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ABSTRACT 

 

 

The introduction of tension as the predominant means of load transfer offers the potential for using 

less material to carry more loads. Cable domes are such unconventional structures based on the 

tensegrity principle. They rely on the assembly of prestressed cables in equilibrium with vertical 

struts. Members are stressed purely in axial tension or compression and as a consequence, the 

materials are used efficiently. Not much has been written about the structural design of cable 

domes. This study was based on an extensive review of technical literature and direct 

correspondence with the designers of cable domes. The contributions of this study will benefit 

both structural designers and academic researchers interested in the design of roofs for novel 

structures such as large arenas and stadia.  

 

The primary objective of this dissertation was to provide both an intuitive and mathematical 

understanding of the structural behavior of radial-type cable domes subject to various loadings, 

and to determine their limit states. An accompanying objective was to find improved methods for 

their design and construction. To accomplish these goals, a series of twelve 400 ft. span domes 

with varying depth-to-span ratios, number of polygon sides and number of polygonal hoops were 

examined. Three limit states were evaluated, namely 1) buckling of struts, 2) serviceability, and  

3) rupture of cables. The main cause of instability was established and a potential design solution 

in the form of enhanced struts has been recommended.  

 

The study was made efficient by the use of a two-dimensional model. For dome designs governed 

by axisymmetric loads, the planar model was sufficient for member design. The analysis procedure 

was further streamlined using an influence surface analysis (based on the Müller-Breslau principle) 

that helped to identify governing load combinations for the design of members. Domes vulnerable 

to wind uplift were recognized and prestressing force levels were increased accordingly. As such, 

the findings from the influence surface analysis proved to be a good indicator of the adequacy of 

prestressing forces assigned to a dome. Further, the results revealed that additional prestressing 

forces were necessary to meet the serviceability criterion, beyond simply ensuring that cables 

remained in tension under all loading conditions. 

 

The most important geometric parameters for structural design were identified as: the number of 

sectors, the number of polygonal hoops, hoop radii, rise-to-span ratio, and depth-to-span ratio. 

They greatly influenced the amount of prestressing forces required for the overall stability of a 

dome. The results showed that the radial stiffness of a hoop cable is inversely proportional to the hoop 

radii and the number of sectors. Domes with smaller depth-to-span ratios required higher prestressing 

forces for stability and to achieve a desired elevation (shape). 

 

The critical loads for strut members were determined using the Stiffness-Probe Method. The 

method gave a physical understanding of the loss of capacity in struts due to applied axial loading. 

The use of prestressed stays increased a strut’s buckling capacity to more than four times when 

compared with the critical loads of struts without stays. Consequently, stayed-struts are 

recommended as an alternative design solution for enhancing the load-carrying capacity of cable 

domes.  
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The erection procedure for cable domes typically constitutes 40% of the project cost. Noting that 

the strut forces were relatively small when compared with the diagonal cable forces, prestressing 

the struts as part of the erection process may prove to be an economical alternative for reducing 

the overall project cost. This approach has been proposed for future study.  

 

For well-designed cable domes, i.e., domes that are adequately prestressed and whose cables 

remain in tension under all loading conditions, the study revealed that the cause for potential dome 

demise is usually due to buckling of struts or displacements exceeding the acceptable ranges for 

serviceability. As these limit states were found to occur well within the elastic range of the 

members, the findings justify the use of elastic design for cable domes. 
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List of Symbols 

 

The following symbols are used in this dissertation:    

          

Symbol  Description 

A   cross-sectional area of a member  

Ce exposure factor for snow loads 

Cs compression force in vertical strut or slope factor for snow load 

Cn concentrated load at the bottom of strut 

Cp external wind pressure coefficient 

Cpi internal wind pressure coefficient 

Ct Thermal factor for snow loads 

D dead load or dome diameter  

d depth of the lowermost hoop cable measured from the eave 

E modulus of elasticity or member elongation  

e member elongation  

F externally applied load 

FD tension force in diagonal cable  

Ff force in cable stay at buckling (cable-stayed strut) 

Fi force in cable stay due to prestress only (cable-stayed strut)  

f rise of dome from the eave for wind pressure calculations or strand stress  

fy yield stress of steel strands  

fpu rupture stress of steel strands 

G gust factor 

H horizontal reaction at compression ring 

h height of vertical strut  

hD height from ground to eave of the dome 

I importance factor for snow load calculations or moment of inertia 

K structure stiffness matrix 

Ke axial stiffness of the strut in a cable-stayed strut 

Kd wind directionality factor 

Kca axial stiffness of the cross-arms in a cable-stayed strut 

Ks axial stiffness of the stays in a cable-stayed strut 
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Kz velocity pressure coefficient 

Kzt topographic factor 

k member stiffness matrix or support factor for strut slenderness calculations 

ke elastic stiffness matrix 

kg geometric stiffness matrix 

L span of dome or length of member 

ΔL change in length of hoop cable 

l deformed length of a member 

lc half-length of strut in a cable-stayed strut 

lca length of cross-arms in a cable-stayed strut 

ls length of stays in a cable-stayed strut 

m direction cosine (cos θ) 

N number of interior polygonal hoops or internal member force 

n number of sectors (or sides) of polygon, direction cosine (sin θ), or internal 

member force  

P pretension force in diagonal or externally applied axial load  

Pi force in strut due to prestress only (cable-stayed strut) 

Pcr Euler (elastic) buckling load  

pf flat roof snow load 

pg ground snow load 

Q internal member force 

q design wind pressure 

qi internal pressure due to wind 

R radius of hoop or residual force 

ΔR change in length of radial cable 

r rise above the compression ring 

S snow load  

Ss symmetric snow load 

Sas asymmetric snow load 

TH tension force in hoop cable  

TCR radial tension force in compression ring 

Tf force in stays at buckling (cable-stayed strut) 

Ti force in stays due to prestress only (cable-stayed strut) 
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TR tension force in ridge cable  

Tr radial tension in hoop cable  

TV tension force in valley cable  

u nodal displacement in the horizontal direction  

Ui displacement of node  

v nodal displacement in the vertical direction 

V vertical support reaction or basic wind speed 

VH volume of hoop cables  

VR volume of equivalent radial cables in an “all-radial” dome 

W vertical concentrated load or self-weight of member(s) 

Ws symmetric wind suction 

Was asymmetric wind suction 

x, y nodal coordinates in the deformed configuration 

X, Y nodal coordinates in the undeformed configuration 

Z global vertical axis in SAP2000 

β angular distortion between the ridge cables due to torsional movements 

εp prestrain in diagonal   

εu ultimate strain of strands 

εy yield strain of strands 

Δ unit deformation given to a member or change in length of a member  

δ vertical nodal displacement caused by the unit deformation of a member or 

influence coefficient. 

γ ratio of hoop cable and equivalent radial cable volumes 

γt density of HSS steel material in a stayed column 

γca density of cross-arm material in a stayed column 

γsc density of stay cable in a stayed column 

υ 

σ 

Poisson’s ratio 

axial stress 

  

Subscripts Description 
  

as asymmetric 

ca cross-arm 

cm critical member 

D1-D4 diagonal cable (to outer) 

e elastic 

ext external 

H1-H3 hoop cable (inner to outer) 

h horizontal component 
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int internal 

p prestress 

R radial cable or radial direction 

R1-R4  ridge cable (inner to outer) 

S1-S3 vertical strut (inner to outer) 

s symmetric   

sc stay cable 

T hoop cable or hoop direction 

V valley 
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CHAPTER 1 OVERVIEW 

 

Tensegrity structures are prestressed, pin-jointed systems of continuous cables and discontinuous 

struts. Prestress assigned to the cables gives structural integrity to the system (Figure 1.1). Hence, 

the term ‘tensegrity’ was coined by R. Buckminster Fuller (Fuller 1962), combining the words 

‘tension’ and ‘integrity.’ However, the construction of the first true tensegrity structure is attributed 

to Kenneth Snelson in 1948. His patent (Snelson 1965) described tensegrity as “…. a class of 

structure possessing, what may be termed discontinuous compression, continuous tension 

characteristics.” Tensegrity structures have infinitesimal mobility and obtain their structural 

stiffness by means of prestress, at the expense of material strength of a member rather than 

increased member sizes (Kuznetsov 1991).  

In tensegrity structures, the predominant means of load transfer is via tension. As a consequence, 

tensegrity structures are light and flexible. Their flexibility renders applications in adaptive, outer-

space and deployable structures. 

 

Figure 1.1  Kenneth Snelson Expo ’70 Osaka, stainless steel 33 x 16 x 16 ft. Collection: 

Japan Iron and Steel Federation, Kobe, Japan (Permission to use granted on 

02/07/2014 by Mr. Kenneth Snelson)  
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Among terrestrial structures, the tensegrity principle has found its most successful application in 

cable domes. Cable domes are tensegrity-like structures, in the sense that they are a network of 

cables and struts. Conventional domes made of reinforced concrete are heavy and resist forces 

mainly through compression, while cable domes are light and transfer loads predominantly through 

tension. The latter are stabilized by prestressing diagonal cables to support external loads while 

limiting deflections. Carrying loads in tension is advantageous as the permissible stress in cables 

is governed by strength and not by stiffness considerations. Moreover, as opposed to conventional 

domes, cable domes are made from translucent fabric, which allows for naturally bright interiors. 

1.1 Evolution of Cable Domes 

Air-supported domes and cable domes are the two types of tensile domes, which have been used 

as roofs for sports arenas and stadia. Air-supported domes were Geiger’s first lightweight solution 

for roof stadia. Access to the roof and rigging for stage events was limited. A significant drawback 

was the roof’s ability to support heavy snow loads with internal pressure. They demanded 

complicated and costly snow-melting systems. Such problems were witnessed at the Hubert H. 

Humphrey Metrodome in Minneapolis, MN and the Silverdome in Pontiac, MI. Another problem 

was that the internal air-pressure had to be maintained for the working of the special revolving 

doors and vehicular airlock doors (Gardner 1987). Geiger was familiar with Buckminster Fuller's 

tensegrity structures. He simplified Fuller's cable-net and made the dome shallower and more 

aerodynamic with the roof weighing only slightly more than his pneumatic roofs. The drawbacks 

in air-supported domes were eliminated with the advent of cable domes where catwalks were used 

to provide access to the roof and rigging capabilities were improved. Since the cable dome roof 

does not require air pressure for stability, there is no need for special doors and control systems 

(Gardner 1987).  

1.2 Characteristics of Cable Domes 

Before introducing cable domes, it is important to recognize the fundamental difference in the 

structural characteristics of a prestressed cable-truss and a cable dome. Cable trusses are double-

cable systems developed to control wind-induced flutter that make simple suspended cables 

problematic (Schodek 2014). In the double-convex cable trusses of Lev Zetlin’s Utica Auditorium 

completed in 1959 (Figure 1.2a, Bethlehem Steel Company, 1968), the lower cables consist of 72 
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zinc-coated, prestretched, 2-in. strand assemblies that were prestressed to 175 kips; they serve as 

the primary load-resisting members transferring loads via a catenary-like action. The upper cables 

consist of 72 zinc-coated, prestretched 1-5/8-in. strand assemblies and are prestressed to 135 kips 

(Bethlehem Steel Company, 1968). The upper cables are ancillary members for gravity load 

resistance but essential to resist uplift forces. The vertical members between the top and bottom 

chords resist forces through compression. Cable trusses may also be double-concave, where the 

top chord has a catenary-profile while the bottom chord has an arch-profile. Here, the role of the 

top and bottom chord members are the reverse of that shown in the double-convex cable-truss. The 

vertical members resist in this case forces through tension. Irvine (1981) extensively discussed the 

static and dynamic response of cable trusses, as well as their lateral stability.   

In cable domes, on the other hand, the bottom chords are substituted by radially placed diagonal 

cables and circumferentially placed polygonal hoop cables (Figure 1.2b). Structurally, this makes 

the cable-strut system three-dimensional with the hoop cables providing the required torsional 

stiffness. The main members of a cable dome are the diagonal cables, hoop cables, ridge cables, 

vertical struts and the central hub with horizontal tension rings. The radial thrusts from the cable-

trusses are equilibrated by the compression ring in lieu of heavy anchorage mechanisms. As a 

result, the walls or columns only need to be designed for vertical loads. Because prestressed cables 

are ten times stronger in tension compared to mild steel in compression the cable dome roof weight 

is likely to be one-tenth the weight of a compression dome for the same span (Gardner 1987). 

With reference to stiffness, Hanaor (1988) classified structures as geometrically 

rigid and geometrically flexible. Geometrically rigid structures are capable of supporting loads in 

their unloaded geometry; their deflections under load are elastic and therefore relatively small. 

Conventional bar structures are considered to be geometrically rigid. Geometrically flexible 

structures possess infinitesimal mechanisms1; they change their geometry to fit the load (think of 

a stretched cable loaded transversely). Cable and membrane structures are typically geometrically 

flexible and are subject to larger deflections under loads when compared to geometrically rigid 

structures. As such, geometrically rigid structures are typically surfaced with a stiff roof covering 

such as metal sheeting, while geometrically flexible structures are usually covered by flexible 

                                                 

1 An infinitesimal mechanism is a mechanism having only infinitesimal (i.e. not finite) motion. 
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membrane (which may or may not be part of the main load bearing structure). Cable domes are 

geometrically flexible and prestressable structures that possess infinitesimal mechanisms (Hanaor 

1988, Kuznetsov 1991). Adequate prestressing forces are assigned to eliminate the mechanisms.  

 a)   b)   

 

Figure 1.2 (a) Typical cable truss (Utica Auditorium); and (b) Typical cable dome system  

 

1.2.1 Types of Cable Domes 

Cable domes were first popularized first by David Geiger, and later by Matthys Levy. The main 

difference between the Geiger dome (radial) and the Levy dome (triangulated) is in the 

arrangement of the diagonal cables which affects the torsional stability of the roof system.  

Radial-type (Geiger Dome) 

The first radial-type cable domes was built in Korea with two hoops (N = 2), 16 polygon sides (n 

= 16), span L = 394 ft., rise r = 32 ft. and depth d = 40 ft. Such a dome is designated as 

N2:n16:L400:r/L0.08:d/L0.10. In radial-type cable domes, the vertical struts and diagonal cables 

lie in the same vertical plane (Figure 1.3b). The diagonal cables provide radial and axial stiffness 

while the hoop cables provide the necessary transverse stiffness. Inward radial forces are 

transmitted to the perimeter and subsequently brought to equilibrium by a compression ring. The 
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ridge cables provide stability to the vertical struts and support the fabric membrane roof. Geiger’s 

rationale for not transversely bracing the tops of the struts was to take advantage of the flexibility 

(due to large deformations) that could be accommodated by the roof membrane (Campbell et al., 

1994). Also, the lower rise was cost-efficient. When compared to conventional compression domes, 

Geiger’s low aspect ratio tension system benefitted from considerably less surface area and, 

therefore, required far less roofing material. For this reason, the radial cable dome is deemed a 

minimalist cable dome.  

a)  

b)  

Figure 1.3  (a) Fencing Arena Dome, Seoul (Rastorfer 1988); and (b) Structural components of 

the N2:n16 configuration  
 

There are only six radial-type domes (Table 1-1) with flexible roof membranes. The first such 

dome in the US, the Redbird Arena at the Illinois State University was constructed in 1989. The 

dome has an elliptical plan with one hoop and 32 radiating trusses, i.e., N1:n32. The ridge profile 

visually emphasize the peaks created by their top ends and therefore does not have a smooth dome-

like appearance.  
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Figure 1.4  Tropicana Dome in St. Petersburg, Florida (Fleiger 2012) 

 

The Tropicana Dome in St. Petersburg, FL (Figure 1.4) built in 1990, has the longest span to date 

with three hoops each forming a 24-sided polygon, i.e., N3:n24. The dome is unique because it 

was tilted 6 degrees to provide more seating behind home plate and the infield area of the baseball 

stadium (Shaeffer 1996). The outer hoops of this dome required 135 strands compared to 40 strands 

in the outer hoop of the Fencing Arena dome. 

 

Triangular-type (Levy Dome) 

In triangulated domes, the vertical struts and diagonal cables are not in the same vertical plane. 

The positions of the struts in the neighboring rings are offset from one-another by 180°/n in the 

transverse direction (Figure 1.5). Note also that the top end of the vertical strut in the outer ring is 

connected to the neighboring inner ring with two adjacent diagonal cables, thus providing radial, 

axial and transverse stiffness to the cable–strut system. The struts in a triangulated dome have 

adequate restraint and stability. The most recent triangulated dome was designed for the city of La 

Plata, Argentina (Table 1-1). The project was completed in 2012 after almost a decade of 

interruption in its construction.  

For domes having the same rise, span, number of sectors and number of hoops, the radial dome 

will obviously be lighter than the triangulated dome. Moreover, the radial dome is easier to 

construct because there are fewer connections. For the aforementioned reasons, this research focuses 

on radial-type domes (referred to as ‘cable domes’ hereafter).        
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Figure 1.5 Triangulated N2:n16 dome 

Table 1-1 Complete list of built cable domes with flexible membrane 

Cable Domes (built) Year Location Type Span, ft. (m) 

Gymnastics Arena 1986 Korea Radial 305 (93) 

Fencing Arena 1986 Korea Radial 394 (120) 

Redbird Arena 1988 United States Radial 299 x 253 (91 x 77) 

St. Petersburg Dome 1989 United States Radial 689 (210) 

Georgia Dome 1992 United States Triangulated 787 x 305 (240 x 93) 

Taoyuan Arena 1993 Taiwan Radial 394 (120) 

Bifid Dome 2004 Spain Radial 65.6 (20) 

Twinstar Dome  2012 Argentina Triangulated 656 x 550 (200 x 170) 

   

To date, there are eight built cable domes, of which six are radial-type (Table 1-1). Much of the 

construction happened in the late 1980s and early 1990s. There have been no large span radial 

domes constructed since the Taoyuan Arena in 1993.   

1.3 Erection Procedure 

The erection of cable domes is an expensive operation and constitutes approximately 40% of the 

total cost of a project. When first laid out at the construction site, cable domes lack initial stiffness. 

Prestressing the diagonal cables facilitates the erection by stabilizing the dome and thereby 

defining its geometry. After the erection, additional prestress may be assigned to support external 

loads. The erection procedure was developed keeping in mind how the structure will be dismantled 

in case of such an event (Geiger, Stefaniuk, & Chen 1986). 
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The erection sequence for an N2 cable dome is illustrated in Figure 1.6. Construction begins by 

laying the inner tension ring, ridge cables and struts on the ground and connecting their bottom 

ends together by affixing them with bolts to the castings. The assembly is then hoisted and secured 

to the perimeter compression ring (Stage 1). The outermost hoop and outermost diagonals are then 

joined together at the castings of the already erected ridge cables. The outermost diagonals, which 

run from the top of the compression ring to the bottom of the struts are then prestressed thereby 

pulling the corresponding hoop cables into its final position (Stage 2). The process of adding hoops 

and diagonals and then prestressing the diagonals is repeated for the inner rings until the entire 

network is in place (Stages 3, 4, and 5). After the main structure has been erected, the fabric is 

unfurled from the inner tension ring to the perimeter compression ring (Figure 1.7a). The fabric 

membrane is installed by bolting it to aluminum castings that cover the ridge cables. Valley cables 

are then installed over the membrane and prestressed to stretch the fabric membrane (Figure 1.7b). 

This completes the erection process. Prestressing forces may be adjusted, if needed.  

 

Figure 1.6 Erection sequence of roof structure; prestressed diagonals shown in red 

STAGE 1

STAGE 2

STAGE 3

STAGE 4

STAGE 5

SELF-WEIGHT ONLY

PRESTRESSED STRUCTURE

RIDGE CABLESVALLEY CABLES
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a)     b)  
 

Figure 1.7 (a) Unfurling of fabric membrane; and (b) Installation of valley cable      

(Permission to use granted on 05/17/2013 by Dr. Joann Rayfield Archives,            

Illinois State University) 
 

1.4 Geometric and Structural Parameters 

Although a cable dome is a complex network of members, its behavior and design can be described 

in terms of five fundamental geometrical parameters, namely:              

 Number of interior polygonal hoops 

 Number of sectors (or sides) of polygon 

 Span of dome or length of cable, depending on context 

 Rise above the perimeter compression ring 

 Structural depth below the perimeter compression ring 

In addition, the level of prestressing force (p) applied to the diagonals determines the initial 

stiffness of a cable dome.  

i. Number of concentric polygonal hoop rings (N) 

The number of hoop rings N determines both the overall shape of a dome as well as the force 

distribution. More hoops lead to a smother ridge profile. More hoops also means more struts 

and therefore more connections required to form the cable-strut system. Consequently, cable 

N

n

L

r

d
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and strut lengths are reduced which increase the member stiffnesses. The number of hoop 

rings N were varied in this study from 1 to 3 to determine their effect on structural behavior. 

ii. Number of sectors or polygon sides (n) 

The number of sectors has a direct impact on the member forces and fabric stress. This is 

because a smaller n would mean fewer cable-trusses and therefore higher applied loads in 

each truss. The number of sectors n in practice are chosen based on the dome span and external 

loads experienced. The stiffness of hoop cables is inversely proportional to n (Eq. 5.12). 

Therefore, in order to have stiff hoops and reduced applied loading, the designer is expected 

to make a sound judgment considering all factors. Domes with n =16 and 24 are examined as 

part of this study. 

 

iii. Rise-to-span ratio (r/L) 

Radial cable domes built to date have used a rise-to-span ratio of less than 1:12. In this study, 

a 1:12 ratio has been used for all domes.  

 

iv. Depth-to-span ratio (d/L) 

The depth-to-span ratio is important because the location of hoops, especially the outermost 

hoop determines the sightlines from the upper-level seats. Moreover the structural depth 

significantly affects the dome’s stability; an increased depth reduces the required diagonal 

prestress and increases the moment resistance of the dome (Section 8.3). Three different 

depth-to-span ratios d/L are examined herein, i.e., three different inclinations of the diagonal 

cables (Figure 1.8). 

 

v. Level of Prestressing Force (p) 

The level of prestress is fundamental to the successful design of cable domes. The magnitudes 

of the prestressing forces must ensure that all cables remain in tension and the maximum deflections 

are within the acceptable limits for serviceability. If the prestressing force is too high, the member 

capacities may be reduced significantly. In this study, an initial prestress equal to 50% of the yield stress 

of the cables is assigned to the diagonals. 
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1.5 Literature Survey 

The literature survey on cable structures begins with a review of methods that have been used for 

solving the geometric nonlinear analysis problem. This is followed by a description of 

experimental work on cable-strut structures and cable domes. All the literature reviewed is relevant 

to the development of this thesis. 

1.5.1 Numerical Methods 

Design of cable and membrane structures has relied on several nonlinear finite element analysis 

techniques. The various nonlinear theories and solution methods developed in the late 1960s and 

early 1970s for the analysis of cable structures proved pivotal in the design of cable-strut structures. 

Several nonlinear theories were developed for analyzing cable problems. However, no analytical 

method was available for solving the resulting nonlinear equations of equilibrium and 

compatibility. Consequently, iterative methods were developed to solve the governing equations. 

For an iterative procedure to be viable, the method must ensure convergence, and for it to be 

efficient, convergence should be rapid to minimize computational time and costs. First-order 

methods like the secant-stiffness method show moderate convergence rates. For this reason, 

second-order iterative methods with their high convergence rates are more popular. The Newton-

Raphson procedure (Weisstein 2014) or modified Newton methods are the most popular of these 

second-order methods; they used tangent stiffness. Essentially, these techniques strive to achieve 

rapid convergence, resulting in minimal computational time (Tezcan & Özdemir 2000). 

Baron and Venkatesan (1971) presented a secant stiffness matrix scheme, a modification of it, and 

a combined technique using tangent and secant stiffness matrices. They concluded that the use of 

tangent stiffness matrix instead of secant stiffness leads to rapid convergence. For improving the 

convergence in highly nonlinear cable-net problems, Siev (1963) and Thornton and Birnstiel (1967) 

suggested incrementally applying loads. To enhance convergence, Haug and Powell (1971) limited 

the norm of response increments between iterations. Argyris and Scharpf (1972) performed large 

displacement analysis of complex prestressed structures subject to the usual external loading. In 

fact, their method was used to design the 1972 Olympic Stadium in Munich; the model contained 

over 10,000 degrees of freedom.  
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1.5.2 Cable Domes 

Researchers and practitioners have studied cable domes from different points-of-view. Earlier 

works included experimental studies aimed at understanding their structural behavior. Later 

studies were more analytical, dealing with static and dynamic analyses. Numerical modeling 

gained popularity because of the cost and time savings they offered when compared to developing 

and testing numerous prototypes. More recent research has predominantly focused on structural 

behavior at ultimate and construction methods.  

Yamaguchi et al. (1987) tested N2:n8 domes with 9 m. and 30 m. spans. They studied dome 

behavior via experiments and numerical modeling and concluded that cable domes are quite stiff 

and stable even when some of the ridge and valley cables go slack. Taniguchi et al. (1987) tested 

an N1:n24 dome with an 8 m. span and found that geometric nonlinearity is more pronounced 

when the prestressing force levels are small. They later extended their study to larger structures. 

Gasparini et al. (1989) studied the static and dynamic response of an N3:n8 dome of 2.5 m. span 

using a linear-elastic two-dimensional axisymmetric model. One of their conclusions was that 

cable domes behave like a compression membrane under gravity loads when the ridge cables are 

sufficiently prestressed to avoid slackening. However, if the inner ridge cables go slack, the dome 

behaves like a tension membrane. Kawaguchi et al. (1999) optimized cable dome shapes in order 

to maximize their stiffness. Their results showed that optimum shape depends greatly on the 

lengths of the outermost vertical struts. Campbell et al. (1994) compared triangulated and radial 

cable domes and concluded that triangulation is not required for structural stability. Using the 

LARSA software program, Levy (1992) provided insights about the need for nonlinear finite 

element analysis to account for large deformations in cable domes. This software was also used to 

design the Georgia Dome in Atlanta, GA (USA). The program MCM/BLD3D was used for the 

Tenstar Dome in La Plata, Argentina (Levy 2013).  

Hanaor (1988) developed a unified algorithm based on the flexibility method for analysis of 

optimum prestressing force levels for pin-jointed cable domes. Hanaor (2002) later concluded that 

the main load-bearing components of a cable dome are the outermost hoop and the perimeter 

compression ring. Yuan and Dong (2003) developed the concept of feasible integral prestress 

which uses the number of independent self-stress states for a given dome configuration to 

determine uniform prestressing force for members in groups, e.g. for all members along a radial 
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truss. This was later used for geometric stability analysis of various cable domes.  

Pellegrino (1992) studied the behavior of an N2:n24 radial-type dome. Among other characteristics, 

the inextensional loads which induce large rigid-body-like displacements, were identified and 

contrasted to extensional loads which induce linear-elastic displacements. Wagner (2002) also 

studied such rigid-body-like deformations. Using graphical analysis, the effect of ridge cable 

geometry on member forces was studied and comparisons were made between radial and 

triangulated dome behavior.  

Recent research on cable domes has focused on inelastic behavior (Li 2012; Ye 2012; Zhu 2013), 

manufacturing errors and construction analysis (Liu, 2012; Jin, 2012). 

1.5.3 Cable-stayed columns 

Based on the findings of this study, the use of prestressed cable-stayed struts has been 

recommended as a design solution for increasing the buckling capacity of the struts. As a 

consequence, the load carrying capacity of cable domes is expected to improve. Smith et al. (1975) 

and Hafez et al. (1979) developed analytical methods to predict the critical load of a simply 

connected single cross-arm prestressed stay column and compared their results with experimental 

results. Expressions were derived for the buckling load in terms of the final tension in the stays 

due to initial prestressing force. Smith et al. (1975) claimed that a cable-stayed column buckles 

when the tension in the stays become zero. They also found that the use of cable stays with single 

cross-arms can increase the buckling strength of the column by as much as 8.18 times the elastic 

buckling load of a simple pin-ended column. The maximum buckling load corresponded to the 

load when the tension in the stays was reduced to zero. Temple (1979), on the contrary, said that 

there will be some residual tension in the stays at buckling. Hafez et al. (1979) built on the study 

done by Smith et al. (1975) and clarified the effect of initial prestress on the buckling load of a 

single cross-arm stayed column. Whether the tension force in the stay-cables reduces to zero 

depends on the initial prestressing force. Essentially, if the prestressing force is smaller than a 

certain value Tp_min, then the tension in the stays on the concave side goes to zero under an 

increasing load. If the prestressing force is above the minimum but less than a certain optimal 

value Tp_opt, there will be residual tension in all cables even when the strut system has buckled 

(Hafez, Temple and Ellis, 1979).  
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Most of the studies on structural behavior of cable domes are based on the assumption of elastic 

material behavior, which may be fair from a design point-of-view. There has been no work done 

to determine the collapse load of cable domes. This dissertation studies the inelastic behavior of 

cable domes by assuming a bilinear stress-strain curve for the cable material. The nonlinear 

structural analysis program SAP2000 is used for large-displacement analysis. A displacement-

controlled procedure is used to determine the ultimate capacity of a dome as the load at which a 

cable member ruptures or a strut buckles. For domes that failed by strut-buckling, a design solution 

using prestressed stays is suggested to increase the capacity of the struts. A perturbation analysis 

with the aid of the stiffness probe method (Gurfinkel et al. 2009) was used to determine the 

buckling load of struts in an efficient way. This method provides a physical understanding of the 

loss of capacity of struts.  

1.6 Research Problem: Importance, Motivation, and Contributions 

Members in a cable dome are stressed purely in tension or compression. Prestress forces applied 

to select members transform compression stresses into more favorable tension stresses. The result 

is a lightweight long span dome significantly lighter than conventional reinforced concrete domes. 

Not part of main-stream building structures, cable domes remain relatively unknown to most 

structural designers. Only six radial-type cable domes have been built over the past 25 years (Table 

1-1). Because of their unique structural characteristics and erection process, design of cable domes 

demands specialized engineering knowledge. The ASCE/SEI 19-10 Standard for Design of Cables 

in Buildings (ASCE 2010a) and the ASCE/SEI 55-10 Provisions for Design of Tensile and 

Membrane Structures (ASCE 2010b) provide general guidelines regarding design of tensile and 

membrane structures. Because of the many planning and engineering design decisions involved in 

cable dome construction, an ASCE/SEI Standard specifically devoted to prestressed domes will 

increase interest and visibility of cable domes. Moreover, no research has been done on estimating 

the load carrying capacities of cable domes or to provide alternative design solutions to enhance 

their capacities.  

This research investigates radial-type cable domes under various loading conditions for their 

elastic and inelastic behavior to formulate design guidelines for an ASCE Standard on prestressed 

domes. A series of 12 cable domes, each with 400 ft. span were examined as part of this study. 

Layouts for two groups of domes are studied – one with 16 polygon sides and the other with 24 
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polygon sides (n = 16 and 24) with polygonal hoops N varied from one to three (Figure 1.8a). A 

rise-to-span ratio (r/L) of 0.083 was used for all domes so as to keep the applied loading identical. 

The hoop rings were radially equidistant from each other. The depth-to-span ratio (d/L) was varied 

and this determined the hoop elevations (Figure 1.8b) and diagonal inclinations.  

First, an axisymmetric two-dimensional model (i.e., a structure in which the cables were replaced 

by two-force members) subject to full snow load was analyzed to establish the initial prestressing 

force levels and member areas. The design procedure was further streamlined using influence 

surface analysis to determine the controlling load combination for member designs. For dome 

designs governed by symmetric loading conditions, an equivalent two-dimensional model was 

sufficient for member designs.  

 
 

Figure 1.8 (a)  Plan configurations with varying polygon sides (n) and hoop rings (N); and  

  (b)  Elevation configurations with varying depth-to-span ratios (d/L)  

 

The elastic behavior was studied to understand the general trend in member behavior under various 

loading conditions. Thereafter, the inelastic behavior was examined using a bi-linear material 

model for the steel strands. The analysis was done to get insights into the progressive yielding of 

n r/L d/L N=1

16 or 24 0.083 0.14

0.10

n r/L d/L N=2

16 or 24 0.083 0.09

0.07

n r/L d/L N=3

16 or 24 0.083 0.07

0.05

(a) (b)
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the cables. Based on the findings, prestressed cable-stayed struts have been recommended to 

prevent premature buckling and thereby increase the capacity of cable domes.  

The following represent the contributions of this research:  

i. Development of two-dimensional model parameters for simplified analysis and design.  

ii. Use of influence surface analysis to identify critical load combinations for member design. 

iii. Identification of limit states and validation of elastic design for cables. 

iv. Alternative design solution for struts to improve their buckling strength.  

v. Insights from parametric studies and structural design guidelines. 

1.7 Organization of Dissertation 

In this chapter, an overview of cable dome configurations and their characteristics was presented. 

The important geometric parameters in structural design and the erection process were discussed. 

The motivations to undertake this study and the importance of the topic were discussed along with 

main contribution of this dissertation. As a summary of what is to follow, materials, members and 

connection details are the subjects of Chapter 2. Emphasis is given to the properties of cable 

members and their unique arrangement in a dome. The various loads to be resisted by cable domes 

are discussed in Chapter 3. The rationale for using the ASD load combinations from the ASCE19-

10 Standard for Design of Cables in Buildings (ASCE 2010a) are discussed and the critical load 

combinations for member design are found from influence surface analysis. In Chapter 4, the 

geometrical nonlinear analysis procedure is formulated, taking into account large displacements 

and geometrical effects. The Newton Raphson Method, owing to its quadratic convergence, is used 

to solve the set of nonlinear equilibrium equations. In Chapter 5, the two-dimensional model 

parameters for a cable dome are derived. The planar model simplifies the analysis of domes 

governed by axisymmetric loading and facilitates quick parametric studies. Chapter 6 deals with 

the conceptual behavior of cable-strut structures. One and two-post structures are analyzed to 

understand the trend in member behavior. Much of the observations from these simple structures 

are later noted in cable domes as well. In Chapter 7, the structural behavior of twelve 400 ft. cable 

domes is discussed extensively. Stability (buckling of struts), serviceability and strength (rupture 

of cables) limit states are evaluated. In Chapter 8, the influence of the critical design parameters 

on structural design are explained. Prestressing force is recognized as the essential force parameter 

and dome span, number of polygon sides, radii of hoop cables, depth and rise of the roof are 
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identified as critical geometric parameters. The effect of these parameters on the stability of cable 

domes is evaluated. In Chapter 9, an alternative design for vertical struts is recommended using 

prestressed cable-stays attached to the struts in order to increase their load carrying capacity. The 

summary and conclusions of this study are presented in Chapter 10. To an aspiring cable dome 

researcher, some interesting problems are presented for future research. Finally, design guidelines 

along with supplementary results from this study are presented in the appendices.  
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CHAPTER 2 MATERIALS, MEMBERS AND DESIGN DETAILS 

 

From the main structural system of the roof, including cable material and their composition to the 

arrangement of members and special connection details, this chapter gives an overview of the cable 

dome’s major components including the supporting perimeter beam and roof membrane materials. 

The construction materials used for the main structural system are described in Section 2.1. As the 

materials used are not as conventional as reinforced concrete or rolled steel, the cable material in 

particular is extensively discussed in Section 2.2. Easy dismantling was the original intent for the 

unique arrangement of cable members; as such, the placement of the members is described in 

Section 2.3 along with the heavy connections required to transfer forces between strut members 

and cables. This is followed by a brief description of the supporting perimeter beam and the roof 

membrane materials in Sections 2.4 and 2.5, respectively. 

2.1 Materials 

Knowledge of material properties is as important as knowledge about loads and analysis 

procedures for cable domes. Steel for the cables and struts, reinforced concrete for the perimeter 

beam and polytetrafluoroethylene (PTFE) for the roof membrane are the basic materials used for 

the construction of cable domes. Their mechanical properties are listed in Table 2-1. 

Table 2-1  Material properties used for structural analysis (* Source: Birdair) 

 

 

Member Type 

Modulus 

of 

Elasticity 

(ksi) 

Ultimate 

Tensile 

Strength 

(ksi) 

 

Area 

(in2) 

 

 

Number/Description 

 

Bridge and Hoop Ropes 

 

20,000 

 

254 

 

0.596  

1 for bridge and 

1 for every hoop 

Strands for ridge, diagonal, 

and hoop cables 

 

24,000 

 

270 

 

0.215  

 

Varies 

 

Pipe (for vertical strut) 

 

29,000 

 

58 

 

Varies  

Varies by polygon dimension  

and number of hoop rings 

Fabric Membrane (PTFE) 10,500* 500* N/A Usually 4 layers 

Reinforced Concrete 

Polygonal/ Ring Beam 

  

Assumed rigid 
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The performance of the fabric membrane contributes greatly to the overall success of a cable dome 

system. The fabric not only provides an envelope for protection against the environment, but also 

provides a means to transfer the external loads such as snow and wind to the main structural system 

(Valerio 1985).  

2.2 Cable Members  

There are several different steels used for the diagonal, hoop and ridge cable members. The term 

cable will be generally used to refer to them. To understand the specific composition of the 

diagonal, hoop and ridge cables, it is essential to know their make-up (Figure 2.1). 

A strand is usually an assembly of six wires twisted about a seventh core wire and a rope is an 

assembly of one or more strands. The diagonal cables are comprised of several independent strands, 

whereas the ridge and hoop cables have a continuous rope in addition to multiple independent 

strands.  

 

Figure 2.1  Wire, strand, and rope 

Wire is covered by ASTM A421 “Standard Specification for Uncoated Stress-Relieved Steel Wire 

for Prestressed Concrete” and strand is covered by ASTM A416 “Steel Strand, Uncoated Seven-

Wire for Prestressed Concrete.” The available grades for strand are Grade 250 (fpu = 250 ksi) and 

Grade 270 (fpu = 270 ksi). The Grade 270, 0.6 in. diameter low-relaxation strand is most commonly 

used in cable domes (Table 2-2). The Young’s Modulus for design is 24,000 ksi.  

WIRE STRAND ROPE

ROPE

STRAND

OUTER WIRE

CENTER WIRE

CORE
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Table 2-2  Properties of prestressing steel 

ASTM A 416, Seven-Wire Strand, Grade 270 

Diam. Weight Area Tensioning Load Strength 

in. lb./1000ft in2 lb., at 202.5 ksi lb., at 270 ksi 

     

3/8 290 0.085 17,200 23,000 

7/16 390 0.115 23,300 31,000 

1/2 520 0.153 31,000 41,300 

0.6 740 0.217 43,900 58,600 

 

The low-relaxation strands are pre-stretched by repeated loading and unloading cycles with 

traction values equal to approximately 50 percent of their fracture load. This operation produces 

some important changes in the crystalline structure of the metal. The stress-relieving operation 

alone reduces the amount of relaxation, which would occur in an as-drawn wire, and it also 

eliminates the tendency for the 7 wires in a strand to come unraveled (Gamble, 2003). An engineer 

is then able to predict the elastic behavior of the strand or rope after erection because of the 

elimination of construction stretch in the cables (Scalzi, Podolny, & Teng 1969). The strands are 

protected with anticorrosive material. This protection is provided by galvanizing the wire by the 

electrolytic zinc or the hot-dip process (Krishna 1978).  

 

Figure 2.2  Stress-strain curve for Grade 270 low-relaxation steel  
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The stress-strain curve for strands does not exhibit a pronounced yield point, but instead gradually 

departs from the initial straight line, with a very high proportional limit (Figure 2.2). The yield 

stress for low-relaxation strand is taken as 90% of the breaking stress, i.e., 243 ksi, with a 

corresponding yield strain equal to 0.011. The equation for the curve in Figure 2.2 is a fitted curve 

using the Ramberg-Osgood functions and is a very good representation of a measured curve just 

meeting the A416 stress-strain requirements (Gamble, 2003).   

While the modulus of elasticity recommended for strands is 24,000 ksi, a reduced value is used for 

strands protected with coatings. These values are less than that of a solid steel bar, because the 

strand has a tendency to twist and unwind as it is pulled. An engineer must therefore be cautious 

with cross-sectional areas of strands, which are considerably smaller than a solid bar of the same 

diameter. Ropes, because of more construction looseness, have a modulus of elasticity of 

approximately 20,000 ksi (Morris and Fenves, 1970). 

2.3 Member Arrangement 

In a cable dome, verticals struts appear to be floating in an articulated cable network. The cable 

members, i.e., diagonal, hoop and ridge cables, each have a different composition of strands and 

ropes.  

The schematic arrangement of members used in the Seoul Fencing Arena dome is shown in Figure 

2.3. Cable A is one continuous strand which forms the ridge between joints 1a and 3 and the 

diagonal from joint 3 to joint 7. Cable B is made of four continuous strands, which forms the ridge 

between joints 1a and 2 and the diagonal from joint 2 to joint 6. Cable C forms the outermost 

diagonal member, comprised of 10 independent strands, connecting joints 1 and 5. The ten strands 

are separated in two layers to facilitate the connection of the hoop cables at joint 5. Cable D is 

made of 20 independent and continuous strands to form the circumferential outer hoop member 

(see joint 5 detail in Figure 2.3). Cable E is made of 10 independent and continuous strands to 

form the circumferential outer hoop member (see joint 6 detail in Figure 2.3). Cables X, Y and Z 

are fixed length ropes connecting joints 1a to 2, 2 to 3, and 3 to 4, respectively. Similarly cables V 

and W (see joints 5 and 6 detail in Figure 2.3) are fixed length ropes in the circumferential direction. 
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Figure 2.3  Cable composition and casting details 

 

Table 2-3  Cable composition and arrangement for a sample N2 dome 

Cable 

Label 

Number  Cable Type Connectivity 

     

A 1 Strand Continuous Diagonal from Joint 7 to Joint 3 and 

ridge from Joint 3 to Joint 1 

B 4 Strand Continuous Diagonal from Joint 6 to Joint 2 and 

ridge from Joint 2 to Joint 1 

C 10 Strand Continuous Diagonal from Joint 5 to Joint 1 

D 20 Strand Continuous Around circumference 

E 10 Strand Continuous Around circumference 

V 1 Bridge Rope Fixed length From lower casting to lower casting 

W 1 Bridge Rope Fixed length From lower casting to lower casting 

X 2 Bridge Rope Fixed length From Joint 1A to Joint 2 

Y 2 Bridge Rope Fixed length From Joint 2 to Joint 3 

Z 2 Bridge Rope Fixed length From Joint 3 to Joint 4 
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The bridge ropes are additional members, which run continuously across the meridional and 

circumferential directions respectively. Their purpose is to maintain the geometry of the structure 

during construction and they are retained as part of the structure post-construction. A summary of 

the cable arrangement is provided in Table 2-3.  

Castings (upper and lower in Figure 2.3) are large metal connections used to connect the struts and 

the cable members. Every strut has an upper and lower casting. The upper castings connect the 

ridge cables to the top of the strut. The continuous bridge rope from the perimeter compression 

ring to the inner tension ring has swage stops to grip the rope along the length. These swage stops 

are pinned to the upper casting. The upper castings prevent the bridge ropes from moving laterally. 

The cap on the castings restrains any vertical movement of the bridge ropes at the casting. The 

lower casting connects the bottom of a strut, the hoop and diagonal cables. Stefaniuk (1986) 

emphasized the importance of the role of the castings to assure the continuity of the varying length 

strands that start at the perimeter beam. For cable domes with the same number of sectors, equal 

hoop spacing, equal loading on tributary areas, rise-to-depth and span-to-depth ratios, the 

corresponding members of the domes of different diameters carry the same load as one moves 

from the center of the dome outward. This leads to repetition of details and castings (Geiger, 

Stefaniuk, & Chen 1986).  

2.4 Perimeter Beam  

The polygonal/ring beam is usually made of reinforced concrete. Alternatively, the compression 

ring may be made of a three-dimensional triangular steel truss, the members of which are made of 

hollow steel sections. The Twinstar dome in LaPlata (Levy 1998) used a steel space truss for the 

perimeter beam. Being quite massive, the ring beam is assumed as rigid as part of the structural 

analysis of cable domes in this study.  

2.5 Fabric Membrane 

The most common material used for fabric membrane is polytetrafluoroethylene or PTFE, “a 

strong, tough, waxy, nonflammable synthetic resin produced by the polymerization of 

tetrafluoroethylene” (Encyclopedia Britannica 2013) commonly known as Teflon-coated 

fiberglass. PTFE is inexpensive, strong, translucent, easy to fabricate and is widely used in 
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permanent structures. It has a life span of approximately 30 years. Teflon provides self-cleansing 

attributes, and fiberglass provides the necessary strength.  

The development in membrane properties has led to newer materials with increased strength and 

transparency. Ethylene tetra fluoro ethylene or ETFE is a relatively new material gaining 

popularity as membrane cladding. It is lightweight, flexible, and transparent and, therefore, 

attractive for roofing spaces where natural light is desired (Birdair 2013). However, being a film, 

its strength is comparatively less than that of PTFE, making PTFE a more popular choice for cable 

dome roofs. More recently, the Twinstar Dome in La Plata employed a new fabric, UltraLUX, with 

a more open weave resulting in a translucency of over 24%, which benefits turf growth. This fabric 

however has a reduced tensile strength, i.e., 5% less than PTFE (Brzozowski 2011).  

 

This chapter provided an overview of the materials used in cable dome construction emphasizing 

the properties of steel strands in cable members. The unique arrangement of cable members in the 

dome was illustrated along with the castings (connections). Finally, the salient characteristics of 

fabric membranes were briefly described including the use of newer materials with superior 

performance. 
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CHAPTER 3 LOADS AND CRITICAL LOAD COMBINATIONS  

 

One of the most provocative characteristics of cable domes is the way it defies an engineer’s 

expectation of a structure achieving stability, i.e. through a strategic assembly of prestressed cables 

and struts. The unconventional structure support the loads that are expected on any roof structure. 

In Section 3.1, the various loads to be resisted by the structure are discussed. This is followed by 

a description of the various load combinations for which the members must be designed, in Section 

3.2. The rationale for use of the Allowable Stress Design (ASD) as the structural design philosophy 

for cable domes is explained. Finally, the influence surface analysis is discussed in Section 3.3, an 

approach that simplifies the design procedure and provides a cursory idea about the adequacy of 

the prestressing forces assigned. 

3.1 Loads  

Design loads and load combinations for cable domes are established using the ASCE/SEI 19-10 

“Structural Application of Steel Cables for Buildings” (ASCE 2010a) and ASCE/SEI 7-10 

“Minimum Design Loads in Buildings and Other Structures” (ASCE 2010c). Local codes must be 

considered based on site context and topography. This section describes the loads experienced by 

the roof structure and their estimation

3.1.1 Prestress                                                                                                                                        

Prestress is fundamental to the existence and stability of cable domes. Prestressing force levels 

depend on the structure’s geometry, member sizes and deflections limits. By controlling the 

amount of prestressing force, a cable dome can be made flexible or stiff. Levy (1992) found that an 

average of 30% of the cable breaking strength was required for triangulated cable domes. Prestressing force 

levels are appropriately assigned to ensure that all cables remain in tension and the deflections are within 

acceptable limits, under all pertinent loading. For computational purposes, prestress is assigned by specifying 

axial prestrain to the diagonal members. An initial prestress equal to 50% of the cable yield stress is used in 

this study. 
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3.1.2 Dead and Live Loads                                                                                                                                                      

Gravity loads on a cable dome include dead, live, rain and snow loads. Of these, dead loads can 

be calculated with greater precision while other loads cannot be predicted with such certainty. Dead 

loads include the self-weight of the structural members as well as the fixtures attached permanently to the 

structure. Structural self-weight includes the weight of fabric, struts, strands, ropes, tension ring, and cast 

steel connections. This is calculated satisfactorily based on the dimensions and density of the materials. The 

permanent fixtures, which comprise mechanical/electrical/plumbing (M/E/P) and catwalks among other 

attachments, are assumed to weigh 8psf. In addition to the uniform loads, a minimum concentrated load of 

100 kips is applied to one of the bottom nodes of the outermost hoop to accommodate any future attachment 

(Campbell 1994). As such, it is justified to design the fabric membrane for the usual live load, while 

a reduced live load can be used for designing the main cable trusses of the dome. Meanwhile, code 

requirements still call for a minimum roof live load of 12 psf (Campbell 1994).  

3.1.3 Rain Loads 

Rain loads may be relevant in certain configurations where the dome is relatively flat at the crown. This 

usually happens in N1 domes (Figure 3.1a and 3.1b). Water may collect as ponds, and with additional 

accumulation, the roof will deflect further allowing for a deeper pond formation. If the membrane does not 

possess enough stiffness to resist this progression, tearing or failure of the membrane will result due to 

localized overloading.  

a)    b)  

Figure 3.1  Redbird Arena cable dome, Illinois State University (ISU)  

(a) View of roof; and (b) Flatness at crown prone to ponding 

(Permission to use granted on 05/17/2013 by Dr. Joann Rayfield Archives, ISU) 
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Water may also collect when the main drains get blocked. The potential standing water may lead to ponding 

instability. Such issues must be resolved in the original design by providing appropriate positive drainage. 

Needless to say, the truss geometry must be determined based practical considerations such as drainage and 

sight-lines, beyond structural efficiency.  

3.1.4 Snow Loads 

Designers of cable domes in colder regions must consider the effect of snow loads. Such loadings 

are complicated since snow accompanied by wind gusts can cause non-uniform loading. Alternate 

freezing and thawing may also lead to non-uniform snow accumulation. Ponding from melting 

snow may add to the asymmetric snow thereby magnifying the vertical deflections.  

The fabric membrane resists snow loads before transferring them to the main cable-trusses. The 

slope of the roof may help to shed some of the snow load. Cable domes have a low-rise, with the 

slope at the eaves usually less than 30°. Considering this, Case-1 in Figure 7-3 of ASCE/SEI 7-10 

(ASCE 2010c, p.37) is appropriate to determine the distribution of snow loads. However, 

depending on the ridge profile, the snow may or may not slide towards the compression ring. As 

such, snow loads are calculated in accordance with Sec. 7.6.3 of ASCE/SEI 7-10 (ASCE 2010c). 

The calculation of symmetric snow loads is not straightforward, due to the complex tributary areas 

of the corrugated roof. As usual, first the flat roof snow load is calculated as 

𝑝𝑓 = 0.7𝐶𝑒𝐶𝑡𝐼 𝑝𝑔                           (3.1) 

where: 

𝑝𝑓  = Flat Roof Snow Load (for roofs with a slope less than or equal to 5°) 

0.7 = Basic Exposure Factor 

𝐶𝑒 = Exposure Factor of 0.9 (Table 7-2, ASCE 2010c) 

𝐶𝑡 = Thermal Factor of 1.0 (Table 7-3, ASCE 2010c) 

𝐼 = Importance Factor of 1.10 (Table 1.5-2, ASCE 2010c) 

𝑝𝑔  = Ground Snow Load of 35 psf (Fig. 7-1, ASCE 2010c) 

Also, as there is a likelihood for more than 300 people to congregate in this facility during any 

event, the structure will fall under Category III as listed in ASCE/SEI 7-10 (ASCE 2010c).  

The uniform load extends over the low-sloped portion of the roof where slope factor is Cs = 1.0 as 

determined from Figure 7-2 of ASCE/SEI 7-10 (ASCE 2010c, p. 36). Because of the flatness of 
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cable domes, the sloped roof factor Cs is taken as 1.0 for the entire dome span. The symmetric load 

is uniform near the ridge (or crown) and trapezoidal adjacent to the eaves (Figure 3.2a and    

Figure 3.3a). 

 

Figure 3.2  (a) Symmetric snow loads; and (b) asymmetric snow loads for eave slope < 30°  

(Permission granted by ASCE on 01/16/2014 to use Fig. 7.2 of ASCE/SEI 7-10, p.36) 

 

Besides the geometry of the roof, there are other factors to be considered. Formation of ice dams 

may prohibit the sliding of snow depending on the surface roughness and roof insulation. These 

can occur at points of greater insulation in the valleys, down slope from a less insulated area. As 

such, the slickness of roof surface, insulation and cold bridges may have a significant influence. 

Some of the aforementioned factors for cold and warm roofs are addressed in Figure 7-2a and 

Section 7.9 of ASCE/SEI 7-10 (ASCE 2010c, p. 33 and p. 36 respectively). 

Asymmetric load on a cable dome roof will occur mainly due to snow sliding from a high point 

(tension ring) to a low point (compression ring). This may also happen due to snow being blown 

from the windward to the leeward side. The provisions for asymmetric loads as applied to curved 

roofs are applicable to cable domes. Figure 7-3 of ASCE/SEI 7-10 (ASCE 2010c, p.37) illustrates 

the variation of asymmetric loads.  

(a)

(b)
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Figure 3.3 Snow load distribution per ASCE 2010c  

(a) Symmetric Snow Load; and (b) Asymmetric Snow Load 

 

Consequently, the load on the windward side is taken as zero and trapezoidal on the leeward side. 

The trapezoidal load is composed of a uniform load of 0.5𝑝𝑓 plus a triangular surcharge, which is 

maximum at the eaves. The asymmetric load therefore varies from 0.5𝑝𝑓 at the crown to a value 

of 2𝑝𝑓 𝐶𝑠/𝐶𝑒  at the eave (Figure 3.2b and Figure 3.3b). This properly accounts for the effects of 

wind (O'Rourke, 2010). In a sense, the load at the eave is a multiple of the sloped roof snow load 

(𝑝𝑠 ) divided by the exposure factor (𝐶𝑒), where 𝑝𝑠 = 2 𝑝𝑓 𝐶𝑠.  

3.1.5 Wind Loads  

Although relatively flat compared to conventional reinforced concrete domes, roof membranes of cable 

domes cover relatively large surface areas and, as a result, wind will have a significant effect. Therefore, 

careful attention must be given to the effect of winds to ensure that there is no loss of prestress in the 

membrane and cables. Wind tunnel tests as well as other experimental methods have successfully 
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been used to establish roof wind pressures for complex geometries (ASCE 2010b). Notably, these 

studies have shown that the relative flatness and folded form have very little impact on the main 

wind force resisting system (MWFRS2). As such, Figure 27.4-2 of ASCE/SEI 7-10 (ASCE 2010c, 

p.265) which pertains to spherical domes is applicable to cable domes.  

Wind loads are dynamic loads, but they can be conveniently expressed as equivalent static loads proportional 

to the exposed area of the roof surface. The directional procedure for design of the MWFRS as 

described in Chapter 27 of ASCE/SEI 7-10 (ASCE 2010c) is followed. Only the main wind force 

resisting system (MWFRS) is considered in the analysis and the components and cladding (C&C) 

are neglected. The Allowable Stress Design (ASD) load factor of 0.6 for wind loads reduces the 

peak wind loads obtained from the directional procedure to service load values.           

Table 3-1 Parameters for estimating wind pressure 

Location   Midwest region, US (for example) 

Topography Homogeneous 

Terrain Open 

Dimensions 400 ft. diameter in plan, eave height = 60 ft., dome rise = 33.2 ft. 

Roof Framing Cable-truss 

Cladding PTFE membrane 

Exposure Exposure Category = C 

Building Classification   Category III (Table 1.5-1, ASCE7-10), sports arena 

Enclosure The roof structure is enclosed with PTFE membrane. 

Basic Wind Speed, V 120 mph  

Wind Directionality Factor, Kd  0.95, Section 26.6 and Table 26.6-1 

Velocity Pressure Coefficient, Kz Obtained from Section 27.3.1 and Table 27.3-1 for Exposure C 

Topographic Factor, Kzt 1.0 for homogeneous topography, Section 26.8.2 

 

The main parameters for estimating the design wind pressures are listed in Table 3-1.  

The velocity pressure 𝑞𝑧 can be now computed as: 

𝑞𝑧 =  0.00256 𝐾𝑧𝐾𝑧𝑡𝐾𝑑𝑉
2  𝑝𝑠𝑓                                (3.2) 

                   = 0.00256 𝐾𝑧(1.0)(0.95)(120)
2 𝑝𝑠𝑓  = 35 𝐾𝑧  𝑝𝑠𝑓  

Values of 𝐾𝑧 and the resulting velocity pressures are given in Table 27.3-1 of ASCE/SEI 7-10 

(ASCE 2010c, p.261).  

                                                 

2 MWFRS includes the radial cable trusses, valley cables and the perimeter compression ring. 
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Studies have shown very little windward pressure on the roofs because of their low rise. The 

external wind pressure coefficients Cp 
3 are therefore taken as negative or as suctions throughout 

the roof; its value depends on the shape of the structure, wind direction and position of contact of 

wind with the roof (Figure 3.4). 

 

Figure 3.4 Pressure coefficients 𝐶𝑝 for Case A and Case B 

Two load cases are required for the MWFRS loads on domes (Figure 3.4). Case A is based on 

linear interpolation of Cp values from point A to B and from point B to C. Case B uses the pressure 

coefficient at A for the entire front area of the dome up to an angle 𝜃 = 25°, then interpolates the 

values for the rest of the dome as shown in Case A. The coefficients found for Case A govern 

(Figure 3.5) and are, therefore, used for calculating the design wind pressure from: 

𝑝 = 𝑞𝐺𝐶𝑝 − 𝑞𝑖(𝐺𝐶𝑝𝑖)                         (3.3) 

Details of the calculation procedure are provided in Appendix E.  

                                                 

3 Cp is the external wind pressure coefficient, a measure of the variation of external wind pressure on the dome 

surface depending on the structural configuration and direction of the wind.  
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Figure 3.5 Design wind pressures (psf) using Case A for domes N1 through N3 

 

In practice, more accurate estimates of wind pressure coefficients are obtained from wind-tunnel 

tests, particularly when local effects of wind on particular components is a concern. 

3.1.6 Other Loads  

In addition to the aforementioned loads, other environmental and construction loads must be 

considered in cable dome design. The effects of cable relaxation, temperature differentials and 

erection loads can adversely affect structural behavior if not accounted for appropriately.  

i.   Relaxation Loads 

Cable relaxation may lead to slackening of cables, which will reduce the overall stiffness of a 

system and result in greater deformations. However, as mentioned in Section 2.2, the steel ropes 

and strands are pre-stretched to elevate their elastic modulus and eliminate cable relaxation. Cable 

members may, therefore, be assumed to be unaffected by effects of relaxation.  
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ii. Temperature Loads  

The main structure, i.e., cable-trusses and valley cables, is sheltered and hence its temperature is 

controlled. Thermal effects, therefore, may not be a concern. However, extreme temperature 

differentials due to fire or power loss will significantly affect the structural integrity and thereby 

reduce the structure’s stiffness (Cuoco 1997). This may happen due to thermal deformation, 

thermal stresses, thermal buckling and vibrations; hence, temperature effects must be considered 

as part of the design. Temperature effects are out of the scope of this dissertation.  

 

iii. Erection Loads         

The loads to which a cable dome structure may be subjected to during erection although temporary, 

can be significant. In this study, it is assumed that adequate care will be taken to ensure that no 

members are overstressed during the erection process. Although erection loads are out of the scope 

of this dissertation, they are a good subject for further research. 

iv. Earthquake Loads 

Earthquake (or seismic) loads are usually not a factor in design due to the low mass of the membrane and 

lightweight structural system (Campbell, 2009). Seismic performance of domes is therefore out of the scope 

of this research. That said, earthquake loads must be considered in the design of the compression ring and 

supporting columns. 

3.2 Load Combinations  

Cable domes are simultaneously subjected to the action of several loads. As such, the design of 

members should be based on the worst-case load combination. The more popular and current 

design procedure in structural engineering is the Load and Resisting Factor Design (LRFD), also 

called strength design, in which the service load is projected to an ultimate load level at which 

failure occurs. Load factors are applied to service loads, and members are selected or designed 

such that they have enough strength to resist the factored loads. In addition, a capacity-reduction 

factor is multiplied by the theoretical member strength. The member force based on the 

combination of factored loads must be less than the reduced member strength. Cable and 

membrane structures, because of geometric and material nonlinearities, present a challenge to the 

structural engineer not only in the determination of the applied loads but also in the understanding 
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of material behavior as per ASCE/SEI 55-10 (ASCE 2010b). Superposition of load effects with 

varying amplification factors is not applicable to nonlinear structures, and thus the strict 

application of LRFD will give erroneous results. Furthermore, the ultimate load approach may 

result in individual cables being stressed beyond their accepted level under service loads, while 

still satisfying the ultimate load design requirements (Gossen, 2004). The presence of prestress (an 

internal force) which is part of resistance, further complicates the use of LRFD. As a consequence 

of these peculiarities, there is currently no LRFD standard methodology for tensioned fabric 

structures (Campbell 2009).  

Current industry practice uses the Allowable Stress Design (ASD) load combinations from 

ASCE/SEI 19-10 (ASCE 2010a) which follow the ASCE/SEI 7-10 Standard (ASCE 2010c). The 

design specifications define maximum allowable stresses that may not be exceeded under any load 

combination. This allowable maximum stress is obtained by dividing the yield stress or ultimate 

tensile strength by a factor of safety (usually taken as 2.2 for cables).  

That said, different design standards have been used for the same structure, e.g., to design 

foundations using ASD and superstructure using LRFD. Similarly, designers of cold-formed steel 

and open-web steel joists often design using ASD, while designers of structural steel use LRFD 

(ASCE 2010c). In the same way, while the roof structure of cable domes is designed per ASD, the 

supporting compression ring and perimeter walls typically made of reinforced concrete are 

designed using LRFD.  

The ASD load combinations from ASCE/SEI 19-10 are presented in Table 3-2. The notations used 

for dead load, snow load, wind load, prestress and concentrated load are D, S, W, P and Cn, 

respectively. The subscripts “s” and “as” refer to symmetric and asymmetric loads respectively.  

Load Case 1 (or LC-1 in Table 3-2) comprises the structure self-weight and superimposed dead 

loads on the structure during the erection of a cable dome. The prestressed geometry is the outcome 

of LC-1. The prestressed structure will then be under the action of external loads. LC-2a and LC-

2b referring to gravity-only combinations that include the effect of symmetric and asymmetric 

snow loads, respectively (Figure 3.3). LC-3a and LC-3b address the situation in which the effects 

of uplift forces counteract the effect of gravity loads. 
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Table 3-2 Allowable Stress Design (ASD) Load Cases and Load Combinations 

Load Case Load Combinations 

LC-1 D + P (for prestressed configuration) 

LC-2a D + P + Ss (symmetric snow on full-span) 

LC-2b D + P + Sas (snow on half-span) 

LC-3a D + P + 0.6Ws (symmetric suction on full-span) 

LC-3b D + P + 0.6Was (suction on half-span) 

LC-4a D+ P + 0.75(0.6Ws) + 0.75 Ss 

LC-4b D+ P + 0.75(0.6Was) + 0.75 Ss 

LC-4c D+ P + 0.75(0.6Ws) + 0.75 Sas 

LC-4d D+ P + 0.75(0.6Was) + 0.75 Sas 

LC-5a 0.6D + 0.6P +0.6Ws 

LC-5b 0.6D + 0.6P +0.6Was 

LC-6 D + P + Cn 

 

Earthquake and wind loads need not be assumed to act simultaneously. As wind will produce the 

most unfavorable effects for the specified dome size and location, earthquake loads are neglected 

from LC-3a and LC-3b (and other later cases). LC-4a through 4d comprise combinations that 

include loads that vary with time in addition to dead loads. The possibility that all the variable 

loads will attain their maximum value at the same time is highly unlikely. As such, a reduction in 

the combined effect of variable loads is accomplished through the 0.75 factor as per the ASCE/SEI 

7-10 (ASCE 2010c). LC-5a and 5b, like LC-3a and 3b, address the combined effects of uplift 

forces and gravity loads. This eliminates an inconsistency in the treatment of counteracting loads 

in allowable stress design and strength design, emphasizing the importance of checking variability 

in the destabilizing load. The factor 0.6 on dead loads is necessary for maintaining comparable 

reliability between strength design and allowable stress design and the factor 0.6 on prestress is 

for additional safety. LC-6 is a combination that accounts for a single concentrated load (Cn) of 

100 kips attached to the bottom of one of the outermost struts. This load may be from a heavy 

lighting fixture, catwalk or a combination of such permanent attachments.  
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3.2.1 Influence Surface Analysis and Critical Load Combinations  

A three-dimensional analysis would be cumbersome considering that a design must be checked 

for 12 different load combinations (Table 3-2). To simplify the procedure and to identify the 

critical load combinations, influence surface analysis is used. Constructing an influence surface 

for the design of critical members may eliminate several of these load combinations. 

The influence surface analysis uses the Müller-Breslau Principle as a clever technique for the 

application of either the Maxwell-Betti Reciprocal Work Theorem or the Principle of Virtual Work. 

Although the Müller-Breslau Principle is limited to structures that exhibit linear-elastic behavior, 

it may be applied to cable domes whose members are adequately prestressed and for small loads 

and deformations to help identify the governing load combinations for design.  

To illustrate the procedure using the Virtual Work approach, consider the two-dimensional model 

of the N1:n16 dome (Figures 3.6a and 3.6b). First take Figure 3.6b as the “actual” loading case 

with a load W applied at node C and consider Figure 3.6a as the virtual displacements. Imagine a 

turnbuckle inserted in cable AD were turned so that cable AD was shortened by a unit amount, the 

structure would take the shape indicated by the dashed configuration (Figure 3.6a). Let FAD be the 

tension in diagonal AD due to load W (Figure 3.6b).  

 

Figure 3.6 (a) Deformed configuration due to unit shortening of diagonal AD; and           

(b) Deformed configuration due to application of load W at node C 

The external virtual work is written as 

1ext C ADW W F                             (3.4) 

where δC is the vertical displacement caused by the unit displacement of member AD, and the 

negative sign is because the displacement δC is in the direction opposite to load W. 
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And the internal virtual work is given as 

int i iW N e                             (3.5) 

where Ni are the member forces in Figure 3.6b and ei are the member elongations in Figure 3.6a. 

 

According to the Principle of Virtual Work, for a structure in equilibrium the algebraic sum of 

the virtual work done by all forces acting on the structure is zero for any virtual displacement of 

the structure. Thus,  

1 0C AD i iW F N e                          (3.6) 

Now consider Figure 3.6a as the “actual” loading case and Figure 3.6b as the virtual displacements. 

As there is no “cut” in Figure 3.6b, the external virtual work is zero. 

0 0ext ADW F                              (3.7) 

And the internal virtual work is given as 

int i iW n E                            (3.8) 

where ni are the member forces in Figure 3.6a and Ei are the member elongations in Figure 3.6b. 

Thus, 

0i in E                               (3.9) 

But,  

0i i i iN e n E                          (3.10) 

 

Equation 3.6 therefore becomes 

1 0C ADW F                               (3.11) 

 

which gives 

AD CF W                                 (3.12) 

 

For loads applied at several or all top nodes of the struts, Eq. 3.12 can be generalized as 
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    
1

n

cm i i

i

F W 


                           (3.13) 

 

where iW = dead, snow, or wind load at node i 

      cm = critical member 

  and i = influence coefficients, for unit deformation assigned to a critical member   

To summarize the procedure, a unit axial distortion is first imposed on a single critical member of 

the prestressed dome. As a result, the vertical displacements of each roof joint will be the influence 

coefficients for the axial force in that member for gravity loads as well as for the vertical 

component of wind suction loads. Only the vertical components of wind suction forces (in terms 

of influence coefficients) need to be considered in the calculation as the horizontal components 

will cancel each other out for symmetric loading. For asymmetric loading, the vertical components 

will be dominant considering the low rise of the domes. The governing load combination for an 

individual member can be determined by multiplying vertical deflections of roof nodes resulting 

from a unit distortion in that member times the nodal loads across the roof resulting from the load 

combinations given in Table 3-2. The application of influence surface analysis on representative 

cable domes will be discussed next. 

3.2.2 Numerical Results 

To illustrate the influence surface analysis procedure, consider the N1:n16:r/L0.083:d/L0.14 dome 

with the node and member labels as shown in Figure 3.7. The dome is assumed to be located in an 

area prone to high snow loads and reasonable wind loads. Assuming the presence of full 

axisymmetric snow loads, a two-dimensional all-truss model is used for the estimation of 

prestressing force levels and preliminary member sizing. Preliminary member areas are selected 

based on a cable arrangement adapted from Section 2.4. The ridge cable cross-sectional areas 

(inner and outer) are 3.3 in2 and 5.5 in2, respectively; the diagonal cable areas are 2.17 in2 and 4.34 

in2, respectively, and the hoop cable area is 9.51 in2. The struts areas (inner and outer) are 14.9 in2 

and 18.1 in2 with flexural stiffness EI = 49 x 106 k.in2 and 86.77 x 106 k.in2, respectively. 
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Figure 3.7  Node and member labels for influence surface analysis 

 

The highlighted members (Figure 3.7) were given a unit deformation, each done as an individual 

case. The vertical deflections of the roof nodes caused by the unit member deformation were 

determined (Table 3-3) and then multiplied with the applied loads at the respective nodes       

(Eq. 3.13). The result is the magnitude of the internal member force in the selected members   

(Table 3-4). 

The influence coefficients are better understood from the illustrations of influence surfaces in 

Figure 3.8. From Table 3-3, clearly, the design of outer members (T H, FD2 and CS2) is governed 

by axisymmetric loadings (LC-2a: symmetric snow load case). Noting that the inner ridge cable (TR1) 

attached to the tension ring, experiences a reduction in tension under axisymmetric gravity loading, 

LC-2a will still govern the stability of the vertical strut due to the loss in ridge tension. However, 

asymmetric loadings (LC-4d) will govern the design of the inner cables. The analysis results 

confirmed the general intuitive understanding while providing fresh insights into the governing 

load combinations for the different cable members. Any negative values for cable forces in Table 

3-3 would have indicated cables that went slack. For such cases, prestressing force levels must be 

increased to further stiffen the structure.                                                               
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Table 3-3  Nodal Displacements or Influence Coefficients 

 

 

Table 3-4  Internal Member Forces (kips) in a N1:n16:r/L0.083:d/L0.14 located in a high-

snow region 

 

Node # FD2 

shortened 

by 1 in.

FD1

shortened 

by 1 in.

TH 

shortened 

by 1 in.

CS2 

elongated 

by 1 in.

CS1 

elongated 

by 1 in.

TR2 

shortened 

by 1 in.

TR1 

shortened 

by 1 in.

1-16 0.1023 0.0937 0.2266 0.0515 0.0465 -0.0257 -0.1069

17 0.1689 -0.9982 0.2306 0.2239 -0.1381 -1.0709 -0.1759

18 0.0889 0.1626 0.2310 0.0475 -0.0107 -0.0979 -0.2399

19 0.1078 0.1908 0.2240 0.0830 0.0445 -0.0223 -0.1903

20 0.1027 0.1394 0.2147 0.0681 0.0339 0.0011 -0.1216

21 0.0947 0.0748 0.2049 0.0470 0.0140 0.0212 -0.0446

22 0.0866 0.0098 0.1961 0.0257 -0.0032 0.0404 0.0319

23 0.0797 -0.0454 0.1893 0.0074 -0.0171 0.0568 0.0969

24 0.0751 -0.0825 0.1857 -0.0047 -0.0264 0.0679 0.1408

25 0.0735 -0.0956 0.1857 -0.0090 -0.0297 0.0722 0.1566

26 0.0751 -0.0828 0.1893 -0.0048 -0.0264 0.0689 0.1419

27 0.0797 -0.0460 0.1961 0.0074 -0.0171 0.0584 0.0991

28 0.0866 0.0091 0.2049 0.0256 -0.0032 0.0425 0.0346

29 0.0948 0.0741 0.2148 0.0470 0.0140 0.0235 -0.0417

30 0.1030 0.1388 0.2244 0.0681 0.0340 0.0036 -0.1187

31 0.1068 0.1893 0.2287 0.0824 0.0443 -0.0213 -0.1880

32 0.0891 0.1625 0.2310 0.0476 -0.0107 -0.0965 -0.2385

LC - # ASD Load Combinations FD2 FD1 TH CS2 CS1 TR2 TR1

LC - 1 D + P 71.2 50.3 380 83 24 124 76.9

LC – 2a. D + P + Sb 307 54 682 152 25.9 53.4 5.0

LC – 2b. D + P + Sub 223 32.2 503 90.9 15.8 153 122

LC – 3a. D + P + 0.6 Wb 67.8 49 151 30.9 23.3 178 131

LC – 3b. D + P + 0.6 Wub 107 34.4 244 36.6 16.9 200 166

LC – 4a. D + P + 0.75 (0.6 Wb) + 0.75 Sb 196 52.1 434 95.4 24.9 111 63.3

LC – 4b. D + P + 0.75 (0.6 Wub) + 0.75 Sub 225 41.2 504 99.7 20.1 129 90.1

LC – 4c. D + P + 0.75 (0.6 Wub) + 0.75 Sb 132 35.7 300 49.8 17.3 186 151

LC – 4d. D + P + 0.75 (0.6 Wb) + 0.75 Sub 161 24.8 370 54.1 12.5 203 178

LC – 5a. 0.6D + 0.6P + 0.6Wb 37 26 83 15.5 11.5 107 81.7

LC – 5b. 0.6D + 0.6P + 0.6Wub 60.4 17.3 139 19 7.6 121 103
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Further, the N1:n16:L400:r/L0.083:d/L0.14 dome was considered to be situated in a coastal area 

known for its occasional extreme wind speed. For Risk Category-II, the wind speed is assumed to 

be 168 psf. The wind pressure calculations are done as described in Appendix E. The governing 

load combinations are determined from a separate influence surface analysis. The final member 

forces, as obtained from the analysis are presented in Table 3-5. 

 

Figure 3.8  Influence Surface (in red) for N1:n16:L400:r/L0.083:d/L0.14; Scale = 2000 

 

The results show that several cable members went into compression (in red) for multiple load cases 

(LC-3a, 4c, 5a and 5b). As such, the assigned prestressing forces are unacceptable and must be 

increased to overcome the significantly high negative forces in the hoop and outer diagonal cables. 

It should be kept in mind that these results are specific for the geometry and prestressing force 

levels for an N1:n16. Increasing the number of polygon sides (n), i.e., increasing the number of 

trusses will lead to a more reasonable load distribution. But doing so may result in a more flexible 

dome (hoop stiffness reduces with increase in n) and serviceability will have to be monitored. 
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Table 3-5  Internal member forces (kips) in a N1:n16:r/L0.083:d/L0.14 dome located in a 

high-wind region 

 

 

The influence surface analysis procedure was applied to N2 and N3 domes, specifically to 

N2:n16:L400:r/L0.083:d/L0.09 and N3:n16:L400:r/L0.083:d/L0.07 domes to determine their 

performance (Appendix B). For the N2 dome, the full symmetric snow load combination LC-2a 

clearly governed the design of the hoop cables, diagonal cables and struts, and LC-5 governed the 

design of ridge cables. Smaller exposure areas to wind loads and more members to resist the 

applied loads led to a more reasonable load distribution. No cables went slack. Similarly, the results 

for the N3 dome indicate that LC-2a governed the design of the hoops, diagonals and struts. Again, 

the results were reasonable and no cables went slack. It can be concluded that for N1 domes with 

the specified geometries presented herein, prestressing force levels and loadings are vulnerable to 

wind uplift forces. It can be deduced that for N1 domes, a higher n = 24 or 32 will lead to an 

efficient design. 

3.3 Summary  

Dead, live, snow and wind are the typical loads for which a cable dome must be designed. Besides 

these usual loads, prestress loads make a cable dome interesting and complex, both in terms of 

form-finding and structural behavior. The complexities presented by nonlinearities and inclusion 

LC - # ASD Load Combinations FD2 FD1 TH CS2 CS1 TR2 TR1

LC - 1 D + P 171 50.3 380 83 24 124 76.9

LC – 2a. D + P + Sb 253 52.5 561 124 25.2 81.5 33.8

LC – 2b. D + P + Sub 202 39.4 454 87.7 19.1 141 104

LC – 3a. D + P + 0.6 Wb -90.5 48.7 -75.8 -20.6 23.1 231 183

LC – 3b. D + P + 0.6 Wub 3.4 19.1 109 -9.4 10.2 277 255

LC – 4a. D + P + 0.75 (0.6 Wb) + 0.75 Sb 36.2 50.8 174 36.2 24.2 173 124

LC – 4b. D + P + 0.75 (0.6 Wub) + 0.75 Sub 107 28.6 313 44.6 14.5 207 178

LC – 4c. D + P + 0.75 (0.6 Wub) + 0.75 Sb -2.0 40.9 93.3 8.8 19.7 218 177

LC – 4d. D + P + 0.75 (0.6 Wb) + 0.75 Sub 68.5 18.8 232 17.2 10.0 252 231

LC – 5a. 0.6D + 0.6P + 0.6Wb -57.9 25.9 -52.9 -15.4 11.4 139.1 113.2

LC – 5b. 0.6D + 0.6P + 0.6Wub -1.6 8.1 58.2 -8.6 3.6 167 156
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of prestress makes the ASD procedure the preferred design methodology for cable domes.  

Since the Müller-Breslau principle may be applied to structures displaying linear behavior in all 

members, it cannot be applied to cable domes that have cables going into compression. Therefore, 

it is essential to provide adequate prestressing force levels that satisfy all load combinations, in 

order to benefit from the Müller-Breslau principle-based influence surface analysis.  

The following observations were made from the influence surface analysis of the sample dome: 

1. For the prescribed geometry, member areas and prestressing forces, the N1:n16 dome was 

vulnerable to wind suction loads (Table 3-5) when compared to N2:n16 and N3:n16 domes 

(Appendix B). Several cables went slack for various load combinations that included 

symmetric and asymmetric wind uplift forces.  

2. When adequately prestressed, LC-2a (full symmetric snow load) governed the design of the 

main load carrying members, i.e., the outermost hoop and diagonal cables.  

3. Even for domes governed by gravity loading, the prestressing forces may need to be increased 

to stiffen the structure sufficiently against wind suction forces (Table 3-4).  

4. Influence surface analysis provides guidance to a designer about the loading combinations that 

give the largest downward nodal forces and the largest net uplift forces. For example, the 

following symmetric load combinations (LC-2a, LC-3a, LC-4a, and LC-5a) could be 

considered. By observation, LC-2a (full symmetric snow load) should give the largest 

downward nodal loads since the wind forces are suctions and LC-5a (reduced dead loads plus 

wind uplift) would give the largest net upward nodal force, which actually could be a small 

downward force and therefore not control. A simple check can inform about any net uplift.  

The Müller-Breslau principle can be extended to examine the influence surface for nodal 

displacements. This way, the critical loading combination that would result in the maximum 

vertical deflection at a particular roof joint can be found.  
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CHAPTER 4 GEOMETRIC NONLINEAR MODEL 

 

In order to compare and verify the analysis results from SAP2000, the geometric nonlinear analysis 

procedure for analyzing cable domes was formulated and programmed using MATLAB. Large 

displacements are accounted for and relevant assumptions about material properties, member 

behavior and support idealization are included in the program. In Section 4.1, concepts of 

nonlinearity and geometric stiffness are discussed. The stiffness of a member is shown to be 

directly proportional to the amount of tension force in the member and inversely proportional to 

its length. The geometric nonlinear analysis procedure is developed in Section 4.2. The nonlinear 

equilibrium equations are then solved for the structural response using the Newton-Raphson 

iteration technique which shows superior convergence. The results from SAP2000 and MATLAB 

are verified in Section 4.3. 

4.1 Nonlinearity and Geometric Stiffness 

Two types of nonlinearities, namely material and geometric nonlinearities may exist in cable 

domes. Material nonlinearity, associated with the inelastic behavior of a member, is characterized 

by a force-deformation relationship that measures strength against translational or rotational 

deformation. Material nonlinearity is invoked in order to understand the behavior beyond yielding 

and at ultimate.  

Geometric nonlinearity is the result of large displacements that cause significant geometrical 

changes to the structure. Cable trusses and cable domes experience large displacements, which 

cause significant changes in geometry of the system; as such, the linear theory is not applicable. A 

cable changes its geometric configuration as well as load distribution to accommodate applied 

displacements or loads. Equations of equilibrium are, therefore, written for the deformed 

configuration, unlike in a conventional truss structure where equilibrium equations are established 

for the undeformed configuration (Urelius, 1972, Kuznetsov, 1991). Although displacements may 

be large, the associated strains will be small; a linear-elastic constitutive relationship can therefore 

be assumed.  
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Figure 4.1 Nonlinear response of cable-strut structures 

 

When cable structures undergo deformations due to loads, their resistance to further deflection 

increases, i.e., they become stiffer (Figure 4.1). This stiffness, which is in addition to the inherent 

elastic stiffness, is called the geometric stiffness. To understand the effects of geometric changes, 

consider an axial member of length L, cross-sectional area A, modulus of elasticity E and with an 

axial tensile load of F. The change in length a is found as:  

a

FL

AE
                                 (4.1) 

Define the elastic stiffness ke as 
a

F


. Therefore, 

e

AE
k

L
                                (4.2) 

Now consider the two bar structures shown in Figure 4.2 (Levy and Spillers 1995). In its original 

horizontal configuration (Figure 4.2a), the structure will not be in equilibrium for any vertical 

loading. 
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a)  

b)   

 

Figure 4.2 Joint equilibrium in (a) undeformed geometry; and (b) deformed geometry 

 

The structure will achieve an equilibrium configuration only after undergoing a vertical deflection 

(Figure 4.2b). For small angles θ, assume that the horizontal prestress force equals the tension in 

the members. Equilibrium of the vertical forces gives,  

W = 2T sin θ                               (4.3) 

For small angles, 

sin
L

 


                                 (4.4) 

Substituting Eq. 4.4 in Eq. 4.3 gives 

2T
W

L
                                  (4.5) 

The geometric joint stiffness kg is defined as 
W


 and therefore written as:  

2
g

T
k

L
                                 (4.6) 

Clearly, the geometric stiffness is a function of the tension T in the bar, and increases with T. In 

the case of a structure with axial members, the single elastic stiffness term becomes its elastic 

stiffness matrix. The total stiffness matrix for a cable dome can be deduced as the sum of the 

geometric stiffness and elastic stiffness. The derivation of the total stiffness matrix is explained 

next.  
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4.2 Nonlinear Analysis Formulation 

A cable dome’s desired shape is usually established by architectural and aesthetic considerations. 

The form-finding procedure is fundamental to cable dome design. This form-finding problem is to 

determine the prestressed configuration of a cable dome structure under self-weight and member 

prestressing forces, i.e., LC-1 (Section 3.2). 

After the desired dome configuration is determined from LC-1, the prestressed structure is 

analyzed for the remaining load combinations. Should some cables go slack or should the vertical 

deflections exceed the serviceability criterion under any of these load combinations, the 

prestressing forces are increased. After the prestressing force levels are determined to be adequate, 

the dome is again analyzed for different design variants whereupon the process is repeated.  

Certain assumptions are made to simplify the analysis; these considerations, which take into 

account material properties, support conditions and the nature of the forces that can be resisted by 

the members are: The commercial program SAP2000 is used for the nonlinear (geometric and 

material) analysis of the cable domes studied. Some assumptions are made to simplify the analysis. 

These considerations, which take into account material properties, support conditions and the 

nature of forces that can be resisted by the members are: 

1. Large displacement and small strain. As previously mentioned, cable domes are stiffened and 

stabilized by prestressing the diagonal cables. Although the displacement may be large due to 

the flexibility of the cables, the associated strain will be small for member stresses within the 

elastic range.  

2. Material and Geometric Nonlinearity. A bi-linear variation of stress-strain is assumed for the 

strand between the unloaded state and the ultimate state. As such, the first linear variation is 

from the origin and a yield strain of 1.1% (corresponding to the stress of 243 ksi) with an initial 

Young’s Modulus of 24,000 ksi. Between the yield point and the ultimate state, the stress-

strain variation is approximated as a linear variation. At ultimate, the strand strain is 4% with 

the ultimate stress as 270 ksi (Figure 2.2). The flexibility of the cable-strut structure may result 

in large deformations which increase as the external loads are applied. This type of 

deformation-dependent response requires a geometric nonlinear analysis. 

3. Cables are tension-only members. The cables have negligible buckling, twisting and bending 

strength and transfer loads by developing direct tension only (Krishna, 1978). 



 

48 

 

4. Cables are straight-line members. While a cable under its own weight cannot be straight, this 

is a reasonable assumption considering that the cables are prestressed and may overcome the 

effects of self-weight.  

5. Cables have constant cross-sectional areas. Any change in cable cross-sectional areas due to 

stressing is neglected.  

6. Roof membrane has negligible bending stiffness. The fabric membrane is very light (1 psf) and 

flexible. The membrane has negligible bending stiffness and resists only tangential membrane 

forces–normal and shearing. Negligible bending stiffness implies no resistance to compression 

stresses as well (Kuznetsov, 1991).   

7. Snow loads are applied as point loads at the top nodes of the struts. This assumption is 

necessary because the fabric membrane is supported by the ridge cables which behave as axial 

members. 

8. Rigid perimeter beam. The perimeter reinforced concrete beam and the supporting columns are 

massive members, hence they are assumed to be rigid. The supports are idealized as pins in the 

computer model.  

9. Cable slackening and rupture. For computational purposes, cable slackening is taken into account 

by ascribing a very small value of axial stiffness EA = 1 x 10-10. Cable rupture is taken into 

account in the same way as the slackening of cables, i.e., by reducing the stiffness of cables to 

approximately zero whenever the tensile stress in a cable is equal to or exceeds the breaking 

strength. 

With the preceding assumptions established, a stiffness-based finite element analysis procedure 

(Tezcan and Özdemir, 2000) can be formulated. Consider a planar truss (axial) member connecting 

nodes 1 and 2 in the XY-plane, where (X1, Y1) and (X2, Y2) are the nodal coordinates in the initial 

configuration. Under load, the member deforms and the nodes move to new locations with 

coordinates (x1, y1) and (x2, y2) as illustrated in Figure 4.3.  
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Figure 4.3 Undeformed and deformed geometry  

 

Let u1 and u2 be the displacements of node-1 along the x and y axis, and u3 and u4 be the 

displacements of node-2 along the x and y axis respectively (Figure 4.4). 

 

 

Figure 4.4 Nodal Displacements  

 

Therefore, the net displacement along the global x-axis is:  

   2 3 1 1u X u X u                             (4.7) 

And the net displacement along the global y-axis is: 

   2 4 1 2v Y u Y u                              (4.8) 
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The deformed length of the member is found as: 

       
2 22 2

2 3 1 1 2 4 1 2l u v X u X u Y u Y u                        (4.9) 

The direction cosines can be expressed as: 

   2 3 1 1
cos

X u X u u
m

l l


                           (4.10) 

and 

   2 4 1 2
sin

Y u Y u u
n

l l


                            (4.11) 

 

 

Figure 4.5 Member force components in global axes 

 

The internal member force Q can be written in terms of the strains as 

Q = Aσ = AE(ε - εp)                         (4.12) 

where A is the member cross-sectional area, E is the member modulus of elasticity and εp is the 

prestrain assigned to the diagonal members.  

And the member axial strain ε is defined as: 

1
l L l

L L



                             (4.13) 

The member force can therefore be expressed in terms of the strains as: 

         ( ) p

AE
Q l L AE

L
                          (4.14) 
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Therefore,  

       
1 ( ) p

AE u
Q Q m l L AE

L l


 
     

 
                       (4.15) 

                        2 3 1 1

1
( ) p

AE
l L AE X u X u

L l


 
      
 

       (4.16) 

Similarly, expressions for Q2, Q3 and Q4 can be written and expressed in vector form as:  

1

2

3

4

Q Qm

Q Qn

Q Qm

Q Qn

   
   
   

    
   

     

Q                          (4.17) 

Stiffness is defined as the change in the ith force due to a unit change in the jth displacement. As 

such, the stiffness terms of the member stiffness matrix are derived by taking partial derivatives of 

the end forces with respect to each of the end displacements, as: 

  (j =1 to 4)i
ij

j

Q
k

u





                         (4.18) 

Therefore,  
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k            (4.19) 
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In three-dimensional problems, k will be a 6 x 6 matrix and Q will be a 6 x 1 vector. The structure 

stiffness matrix K is then assembled using the member stiffness matrices and destination vectors. 

K is the sum of elastic and geometric stiffnesses and because the geometric stiffness is dependent 

on the change in geometry of the structure under load, K is a function of U.  

Let the sum of internal forces Q and external loads F at each node i of the dome be represented as 

R, the residual force vector.   

Therefore,    

( ) Q F R U                         (4.21) 

where Q, F and R are the global internal force, external force and residual vectors, respectively.  

Note that Q and R are functions of U. 

 

The response of the cable dome structure is obtained from solving the equilibrium equations: 

K ΔU=R                           (4.22) 

Equation 4.22 is a set of nonlinear equilibrium equations. Since R is a function of the unknown 

displacements, there is no direct solution for the equation. Iterative numerical schemes such as the 

Modified Newton-Raphson Method, Newton-Raphson Method or Incremental Loading Method 

have to be used (Krishna 1978). The Newton-Raphson Method exhibits the much desired terminal 

quadratic convergence, making it an attractive iterative method and is adopted as the solution 

method for Eq. 4.22. The computations in this method are based on the instantaneous stiffness of 

the structure derived anew at each iterative cycle. The method demands significant computational 

effort because the stiffness matrix has to be computed at every iteration. The structure is, therefore, 

loaded incrementally and the equations are solved iteratively in a piecewise linear manner until 

the values of ΔU or R converges to be within an acceptable tolerance.  

The following steps illustrate the procedure (Figure 4.6): 

1. Assume U(0) = R(0) = 0 

2. Solve K(0)U(1) = Q to evaluate U(1)    

3. Compute R(0) using U(1)   

4. Solve K(1)ΔU(1) = R(1) to obtain ΔU(1) which is the correction to U(1) 
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5. Determine U(2) = U(1) + ΔU(1) and R(2) 

6. Solve K(2)ΔU(2) = R(2) and continue until ΔU or R(U) converges to the specified limit. 

 

Figure 4.6 Newton-Raphson Method on a stiffening response (adapted from Krishna 1978) 

 

The Newton-Raphson Method will work efficiently for adequately prestressed domes and for 

domes with a satisfactory rise-to-span ratio. For N3 domes with small depth-to-span ratios, there 

may be convergence problems. For such cases, the Incremental Loading Method may provide the 

necessary enhancement with the application of the load in several steps. In fact, incorporating the 

Newton-Raphson Method within the Incremental Loading Method will form a powerful solution 

scheme that may handle any degree of nonlinearity.  

As a summary, a flow-chart showing the fundamental steps involved in the nonlinear analysis 

procedure is presented in Figure 4.7. 
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Figure 4.7 Nonlinear analysis procedure 

 

4.3 Comparison of SAP2000 and MATLAB results 

A numerical example to compare the results of the aforementioned procedure and SAP2000 is 

presented here. Consider the two-dimensional model of N1:n16:L400:r/L0.083:d/L0.14 dome 

(Figure 4.8). This is the planar model of the same dome in Figure 3.7.  

          

Figure 4.8 Two-dimensional model of N1:n16:L400:r/L0.083:d/L0.14 dome with node labels, 

member labels and gravity loads in kips  
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The results are generated using the MATLAB code supplemented in Appendix F. The results show 

good agreement for both LC-1 (shape-finding case) and LC-2a (uniform snow load case). The 

error is almost negligible for the latter case, both for member forces and joint displacements 

(Tables 4-1 and 4-2). 

Table 4-1 Comparison of MATLAB and SAP2000 results: Member Forces (kips) for 

N1:n16:L400:r/L0.083:d/L0.14 dome 

  MATLAB SAP2000 MATLAB SAP2000 

    Prestressed 

Structure 

Prestressed 

Structure 

Member 

Type 

Member 

Force 

(kips) 

LC-1 

D + P 

LC-1 

D + P 

LC-2a 

D + P + Sb 

LC-2a 

D + P + Sb 

Diagonal 

Cable 

F1 36.27 35.84 47.76 47.54 

F2 147.3 146.2 297.3 296.7 

Hoop Cable T1 328.2 325.6 661.5 660.3 

Ridge Cable TR1 121 119 56.44 55.4 

TR2 156.4 154 100.7 99.5 

Vertical Strut C1 -17.87 -17.66 -23.6 -23.5 

C2 -73.01 -72.42 -148.3 -148 

          Note: Negative sign indicates either downward reaction force or compressive member force 

     Numbers in parenthesis are equivalent hoop force values in a three-dimensional dome 

Table 4-2 Comparison of MATLAB and SAP2000 results: Displacements (inches) for 

N1:n16:L400:r/L0.083:d/L0.14 dome 

 MATLAB SAP2000 MATLAB SAP2000 

   Prestressed 

Structure 

Prestressed 

Structure 

Node 

Number 

LC-1 

D + P 

LC-1 

D + P 

LC-2a 

D + P + Sb 

LC-2a 

D + P + Sb 

1 20.674 20.762 13.518 13.537 

2 20.707 20.794 13.561 13.579 

3 8.121 8.162 2.920 2.941 

4 8.251 8.290 3.185 3.205 

Note: Negative indicates downward displacement with respect to the nodal elevation obtained from LC-1 

4.4 Summary 

In this chapter, a geometric nonlinear analysis model was developed using the stiffness method. 

The effects of large displacements were considered in the formulation. The nonlinear effects of 

cable slackening and member yielding were also included. The Newton-Raphson iteration method 

was performed at each load level to solve the system of nonlinear equilibrium equations. A 
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MATLAB code was written based on the procedure formulated in this chapter (Appendix F). The 

accuracy of the analytical procedure was verified for a sample dome and the MATLAB results 

showed good agreement with those from SAP2000.  

The nonlinear model featured in this chapter offers the possibility of including more parameters 

depending on the engineer’s needs. Material nonlinearity may be added and parametric analyses 

may be automated. A code for graphical interface can be included for visualizing and plotting the 

deformed shaped and member forces. The code can therefore be enhanced to make a powerful tool 

for a structural engineer. 
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CHAPTER 5 DERIVATION OF TWO-DIMENSIONAL MODEL  

 

The analysis and design of cable domes were greatly simplified in this research, using a two-dimensional 

model for axisymmetric loadings, leading to computational efficiency. This chapter is devoted to 

developing the two-dimensional model parameters equivalent to that of a three-dimensional model. In 

Section 5.1, the geometrical and nodal force equilibrium relationships are derived. The two-dimensional 

hoop area, force and stiffness parameters are derived using the Principle of Virtual Work in Section 5.2. In 

Section 5.3, preliminary member areas and prestressing force levels are computed using a truss 

model under full snow load. In Section 5.4, the results from the two-dimensional analysis are compared 

and validated with the results from a three-dimensional analysis. In Section 5.5, an “all-radial dome” is 

analyzed and compared with a conventional cable dome. The “all-radial” dome has some unique 

characteristics with regard to its cable weight and construction ease. The challenge, like in conventional 

radial domes, is to find a solution to enhance the torsional stiffness of the overall system.  

 

 

Figure 5.1 Three-dimensional hoop parameters and equivalent two-dimensional parameters           

for an N2:n16 dome  
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5.1 Geometry and Force Relationships 

To understand static behavior, a cable dome was idealized as a set of two-dimensional radial 

trusses. To achieve this, hoop cables were replaced by radial cables to form an equivalent two-dimensional 

model (Figure 5.1). The notations used for the hoop cable stiffness, cross-sectional area and tension force 

are KT, AT and T, respectively. The corresponding parameters for a two-dimensional dome are KR, AR, and 

TR. The principal geometric variables are recognized to be the radius of the circumscribing polygon 

(R), the number of sides of the polygon (n), along with the section and material properties (A and 

E, respectively) of the hoop cables.  
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R

ΔR
T

T

ΔR
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T
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Figure 5.2 Geometric relationships and joint equilibrium 

 

For simplicity, consider an N1:n6 dome (Figure 5.2), for which the geometric and force 

relationships are developed. To begin, the interior angle of a regular polygon is given as: 

2
1

n
 

 
  

 
                                  (5.1) 

where n is the number of sides of the polygonal hoop.  

The radius of the polygon can be written in terms of L and n as:  

                                     

2sin

L
R

n




 
 
 

                                  (5.2) 
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For an infinitesimal length ΔL, Eq. 5.2 can be written as: 

2sin

L
R

n




 

 
 
 

                                 (5.3) 

The horizontal force equilibrium of the bottom node gives: 

2 cos
2

hF T
 

  
 

                                  (5.4) 

where Fh =F cosβ represents the horizontal component of the diagonal tension and T is the hoop tension. 

From Figure 5.2, cos
2

 
 
 

= sin
n

 
 
 

 and therefore, 

2 sinhF T
n

 
  

 
                                  (5.5) 

which gives                          

2sin

hF
T

n




 
 
 

                              (5.6) 

 

Strain in the hoop cable,  

R

R

R



                                (5.7) 

 

Force in the hoop cable,  

R

R
T AE AE

R



                                  (5.8) 

 

2 sinh

R
F AE

R n

   
    

   
                               (5.9) 

Rearranging the terms,  

2 sinh

AE
F R

R n

 
  

 
                               (5.10) 
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Now, the equivalent radial stiffness of the hoop is defined as: 

R

F
K

R



                              (5.11) 

Therefore, the equivalent radial stiffness becomes: 

2 sinR

F AE
K

R R n

 
   
  

                            (5.12) 

 

A dimensionless stiffness parameter can be established by bringing the stiffness terms to one side:  

2sinRK

AE n

R

 
  

   
 
 

                          (5.13) 

The variation of the dimensionless stiffness parameter RK

AE

R

 
 
 

with the number of segments n is 

shown in Figure 5.3. The hoop cable stiffness reduces by half when the number of polygon sides 

is doubled and likewise when the hoop radius is doubled. 

 

Table 5-1  Hoop Stiffness 

           Coefficients 

   Figure 5.3  Hoop stiffness variation versus polygon sides 

 

 

 

 

n 
 

θ sin
n

 
 
 

 
RK

AE

R

 
 
 

 

    

6 120 0.5 1.000 

8 135 0.3827 0.7654 

12 150 0.2588 0.5176 

16 158 0.1951 0.3902 

24 165 0.1305 0.2611 

32 169 0.098 0.1960 
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Rewriting KR in terms of the hoop cable force T, 

2

2 sin

4 sin

2sin

h
R

T
F Tn

K
R L n

L

n







 
 

      
    

 
 

  
  
  

                     (5.14) 

The equivalent radial (two-dimensional) stiffness of the hoop cables can be expressed in terms of the stiffness 

of the three-dimensional hoop cables as: 

24 sinR TK K
n

 
  

 
                            (5.15) 

Equation 5.15 can be expanded to develop a relationship between the radial cable areas AR, and the three-

dimensional hoop cable areas AT as: 

24 sinR TA E A E

R L n

 
  

 
                              (5.16) 

Therefore,  

2 sinR TA A
n

 
  

 
                           (5.17) 

The actual hoop forces (in three-dimension) can be determined from the following relationship: 

2 sinRT T
n

 
  

 
                            (5.18) 

A summary of the equivalent parameters for a two-dimensional analysis model is provided in 

Table 5-2. The modeling parameter is the equivalent radial cross-sectional areas for the hoops. 

After analyzing the two-dimensional model to determine TR, the actual force in the hoop cables T 

can be determined using the expression in Eq. 5.18. 
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Table 5-2 Equivalent Two-dimensional Model Parameters 

Type Three-dimensional 

Parameter 

Equivalent Two-dimensional 

Parameter 

Hoop Area 𝐴𝑇 𝐴𝑅 = 2 𝐴𝑇 𝑠 𝑛 (
𝜋

𝑛
) 

Hoop Force 
𝑇 =

𝑇𝑅

 2 𝑠 𝑛 (
𝜋
𝑛
)
 

𝑇𝑅 

Hoop Stiffness 𝐾𝑇 𝐾𝑅 =4(𝐾𝑇) 𝑠 𝑛
2 (

𝜋

𝑛
) 

 

5.2 Estimation of Preliminary Member Sizes and Prestressing Force 

Consider the three-dimensional model of N1:n16:L400:r/L0.083:d/L0.14 dome (Figure 5.4a). 

Assuming that full axisymmetric snow loads governs the member design, a two-dimensional all-

truss model is used for the estimation of prestressing force levels and preliminary member sizing. 

Preliminary member areas were selected based on a cable arrangement adapted from Section 2.4. 

The ridge cable cross-sectional areas (inner to outer) are 3.3 in2 and 5.5 in2 respectively, the 

diagonal cable areas are 2.17 in2 and 4.34 in2 respectively, and the hoop cable area is 9.51 in2. The 

struts areas (inner to outer) are 14.9 in2 and 18.1 in2 with flexural stiffness EI = 49 x 106 k.in2 and 

86.77 x 106 k.in2 respectively. 

   

Figure 5.4 (a) Three-dimensional model of N1:n16:L400:r/L0.083:d/L0.14 dome with node 

labels, member labels and gravity loads in kips; and (b) Equivalent two-dimensional model 
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The equivalent two-dimensional cable-truss is shown in Figure 5.4b, however, the ridge cables are 

now replaced with two-force members. Under the action of the loads, the ridge members 

experience compression, and the diagonal and hoop members experience tension.  

In the original cable dome, all cables including the ridge cables must be in tension to avoid any 

potential instability. As such, the compression in the top chord members of the cable-truss have to 

be overcome. This is done by applying an appropriate prestressing force to the diagonal cables 

until the ridge compression forces became tension forces. An initial prestress equal to 50% of the yield stress 

of the steel strands was given to the diagonal members. With the yield stress of strands fy = 243 ksi and the 

Young’s Modulus = 24,000 ksi, the assigned prestrain to the diagonals = 0.005. The prestrain values can be 

adjusted until all cables are in tension under the full snow load. Alternatively, the same prestress force can 

be obtained by increasing the member areas so as to keep the prestressing force levels small, as  

     P=EAƐp                               (5.19) 

where P is the prestressing force, E is the modulus of elasticity, A is the cable area that is 

prestressed and Ɛp is the prestrain.  

Usually, prestressing force levels must be such that the tension induced in the ridge cables is 5-10% of the 

cable breaking stress. This is done to ensure that the ridge cables don’t go slack under the action of live 

load or snow load. 

5.3 Validation of the Two-dimensional Model  

To validate the two-dimensional cable-truss model, consider again the 

N1:n16:L400:r/L0.083:d/L0.14 dome shown in Figure 5.4b. Once the prestressed configuration 

was determined (LC-1: D + P), the dome was analyzed for the remaining loading conditions. Only 

the full symmetric snow load case (LC-2a) was used for the validation of the two-dimensional 

model. Valley cables were neglected in this comparative analysis, as they offer no resistance to 

gravity loads. The computer program uses the Newton-Raphson Method to solve the nonlinear 

problem, which provides the much desired terminal quadratic convergence, i.e., the solution 

converges at a faster rate.  

The results from the two-dimensional analysis were compared with the three-dimensional 

SAP2000 analysis results. The results and differences are quantified in Tables 5-3 and 5-4.  
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Table 5-3 Summary of Member Forces (kips) for N1:n16:L400:r/L0.083:d/L0.14 dome 

  2D 3D  2D 3D  

     Prestressed 

Structure 

Prestressed 

Structure 

 

Member Type Member 

Force 

(kips) 

LC-1 

D + P 

LC-1 

D + P 

% 

difference 

LC-2a 

D + P + Sb 

LC-2a 

D + P + Sb 

% 

difference 

Diagonal Cable F1 39.9 39.3 1.50 49.9 49.2 1.40 

F2 164.7 160.2 2.73 309.3 304.6 1.52 

Hoop Cable T1 143 

(366.5) 

355.4 3.03 267.7 

(686.1) 

675.5 1.54 

Ridge Cable TR1 90.4 91.5 1.22 17.4 18.7 7.47 

TR2 128.2 128.9 0.55 62.8 63.5 1.11 

Vertical Strut C1 -18.9 -18.7 1.06 -23.8 -23.7 0.42 

C2 -77.7 -77.3 0.51 -150.8 -150.5 0.20 

Horz. Reaction H 267.5 263.6 1.46 328.1 324.6 1.07 

Vert. Reaction V 53.3 50.7 4.88 142.3 139.7 1.83 

Note: Negative sign indicates either downward reaction force or compressive member force 

           Numbers in parenthesis are equivalent force values for the hoop in a three-dimensional dome 

 

 

 

Table 5-4 Summary of Displacements (inches) for N1:n16:L400:r/L0.083:d/L0.14 dome 

 2D 3D  2D 3D  

    Prestressed 

Structure 

Prestressed 

Structure 

 

Node Number LC-1 

D + P 

LC-1 

D + P 

% 

difference 

LC-2a 

D + P + Sb 

LC-2a 

D + P + Sb 

% 

difference 

1 17.34 17.43 0.519 -9.38 -9.20 1.92 

2 17.37 17.46 0.518 -9.37 -9.19 1.92 

3 5.59 5.61 0.358 -6.99 -6.85 2.00 

4 5.72 5.75 0.524 -6.86 -6.73 1.90 

Note: Negative indicates downward displacement with respect to the nodal elevation obtained from LC-1 

 

 

Knowing the bottom radial cable force, the actual three-dimensional hoop force is calculated using 

Eq. 5.18, i.e., 2 sinRT T
n

 
  

 
, where T is the hoop force in the three-dimensional model and TR 

is the radial cable force. As such, the actual hoop force for LC-1:  

1

143
366.5kips

2(0.1951)
2sin

RT
T

n


  

 
 
 

                      (5.20) 
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This gives a percentage difference of 0.44% when compared with 228.3 kips obtained from a three-

dimensional analysis.  

Similarly, the actual hoop force for LC-2a: 

1

267.7
686.1kips

2(0.1951)
2sin

RT
T

n


  

 
 
 

                     (5.21) 

This gives a percentage difference of 0.02% when compared with 624.2 kips obtained from a three-

dimensional analysis. The percentage difference in member forces is slightly greater in the 

prestressing stage. The difference is almost insignificant for full snow load case (Table 5-3). The 

latter is reassuring for dome design governed by the full axisymmetric snow load case. 

Displacements values (Table 4-4) indicate a larger percentage difference for LC-2a (symmetric snow load 

case). However, the differences are very small for design purposes.  

5.4 “All-radial” cable dome 

Consider the N1:n16:L400:r/L0.083:d/L0.14 “all-radial” dome as shown in Figure 5.5a. The “all-

radial” cable dome as an alternative is interesting to examine, where the polygonal hoops are 

replaced by radial cables in the plane of each truss. The dome is first modeled as a two-dimensional 

structure (Figure 5.5b) using the equivalent two-dimensional parameters from Table 5-2 and an 

analysis for axisymmetric gravity loads is performed. Valley cables are neglected for meaningful 

comparison of the “all-radial” dome and the conventional radial dome. The results are listed in 

Tables 5-5 and 5-6.  

 

Figure 5.5  (a) Three-dimensional model of N1:n16:L400:r/L0.083:d/L0.14 “all-radial” dome; 

and (b) Equivalent two-dimensional model 
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The results from the analysis of the “all-radial” show that the member forces are slightly larger. 

This may be due to the added weight of the extended posts in the central cage. That said, an “all-

radial” solution may require easier connections with all the cables attached to the central cage at 

parallel tension rings. This dome will also require less labor to erect as the cables may be 

prestressed individually, and not all at the same time as otherwise required. Radial cables along 

the same direction must be prestressed simultaneously to keep the compression ring in place.  

 

Table 5-5 Summary of Member Forces (kips) for N1:n16:L400:r/L0.083:d/L0.14 dome 

Member Type Member 

Force (kips) 

LC-1 

D + P 

LC-2a 

D + P + Sb 

 

Diagonal Cable 

 

F1 

 

39.7 

 

54.5 

F2 150.3 306.5 

Hoop Cable T1 130.5 266 

Ridge Cable TR1 59.8 8.1 

TR2 97 58 

Vertical Strut C1 -15.2 -22.5 

C2 -73.6 -153.4 

Horz. Reaction H 224.5 321.7 

Vert. Reaction V 53.9 143 

Note: Negative sign indicates either downward reaction force or compressive member force 

 

Table 5-6 Summary of Displacements (inches) for N1:n16:L400:r/L0.083:d/L0.14 dome 

Node 

Number 

LC-1 

D + P 

LC-2a 

D + P + Sb 

 

1 

 

12.44 

 

-10.54 

2 12.46 -10.53 

3 3.67 -7.35 

4 3.79 -7.2 

Note: Negative indicates downward displacement with respect to the nodal elevation obtained from LC-1 

 

 

A comparison of weight between the “all-radial” cable dome and the conventional cable dome will 

be insightful. First, the volume of the hoop cables in a conventional cable dome is calculated as: 

VH = n L AH                             (5.22) 

where n is the number of sides of the polygon, L is the length of the side of the polygonal hoop 

and AH is the area of one hoop segment.  
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The volume of the radial cables in the “all radial” dome can be found as: 

VR = n R AR                             (5.23) 

where AR is the area of one radial segment measured from the bottom of a post to the central 

cage.  

Let the ratio of the two volumes be given as γ. As such, 

H

R

V

V
                               (5.24) 

The relationship between the polygonal dimensions R and L is given in Eq. 5.2. The relationship 

between the hoop tension T and the equivalent radial tension TR was determined from nodal 

equilibrium in Eq. 5.18. Substituting Eqs. 5.22 and 5.23 in Eq. 5.24 and using the relationships 

given in Equations 5.2 and 5.18, Eq. 5.24 can be re-written as: 

2sin 2 sin 1
R

L T
T

R T n n

 


        
         
       

               (5.25) 

Equation 5.25 shows that the total weight of cables in an “all-radial” cable dome is the same as 

that of a conventional radial cable dome. Therefore, the cost of cables for both domes will be the 

same. The fact that the theoretical weight of steel for the cables is the same for both domes is 

significant.  

Given that such is the case then, why is it that the all-radial solution has not been used more 

frequently? The answer lies in the lack of torsional stiffness offered by this system when compared 

to the conventional radial cable dome, where the hoops provide the much-needed torsional 

resistance. If prestressing forces are less than the required minimum, the dome will be unstable for 

asymmetric loads, and the cost of reinforcing the vertical struts with cross-bracings may cancels 

any cost benefits the “all-radial” cable dome can gain. 

5.5 Summary 

In this chapter, a two-dimensional analysis model was derived in order to simplify the analysis and 

design procedures. Equivalent planar parameters were derived to replace the three-dimensional 

hoop and tension ring members. The two-dimensional model analysis results compared well with 

the three-dimensional model analysis results. Essentially, a two-dimensional model will suffice to 

design cable domes governed by axisymmetric loading. Moreover, such an analysis provides a 
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designer with a time-saving and efficient means for parametric studies.  

A notable departure from the conventional radial dome is the new “all-radial” dome developed using 

the two-dimensional model; this dome has radial bottom chords connected to the central hub. The highlight 

of this dome lies in its constructional efficiency. The simpler connection details will result in less labor 

to erect as the cables will be prestressed individually and not all at the same time around the 

perimeter ring; i.e., the radial cables along the same direction must be prestressed simultaneously 

to keep the ring in the same place. A comparison of weight between the “all-radial” cable dome 

and the conventional cable dome showed that the total weight of cables used is the same for both. 

This proves that the cost of cables for both domes will be the same. However, the lack of torsional 

stiffness under asymmetric loading had to be remedied by using cross-bracing between vertical 

struts in alternate sectors. 
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CHAPTER 6  CONCEPTUAL BEHAVIOR OF           

CABLE-STRUT STRUCTURES 

 

Before examining larger domes, a study of simple cable-strut structures is necessary to obtain 

insights about the fundamental structural behavior of all cable structures. This chapter presents 

three basic structures, namely, a one-strut cable truss (Figure 6.1), a two-strut cable truss (Figure 

6.5) and a four-strut cable dome (Figure 6.8), analyzed for symmetric and asymmetric loads. 

Analyzing the one-strut structure discussed in Section 6.1 helped in understanding the conceptual 

structural behavior of strut, diagonal and ridge members. The two-strut structure discussed in 

Section 6.2 includes a radial bottom chord (comparable to a hoop cable in three-dimensional 

structure) and is closer to a two-dimensional model of a cable dome. The effects of asymmetrical 

gravity loading is studied using the two-strut cable truss model, otherwise not possible with the 

one-strut model. Lastly, in Section 6.3, a three-dimensional four-strut structure is studied for the 

effects of asymmetric loads. The depth-to-span ratios were varied for a comparative parametric 

study. The analysis of the aforementioned structures is nonlinear elastic ─ nonlinear because of geometric 

effects and elastic because the member stresses are kept within the elastic range of the materials. 

6.1 One-strut Cable Truss 

Consider the one-strut cable-truss illustrated in Figure 6.1. The rise-to-span ratio of the truss, is 

r/L=0.083, and the depth-to-span ratio d/L varies as 0.13, 0.29 and 0.50. The cross-sectional area 

of the strut is 4.0 in2 and the cross-sectional area of all cables is 1.0 in2. The modulus of elasticity 

of the struts and cables are 29,000 ksi and 24,000 ksi respectively.  

10 ft. 10 ft.

W = 25 k
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D
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W = 25 k
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Figure 6.1 Prestressed geometry of one-strut structure under gravity load 
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A load W = 25 kips is applied at node C in the downward direction. For the same prestressing force 

in the diagonal members and for various d/L ratios, comparative results of member forces and 

thrust on the perimeter beam are presented. Several useful observations can be made from 

comparing three different one-strut cable trusses with varying d/L ratios. The stiffness of the three 

cable-trusses did not change much under increasing loads. This can be attributed to the effect of 

prestress. When the load is increased beyond a certain limit, the stiffness abruptly dropped to zero. 

This is the load at which the ridge cable goes slack and is the first indicator of ensuing strut 

instability. The deeper the truss, the greater its stiffness and, thus, higher loads are required to 

cause the ridge cable to go slack. 

Of all the plots, the most important one is the ridge cable force versus the applied live load W 

(Figure 6.2a). The other insightful plot is the ridge cable force versus deflection at the ridge caused 

by W (Figure 6.2b). When the ridge cable force equals zero (goes slack), the structure becomes 

unstable. It can be seen that the ridge cable force equals zero at a deflection such that the latter 

overcomes the initial upward deflection of the ridge caused by prestressing of the bottom 

cable. This is seen better by plotting the elevation of the ridge (i.e., of node C) from the level of 

supports, against W (Figure 6.3a). Thus, at W=0, the elevation of the ridge will be that reached 

after initial prestressing. As W is applied and increased, the ridge elevation will begin to come 

down until it reaches the value of W where the ridge cable forces become zero.  

    

(a)                                       (b) 

 

Figure 6.2 (a) Ridge cable force variation with increase in load W; and 

(b) Ridge cable force versus ridge displacement 
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(a)                                       (b) 

 

          Figure 6.3  (a) Ridge elevation versus applied load; and  

                    (b) Variation in horizontal reaction with increase in applied load 

 

Note also that the horizontal support reaction is significantly greater for the shallower trusses, 

particularly for the truss where d/L = 0.13 (Figure 6.3b). As a consequence, there will be a greater 

demand on the supporting walls or columns.  

   

(a)                                       (b) 

 

Figure 6.4 (a) Diagonal cable force variation with increase in load W; 

      (b) Strut force variation with increase in applied load 

 

The forces in the diagonal cables and vertical struts increase with an increase in W (Figure 6.4a 

and 6.4b, respectively). The rate of increase of diagonal forces is greater for a shallow truss whose 

d/L = 0.13 compared with the deeper trusses whose d/L = 0.29 and 0.50. This means that the 

possibility of diagonal cable failure by rupture is much greater in shallow trusses. The rate of 
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increase in internal forces of the struts is nearly identical. The plot in Figure 6.4b shows that the 

final compressions in the struts are not very different and, therefore, independent of the depth of 

the structure. 

6.2 Two-strut Cable Truss 

Consider the two-strut cable-truss shown in Figure 6.5. All members have an area of 1.0 in2. The 

modulus of elasticity of the struts and cables are 29,000 ksi and 24,000 ksi, respectively. The same 

diagonal prestressing force levels were used for both cases. As a result, both cable-trusses have 

the same prestressed geometry with the same r/L and d/L ratios. The trusses are examined for 

symmetric and asymmetric loading conditions. The dead load is the same on both trusses while 

one of the trusses has axisymmetric live loads (Figure 6.5a) and the other has asymmetric live 

loads (Figure 6.5b).  

 

(a)   (b) 
 

Figure 6.5  (a) Two-strut cable truss with axisymmetric live loads; and  

                     (b) Two-strut cable truss with asymmetric live loads 

 

Many of the observations were similar to that seen in the one-strut cable truss. The system resists 

loads by losing tension in the ridge cables and absorbing tension in the diagonal and hoop cables. 

When the ridge cables go slack, the system resistance is from pure catenary action, i.e., like a cable 

system with two concentrated loads from the struts.  
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(a)                                     (b) 

Figure 6.6 Force variation in (a) ridge cables AC; and (b) BD with increase in live load 

There was a noteworthy observation from the behavior of the truss under asymmetric loadings. 

The results in Figure 6.6 show the ridge cable force variation with increase in live load. Clearly, 

despite the asymmetric loading, there is very little variation in the ridge cable forces.  

 

Figure 6.7 Two-dimensional free-body diagram showing equilibrium of forces 

        

This is understood better from Figure 6.7 where the applied loads are directly absorbed by the 

vertical struts. The ridge cable forces have to equilibrate the force in member CD and as such the 

variation in the ridge forces will not be much if the in-plane strut displacements are within limits.  

6.3 Three dimensional four-strut structure 

Consider the N1:n4:L200:r/L0.083:d/L0.29 structure shown in Figure 6.8. Upon analyzing the 

three-dimensional model, its inefficiency was revealed from its lack of torsional stiffness. The 

reasons for this are quite obvious. Firstly, the very large tributary area supported by a four-sided 

dome makes the applied loads significantly high. When the transverse movements are motivated 

D = 10 k

C D

D = 10 k

L = 20 k

TCA TDB
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at small asymmetric loads, P-Δ effects take over. Hoop cables are the only members to provide 

resistance to the lateral movements. The only way to contain the lateral movements was by 

increasing the prestressing force levels in the diagonals. As a consequence, very high levels of 

prestressing forces were required to stabilize the structure.  

Calledine et al. (1986) derived a simple relation between the number of kinematic modes and self-

stress states using only equilibrium and linear algebra principles. Pellegrino (1992) quantified the 

above type of mechanism for cable domes to be equal to N x n. As such, for the N1:n4 dome in 

reference, there will be 1 x 4 = 4 mechanisms of the aforementioned type. He identified and 

quantified three other mechanisms by examining the equilibrium (or coefficient) matrix that is 

formed from writing out the nodal equilibrium equations in matrix-vector form.  

 

      

   (a)                                  (b) 

Figure 6.8  (a) N1:n4 dome under asymmetric loading; and (b) torsional distortion in plan view  

 

Taking note of the above mechanism, domes with n = 6, 8, 12, 16 and 24 were examined under 

asymmetric snow loading. The torsional distortions attenuate (Figure 6.9) with an increase in the 

number of polygon sides, n. This is because the tributary areas on each truss (and therefore the 

loads) are smaller for higher n. However, to restrain the torsional movements, the additional 

prestressing forces required were quite high. 
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Figure 6.9  Torsional distortions in plan view for domes with n = 4, 6, 8, 12, 16, and 24 

For the domes investigated, it can be concluded that large cable domes with flexible roof 

membrane must be designed with a minimum number of 16 polygon sides. As such, the palette for 

parametric studies has been reduced to n=16 and n=24 domes.  

6.4 Summary 

The cable-strut structures examined in this chapter gave valuable insights about the trend in 

member behavior under the action of gravity and uplift forces. The forces in the diagonal and the 

hoop cables kept increasing with increase in gravity loads. While this was happening, there was a 

reduction in the ridge cable tensions, to the extent that some ridge cables went slack. Essentially, 

the hoop and the diagonal cables resist the majority of gravity loads through catenary action. This 

is especially evident from the two-strut cable truss. The analysis results of the three-dimensional 

structure emphasized the torsional softness that may exist in domes with fewer polygon sides. This 

sets up the basis for the study of larger cable domes.  
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CHAPTER 7 LIMIT STATES IN CABLE DOME DESIGN 

 

This chapter is devoted to the study of dome behavior both in the elastic and inelastic range of the 

materials. The trend in member behavior is first understood from an elastic analysis. Inelastic 

analysis is done to evaluate the limit states and thereby to know the potential source for dome 

instability and demise. The structural behavior of twelve 400 ft. span domes with different depth-

to-span ratios is discussed in Section 7.1. The domes were subject to the action of both symmetric 

and asymmetric loads. In Section 7.2, the limit states of strut buckling and serviceability are 

evaluated. To gain further insight into the progressive yielding of cable members, a displacement-

controlled analysis was used. The analysis showed that cable rupture may never be the cause for 

collapse of domes that are well-designed. 

7.1 Geometric Nonlinear Behavior 

For practical considerations such as serviceability, cable domes are designed to ensure that the 

member stresses are within the elastic range of the materials. The analysis type is nonlinear elastic 

─ nonlinear due to large displacement or geometrical effects. The elastic range for the steel strands 

is defined at a strain value of 0.011 with the corresponding yield stress as 243 ksi. Consider the 

sample N1:n16:L400:r/L0.083:d/L0.14 dome (Figure 5.4). 

The analysis showed that the behavior of the N1:n16 dome under gravity loading is catenary-like 

(Figure 7.1) with the diagonal cables and the hoop cables as the principal load-resisting members. The ridge 

cables relax due to the downward movement of the dome and as a result, there is a reduction in 

their tension forces.  

 

 

 

 

Figure 7.1 Catenary-type load path in cable-trusses 
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Under uniform gravity loading, LC-2a (Table 3-2) for this analysis, the behavior of the ridge cables 

is interesting in the sense that not all ridge cables behave alike. As the live load is increased, the 

central tension ring hub deflects downward, causing the ridge cables attached to the ring to relax, 

i.e. lose tension. This is the first sign of departure from a stable structure as the inner vertical strut 

begins to have large displacements due to partial restraint at its top end. The inner ridge cables in 

all the domes examined, i.e., N1:n16, N2:n16 and N3:n16, lose tension with continuous increase 

in loading. Eventually, these cables go slack. Any small residual tension is because of their self-

weight (Figure 7.2). 

 
 

 Figure 7.2  Geometric Nonlinear Analysis: Inner ridge cable force versus live load in n16 domes 

 

 
 Figure 7.3 Geometric Nonlinear Analysis: Outer ridge cable force versus live load in n16 domes 
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The outer ridge cables initially lose tension under the action of gravity loads. However, these 

cables begin to regain tension to balance the increasing compressive forces in the struts (Figure 

7.3). The ridge and valley cables are the primary load-resisting members for suction forces while the other 

cables serve ancillary purposes. The valley cables, in fact, resist most of the uplift forces. There will be no 

instability, and the structure may fail only by overcoming the tensile strength of the ridge cables. 

This should be a more ductile failure than that caused by column instability. When cable domes 

are designed for hurricane-prone regions such as Florida coasts, higher prestressing force levels 

may be required to ensure that no cables will go slack. Moreover, some means to tie down the 

structure may be necessary.  

 

Figure 7.4 Geometric Nonlinear Analysis: Outer diagonal force versus live load in n16 domes 

 

       

 Figure 7.5 Geometric Nonlinear Analysis: Hoop cable force versus live load in n16 domes 
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For the n16 domes in subject, the outermost diagonal and hoop cable forces were observed to 

increase with increase in live loads (Figures 7.4 and 7.5). Although at the prestressed state, the 

tension in the cables for all domes are not very different, the cable tensions increase at a faster rate 

for N3 domes as compared to N2 followed by N1. Moreover, for the same N, domes that are 

shallow (smaller d/L) show a slower rate of increase in tension as compared with deeper domes. 

    
 

Figure 7.6 Geometric Nonlinear Analysis: Outermost strut force versus live load in n16 domes 

 

The forces in the struts are relatively small (Figure 7.6) compared to the diagonal and hoop cable 

forces. Similar to the cable tensions, the compression in the struts increase at a faster rate for N3 

domes as compared to N2 followed by N1.  

Under the action of asymmetric snow loads, a portion of the dome deflects downward and part of 

the structure is lifted up. As a consequence, the ridge cables in the portion lifted up gain tension. 

This effect is further magnified by wind suction (Figure 7.7). Ridge cable design is therefore 

governed by the asymmetric load case LC-4d (Table 3-2).  

 

Figure 7.7 Magnifying effect caused by action of asymmetric snow and wind suction 
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Although LC-2a (symmetric snow load case) causes maximum internal forces in critical members, it 

cannot be deemed as the governing case for design of members that attract compressive forces in 

the N1:n16:r/L0.083:d/L0.14 dome. The design must be checked for wind uplift loads that may 

cause cable compression (Figures 7.8). Prestressing force levels may then be adjusted accordingly.  

 

Figure 7.8 Cable slackening due to wind uplift 

 

A good practice is to increase the prestressing force levels uniformly across the span of a dome, 

i.e., linearly in all diagonal cables. This ensures proper control of the structure’s stiffness. 

7.2 Limit States 

The following limit states define the capacity of a dome, namely: 1) strut buckling (stability),     

2) serviceability (stiffness), and 3) cable rupture (strength). The results of the elastic analysis 

revealed that the limit states 1 and 2 occurred well within the elastic range of the materials. A dome 

may not be considered usable after the buckling of struts. That said, the structure may still be 

subjected to increasing loads after limit states-1 and 2 have happened. To capture the full path of 

the structure’s response, the inelastic behavior of the dome was examined.  

Beyond the elastic limit of the material, the structural response was nonlinear both with respect to 

material properties and geometrical effects. The behavior of cables can become highly nonlinear 

when slackening and inelastic tensile strains intervene. Such nonlinearities affect the constitutive 

laws of the cable members (Maier and Contro, 1975). A bi-linear material model for the cables 

was considered (Figure 7.9a). The ultimate strain εu of the steel strands is 0.04, corresponding to 

a breaking stress at 270 ksi. The strand yield strain, εy, was taken as 0.011 corresponding to a yield 

stress equal to 90% of the ultimate stress, i.e. 243 ksi.  
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Figure 7.9  (a) Material model (bi-linear approximation) used for steel strands; and         

(b) Material model for structural steel used for struts 

To simulate the inelastic behavior using SAP2000, discrete “yielding links” were assigned at mid-

spans of all members. The nonlinear behavior of a member was concentrated at the links. The yield 

stress and yield strain were selected as scaling factors. Therefore, the yield point B is assigned a 

value of 1.0 and the ultimate point E was assigned a value of the ratio of the ultimate stress and 

the yield stress, which equals 1.11 (Figure 7.10). The corresponding strain ratio at ultimate is 3.64. 

Intermediate points C and D may be used as performance criteria per the designer’s discretion. 

 

Figure 7.10 “Yielding link” data used for inelastic analysis 

The static nonlinear analysis capabilities for both material and geometrical effects are fully 

integrated into the SAP2000 program and allows for efficient implementation of the analysis 

procedure. A displacement-controlled static nonlinear analysis is used wherein the load at all the 

roof nodes is incrementally (and linearly) increased until a target nodal displacement is reached. 
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The target displacement is set to five times the permissible deflections (span/180) in order to note 

the progressive yielding of members. Knowing which member would fail first will enable a 

designer to redesign the structure in order to ensure a ductile behavior, i.e. yielding of cables.  

For academic curiosity, the inelastic response was examined to see how cables would respond to 

increasing live load. An N1:n16 dome was loaded until the first cable ruptured. The behavior was 

monitored at intermittent load-steps. The summary of results for the sample domes 

N1:n16:L400:r/L0.083:d/L0.14 and N1:n16:L400:r/L0.083:d/L0.10 has the limit states and the 

corresponding live loads W1 and W2 highlighted (Tables 7-1 and 7-2). The member stresses are 

listed only for the hoop and outer diagonal, as they yield and rupture before other cable members, 

leading to potential collapse of the dome.  

The struts do not develop their full capacity. Clearly, it would take substantial enhancement in the 

prestressing force and strut sizes to cause rupture of the cables to occur before buckling of struts 

(Tables 7-1, 7-2 and 7-3). The same was evident in N2 and N3 domes as well (Tables C-1 through 

C-4, Appendix C). 

Table 7-1 Summary of results for N1:n16:L400:r/L0.083:d/L0.14 dome 

 

 

(Live) Load 

Step Vert. Defl. Live Load Member Forces

Member 

Stresses

at Joint 1 at Joint 5 at Joint 1 at Joint 5 Diagonal Cables

Hoop 

Cable

Ridge 

Cables Strut Hoop Cable

Outer 

Diagonal 

Δ1 Δ5 W1 W2 FD1 FD2 TH TR1 TR2 CS1 σH σD2

in. in. kips kips kips kips kips kips kips kips

Prestressed 17.3 5.60 1 6.0 39.6 160 139 89.1 127 -75.0 37.4 36.8

1 13.3 2.60 5.6 33.9 43.6 223 194 54.8 95.4 -107 52.2 51.4

2 9.3 -0.40 11.1 67.2 48.0 286 248 23.4 67.5 -139 66.9 65.9

3 4.8 -3.40 16.0 96.8 54.9 350 303 9.30 59.5 -171 81.7 80.6

4 0.0 -6.40 20.6 124 63.3 413 358 6.15 64.3 -204 96.6 95.3

5 -4.8 -9.40 25.1 152 72.0 477 414 4.87 71.3 -238 112 110

6 -9.5 -12.4 29.6 179 80.8 542 469 4.15 79.0 -271 127 125

7 -14.3 -15.4 34.2 207 89.7 606 525 3.68 87.3 -305 141 140

8 -19.1 -18.4 38.9 235 98.7 671 581 3.34 95.8 -339 157 155

9 -23.9 -21.4 43.6 263 108 735 637 3.08 105 -374 172 169

10 -28.6 -24.4 48.3 292 117 800 693 2.88 114 -409 187 184

11 -33.3 -27.4 53.1 321 126 866 749 2.71 123 -444 202 200

12 -38.1 -30.4 57.9 350 135 931 805 2.57 132 -480 217 215

13 -42.8 -33.4 62.8 379 145 997 862 2.45 142 -516 232 230

14 -46.1 -35.5 66.3 400 151 1043 902 2.37 149 -542 243 240

15 -51.4 -38.9 71.9 434 162 1117 965 2.27 160 -583 260 257

16 -57.0 -42.5 77.9 470 173 1195 1033 2.17 171 -627 278 275N1:n16:d/L0.14:r/L0.08
Color

Code

Limit State

Strut buckling

Serviceability

Cable yielding

Cable rupture
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Table 7-2 Summary of results for N1:n16:L400:r/L0.083:d/L0.10 dome 

 

With reference to Table 7-3, N1 domes failed by buckling of the outermost strut under half the 

service load. The buckling capacity of the outermost strut for N1 domes can be calculated from 

Euler’s formula 

 

2

2

EI

kL

  as 98.9 kips (for d/L=0.14) and 154 kips (for d/L=0.10), where       

EI = 29000 ksi x 299.2 in4 = 8.677 x 106 k.in2 is the flexural stiffness of the strut, L = 77.6 ft. (for 

d/L=0.14) and 62.1 ft. (for d/L=0.10) and k =1 for hinged ends. Of course, their slenderness is 

unreasonable to begin with, with the tallest strut height = 77.6 ft. Such a failure is sudden and 

premature (brittle-type), and should be avoided.  

In comparison, N2 and N3 domes became unserviceable before full service loads were applied. Of 

the N3 domes, it did not take much of a load to make the shallower domes where d/L = 0.05 

unserviceable (Table 7-3, and Tables C-1 through C-4 in Appendix C). The allowable deflection 

was calculated as span/180 = 400 ft./180 = 26.7 in. However, this limit on deflections is not a code 

requirement, but rather estimated from observation of existing domes under service loads. In 

practice, the serviceable limits are determined by the structural and mechanical engineers so as to 

ensure positive drainage of water from the roof. The remedy to enhance the stiffness and limit the 

(Live) Load 

Step Vert. Defl. Live Load Member Forces

Member 

Stresses

at Joint 1 at Joint 5 at Joint 1 at Joint 5 Diagonal Cables

Hoop 

Cable

Ridge 

Cables Strut Hoop Cable

Outer 

Diagonal 

Δ1 Δ5 W1 W2 FD1 FD2 TH TR1 TR2 CS1 σH σD2

in. in. kips kips kips kips kips kips kips kips

Prestressed 16.7 3.6 1 6.0 45.8 198.6 184 73.3 119 -71.6 49.6 45.8

1 12.6 0.6 3.8 22.9 46.4 246.0 228 40.1 85.7 -90.3 61.4 56.7

2 8.3 -2.4 7.3 44.1 48.4 293.7 272 14.5 61.6 -109 73.3 67.7

3 3.2 -5.4 10.1 61.1 53.7 341.7 316 7.4 59.7 -128 85.2 78.7

4 -2.0 -8.4 12.8 77.1 59.9 389.9 361 5.4 64.0 -148 97.2 89.8

5 -7.2 -11.4 15.4 93.2 66.4 438.3 405 4.5 69.6 -168 109 101

6 -12.4 -14.4 18.1 109.5 73.1 487.0 450 3.9 75.8 -188 121 112

7 -17.6 -17.4 20.9 126.1 79.8 536.0 495 3.5 82.4 -209 134 124

8 -22.8 -20.4 23.7 142.8 86.6 585.2 541 3.2 89.1 -229 146 135

9 -28.0 -23.4 26.5 159.9 93.5 634.7 586 3.0 96.1 -251 158 146

10 -33.1 -26.4 29.4 177.2 100.4 684.5 632 2.8 103 -272 170 158

11 -38.2 -29.4 32.3 194.8 107.5 734.5 678 2.6 111 -294 183 169

12 -43.3 -32.4 35.2 212.6 114.6 784.7 725 2.5 118 -316 195 181

13 -48.4 -35.4 38.2 230.8 121.7 835.2 771 2.4 126 -338 208 192

14 -53.4 -38.4 41.3 249.2 129.0 886.0 818 2.3 134 -361 220 204

15 -58.5 -41.4 44.4 267.9 136.3 937.0 865 2.2 142 -384 233 216

16 -62.4 -43.8 46.9 282.9 142.1 977.5 902 2.1 148 -402 243 225

17 -69.1 -47.8 51.1 308.6 152.0 1046.2 965 2.0 159 -434 260 241

18 -76.2 -52.1 55.7 336.3 162.7 1119.1 1032 2.0 171 -468 278 257N1:n16:d/L0.10:r/L0.08
Color

Code

Limit State

Strut buckling

Serviceability

Cable yielding

Cable rupture
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deflections is to increase the prestressing force assigned to the diagonal members. As a 

consequence, the ridge cables have a higher initial tension which help to restrain the movement of 

the strut joints. Another remedy to control vertical deflections is to provide more hoop cable area. 

Table 7-3 Limit states for cable domes 

Dome designation Load factor (times the 

full service snow load) 

at which the 

outermost strut 

buckles 

 Load factor (times the 

full service snow load) 

at which the dome 

becomes 

unserviceable  

Load factor (times the 

full service snow load) 

at which the outermost 

hoop cable ruptures 

N1:n16:d/L 0.14 0.33  2.34 6.15 

N1:n16:d/L 0.10 0.44  1.43 4.40 

N2:n16:d/L 0.09 1.86  1.25 5.65 

N2:n16:d/L 0.07 1.97  0.51 3.99 

N3:n16:d/L 0.07 0.89  0.68 4.24 

N3:n16:d/L 0.05 1.52  0.21 2.93 

     

N1:n24:d/L 0.14 0.57  1.98 4.04 

N1:n24:d/L 0.10 0.60  1.20 2.81 

N2:n24:d/L 0.09 1.69  0.99 3.56 

N2:n24:d/L 0.07 1.82  0.40 2.48 

N3:n24:d/L 0.07 0.99  0.51 2.77 

N3:n24:d/L 0.05 1.65  0.16 1.97 

 

Assuming that the struts are stiffened adequately such that cable rupture happens first; it was the 

outermost hoop cable that yielded and ruptured before other cables in all of the domes examined. 

This is because of the significantly high tension force in the outermost hoop cables, which 

essentially resisted much of the applied loads along with the outermost diagonal cables. 

In terms of the number of polygon sides, the hoop cables in n24 were flexible compared to those 

of the n16 domes (Figure 5.3). Therefore, despite the lower loads on an n24 dome compared with 

an n16 dome, the load carrying capacity reduced as the number of polygon sides increased.  
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7.3 Summary 

An N1:n16 dome was used an a representative example to describe its behavior under loads. The 

behavior of cable domes is non-linear, primarily due to the magnitude of the dimensional changes 

under load. The structure resists loads by changing its shape, thereby taking advantage of the 

flexibility of cables which conventional steel structures do not benefit from. They resist loads by 

losing tension in the ridge cables and gaining tension in the diagonals and hoop cables. As such, 

the ridge cables must be tensioned such that under applied external loading, the change in internal 

force is not large enough to cause them to go slack. The diagonal and hoop cables must be 

adequately sized to carry the initial prestress and the additional tension due to applied loading. The 

geometry of the dome has an effect on the prestressing force levels and plays an important role in 

the structural behavior.  

The following observations were made with respect to the relationship between applied loads and 

member forces.        

1. The outermost sets of diagonal cables, hoop cables, and struts were the critical members for 

gravity loads. This met the anticipated results, as the outermost diagonal and hoop members 

behaved like a catenary in resisting the full load from the roof.  

2. For the N1, N2 and N3 domes investigated, symmetric load cases governed the design of the 

critical members, i.e., outermost hoop, diagonal and strut. For domes in high wind-prone 

regions, adequate prestressing force levels had to be provided, which along with dead weight 

can overcome wind uplift forces. The remaining load cases were checked mainly for design of 

ancillary members and details.  

3. Under the action of gravity loads, the ridge, diagonal and hoop cables responded differently to the 

applied loading. The tension in the ridge cables reduced with increase in gravity loading. The loads in 

the outermost hoop and diagonal cables continuously increased with applied load. The rate of 

increase in cable tension was greatest for the outermost hoop cables and diagonal cables.  

4. When loads were increased beyond design loads, the set of ridge cables attached to the central cage were 

the first to go slack. The outer sets of ridge cables initially lost tension. And as the central hub 

deflected downward, the outer ridge cables started to regain tension to equilibrate the 

compressive forces building in the struts. Evidently, the external forces were carried to the supports 

by reduction in ridge cable tension and increase in diagonal and hoop cable tensions.  
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5. The struts resisted small forces when compared to the diagonals and hoops.  

An inelastic analysis showed that significant enhancement of strut sizes and prestressing forces 

were required, in order to force cable rupture to happen before a strut buckled or serviceability 

limit state could be reached. This observation justifies the use of elastic design, which has been 

the standard practice for cable domes.  
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CHAPTER 8 CRITICAL DESIGN PARAMETERS  

 

Since the structural behavior of a cable dome is greatly influenced by the prestressing force levels 

and geometry, understanding the effects of the force and shape parameters is paramount. Needless 

to say, prestressing force is the fundamental design parameter for cable domes, as without prestress 

a dome does not have a defined geometry, let alone its capacity to resist loads. In Section 8.1, the 

influence of prestressing force in the structural design of cable domes is discussed. The influence 

of the geometrical parameters, namely, the number of sectors (n), hoop radii (R), number of hoops 

(N) and depth-to-span ratio (d/L) are described in Sections 8.2 and 8.3. Reference is made to the 

expressions that were derived for the two-dimensional model (Eqs. 5.13, 5.17 and 5.18) for making 

some of the observations. Knowing the influence of the aforementioned parameters, structural 

engineer can make prudent decisions at the preliminary design stages.   

8.1 Influence of Prestressing Force 

Prestress is sine qua non to the existence of cable domes. They provide the necessary initial 

stiffness to stabilize the dome. Adequate prestressing force levels are necessary to resist external 

loads and to control vertical and lateral movements of a dome. The level of prestress is not only a 

function of the superimposed loading, but is also directly related to the topology of the structure. 

Essentially, the prestressing force levels must ensure that no cables go slack under any loading 

condition. This is a necessary condition, but not sufficient, especially considering the limit states 

of serviceability and strut buckling. A higher initial prestressing force reduces the vertical 

deflection under gravity loads. The increment in cable tensions with applied load also becomes 

smaller. 

Prestressing forces are related to the structural depth (d) of the dome as well as the number of 

polygon sides (n). Greater the depth, greater will be the vertical component of the assigned 

prestressing force. As such, a smaller prestressing force will be required to lift the dome to a certain 

elevation when compared to a dome with a smaller depth. Similarly, a larger n will reduce the 

loads on each truss and the prestressing force demand will be lower.  

The N1:n16:L400:r/L0.083:d/L0.14 dome in Section 3.2.2 was analyzed for various prestressing 
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force levels until yielding of the first cable. A higher prestressing force increases the initial stiffness 

of the dome significantly (Figure 8.1) which helps to limit the vertical defelection of the dome. 

This in turn would delay the slackening of the ridge cable attached to the tension ring.  

 

Figure 8.1  Nonlinear Elastic Analysis: Vertical deflection at joint-1 versus live load in 

N1:n16:L400:r/L0.083:d/L0.14 dome for different prestressing force levels 

 

Lower than optimum prestressing force levels may make a dome flexible and more prone to 

becoming unserviceable. Therefore, optimal prestressing force levels must be determined to 

increase the structure’s stiffness and load carrying capacity, without using more than necessary 

cable capacity.  

 

Figure 8.2  Nonlinear Elastic Analysis: Diagonal and ridge cable force variations in 

N1:n16:L400:r/L0.083:d/L0.14 dome for various prestressing force levels 
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Higher prestressing forces, while providing the necessary initial stiffness do not seem to affect the 

final tension force in the cable members (Figure 8.2 a,b,c and d). This is good as the cable capacity 

is utilized efficiently.  

Another point to keep in mind is the possible loss of tension in cables over time, after the dome 

has been in service. This may be due to cable relaxation, damage or some accident. In such a case, 

additional prestress may be required to stiffen the dome. An efficient means to provide additional 

prestress can be found from an influence coefficient analysis. For this, a prescribed prestress (in 

the form of unit shortening) is given to the diagonals of the prestressed dome and the corresponding 

internal member forces are determined. This is done for one set of diagonals (outer or inner) at a 

time. 

Consider two cases; in Case- I, only the inner diagonal is prestressed and in Case- II, only the outer 

diagonal is prestressed. The internal forces generated as a result of the two separate cases are listed 

in Table 8-1. The change in member forces for the two cases is normalized with respect to the 

change in member force of the additionally prestressed diagonals.  

Normalizing the force values with respect to the force in the outer diagonal D2, we notice that 

tensioning of the exterior cables produces all the expected results, i.e., cables are tensioned and the 

struts are compressed. Also, while the force in the outer diagonal is 1.0, the forces in the ridges are 

greater than 1.0, and the forces in all other components are less than one. 

Tensioning the inner diagonal D1 produced some unexpected results, in that the influence 

coefficients were greater than 1.0 in the ridge, diagonal and hoop cables. That being the case, its 

influence was definitely important as a source of additional tension to an already-tensioned bottom 

cable as well as ridge cable. Moreover, tensioning the inner diagonals was the best way to re-

tension the ridge cables because of inner diagonals’ large influence on the ridge cable forces. 
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Table 8-1  Influence Coefficients 

 

8.2 Influence of Number of Sectors (n) and Hoop Radius (R)  

The number of sectors n will depend on column spacing. As the number of polygon sides n 

increases, the loads on each truss will be smaller, leading to more reasonable prestressing force 

levels and member sizes.  

The most important influence of n can be recognized in the term 2sin
n

 
 
 

that affects the forces 

and stiffness of the dome (Eqs. 5.13, 5.17, and 5.18). From Eq. 5.18,

2sin

RT
T

n




 
 
 

, indicates that a 

higher n increases the hoop cable tensions T. To transfer T across the castings below the struts, 

heavier connections will be required.  

Another influence of n is on hoop stiffness. The relationship between the radial (two-dimensional) 

and hoop (three-dimensional) stiffness was derived in Section 5.2. The dimensionless ratio of the 

Case I: Additional prestress

applied only to diagonal D1

Case II: Additional prestress

applied only to diagonal D2

Member Member force

(kips)

at prestressed

state (LC-1)

Increase in 

member

force (kips)

Normalized

force 

Increase in 

member

force (kips)

Normalized

force 

Diagonal  D2 160 3.2 2.13 9.3 1.00

Diagonal  D1 39.6 1.5 1.00 3.3 0.35

Hoop  H 139 2.7 1.80 8.0 0.86

Ridge  R2 127 6.8 4.53 18 1.94

Ridge  R1 89.1 5.5 3.67 14.9 1.60

Strut  S1 17.1 0.9 0.60 2.2 0.24

Strut  S2 74.9 1.7 1.13 5.1 0.55

Tension Ring (top) 88.3 5.4 3.60 14.7 1.58

Tension Ring (bottom) 34.8 1.3 0.87 2.9 0.31
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stiffnesses was found to be: 2sinRK

AE n

R

 
  

   
 
 

. The recurrence of 2sin
n

 
 
 

now as the measure 

of the hoop stiffness in a dome indicates the significance of this parameter. The hoop stiffness was reduced 

to half when n was doubled. Likewise, the hoop stiffness was halved when the hoop radius R was doubled 

(Eq. 5.12). 

 

(a)                        (b) 

Figure 8.3 (a) Schematic plan of N1:n16 dome showing the angle between hoop segments; and 

(b) equilibrium of forces at a critical node 

    

In circular cable domes with larger n (Figure 8.3a), the hoop segments become almost collinear. 

This is detrimental as the hoop cable segments do not provide a significant radial component to 

balance the diagonal cable force. As a result, the forces in the hoop cables will be significantly 

large. That said, the lateral movements in a dome due to asymmetric loads are pronounced for 

domes whose n is small (Figure 6.9). In lieu of the above, the selection of n requires careful 

judgment as there will be expected design trade-offs.  

The number of sectors n also has a direct impact on fabric stresses. The fabric span which will be 

larger for a higher number of sectors n will increase the stresses in the fabric. As a result, the fabric 

thickness will be greater, leading to more weight and cost.  

8.3 Influence of Number of Hoops (N) and Depth-to-Span Ratio (d/L)  

The hoop cables along with the inclined diagonal cables resist much of the applied gravity loads 

and help to reduce vertical displacements. In a radial cable dome, hoops are the only members to 

provide resistance to torsional movements caused by asymmetrical loading. The stiffness of the 
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hoop must therefore be adequate as a flexible hoop may cause large vertical deflections even for 

small loads. 

More circumferential hoops will make the diagonal cable lengths shorter and thereby increase their 

stiffness. For the same rise and same diagonal inclinations, more hoop rings will raise the centroid 

of hoop tensions, thus reducing the effective structural depth and moment resistance (Figure 8.4b). 

Also, more hoop rings will lead to greater number of struts and connections. This will increase the 

weight and, therefore, the cost of the structure.  

The depth-to-span ratio d/L is important for several reasons. A higher d/L ratio helps to increase 

the structural depth of the system by keeping the outermost hoop deeper with respect to the 

compression ring, thereby increasing the moment capacity of a dome (Figure 8.4a). A higher d/L 

ratio will provide a larger vertical component of the pretension force. It will therefore be easier to 

prop a dome higher with a smaller prestressing force.  

Table 8-2 Self-weights of domes 

Dome Self-weight 

(kips) 

Normalized 

Self-weight 

N1:n16:L400:r/L0.083:d/L0.14 232 1.00 

N1:n16:L400:r/L0.083:d/L0.10 202 0.87 

N2:n16:L400:r/L0.083:d/L0.09 261 1.12 

N2:n16:L400:r/L0.083:d/L0.07 230 0.99 

N3:n16:L400:r/L0.083:d/L0.07 357 1.54 

N3:n16:L400:r/L0.083:d/L0.05 323 1.39 

 

Domes with two or more hoops N and smaller d/L ratios will be better suited in high wind-prone 

regions. With their greater self-weight (Table 8-2) compared to N1 domes, N2 and N3 domes 

should offer better resistance to wind uplift forces.  

The number of hoops and the depth-to-span ratio may easily affect the stability of a cable dome. 

Stability is an important concern partly due to the relative flatness of the roof and increase in dead 

weight with span. The following observations can be made with regard to the role of hoop tensions, 

dome depth, and loss of tension in the ridge cables on the global stability of a dome structure. 
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1. In conventional trusses, the structural depth is the overall depth between the center-lines of the 

top and bottom chords. In cable-trusses, however, the relevance of structural depth requires 

more careful consideration. The moment arm for resistance is developed between the radial 

tension (TCR) at the perimeter ring and the resultant hoop cable tensions (Tri). The structural 

depth is taken as the vertical distance between TCR and Tri. For the overall system stability and 

strength, the centroid of hoop tensions must therefore fall below the perimeter compression 

ring (Figure 8.4a). Domes with small diagonal inclinations (or d/L) may be susceptible to 

overall system instability (Figure 8.4b). Since the lowermost hoop will experience greatest 

tension, it should be kept as low as possible to prevent such instability.    

 

Figure 8.4 (a) A stable cable dome; and (b) an unstable cable dome 

 

2. Progressive loss of tension in the ridge cables may cause in-plane (Figure 8.5a) and out-of-

plane (Figure 8.5b) displacements of the top end of the struts. With increase in gravity loading, 

the cables closest to the central cage go slack and do not recover. With further increase in loads, 

the outer sets of ridge cables lose tension. Instability of struts will ensue with more ridge cables 

losing tension. Unless the struts have another source of lateral support, they will buckle just as 

double-hinged struts would do if one of their ends loses lateral support. For viability of design, 

it is, therefore, most important to keep the ridge cable in tension at all times and for all possible 
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loading conditions. This is achieved by providing adequate prestressing forces to the diagonal 

cables. 

 

(a)                                 (b) 

 

Figure 8.5 (a) Slackening of ridge cables causing in-plane instability; (b) Restraining force for 

out-of plane displacements                                                                               

                                                                            

3. The cable dome is a sensitive structure and relatively large vertical deflections may take place 

in response to any change in loading. The top of the struts therefore does move in response to 

changes in the load. This movement is limited by the fixed length bridge ropes not only in the 

radial direction but also circumferentially, although not to a great degree. Any change in 

loading of the membrane roof results in forces that tend to move the mast toward its 

theoretically desired position. These out-of-plane displacements will cause the ridge cables to 

re-tension and thereby create a restraining force (Figure 8.5b, in red) to hold back the struts. 

The struts, as such, regain stability and further lateral displacements are restricted. This 

restraining force can be calculated as 𝐹 = 2𝑇𝑅  𝑠 𝑛 𝛽 , where 𝑇𝑅 is the ridge cable force 

(Figure 8.5b, in blue) and 𝛽 is the angle by which the ridge has rotated from its original 

position, measured at the compression ring. Although 𝑇𝑅 will not vary by much, the angle 𝛽 

will be reduced as necessary to restore column equilibrium. This torsional instability is more 

pronounced when n is less than 16. The solution is to increase the overall prestress of the 

system; i.e., linearly increase prestress in all sets of diagonals. 

8.4 Summary 

Needless to say, the force and geometric parameters in a cable dome have a direct influence on 

their stability and efficiency. Prestressing supplies the required initial stiffness to a dome to carry 

its own weight and also to support the applied loads. A higher number of polygon sides and higher 
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depth-to-span ratio reduce the required amount of prestressing force. Despite a difference in the 

initial prestressing force, the final cable tensions end up being the same. In case of loss of tension 

in cables, additional prestress may be given to the interior diagonals because of its higher influence 

on other members.  

The hoop stiffness is given as 2 sinR

AE
K

R n

 
  

 
 indicating that fewer hoops with small radii will 

enhance the stiffness of hoops. This will help to control both, the vertical and lateral displacements. 

More hoops will raise the centroid of the hoop tensions, and thereby reduce its moment resistance. 

A higher d/L ratio will increase the moment capacity of a dome and also will provide a larger 

vertical component of the pretension force to elevate it in the form-finding process.  
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CHAPTER 9 USE OF PRESTRESSED                   

CABLE-STAYED STRUTS 

 

 

It would not be prudent to design cable domes that will fail prematurely due to strut buckling. A 

way has to be found to enhance the critical load of the vertical struts. In Section 9.1, the use of 

prestressed cable stays is proposed as a design strategy to delay the buckling of struts. With 

adequate prestressing force, the stays will stiffen the struts and increase their buckling capacity. 

The buckling load was calculated using the Stiffness-Probe Method (Gurfinkel, Miller and 

Robinson, 2009). The method is described with numerical examples in Section 9.2, first using a 

simple HSS column followed by cable-stayed struts with different prestressing force levels.  

9.1 Prestressed Cable-Stayed Struts 

Simple struts made of Hollow Steel Sections (HSS) or pipes have been typically used in cable 

domes. The buckling capacity of such struts can be increased by selecting larger diameter and 

thicker HSS sections with adequate bending stiffness. As an alternate design strategy, the use of 

prestressed cable-stays (Figure 9.1a) is recommended. A prestressed cable-stayed strut is made of 

an HSS section with cross-arms welded at intermediate locations. In this study, four cross-arms 

are welded at mid-height (Figure 9.1b). The stay cables connect the ends of the cross-arms to the 

ends of the strut. The stays are prestressed sufficiently before being placed in a cable dome.  

                  

Figure 9.1  (a) Cable dome with prestressed cable-stayed struts in place of simple HSS struts; 

and (b) Three-dimensional model of prestressed cable-stayed strut 

  

PRESTRESSED 
CABLE STAYS

(a) (b)
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Before discussing the behavior of a prestressed cable-stayed strut, consider the conventional design 

of cable domes using simple HSS sections only (Figure 9.2a). The critical load or elastic buckling 

load Pcr of the strut may be computed using Euler’s formula. Because the ends of the strut are 

restrained at the bottom by the diagonal and hoop cables, and at the top by the ridge cable 

(disregarding the contribution of the roof membrane in providing restraint), it may seem unlikely 

that the strut will be able to freely rotate about its vertical axis. However, a quick study showed 

that very tall struts may not be capable of developing the restraint at the top ends where the joint 

stiffness reduces with reduction in ridge cable tensions under gravity loading. As such, the struts 

will have to be braced in the circumferential direction in order to achieve k = 1.0. With this 

assumption, as the axial load on the strut is increased, the transverse deformations increase, and at 

Pa = Pcr, transverse deformations grow rapidly eventually reducing the strut stiffness to zero. At 

this stage, the strut is said to have buckled. For cable domes with one or two hoop rings, the strut 

lengths may be significant. Their high slenderness makes them buckle at very small loads. To 

overcome this limitation, prestressed cable stayed struts are used. The cross-arms and prestressed 

stays restrain the transverse displacement of the HSS strut. The enhanced system is expected to 

increase the strut’s buckling capacity. The configuration of the strut used in this study is a four 

cross-arm strut (Figure 9.1b).    

 

Figure 9.2  (a) simple strut; (b) cable-stayed strut; (c) compressive force on cable-stayed strut  

Before its placement in the cable dome network, the strut already has internal forces due to 

prestressing of the stays. Then, as the dome is erected, the prestress applied to the diagonal cables 

further increases the compression in the vertical strut (Figure 9.2b). Let the resulting compressive 

TR2

TR1

TD2

TD1

TH1

Pa

Pa

(a) (b) (c)
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force induced at the strut ends at the completion of the erection process be called Pa (Figure 9.2c). 

As a consequence, the strut will shorten and there will be reduction in stay tension due to 

shortening of the stays. As the applied (live) load is increased, there is a load at which the cable-

stayed strut will buckle. This critical load will be determined using a perturbation analysis in 

conjunction with the stiffness-probe method. But first, this procedure will be demonstrated on a 

simple pin-ended column.  

Consider a 77.6 ft. tall simple steel strut made of HSS 12 x 0.5in. The Euler elastic buckling load 

is computed as 98.9 kips. The strut is subjected to an axial load Pa and a small transverse 

perturbation force F = 0.1 kip acting at mid-height (Figure 9.3). The Young’s Modulus of steel is 

29,000 ksi with a yield stress of 42 ksi. When the applied load is close to the buckling load, the 

deformations become unrealistic when compared to the strut length. This awkwardness, when the 

stiffness becomes close to zero, is overcome using the stiffness-probe method with an augmenting 

spring.  

9.2 Stiffness-Probe Method 

The Stiffness-Probe Method, developed by Gurfinkel, Miller and Robinson (2009), uses 

perturbation analysis for calculating the instability of columns. A small lateral perturbing force is 

applied at an appropriate joint of a straight column to generate an initial deviation from an 

otherwise perfectly straight line. A spring with a reasonable stiffness = 0.2 kip/in. is assigned to 

the same node as the perturbing force (Figure 9.3). The spring provides some lateral stability in 

order to ensure that the lateral deflections close to the buckling load are reasonable.   

 

Figure 9.3  Analytical model of a simple column used for the stiffness-probe method with an 

augmenting spring 

0.1 kip

0.2 kip/in.

P
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The stiffness of the augmented system is calculated as the perturbation force divided by the 

displacement along the perturbation force at the spring location. The stiffness K is a function of 

the compression force P and is maximum at P=0. With increase in the applied load, the stiffness 

of the column gradually reduces to zero, the state at which the column is said to have buckled.    

The difference between the stiffness of the augmented system and the spring stiffness is equal to 

the stiffness of the strut. The load at which the stiffness reduces to zero is the elastic buckling load 

of the strut. The buckling load was found to be 98.7 kips. A plot of the variation of stiffness and 

applied load is shown in Figure 9.4. The buckling load Pcr corresponds to the value of K=0. The 

small difference between this value and the Euler buckling load (98.9 kips) is due to the fact that 

Euler’s formula neglects the axial and shear deformations in a column, while the stiffness-probe 

method includes those effects.   

 

Figure 9.4  Stiffness variation versus applied load 

 

The stiffness-probe procedure is now applied to the same HSS 12 x 0.5in. strut but with cross-

arms at mid-height and stayed cables (Figures 9.1 and 9.5). The lengths of the strut L = 77.6 ft., 

stays ls =39 ft. and cross-arms lca = 4 ft. The cross-arms are made of HSS 6 x 0.5in. The cable 

material has a Young’s Modulus of 24,000 ksi with a cross-sectional area of 1.0 in2. An initial 

prestrain of -0.003 is assigned to the cables; this is equivalent to a prestressing force of 72 kips. 

The prestressing force causes compressive forces in the strut and the cross-arms, and tensile force 

in the cables. 
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The following assumptions are made in the modeling and analysis of the cable-stayed struts: 

1. A bilinear stress-strain curve for the cable stays (Figure 7.9a) with an initial Modulus of 

Elasticity E = 24000 ksi and Poisson's ratio ν = 0.3; 

2. The cross-arms are rigidly connected to the central strut. 

3. The connections between the cable-stays and strut ends, and between the cable-stays and cross-

arms are hinged.  

4. A small perturbation load is used to generate an initial deviation from a straight line. The load 

is kept small so as not to affect the deformations significantly.  

 

Figure 9.5  Analytical model of a prestressed cable-stayed strut 

 

There may be three possible limit states for cable-stayed struts, namely (a) yielding of strut, (b) 

buckling4 of the stayed column, and (c) yielding of stays. The yield stress for the strut and cable-

                                                 

4 Buckling load is defined as the load at which the stiffness of a cable-stayed strut becomes zero. 
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stays are 42 ksi and 243 ksi, respectively. The buckling load is determined using the stiffness-

probe method. 

To determine the axis about which the critical load is smallest, two models were considered ─  

Case A and Case B. In Case A, the bending axis is at 90˚, and in Case B, the bending axis is at 45˚ 

(Figure 9.6a). The cable locations for the two models are shown in Figure 9.6b and c. The prestrain 

provided to the cables is -0.003 (corresponding to a prestress of 72 ksi, which is less than one-third 

the yield stress). The stiffness-probe procedure is applied to the enhanced system that comprises 

the HSS strut, the cross-arms, stay cables and the spring at mid-height of the strut. 

 

 

Figure 9.6  (a) Plan showing central strut and cable stays (b) Case A: Plan of planar model 

showing bending axis a-a; and (c) Case B: Plan of planar model showing bending axis b-b 

 

The analysis of the two cases showed that the critical load was 323.15 kips for Case-A       

(Table D-1, Appendix D) and 390.6 kips for Case-B (Table D-2, Appendix D). This can be 

explained from the initial stiffness of the column, i.e., at P=0. The initial stiffness of the column 

in Case-A is 1.89 kips/in. while the initial column stiffness in Case-B is 2.56 kips/in. The stiffer 

column will obviously have a higher critical load. Thus, it can be concluded that the bending axis 

at 90 degrees from the horizontal governs the computation of critical loads.  
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Figure 9.7  (a) Case A: Plot of Stiffness versus applied load; and (b) Case A: Plot of Stiffness 

versus horizontal displacement 

 

For the benefit of the reader, the combined (axial + bending) stresses at the strut ends and at mid-

height are listed for the two cases (Tables D-1 and D-2, Appendix D), to check how the actual 

member stresses compare with the yield stress. Figures 9.7a and 9.8a show the variation of stiffness 

versus applied load for the columns. Figures 9.7b and 9.8b show the exponentially decreasing 

stiffness with increase in applied loads. The plots verify the usual expectation in physical behavior 

of the strut under increasing loading. 

 

 

 

Figure 9.8  (a) Case B: Plot of Stiffness versus applied load; and (b) Case B: Plot of Stiffness 

versus horizontal displacement 
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The effects of varying the prestressing force in cable-stays is examined next. The different 

prestressing forces assigned to the stays are 9.6 kips, 24 kips, 48 kips, 72 kips and 96 kips. The 

analysis results using the stiffness-probe procedure are listed in Table 9-1, and the variation of 

stiffness versus applied load is plotted in Figure 9.9. The results show that at very low prestressing 

force levels (prestrain = -0.0004, prestressing force = 9.6 kips), the tension in the stays gradually 

reduce with an increase in load. A reduction in the stay tensions leads to slackening of the stays. 

Lateral or rotational restraint is lost and the stiffness abruptly drops to zero. The buckling load of 

230 kips for this prestressing force is still more than two times the buckling load of a simple strut. 

For prestrain = -0.001, the strut buckling load is enhanced to 455 kips. This is a significant gain in 

capacity when compared to HSS strut alone.  

 

Table 9-1  Summary of results for varying prestressing force in stays 

Prestrain 

in stays 

 Corresp. 

prestress 

force 

in stays 

Strut 

buckling load 

Axial Stress in 

HSS strut 

at buckling 

Axial 

Stress in 

left stay 

Axial 

Stress in 

left stay  

Axial 

Stress in 

right stay 

Axial 

Stress in 

right stay 

     at P=0 at P=Pcr at P=0 at P=Pcr 

  (kips) (kips) (ksi) (kips) (ksi) (kips) (ksi) 

0 (HSS 

only) 

 

- 98.7 5.43 - - - - 

-0.0004  9.6 230 15.2 7.94 0 8.32 1.77 

-0.001  24 455 30.3 20.1 0.256 20.5 5.48 

-0.002  48 392 31.5 40.4 22.8 40.9 28.7 

-0.003  72 323 31.8 60.7 45.9 61.2 51.2 

-0.004  96 254 32.3 81 69.0 81.6 74.1 

-0.005  120 184 32.9 101 91.9 102 97.2 
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Figure 9.9  Stiffness versus applied load for the stayed column at various prestressing force 

levels 

 

However, as the prestressing force in the stays is increased, there is a reduction in the buckling 

capacity of the strut (Figure 9.10). This can be attributed to the loss of compression capacity caused 

by higher initial compression induced by prestressing. It must be noted that at buckling, the cable 

stays have a residual tension. The larger the initial prestressing force, the larger are the residual 

tension in the stay cables. Neither the strut nor the stays yielded for the cases presented.  

 

Figure 9.10 Stiffness versus applied load for the stayed strut at various prestressing force levels 
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Next, the buckling loads obtained from the Stiffness-Probe Method are compared with the results 

from SAP2000. The procedure in SAP is an iterative approach that implements PΔ and large-

displacement effects. A plot of applied load versus joint displacement (Figure 9.11) shows a 

softening behavior, indicating the onset of buckling and the ensuing instability (CSI Analysis 

Reference Manual for SAP 2000). The comparative results are in good agreement (Table 9-2).  

 

 

Figure 9.11  SAP2000 plot of applied load versus joint displacement for a prestrain = -0.001 

 

Table 9-2  Buckling Load Comparison 

 Stiffness-Probe Method 

Eigenvalue Analysis 
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0 (HSS only) 98.7 98.8 

-0.0004 210 210 

-0.001 455 453 

-0.002 392 388 
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-0.004 254 252 

-0.005 184 183 
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Clearly, the buckling capacity of the struts can be increased to several times that of the HSS strut, 

by using cable-stays set at appropriate levels of prestressing force. For the case where prestrain = 

-0.001, the buckling capacity of the strut is 455 kips. For a strut alone to be able to achieve this 

capacity, the outer diameter would have to be increased to 20 in. (originally 12 in.).  

The weight of a 20 in. dia. (1/2 in. thick) strut can be found as: 

t tW A L                               (9.1) 

where γt is the density of the strut material, At is the cross-sectional area and L is the length of the 

strut. For γt = 490 pcf, At = 30.63 in2 and L = 77.6 ft, Eq. 9.1 gives W = 8088 lb.  

Now, for a cable-stayed strut, the weight of the system can be computed as: 

4 8t t ca ca ca sc sc scW A L A l A l                             (9.2) 

For γt = 490 pcf, At = 18.06 in2, L = 77.6 ft, γca = 490 pcf, Aca = 18.06 in2, lca = 4 ft, γsc = 490 pcf,  

Asc = 1 in2, lsc = 39 ft, Eq. 9.2 gives W = 4768.8 + 983.3 + 1061.7 = 6814 lb. 

The comparative weights show that an HSS strut with stays would weigh less than the strut without 

stays, to achieve the same buckling capacity. Furthermore, using a smaller cross-section for the 

stays and a larger prestrain will give the same enhanced buckling capacity for a strut (Eq. 5.19). 

Doing so will result in considerable reduction of a dome’s weight. The use of cable-stayed struts, 

therefore, provides a good alternative design solution to enhance a strut’s buckling load by using 

an appropriate prestressing force in the stays, thereby resulting in a lighter structure.   

Now, let’s consider the variation of forces in members with applied load. The rate of increase in 

strut force is smaller for the stayed-struts as compared to the simple strut (without stays). This is 

because the cables resist a portion of the applied axial load. Clearly, the higher the initial 

prestressing force in the stays, the higher is the initial compression occurring in the strut (Figure 

9.12). That said, at all of the prestressing force levels examined, the rate of increase of strut force 

was always nearly the same.  
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Figure 9.12 Strut force versus applied load for stayed column at various prestressing force levels 

 

Consider the action of the applied load P and the perturbation force. The resulting P-Δ effect on 

the strut makes the column move to the right. This causes a reduction in tension in the left stays 

(Figure 9.13a). At the same time, the strut is pushed downward as P increases. This downward 

deflection also causes the stay on the right to relax. As such, all the stays experience a reduction 

in tension.  

 

Figure 9.13  (a) Force in the left stays versus applied load P; and (b) Force in the right stays 

versus applied load P 

 

While it may seem that the transverse movement of the strut would increase the tension in the right 

stays, the plots show a reduction in tension (Figure 9.13b). This is because the downward 

movement of the strut relaxes the tensions in the right stay cables. From the same plot, clearly, the 

right stays do completely lose tension for any of the prestress levels. However, the tension in the 

left stay may become zero at small prestressing force levels. 
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9.3 Summary 

An alternative design solution has been proposed for domes that abruptly fail due to strut buckling. 

The use of prestressed cable-stayed struts is found to be an efficient way to increase strut capacity 

(Table 9-3), depending on the amount of prestressing force given to stay cables. For some cases, 

the solution may likely change the limit state from one of stiffness/stability of struts to strength 

failure of struts or stay cables and ensure a ductile behavior. As a consequence of this new design, 

the domes will have an improved load carrying capacity.  

The Stiffness-Probe Method was used for determining the buckling load for the cable-stayed struts. 

The method proved to be valuable for the following reasons: 

1. The method gives a physical understanding of the ensuing instability due to loss of stiffness 

of a compression member. 

2. The user does not have to go through differential equations and numerical schemes for 

solving for the critical load. 

3. The method generates reasonable values of transverse deflections of a column because of 

the lateral stability provided by the spring. In the absence of a spring, the deflections are 

unrealistic (10 or more times the length of the column) when the column is close to the 

buckled state.  
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CHAPTER 10  SUMMARY AND CONCLUSIONS 

 

10.1 Summary  

In this dissertation, the structural behavior of radial-type cable domes under various loading 

conditions was investigated using a series of (12) 400 ft. span domes with different geometries. 

The three possible limit states for a cable dome were evaluated, namely 1) buckling of struts, 2) 

serviceability, and 3) rupture of cables, and an improved design has been recommended to enhance 

the load carrying capacity of cable domes. Two-dimensional model parameters were derived to 

replace the three-dimensional hoop and tension ring members of a cable dome. The nonlinear 

elastic analysis was streamlined using influence surface analysis to identify the governing load 

combinations for member design.  

The two-dimensional model is adequate for the design of domes governed by axisymmetric snow 

loads. Domes vulnerable to wind uplift could be readily identified using the influence surface 

analysis. Prestressing force levels were accordingly adjusted to ensure that all cables remained in 

tension under all loading conditions. 

The important force and geometrical parameters, namely, prestressing forces (p), the number of 

sectors (n), the number of hoop rings (N), hoop radii (R), rise-to-span ratio (r/L), and depth-to-

span ratio (d/L) must be carefully determined at the conceptual design stage for design of efficient 

domes.  

For a well-designed cable dome, i.e. whose cables remain in tension under all loading conditions, 

and for the same rise-to-span ratios, it was found that the struts in a one-hoop (N1) domes buckle 

at half the service load. Two-hoop (N2) domes with small d/L ratio = 0.07 and N3 domes became 

unserviceable before the full service load could be supported. Overall, N2 domes with d/L ratio = 

0.09 performed well for all limit states.  

Inelastic analysis using a displacement-controlled procedure was done to determine how much 

load it takes for the cables to rupture. Clearly, the strut sizes and prestressing forces would have to 

be substantially increased to allow the cables to yield before the strut buckles of the displacements 

could exceed the allowable limit. The findings justify the use of an elastic design for cable domes.  
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To enhance the buckling capacity of the struts, the use of prestressed cable-stays to support the 

HSS struts was recommended as an alternative solution. Doing so, in turn, increases the load 

carrying capacity of the domes. The buckling load for stayed struts was found using the Stiffness 

Probe Method (Gurfinkel, Miller and Robinson, 2009). The method gave a clear understanding of 

the loss of strut capacity without the need for using differential equations and numerical schemes. 

On comparing the member forces due to loads, it was recognized that the struts attracted the least 

amount of forces. Using this to advantage and considering that erection costs make up 

approximately 40% of the project cost, an efficient and low-cost prestressing method has been 

proposed for the erection of cable domes in future research. The prestressed configuration can thus 

be achieved by prestressing the vertical struts instead of the traditional approach of prestressing 

the diagonal cables. 

The eventual objective of this research is to develop an American Society of Civil Engineers 

(ASCE) Standard for the structural design of prestressed domes. As a prelude towards that effort, 

design guidelines for cable domes are presented in Appendix-A.  

10.2 Conclusions 

Based on the design and analysis of the 12 domes, the following conclusions can be drawn: 

1. A two-dimensional model is sufficient for the design of cable domes governed by 

axisymmetric load combinations, thus not requiring complicated and time-consuming three-

dimensional analysis. Further, intuitive understanding and valuable insights can be gained 

efficiently from parametric studies using a two-dimensional model. 

2. Findings from an influence surface analysis serve as a good preliminary indicator of the 

adequacy of the prestressing forces assigned to a dome. The analysis identifies the governing 

load combinations for critical members and shall be used to minimize the load cases that need 

to be checked.  

3. Prestressing force levels assigned to the diagonal cables must be large enough to keep all cables 

in tension under the various loading cases and to provide the necessary stiffness to meet the 

serviceability requirements. While prestressing forces impart the necessary initial stiffness to 

a dome, they do not affect the final tensions in the cable members. Excessive prestressing 

forces must be avoided to reduce the demand on the supporting structure. 
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4. The geometrical parameters play a critical role in the stability of cable domes and their 

resistance to applied loads. Torsional movements may be minimized by using a polygon with 

more sides (n). For an efficient design with minimal prestress, it is advisable to use a minimum 

of n=24 for large span domes. Domes with more hoops (N) will be heavier mainly because of 

the increase in the number of members, joints and connections. While the additional dead 

weight may be helpful against uplift forces, more hoops may raise the centroid of hoop tensions 

which may impact the global stability of a dome. Domes with smaller d/L ratios require more 

prestressing force to achieve a desired elevation (shape) than those with a higher d/L ratio. 

Smaller d/L ratios lead to larger horizontal end reactions that may significantly increase the 

size of the supporting perimeter beam and walls.  

5. The outermost diagonal and hoop cables are the critical members in resisting the applied loads, 

as they experience the largest internal force. The ridge cables are essential stiffening members 

and generally experience a reduction in tension. The outer ridge cables have a unique behavior; 

they regain tension under increased gravity loading to maintain the equilibrium at the strut ends 

and to prevent the tension-ring hub from collapsing. The valley cables contribute significantly 

to resisting wind uplift forces. They also help to maintain the prestress in the fabric membrane. 

The stiffened profile of valley cables being arch-shaped, they offer no resistance to gravity 

loads. 

6. The global stability of a cable dome is greatly dependent on the position of the centroid of the 

hoop tension forces. Structural instability will ensue if the centroid of hoop cable tensions lies 

too close to or above the elevation of the perimeter beam. Thus, lower the centroid of hoop 

tension forces below the perimeter beam, larger will be the moment-arm and greater will be 

the moment resistance and overall stability of a dome.  

7. Buckling of struts and/or large displacements are the controlling limit states for a cable dome. 

These limit states were found to be compromised well within the elastic range of the members. 

As such, an elastic design is fully justified for the design of cable domes.  

8. For domes vulnerable to strut buckling, enhanced capacity can be achieved by stiffening the 

struts using prestressed cable-stays. Depending on the amount of prestress assigned and section 

properties of the struts, cables and cross-arms, the addition of the stays may change the limit 

state from one of stiffness/stability of struts to a strength failure of struts or stay cables. The 

Stiffness-Probe Method provided an efficient means to compute the critical loads for 
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prestressed stayed struts. The method gave a physical insight into the loss of capacity of the 

struts with increase in applied loads.  

9. Strut buckling (rigid body buckling) due to ridge cables going slack may happen at higher 

loads. This in-plane instability may be avoided by ensuring that prestressing force levels are 

adequate to retain tension in all cables under any loading condition. Increasing the overall 

prestress in the system uniformly across the span helps to better control the stiffness of the 

structure. Prestressing force may be increased to control transverse (or torsional) movements 

of the ridge nodes which can get larger under asymmetric loading. In the case that some cables 

lose tension due to relaxation or damage, tensioning the interior diagonal cables is the best way 

to impart additional tension to the already-tensioned diagonal cables as well as ridge cables.  

10. For domes that became unserviceable due to large deflections, increasing the initial 

prestressing forces in the diagonal cables and providing more hoop cable area will stiffen the 

domes against vertical deflections. 

It can be concluded that for a successful cable dome design, the designer must carefully select the 

various parameters (geometric and prestress), knowing well how they affect the overall structural 

requirements of strength, stiffness and stability. Prestressing force levels equal to 50% of the strand 

yield stress is a reasonable initial value. The designer shall use a two-dimensional model and 

influence surface analysis to check the adequacy of the prestressing force levels. As an 

enhancement to the conventional structural design of cable domes, the design shall incorporate 

prestressed cable-stayed struts in place of simple struts as an alternative to increase the critical load 

of the strut. From a practical point-of-view, the limit states will be reached well within the elastic 

range. This endorses elastic design as the methodology for cable dome design.  

10.3 Future Research 

Future research on cable domes may be exciting, both as a creative endeavor for developing new 

forms and for finding cost-effective construction methods. Exploring the following areas will serve 

to advance the current literature in cable dome research:     
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10.3.1 Experimental research 

A. Parametric investigation of cable dome behavior  

This study has shown that practical requirements keep the design of cable domes within the elastic 

range. The primary objective of experimental studies of small-scale domes will be to match test 

results with calculated response from SAP2000 and verify if a good correlation exists between the 

measured and calculated results.                             

The specific goals of the experiments shall be to: 

1. Identify the various limit states within the elastic range. 

2. Study the effect of loss in cable tension on the strength and stiffness of a cable dome. 

Because space constraints and expense in testing full-scale domes are generally prohibitive, it will 

be reasonable to construct and test models to 1/10th scale. As there are several critical parameters 

in cable-dome design, the experiments shall be focused to a few parametric variations. The analysis 

results from this study showed that N2 domes performed well to satisfy the limit states. Two 

models shall be tested as part of the experimental verification. In Model-1, prestressing forces and 

d/L ratios shall be varied for an N2:n24:r/L0.083 domes. In Model-2 the number of hoops shall be 

varied (N = 2 and 3). The latter will be useful for studying the effectiveness of struts for different 

N. The domes shall be investigated for static loads, both symmetric and asymmetric. The uplift 

forces due to wind may be simulated from an internal pressure test using high-power fans/blowers. 

  

B. Prestressed cable-stayed struts. 

Prestressed cable-stays offer great potential as an alternative for stiffening compression members. 

The findings from this thesis have shown that the critical load can be increased significantly by 

appropriately prestressing the stays. The goal will be to evaluate the experimental response of these 

prestressed steel columns and compare them with the results of computer simulations using 

SAP2000, for two different configurations, namely one and two cross-armed struts (Figure 10.1).  
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Figure 10.1  (a) One-arm cable-stayed strut; (b) Two-arm cable-stayed strut  

The potential benefits of using prestressed cable-stayed struts to enhance the buckling capacity 

shall be examined further for the following objectives:  

a. To determine the buckling load for various prestressing forces in the stays. 

b. To determine the effect of multiple cross-arms along the height of a strut on the limit state 

of the strut. The limit states to be observed in the tests are slackening of the cable-stays, 

crushing of the HSS tube, and yielding or rupture of cable-stays.  

c. Investigating the strength and stiffness interaction of the two stayed-strut configurations 

in subject. 

A quarter-scale two-dimensional model of pin-ended stayed struts, shown in Figure 10.1, shall be 

used for experiments. The material and members properties will be the same as that used in the 

computer analysis. An initial imperfection would have to be introduced to initiate the bending of 

the struts under loads. The models will be tested for different prestressing force in the stays, namely 

0.25fy, 0.33fy and 0.5fy, where fy = 243 ksi is the yield stress of the strands.  

10.3.2  Design of asymmetrical cable domes  

Many stadia and performing arts facilities have plans that are asymmetrical. Cable dome forms 

that follow the function of the space to be roofed may generate interesting and expressive 

structures. Asymmetrical circular (Figure 10.2a) and asymmetrical elliptical cable domes (Figure 

10.2b) have not been built to date. Departure from a symmetrical layout of cables, struts and 

P P P
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supporting structure has structural implications. Consider the following two configurations:     

i) Circular cable dome with an eccentric tension ring; and ii) Elliptical cable dome with a 

concentric tension ring. The cable forces will not be the same, even under a uniform pressure field. 

This arrangement results in large out-of-balance horizontal forces at the perimeter beam. The large 

bending moments will require a massive and expensive supporting structure.  

 

Figure 10.2  (a) Circular cable dome with an eccentric tension ring; and (b) Elliptical cable 

dome with concentric tension ring 

 

The intellectual challenge in the design of asymmetrical cable domes is to minimize the structural 

implications of asymmetry. An iterative computer program may be written to determine cable 

tensions such that the perimeter beam is theoretically moment-less.  

10.3.3 Erection method using prestressing of struts  

Conventional practice (Figure 10.3, Stages 1-4) calls for cable domes to be erected by first hanging 

the ridge cables and struts from the outer compression ring. Once this is done, diagonal and hoop 

cables are attached sequentially from the compression ring side to the tension ring side. Diagonals 

are prestressed in a sequential manner, from outside to inside. This approach involves many 

workers on the job prestressing the diagonal cables simultaneously to induce only equal radial 

forces in order to keep bending moments from being induced in the compression ring. After all 

diagonals are prestressed, the dome acquires the desired geometry. Prestressing force levels are 

adjusted one last time to ensure radial force balance. The entire process involves many workers 
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and proper coordination. The erection costs are approximately 40% of the total cost of design and 

construction. 

 

           Figure 10.3  Traditional method of erection (Stages 1-4) 

                           Proposed method of erection (Stages A and B)  

In lieu of the above and taking advantage of the smaller forces in the struts, a smaller prestress in 

the struts may yield the same desired dome geometry as a large prestress in the diagonals. In this 

suggested alternative method for erection, all essential operations can be done from the central 

cage (Figure 10.3, Stages A and B). All members will be assembled on ground and hoisted up at 

the central hub. The ends of the outer ridge and diagonals will then be connected to the 

compression ring. Once the web is formed, the central hub can be hoisted further until the crown 

reaches the desired elevation. At this stage, the hoisting system will be locked and prestressing of 

vertical struts will commence at the central hub. Prestressing may be done by telescoping the struts. 

A feasibility and cost-benefit of this erection method may lead to significant cost-savings for 

contractors. The aforementioned method may be used advantageously for cable domes to be 

erected in between locked topography or urban spaces, i.e., in between rock hills or in between 

existing buildings, where site-presented constraints will not allow for the conventional method of 

prestressing of the diagonal cables.  
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APPENDIX  A  

               DESIGN GUIDELINES 

 

This document provides guidelines for the design of cable domes based on the findings of this 

research and industry practices. The ASCE/SEI 19-10 for design of cables in buildings and the 

ASCE/SEI 55-10 provisions for design of tensile and membrane structures are broad and provide 

useful guidelines for tensile structures in general. Design of cable domes requires specialized 

engineering knowledge. An ASCE/SEI Standard developed exclusively for cable dome design to 

include radial, triangulated and other prestressed cable domes will serve as a valuable design guide. 

Based on the findings of this research and industry practices, the following guidelines are intended 

to organize current knowledge and the findings of this research on radial-type cable domes in order 

to help structural engineers make informed design decisions.  

1. Codes and Standards 

The diagonal, hoop and ridge cables shall be designed using the ASCE Standard 19-10 “Structural 

Applications of Steel Cables for Buildings” and the membrane must be designed per the ASCE/SEI 

Standard 55-10 “Tensile Membrane Structures.” Both Standards follow the ASCE 7-10 Code 

“Minimum Design Loads for Buildings and Other Structures.” 

2. Material Specifications 

Steel and reinforced concrete are the basic materials used for the construction of cable domes. The 

struts shall be made of standard steel pipes; they shall possess sufficient bending stiffness for a 

higher buckling capacity and shall be designed per AISC specifications. Steel strands and ropes 

shall be used for the diagonal, hoop and ridge cables. They shall be designed in accordance with 

ASCE 19-10. The steel ropes and strands shall be pre-stretched by repeated loading and unloading 

cycles with traction values equal to approximately 50 percent of their fracture load to elevate the 

elastic modulus and thereby eliminate cable relaxation or creep.  

Strand is covered by ASTM A416 “Steel Strand, Uncoated Seven-Wire for Prestressed Concrete.” 

There are seven wires, with six of them helically wound around a straight center wire which is 

slightly larger than the outer wires. Strands are available in two grades: Grade 250 (fpu = 250 ksi) 
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and Grade 270 (fpu = 270 ksi) and in two types of material: “low-relaxation” and “stress-relieved 

(normal relaxation)”. The low-relaxation type Grade 270 has been the grade of choice for cable 

domes (Table A-1).  

Table A-1 Properties of ASTM A416, Seven-Wire Strand, Grade 270 

Diam. Weight Area Tensioning Load Strength 

in. lb./1000ft in2 lb., at 202.5 ksi lb., at 270 ksi 

     

3/8 290 0.085 17,200 23,000 

7/16 390 0.115 23,300 31,000 

1/2 520 0.153 31,000 41,300 

0.6 740 0.217 43,900 58,600 

 

Wire is covered by ASTM A421. Several sizes are available. Table A-2 lists the available choices. 

The stress-strain characteristics are similar to those of strand, except that Young’s Modulus should 

be a little higher since the wire is a solid bar. The strengths are a little lower than that of strand 

because of cooling rate differences during manufacturing. 

Table A-2  Properties of a Wire 

Diameter* Area Min. yield stress Rupture Stress 

(in.) (in2) (ksi) (ksi) 

 

0.192 

 

0.02895 

 

200 

 

250 

0.196 0.03017 200 250 

0.250 0.04909 192 240 

0.276 0.05983 188 235 

            * Other sizes and types exist 

 

The perimeter ring beam shall be made of reinforced concrete and shall be designed in accordance 

with ASCE 318. This may be polygonal or circular, depending on the number of sides used.  
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Fabric membrane shall be made of polytetrafluoroethylene (PTFE) to provide both strength and 

self-cleansing properties. Newer materials with better architectural properties shall be considered; 

for example, ETFE and UltraLUX. The strength and durability of any new material shall be 

comparable to or better than those of PTFE. Membrane physical properties shall be determined in 

accordance with ASTM D485. 

3. Connections 

Membrane to cable, cable-to-cable, cable-to-steel and cable to perimeter beam connections shall 

be designed to transfer all applied and internal forces and moments as required by the analysis. 

Environmental effects, cable relaxation and movements caused by large deflections and rotations 

of the structure shall be accounted for. Corrosion protection shall be provided for durability of 

connections. 

4. Structural Design 

Cable domes experience loads similar to conventional building structures, except for their 

prestressing force which is part of the resistance. They shall be designed for the combined effects 

of gravity and wind uplift forces that may produce the most unfavorable effects.  

Loads 

Prestress 

Appropriate prestressing forces shall be provided to ensure adequate structural stiffness. 

Prestressing force levels shall be considered satisfactory if on application of external loads, no 

cables go slack and the deflections are within permissible limits. Initial prestressing force levels 

shall be kept within 50% of the yield stress of the strands. 

Dead and Live Loads 

The dead load shall include self-weight of fabric, struts, strands, cables, tension ring, and cast steel 

connections. A load case with a single concentrated load of 100 kips shall be applied in the gravity direction 

at a single outer hoop to a strut connection node. The superimposed dead load shall be taken as 8 psf. The 

domes shall be designed for a minimum live load of 12 psf.  
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Rain Loads 

Rain loads (if applicable) must be included depending on the roof geometry where ponding is a 

possibility. Sections 7.10 and 7.11 of ASCE/SEI 7-10 (ASCE 2010c) shall apply.  

Snow Loads 

Symmetric and asymmetric loads shall be determined from Section 7.6.2 and Figure 7-3 of 

ASCE/SEI 7-10 (ASCE 2010c, p. 37). Due to low-rise, the slope at the eaves is less than 30°. Thus, 

Case-1 from Figure 7-3 in ASCE 2010c shall be used to determine the distribution of snow loads. 

Depending on the rise of the dome, appropriate values for Cs shall be assumed. For domes with 

r/L ≤ 0.083, Cs =1.0 is acceptable. Depending on the ridge profile, the snow may slide towards the 

compression ring because of the slope. As the slope of ridge varies in elevation, the snow loads 

shall be modified in accordance with Sec. 7.6.3 of ASCE/SEI 7-10 (ASCE 2010c, p. 32). Besides 

the geometry of the roof, other factors such as formation of ice dams shall be considered. The 

slickness of roof surface, insulation and cold bridges may have a significant influence. Some of 

the aforementioned factors for cold and warm roofs are addressed in Figure 7-2a and Sec. 7.9 of 

ASCE/SEI 7-10 (ASCE 2010c, p. 36). The provisions for asymmetric loads as applied to curved 

roofs shall be applicable to cable domes. Figure 7-3 of ASCE/SEI 7-10 (ASCE 2010c, p. 37) 

illustrates the variation of asymmetric loads. 

Wind Loads 

The Main Wind Force Resisting System (MWFRS) shall be designed for wind pressures as 

obtained by the Directional Procedure (Chapter 27, ASCE7-10c). The ASD load factor of 0.6 for 

wind loads will reduce the peak wind loads obtained from the Directional Procedure to service 

load value. Design wind pressures (psf) shall be specified for the design of the fabric membrane 

as well as wall claddings of the superstructure per Figure 30.4-7 of ASCE/SEI 7-10 (ASCE 2010c, 

p. 344). Special consideration shall be given to local effects of wind turbulence and vibrations, 

especially near the eaves of the dome.  
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Other Loads 

Earthquake loads and other loads such as thermal effects, cable relaxation and construction loads 

shall be appropriately considered. 

 

Load Combinations 

The design of members should be based on the load combination causing the most unfavorable 

effect, keeping in mind that in some cases, this effect may occur when one or more loads are not 

acting. The load combinations selected are similar to the Allowable Stress Design (ASD) load 

combinations from ASCE 19-10, except for LC-6 which is given a factor of 0.6 on prestress for 

safety. The rationale for all combinations is explained in Section 3.2. 

 

Table A-3  Allowable Stress Design Load Cases and Load Combinations 

Load Case Load Combinations 

LC-1 D + P 

LC-2a. D + P + Ss (Snow on full span) 

LC-2b. D + P + Sas (Snow on half span) 

LC-3a. D + P + 0.6Ws (Suction on full span) 

LC-3b. D + P + 0.6Was (Suction on half span) 

LC-4a. D+ P + 0.75(0.6Ws) + 0.75 Ss 

LC-4b. D+ P + 0.75(0.6Was) + 0.75 Ss 

LC-5a. D+ P + 0.75(0.6Ws) + 0.75 Sas 

LC-5b. D+ P + 0.75(0.6Was) + 0.75 Sas 

LC-6 0.6D + 0.6P +0.6Ws 

LC-7 D + P + Cn 

 

Structural engineers shall adopt the LRFD procedure after further research regarding combinations 

of prestressing forces and factored loads, and understanding of geometric nonlinearities.  
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Influence Surface Analysis  

The design process shall be made efficient by using the influence surface analysis. The findings 

from the influence surface analysis shall be used to identify the governing load combinations for 

critical members of the dome. They shall also inform the designer about the adequacy of the 

prestressing force levels. 

 

Layout and Sizing 

For domes with span equal to or greater than 400 ft., a designer shall use a minimum of n = 24 

with a d/L=0.14. This will result in reasonable prestressing force levels and internal forces. 

Torsional movements will also be restricted, and the horizontal end reactions will also be small. 

The hoop stiffness reduces by half when either n or R is doubled (Figure 5.3). Therefore, use small R to 

increase the effectiveness of the hoop cables which is one of the principal members of a cable dome.  

The preliminary member areas of cables and struts shall be based on the analysis of a two-

dimensional truss model (i.e., a truss in which the ridge cables are replaced by two-force members) 

using full axisymmetric snow loads on the structure. The compression in the top chord members 

can be overcome by prestressing the diagonal members. After the ridge members are sufficiently 

tensioned (5-10% of the rupture stress), the members shall be sized using the internal forces and 

the allowable member stresses.  

Use of Two-dimensional Model 

An equivalent two-dimensional model (Chapter 5) shall be used for efficient design and to gain 

insights about behavior via parametric studies. For domes in snow-prone regions, a two-

dimensional analysis will be sufficient for the design of circular axisymmetric cable domes.   

 

Structural Modeling and Analysis 

A nonlinear finite element algorithm that accounts for large displacements shall be developed. 

Alternatively, commercial programs such as SAP2000, Abaqus or ANSYS may be used. The 

analysis type shall be nonlinear with large displacement and P-Δ effects. Inelastic analysis shall 

be performed using an approximate bilinear material model for the steel strands (Figure 7.9a).  
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Assumptions for modeling and analysis shall include:  

i. Large displacement and small strain. 

ii. Uniaxial loading. 

iii. Cables are tension-only members. 

iv. Roof membrane has negligible bending stiffness. 

v. Snow loads are applied as point loads at the top nodes of the struts. 

vi. Rigid perimeter beam.  

 

Other Design Considerations and Concerns 

The limit states criteria for a cable dome will depend on the governing load combination. Strut 

buckling, serviceability and cable rupture are possible limit states. The following design criteria 

and provisions shall be used:  

1. Under any loading conditions, no cables shall go slack. Under asymmetric load conditions, few 

cables going slack would be acceptable near the maximum design loads only. They shall not 

go slack at less than 80% of the design load. More than 10% of cables going slack shall not be 

acceptable. Wind loadings cause cable slackening; this must be addressed in the design 

process. 

2. Prestrain given to the diagonal cables shall be kept at 50% of 
243

0.01
24,000

 
y

y

ksi

E ksi


   , i.e. 

0.005. Keeping the prestrain level at 0.005 ensures enough tensile capacity needed for the 

cables to resist applied loads. 

3. The maximum tensile stress in cables shall not exceed
2.2

rupture
. To ensure that there is enough 

residual tension in the ridge cables, a minimum internal stress of max
min

10


   shall be 

maintained in all cables.  

4. The vertical deflections in built cable domes are observed to be approximately equal to 

span/180. The limit shall be the designer’s judgment such that proper positive drainage in the 

roof is provided despite large displacements. Levy (1991) mentions a stringent deflection 

criterion of L/250 for live load in triangulated domes. 
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5. The net horizontal displacement of the nodes can be given a more stringent limit of h/240, 

where h is the strut height. This will ensure both structural integrity and aesthetics.   

6. Use fewer hoops to minimize the number of members and connections.  

7. Diagonal cable inclinations shall be 30° or greater to keep the prestressing force levels and 

member forces reasonable. 

8. Prestressed cable-stayed struts shall be used as an alternative to HSS struts alone, for very 

slender members.  

 

5.  Fabrication and Erection  

Detailed shop drawings shall be produced for the fabrication of all components of a cable dome 

structure. The drawings shall comply with the requirements of the respective standards of the 

component members, i.e., ASCE 19-10 for cables, AISC for struts, and ASCE 55-10 for fabric 

membrane.  

Cable domes shall be erected by diagonal prestressing, which is the traditional and tested approach. 

The suggested new method (Section 10.3) for erecting cable domes by prestressing the struts shall 

be evaluated by the contractors for feasibility and cost-benefit. Success with the latter can be 

advantageously used for erecting cable domes in locations where the conventional method of 

prestressing is not viable. In either case, the erection procedure shall include a detailed numerical 

analysis of the stages involved in erection of the cable dome. 

 

 

 

 

 

 

 

 

 

 

 



 

125 

 

APPENDIX  B  

INFLUENCE SURFACE ANALYSIS RESULTS FOR N2:N16 

AND N3:N16 DOMES 

 

Results from the influence surface analysis for N1 dome were presented in Section 3.2.2. This 

appendix complements Section 3.2.2 to include results from N2 and N3 domes.  

The significance of influence coefficients can be best understood from the illustrations in Figure 

B.1. The vertical deflections in the illustrations are the influence coefficients for the vertical loads 

applied at those nodes. Using the numerical values of the influence coefficients and Eq. 3.13, the 

member forces are obtained for the various load combinations. Clearly, the outermost hoop cables, 

diagonal cables and struts will experience maximum internal forces due to a symmetric loading 

condition (FD3, TH2, CS3 in Figure B.1). The innermost members FD1, CS1, and TR1 are governed by 

asymmetric wind loading conditions. Some of the inner member designs and the ridge cable 

designs are governed by wind suction forces.  

Table B-1  Internal member forces found using influence coefficients for the 

N2:n16:d/L0.09 dome        

 

 

LC - # ASD LOAD COMBINATIONS FD3 FD2 FD1 TH2 TH1 CS3 CS2 CS1 TR3 TR2 TR1

LC - 1 D + P 185 71.0 24.0 411 158 89.7 32.3 11.5 116 50.8 29.4

LC – 2a. D + P + Sb 537 254 87.9 1189 564 268 125 43.3 92 -133 -209

LC – 2b. D + P + Sub 323 144 23.5 730 331 140 48.5 0.90 180 44.7 25.7

LC – 3a. D + P + 0.6 Wb 141 113 15.8 314 252 67.5 53.4 7.40 151 47.1 33.0

LC – 3b. D + P + 0.6 Wub 155 98.0 24.4 348 216 68.3 52.7 7.30 136 47.6 25.6

LC – 4a. D + P + 0.75 (0.6 Wb) + 0.75 Sb 416 240 65.8 922 533 207 117 32.3 124 -89.7 -146

LC – 4b. D + P + 0.75 (0.6 Wub) + 0.75 Sub 427 229 72.3 948 506 207 117 32.2 113 -89.3 -152

LC – 4c. D + P + 0.75 (0.6 Wub) + 0.75 Sb 256 157 17.5 578 358 110 60.3 0.50 190 43.5 29.3

LC – 4d. D + P + 0.75 (0.6 Wb) + 0.75 Sub 266 145.8 24.0 603 331 111 59.7 0.40 179 43.9 23.7

LC – 5a. 0.6D + 0.6P + 0.6Wb 83.3 90.7 7.1 185 201 38 44.0 3.1 104 21.3 14.9

LC – 5b. 0.6D + 0.6P + 0.6Wub 97.1 75.4 15.7 219 165 38.8 43.3 3.0 88.7 21.9 7.5
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Clearly, the prestressing force levels assigned are not adequate, as two sets of ridge cables (except 

for outermost) went slack under LC-2a (full symmetric snow loads) and under LC-4a and 4b. The 

influence surface analysis is therefore a good indicator of the adequacy of prestressing force levels 

for a dome. 

 

Figure B.1 Influence surface for the various members of an N2:n16:d/L0.09 dome        

(Scale = 2000) 
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The influence surfaces for the various members in an N3:n16 dome are shown in Figure B.2. 

Clearly, the outermost members, i.e., hoop TH3, diagonal F4 and strut C4 experienced the maximum 

internal forces due to applied gravity loads (Table B-2) due to full axisymmetric snow load, LC-

2a. The innermost members FD1, CS1, and TR1 are governed by wind loadings. It must be noted that 

under the action of reduced dead load and wind uplift forces, the outermost diagonal members are 

almost going into compression. They further instruct a designer about the load combinations to 

use that the largest downward nodal forces and the largest net uplift forces. Some of the inner 

diagonal cable and ridge cable designs are governed by the effect of wind suction forces. When 

compared to N2:n16 and N1:n16, the internal member forces are much higher under gravity loads. 

The prestressing force levels are not adequate to resist snow loads.  

Table B-2  Internal member forces found using influence coefficients for the 

N3:n16:d/L0.07 dome 

 

 

LC - # ASD LOAD COMBINATIONS FD4 FD3 FD2 FD1 TH3 TH2 TH1 CS4 CS3 CS2 CS1 TR4 TR3 TR2 TR1

LC - 1 D + P 260 117 48.1 15.6 577 259 107 126 55.6 22.6 7.3 204 95.1 51.6 37.8

LC – 2a. D + P + Sb 468 196 66.7 8.8 1036 435 148 232 95.9 32.1 4.1 171 -7.1 -65.2 -72.4

LC – 2b. D + P + Sub 335 147 55.5 4.9 757 333 126 147 60.5 20.7 0.70 189 49.5 -0.50 -4.20

LC – 3a. D + P + 0.6 Wb 99.5 59.1 36.6 21.3 222 132 81.5 44.0 26.3 16.7 10.1 233 175 140 121

LC – 3b. D + P + 0.6 Wub 157 80.9 41.1 13.3 361 185 93.9 59.5 29.5 15.0 5.0 220 139 99.9 88.0

LC – 4a. D + P + 0.75 (0.6 Wb) + 0.75 Sb 296 133 53.4 14.8 655 295 119 144 63.8 25.3 7.0 201 78 30.2 17.2

LC – 4b. D + P + 0.75 (0.6 Wub) + 0.75 Sub 339 150 56.8 8.80 759 336 128 156 66.3 24.0 3.10 191 51.0 0.20 -7.20

LC – 4c. D + P + 0.75 (0.6 Wub) + 0.75 Sb 196 96.1 45.0 11.9 446 219 102 80.0 37.3 16.7 4.4 215 121 78.8 68.3

LC – 4d. D + P + 0.75 (0.6 Wb) + 0.75 Sub 239 112 48.4 5.90 550 259 112 91.7 39.7 15.4 0.60 204 93.4 48.7 43.9

LC – 5a. 0.6D + 0.6P + 0.6Wb 0.80 15.0 17.5 14.2 3.2 32.2 39.2 -3.80 5.10 7.80 6.80 162 145 127 114

LC – 5b. 0.6D + 0.6P + 0.6Wub 58.4 36.7 22.1 6.20 142 85.9 51.6 11.7 8.3 6.0 1.60 149 109 87.2 81.6
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Figure B.2 Influence surface for the various members of an N3:n16:d/L0.07 dome (Scale = 1000) 



 

129 

 

APPENDIX  C  

NONLINEAR ANALYSIS RESULTS: N2 AND N3 DOMES 

 

This section provides a comparison of member forces and displacements for N2 and N3 domes, 

each with two different d/L ratios. The results provide an insight into the limit state of each of the 

domes. Tables C-1 and C-2 present the results for N2:n16:L400:r/L0.083:d/L0.09 dome and 

N2:n16:L400:r/L0.083:d/L0.07 dome. The former failed simultaneously in serviceability and strut 

buckling, while the latter clearly failed in serviceability. 

 

Figure C.1 N2 dome node and member labels 

 

The ridge cable cross-sectional areas (inner to outer) provided are 1.67 in2, 2.97 in2 and 5.58 in2 

respectively, the diagonal cable areas are 1.30 in2, 2.60 in2 and 5.21 in2, respectively; and the hoop 

cable areas are 6.04 in2 and 11.25 in2 respectively. The struts areas (inner to outer) are 14.9 in2, 

18.1 in2 and 18.1 in2. The buckling capacity of the outermost strut calculatedd from Euler’s formula 

as 204 kips (for d/L=0.09) and 313 kips (for d/L=0.07), where EI = 29000 ksi x 299.2 in4 = 8.677 

x 106 k.in2 is the flexural stiffness of the strut, L = 54 ft. (for d/L=0.09) and 43.7 ft. (for d/L=0.07) 

and k =1 for hinged ends. 
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Tables C-3 and C-4 present the results for N2:n16:L400:r/L0.083:d/L0.09 dome and 

N2:n16:L400:r/L0.083:d/L0.07 dome. Both domes failed in serviceability. 

 

Figure C.2 N3 dome node and member labels 

 

The ridge cable cross-sectional areas (inner to outer) provided are 1.67 in2, 2.97 in2, 5.58 in2 and 

10.8 in2; respectively; the diagonal cable areas are 1.30 in2, 2.60 in2, 5.21 in2 and 9.11 in2 

respectively; and the hoop cable areas are 11.25 in2, 13.85 in2 and 16.45 in2 respectively. The struts 

areas (inner to outer) are 14.9 in2, 18.1 in2, 18.1 in2 and 18.1 in2. The buckling capacity of the 

outermost strut calculated from Euler’s formula as 334 kips (for d/L=0.07) and 502 kips (for 

d/L=0.05), where EI = 29000 ksi x 299.2 in4 = 8.677 x 106 k.in2 is the flexural stiffness of the strut, 

L = 42.2 ft. (for d/L=0.07) and 34.5 ft. (for d/L=0.05) and k =1 for hinged ends. 
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APPENDIX  D  

      STAYED COLUMN ANALYSIS RESULTS 

 

The stayed column in Section 9.2 was analyzed for two cases of planar models. In Case A, the 

bending axis was at 90º, and in Case B, the bending axis was at 45º with respect to the horizontal 

axis of the section in plan view (Figure D.1). The complete results from the analyses are presented 

in Tables D-1 and D-2.   

 

 

Figure D.1  Bending axes for Cases A and B at 90º and 45º respectively 
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APPENDIX  E  

      DESIGN WIND PRESSURES FOR ROOF 

 

This section provides a step-by-step calculation for wind pressure on the roof that was summarized 

in this dissertation’s Section 3.1.5. The procedure for wind load calculations as described in Mehta 

& Coulbourne’s book, “Wind Loads: Guide to the Wind Load Provisions of ASCE 7-10” is adapted 

for cable domes. The Directional Procedure for design of the main wind force resisting system 

(MWFRS) as per Chapter 27 of ASCE/SEI 7-10 (ASCE 2010c) is followed. The ASD load factor 

of 0.6 for wind loads reduces the peak wind loads obtained from the Directional Procedure to 

service load value. Only the MWFRS is considered in the analysis. 

A
B

B

B

C

A

B

C
60 ft

33.2 ft

400 ft
 

Figure E.1 Geometry and dimensions of cable dome in reference 

Domed Roof Pressures 

For special structures such as cable domes, whose roof is pleated and membrane is flexible, a more accurate 

estimate of wind forces must be obtained from wind tunnel tests. Wind tunnel studies have shown 

that a shallow folded roof has very little impact on the Main Wind Force Resisting System. As 

such, Figure 27.4-2 of ASCE/SEI 7-10 (ASCE 2010c, p.265) is applicable. It has been found that 
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there is very little pressure on the roof on the windward side. This is because of the low rise. The 

distribution of wind pressure coefficients on the roof is therefore taken as negative throughout the 

roof. The coefficients 𝐶𝑝 generally depend on the shape of the structure, the wind direction and 

position on the roof.  

The roof pressure coefficients for a domed roof are taken from Figure 27.4-2 of ASCE/SEI 7-10 

(ASCE 2010c, p.265). The height from the ground to the spring line (or eave) of the dome is 

expressed as ℎ𝐷 = 60 𝑓𝑡. The height of the dome from the eave is expressed as 𝑓 =   .2 𝑓𝑡 

(Figure E.1). Determine 𝐶𝑝 for a rise to diameter ratio, as 
𝑓

𝐷
=

  .2

 00
= 0.08 , and determine  a 

base height to diameter ratio, as 
ℎ𝐷

𝐷
=

 0

 00
= 0.15 . Interpolation from Figure 27.4-2, ASCE 2010c 

is required. Two load cases are required for the MWFRS loads on domes: Cases A and B. Case A 

is based on linear interpolation of 𝐶𝑝 values from point A to B and from point B to C (see Figure 

27.4-2 of ASCE/SEI 7-10 and Figure E.2). Case B uses the pressure coefficient at A for the entire 

front area of the dome up to an angle 𝜃 = 25°, then interpolates the values for the rest of the dome 

as shown in Case A.  

Table E-1  Domed Roof 𝑪𝒑 (at f/D = 0.083) 

Point on Dome 𝒉𝑫

𝑫
 = 0.15 

A -0.58 

B -0.38 

C -0.14 

CASE- A 

For design purposes, interpolate the pressure coefficients at points every 10 ft. intervals along the 

chord length of the dome.  

Table E-2  Interpolated Domed Roof 𝑪𝒑 (Case A) 

Segment Start  +25 ft +50 ft +75 ft +100 ft +125 ft +150 ft +175 ft +200 ft 

A to B -0.58 -0.555 -0.530 -0.505 -0.480 -0.455 -0.430 -0.405 -0.38 

B to C -0.38 -0.35 -0.32 -0.29 -0.26 -0.23 -0.20 -0.17 -0.14 
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Table E-3  Interpolated Domed Roof 𝑪𝒑 (Case B) 

Segment Start  +25 ft +50 ft +75 ft +100 ft +125 ft +137.2 ft +175 ft +200 ft 

A to B -0.58      -0.58 -0.46 -0.38 

B to C -0.38 -0.35 -0.32 -0.29 -0.26 -0.23  -0.17 -0.14 

Determine the point on the windward side of the dome at which 𝜃 = 25°. The point is 137.2 feet 

from point A (Figure 2.4 of this document). The pressure coefficient at A shall be used for the 

section from A to an arc 137.2 feet. The remainder of the dome pressures is based on linear 

interpolation between the 25° point and point B; and then from point B to C. Values of pressure 

coefficients 𝐶𝑝 are shown in Figure E.2. 

            

 

 

 

 

 

 

 

 

 

 

Figure E.2 Dome wind pressure coefficients as per ASCE/SEI 7-10 (ASCE 2010c) 

C 

B A 
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Table E-4  Values of design pressures for MWFRS: Case A 

 

CASE- B 

Internal Pressure Coefficient for Domed Roof 

The net pressure in any surface is the difference in the external and internal pressures on the 

opposite sides of that surface, 

𝑝 = 𝑞𝐺𝐶𝑝 − 𝑞𝑖(𝐺𝐶𝑝𝑖)                         (E.1) 

For enclosed buildings  

𝐺𝐶𝑝𝑖 = ±0.18  

𝑞𝑖 is taken as 𝑞(ℎ𝐷+𝑓) = 43.8 psf 

Design internal pressure  

𝑞𝑖(𝐺𝐶𝑝𝑖) =   .8 (±0.18) = 7.88 𝑝𝑠𝑓 

 

 

 

Surface of 

Domed Roof 

Location  

(ft) 

𝑪𝒑  External 

Pressure 

(psf) 

Design Pressure (psf) 

+𝑮𝑪𝒑  −𝑮𝑪𝒑  

Case A Point A: 0 -0.580 -21.58 -29.46 -13.7 

 25 -0.555 -20.58 -28.53 -12.77 

 50 -0.530 -19.72 -27.60 -11.84 

 75 -0.505 -18.79 -26.67 -10.91 

 100 -0.480 -17.86 -25.74 -9.98 

 125 -0.455 -16.93 -24.81 -9.05 

 150 -0.430 -16 -23.88 -8.12 

 175 -0.405 -15.07 -22.95 -7.19 

 Point B: 200 ft -0.380 -14.14 -22.02 -6.26 

 225 -0.35 -13.02 -20.90 -5.14 

 250 -0.32 -11.91 -19.79 -4.03 

 275 -0.29 -10.79 -18.67 -2.91 

 300 -0.26 -9.67 -17.55 -1.79 

 325 -0.23 -8.56 -16.44 -0.69 

 350 -0.20 -7.44 -15.32 0.44 

 375 -0.17 -6.33 -14.21 1.55 

 Point C: 400 ft -0.14 -5.21 -13.09 2.67 
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Design Wind Pressures for Domed Roof 

The design wind pressure in any surface is the difference in the external and internal pressures, 

        𝑝 = 𝑞𝐺𝐶𝑝 − 𝑞𝑖(𝐺𝐶𝑝𝑖)                          (E.2) 

           =   .8 (0.85)𝐶𝑝 −    .8 (±0.18) 

                              =  7.21 𝐶𝑝 ± 7.88 

Table E-5  Values of design pressures for MWFRS: Case B 

 

 

 

 

 

 

 

 

 

 

 

 

 

Surface of 

Domed Roof 

Location  

(ft) 

𝑪𝒑  External 

Pressure 

(psf) 

Design Pressure (psf) 

+𝑮𝑪𝒑  −𝑮𝑪𝒑  

Case B Point A: 0  -0.580 -21.58 -29.46 -13.7 

 𝜃 = 25° at 137.2 ft -0.580 -21.58 -29.46 -13.7 

 175  -0.46 -17.12 -25 -9.24 

 Point B: 200 ft -0.380 -14.14 -22.02 -6.26 

 225 -0.35 -13.02 -20.90 -5.14 

 250 -0.32 -11.91 -19.79 -4.03 

 275 -0.29 -10.79 -18.67 -2.91 

 300 -0.26 -9.67 -17.55 -1.79 

 325 -0.23 -8.56 -16.44 -0.69 

 350 -0.20 -7.44 -15.32 0.44 

 375 -0.17 -6.33 -14.21 1.55 

 Point C: 400 ft -0.14 -5.21 -13.09 2.67 
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APPENDIX  F  

MATLAB CODE FOR GEOMETRIC NONLINEAR ANALYSIS 

 

In the MATLAB code, the input model includes generating the initial dome geometry and 

specifying the material properties, member properties and applied loads. A vector of constraints 

(supports) and applied loads is formed. The structure force vector and the structure stiffness matrix 

are then initialized. The member stiffness matrix is directly written out from Equation 4.20 and 

assembled to form the structure stiffness matrix K using destination vectors. The residual force 

vector R is defined as the sum of the internal and external forces. The iterative Newton-Raphson 

scheme is used to solve the set of nonlinear equilibrium equations. 

====================================================================== 

%%  Nonlinear Geometric Analysis of a two-dimensional cable dome  

    (Adapted from Pecknold, 2009) 
 

%%  Input Data for N1:n16:L400:r/L0.083:d/L0.14 

  
Ndof  = 2;   % 2D, 2 degrees of freedom per node 
Nelem = 15;  % number of members 
Nnode = 10;  % number of nodes 

  
Emod      = [24000, 24000, 29000, 29000, 24000, 24000, 24000, 24000, 24000, 

29000, 

              29000, 24000, 24000, 24000, 24000]'; % Young's Modulus for every 

member 
Area      = [14.9226, 14.9226, 14.9226, 14.9226, 3.33, 3.33, 2.17, 2.17, 9.51, 

              18.0642, 18.0642, 5.5, 5.5, 4.34, 4.34]';  % cross-sectional areas 
Cte      = 6.5*1e-6*ones(Nelem,1);  % Coeff of thermal expansion 
DeltaT  =  -1*[ 0, 0, 0, 0, 0, 0, 769.23, 769.23, 0, 0, 0, 0, 0, 769.23,769.23 

]';    

                 % Temperature change 

 
Coor = zeros(Nnode,Ndof); 
Coor = [ 2304   384 
           2496   384   
           2304  -399.50 
           2496  -399.50 
           1140   272.53 
           3660   272.53 
           1140  -658.18 
           3660  -658.18 
             0     0  
           4800   0]; % nodal coordinates 
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Conn = zeros(Nelem,2); 
Conn = [ 1 2  % nodes of member 1 
           3 4  % nodes of member 2 
           1 3  % nodes of member 3 
           2 4 
           1 5 
           2 6 
           3 5 
           4 6 
           7 8 
           5 7 
           6 8 
           5 9 
           6 10 
           7 9 
           8 10]; 

      
Truss = [ 1 ; 2;  3 ; 4; 10 ; 11 ]; % vertical struts 
Truss_yield = 46;  % truss yield stress 
Cable_yield = 243; % cable yield stress 

  
RCT = zeros(Ndof,Nnode); 
RCT = [ 0 0 0 0 0 0 0 0 1 1 
        0 0 0 0 0 0 0 0 1 1 ]; % 1 indicates constrained DOF, 0 indicates free 

DOF 

  
Pfor = zeros(Ndof,Nnode); 
Pfor =  [   0     0      0   0    0      0      0  0  0  0 
          -5.06  -5.06   0   0  -30.54  -30.54  0  0  0  0]; % applied loads at 

DOFs;  

 
cnt = 0;  % counter 
ID = zeros(Ndof,Nnode); % Global equation number 
for i = 1:Nnode 
    for j = 1:Ndof 
        if(RCT(j,i)==0) 
            cnt = cnt+1; 
            ID(j,i) = cnt; 
        end 
    end 
end 
Fdof = cnt;  % Free degree of freedom 
for i = 1:Nelem 
    for j = 1:Ndof 
        Dvec(j,i) = ID(j,Conn(i,1)); 
        Dvec(Ndof+j,i) = ID(j,Conn(i,2)); 
    end 
end 

  
Ptot = zeros(Fdof,1); 
[I,J,V] = find(ID); 
for i = 1:size(I,1) 
    Ptot(V(i),1) = Pfor(I(i),J(i));  
end 
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%% 
U = zeros(Fdof,1); 
Elfor0 = prestress;  
Elfor = prestress;   
Coorn = Coor; 
ppen1 = zeros(Nelem,1); 
% Load step loop, explain every step please 
loadsteps = 1; 
itersteps = 20; 
tol = 1e-10; 
for l=1:loadsteps 
    sprintf('Loadstep No: %d',l) 
    Pj = Ptot*l/loadsteps; 
    % Newton Raphson loop 
    for i = 1:itersteps % Iteration loop , 10 loops 

         
        for j = 1:Nelem 
            vecn(j,1:Ndof) = Coorn(Conn(j,2),1:Ndof) - Coorn(Conn(j,1),1:Ndof); 
            Lengthn(j,1) = norm(vecn(j,1:Ndof)); 

             
            vec(j,1:Ndof) = Coor(Conn(j,2),1:Ndof) - Coor(Conn(j,1),1:Ndof); 
            Length(j,1) = norm(vec(j,1:Ndof)); 
            avec(j,1:Ndof) = vec(j,1:Ndof)/Length(j); 
            if((i==1)&&(l==1)) 
                Length0 = Length; 
                avec0 = avec; 
            end 
        end 

         
        [Coor,Coorn,ppen1,U,Elfor,anorm] = 

truss(Ndof,Nelem,Nnode,Coor,Truss,Conn, ... 
            

ID,Dvec,Fdof,Emod,Truss_yield,Cable_yield,Area,Cte,DeltaT,avec0,avec,Length0,

Lengthn,Length,ppen1,Pj,U,Elfor0,Elfor); 

         
        if(i==1) 
            anorm1 = anorm; 
        end 
        rnorm = anorm/anorm1 

         
        if(rnorm<tol) 
            str = sprintf('NR loop converged at iteration %d',i); 
            disp(str) 
            str=sprintf('anorm = %12.4e',anorm); 
            disp(str) 
            break; 
        end 
        if(i==itersteps) 
            str=sprintf('Not converged'); 
            disp(str) 
            pause 
        end 
    end 
end 
-------------------------------------------------------------------------- 
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function[Coor,Coorn,ppen1,U,Elfor,anorm]= 

truss(Ndof,Nelem,Nnode,Coor,Truss,Conn,ID,Dvec,Fdof,Emod,Truss_yield,Cable_yi

eld,Area,Cte,DeltaT,avec0,avec,Length0,Lengthn,Length,ppen1,Pj,U,Elfor0, Elfor) 

% Initialize Structure Stiffness Matrix 

K  = zeros(Fdof,Fdof) ; 

Pelfor0 = zeros(Fdof,1); 

Pelfor = zeros(Fdof,1); 

Pf = zeros(Fdof,1); 

  

%Assemble Structure Stiffness Matrix 

for e = 1:Nelem 

    A = Area(e); L = Length(e); Em = Emod(e); 

    St1 = A*Em/L; 

    L0 = Length0(e); 

    St10 = A*Em/L0; 

     

    Ln = Lengthn(e); 

     

    Ft =   Area(e)*Em*Cte(e)*DeltaT(e); 

    ppfe = [ Ft,0,-Ft,0 ]' ; 

     

    % Recalculate Coordinate Rotation Matrix 

    s = avec(e,2); 

    c = avec(e,1); 

    Te =  [  c,    s,    0,     0; 

             -s,    c,    0,     0; 

              0,    0,    c,     s; 

              0,    0,   -s,     c ]; 

     

    s0 = avec0(e,2); 

    c0 = avec0(e,1); 

 

 

    Te0 =  [   c0,   s0,     0,    0; 

               -s0,   c0,     0,    0; 

                 0,    0,    c0,    s0; 

                 0,    0,   -s0,    c0 ]; 

 

    % Element Stiffness Matrix in local coordinates 

    kpe = [  St1,    0,  -St1,    0; 

                 0,    0,     0,    0; 

             -St1,    0,   St1,    0; 

                 0,    0,     0,    0 ]; 

 

    % Initial Element Stiffness Matrix in local coordinates 

    kpe0 = [  St10,    0, -St10,    0; 

                   0,    0,      0,    0; 

              -St10,    0,   St10,    0; 

                   0,    0,      0,    0 ]; 

     

    % Transform to Global Coordinates 

kel = Te'*kpe0*Te ; 

 

        % Get Elem Displacements 

    ue = [0,0,0,0]'; 

    for r=1:4 
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        m = Dvec(r,e); 

        if m ~= 0 

            ue(r) = U(m); 

        end 

    end 

    % Rotate Elem Displacements to local coords 

    upe = Te0*ue;        % Element local displacement 

    ppe = kpe0*upe;      % Element local force 

     

    ppen1(e,1) = ppen1(e,1) + St10*(L-Ln); 

    Elfor(e,1) = Elfor0(e,1) + ppen1(e,1) + ppfe(Ndof+1);      

    beta = 0; % cable element = 0, truss element = 1 

    for jj = 1:size(Truss,1) 

        if(e==Truss(jj)) 

            beta =1; 

        end 

    end 

 

if (Elfor(e,1)<0)&&(beta==0) % alpha = 1e-10 if cable in compression,  

                                      else alpha =1 

        alpha = 1e-10; 

        disp('Cable in compression') 

        e; ppe(Ndof+1); ppfe(Ndof+1); 

    else 

        alpha=1; 

    end 

     

    if (Elfor(e,1)>Cable_rupture*A)&&(beta==0) 

        disp('Cable yield') 

        elem = e 

        pause 

    end 

    if (Elfor(e,1)>Truss_rupture*A)&&(beta==1) 

        disp('Truss yield') 

        elem = e 

        pause 

    end 

      

    pelfor1  = alpha*[-Elfor(e,1),0,Elfor(e,1),0 ]'; 

    pelfor01 = alpha*[-Elfor0(e,1),0,Elfor0(e,1),0 ]'; 

     

    % Rotate Element Loads to Global Coords 

    pfe = alpha*Te'*ppfe; 

     

    % Rotate Element Loads to Global Coords 

    pelfor0e = Te0'*pelfor01; 

    pelfore = Te'*pelfor1; 

    % Assemble Element Contribution into Structure Load Vector 

    for r=1:4 

        m = Dvec(r,e); 

        if m ~= 0 

            Pelfor0(m) = Pelfor0(m) + pelfor0e(r); 

            Pelfor(m) = Pelfor(m) + pelfore(r); 

            Pf(m) = Pf(m) + pfe(r); 

        end 

    end 
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% Geometric stiffness 

    kge = (Elfor(e,1)/L)*[  1-c^2    -c*s  -1+c^2     c*s 

                                 -c*s   1-s^2     c*s  -1+s^2 

                               -1+c^2     c*s   1-c^2    -c*s 

                                  c*s  -1+s^2    -c*s   1-s^2  ]    ; 

 

 

    % Total element stiffness in global coordinates 

    ke = kel + kge; 

    ke = ke*alpha; 

     

    % Assemble Element Contribution to Structure Stiffness 

    for r=1:4 

        m = Dvec(r,e);                    %   Get first non-zero Structure 

        if m ~= 0                          %   DOF number 

            for s=1:4                      %   Get second non-zero Structure 

                n = Dvec(s,e);            %   DOF number 

                if n ~= 0 

                    K(m,n) = K(m,n) + ke(r,s);   %  Add element stiffness into  

                                                          Structure Stiffness 

                end                                

            end 

        end 

    end     

end 

 

% Joint Loads 

P = Pj ; 

 

%% Solve for Joint DOFs 

format long 

DQ = P+Pelfor0-Pelfor; 

DU = K\DQ; 

U = U + DU; 

  

Coorn = Coor; 

  

for i = 1:Nnode 

    for j = 1:Ndof 

        if(ID(j,i)==0) 

        else 

            % Linear 

            %Coor(i,j) = Coor(i,j); 

            % Nonlinear 

            Coor(i,j) = Coor(i,j)  + DU(ID(j,i)); 

        end 

    end 

end 

anorm = norm(DQ); %abs(DU'*(P-Pint)); 

end 
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