studied the

natural frequency and mode shapes of a partially filled cylindrical shell. The effect of the liquid

pressure on the shell was approximated by an additional virtual mass term, and the shell equa-

tions were solved to determine the natural frequency and the mode shape. The symmetry of the

problem demanded that exact solution was available only for half–filled shells. Approximation

to the liquid profile was made for the case of partially filled shells. Similar studies on partially

10



(internally/externally) filled shell have been reported in the literature [64].

1.2 Objectives

1.2.1 Novelty of the proposed research

It is evident from the review of the literature that unlike circular or rectangular geometries, the

sound attenuation in elliptical ducts has not been completely studied. The present work will

focus on deriving TL in such geometries with various inlet/outlet configurations using analyti-

cal methods such as the Green’s function method or the mode matching method. Through the

implementation of these methods, the effects of various higher–order modes on sound attenua-

tion characteristics will be clarified. In most muffler applications, duct extends are used to attain

better sound attenuation. The analytical model of such configuration for a cylindrical geometry

has been reported in the literature; similar work for an elliptical chamber is lacking. The present

work will devise a boundary perturbation method to determine TL in elliptic chamber mufflers

with extended ducts. The perturbation method will first be implemented to determine TL in an

elliptic chamber for various inlet and outlet configurations (without duct extends); comparison

with exact solutions will help in determining the limitations of the method. The breakout noise

from elliptical chamber has not been extensively studied. It was observed in the literature review

that distortion in cylindrical duct resulted in sound attenuation characteristics significantly dif-

ferent from undistorted geometry. In order to gain a better insight to this problem, the breakout

noise from a finite elliptic chamber will be studied. The effect of structure–acoustic coupling on

breakout noise will be analyzed. In many muffler applications, such as in reciprocating compres-

sors, two–phase fluid might exist in the chamber. The effect on the propagation speed due to the

presence of two–phase has been extensively studied in prior works. However, very few works

have been reported on the study of sound attenuation in shells containing such two–phase mix-

tures. Therefore, the present work will also focus on deriving the sound attenuation in a chamber

containing two–phase fluids.

1.2.2 Statement of objectives

The objectives of the current research include the following:
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• Study of sound attenuation in elliptic chamber mufflers using Green’s function method,

accounting for various inlet/outlet port locations.

• Extend Green’s function method for mufflers having multiple inlets and outlets: Develop-

ment of analytical model for both circular chamber mufflers as well as elliptical mufflers;

comparison of sound attenuation in these two geometries.

• Develop a perturbation method to determine sound attenuation in slightly distorted cylin-

drical chamber mufflers.

• Extend the perturbation method to study the sound attenuation in moderately eccentric

elliptical mufflers with extended inlet/ outlet ports.

• Study the sound radiation from an elliptical duct due to structure–acoustic coupling.

• Develop simple model for sound attenuation in ducts containing two–phase fluid.

1.3 Organization of the thesis

In chapter 2, analytical formulation for the evaluation of the TL in a regular reactive muffler is

presented. The word regular implies to geometries for which the Helmholtz equation is solvable

by using the method of separation of variables. The three–dimensional Helmholtz equation is

solved in such domains, and a Green’s function method or a mode matching method is utilized

for deriving the TL. transmission loss for multiple inlet and outlets are derived as an extension

of the existing method. The influence of various inlet and outlet port location on the TL as well

as the relative phase between the incoming fluids are characterized.

In chapter 3, a perturbation–based approach is implemented in order to derive the TL in

slightly distorted cylindrical chamber mufflers. Using the method of strained parameters, the

eigensolutions to the Helmholtz equation is derived for a perturbed geometry. The eigenvectors

are orthogonal up to the order of truncation, implying that the Green’s function method em-

ployed in chapter 2 can be utilized to study the TL in such distorted geometries. The perturbed

results are compared to exact solutions for a moderately eccentric elliptic chamber muffler. The

perturbation–based approach is then implemented for extended chamber elliptic mufflers, for

which no analytical solution exists otherwise.
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The work on distorted mufflers provides the background for studying the sound radia-

tion from finite distorted shells in the presence of an internal acoustic source. Prior works on

circumferential distortions in ducts have demonstrated mode–coupling effects that increase the

sound radiation. However, simplifications in the models limited the results to very small dis-

tortions only. In chapter 4, by using the perturbed eigensolutions for the acoustic field and a

Rayleigh–Ritz formulation for the shell displacement, the coupled structure–acoustic response

for a moderately eccentric elliptic shell of finite length is derived. The effects of the wall dis-

tortion on the radiated sound field is analyzed. The final section of the dissertation examines

the effect of a liquid layer on the sound attenuation in a muffler. Chapter 5 summarizes the key

contributions of this work.
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Chapter 2

Analytical formulation of the transmission loss

A Green’s function solution method is implemented to study sound attenuation in single-inlet/

double-outlet (SIDO) and double-inlet/single-outlet (DISO) circular and elliptic chamber muf-

flers. The mufflers are modeled as piston–driven rigid chambers containing a stationary fluid.

The pistons are assumed to perform simple harmonic motion with uniform velocities. Velocity

potential in the chamber is derived as a superposition of three dimensional velocity potential due

to each piston. Pressure field in the chamber is calculated from the velocity potential through

conservation of linear momentum equation. Acoustic pressure acting on each piston is calculated

by averaging over the surface of the piston. Transmission loss (TL) is evaluated from incident

and transmitted acoustic energy. TL curves for various inlet/outlet orientations derived from

this method are validated with results obtained from the literature. The effect of locations of

inlet/outlet on TL is studied.

2.1 Analytical determination of the TL

The acoustical performance of a muffler is usually expressed in terms of (i) Insertion loss (IL) or

(ii) Transmission loss (TL). The IL is defined as the difference (on a logarithmic scale) in the trans-

mitted power from the source to the receiver with and without the muffler in the transmission

line. The IL depends on the sound power radiated from the source, and is specific to a particular

system only. Although the IL is a better metric for quantifying the acoustic performance of the

whole transmission system, it is not useful from research perspective. The transmission loss (TL)

is defined as the difference (on a logarithmic scale) between the incident and the transmitted

energy at the muffler proper, keeping an anechoic termination. The TL of a muffler is indepen-

dent of the source of sound, providing a useful metric for comparing different mufflers. It is for

this reason that in subsequent sections, TL has been chosen to characterize the performance of a

muffler.
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The analysis of a muffler requires the solution of the wave equation within the muffler

domain. A linearized from of the wave equation is usually employed for most analytical formu-

lation. Alfredson and Davis [65] studied the wave steepening and the onset of a shock due to a

finite wave propagation inside a cavity. They observed that the for a sinusoidal wave of sound

pressure level ∼ 167 dB, the shock distance was close to 4.5 m at a frequency of 500 Hz. In most

muffler applications, the sound pressure level are usually much lower (130− 140 dB) than the

above, implying that the non–linear effects may be neglected in the mathematical formulation.

A further simplification to the linearized wave equation is made by neglecting any viscous

effects. Pierce [66] derived the relations for the vorticity and the entropy–mode–fields boundary

layers (see Eq. 10–4.2 in [66]). In most muffler application, the physical dimension of the muffler

and the ports (source) are such that these boundary layers are of much smaller orders of magni-

tude (∼ 10−3). Hence by overlooking the viscous effects, the error in the derived field variable is

negligible.

2.1.1 Green’s function method (GFM)

The linearized wave equation with an arbitrary boundary condition and in absence of any source

and viscous effects can be written in terms of velocity potential ϕ(~x, t) as:

52 ϕ(~x, t)− 1
c2

∂2ϕ(~x, t)
∂t2 = 0 (2.1)

Assuming harmonic time behavior, the velocity potential may be written as:

ϕ(~x, t) = ϕ(~x) exp(jωt) (2.2)

By substituting Eq. (2.2) into Eq. (2.1), the wave equation yields:

52 ϕ(~x) + k2ϕ(~x) = 0 (2.3)

Here k(= ω/c) is the wave number. The acoustic pressure and velocity are related to velocity

potential by:

P(~x, t) = −ρ
∂ϕ(~x, t)

∂t
= −jρωϕ(~x, t)

~u(~x, t) = 5ϕ(~x, t)
(2.4)
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For the present problem, the walls of the muffler are assumed to be rigid implying that the

normal component of velocity at the surface is zero except at inlets and at outlets. The inlets

and outlets are assumed to be uniform velocity piston sources performing simple harmonic mo-

tion. Therefore, the present problem can be classified as a homogeneous wave problem with

inhomogeneous Neumann boundary conditions. Accordingly, the Green’s function for the prob-

lem can be defined as a solution to the following inhomogeneous problem with a homogeneous

Neumann boundary condition [17]:

52 G(~x/~x0) + k2G(~x/~x0) = −δ(~x−~x0)

5 G(~x/~x0) ·~η|S = 0
(2.5)

The solutions to the eigenvalue problem defined by Eq. (2.3) form an orthogonal basis. Hence, it

is possible to write the Green’s function as a series expansion of the eigenfunctions [67]:

G(~x/~x0) =
∞

∑
n=0

ϕn(~x)ϕn(~x0)

(k2
n − k2)

∫
V ϕn(~x)2dV

(2.6)

Here kn is eigenfrequency of the nth mode. Using Green’s second identity yields:

∫
V0

(
ϕ(~x0)52 G(~x/~x0)− G(~x/~x0)52 ϕ(~x0)

)
dV0 =

∫
S0

(ϕ(~x0)5 G(~x/~x0)− G(~x/~x0)5 ϕ(~x0)) · d~S0

(2.7)

By substituting Eq. (2.3) and Eq. (2.5) into Eq. (2.7), and by using reciprocity property, the above

equation can be simplified to:

ϕ(~x) =
∫

S0

G(~x/~x0)5 ϕ(~x0) ·~ηdS0 (2.8)

From the initial assumption that normal component of velocity at the surface of the muffler is

zero everywhere except at the piston surfaces, Eq. (2.8) can be written as:

ϕ(~x) =
m

∑
i=1

1
Si

∫
Si0

G(~x/~x0)~Ui ·~ηdSi0 (2.9)

where, the summation is over m pistons. The ith piston has a surface area Si and a volume

velocity ~Ui. For the inlet piston, ~Ui ·~n is negative, and for the outlet piston ~Ui ·~n is positive.
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2.1.2 Mode Matching Method (MMM)

The mode matching method relies on the solution of the Helmholtz equation at each region of

the muffler discontinuities (inlet ports, outlet ports, chamber). By establishing the continuity

of the acoustic pressure and velocity at the interface between two discontinuities, the complete

solution of the field variable is possible. A complete description of the method is available in

the literature [19, 23, 24]. In order to maintain continuity, a brief summary of the method is

presented in the next few paragraphs.

Figure 2.1: Schematic of an extended tube muffler with elliptic chamber.

Consider an extended tube muffler as shown in Fig. 2.1. The inlet and the outlet ports of the

muffler are cylindrical in shape. The entire muffler domain can be divided into five zones A− E.

It is assumed that the incoming wave A+ is planar. By symmetry, acoustic transverse modes that

are symmetric about both the axes of the muffler can only propagate above their cutoff frequency.

For the cylindrical and elliptic chamber, the eigenfunctions of the cosine type (though not all of

them) share such symmetric properties. It is for this reason that the eigenfunctions of the sine

type are not relevant in the present formulations, and will not be considered further. Assuming

harmonic–time dependence the pressure field in each zone Q may therefore be expressed as a

series expansion involving all the possible solutions, and truncated to a suitable order (N, M):

PQ(r, θ, z) =
N

∑
n=0

M

∑
m=1

Q+
nm exp(−jknm,Qz)φnm(r, θ; Q) +

N

∑
n=0

M

∑
m=1

Q−nm exp(jknm,Qz)φnm(r, θ; Q);

(2.10)

At each region A− E, φnm needs to be derived based on the geometry. The acoustic velocity at

the ports is expressed in terms of the acoustic pressure as:

UQ(r, θ, z) = − 1
jρω

∂PQ

∂z
; Q = A, B, etc., (2.11)
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At the interface between the ports and the chamber, the continuity of acoustic pressure and

velocity is expressed as:

PA = PC (on SA); PB = PC (on SB); PC = PD (on SD); PC = PE (on SE); (2.12)

UA = UC (on SA); UB = UC (on SB); UC = UD (on SD); UC = UE (on SE); (2.13)

Instead of Eq. (2.12) and Eq. (2.13), a more useful form of the continuity conditions are obtained

from Eqs. (2.10)-(2.13) by normalizing the equations with the eigenfunctions, and by using the

orthogonality properties of the eigenfunctions. As an example, Eq. (2.12) is first multiplied

by φpq(r, θ; A) and then the product is integrated over the surface of inlet port SA. From the

orthogonality of the eigenfunctions, the resulting product de-couples the r.h.s. By repeating the

same procedure for all p ∈ N, q ∈ M, yields the following (N + 1)M number of simultaneous

equations involving (A+
nm, A−nm, C+

nm, C−nm):

(
A+

pq + A−pq

) 〈
φ2

pq(r, θ; A)
〉

SA
=

N

∑
n=0

M

∑
m=1

(
C+

nm + C−nm
) 〈

φnm(r, θ; C)φpq(r, θ; A)
〉

SA

where, p = 0, 1, 2, ..., N; q = 1, 2, 3, ..., M

(2.14)

Similarly, the other normalized continuity conditions may be derived from Eq. (2.12) and Eq. (2.13).

In total, six equations similar to Eq. (2.14) are obtained for the present muffler configurations.

Therefore, a total of 6(N + 1)M simultaneous equations are derived. It is assumed that the in-

coming pressure wave is planar with unit magnitude, and that the exit port of the muffler has

anechoic termination; hence, E−nm = 0. If the endplates are assumed to be rigid, an additional

2(N + 1)M equations from the boundary conditions are obtained:

UB|z=−LB
= 0;

or, B+
nm = B−nm exp (−2jknm,BLB) ;

UD|z=LD
= 0;

or, D+
nm = D−nm exp (2jknm,DLD) ;

(2.15)

Solving for the 8(N + 1)M simultaneous equations involving (A−nm, B+
nm, B−nm, C+

nm, C−nm, D+
nm, D−nm, E−nm),

yields the complete pressure and velocity field within the muffler domain. Finally, the TL is de-

rived as:

TL = 20 log10

∣∣∣∣∣d2

d1

N

∑
n=0

M

∑
m=1

E+
nm exp(−jknm,ELE)

∣∣∣∣∣ (2.16)
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2.1.3 Comparison between the GFM and the MMM

In the GFM, it is assumed that the particle velocity is uniform at the inlet and the outlet ports.

This assumption implies that for each incident plane–wave at the inlet port, the reflected waves

are also planar. Similarly, at the outlet port, the outgoing wave should also be a plane–wave in

order to satisfy the above assumption. In the MMM, these conditions may be realized by setting

the higher order coefficients A−n , n > 0 and E+
n , n > 0 to zero. Therefore, the GFM may be

imagined as a simplification of the MMM for geometries where both the methods are applicable.

From Fig. 2.2 it may be observed that the particle velocity at the inlet port is almost uniform

when the above restrictions are imposed on the MMM, validating the equivalence with the GFM.

In Figs. 2.3–2.4, TL curves derived from the MMM (with and without the restrictions on the

coefficients) are compared with the GFM. At smaller duct–length the evanescent higher–order

modes have non–negligible effect on the TL curves, causing a difference in the TL. The differences

in the TL curves diminish as the length of the muffler is increased. It may be noted that the TL

curve obtained from the GFM overlaps with that obtained from the MMM (with restrictions on

the coefficients).
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Figure 2.2: Particle velocity along a radial line at the inlet port surface of a cylindrical expansion
chamber muffler. Black: real part; Red: imaginary part; · · · MMM; ——– MMM with
(A−n , n > 0) and (E+

n , n > 0) equal to zero; ratio of inlet to chamber diameter is 0.31

For inlet/outlet ports that are located at the side of the muffler, the MMM is not applica-

ble because the shell eigenfunctions φ(r, θ) cannot consistently satisfy the velocity conditions at

the ports and at the shells. The GFM, avoids such drawbacks by incorporating the effects of
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Figure 2.3: Comparison of the TL using the GFM and the MMM for chamber length,
L = 0.05 m. Black: MMM; Green: MMM with (A−n , n > 0) and (E+

n , n > 0) equal to zero; Red:
GFM. Red and Green are overlapped
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Figure 2.4: Comparison of the TL using the GFM and the MMM for chamber length,
L = 0.10 m. Black: MMM; Green: MMM with (A−n , n > 0) and (E+

n , n > 0) equal to zero; Red:
GFM. Red and Green are overlapped

surface velocity by using the Green’s identities. However, the GFM is not suitable for extended

chamber mufflers due to the inhomogeneity inside the muffler domain. An alternative method

for deriving the scattered field by two–dimensional inhomogeneous dielectric bodies, known as

the Recursive Green’s function method (RGFM) was proposed by Jensen and Freeze [68]. In

this approach, the Green’s function at individual sub–domains of an inhomogenous medium

are recursively combined in order to obtain the field variable in the entire domain. At higher–

dimensions, this method becomes excessively difficult to construct, and is not suitable for the

present formulation.
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2.2 Extension of GFM for mufflers with multiple inlet/outlet ports

In many applications, mufflers with multiple inlet and outlet ports are commonly employed.

The expansion chamber with two inlets and one outlet is a practical configuration which may be

used in the exhaust system of reciprocating engines to merge two gas streams into one common

tailpipe [69]. Similarly, by using multiple outlets, detrimental effects of backpressure on the

performance of an engine may be reduced. In order to study the sound attenuation in such

multi–port chambers, the GFM is utilized in this section.

The average pressure on each piston can be obtained from Eq. (2.4) and Eq. (2.9) as:

Pk = −
jρω

Sk

∫
Sk

ϕ(~x)dSk

= −jρω
m

∑
i=1

1
SiSk

∫
Sk

∫
Si0

G(~x/~x0)~Ui ·~ηdSi0dSk ; k = 1, 2, · · · , m
(2.17)

In a matrix form, the above equations can be written as:



P1

P2
...

Pm


=


A11 A12 · · · A1m

A21 A22 · · · A2m
...

...
...

...

Am1 Am2 · · · Amm





~U1 ·~η
~U2 ·~η

...

~Um ·~η

 (2.18)

where, A is the impedance matrix given by:

Apq = −
jρω

SpSq

∫
Sp

∫
Sq0

G(~x/~x0)dSq0dSp; p, q = 1, 2, · · · , m (2.19)

2.2.1 Determination of TL for the SIDO configuration.

For SIDO configuration, the inlet is denoted by subscript 1. The outlets are denoted by subscripts

2 and 3, respectively. Assuming anechoic termination, acoustic pressure at the outlet pistons can

be written as:

P2 = U2Z2; P3 = U3Z3; Zi = ρc/Si (2.20)
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Also, ~U1 ·~n = −U1, ~U2 ·~n = U2, and ~U3 ·~n = U3. Substituting Eq. (2.20) into Eq. (2.18) yields:


P1

0

0

 =


−A11 A12 A13

−A21 A22 − Z2 A23

−A31 A32 A33 − Z3




U1

U2

U3


or,

P = [A]{~U ·~n}

(2.21)

The volume velocity vector ~U may be expressed in terms of P1 by taking the inverse of the

impedance matrix. The incident sound power is expressed as [3]:

Wint =
1

2Z1

∣∣∣∣P1 + Z1U1

2

∣∣∣∣2 (2.22)

Similarly, the transmitted power is given by:

Wtr =
1

2Z2
|Z2U2|2 +

1
2Z3
|Z3U3|2 (2.23)

Therefore, using Eqs. 2.21–2.23, the transmission loss can be derived as:

TL = 10 log10

(
Wint

Wtr

)
(2.24)

2.2.2 Determination of TL for the DISO configuration.

For DISO configuration, inlets are denoted by subscripts 1 and 2, respectively. The outlet is

denoted by subscript 3. Similar to SIDO configuration, acoustic pressure at the ports is related

to velocity as:


P1

P1/PR

0

 =


−A11 −A12 A13

−A21 − Z1
PR

−A22 + Z2 A23

−A31 −A32 A33 − Z3




U1

U2

U3


or,

P = [A]{~U ·~n}

(2.25)
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Here, PR = p+1 /p+2 , where p+1 and p+2 are the strength of incoming waves at ports 1 and 2,

respectively [69]. Again, taking inverse of coefficient matrix of U, volume velocities can be

expressed in terms of P1 and PR. Finally the TL may be derived as:

TL = 10 log10

 |P1 + U1Z1|2
{

S1 +
S2
|PR|2

}
4|U3Z3|2S3

 (2.26)

2.3 Validation: cylindrical geometries

The analytical model outlined in the previous section can be implemented for any muffler having

a regular geometry, viz. rectangular, circular, or elliptic. In this chapter, mufflers having circular

and elliptic cross–sections have been considered. The eigenfunctions and the eigenfrequencies

for a circular chamber are given by:

ϕj = Amn Jm(kr
mnr) cos(mθ) cos(pπz/L) + Bmn Jm(kr

mnr) sin(mθ) cos(pπz/L)

k2
m = (kr

mn)
2 + (pπ/L)2; m, p = 0, 1, 2, · · · ; n = 1, 2, · · ·

(2.27)

For m > 0, the eigenfunctions are degenerate due to symmetry of the circular geometry. Here j is

an index which corresponds to a unique combination of circumferential, radial, and longitudinal

modes m, n, and p, respectively. L is the axial length of the muffler. The radial wave number is

obtained from rigid wall boundary condition:

∂ϕ

∂r

∣∣∣∣
r=R

= 0

or,

J′m(k
r
mnR) = 0

(2.28)

Determination of impedance matrix A requires evaluation of the integral of eigenfunctions over

the surface of the piston. Each piston can have one of the three possible orientations: (i) end-

center inlet/outlet (ii) end-offset inlet/outlet (iii) side-inlet/outlet. The impedance matrix for any

possible combinations of muffler orientations is a function of these three integrals only. Thus, the

Green’s function solution method is very flexible, as any possible inlet/outlet orientations can

be studied by evaluating any/all of these three integrals. It must be noted that the intersection

of circular piston on the shell would result in an elliptical cross section. However, in order to
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simplify the integration, an equivalent (having same area of cross section as the circular piston)

rectangular piston has been assumed.

The present method was validated using the works reported by Selamet et al., [70, 69]; the

geometry of SIDO and DISO muffler considered in their work is shown in Fig. 2.5. For SIDO

configuration, inlet (denoted by subscript 1) and outlets (denoted by subscripts 2 and 3) are

located at end face of the muffler. The DISO muffler has end inlets (1 and 2) and a side outlet

(3). A comparison of present work with results obtained by Selamet et al., [70, 69] is shown in

Figs. 2.6–2.8. From Fig. 2.7 and Fig. 2.8, it can be observed that an excellent agreement between

the present method and the MMM is achieved for an acoustically long muffler with both SIDO

and DISO configurations. For the acoustically short chamber, the shift in the resonating peaks in

Fig. 2.6 is consistent with the observations made in the previous section. From Fig. 2.8 it can be

concluded that by replacing actual section of the piston with an equivalent rectangular section

does not cause significant departure from BEM results.

(b)(a)

Figure 2.5: Schematic of the mufflers used for validation of the present method [70, 69]; (a)
SIDO muffler: D = 0.153 m, d1 = d2 = d3 = 0.0486 m (b) DISO muffler: D = 0.153 m,

L = 0.54 m, d1 = d2 = 0.0486 m, d3 = 0.0584 m

2.3.1 Parametric study: SIDO mufflers

The effects of locations of inlet/outlet on overall muffler performance are examined in this sec-

tion. In view of the fact that many combinations of inlet/outlet orientations are possible, only a

few interesting results are presented. The various inlet/outlet muffler orientations are shown in

Fig. 2.9. The diameter of the chambers and the ports were selected to be same as in prior work

[15, 16].

The TL curve for the muffler geometry given by Fig. 2.9(a) is shown in Fig. 2.10. The length of

the muffler is L = 0.30 m. The offset distance is which corresponds to the pressure nodal radius
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Figure 2.6: TL curve for SIDO mufflers with circular cross section of the chamber, L/D = 0.205:
—— GFM; · · · · · · Selamet and Ji [70] (a) δ1 = δ2 = δ3 = 0.051 m, ϕ1 = ϕ2 = 0, ϕ3 = π (b)

δ1 = δ2 = δ3 = 0.051 m, ϕ1 = 0, ϕ2 = π/2, ϕ3 = π (c) δ1 = δ2 = 0.051 m, = δ3 = 0 m,
ϕ1 = 0, ϕ2 = π/2, ϕ3 = 0 (d) δ1 = δ2 = δ3 = 0.051 m, ϕ1 = 0, ϕ2 = π/2, ϕ3 = 3π/2

of (0, 2) mode. The distance of side-outlet from the inlet is L3 = L/2. For comparison, TL curves

for mufflers having end-center inlet/side-outlet, and having end-center inlet/end-offset outlet

have been shown in the figure. From the figure, TL for SIDO muffler is lower than for other two

configurations. This result is expected, because an additional outlet port in SIDO muffler causes

transmission of extra energy. In the plane–wave limit, for comparable geometries with similar

port orientations, the addition of an extra outlet doubles the transmitted energy. The doubling

of the transmitted energy results in a 3 dB drop in TL.

The diametral modes in all the three configurations are suppressed due to inlet being lo-

cated at end-center of the muffler. Therefore, one–dimensional dome behavior is observed in all

of the muffler geometries, below the cut-off frequency of first propagating radial (0, 2) mode.

Additionally, the location of outlet at the pressure node of (0, 2) mode extends the dome like

behavior in end-center inlet/end-offset outlet muffler up to the cut-off frequency f = 6333 Hz of

the next higher–order (0, 3) mode. In the GFM, by conveniently positioning the inlet/outlet ports

such that the port’s axis of symmetry coincide with the nodal diameter, yields a zero averaged

pressure over the surface of the port for that particular mode (Eq. (2.17)). In terms of energy,
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Figure 2.7: TL curve for SIDO mufflers with circular cross section of the chamber, L/D = 1.84:
—— GFM; · · · · · · Selamet and Ji [70] (a) δ1 = δ2 = δ3 = 0.051 m, ϕ1 = ϕ2 = 0, ϕ3 = π (b)

δ1 = δ2 = δ3 = 0.051 m, ϕ1 = 0, ϕ2 = π/2, ϕ3 = π (c) δ1 = δ2 = 0.051 m, = δ3 = 0 m,
ϕ1 = 0, ϕ2 = π/2, ϕ3 = 0 (d) δ1 = δ2 = δ3 = 0.051 m, ϕ1 = 0, ϕ2 = π/2, ϕ3 = 3π/2
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Figure 2.8: TL curve for DISO mufflers with circular cross section of the chamber: —— GFM;
· · · · · · Selamet and Ji [69] (a) L3 = L/8, P+

1 /P+
2 = 1 (b) L3 = 2L/8, P+

1 /P+
2 = 1 (c)

L3 = L/8, P+
1 /P+

2 = −1 (d) L3 = L/8, P+
1 /P+

2 = 1i
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Figure 2.9: Schematic of various SIDO muffler orientations. L = 0.30 m, D = 0.122 m
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Figure 2.10: TL comparison of mufflers having inlet/outlets as shown in Fig. 2.9(a).
L3 = L/2, δ = 0.6276R; ——– SIDO muffler, d1 = d2 = d3 = D/5; –o–o–o– End-inlet/end-offset

outlet muffler, d1 = d2 = D/5, d3 = 0; + + + End-inlet/side-outlet muffler,
d1 = d3 = D/5, d2 = 0

the net energy flux due to this mode is therefore zero, and no observable effects are seen in the

TL . Alternatively, the port may be imagined as an infinite number of monopole sources, with

the nodal diameter separating the opposing sources. Using the phase–cell cancellation analogy
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[44, 50], the adjacent cells of opposite phases cancel and potentially the boundary cells only

contribute towards the energy flux. Therefore, the strength of this boundary dipole source is

extremely weak and is considered to be absent.

For the end-center inlet/side outlet muffler, there are pressure minima at the outlet cor-

responding to the longitudinal mode p = (2m + 1), m = 0, 1, 2, · · · . These minima explain a

resonating peak in the TL curve at frequencies ( (2m + 1)c/4(L− L2) Hz) corresponding to these

modes. At p = 2m, the inlet as well as the outlet are at pressure maxima, which results in dip

in the TL curve. Consequently, the width of one dimensional dome for end-center inlet/side

outlet configuration is f = c/L, where c is the speed of sound and L is the length of the muf-

fler. The SIDO muffler has one of its outlets at end face of the muffler. The longitudinal mode

p = m, m = 0, 1, 2, · · · , corresponds to pressure maxima at this outlet, which results in a dip

in TL at f = mc/2L Hz. Unlike end-center inlet/end-offset outlet muffler, in SIDO muffler the

propagation of (0, 2) mode is not suppressed because the side outlet of the muffler transmits

sound energy corresponding to this mode. Therefore, a dip in TL curve at frequencies higher

than the cut-off frequency f = 3459 Hz of the (0, 2) mode can be observed for the SIDO muffler.

A better insight into the resonating peaks and troughs in the end-center inlet/side outlet

muffler may be obtained by studying (within the plane–wave limit) the input impedance at the

source (inlet) of the muffler. Using one–dimensional analysis, the input impedance at the source

can be derived as:

Zin = Zc

[
Zp cos kL + jZc cos k(L− L3) sin kL3

][
jZp sin kL + Zc cos k(L− L3) cos kL3

] (2.29)

where, the subscript p indicates the inlet/outlet ports, c corresponds to the chamber. In the

limit as L3 → 0, the end-center inlet/side outlet muffler may be imagined as a side–branch

resonator of length L. The side–branch resonators are characterized by the presence of periodic

resonating peaks in the TL curve and are commonly employed for reducing tonal noise. The

resonating peaks for such systems correspond to branch lengths which are odd–multiples of a

quarter–wavelength, i.e.:

L− L3 = (2m + 1)λ/4, m = 0, 1, 2, · · · (2.30)

where, λ = c/ f . At these frequencies, the input impedance observed by the source is extremely

small, causing strong vibration. When L3 > 0, the condition in Eq. (2.30) still yields a local

minimum in the input impedance. This observation is verified from Fig. 2.11(a), where the

input impedance is plotted against the distance of the outlet port from the rigid–termination end
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Figure 2.11: Input impedance and TL of an end–inlet/side outlet cylindrical muffler of length
L = 0.30 m, D = 0.122 m. The different curves indicate the variation due to the change in the

outlet port location L3; ——–, L3 = 0.15L; ——–, L3 = 0.35L; ——–, L3 = 0.55L; ——–,
L3 = 0.75L

(L− L3) for different values of L3. This distance is normalized w.r.t. λ/4, such that according

to Eq. (2.11), the local minima are observed at 4(L − L3)/λ = 1, 3, 5, · · · . The TL curves for

identical configurations are plotted in Fig. 2.11(b), with the same normalization on the abscissa.

The resonating peaks in the TL validate the observation made in Fig. 2.11(a).

The location of the troughs in the TL in Fig. 2.11(b) may also be explained from Eq. (2.29).

The troughs correspond to a condition when the input impedance is same (or atleast of the same

order) as the termination impedance Zp. Under such matched impedance condition, the incident

energy is almost entirely transmitted, yielding a zero TL. In the end-center inlet/side outlet

muffler, the matched impedance condition is realized for all L3 when sin(kL) in the denominator

of Eq. (2.29) is zero i.e, kL = nπ, n = 1, 2, · · · , provided that cos k(L− L3) cos kL3 is not zero

simultaneously. The denominator remains non–zero for all L3/L 6= (2m + 1)/2n, n, m are

integers. In Fig. 2.12, the matched impedance conditioned is observed for different values of

L3. It can be observed that the matched–impedance condition occurs at integer values on the

abscissa (kL/π = 1, 2, 3, · · · ). The TL curves in Fig. 2.12, correspondingly show a dip at these

integer values, except for green curve (L3 = 3L/4). The green curve in Fig. 2.12 yields a situation

at which the denominator in Eq. (2.29) is zero at kL = 2π, and consequently yielding very high

input impedance. The observed results and Eq. (2.29) are valid only in the plane wave–limit.

The SIDO muffler in Fig. 2.9(a) yields a poor TL characteristic compared to end-inlet/side-
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Figure 2.12: Normalized input impedance and TL of an end–inlet/side outlet cylindrical
muffler of length L = 0.30 m, D = 0.122 m. The different curves indicate the variation due to the

change in the outlet port location L3; ——–, L3 = 0.15L; ——–, L3 = 0.35L; ——–, L3 = 0.55L;
——–, L3 = 0.75L

outlet muffler. Moreover the width of the one dimensional domes for end-inlet/side-outlet muf-

fler is twice as much the SIDO muffler. The poor performance of the SIDO muffler was attributed

to the end-outlet location. By moving the end outlet to the side as shown in Fig. 2.9(b), it is pos-

sible to nullify the limitations of the previous muffler configuration. The muffler with end center

inlet and two side outlets located at a distance L2 = L3 = L/2 from the end face is shown in

Fig. 2.9(b). From Fig. 2.13 it can be observed that in this new configuration, the muffler behaves

similar to the end inlet/side outlet muffler and shows broadband attenuation characteristics.

However, similar to the previous SIDO configuration in Fig. 2.9(a) , the (0, 2) modes are not

attenuated for this muffler. Therefore, mufflers in Fig. 2.9(a) and Fig. 2.9(b) show similar dips in

TL characteristics above the cutoff frequency of the (0, 2) mode.

The TL curve for the SIDO muffler with side-inlet and end-outlets (Fig. 2.9(c)) is shown

in Fig. 2.14. In this orientation, the (2, 1) mode is not suppressed. The propagation of the (2,

1) mode causes the TL curve to dip at about 2800 Hz. Since the radial modes propagate at

frequencies higher than the frequency corresponding to (2, 1) mode, the radial locations of the

end outlets bear no significant influence on the TL for acoustically long chambers of this type.

From the figure it is evident that the location of the inlet strongly affects the TL. The TL curve

is characterized by a broad one dimensional dome having width, f = c/L Hz. The frequencies

corresponding to the resonating peaks of these domes depend on the location of the side inlet. It
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Figure 2.13: TL comparison of mufflers having inlet/outlets as shown in Fig. 2.9(b).
L2 = L3 = L/2; ——– SIDO muffler, d1 = d2 = d3 = D/5; –o–o–o– End-inlet/side-outlet

muffler, d1 = d3 = D/5, d2 = 0

can be shown that if the side inlet is located at a distance of L/2m, m = 1, 2, 3, · · · , the peaks will

be located at frequencies, fp = m(2n− 1)c/2L, n = 1, 2, 3, · · · , provided that fp is below the cut-

off frequency of the first higher–order propagating mode. It must be mentioned that the peaks

are not due to resonant condition; the denominator in Eq. (2.29) is zero at these frequencies,

resulting in an infinite input impedance.
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Figure 2.14: TL comparison of mufflers having inlet/outlets as shown in Fig. 2.9(c).
d1 = d2 = d3 = D/5; ——– L1 = L/2; –o–o–o– L1 = L/4; + + + L1 = L/6

A broadband attenuation pattern similar to the side-inlet/side-outlet configuration of prior
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work [16] is obtained when the inlet and the outlets are positioned according to Fig. 2.9(d).

Figure 2.15 shows the TL characteristics for various axial locations of the outlet ports. The

inlet is located at L1 = L/2 which corresponds to a pressure minima for p = (2n + 1), n =

0, 1, 2, · · · , longitudinal modes. When the outlets are located at distances L2 = L3 = L/4, pressure

minima occur at p = 2(2n + 1), n = 0, 1, 2, · · · , at the outlet ports. Therefore, there are pressure

minima either at the inlet or at the outlets for p = 1, 2, 3, · · · This behavior results in a broadband

attenuation pattern (solid line in Fig. 2.15) for this inlet/outlet configuration from f = 0− 2200

Hz. By changing the location of the outlets, the broadband attenuation pattern can be shifted

along the frequency axis, as shown in Fig. 2.15. Thus, similar to the previous configuration, the

side inlet/outlet muffler can be utilized to attenuate sound over a desired frequency range by

proper choice of the outlets. However, the effectiveness of such mufflers is limited to the cut-off

frequency of the (2, 1) mode beyond which there is a dip in the TL due the propagation of this

mode.
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Figure 2.15: TL comparison of mufflers having inlet/outlets as shown in Fig. 2.9(d).
d1 = d2 = d3 = D/5; ——– L1 = L/2, L2 = L3 = L/4; + + +

L1 = L/2, L2 = L/6, = L3 = 5L/6; –o–o–o– L1 = L/2, L2 = L/8, = L3 = 7L/8

2.3.2 Parametric study: DISO muffler

Parametric studies on DISO mufflers are performed by considering the same muffler geometries

as shown in Fig. 2.9. However, for DISO muffler, subscripts 2 and 3 in Fig. 2.9 indicate inlet

ports, and subscript 1 indicates outlet port. For single-inlet/single-outlet mufflers, the principle
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of reciprocity holds. As a consequence, by interchanging inlet and outlet, the TL curve remains

unchanged. Similar analogy applies for the SIDO/ DISO mufflers under certain conditions. By

reversing inlet and outlets, the SIDO muffler acts like a DISO muffler, however the TL curves for

these two systems may not be the same (assuming that the other conditions such as geometry,

port size etc. are the same). Usually, if inlets and outlet are located symmetrically to each other

and if the incoming pressure waves are in phase, i.e., P+
2 = P+

3 , then the DISO muffler will have

same TL characteristics as the SIDO muffler. For e.g., in Fig. 2.9(b), if L2 = L3, then the ports 2

and 3 are symmetrically located w.r.t the port 1. Consequently, the SIDO and the DISO muffler

in this configuration will have same TL curve if the incoming waves are in phase. If incoming

waves are not in phase, interference between the sources at the outlet will alter TL. In Fig. 2.16,

TL for a DISO muffler with same inlets and outlet orientations as in Fig. 2.9(d) is presented.

For comparison, TL curve of a SIDO muffler with same port locations is also presented. As

previously described, the DISO and the SIDO curves overlap each other when the incoming

waves are in phase. When the incoming waves are π/2 out of phase, the TL increases due to

interference between the sources. Since the outlet is symmetrically located from the inlet, when

the sources are out π of phase, the outlet location corresponds to a pressure release surface.

Hence, complete attenuation is possible for such conditions.
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Figure 2.16: TL comparison of mufflers having inlet/outlets as shown in Fig. 2.9(d).
d1 = d2 = d3 = D/5; ——– DISO, L1 = L/2, L2 = L3 = L/4, P+

2 /P+
3 = 1; + + + SIDO,

L1 = L/2, L2 = L3 = L/4; –o–o–o– DISO, L1 = L/2, L2 = L3 = L/4, P+
2 /P+

3 = 1i

In Fig. 2.17, the TL curve for a DISO muffler with same port orientations as in Fig. 2.9(a) has
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Figure 2.17: TL comparison of mufflers having inlet/outlets as shown in Fig. 2.9(a).
d1 = d2 = d3 = D/5, δ = 0.6276R; ——– L2 = L, L3 = L/2, P+

2 /P+
3 = 1; –o–o–o–

L2 = L, L3 = L/2, P+
2 /P+

3 = 1i

been depicted. The asymmetric locations of inlet ports results in a different sound attenuation

characteristics in DISO muffler from SIDO muffler. As can be observed from the figure, at certain

frequencies in-phase incoming waves result in a larger TL compared to out-of-phase waves. At

other frequencies, opposite effect occurs. Therefore, sound attenuation characteristics are affected

by the phase difference as well as the frequency.
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Figure 2.18: TL comparison of mufflers having inlet/outlets as shown in Fig. 2.9(c).
d1 = d2 = d3 = D/5, δ = 0.6276R; ——– P+

2 /P+
3 = 1; –o–o–o– P+

2 /P+
3 = 1i; - - - - -

4TL = 10 log10 2; –x–x–x– 4TL
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The TL for the DISO muffler having same port orientations as in Fig. 2.9(c) is shown in

Fig. 2.18. As noted previously, phase difference between the incoming waves affects the TL

characteristics. At low frequencies, only plane waves propagate. As a result, the radial location

of inlet 2 doesn’t influence the TL at these frequencies. Therefore, the outlet ‘observes’ the inlets

to be located at the same distance from it (i.e., the axial distance). Selamet and Ji [69] have

derived the equation of TL for a DISO muffler using the plane wave approximation (see Eq. 10

in the reference). Using the same equation, the difference in the TL when P+
2 /P+

3 = 1 and when

P+
2 /P+

3 = 1i is (when the inlets have same area):4TL = TLP+
2 /P+

3 =1i − TLP+
2 /P+

3 =1 = 10 log10 2.

In Fig. 2.18, this difference is validated in the plane wave limit. At higher frequencies, the

propagating waves are no longer planar. Therefore, the inlets are effectively no longer equidistant

from the outlet, which causes a departure from the theoretically predicted difference in the TL.

2.4 Validation: elliptic geometries

In an elliptic domain, the general solution of Eq. (2.1) is of the form:

ϕj = AmnSem(qmn, η)Jem(qmn, ζ) cos(pπz/L) + BmnSom(q̄mn, η)Jom(q̄mn, ζ) cos(pπz/L) (2.31)

where Sem and Som are even and odd Mathieu functions of the first kind. Jem and Jom are the

Modified Mathieu function of the first kind [71]. The parameters ζ and η are the radial and

circumferential basis–parameters for an elliptic coordinate system. The parameter q is related to

the wave number and is given by:
4q2

h2 = k2 −
( pπ

L

)2
(2.32)

Again, using the rigid boundary condition at the shell surface, the characteristic equations for q

and q̄ for each m are obtained from the following equations:

Je′m(q, ζ1) = 0; Jo′m(q̄, ζ1) = 0 (2.33)

It may be noted from Eq. (2.33) that due to the loss of circumferential symmetry, mode–splitting

occurs for the elliptical problem [30]. The splitting of the eigenvalues yields eigenvector–pairs

that are not symmetric when rotated by π/2 angle. Therefore, it is possible that one of the

eigenmodes may be non-evanescent for a particular port orientations. It will be observed in the
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next sections that the propagation of such higher–order modes in an elliptical muffler results in

lower TL.

The GFM was implemented for elliptical mufflers in order to determine the TL. The numer-

ical implementation was first verified with the works of Denia et al.[72]. The Mode Matching

Method was employed in their work for determining the TL in an elliptic SIDO muffler. The

inlet and the outlets were located at the end–face of the chamber. The verification of the present

implementation with some of the results reported in [72] is presented in Fig. 2.19.
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Figure 2.19: Numerical verification of the GFM applied to an elliptic SIDO muffler
configuration. —— GFM; · · · · · · MMM in Ref. [72]. L = 0.3 m, semi-major axis a = 0.115 m,

semi-minor axis b = 0.065 m, ϕ1 = ϕ2 = 0, ϕ3 = π (a) δ1 = 0, δ2 = δ3 = 0.073 m (b)
δ1 = δ2 = δ3 = 0.073 m (c) δ1 = 0.05 m, δ2 = 0.06 m, δ3 = 0.03 m (d) δ1 = 0, δ2 = δ3 = 0.048 m

2.4.1 Parametric study: SIDO

An elliptic chamber muffler with the same inlet and outlet orientations as that in Fig. 2.9 was

considered for the present parametric study. The eccentricity of the muffler was e = 0.8, and the

area of cross–section was same as that of the circular chamber studied in the previous section.

From the study of the cylindrical chamber configurations, only the port orientations in Fig. 2.9(b)

and (c) yielded improved TL. Hence, only these orientations are considered in the study of the

elliptic geometry. In Fig. 2.20 and Fig. 2.21, the TL for the elliptic SIDO geometries are presented.
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Figure 2.20: TL of an elliptic muffler having inlet/outlets and same area and length as shown in
Fig. 2.9(b). L2 = L3 = L/2; ——– SIDO muffler, d1 = d2 = d3 = D/5
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Figure 2.21: TL of an elliptic muffler having inlet/outlets and same area and length as shown in
Fig. 2.9(c). d1 = d2 = d3 = D/5; ——– L1 = L/2; –o–o–o– L1 = L/4; + + + L1 = L/6

Similar to the cylindrical chamber, the TL curve is characterized by the presence of broadband

domes that depend on the location of the side inlet/outlet. In the plane–wave limit, the TL for

the elliptic chamber is expectedly the same as that of the circular chamber muffler. However,

unlike the cylindrical geometry, the (2, 1) even mode in the elliptic chamber is non-evanescent

above it’s cutoff frequency. The propagation of this mode results in a sharp dip in the TL curve,

thereby limiting the useful frequency range of the elliptic chamber muffler.
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2.4.2 Parametric study: DISO
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Figure 2.22: TL of an elliptic muffler having inlet/outlets and same area and length as shown in
Fig. 2.9(a); P+

2 /P+
3 = 1, d1 = d2 = d3 = D/5; ——– L3 = L/2; + + + L3 = 3L/4

The parametric studies on the DISO elliptic mufflers were performed by keeping the same

geometric dimensions as the SIDO configuration. In Fig. 2.22, the TL curve for a DISO muffler

with the same port orientation as in Fig. 2.9(a) is presented. As discussed in the previous sec-

tion, in the DISO muffler, the relative phase between the piston sources affects the TL. For the

present configuration in Fig. 2.22, the inlet pistons were in phase with each other. Since the ports

were at different locations in the muffler, the incident wave from one of the sources experienced

interference due to the other, and vice− verse. The mismatch of phase between these two waves

resulted in an increased TL. As an example, if Fig. 2.22, a peak in the TL is observed at around

1000 Hz, which corresponds to a frequency when k(L− L3) = (2n + 1)π, n = 0, 1, · · · . In other

words, the two incident plane waves are in opposite phase at the location of the side–inlet port,

thereby resulting in increased sound attenuation. Similarly, when the side–inlet port is shifted to

a different location, there is a corresponding shift in the peak TL. Similar to the SIDO mufflers,

the useful range of performance in the DISO muffler is restricted to the cutoff frequency of the

(2, 1) even mode and hence no peaks are observed beyond 2000 Hz in the present configurations.

The performance of the SIDO and the DISO elliptic muffler for other geometric configu-

rations that are not presented here follow the same TL characteristics as the circular chamber

muffler discussed earlier, except for the non–evanescent (2, 1) mode. The mode shapes and the

suppression of these higher–order modes are discussed in chapter 3.
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2.5 Summary

In this chapter, a general procedure based on three dimensional Green’s function was developed

in order to study the sound attenuation in SIDO and DISO circular and elliptic chamber mufflers.

The Green’s function method (GFM) was observed to be a simplification to the Mode Matching

Method (MMM). While the GFM was suitable for most muffler geometries where the method of

separation of variables are applicable, the MMM could also be employed for studying extended

chamber mufflers.

The formulation for the SIDO and DISO configuration was validated through existing TL

results in the literature. The method was found to be flexible as both the SIDO and the DISO

configurations could be studied by making small changes to the mathematical formulations.

Parametric studies were performed to understand the effect of various inlet and outlet configu-

rations on the TL. Deriving knowledge from single inlet/outlet mufflers, broadband attenuation

characteristics were observed by proper orientation of inlets/outlets in the SIDO and DISO muf-

flers. Minor loss in TL was observed for the SIDO muffler when compared to an equivalent

single outlet muffler. For the DISO muffler, depending upon the phase difference between the

incoming waves, and the orientation of the ports, yielded in a TL curve that exactly matched the

TL curve for the corresponding SIDO muffler. This similarity was a consequence of the principle

of reciprocity. It was also observed that a pressure release surface could be achieved for certain

DISO muffler configurations. Thus, complete attenuation of sound was possible in a DISO muf-

fler. In the elliptic chamber muffler, unlike the cylindrical chamber the (2, 1) even mode was

observed to be a non-evanescent mode for most muffler geometries. The propagation of this

mode beyond the cutoff frequency resulted in poor TL at higher frequencies. In this respect, the

elliptic chamber mufflers may be considered as inferior to cylindrical chamber mufflers.
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Chapter 3

Transmission loss in distorted cylindrical mufflers

It can be inferred from the study of elliptic mufflers in chapter 2, that the loss of circular sym-

metry results in the propagation of certain higher–order modes that are essentially suppressed

for the cylindrical configuration. The shape of these eigenmodes depends on the nature of the

boundary asymmetry. Motivated by the need to quantify the effects of these asymmetries on

the sound attenuation, a general procedure for determining the TL in a distorted circular muffler

using a perturbation approach similar to that of Nayfeh et al., [36, 73] is illustrated in this chapter.

First, the eigensolutions for a distorted circular annular region is derived based on the method

of strained parameters. Since the Helmholtz equation is self-adjoint, the eigenvectors are orthog-

onal up to the order of truncation of the perturbation parameters. By taking suitable geometric

limits, the eigensolutions for the distorted annular region may be extended to the entire muffler

domain. Using the perturbed eigensolutions, the TL in the muffler is derived by either imple-

menting a mode matching method or the Green’s function method. In order to illustrate the

method, elliptical mufflers with moderate eccentricities (0.4 ∼ 0.6) are considered. Exact solu-

tions for the natural frequencies and TL in an elliptical muffler have previously been reported in

the literature [31, 33, 34]. The perturbation results are compared to the exact/FEM solutions. The

solution procedure is general, and may be employed for any symmetric/asymmetric boundary

perturbations (within small perturbation limits).

3.1 Mathematical formulation

3.1.1 Determination of the eigensolutions

In this section, the solutions to the Helmholtz equation is derived for an annular geometry as

shown in Fig. 3.1. Considering harmonic time-dependence, the wave equation may be expressed
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Figure 3.1: Schematic of an annular perturbed cylinder.

in term of the velocity potential as:

52 φ(r, θ) + k2φ(r, θ) = 0; a + ε f (θ) ≤ r ≤ b + εg(θ) (3.1)

where, k = ω/c is the wave number, ω is the angular frequency, and c is the speed of sound.

Assuming that walls of the waveguide are rigid, the normal component of the velocity is zero,

implying that:

5 φ(r, θ) ·~η|S = 0; (3.2)

where, η corresponds to the normal vector to the surface of the waveguide. In the present

formulation, the radii of curvature of the annular geometry are small perturbations from a circle.

The inner radius of curvature is approximated by r = a + ε f (θ), where a is the mean radius

of curvature, ε is the perturbation parameter, and f (θ) is the circumferential departure from

circular geometry. Similarly, the outer radius of curvature is given by r = b + εg(θ). In the

perturbed domain, the normal vectors can be expressed as an expansion involving ε and the

circumferential departure parameters. For example, at the inner annular boundary:

~η =

(
1− 1

2

[
ε

a
d f
dθ

]2

+ O(ε3)

)
~er −

(
ε

a
d f
dθ
− f

d f
dθ

[ ε

a

]2
+ O(ε3)

)
~eθ : ∂S1 (3.3)
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By substituting Eq. (3.3) into Eq. (3.2), the boundary conditions can be expressed as:

(
1− 1

2

[
ε

a
d f
dθ

]2

+ O(ε3)

)
∂φ

∂r
− 1

a

(
ε

a
d f
dθ
− f

d f
dθ

[ ε

a

]2
+ O(ε3)

)
∂φ

∂θ
= 0 : ∂S1 (3.4)

As ε→ 0, the Helmholtz equation and the boundary conditions are that of a circular cylindri-

cal annular shell. Therefore, it is expected that for small values of ε, eigensolutions for distorted

waveguides should be perturbations to those of a cylindrical shell. Accordingly, eigensolutions

of the distorted geometry is expressed as an expansion in ε and the unperturbed eigensolutions:

φ(~r, ε) = φ0(~r, ε) + εφ1(~r, ε) + · · ·

kr(ε) = k0r(ε) + εk1r(ε) + ε2k2r(ε) + · · ·
(3.5)

The subscript r in Eq. (3.5) signifies radial component. For convenience, the subscript will

henceforth be omitted. Substituting Eq. (3.5) into Eq. (3.1) and Eq. (3.4), and separating terms

containing each order of ε yields the following sets of equations:

O(ε0) : 52 φ0 + k2
0φ0 = 0;

∂φ0

∂r

∣∣∣∣
r=a,b

= 0
(3.6)

O(ε1) : 52 φ1 + 2k0k1φ0 + k2
0φ1 = 0;

∂φ1

∂r
+ f

∂2φ0

∂r2 −
1
a2

d f
dθ

∂φ0

∂θ

∣∣∣∣
r=a

= 0;
∂φ1

∂r
+ g

∂2φ0

∂r2 −
1
b2

dg
dθ

∂φ0

∂θ

∣∣∣∣
r=b

= 0;
(3.7)

O(ε2) : 52 φ2 +
(
k2

1 + 2k0k2
)

φ0 + 2k0k1φ1 + k2
0φ2 = 0;

∂φ2

∂r
+ f

∂2φ1

∂r2 −
1
a2

d f
dθ

∂φ1

∂θ
+

f 2

2
∂3φ0

∂r3 +
1
a3

d
dθ

(
f 2

2

)
∂φ0

∂θ

∣∣∣∣
r=a

= 0;

∂φ2

∂r
+ g

∂2φ1

∂r2 −
1
b2

dg
dθ

∂φ1

∂θ
+

g2

2
∂3φ0

∂r3 +
1
b3

d
dθ

(
g2

2

)
∂φ0

∂θ

∣∣∣∣
r=b

= 0;

(3.8)

In the above equations, the boundary conditions are obtained by assuming that the annular

walls are rigid. A detailed derivation of the above equations may be found in [74]. Equation (3.6)

is the Helmholtz equation for a rigid circular annulus of inner radius a, and outer radius b.

The solution to Eq. (3.6) may be derived in terms of the Bessel functions and the trigonometric
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functions as:
φ0 = Anm ϕ0

nm(r) cos (nθ − ψn)

where, ϕ0
nm(r) =

(
Jn (k0,nmr)− J′n((k0,nmb)

Y′n (k0,nmb)
Yn (k0,nmr)

) (3.9)

In Eq. (3.9), k0,nm are the characteristic roots of the equation obtained by imposing the rigid

boundary condition:

J′n (k0,nma)− J′n((k0,nmb)
Y′n (k0,nmb)

Y′n (k0,nma) = 0 (3.10)

The indices n, m represent circumferential and radial modes. Anm is an arbitrary constant.

For a circular geometry, the circumferential modes have no angular preference and ψn is an

arbitrary phase angle. For radially asymmetric geometries, ψn have distinct values if boundary

perturbations cause degenerate eigenvalues to split into two distinct eigenvalues [39]. The first-

order approximation for each φ0 is assumed to be of the form:

φ1 =
∞

∑
s=0

Bsβs(r) cos(sθ − λs) (3.11)

The radial term βs(r), and parameter λs, are obtained by substituting Eq. (3.9) and Eq. (3.11)

into Eq. (3.7):

∞

∑
s=0

Bs

(
d2

dr2 +
1
r

d
dr

+ k2
0,nm −

s2

r2

)
βs(r) cos(sθ − λs) +

(
2k0k1Aϕ0(r)

)
nm cos(nθ − ψn) = 0; a ≤ r ≤ b

(3.12)

Using orthogonality of sine and cosine functions, Eq. (3.12) is decoupled into an infinite

number of equations in β(r):

Bq

(
d2

dr2 +
1
r

d
dr

+ k2
0,nm −

q2

r2

)
βq(r) cos(λq) +

(
2k0k1Aϕ0(r)

)
nm cos(ψn)δ(n, q) = 0;

Bq

(
d2

dr2 +
1
r

d
dr

+ k2
0,nm −

q2

r2

)
βq(r) sin(λq) +

(
2k0k1Aϕ0(r)

)
nm sin(ψn)δ(n, q) = 0;

where, a ≤ r ≤ b; δ(n, q) =

 0 : q 6= n

1 : q = n
; q = 0, 1, 2, ...

(3.13)

When q 6= n, Eq. (3.13) is the homogeneous Bessel equation of order q; the general solution

is given by:

βq(r) = Cq Jq(k0,nmr) + DqYq(k0,nmr); a ≤ r ≤ b (3.14)
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where, the constants Cq and Dq are derived from the boundary conditions. By substituting

Eq. (3.9) and Eq. (3.14) into the boundary conditions given in Eq. (3.7), and by using the orthog-

onality of the cosine and sine functions yields the following sets of infinite number of decoupled

equations necessary for determining the four unknown parameters Bq, Cq, Dq and λq:

Bqβ′q(r) cos(λq) =

Anm

2eq

[
n
{
(n + q)[∗]n+q + (n− q)[∗]|n−q|

} ϕ0
nm(r)
r2 −

{
[∗]n+q + [∗]|n−q|

}
ϕ0′′

nm(r)
]

cos(ψn)

+
Anm

2eq

[
n
{
(n + q) ¯[∗]n+q + |n− q| ¯[∗]|n−q|

} ϕ0
nm(r)
r2 −

{
¯[∗]n+q +

n− q
|n− q|

¯[∗]|n−q|

}
ϕ0′′

nm(r)
]

sin(ψn)

Bqβ′q(r) sin(λq) =

− Anm

2

[
n
{
(n + q)[∗]n+q − (n− q)[∗]|n−q|

} ϕ0
nm(r)
r2 −

{
[∗]n+q − [∗]|n−q|

}
ϕ0′′

nm(r)
]

sin(ψn)

+
Anm

2

[
n
{
(n + q) ¯[∗]n+q − |n− q| ¯[∗]|n−q|

} ϕ0
nm(r)
r2 −

{
¯[∗]n+q −

n− q
|n− q|

¯[∗]|n−q|

}
ϕ0′′

nm(r)
]

cos(ψn)

where, r = a or b; [∗]
( ¯[∗]

)
=

 F(F̄) : r = a

G(Ḡ) : r = b
; eq =

 2 : q = 0

1 : q 6= 0
(3.15)

The coefficients F, F̄, G and Ḡ, are the Fourier coefficients of the perturbation functions f (θ) and

g(θ):

f (θ) =
∞

∑
j=1

(
Fj cos(jθ) + F̄j sin(jθ)

)
; g(θ) =

∞

∑
j=1

(
Gj cos(jθ) + Ḡj sin(jθ)

)
(3.16)

In Eq. (3.15), the general form of βq(r) given by Eq. (3.14) is valid only when q 6= n. When

q = n, Eq. (3.13) is a non-homogeneous second order differential equation; a non-trivial solution

to this equation exists only when the solvability conditions [36] are satisfied. By using this

solvability condition, the first order approximation to the radial wave number may be derived

as:

k1,nm = −
Bq

(
rϕ0

nm(r) β′q(r)
∣∣∣r=b

r=a

)
cos(λq)

2Anmk0,nm
∫ b

a ξ {ϕ0
nm(ξ)}

2 dξ cos(ψn)
; q = n

k1,nm = −
Bq

(
rϕ0

nm(r) β′q(r)
∣∣∣r=b

r=a

)
sin(λq)

2Anmk0,nm
∫ b

a ξ {ϕ0
nm(ξ)}

2 dξ sin(ψn)
; q = n

(3.17)
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The terms in Eq. (3.17) involving Bq, βq, and λq, are obtained from Eq. (3.15) by setting q = n.

The substitution of Eq. (3.15) into Eq. (3.17), and by re-arranging terms containing k1,nm, cos(ψn)

and sin(ψn) yields the following eigenvalue problem:

k1,nm

 cos(ψn)

sin(ψn)

 =

Θnm(a)

 F2n F̄2n

F̄2n −F2n

 cos(ψn)

sin(ψn)

−Θnm(b)

 G2n Ḡ2n

Ḡ2n −G2n

 cos(ψn)

sin(ψn)


where, Θnm(r) =

(
n2

r2 ϕ0
nm(r)−

ϕ0′′
nm(r)
2

)(
rϕ0

nm(r)

2k0,nm
∫ b

a {ϕ0
nm(ξ)}

2
ξdξ

)
; r = a, or b

(3.18)

Solving Eq. (3.18) yields the first order approximation to k0,nm:

k1,nm = ±
√
(Θ(a)F2n −Θ(b)G2n)

2 + (Θ(a)F̄2n −Θ(b)Ḡ2n)
2 (3.19)

It may be observed from Eq. (3.16) and Eq. (3.19) that even for a distorted geometry, k1,0m = 0.

This observation is consistent with the fact that in the absence of a nodal diameter (n = 0), the

individual modes have no angular preference; and hence mode splitting does not occur. When

k1,0m 6= 0, Eq. (3.18) yields the eigenvector pairs {cos(ψn), sin(ψn)}. The determination of these

eigenvector pairs completes the zeroth order solution (Eq. (3.9)). The first order solution is

not yet complete as the non-homogeneous Eq. (3.13) remains to be solved for q = n. When

q = n, solution to the first order problem may be obtained by assuming φ1 to be comprised of a

homogeneous solution (φh
1) and a particular integral (φp

1 ) [36, 75]:

φ1 = φh
1 + φ

p
1

where, φh
1 = Cnm ϕ0

nm(r) cos(nθ − µn); φ
p
1 =

∞

∑
j=1

Dnm,j ϕ
1p
nj (r) cos(nθ − ψn);

(3.20)

The radially dependent terms in the particular integral may be chosen as an orthogonal basis

satisfying a boundary condition which is different from that of the homogeneous solution. In

this formulation a pressure release boundary condition is chosen as a convenient form of the

particular integral terms. Hence,

ϕ
1p
nj (a) = ϕ

1p
nj (b) = 0 (3.21)

45



Therefore, the general form of the function ϕ
1p
nj (r) satisfying the above boundary conditions

may be expressed as:

ϕ
1p
nj (r) = Jn(vnjr)−

Jn(vnjb)
Yn(vnjb)

Yn(vnjr) (3.22)

where, vnj are the roots of the characteristic equation:

Jn(vnja)−
Jn(vnjb)
Yn(vnjb)

Yn(vnja) = 0 (3.23)

On substituting Eq. (3.20) into Eq. (3.13), and using the orthogonality of the trigonometric

and the Bessel functions, the coefficients D in Eq. (3.20) may be derived as:

Dnm,j = −
2k0,nmk1,nm

∫ b
a ξϕ0

nm(ξ)ϕ
1p
nj (ξ)dξ(

k2
0,nm −v2

nj

) ∫ b
a ξ{ϕ

1p
nj (ξ)}2dξ

(3.24)

The unique determination of Cnm and hence φ1 cannot be obtained unless further restrictions

on φ1 is imposed. To this end, an additional condition that φ1 is orthogonal to φ0 is imposed

[36, 39]. This condition results in an expression involving Cnm and µn:

Cnm,j cos(ψn − µn) = −
∞

∑
j=1

Dnm,j

∫ b
a ξϕ0

nm(ξ)ϕ
1p
nj (ξ)dξ∫ b

a ξ{ϕ0
nm(ξ)}2dξ

(3.25)

The determination of the unknown coefficients Cnm and µn requires solving the second order

perturbation problem. The second order eigenfunctions are approximated as:

φ2 =
∞

∑
s=0

Esγs(r) cos(sθ − ηs) (3.26)

By using a solution procedure similar to that employed for determining the first order wave

number corrections (i.e. Eq. (3.17)), the second order wave number corrections may be derived

as:

k2 =−
[
rEnγ′n(r) cos(ηn)ϕ0

nm(r)
∣∣b

a + Anmk2
1,nm

∫ b
a ξ
{

ϕ0
nm(ξ)

}2 dξ cos(ψn)]

2Anmk0,nm
∫ b

a ξ {ϕ0
nm(ξ)}

2 dξ cos(ψn)

−

[
2k0,nmk1

1,nm

(
cos(ψn)∑∞

j=1 Dnm,j
∫ b

a ξϕ0
nm(ξ)ϕ

1p
nj (ξ)dξ + Cnm cos(µn)

∫ b
a ξ{ϕ0

nm(ξ)}2dξ
)]

2Anmk0,nm
∫ b

a ξ {ϕ0
nm(ξ)}

2 dξ cos(ψn)
(3.27)
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By substituting for sine instead of the cosine terms in the above Eq. (3.27), yields the second

correction term in k2. The unknown terms involving En is obtained by substituting Eq. (3.26) into

the rigid boundary condition term in Eq. (3.8), and by using the orthogonality of the trigonomet-

ric and the Bessel functions:

enEnγ′n(r) cos(ηn) + Xnm(r) + Cnm

(
ϕ0′′

nm(r)
2

− n2

r2 ϕ0
nm(r)

) (
[∗]2n cos(µn) + ¯[∗]2n sin(µn)

)
= 0

Enγ′n(r) sin(ηn) + Ynm(r)− Cnm

(
ϕ0′′

nm(r)
2

− n2

r2 ϕ0
nm(r)

) (
[∗]2n sin(µn)− ¯[∗]2n cos(µn)

)
= 0

(3.28)

where,

Xnm(r) =
∞

∑
p=0

Bp

[{
[∗]n+p + [∗]|n−p|

} β′′p(r)
2
− p

{
(n + p)[∗]n+p + (p− n)[∗]|p−n|

}βp(r)
2r2

]
cos(λp)

+
∞

∑
p=0

Bp

[{
¯[∗]n+p +

(p− n)
|p− n|

¯[∗]|n−p|

}
β′′p(r)

2
− p

{
(n + p) ¯[∗]n+p + |p− n| ¯[∗]|p−n|

}βp(r)
2r2

]
sin(λp)

+
Anm

2
(2[•]0 + [•]2n) ϕ0′′′

nm(r) cos(ψn) +
Anm

2
( ¯[•]2n

)
ϕ0′′′

nm(r) sin(ψn)

+
n2 Anm ϕ0

nm(r)
r3

{
[•]2n cos( ψn) + ¯[•]2n sin( ψn)

}
;

r = a or b; [∗]
( ¯[∗]

)
=

 F(F̄) : r = a

G(Ḡ) : r = b
; [•]

( ¯[•]
)
=

 H(H̄) : r = a

I( Ī) : r = b
; en =

 2 : n = 0

1 : n 6= 0
(3.29)

Ynm(r) =
∞

∑
p=0

Bp

[
−
{
[∗]n+p − [∗]|n−p|

} β′′p(r)
2

+ p
{
(n + p)[∗]n+p − (p− n)[∗]|p−n|

}βp(r)
2r2

]
sin(λp)

+
∞

∑
p=0

Bp

[{
¯[∗]n+p −

(p− n)
|p− n|

¯[∗]|n−p|

}
β′′p(r)

2
− p

{
(n + p) ¯[∗]n+p − |p− n| ¯[∗]|p−n|

}βp(r)
2r2

]
cos(λp)

+
Anm

2
(2[•]0 − [•]2n) ϕ0′′′

nm(r) sin(ψn) +
Anm

2
( ¯[•]2n

)
ϕ0′′′

nm(r) cos(ψn)

− n2 Anm ϕ0
nm(r)

r3

{
[•]2n sin( ψn)− ¯[•]2n cos( ψn)

}
;

(3.30)

Equations (3.25) and Eq. (3.27) are three linear simultaneous equations involving three un-

knowns Cnm, µn and k2. By substituting Eq. (3.28) into Eq. (3.27), Eq. (3.25) and Eq. (3.27) may be
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simplified to a matrix form as:


[Ωnm(b)G2n−Ωnm(a)F2n]

en
− 2k0,nmk1

Λnm
Anm

[Ωnm(b)Ḡ2n −Ωnm(a)F̄2n] −2k0,nmΛnm cos(ψn)

[Ωnm(b)Ḡ2n −Ωnm(a)F̄2n]− 2k0,nmk1
Λnm
Anm

−[Ωnm(b)G2n −Ωnm(a)F2n] −2k0,nmΛnm sin(ψn)

−2k0,nmΛnm cos(ψn) −2k0,nmΛnm sin(ψn) 0



×


Cnm cos(µn)

Cnm sin(µn)

k2

 =


k2

1Λnm cos(ψn) + k1
Γnm cos(ψn)

Anm
+ aϕ0

nm(a)
en

Xn(a)− bϕ0
nm(b)
en

Xn(b)

k2
1Λnm sin(ψn) + k1

Γnm sin(ψn)
Anm

+ aϕ0
nm(a)Yn(a)− bϕ0

nm(b)Yn(b)

Γnm


(3.31)

where, r = a, or b; Ωnm(r) = rϕ0
nm(r)

(
ϕ0′′

nm(r)
2

− n2

r2 ϕ0
nm(r)

)

Λnm = Anm

∫ b

a
ξ{ϕ0

nm(ξ)}2dξ; Γnm = 2k0,nm Anm

(
∞

∑
j=1

Dnm,j

∫ b

a
ξϕ0

nm(ξ)ϕ
1p
nj (ξ)dξ

)
(3.32)

The solution of Eq. (3.31) completes the first order eigensolutions. It also provides a second

order correction to the radial wave number. Using a procedure analogous to that outlined above,

the complete solution to the second order eigenfunctions may be derived. However the higher

order solutions become cumbersome and may not be useful, especially when an approximate

understanding of the problem is more desirable than getting a more accurate solution. The

present formulations is therefore restricted to a first order approximation to the eigenfunctions

(and hence a second order approximation to the wave number). The error in the solutions due

to such truncations is compared with numerical results.

The focus of the present work is on studying the TL in mufflers with elliptic chambers

(within moderate eccentricity limits). In the context of elliptic geometries, it is worthwhile to

present some simplifications to the above general formulations. For an elliptic cavity, it may be

observed that the Fourier expansion terms F̄, Ḡ, H̄ and Ī, are identically zero. Since these terms

are zero, it may be shown that the phase terms ψ, λ, and µ are either zero or π/2. Hence, for
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n 6= 0, the eigenfunctions are of the either form:

φnm = Anm ϕ0
nm(r) cos(nθ) + ε

∞

∑
s=0

Bsβs(r) cos(sθ) + ε

(
Cnm ϕ0

nm(r) +
∞

∑
j=1

Dnm,j ϕ
1p
nj (r)

)
cos(nθ)

kr,nm = k0r,nm + εk1,nm|ψ=0 + ε2k2,nm
∣∣
ψ=0

φnm = Ānm ϕ0
nm(r) sin(nθ) + ε

∞

∑
s=0

B̄sβs(r) sin(sθ) + ε

(
C̄nm ϕ0

nm(r) +
∞

∑
j=1

D̄nm,j ϕ
1p
nj (r)

)
sin(nθ)

kr,nm = k0r,nm + εk1,nm|ψ=π/2 + ε2k2,nm
∣∣
ψ=π/2

(3.33)

3.2 Numerical verification: TL in expansion chamber elliptic mufflers

The numerical accuracy of the method is demonstrated by determining natural frequencies and

TL of an elliptical muffler with eccentricity varying between 0.4 ∼ 0.6. The results are compared

to exact solutions for such cross–sections [31, 33, 34]. The exact solutions were developed by solv-

ing the wave equation in an elliptical coordinate system. For the present analysis, four different

muffler configurations are considered for comparison (Fig. 3.2): (a) Concentric chamber muffler

(b) Concentric-inlet-offset-outlet muffler (c) Reversing chamber muffler (d) End-inlet-side-outlet

(EISO) muffler. For all mufflers, dimensions of major/minor axes at different eccentricities are

derived such that the area of cross–section is constant. This area of cross–section corresponded

to a circle of radius 0.09 m. The inlet and outlet ports are d = 0.033 m in diameter. Two muffler

lengths L = 0.10 m, and L = 0.25 m are considered. The offset distance is 0.05 m. For the EISO

muffler, the outlet port is located at a distance of L1 = L/2 from inlet port. The speed of sound

is taken as c = 340 ms−1.

3.2.1 Validation of the perturbation method with exact solutions

The Green’s function method discussed in section 2.1 is employed for determining the TL in el-

liptic mufflers. The TL curves for different muffler lengths, inlet/outlet locations, and eccentrici-

ties are presented in Figs. 3.3–3.6. For comparison, TL curves obtained through exact solution of

Helmholtz equation in an elliptical domain are also plotted. The perturbation results may be seen
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Figure 3.2: Schematic diagram of elliptical mufflers with different inlet/outlet configurations:
(a) Concentric chamber muffler (b) Concentric-inlet-offset-outlet muffler (c) Reversing chamber

muffler (d) End-inlet-side-outlet (EISO) muffler.

to agree well with the exact solutions for all muffler orientations. The maximum departure from

exact solution is about 3 dB (ignoring resonating peaks). Except for reversing chamber muffler, lo-

cations of inlet and outlet ports in all other mufflers ensure modes that are symmetric about both

axes of the ellipse only can propagate. The even modes of type (2j, k) j = 0, 1, 2, · · · k = 1, 2, · · ·

are symmetric about the axes. Consequently, near propagation of first such transverse mode

((2, 1) even mode), TL curves show significant deterioration. In the frequency range of interest,

next such higher order propagating mode is (0, 2) even mode. The offset location of ports in

reversing chamber muffler causes excitation of all even modes above their cutoff frequency. As a

result, reversing chamber muffler shows poorer sound attenuation characteristic in comparison

to other configurations, since the (1, 1) even mode starts to propagate at much lower frequency

compared to (2, 1) even mode. For EISO muffler, location of outlet port from inlet port results in

a broadband sound attenuation.

In Fig. 3.7, mode shapes for first few even modes have been compared to the exact solution.

Within the frequency range of interest (∼3000 Hz), only modes that are expected to influence
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Figure 3.3: Transmission loss characteristics at different eccentricities (e), and chamber lengths
(L) for concentric chamber configuration. · · · · · · ·, Perturbation solution; ——– Exact solution.
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Figure 3.4: Transmission loss characteristics at different eccentricities (e), and chamber lengths
(L) for concentric-inlet-offset-outlet chamber configuration. · · · · · · ·, Perturbation solution;

——– Exact solution.
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Figure 3.5: Transmission loss characteristics at different eccentricities (e), and chamber lengths
(L) for reversing chamber configuration. · · · · · · ·, Perturbation solution; ——– Exact solution.
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Figure 3.6: Transmission loss characteristics at different eccentricities (e), and chamber lengths
(L) for EISO chamber configuration. · · · · · · ·, Perturbation solution; ——– Exact solution.
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the TL in the mufflers (Fig. 3.2) have been shown. The (0, 1) and (1, 1) even modes have not

been presented as the comparison was trivial. In a circular chamber muffler the nodal diameters

pass through the center, thereby suppressing the propagation of such modes in a concentric-inlet

(or outlet) muffler configuration. As is evident from Fig. 3.7, some of the nodal diameters in

an elliptic muffler are located at an offset from the center, therefore causing the propagation of

certain higher order modes which would not have propagated in a circular muffler with similar

inlet/outlet configuration. The (2, 1) even mode is the first such mode which propagates in an

ellipse, resulting in a poorer sound attenuation compared to an equivalent circular muffler.
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Figure 3.7: Cross-section view of even mode shapes of ellipse with eccentricity, · · · · · · ·,
Perturbation solution; ——– Exact solution.
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In Table 3.1 and Table 3.2, comparison of natural frequencies for different modes is presented.

It is observed that the natural frequency of an odd mode is higher than the corresponding even

mode. Hong and Kim [30] argued that such behavior was due to the relative time taken by

waves to travel across the axes. Even modes traveling along the minor axis require more time

to propagate; hence a lower natural frequency results. In general, the perturbation results show

good agreement with exact solutions. However, at some higher modes, significant departure

from the exact solutions (e.g. (2, 3) even mode) are observed. This deviation may be attributed to

the fact that assumption of uniformly valid asymptotic expansion might not hold true for these

modes. Approximation to eigensolutions is influenced by geometric perturbations. Therefore,

depending on the nature of asymmetry, only certain higher order modes show significant de-

parture from the exact solution. This behavior is evident from Table 3.1, where the (2, n) even

mode, n > 1, modes show considerable departure in comparison to other higher order modes.

Parker and Mote [75], studied the cause of such divergences for a plate vibration problem in-

volving perturbed eigenfunctions solutions. Using a procedure similar to one presented in this

paper, they showed that the solutions converge. However, natural frequencies up to (1, 3) mode

was reported in their work, rendering any qualitative comparison of the divergence with present

work improbable. Propagation of higher order modes in a muffler adversely affects sound at-

Table 3.1: Comparison of cut-off frequency (Hz) of different even modes at various
eccentricities. Area of cross section is same as a circle of radius 0.09 m for all cases.

Mode FEM Analytical % Diff.
(0, 1) 0 0 –
(0, 2) 2602.2 2604.9 0.10
(0, 3) 4839.4 4846 0.14

(1, 1) 942.4 924 -1.99
(1, 2) 2941.1 2905.7 -1.22
(1, 3) 5147.4 5169.4 0.43

(2, 1) 1781.7 1770.4 -0.64
(2, 2) 3944.5 3936.6 -0.20
(2, 3) 6089.1 6436.9 5.40

(3, 1) 2460.9 2463.6 0.11
(3, 2) 4554.9 4459.8 -2.13
(3, 3) 6657.2 6773.1 1.71
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Table 3.2: Comparison of cut-off frequency (Hz) of different even modes at various
eccentricities. Area of cross section is same as a circle of radius 0.09 m for all cases.

Mode FEM Analytical % Diff.
(0, 1) 0 0 –
(0, 2) 2602.2 2604.9 0.10
(0, 3) 4839.4 4846 0.14

(1, 1) 942.4 924 -1.99
(1, 2) 2941.1 2905.7 -1.22
(1, 3) 5147.4 5169.4 0.43

(2, 1) 1781.7 1770.4 -0.64
(2, 2) 3944.5 3936.6 -0.20
(2, 3) 6089.1 6436.9 5.40

(3, 1) 2460.9 2463.6 0.11
(3, 2) 4554.9 4459.8 -2.13
(3, 3) 6657.2 6773.1 1.71

tenuation. In most muffler applications, design conditions limit the frequency range to first few

higher order modes. Therefore, deviation in higher order eigensolutions does not induce any

significant error in TL curves, as is evident from Figs. 3.3–3.6. However, for acoustically short

mufflers, higher order modes generated at duct discontinuities do not completely decay. These

evanescent modes may interact with plane-wave modes giving rise to TL characteristics different

from a long-chamber muffler.

3.2.2 Parametric study: improved sound attenuation

From Figs. 3.3–3.6, it is evident that the propagation of first few higher order transverse modes

causes significant decrease in sound attenuation characteristics. In most muffler designs, the

propagation of a higher order mode may be suppressed by positioning the inlet and/or the out-

let port at a pressure node corresponding to the particular mode of interest. Hence from a design

perspective, it is important to determine the natural frequency and nodal positions of higher or-

der modes. For rigid circular geometries the radial wavenumber when non-dimensionalized

w.r.t. the radius, yields a constant value which depends on the mode number; thereby providing

a convenient way of determining the natural frequency. For an elliptic geometry, the determi-

nation of the radial wave number is more involved (due to the eccentricity of the geometry). In
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order to aid easy determination of the natural frequency, a curve-fit for the first few higher order

modes is presented in Fig. 3.8. The radial wavenumber is non-dimensionalized w.r.t. the mean

radius a of the perturbed geometry. The variation of the non-dimensional wavenumber is plotted

for eccentricities varying from 0.2 to 0.6. The equation for the curve-fit is given by Eq. (3.34)

(kra)(1,1) = −4.889 exp6 +8.657 exp5−7.341 exp4 +3.027 exp3−1.156 exp2 +0.0937 exp1 +1.841

(kra)(2,1) = −14.786 exp6 +26.310 exp5−22.075 exp4 +9.217 exp3−2.234 exp2 +0.285 exp1 +3.054

(kra)(0,2) = 11.976 exp6−20.727 exp5 +17.418 exp4−7.147 exp3 +1.724 exp2−0.219 exp1 +3.832

(kra)(3,1) = −14.277 exp6 +26.139 exp5−21.647 exp4 +9.261 exp3−2.253 exp2 +0.289 exp1 +4.201

(3.34)

It can be observed from Eq. (3.34) that as the eccentricity approaches zero, the non-dimensional

wavenumber correspond to that of a circle of radius a.

The propagation of the (2, 1) even mode resulted in a decrease in TL for most of the muffler

configurations considered in Fig. 3.2. The propagation of the (2, 1) even mode may be prevented

by positioning the center of the inlet/outlet port on the nodal line (ABCDE or A′B′C′D′E′ on Fig.

3.9) corresponding to this mode. In Fig. 3.10, the locus of the nodal position on the major-axis

(point C or C′ on Fig. 3.9) for the (2, 1) mode is presented. The TL curve for a concentric-inlet-

offset-outlet muffler with the outlet port located at this nodal point is presented in Fig. 3.11. It

can be observed that when the length of the muffler is L = 0.25 m, the TL curve in Fig. 3.11

shows a broadband sound attenuation patter below the cutoff frequency of the (0, 2) even mode,

therefore extending the effectiveness of the muffler beyond the cutoff frequency of the (2, 1)

mode. In the present configuration, when the length of the muffler is L = 0.1 m, the first axial

cutoff frequency is very close to the (2, 1) cutoff frequency; hence no significant improvement is

observed.

δ/a = −2.532 exp6 +4.311 exp5−2.112 exp4 +0.368 exp3 +0.0639 exp2−0.0198 exp1 +0.628

θ == −15.058 exp6 +29.836 exp5−21.099 exp4 +6.458 exp3−1.033 exp2 +0.019 exp1 +0.786

(3.35)

In Fig. 3.9, the curve BFDD′F′B′B corresponds to the pressure node of the (0, 2) even mode. It

can be observed that the (2, 1) and the (0, 2) nodal curves intersect at points B, D, D′ and B′. If the
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Figure 3.8: Variation of the non-dimensional radial wavenumber with eccentricity, for various
even order modes.

outlet port of the muffler is centered at one of these points, and the inlet is located at the center

of the ellipse (or vice versa), then all the higher order modes up to the (0, 2) even mode will get

suppressed, thereby resulting in a broadband attenuation pattern (see Fig. 3.12). In Fig. 3.13, the

radial distance of point B from the center of the ellipse, and its angular position is presented as

a function of the eccentricity. By using a sixth order polynomial, variation of this nodal point

with the eccentricity is given by Eq. (3.35) The suppression of the (2, 1) and the (0, 2) mode may

similarly be extended to a reversing chamber muffler. However, the close proximity of inlet and

outlet port may result in significant increase in backpressure. For the EISO muffler configuration,

the (2, 1) and the (0, 2) mode cannot be suppressed, thereby limiting its use to a lower frequency

range.
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Figure 3.9: Locus of the pressure nodes for the (2, 1) and the (0, 2) even modes: ABCDE,
A′B′C′D′E′ are the pressure nodal lines for the (2, 1) mode; BFDD′F′B′B is the pressure nodal

circle for the (0, 2) mode.
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Figure 3.10: Locus of the (2, 1) pressure nodal point on the major-axis of the ellipse as a function
of eccentricity.

3.3 Numerical implementation: TL in extended tube elliptic chamber
mufflers

The mathematical model developed in the previous section is implemented to study the TL

in an elliptic chamber muffler with extended inlet/outlet ports. The Mode Matching Method
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Figure 3.11: Transmission loss characteristics at different chamber lengths (L) for the
concentric-inlet-offset-outlet chamber configuration; the outlet port is located at the (2, 1)

pressure node on the major-axis.
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Figure 3.12: Transmission loss characteristics at different chamber lengths (L) for the
concentric-inlet-offset-outlet chamber configuration; the outlet port is located at the intersection

of the (2, 1) and the (0, 2) pressure node.

(MMM) discussed in section 2.1 is used for deriving the TL. The length of the chamber, L is

25 cm; the inlet and the outlet ports have diameters, d1 = d2 = 3.3 cm. The chamber has an

eccentricity, e = 0.6, and the semi-major axis, a = 10 cm. In Figs. 3.14-3.16 , the TL for various
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Figure 3.13: Radial distance δ and angular position θ, of the point of intersection of the (2, 1),
and (0, 2) even modes.

duct extends are presented. In order to compare the accuracy of the mathematical model, results

from a finite element (FEM) simulation is also presented. The transverse natural frequencies for

various higher order even modes for the chamber are given in Tables 3.3-3.4. As can be observed

from the figures and the tables, errors due to truncating the eigenfunctions to first order and the

wave numbers to second order are small within the desired frequency range. Some of the higher

order wave numbers (e.g. (2, 2) even mode in Table 3.3), show significant deviation from the

FEM results. However, these higher order modes are cut-on at comparably larger frequencies

and therefore have diminishing effects at lower frequencies, especially in an acoustically long

muffler.

From Figs. 3.14–3.16 it can be observed that the TL curve is characterized by the presence of

domes and resonating peaks. These domes are usually observed in acoustically long expansion

chamber mufflers; the number of repeating domes depends on the cutoff frequency of the first

higher order propagating mode, and on the length of the chamber [24]. The resonating peaks in

the TL curves for an extended chamber muffler results in better sound attenuation in comparison

to the dome-shaped TL curves in expansion chamber mufflers. The location of the resonating

peaks depends on the length of the duct extends. Qualitatively, the annular region surrounding

the extended part of the duct may be imagined as a side branch resonator (of length LB or LD),

thereby leading to a resonating peak corresponding to an odd multiple of a quarter wavelength
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Figure 3.14: TL in an elliptic chamber muffler with extended inlet/outlet ports: L = 25
cm, LB = 10 cm, LD = 0 cm, d1 = d2 = 3.3 cm, e = 0.6, a = 10 cm; ———, Perturbation

result; o o o o , FEM result.
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Figure 3.15: TL in an elliptic chamber muffler with extended inlet/outlet ports: L = 25
cm, LB = 10 cm, LD = 0 cm, d1 = d2 = 3.3 cm, e = 0.6, a = 10 cm; ———, Perturbation

result; o o o o , FEM result.

( f = c/4LB). This observation can be substantiated from Fig. 3.15, where a resonating peak

occurs close to 850 Hz (c = 340 m/s), which corresponds to the resonating peak for a side branch

resonator of length 10 cm. However, the location of the peaks are not exactly at the quarter

wavelength frequencies. The shift in the resonating peaks occurs due the non-decaying effects

of evanescent higher order modes. At low frequencies, these higher order modes have much
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Figure 3.16: TL in an elliptic chamber muffler with extended inlet/outlet ports: L = 25
cm, LB = 5 cm, LD = 5 cm, d1 = d2 = 3.3 cm, e = 0.6, a = 10 cm; ———, Perturbation

result; o o o o , FEM result.

smaller effects on the overall TL, and hence the resonating peaks are much closer to the quarter

wavelength frequencies. At higher frequencies, the evanescent modes considerably shift the

location of the resonating peaks from the quarter wavelength frequencies, as can be observed

from Fig. 3.15.

In the present muffler configuration, the first higher order propagating mode is the (2, 1)

even mode having a cutoff frequency of 1755.7 Hz. The propagation of this mode above the

cutoff frequency results in a dip in the TL curves, thereby affecting the sound attenuation in such

geometries. Except for the (0, 2) mode, the other higher order modes as shown in Figs. 3.14–3.16

are non-propagating, and hence do not affect the TL curve. In comparison, the first higher order

propagating mode in a circular chamber extended muffler is the (0, 2) transverse mode instead

of the (2, 1) mode; the cutoff frequency being approximately 2500 Hz for same average radius.

Therefore, for similar dimensions, the circular cylinder extended muffler is useful over a wider

frequency range that the corresponding elliptic chamber extended muffler. The reason for the

(2, 1) mode being a propagating mode in the elliptic configurations, and non-propagating for

the circular cylinder may be explained in terms of the location of the nodal diameters for these

modes. For an elliptic geometry, the (2, 1) nodal diameters are located at an offset from the center.

The inlet/outlet ports being concentric, there is a net energy transfer by the (2, 1) mode when

they are cut-on. However, the (2, 1) nodal diameters for the cylindrical chamber pass through
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Table 3.3: Natural frequencies of different
even modes for the annular elliptic

chamber

Mode FEM Analytical % Diff.
(0, 1) 0 0 –
(0, 2) 2602.2 2604.9 0.10
(0, 3) 4839.4 4846 0.14

(1, 1) 942.4 924 -1.99
(1, 2) 2941.1 2905.7 -1.22
(1, 3) 5147.4 5169.4 0.43

(2, 1) 1781.7 1770.4 -0.64
(2, 2) 3944.5 3936.6 -0.20
(2, 3) 6089.1 6436.9 5.40

(3, 1) 2460.9 2463.6 0.11
(3, 2) 4554.9 4459.8 -2.13
(3, 3) 6657.2 6773.1 1.71

Table 3.4: Natural frequencies of different
even modes for the elliptic chamber

Mode FEM Analytical % Diff.
(0, 1) 0 0 –
(0, 2) 2410.1 2421.4 0.47
(0, 3) 4546.1 4890.5 7.04

(1, 1) 1004.2 985.4 -1.91
(1, 2) 3118.1 3093.1 -0.81
(1, 3) 5205.9 5177.2 -0.55

(2, 1) 1774.8 1755.7 -1.09
(2, 2) 3873.7 3520.3 -10.04
(2, 3) 5896.3 4394.4 -34.18

(3, 1) 2489.9 2494.2 0.17
(3, 2) 4650 4645 -0.11
(3, 3) 6616.3 6348 -4.23

the center and make an angle of π/4 with each other, resulting a net zero energy transfer for the

concentric inlet/outlet configurations.
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Figure 3.17: TL in an elliptic chamber muffler with extended inlet/outlet
ports: L = 25 cm, d1 = d2 = 3.3 cm, e = 0.6, a = 10 cm; o o o o , LB = 5.5 cm, LD = 0

cm; � � � � , LB = 11.6 cm, LD = 0 cm; ———, LB = 11.6 cm, LD = 5.5 cm.

In Fig. 3.17, a parametric study involving different inlet/outlet duct extends are presented
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for improved attenuation characteristics below the (2, 1) cutoff frequency. The improvement in

the sound attenuation in the TL curves is achieved by determining the length of the duct extends

such that the resonating peaks correspond to the zero attenuation frequencies ( f = multiples of

c/2L) for the muffler. The length of the duct extends based on the quarter wavelength frequencies

act as an initial guess for further refinement. As can be observed from Fig. 3.17, a broadband

sound attenuation is possible by properly selecting the length of the duct extends.

3.4 Summary

A perturbation based approach has been implemented in order to study the TL in moderately

eccentric elliptic chamber mufflers with extended inlet and outlet. The annular regions formed

by the inlet/outlet ports and the chamber are non-confocal, thereby making it impossible to

formulate an exact analytical solutions in terms of the elliptical eigenfunctions. In order to cir-

cumvent this limitation, a regular perturbation method is employed to derive the eigensolutions

for the entire muffler domain. The mathematical formulation for the eigensolutions are general,

and can be employed for any small symmetric/asymmetric distortions from a cylindrical geome-

try. The perturbed eigensolutions derived in this manner are used in obtaining the field variables

(acoustic pressure, acoustic velocity etc.,) within the muffler by using a three-dimensional mode

matching method. The TL for such geometries are characterized by the presence of repeating

domes and resonating peaks. It is observed that the resonating peaks are due to the side-branch

resonator like behavior of the annular portion of the chamber. The location of the peaks may be

approximated by the quarter wavelength frequency of the side-branch resonator. The presence

of the resonating peaks improves the sound attenuation characteristics of the extended muffler.

However, the TL is affected by the propagation of the (2, 1) even mode, thereby limiting its

ability to attenuate sound over a broad frequency range. At frequencies below the (2, 1) cutoff

frequency, the extended muffler may be used to attenuate sound within a desired narrow fre-

quency band by tuning the length of the duct extends. The present approach is restricted to

moderate eccentricities and diverges for e > 0.65. However, useful insights derived from study-

ing the TL at moderate eccentricities may be used in predicting the nature of the TL at higher

chamber eccentricities.
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Chapter 4

Study of wall compliance on the radiation and transmission

The perturbation–based approach derived in the previous chapter is implemented in order to

study the sound radiation from a distorted circular cylinder with compliant surfaces. An acous-

tic point source located inside the shell sets the compliant surface into vibration. The vibrating

surface can be imagined to be an infinite number of point sources. These sources create an exter-

nal acoustic field, as well as effectively modifies the strength of the internal acoustic source. The

method for solving this structure-acoustic coupled problem is based on the eigenfunction expan-

sion of the in–vacuo acoustic and structural modes as suggested by Dowell et al. [45]. The in-

ternal acoustic field in the distorted cavity is approximated by the perturbation–based approach

discussed in the previous chapter. The shell–displacements are quantified by a Rayleigh–Ritz ap-

proach [35]. Using the modal solutions, the structural vibration and the internal acoustic fields

are derived. The effects of the duct distortion on the radiated sound power is discussed.

In the second part of this chapter, the sound attenuation effects of a liquid layer on at the

bottom of a muffler is discussed.

4.1 Structure–acoustic coupled formulation of radiation field from a
distorted shell

4.1.1 Determination of the pressure field inside the cavity

Consider a slightly distorted cylindrical cavity, terminated by rigid cylindrical baffles and sur-

rounded by a fluid. The shell has a volume V, thickness h and length L. The cavity is subject to an

excitation from a point–source of strength Qvolδ(~x−~x′). Assuming harmonic time dependence,

the acoustic pressure inside the cavity may be derived from the inhomogeneous Helmholtz equa-
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tion, and a compliant boundary condition at the shell surface S.

(52 + k2)Pint(~x) = −jρintωQvolδ(~x− ~x0
′)

∂P(~x)
∂η

=

 −jρintωẇ(~x) : on S

0 : on ba f f le

(4.1)

where, Pint is the acoustic pressure field inside the cavity, Qvol is the strength of the point exci-

tation situated at ~x0
′, ρint is the density of the fluid enclosed by the cavity, and k = ω/co is the

wave number. The present formulation may be applied for any small asymmetric perturbation

about the cylindrical shell. However, a moderately elliptic chamber is considered throughout the

mathematical derivation. This simplification is taken partly due to the study of elliptic–chamber

mufflers in the previous sections, and also due to the fact that the Rayleigh–Ritz formulation for

the in− vacuo shell displacements are readily available in the literature. Analogous to Eq. 2.5,

the Green’s function for a point source can be defined that also satisfies a rigid boundary con-

dition. For the perturbed geometry, the Green’s function is expressed in terms of the perturbed

eigenvectors (Eq. 3.33). Using Green’s identities, the internal pressure field may be derived as:

P(~x) =
∫

V′
jρintω QvolG(~x/~x′)dV ′ +

∫
S′

(
∂P(~x′)

∂η
G(~x/~x′)− P(~x′)

∂G(~x/~x′)
∂η

)
dS′ (4.2)

In Eq. (4.2), the assumed form of the Green’s function ensures the normal derivative of G(~x/~x′)

on the shell is zero. The continuity of the particle velocity on the shell surface yields:

∂P(~x′)
∂η

∣∣∣∣
S′
= −jρintωẇ(~x′) (4.3)

where, ẇ(~x′) is the normal velocity at the surface of the shell. The assumed form of the normal

velocity is a weighted sum of some basis functions:

ẇ(~x) =
∞

∑
m=0

bmψm(~x) (4.4)

In Eq. (4.4), an infinite sum of the basis functions should match the boundary conditions. The

mathematical implementation demands that the series must be truncated to a suitable order.

For circular cylinder shell, the basis functions are orthogonal and truncating the series to a

sufficiently large order minimizes the error. In a distorted geometry, the basis functions may not
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be orthogonal, implying that the choice of representing and truncating the displacement field

is not obvious. Diperna and Stanton [38] proved that basis functions that satisfy the governing

equation (here it is the shell equation) is appropriate for minimizing the error. The order of

truncation is determined from a convergence study. By using Eq. (4.3) and Eq. (4.4), the pressure

field inside the cavity, Eq. (4.2) is expressed as:

P(~x) =
NA

∑
n=0

(
jρintωc2

o
ω2

n −ω2 Qvol ϕn(~x0
′)− jρintωc2

o
ω2

n −ω2

∫
S′

ϕn(~x′)
NS

∑
p=0

bpψp(~x′)dS′
)

ϕn(~x) (4.5)

In Eq. (4.5), the acoustic and the structural modes are truncated to order NA and NS, respectively.

The transverse dependence of each acoustic mode is defined by Eq. (3.33) in chapter 3. Assuming

that the end faces of the shell are rigid, the axial modes are of the form cos(pπz/L). Therefore,

each acoustic mode of order n′ is expressed as:

ϕn′(~x)→ φnm(r, θ) cos(pπz/L)

=

[
(Anm + εCnm) ϕ0

nm(r) cos(nθ) + ε
∞

∑
s=0

Bsβs(r) cos(sθ) + ε
∞

∑
j=1

Dnm,j ϕ
1p
nj (r) cos(nθ)

]
cos(pπz/L)

kr,nm = k0r,nm + εk1,nm|ψ=0 + ε2k2,nm
∣∣
ψ=0

ϕn′(~x)→ φnm(r, θ) cos(pπz/L)

=

(
(Ānm + εC̄nm) ϕ0

nm(r) sin(nθ) + ε
∞

∑
s=0

B̄sβs(r) sin(sθ) + ε
∞

∑
j=1

D̄nm,j ϕ
1p
nj (r) sin(nθ)

)
cos(pπz/L)

kr,nm = k0r,nm + εk1,nm|ψ=π/2 + ε2k2,nm
∣∣
ψ=π/2

(4.6)

In a matrix representation, Eq. (4.5) can be written as [47]

Pint(~x) = Φ(~x)T[Za] (qvol − Cb) (4.7)

where, the diagonal matrix [Za](NA×NA)
is the modal acoustic impedance matrix, qvol is the

acoustic source strength vector and Cb is the equivalent acoustic source due the vibrating struc-

ture. The matrix [C]NA×NS represents the mode–coupling between the structure and the acoustic
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duct modes:

Φ(~x) =



ϕ1(~x)

ϕ2(~x)
...

ϕn(~x)
...


NA×1

; qvol =



Qvol ϕ1(~x0)

Qvol ϕ2(~x0)
...

Qvol ϕn(~x0)
...


NA×1

; b =



b1

b2
...

bp
...


NS×1

Zaij =


jρintωc2

o
(ω2

j−ω2)
∫

V ϕ2
j (~x)dV ; i = j

0; i 6= j
; i, j = 1, 2, 3, · · · , NA

Cij =
∫

S
ϕi(~x)ψj(~x)dS i = 1, 2, 3, · · · , NA; j = 1, 2, 3, · · · , NS

(4.8)

4.1.2 Structural response to the internal acoustic field

The shell equation of motion when subject to a mechanical excitation and an acoustic load can

be expressed as [76]

[L]


u(~x, t)

v(~x, t)

w(~x, t)

−
(

ms
∂2

∂t2 + jωλ

)
u(~x, t)

v(~x, t)

w(~x, t)

 = −


Fu(~x, t)

Fv(~x, t)

Fw(~x, t)

+


0

0

P(~x, t)ext − P(~x, t)int


(4.9)

where, u(~x, t), v(~x, t) and w(~x, t) are the longitudinal, tangential and radial displacement; Fu(~x, t),

Fv(~x, t) and Fw(~x, t) are the longitudinal, tangential and radial components of the driving force.

Pw(~x, t) are the acoustic pressure on the shell due to the excitation of the internal and the exter-

nal fluid. L is the shell differential operator that depends on the shell theory considered for the

modeling purpose and λ is a structural damping coefficient.

In order to solve Eq. (4.9), the normal modes and the natural frequencies of the shell need

to be evaluated first. In a circular shell, for every circumferential (n) and axial (m) mode com-

bination, there are three natural frequencies that correspond to the longitudinal, torsional and

flexural vibration modes. For the elliptic shell, the loss of circular symmetry results in mode–

splitting similar to that observed for the acoustic modes in chapter 3, resulting in frequency–pairs
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for n > 0. The equations for the free vibration of an elliptic cylindrical shell of constant thickness

were derived using a Ritz approach by Sewall et al. [35]. Using their approach, the circumfer-

ential dependence of the shell displacements was expressed as a summation of the elementary

trigonometric functions, and the longitudinal dependence was chosen to satisfy the boundary

conditions at the shell faces. Accordingly, the free vibration shell displacement components are

expressed in the following form:

U(i,α)
nm =


u(i,α)

nm (~x)

v(i,α)nm (~x)

w(i,α)
nm (~x)

 =


∑p=0 Anm,i,α

p cos(pθ − πα/2)γmu(z)

∑p=0 Bnm,i,α
p sin(pθ + πα/2)γmv(z)

∑p=0 Cnm,i,α
p cos(pθ − πα/2)γmw(z)

 (4.10)

where, the subscripts (n) and axial (m) are the circumferential and axial modes, i = 1, 2, 3 are

the three vibration modes for each (n, m) mode, α = 0, 1 represents the symmetric (α = 0) or the

anti–symmetric (α = 1) modes. The axial component γ(z) for a simply–supported shell is given

by:

γmu(z) = cos(mπz/L); γmv(z) = γmw(z) = sin(mπz/L) (4.11)

The velocity vectors for forced vibration problem, Eq. (4.9) is expanded in terms of Eq. (4.10)

U̇α,i =
∂

∂t


u(~x, t)

v(~x, t)

w(~x, t)

 = ∑
n

∑
m

bα,i
nmU(i,α)

nm (4.12)

where, the harmonic dependence is implicitly applied to the coefficient bα,i
nm. Substituting Eq. (4.11)

into Eq. (4.9), and using the solution for the free vibration [50], Eq. (4.9) is simplified to the fol-

lowing form:

1
jω

N

∑
n=0

M

∑
m=1

ms
(
ω2

nm −ω2 + 2jζsωnmω
)

bα,i
nmU(i,α)

nm = {F}s + {P}int − {P}ext

where, (N + 1)×M = NS (for each α, i)

(4.13)

In Eq. (4.7) and Eq. (4.12), the symmetric and the anti–symmetric modes are decoupled by ap-

propriate orthogonalization of the circumferential terms, implying that the unknown symmetric

modal coefficients are not influenced by the corresponding antisymmetric coefficients. The su-
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perscript α may therefore, be omitted from the subsequent analysis. Using the same procedure

as the mode matching method, the unknown coefficients bi
nm are obtained from the following

sets of linear–simultaneous equations:

∫
S

1
jω

N

∑
n=0

M

∑
m=1

ms
(
ω2

nm −ω2 + 2jζsωnmω
)

bi
nmU(i)

pq
T

U(i)
nmdS =

∫
S

U(i)
pq

T
({F}s + {P}int − {P}ext) dS

where, p = 0, 1, 2, · · · , N; q = 1, 2, · · · , M;
(4.14)

Similar to Eq. (4.7), the matrix representation of the structural modal coefficients can be expressed

as:
b = YsFs + Ys

(
CTZa (qvol − Cb)

)
− YsZb

where,

Ys pq =
jω(

ω2
p −ω2 + 2jζsωpω

)
ms
∫

S U(i)
n′m′

T
U(i)

nmdS
; p→ nm; q→ n′m′

(4.15)

where, Ys is the modal mobility matrix and Z is the radiation impedance due to the external fluid.

The determination of the radiation impedance term is discussed in the next section. In the above

equation, the structural response may be observed to be comprised of the structural excitation,

the excitation due to the equivalent internal acoustic field, and the inertia and damping offered

by the external fluid.

4.1.3 Determination of the external acoustic field

The external acoustic field Pext due to the acceleration distribution of the distorted cylinder is

obtained form the solution of the Helmholtz equation applicable to an appropriate coordinate

system. In this formulation, since the geometric distortions are small, it is expected that the

far–field pressure distribution due to the distorted cylinder will be similar to that obtained from

an equivalent circular cyinder. Therefore, the pressure field due to the distorted cylinder may

be considered as a weighted sum of all the possible solutions due to a circular cylinder. The

contribution (weights) due to each mode will be governed by the acceleration distribution (ẅ).

When a Fourier transform in z is applied to the Helmholtz equation in the cylindrical coordinates,

the pressure transform is obtained as [51]:

P̃ext(r, θ; kz) = ∑
q

BqH(2)
q (krr) cos(qθ) (4.16)
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where, kr =
√

k2 − k2
z, and H(2)

q is the Hankel function of the second kind. The assumed har-

monic form of the present formulation is exp(jωt − krr). Using this convention, the Hankel

function of the second kind may be shown to be the appropriate form of the solution in order to

capture the propagation of an outward traveling plane wave at large distances from the cylinder.

When kr is imaginary, the negative complex root should be considered for finite solution. Similar

to the pressure transform, the Fourier transform of the surface normal displacement yields:

w̃nm(θ; kz) =
1

jω ∑
n

∑
m

(
∑

p
Cnm

p cos(pθ)Γm(kz)

)
bnm (4.17)

The coefficients Bq is obtained from the velocity boundary conditions. The normal component

of the pressure at the surface of the elliptic shell is given by Eq. 3.4. However, when the external

fluid is light the effect of the fluid loading on the structure is expected to be small, implying

that the O(ε) term may be neglected from Eq. 3.4. Using this assumption, the coefficients Bq is

derived as:

Bq = −jρextω ∑
n

∑
m

[
Cnm

q
Γm(kz)

kr H
′(2)
q (kra)

]
bnm (4.18)

Substituting Eq. 4.18 into Eq. 4.16 and taking the inverse Fourier transform, the external pressure

field is expressed as:

Pext(r, θ, z) = − jρextω

2π ∑
i

∑
j

[
∑

q
Cij

q

∫ ∞

−∞

Γj(kz)H(2)
q (krr)

kr H
′(2)
q (kra)

exp(−jkzz)dkz cos(qθ)

]
bij (4.19)

The external pressure field is substituted into Eq. (4.14) and the inner product with the shell

velocity is taken. In matrix notation, this can be written as:

∫
S

Unm
T {P}ext dS = 〈Pext(r, θ, z), Unm〉 = [〈P11, Unm〉 〈P12, Unm〉 · · · ]1×NS



b11
...

bij
...


NS×1

where,
〈

Pij, Unm
〉
= Zij,nm

= − jρextω

2π

[
∑

q
∑

s
Cij

q Cnm
s

∫ ∞

−∞

Γj(kz)Γ∗m(kz)H(2)
q (krr)

kr H
′(2)
q (kra)

dkz

∫ 2π

0
cos(qθ) cos(sθ)r(θ)dθ

]
(4.20)
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The above equation is the acoustic radiation impedance on the shell due to the external fluid

loading. The radiation impedance for a cylindrical shell was derived by Stephanishen [50]. In

the limit of a cylindrical shell the summation over q and s in Eq. (4.20) reduces to a single term

due to the orthogonality of the cosine function, and exactly matches with the form derived in the

literature [50, 53]. This orthogonality condition also implies that although the modal coefficients

b of different longitudinal wavenumber (j and m) are coupled, coupling of modal coefficients

with different circumferential wavenumber is not possible. However for a perturbed cylinder, the

dependence of the radius of curvature r on the circumferential perturbation allows for coupling

of different circumferential orders as well. The power radiated by the shell is obtained as:

Prad =
1
2

Re ∑
α

∑
i

(
b∗TZb

)(α,i)
(4.21)

4.2 Numerical verification: Radiation from simply–supported
cylindrical shell

The present formulation was verified with existing work by Laulagnet and Guyader [53]. Forced–

structural excitation of a simply–supported circular cylindrical shell was considered in their

work. A steel shell of 1.2 m length (L), 0.4 m radius, and 3 mm thickness was excited at a

location of 2L/5 from one of the end faces. The structural damping coefficient was 0.01. In

order to realize the same conditions in the present formulation, the internal acoustic source and

coupling terms (qvol and C), and the eccentricity e, were zero. The radiated power from the shell

is presented in Fig. 4.1. It may be observed that the present numerical implementation matches

well with the prior work, except for the shift in the peaks. This shift may be attributed to the

differences material properties that were not mentioned in [53].

4.3 Numerical implementation: Radiation from an elliptic shell

The problem of interest is an elliptic steel shell of length L = 1.2 m. The eccentricity of the

shell is e = 0.6. The major and the minor axis of the shell is such that the area of cross section

corresponds to that of a circle of radius 0.2 m. The shell is excited by an acoustic point source

located at the geometric center of one of the end faces. The ends of the shell are assumed to

be simply supported and are terminated in infinitely long baffles. The shell is assumed to be
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Figure 4.1: Validation of the perturbation–based sound radiation model when eccentricity,
e→ 0; ——–, present formulation; ——–, Laulagnet and Guyader[53]

surrounded by air. The following material parameters are employed in the present formulation:

ρair = 1.21 kg/m3 ρstr = 7850 kg/m3 cair = 343 m/s

h = 1.5 mm E = 210 GPa µ = 0.3 ζ = 0.01

In Fig. 4.2, the radiated sound power level for the elliptic cylinder is compared to an equiv-

alent circular cylinder of same area of cross–section. From the figure, it can be observed that

the radiated sound power from the elliptic cylinder is approximately 10-15 dB higher than the

corresponding circular cylinder. At low frequencies the two curves overlap, which is expected

because higher order acoustic or structural modes are not excited at these frequencies. At a

frequency of about 150 Hz, the (2, 1) structural mode in the elliptic duct is excited by the plane

acoustic wave, resulting in much higher sound radiation when compared to the cylindrical shell.

The excitation of the higher order structural mode by a plane wave is termed as mode–coupling

and has been discussed by Yousri and Fahy [58] (see Eq. 7 in [58]). A qualitative understanding

of the mode–coupling effect may be realized by considering Eq. (4.8) and Eq. (4.10). In Eq. (4.10),

the (2, 1) structural mode for the distorted shell has a breathing mode contribution implying

that the coefficient Cn=2,m,i, sym
0 is non–zero. For an elliptic shell, the radius of curvature may

be approximated as r ≈ R + ε cos(2θ). Therefore, the coupling matrix defined by Eq. (4.10) will
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Figure 4.2: ——–, Sound power level from an elliptic shell with simply–supported boundary
conditions, e = 0.6, L = 1.2 m; –o–o–o–, cylindrical shell of same area of cross-section

(r = 0.2 m) as the elliptic shell

have a non–zero component when the surface intergral is performed over the (2, 1) structural

mode and the plane– wave acoustic mode. This non–zero component acts on the generalized

force term qvol through Eq. (4.15), yielding a non–zero value for b(2,1). The (2, 1) structural mode

has a peak displacement near its resonating frequency (≈ 231Hz), which lead to a peak in the

radiated power response as seen in Fig. 4.2.

In order to further validate the mode–coupling effects, a hypothetical situation is considered

whereby the shell is treated as a circular cylinder, while the elliptic boundary is considered for

the internal acoustic field. The sound power level for such problem is presented in Fig. 4.3. In

this new configuration, the plane acoustic wave no longer excites the (2, 1 ) or the (4, 3) structural

modes, yielding a radiation power level similar to the equivalent cylindrical–shell.

The ellipticity of the shell allows for the propagation of the higher order (2, 1) acoustic mode

as demonstrated in chapter 3. The propagation of this mode strongly affects the sound radiation

inasmuch as a difference in 30–35 dB is observed in Fig. 4.1. The excitation of the higher order

acoustic modes increases the strength of the generalized source term, and also causes higher–

order mode coupling effects, thereby resulting in increased sound power levels in comparison to

the cylindrical shell. The effect of the propagating (2, 1) acoustic mode is verified from Fig. 4.4. In

this figure, the shell is considered as an ellipse; the internal acoustic field is due to a point source

inside an equivalent circular cylinder. The circular cylinder approximation for the acoustic field
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Figure 4.3: Sound power level from an elliptic shell with simply–supported boundary
conditions:——–, equivalent cylindrical shell is considered for the structure, e = 0.6, L = 1.2 m;

–o–o–o–, cylindrical shell of same area of cross-section (r = 0.2 m) as the elliptic shell
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Figure 4.4: Sound power level from an elliptic shell with simply–supported boundary
conditions:——–, equivalent cylindrical is considered for the internal acoustic field,

e = 0.6, L = 1.2 m; –o–o–o–, cylindrical shell of same area of cross-section (r = 0.2 m) as the
elliptic shell

prevents the propagation of the (2, 1) mode, resulting in lower sound radiation. Figure 4.4 also

provides the relative influence of the shell distortion on the radiated sound due to a plane wave

excitation only. At frequencies below 800 Hz, it may be observed that the ellipticity of the shell

results in approximately 15–20 dB difference in the radiated sound power level when compared

to the equivalent cylindrical shell.
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4.4 Effects of a liquid layer on the TL in a duct

The final section of this dissertation is focused on studying the effects of a liquid on the overall

sound attenuation in a duct. The presence of a liquid phase is a muffler or a duct may be a com-

mon occurrence due to accumulation of condensate, or due to the presence of a lubricating oil.

The present objective is to understand the effects of the liquid phase on the sound attenuation.

Unlike previous studies, a rectangular duct is considered for the present analysis. The limitation

of the analytical solution to rectangular domain is due to the fact that for circular or elliptical

ducts the method of separation of variable may not be applied when there is a discontinuity

along a non–constant basis.

4.4.1 Mathematical modeling

Consider a rigid square cavity of length L and edge a as shown in Fig. 4.5. The cavity is comprised

of an air–water system. The height of the water layer is h. For a square cavity, the solution to the

Helmholtz equation for each phase i is expressed as:

Pair(x, y, z) =
∞

∑
n=0

∞

∑
m=1

(
A+

air, nm exp(−jknm, zz) + A−air, nm exp(jknm, zz)
)

cos(nπx/a) cos(kair
nm, y(a− y))

Pliq(x, y, z) =
∞

∑
n=0

∞

∑
m=1

(
A+

liq, nm exp(−jknm, zz) + A−liq, nm exp(jknm, zz)
)

cos(nπx/a) cos(kliq
nm, yy)

(4.22)

The above form of the solutions ensures that the rigid boundary conditions are satisfied. The

axial wavenumber knm, z is expressed in terms of the transverse wavenumbers as:

k2
nm, z = k2

air − (nπ/L)2 − (kair
nm, y)

2 = k2
liq − (nπ/L)2 − (kliq

nm, y)
2 (4.23)

where, kair = (ω/cair) and kliq = (ω/cliq). It is assumed that the acoustic pressure and the

velocity are the same at the interface y = h, which yields the following dispersion relation:

kair
nm, y tan

(
kair

nm, y(a− h)
)
+

ρair

ρliq
kliq

nm, y tan
(

kliq
nm, yh

)
= 0 (4.24)
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As ρair/ρliq << 1, the second term in Eq. (4.24) can be neglected as a first approximation.

Therefore the transverse wavenumber in the y direction is given by:

tan
(

kair
nm, y(a− h)

)
= 0

or, kair
nm, y = mπ/(a− h); m = 0, 1, 2, · · ·

(4.25)

The above equation is the characteristic equation for a rigid chamber of height (a− h), implying

that the liquid layer effectively acts as a rigid surface and has no influence on the sound atten-

uation. A better approximation of the effects of the liquid layer is obtained by taking a higher

order approximation. Since the effects of the second term in Eq. (4.24) is small, the higher–order

approximation to the wavenumber may be expressed as:

kair
nm, y ≈ mπ/(a− h) + εk; m = 0, 1, 2, · · · (4.26)

where, εk is a small approximation to the leading order term. By substituting Eq. (4.26) into

Eq. (4.24) and by expanding the tan functions for small arguments, εk is expressed as:

εk ≈
√

ρairkair tanh(kairh)
ρliq(a− h)

; m = 0;

εk ≈ ρairkair tanh(kairh)
ρliqmπ

; m 6= 0;

(4.27)

From the above equation, and from Eq. (4.23), it is evident that even the fundamental acoustic

mode is dispersive resulting a non–uniform pressure field along the y axis. Since the differences

in density of the liquid and the gas phase are large, the deviation from the non–dispersive effects

may be considered as negligible.

4.4.2 Determination of TL and experimental validation

The mode matching method was employed for a square duct with edge a = 0.108 m, length

L = 0.292 m as shown in Fig. 4.5. The inlet and outlet ports were located at the center of

the end-faces. For numerical simplicity, the ports were taken to be square sections with edge

a1 = 0.023 m. In order to validate the numerical results, a test muffler was made from acrylic.

In the test muffler, the inlet and outlet ports were circular, with same area of cross–section as
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the square ports. In the numerical model, two approaches were followed. In the first approach,

the MMM was employed over the entire muffler domain (air and the water) using the dispersion

relation from Eq. (4.24). In the second approach, the liquid layer was considered as rigid, thereby

changing the aspect ratio of the geometry as shown in Fig. 4.5(b). In both of the approaches, the

TL was observed to the same and were not affected by the liquid layer (except for the change in

the effective size of the muffler).

Figure 4.5: Schematic of the cross–section of a square duct of edge a. (a) The duct is filled with
water upto a height of h; (b) Equivalent duct cross–section when the liquid layer is treated as a

rigid layer

The above observation was further verified through experiments based on the ASTM E2611-

09 standard method for measuring the TL [77]. A schematic of the experimental apparatus as

shown in Fig. 4.6 consisted of an impedance tube configuration, where the muffler was subjected

to a broad–frequency noise from a source. A weakly anechoic termination was imposed at the

other end of the tube. The measured reflection coefficient due to this termination is shown

in Fig. 4.7. Two microphones were placed at the upstream and at the downstream locations

in order to decompose the incident and the reflected waves. The transfer function between the

microphones was utilized in order to determine the TL. In Figs. 4.8–4.10, the comparison between

the numerical and the experimental results are presented for different heights of the water layer.

The numerical results are based on the GFM applied to the equivalent geometry (Fig. 4.5(b)).

The experimental results agree with the numerical results, validating the observation that the

dispersive nature of the fundamental acoustic mode does not affect the TL, and that the liquid

layer only modifies the geometry.
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Figure 4.6: Schematic diagram of the experimental apparatus for measuring the TL
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Figure 4.7: Measured reflection coefficient at a downstream location in the test apparatus
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Figure 4.8: Transmission loss in a square muffler of edge a = 0.108 m, length, L = 0.292 m. The
height of water level, h = 0 m. ——–, Analytical model based on the equivalent geometry in

Fig. 4.5(b); –o–o–o–, Experimental results
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Figure 4.9: Transmission loss in a square muffler of edge a = 0.108 m, length, L = 0.292 m. The
height of water level, h = 0.023 m. ——–, Analytical model based on the equivalent geometry in

Fig. 4.5(b); –o–o–o–, Experimental results
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Figure 4.10: Transmission loss in a square muffler of edge a = 0.108 m, length, L = 0.292 m. The
height of water level, h = 0.029 m. ——–, Analytical model based on the equivalent geometry in

Fig. 4.5(b); –o–o–o–, Experimental results

4.5 Summary

The sound radiation from an elliptic duct of eccentricity e = 0.6, when excited by an internal

acoustic field was studied. Using the perturbation based method, the internal acoustic field was

determined for a simply–supported elliptic shell. The shell displacements were governed by the

shell equations applied to an elliptic geometry. The external loading due to the ambient fluid

was also considered in the present formulation. The shell displacements were coupled with

the internal acoustic field. By solving for these two coupled equations, the external radiation

from the shell was quantified. The sound radiation from the elliptical shell was influenced by

two primary factors. At frequencies lower than the cutoff frequency of the first higher–order

propagating acoustic mode, the plane acoustic wave was observed to excite the shell higher–

order mode. The excitation of these modes increased the radiated power by 10–15 dB. Near the

cutoff frequency of the (2, 1) acoustic mode, the structural radiation was observed to be about

30–35 dB higher than that of a cylindrical shell of comparable dimensions. This observation leads

to the conclusion that the effects of higher–order propagating acoustic modes are more dominant

in sound radiation from such shells.

The second part of the chapter was focused on studying the effects of a liquid layer on the TL

in a muffler. A dispersion equation for the transverse wave number suggested that although the

fundamental mode was dispersive, the effects of the liquid layer is weak and may not affect the
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TL. It was observed from the dispersion relation that the liquid layer essentially performed like a

solid boundary. transmission loss analysis based on a numerical approach further strengthened

the idea that indeed the liquid layer altered the size of the muffler, and had no other effects. An

experimental setup based on the ASTM standard method for measuring TL was developed to

verify the numerical model. Close agreement between the experimental and numerical solutions

proved that the presence of the liquid layer may be accounted by only altering the size of the

muffler.
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Chapter 5

Conclusions

The present work explored an analytical treatment of the sound transmission and radiation from

ducts that are slightly distorted from the cylindrical geometry. Such distortions are commonly

observed in different noise attenuation as well as noise generation devices such as mufflers and

flow–ducts.

The first part of this work focused on the study of sound attenuation in muffler geometries,

especially mufflers having circular or elliptical cross–sections. The sound attenuation character-

istics of a muffler is dependent on various factors like shape and size of the muffler, orientations

of inlet/ outlet ports, and number of inlet/outlet ports. In order to understand the effects of

these parameters on the transmission loss (TL), a general procedure based on three dimensional

Green’s function was developed. The Green’s function method (GFM) utilized the properties of

the Green’s identities by treating the inlet and the outlet ports as uniformly vibrating pistons.

The assumption of uniformly vibrating piston sources implied that higher–order modes were

suppressed at the inlet and at the outlet. The GFM was observed to be a simplification of the

Mode Matching Method (MMM). By forcibly setting the higher–order contributions at the in-

let/outlet, the MMM was observed to yield exactly the same TL characteristics as the GFM. The

error due to the simplification was observed to be extremely small for long–chamber mufflers.

For short mufflers, the differences in the TL was observed as a shift in the resonating peaks.

While the GFM was suitable for most muffler geometries where the method of separation of

variables are applicable, presence of discontinuity inside the muffler such as duct extensions

could not be analyzed using the GFM. On the other hand, the MMM could not be employed for

mufflers having side outlets.

Using the GFM, TL for multiple inlets/outlets configuration was validated through existing

TL results in the literature. The method was found to be flexible as both the SIDO (single–inlet/

double–outlet) and the DISO (double–inlet/ single–outlet) configurations could be studied by
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making small changes to the mathematical formulations. Parametric studies were performed to

understand the effect of various inlet and outlet configurations on the TL. Deriving knowledge

from single inlet/outlet mufflers, broadband attenuation characteristics were observed by proper

orientation of inlets/outlets in the SIDO and DISO mufflers. Minor loss in TL was observed for

the SIDO muffler when compared to an equivalent single outlet muffler. For the DISO muffler,

depending upon the phase difference between the incoming waves, and the orientation of the

ports, yielded in a TL curve that exactly matched the TL curve for the corresponding SIDO

muffler. This similarity was a consequence of the principle of reciprocity. It was also observed

that a pressure release surface could be achieved for certain DISO muffler configurations. Thus,

complete attenuation of sound was possible in a DISO muffler. In the elliptic chamber muffler,

unlike the cylindrical chamber the (2, 1) even mode was observed to be a non-evanescent mode

for most muffler geometries. The propagation of this mode beyond the cutoff frequency resulted

in poor TL at higher frequencies. In this respect, the elliptic chamber mufflers may be considered

as inferior to cylindrical chamber mufflers.

It can be inferred from the study of elliptic mufflers, that the loss of circular symmetry

results in the propagation of certain higher–order modes that are essentially suppressed for

the cylindrical configuration. The shape of these eigenmodes depends on the nature of the

boundary asymmetry. Motivated by the need to quantify the effects of boundary asymmetry on

the overall sound attenuation, a perturbation–based approach was implemented for studying the

TL is slightly distorted cylindrical muffler geometries. The perturbation approach was validated

for an elliptic muffler of eccentricity e = 0.4 ∼ 0.6. Within the moderate eccentricity limits, the

perturbation method compared well with the exact solutions. Improved sound attenuation was

observed for the elliptical muffler by suitably locating the inlet/outlet ports such that their center

coincided with the nodal diameters of the (2, 1) and the (0, 2) modes. The perturbation method

was them employed for studying the TL in an extended chamber elliptic muffler. The presence

of resonating peaks in addition to the dome like behavior in the TL was quantified through this

work. The analytical treatment of elliptic geometries with duct extensions have not been reported

in the past, primarily because of the fact that the method of separation of variables may not be

applied for non–confocal geometries. The perturbation based approach was validated with FEM

results in ANSYS and were observed to be in good agreement.

In the second part of the dissertation, the sound radiation from distorted ducts when excited
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by an internal acoustic field was studied. Using the perturbation based method, the internal

acoustic field was determined for a simply–supported elliptic shell. The compliant shell–surface

was shown to act like acoustic sources and modified the internal acoustic field. The strength

of this source depended on the shell displacement. The shell displacement was governed by

the shell equations applied to an elliptic geometry. A Rayleigh–Ritz approach implemented by

Sewall et al. [35] was employed for determining the shell displacements. The external loading

due to the ambient fluid was also considered in the present formulation. The shell displacements

were coupled with the internal acoustic field. By solving for these two coupled equations, the

external radiation from the shell was quantified. Mode–coupling, whereby higher–order shell

modes were vibrated due to plane–wave acoustic field was observed to increase the shell radi-

ation by approximately 10-15 dB. Moreover, the propagation of higher–order acoustic modes

above their cutoff–frequency was observed to increase the sound radiation by as much as 30-35

dB.

The final part of the dissertation was focused on studying the effects of a liquid layer on

the TL in a muffler. The presence of a liquid layer in a muffler is a common occurrence, for e.g.

an oil layer in a compressor, or in an exhaust system. The presence of this layer of liquid may

be considered as a compliant surface, potentially altering the sound transmission. A dispersion

equation for the wave number suggested otherwise. It was observed from the dispersion relation

that the liquid layer essentially performed like a solid boundary. transmission loss analysis based

on a numerical approach further strengthened the idea that indeed the liquid layer altered the

size of the muffler, and had no other effects. An experimental setup based on the ASTM stan-

dard method for measuring TL was developed to verify the numerical model. Close agreement

between the experimental and numerical solutions prove that the presence of the liquid layer

may be accounted by only altering the size of the muffler.
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