
Parqua: Online Reconfigurations in Virtual Ring-Based NoSQL Systems

Yosub Shin, Mainak Ghosh, Indranil Gupta
Department of Computer Science

University of Illinois, Urbana-Champaign
{shin14, mghosh4, indy}@illinois.edu

Abstract—The performance of key-value/NoSQL storage sys-
tems is highly tied to the choice of (primary) key for the
database table. As application (e.g., business) requirements
change over time, and in order to fine-tune the performance of
the database to the real query workload, system administrators
need to change the primary key of the table. The primary key
change is a specific example of a broader class of reconfigura-
tion operations that affect a lot of data all at once. In industry
deployments of key-value/NoSQL stores, such reconfigurations
are known to be a major pain point.

We seek to support reconfiguration operations in key-
value/NoSQL storage systems in an automated, online, and
efficient manner, i.e., without interrupting the serving of in-
coming reads and writes, and quickly. Our previous work,
titled Morphus, tackled the online reconfiguration problem
for sharded NoSQL stores like MongoDB. However, Morphus
is inapplicable to ring-based key-value/NoSQL systems (like
Cassandra, Riak, and Voldemort) because these rely on a
virtual ring (and often consistent hashing). This makes the
problem more constrained.

In this paper we propose a system called Parqua, which
imbues ring-based key-value/NoSQL stores with the ability to
perform reconfiguration operations in an online and efficient
manner. We present the design and implementation of Parqua.
We have integrated Parqua into Apache Cassandra. Experi-
ments based on our cluster deployments show that during
reconfiguration Parqua maintains high availability, and with a
small impact on read and write latencies.

1. Introduction

Key-value/NoSQL systems today fall into two cate-
gories: 1) (virtual) ring-based and 2) sharded databases.
The key-value/NoSQL revolution started with ring-based
databases. The Dynamo system [3] from Amazon. Dy-
namo, and subsequent open-source variants of it including
Facebook’s Apache Cassandra [22], Basho’s Riak [6], and
LinkedIn’s Voldemort [8] all rely on the use of a “virtual
ring” to place servers as well as keys; keys are assigned to
servers whose segment they fall into. For fault-tolerance, a

This work was supported in part by the following grants: NSF CNS
1319527, NSF CNS 1409416, NSF CCF 0964471, and AFOSR/AFRL
FA8750-11-2-0084.

key and its values are replicated at some of the successor
servers as well.

Unlike the ring-based databases, sharded databases like
MongoDB [5], BigTable [13], etc., rely on a fully flexible
assignment of shards (sometimes called chunks or blocks)
across servers, along with some degree of replication. Both
the ring-based and sharded NoSQL databases have grown
very quickly in popularity over the past few years, and are
expected to become a $3.4 billion market by 2020 [10].

In these databases, performing reconfiguration opera-
tions seamlessly is a major pain point. Such operations
include changing the primary key or changing the structure
of the ring (e.g., where servers and keys are hashed to)
– essentially such operations have the potential to affect
all of the data inside the table. Today’s “state of the
art” approach involves exporting and then shutting down
the entire database, making the configuration change, and
then re-importing the data. During this time the data is
completely unavailable for reads and writes. This can be
prohibitively expensive – for instance, anecdotes suggest
that every second of outage costs $1.1K at Amazon and
$1.6K at Google [30].

The reconfiguration operation itself, though not as fre-
quent as reads and writes, is in fact considered a critical need
by system administrators. When a database is initially cre-
ated, the admin may play around with multiple prospective
primary keys in order to measure the impact on performance,
and select the best key. Later, as the workload or business
requirement changes, such reconfiguration operations may
become less frequent but their impacts (on availability) are
significant, because they are being made on a live database.
Thus the need is for a system that allows administrators to
perform reconfigurations anytime, automatically, and seam-
lessly, i.e., completely in the background, without affecting
the serving of reads and writes.

The lack of an efficient online reconfiguration operation
has led to outages at Foursquare [7], JIRA (bug tracking)
issues that are hotly debated [2], and many blogs [25], [28].
The manual approach to resharding took over two years at
Google [16].

In our past work [20], we have solved the problem of
online reconfiguration for sharded NoSQL databases such as
MongoDB. That system, called Morphus, leveraged the full
flexibility of being able to assign any shards to any server,
in order to derive an optimal allocation of shards to servers.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158301716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The optimal allocation was based on maximal matching,
which both minimized the network traffic and ensured load
balancing.

Unfortunately, the techniques of Morphus cannot be
extended to ring-based key-value/NoSQL stores like Cas-
sandra, Riak, Dynamo, and Voldemort. This is due to two
reasons. First, since ring-based systems place data strictly in
a deterministic fashion around the ring (e.g, using consistent
hashing), this constrains which keys can be placed where.
Thus, our optimal (maximal matching-based) placement
strategies from Morphus no longer apply to ring-based sys-
tems. Second, unlike in sharded systems (like MongoDB),
ring-based systems do not allow isolating a set of servers for
reconfiguration (a fact that Morphus leveraged). In sharded
databases each participating server exclusively owns a range
of data (as master or slave). In ring-based stores, however,
ranges of keys overlap across multiple servers in a chained
manner (because a node and its successors on the ring are
replicas), and this makes full isolation impossible.

This motivates us to build a new reconfiguration system
oriented towards ring-based key-value/NoSQL stores. Our
system, named Parqua 1, enables online and efficient re-
configurations in virtual ring-based key-value/NoSQL sys-
tems. Parqua suffers no overhead when the system is not
undergoing reconfiguration. During reconfiguration, Parqua
minimizes the impact on read and write latency, by perform-
ing reconfiguration in the background while responding to
reads and writes in the foreground. It keeps the availability
of data high during the reconfiguration, and migrates to the
new reconfiguration at an atomic switch point. Parqua is
fault-tolerant and its performance improves with the cluster
size.

We have integrated Parqua into Apache Cassandra. Our
experiments show that Parqua provides high nines of avail-
ability with little impact on read and write latency. The
system scales well with data and cluster size.

2. System Model & Background

In this section, we present the system model and back-
ground for Parqua system. We demonstrate assumptions
about the underlying distributed key-value store in order to
implement Parqua. Then, we provide background informa-
tion on Apache Cassandra.

2.1. System Model

Parqua is applicable to any key-value/NoSQL store that
satisfies the following assumptions. First, we assume that a
distributed key-value store is fully decentralized without the
notion of a single master node or replica. Second, each node
in the cluster must be able to deterministically decide the
destination of the entries that are being moved due to the
reconfiguration. This is necessary because there is no notion
of the master in a fully decentralized distributed key-value
store, and for each entry all replicas should be preserved

1. The Korean word for “change.”

after the reconfiguration is finished. In our implementation
of Parqua on Apache Cassandra, we use consistent hash-
ing [26] for determining the destination of an entry, but
we could alternatively use any other partitioning strategies
that satisfy our assumption. Third, we require the key-value
store to utilize SSTable (Sorted String Table) to persist the
entries permanently. An SSTable is essentially an immutable
sorted list of entries stored on disk [13]. We utilize SSTables
in Parqua for efficient recovery of entries in the Recovery
phase. Next, we assume each write operation accompanies
a timestamp or a version number which can be used to
resolve a conflict. Finally, we assume the operations issued
are idempotent. Therefore, supported operations are insert,
update, and read operations, and non-idempotent operations
such as counter incrementation are not supported.

2.2. Cassandra Background

We incorporated our design in Apache Cassandra, which
is a popular ring-based distributed key-value store [23].
Cassandra borrows the architecture designs heavily from
Distributed Hash Tables (DHTs) such as Chord [26].

Machines in Cassandra (henceforth called nodes) are
organized logically in a ring, without involving a central
master. Nodes may be either hashed to a ring or assigned
uniformly within the ring. In the Cassandra data model,
each row is uniquely identified with a primary key. The
primary key of each entry is hashed onto the ring, and
whichever node’s segment it falls into, stores that key/value.
A node’s segment is defined as the portion of the ring
between the node and its predecessor node. Some of the
successors of that node may also replicate the key-value for
fault-tolerance.

A read or write request can go from a client to any node
on the ring, and the contacted node is called a coordinator.
The coordinator routes the requests to the correct node(s)
by hashing the primary key used in the query. Cassandra
serves writes by appending a log to a disk-based commit
log, and adding an entry to an in-memory dictionary data
structure called Memtable. When a Memtable’s size exceeds
certain threshold, the Memtable is flushed to disk. This on-
disk file is called a SSTable, and it is immutable. When
a read request is issued and routed to the correct node,
the node goes through the Memtable and possibly multiple
SSTables that store the requested primary key’s value. If
there are multiple instances of the same column’s value in
the aggregated entry, the value with higher timestamp is
chosen.

A single database table is called a column family. A
database, also called a keyspace, contains multiple column
families. Each column family has its own primary key.
Cassandra supports adjustable consistency levels where a
client can specify for each query the minimum number
of replicas it needs to touch – popular consistency levels
include ONE, QUORUM, and ALL.

2

3. System Design and Implementation

This section describes the design of our Parqua system,
intended to support online and automated reconfigurations
in any ring-based key-value store. For concreteness, we
have integrated Parqua into Apache Cassandra. Below, we
first give the overview of Parqua system. Then we describe
the design of our system and its individual phases during
reconfiguration.

3.1. Parqua: Overview

Parqua runs reconfiguration in four phases. The graph-
ical overview of Parqua phases is shown in Fig. 1. When
the reconfiguration is initiated, Parqua starts first with the
Isolate phase, where it creates a new reconfigured database
table (column family in Cassandra) with the desired new
configuration that will supersede the original database table.
Second, in the Execute phase, Parqua copies entries from the
original database table to the reconfigured database table.
Third, once entries are copied to the reconfigured database
table, the Commit phase updates the two database tables by
atomically swapping their SSTables and schemas. Finally,
Parqua executes the Recovery phase which applies missing
updates that were not copied in the Execute phase.

Parqua can support any reconfiguration operation that
involves a large amount of data movement among nodes. In
this work, our implementation of Parqua addresses primary
key changes in Cassandra, where a primary key is composed
of a single partition key column.

Next, we discuss these individual phases in detail.

3.2. Reconfiguration Phases in Parqua

Isolate phase: In this phase, the initiator node – the node in
which the reconfiguration command is run – creates a new
(and empty) column family (database table), denoted as Re-
configured CF (column family), using a schema derived from
the Original CF except it uses the desired key as the new
primary key. The Reconfigured CF enables reconfiguration
to happen in the background while the Original CF continues
to serve reads and writes using the old reconfiguration. We
also record the timestamp of the last operation before the
Reconfigured CF is created so that all operations which ar-
rive while the Execute phase is running, can be applied later
in the Recovery phase. We disable automatic compaction
in this phase in order to prevent disk I/O overhead during
reconfiguration and to avoid copying unnecessary entries
in the Recovery phase (later, our experimental results will
explore the impact of doing compaction).
Execute phase: The initiator node notifies all other nodes
to start copying data from the Original CF to the Reconfig-
ured CF. Each node can execute this migration in parallel.
Read and write requests from clients continue to be served
normally during this phase.

At each node, Parqua iterates through all entries that
it is responsible for, and sends them to the appropriate
new destination nodes. The destination node for an entry

is determined by: 1) hashing the new primary key value on
the hash ring, and 2) using the replica number associated
with the entry. Key-value pairs are transferred between cor-
responding nodes that have matching replica numbers in the
old configuration and the new configuration. For example, in
the Execute phase of Fig. 1, the entry with the old primary
key ‘1’ and the new primary key ‘10’ have replica number
of 1 at node A, 2 at B, and 3 at C. In this example, after
primary key is changed, the new position of the entry on
the ring is between node C and D, where node D, E, and F
are replica numbers 1, 2, and 3, respectively. Thus, in the
Execute phase, the said entry in node A is sent to node D,
and similarly the entry in B is sent to E, and from C to F.
Commit phase: After the Execute phase, the Reconfigured
CF has the new configuration and the entries from Original
CF have been copied to Reconfigured CF. Now, Parqua
atomically swaps both the schema and the SSTables between
the Original CF and the Reconfigured CF. The write requests
are locked in this phase while reads still continue to be
served. In our implementation, we drop the write requests,
in order to prevent any successfully returned writes from
being lost during this phase. Reads are served from the
Original CF before column families are swapped, and from
Reconfigured CF after they are swapped.

The schema is updated for both column families by
modifying the “system” keyspace – a special keyspace in
Cassandra that stores metadata of the cluster such as schema
information – with the appropriate primary key. For SSTable
swap, first, the Memtables are flushed to disk. This is
because the recent updates might be still residing in the
Memtables. To implement the actual swap, we leverage the
fact that SSTables are maintained as files on disk, stored
in a directory named after the column family. Therefore,
we move SSTable files from one directory to another. This
does not cause disk I/O as we only update the inodes when
moving files. Note that we do not simply drop the Original
CF, but swap it with the Reconfigured CF. This is because
the write requests that were issued since the reconfiguration
has started are stored in the Original CF and need to be
copied to the Reconfigured CF.

At the end of the Commit phase, the write lock is
released at each node. At this point, all client facing requests
are processed according to the new configuration. In our
case, the new primary key is now in effect, and the read
requests must use the new primary key.
Recovery phase: During this phase, the system catches
up with the recent writes that are not transferred to Recon-
figured CF in the Execute phase. Read/write requests are
processed normally. The difference is that until the recovery
is done, the read requests may return stale results. 2 Once
SSTables are swapped in the Commit phase, the updated
entries which need to be replayed are in the Original CF.
The initiator notifies nodes to start the Recovery phase.

At each node, Parqua iterates through the SSTables
of Original CF to recover the entries that were written
during the reconfiguration. The SSTable is an immutable

2. This is acceptable as Cassandra only guarantees eventual consistency.

3

Figure 1: Overview of Parqua phases. The gray solid lines represent internal entry transfers, and the gray dashed
lines mean client requests. The phases progress from left to right.

data structure such that a SSTable created at time t can only
store updates written prior to time t. We leverage this fact
to limit the amount of disk accesses required for recovery
by only iterating the SSTables that are created after the
reconfiguration has started. The iterated entries are routed
to appropriate destinations in the same way as the Execute
phase.

Since all writes in Cassandra carry a timestamp [1],
Parqua can ensure that the recovery of an entry does not
overshadow newer updates, thus guaranteeing the eventual
consistency. For example, if an entry is updated at time t1
during the Execute phase and again at t2 in the Recovery
phase where t1 < t2, the update originally issued at t1 recov-
ers at t3 where t2 < t3. In this case, once the reconfiguration
is over, a read request on this entry would return the correct
result with the timestamp t2, because Cassandra aggregates
SSTables favoring the value with the highest timestamp.

3.3. Fault Tolerance of Parqua

Parqua can tolerate the failure of non-initiator nodes on
the condition that there are enough replicas and appropriate
consistency levels. If a non-initiator node fails in any of
the phases, the Parqua guarantees the same fault tolerance
model as the underlying distributed key-value store.

In a ring-based distributed key-value store, the key-
value store is available upon failure of upto k nodes, if
the consistency level of requests is less than or equal to
N−k, where N is the replication factor. This is because there
is always at least (consistency level) number of replicas
available for any entry. Otherwise, the key-value store can
still be recovered if k ≤ (N−1), since in this case there is
at least one unfailed replica for all entries.

For instance, if a non-initiator node fails during the
Execute phase, the entries that were stored in the failed node
are not transferred to the new destination nodes. However,
if the replication factor is 3 and the consistency level is 1
for read/write requests, there are still at least two replicas
available for the any entries – including the entries from
the crashed node – and the reconfiguration can continue
without interrupted. This is the same guarantee offered by
the underlying distributed key-value store.

4. Experimental Evaluation

In our experiments, we would like to answer the follow-
ing questions:
• Does Parqua perform robustly under different workload

patterns?
• How much does Parqua affect normal read and write

operations of Cassandra, especially during the reconfig-
uration?
• Is Parqua scalable in terms of size of the cluster, database

size, and the operation injection rate?

4.1. Setup

Data Set We used the Yahoo! Cloud Service Bench-
mark(YCSB) [15] to generate a dataset and workload. Each
entry (key, values pair) has 10 columns with each column’s
size being 100 bytes, and an additional column that serves
as the primary key. In all experiments, our default database
size is 10 GB in all experiments.
Cluster The default Parqua cluster used 9 machines run-
ning 64 bit Ubuntu 12.04. We used Emulab cluster’s d710
machines [4]. Each d710 machine has a 2.4 GHz quad-core

4

processor, 12 GB memory, 2 hard disks of capacities 250
GB and 500 GB, and 6 Gigabit Ethernet NICs.
Workload Generator We used YCSB as our workload
generator. Our operations consist of 40% reads, 40% up-
dates, and 20% inserts. With YCSB, we used the key access
patterns of ‘uniform’, ‘zipfian’, and ‘latest’ – these model
the pattern in which queries are distributed (uniform) or
clustered across keys (zipfian) as well as time (latest). For
zipfian distribution, the zipfian parameter of 1.50 was used.
The default operation injection rate for our experiments was
100 operations per second, and the default key access pattern
used was the uniform distribution.

We made a few minor modifications to YCSB in order to
perform our experiments. First, to measure latency distribu-
tions accurately, we changed the granularity of the latencies
histogram to 0.1 ms instead of the default setting of 1 ms.
Second, we modified YCSB so that only one reconfiguration
was executed at a time.
Cassandra Parqua is integrated into Apache Cassandra
version 2.0.8. The Parqua system was written in Java and has
about 2000 lines. We used the simple replication strategy
with the default replication factor of 3, and the Murmur3
hash-based partitioner [23]. We also enabled the virtual
nodes in which each peer is assigned 256 tokens, and used
the size-tiered compaction strategy. In order to offer strong
consistency under read/write operations, we used the write
consistency level of ALL and the read consistency level of
ONE.
Parqua In our reconfiguration experiments, we set the
Parqua system to change the old partition key from y id
to the new partition key field0. Each plotted data point is
an average of at least 3 trials, and is shown with standard
deviation error bars.

4.2. Reconfiguration Time

In this experiment, we measured the time taken to com-
plete the reconfiguration and the availability of queries dur-
ing the reconfiguration for different workload distributions.
Fig. 2 shows the contribution of the three major phases to the
overall reconfiguration time. We observe that the Execute
phase dominates for all workload types. This is expected
due to the large volume of data being migrated during this
phase. The duration of the Commit phase stays constant
across different workloads (0.8 % - 1 %) – Parqua is able
to obtain this advantage because it decouples data migration
from the data querying.

In the Recovery phase, the read only workload finishes
this phase very quickly because there are no entries to
catch up in the Recovery phase. Also, in the same phase,
we observe that uniform workload takes almost four times
longer than zipfian and latest workloads. This is because
uniform workload spreads writes over keys evenly, thus
having more unique entries that need to be sent to different
peers in the Recovery phase. However, since the overall
reconfiguration time is dominated by the Execute phase
(consisting 88 % - 98 % of overall reconfiguration time),
this has a small effect on the overall reconfiguration time.

Figure 2: Time taken for reconfiguration for different
workload types and breakdown by individual phases.

The overall reconfiguration time is small considering
that the size of unique entries is 10 GB. Compared to our
past work on Morphus [20], Parqua’s reconfiguration time
is 10 times faster (10 % of Morphus). This improvement
is largely due to our design decision to migrate all replicas
concurrently.

From this experiment, we conclude that Parqua offers
predictable reconfiguration time under different workload
patterns.

Read (%) Write (%)
Read only 99.17 -
Uniform 99.27 99.01
Latest 96.07 98.92
Zipfian 99.02 98.92

No reconfig (Uniform) 100.00 100.00
No reconfig (Latest) 99.52 100.00

TABLE 1: Percentage of reads and writes that succeed
during reconfiguration.

4.3. Availability

Next, we measure the availability of Parqua system
during the reconfiguration. In our system, the point at which
the primary key actually changes is at the end of the Commit
phase. Starting from this point onwards, any queries that
were using the only the old primary key need to also include
the new primary key. Therefore, we calculate the overall
availability of our system by combining the availabilities
of the system for queries with old primary key before the

5

Commit phase is finished, and the availability for queries
with the new primary key after the Commit phase is finished.

In Table 1 we observe that the read and write availabili-
ties for read only, uniform, and zipfian workloads are in the
range of 99.02–99.27 % and 98.92 - 99.01 %, respectively.
We point out that this slight degradation of the availability
is far more preferable than the current solution of shutting
down the database during the reconfiguration. We will ex-
plore this issue further in Section 4.4.

The lowest availability is the read availability of the
latest workload at 96.07 %. This is because the multi-
threaded YCSB workload generator assumes the most recent
insert queries are already committed even before receiving
the successful responses. Therefore, YCSB frequently tries
and fails to read entries that are not yet inserted, causing
degraded availability. This behavior is inherent to the archi-
tecture of YCSB, rather than Parqua. We can see a similar
degradation of read availability under no reconfiguration for
the latest workload. The reason for larger degradation under
reconfiguration is due to increased average latency during
reconfiguration as depicted in Section 4.4.

Figure 3: CDF of read latencies for different workloads
under reconfiguration, and the CDF of read latency
under no reconfiguration for baseline measurement. The
x-axis is read latency in logarithmic scale, while the y-
axis is the cumulative probability.

4.4. Read Latency

We now further explore the distributions of read latency
during reconfiguration under Parqua.

4.4.1. Read Latency Over Time. In this section, we in-
vestigate the read latency characteristics for different work-
loads, during reconfiguration.

First, Fig. 4 shows the read latencies over time for four
different workloads during the reconfiguration of Cassandra
using Parqua. Fig. 4a shows the read latencies when no

update/insert queries were issued. The reconfiguration starts
at time 00:00:00 (hh:mm:ss), and the Execute phase ends
at 00:08:08. The Commit phase is over at 00:08:12, and
the reconfiguration ends at 00:08:18. The Recovery phase
duration for read only workload is much shorter than that of
other workloads, as explained in Section 4.2. Fig. 4 (b), (c),
and (d) depict read latencies for different YCSB workloads:
uniform, zipfian, and latest respectively.

There are two latency lines for this experiment – Origi-
nal CF and Reconfigured CF (CF = Column Family). These
refer to the queries using the old primary key and the new
primary key respectively, with the switch-over happening at
the atomic commit point. We only query using the primary
key because using secondary index is not recommended
for our use case, where the cardinality of the columns that
participate in the reconfiguration is too high [9].

During the reconfiguration, we can see occasional la-
tency spikes in the different workloads. This is due to
increased disk activities during migration, where a lot of
entries are read off the disk. We observe less frequent latency
spikes in zipfian and latest workloads than in read only and
uniform workloads. This is because of the skewed key access
patterns under zipfian and latest workloads and the effect
of caching for “popular” keys. This is discussed further in
Section 4.4.2.

Negative values for read latency show failed reads (un-
availability). We observe higher read unavailability in the
Commit phase when SSTables of the Original CF and the
Reconfigured CF are being swapped. In the Commit phase,
each Cassandra peer swaps the physical SSTables of the
Original CF and Reconfigured CF in its local file system,
and reloads the column family definitions. Although reads
are not explicitly blocked during the Commit phase, swap-
ping physical SSTables and reloading the column family
definitions cause some read operations to fail. This is be-
cause SSTable swap and schema reload does not happen
exactly at the same time.

Fig. 4d shows many failed reads throughout the time.
This is because the multi-threaded YCSB workload gen-
erator tries to read some of the most recent writes even
before they are committed. Such read requests appear to
fail, since the primary key being searched is not inserted yet.
As explained in Section 4.3, this is inherent to the multi-
threaded YCSB workload generator.

4.4.2. Read Latency CDF. Fig. 3 shows the CDF of read
latencies under various workloads while reconfiguration is
being executed. As a baseline, we also plot the CDF of
read latency when no reconfiguration is being run. When
measuring the latencies, we only considered latencies for
successful reads. Note that overall availability of Parqua
system is high as presented in Table 1.

First, the read only workload shows the same median
(50th percentile) latency as the baseline, and only shows
degraded tail latency above the 80th percentile. The uniform
workload has a slightly higher latency than the read only
workload, indicating that the injection of write operations
adds a slight increase of latency. Compared to the uniform

6

(a) Read Only (b) Uniform

(c) Zipfian (d) Latest

Figure 4: Read Latency for (a) Read only operations (no writes), and three read-write YCSB workloads: (b) Uniform,
(c) Zipfian, and (d) Latest. Times shown are in hh:mm:ss. Failed reads are shown as negative latencies.

workload, zipfian and latest workload performs better for the
slowest 30th percentile of queries (beyond 70th percentile
point). This is explained by the fact that the key access
patterns of zipfian and latest workloads are concentrated at a
smaller number of keys whereas uniform workload chooses
keys uniformly. As a result, these frequently-accessed key-
value pairs in the former two workloads are available in the
disk cache, while the latter workload incurs a lot of disk
seeks.

Next, when we compare latest and zipfian workloads, we
observe the latest workload is slightly faster up to the 90th
percentile level, and they share similar read latency above
that percentile. This is because for latest workload, the most
frequently accessed keys are among those that were inserted
most recently. Therefore, these recently inserted entries are
present in Memtables, and the read queries on such entries

invoke fewer disk seeks and are answerable directly from
memory. For the slowest reads however, the large number of
disk seeks during the Execute phase and the Recovery phase
makes the tail longer for Parqua, independent of workload
pattern. Nevertheless, we point out that having a small (20%)
fraction of reads answered slower is preferable to shutting
down the entire database.

4.5. Write Latency

In our next set of experiments, we investigate the write
latency characteristics of Parqua system. Similar to Sec-
tion 4.4, we aim to observe the effect of the reconfiguration
on normal write operations.

7

(a) Uniform (b) Zipfian

(c) Latest (d) CDF of update latency Distribution

Figure 5: Update latencies over time for three YCSB workloads: (a) Uniform, (b) Zipfian, and (c) Latest. (d) depicts
CDF of write latencies for various workloads. Times shown are in hh:mm:ss. Failed inserts are shown as negative
latencies.

4.5.1. Write Latency Over Time. Fig. 5 (a), (b), and (c)
depict the write latencies over time for different workloads
under reconfiguration. This is for the same experiment as
Fig. 4. We see that many operations fail in the Commit
phase, similar to Section 4.4. As explained in Section 3.2,
in the Commit phase the coordinator locks writes for the
column family being reconfigured, and unlocks it when the
primary key of that column family is updated. Once writes
are unlocked, the query with the new primary key starts
to succeed while the query with the old partition key fails.
Similar to Section 4.4, we also observe the latency spikes
in the Execute phase and the Recovery phase. However,
unlike in Section 4.4, we do not see differing behaviors of
latencies across workloads. This is because Cassandra is a
write-optimized database, which does not incur a disk seek.

After the reconfiguration is over, the write latency stabilizes
and behaves similar to before the reconfiguration has begun.

4.5.2. Write Latency CDF. In Fig. 5d, we plot the CDF
of update latencies for different workloads. We observe the
three workloads perform similarly across different latency
percentiles. This is because Cassandra’s write path consists
of appending to commit log and writing into Memtable,
and there is little disk I/O involved. Compared to baseline,
Parqua shows degraded tail latency above the 80th per-
centile. This is due to higher disk utilization level when the
reconfiguration is taking place, thus commit log appending
faces interferences and takes longer. The tail latency is
aggravated by the use of consistency level of ‘ALL’, since
the coordinator node has to wait for acknowledgements from

8

all of the replicas.
As a result, we conclude that Parqua exhibits slightly de-

graded write latency during the reconfiguration, especially at
the tail. However, the write latency is not affected by various
workload patterns, and recovers after the reconfiguration is
completed.

Figure 6: Reconfiguration time for number of injected
update operations under two different implementations
of Parqua system.

4.6. Scalability

Next, we measure how well Parqua scales with: (1)
database size, (2) operation injection rate, (3) cluster size,
and (4) replication factor. To evaluate our system’s scal-
ability, we measured the total reconfiguration times along
with a breakdown by phase. In order to isolate the effects
of injected operations, we do not inject operations for the
experiments in Section 4.6.1, 4.6.3, and 4.6.4. We investi-
gate the scalability of our system under operation injection
in Section 4.6.2.

4.6.1. Database Size. Fig. 7a depicts the reconfiguration
time as the database size is increased up to 30 GB. Since the
replication factor was 3, 30 GB here means 90 GB overall
amount of entries (without accounting for duplicate entries).
In this plot, we observe the total reconfiguration time scales
linearly with database size. This is expected as a bulk of the
reconfiguration time is spent transferring data (the Execute
phase), and this is three overlapping lines in the plot.

4.6.2. Operation Injection Rate. Fig. 7b shows the result
of varying the operation injection rate from 0 ops/s to 1500
ops/s. (database size was fixed at 10 GB)

The reconfiguration time increases linearly with the
operation injection rate. We present the explanation for
completion time of each phase. First, the Recovery phase
duration increases steadily with operation rate. This happens

because as more operations are injected during reconfigu-
ration, their replay during the Recovery phase takes longer.
This is evident from the growing gap between the “Recon-
figuration done” and the “Commit phase done” lines.

Second, the Commit phase duration (the time between
the Execute phase and the Commit phase lines) stays almost
at constant across the increasing operation rate. This is
because the Commit phase swaps the SSTables of Original
CF with Reconfigured CF and reloads the schema with the
new primary key, and both operations are independent of
operation rate.

Third, the Execute phase also increases steadily along
with the operation rate. The increase is due to accumulation
of injected operations. In the Execute phase, each node
iterates the primary key ranges that it is responsible for,
and sends the entries to the appropriate destination nodes.
Therefore, if a new entry is injected in the Execute phase
before its key is iterated, this entry would be transferred to
other nodes when Parqua iterates over that key, thus increas-
ing the overall amount of the transferred data. The rate of
increase at the Execute phase is much slower than at the
Recovery phase, because not all newly injected operations
are migrated in the Execute phase.

4.6.3. Replication Factor. Next, Fig. 7d shows the effect
of increasing replication factor (number of replicas of each
key) on the total reconfiguration time. We observe that
the reconfiguration time increases as the replication factor
increases. This is because a higher replication factor implies
that more data exists in the underlying SSTables, and thus
migration takes longer.

4.6.4. Cluster Size. Finally, we demonstrate the reconfigu-
ration time as we scale the cluster size. Database size was
fixed at 10 GB. In Fig. 7c, we observe that the reconfig-
uration time decreases as the number of Cassandra peers
increases.The decrease occurs because as the number of
machines increases, there is higher parallelism involved in
the Execute phase. Observe that as the number of peers in-
creases, the Commit phase and the Recovery phase durations
stay constant whereas the Execute phase duration decreases.

We conclude that Parqua scales very well with cluster
size – the larger the cluster, the faster is the reconfiguration
time.

4.7. Effect of Compaction

Cassandra uses major compaction to periodically ag-
gregate fragments of an entry (created due to updates).
One available option in Parqua is to run Cassandra’s major
compaction before the Execute phase begins. The rationale
behind this is that by compacting the fragmented entries
first, we might be able to save the disk I/O time caused by
on-demand aggregation of fragmented entries. In Fig. 6 we
show the reconfiguration time for different number of update
operations under these two different implementations of
Parqua. In this experiment, we simulated fragmented entries
by injecting update operations prior to reconfiguration while

9

(a) Data Size (b) Operation Injection Rate

(c) Number of Cassandra Machines (d) Replication Factor

Figure 7: Morphus Scalability with: (a) Data Size, (b) Operation injection rate, measured in number of YCSB
workload threads, (c) Number of machines, and (d) Replication Factor.

disabling the automatic compaction. Also, for the purpose
of our experiment, we minimized the effect of disk cache
by flushing it every minute. We used 1 GB database size in
order to observe the effect of increasing number of injected
operations more easily. In Fig. 6, we observe that reconfig-
uration time is shorter for the implementation without com-
paction when no update operations are injected. However,
as number of update operations increase, the reconfiguration
time for the implementation without compaction increases
rapidly and crosses over at 5 Mops (1 Mops = 106 ops)
operations.

From this result, we conclude that the benefit of upfront
major compaction heavily depends on the kind of workload
that the database receives prior to the reconfiguration. We
recommend executing major compaction for workloads that
have frequent updates.

4.8. Migration Throttling

In our initial implementation of Parqua, we observed the
read/write latencies of normal operations were affected by
the reconfiguration. Profiling the query latency revealed that
the normal requests were queued for a long time because
Parqua’s migration operations were flooding the queue. This
can be explained by Cassandra’s adoption of the staged
event-driven architecture (SEDA) [29]. SEDA maintains a
set of thread pools and queues each dedicated for specific
tasks, which helps to achieve high overall throughput. In
our case, Parqua’s migration logic was sharing the same
stage with normal requests, causing the queues to be overly
crowded. To address this, we created a new SEDA thread
pool that is dedicated exclusively for our Parqua operations.
After this design change, we achieved 100-fold improvement

10

Figure 8: Reconfiguration time and read/write latency
over number of migration threads for reconfiguration.

in tail latency.
Fig. 8 depicts the change in reconfiguration time and

read/write latency under different number of threads in the
Parqua migration thread pool. As the number of threads in
the thread pool increases, reconfiguration time decreases.
Reconfiguration time improves because of the increased
parallelism under higher number of threads in the thread
pool. The reconfiguration time plateaus as number of threads
increases, as more threads compete for limited system re-
sources.

However, this causes the Parqua to negatively affect the
normal request latencies as Parqua’s entry transfer competes
with normal requests for other system resources (such as
disk I/O and network). In Fig. 8, we observe the tail latency
of reads and updates increases quickly at first. As number of
threads increase, the update latency keep increases (note that
the y-axis for the latency plots is in log scale), while read
latency plateaus beyond 200 threads. The update latency
grows much faster than the read latency, because most
Parqua operations are “write” operations which share the
same write path of normal requests in Cassandra. Thus,
higher number of Parqua threads implies more contention
of system resources for normal write requests.

5. Related Work

Google’s Bigtable [13] and Amazon’s Dynamo [18]
were the first NoSQL databases. One key difference between
them was that Bigtable was a sharded NoSQL database
while Dynamo used a virtual ring-based design inspired
from Chord [26]. Together, they inspired a long line of
research in NoSQL databases both in academia and industry.
The ring-based design was later used by second generation
databases like Cassandra [22], Riak [6] and Voldemort [8].
Under the CAP [21] tradeoff, all of these systems are highly
available even under network partition. Our work, Parqua,

enables these systems to meet their availability guarantees
even during reconfiguration.

Reconfiguration in databases has received considerable
attention in the recent past. Our earlier work, Morphus [20]
was the first to attempt live reconfiguration of a sharded
NoSQL database like, MongoDB. Extending the Morphus
design to virtual ring-based databases was a considerable
challenge. This led to the design and implementation of
Parqua. In the relational database space, Squall [19] at-
tempts to live reconfigure H-Store [27], a partitioned main
memory database. Squall design requires H-Store’s sharded
architecture, making it inapplicable to ring-based key-value
stores. Online schema change [24] attempted by Rae et. al.
resulted in lower availabilities compared to Parqua. For data
migration, earlier work has explored stop-and-copy [14] and
pre-copy-based [11], [17] approaches, both of which require
locking [12] to transfer a consistent copy of data. Parqua
needs locking for only a short duration, and provides high
data availabilities.

6. Summary

In this paper, we introduced Parqua, a system which
enables online reconfiguration in a ring-based distributed
key-value store. We introduced the general system assump-
tions for Parqua, and proposed its detailed design. Next, we
integrated Parqua in Cassandra, and implemented a reconfig-
uration that changes the primary key of a column family. We
experimentally demonstrated Parqua achieves high nines of
availability, and scales well with database size, cluster size,
and operation rate. In fact, Parqua becomes faster as the
cluster size increases.

References

[1] An Introduction to using Custom Timestamps in CQL3.
http://planetcassandra.org/blog/an-introduction-to-using-custom-
timestamps-in-cql3/. visited on 2015-04-25.

[2] Command to change shard key of a collection. https://jira.mongodb.
org/browse/SERVER-4000. visited on 2015-1-5.

[3] DynamoDB. http://aws.amazon.com/dynamodb/. visited on 2015-5-5.

[4] Emulab. https://wiki.emulab.net/wiki/d710. visited on 2014-04-29.

[5] MongoDB. http://www.mongodb.org. visited on 2014-04-29.

[6] Riak. http://basho.com/riak/. visited on 2015-1-5.

[7] Troubles With Sharding - What Can We Learn From The Foursquare
Incident? http://highscalability.com/blog/2010/10/15/troubles-with-
sharding-what-can-we-learn-from-the-foursquare.html. visited on
2015-04-11.

[8] Voldemort. http://www.project-voldemort.com/voldemort/. visited on
2014-05-12.

[9] When to use an index in Cassandra. http://docs.datastax.com/en/cql/
3.1/cql/ddl/ddl when use index c.html. visited on 2015-04-25.

[10] NoSQL market forecast 2013-2018, Market Research Media. http:
//www.marketresearchmedia.com/?p=568, 2012. visited on 2014-04-
29.

[11] S. K. Barker, Y. Chi, H. Hacigümüs, P. J. Shenoy, and E. Cecchet.
Shuttledb: Database-aware elasticity in the cloud. In 11th Interna-
tional Conference on Autonomic Computing, ICAC ’14, Philadelphia,
PA, USA, June 18-20, 2014., pages 33–43, 2014.

11

[12] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg. Live
wide-area migration of virtual machines including local persistent
state. In Proceedings of the 3rd International Conference on Virtual
Execution Environments, VEE ’07, pages 169–179, New York, NY,
USA, 2007. ACM.

[13] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable:
A distributed storage system for structured data. In Proceedings
of the 7th USENIX Symposium on Operating Systems Design and
Implementation - Volume 7, OSDI ’06, pages 15–15, Berkeley, CA,
USA, 2006. USENIX Association.

[14] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines. In
Proceedings of the 2nd Conference on Symposium on Networked
Systems Design & Implementation - Volume 2, NSDI’05, pages 273–
286, Berkeley, CA, USA, 2005. USENIX Association.

[15] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing, SoCC ’10, pages
143–154, New York, NY, USA, 2010. ACM.

[16] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh,
S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura,
D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak,
C. Taylor, R. Wang, and D. Woodford. Spanner: Google’s glob-
ally distributed database. ACM Transactions on Computer Systems
(TOCS), 31(3):8:1–8:22, Aug. 2013.

[17] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi. Albatross:
lightweight elasticity in shared storage databases for the cloud using
live data migration. In Proceedings of the Very Large Database
Endowment, volume 4, pages 494–505. VLDB Endowment, May
2011.

[18] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s highly available key-value store. In Proceedings of Twenty-
first ACM SIGOPS Symposium on Operating Systems Principles,
SOSP ’07, pages 205–220, New York, NY, USA, 2007. ACM.

[19] A. J. Elmore, V. Arora, R. Taft, A. Pavlo, D. Agrawal, and A. E.
Abbadi. Squall: Fine-grained live reconfiguration for partitioned main
memory databases. In Proceedings of SIGMOD, 2015.

[20] M. Ghosh, W. Wang, G. Holla, and I. Gupta. Morphus: Supporting
online reconfigurations in sharded nosql systems. In 12th IEEE Inter-
national Conference on Autonomic Computing (ICAC 15), Grenoble,
France, 2015. IEEE.

[21] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. SIGACT News,
33(2):51–59, June 2002.

[22] A. Lakshman and P. Malik. Cassandra: A decentralized structured
storage system. ACM SIGOPS Operating Systems Review, 44(2):35–
40, Apr. 2010.

[23] A. Lakshman and P. Malik. Cassandra: a decentralized structured
storage system. ACM SIGOPS Operating Systems Review, 44(2):35–
40, 2010.

[24] I. Rae, E. Rollins, J. Shute, S. Sodhi, and R. Vingralek. Online,
asynchronous schema change in F1. In Proceedings of the Very
Large Database Endowment, volume 6, pages 1045–1056. VLDB
Endowment, Aug. 2013.

[25] Stackoverflow. Altering Cassandra column family primary
key. http://stackoverflow.com/questions/18421668/alter-cassandra-
column-family-primary-key-using-cassandra-cli-or-cql. visited on
2014-04-29.

[26] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: A scalable peer-to-peer
lookup protocol for internet applications. IEEE/ACM Transactions
on Networking, 11(1):17–32, Feb. 2003.

[27] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architectural era: (it’s
time for a complete rewrite). In Proceedings of the 33rd International
Conference on Very Large Data Bases, VLDB ’07, pages 1150–1160.
VLDB Endowment, 2007.

[28] TechRepublic. The great primary key debate. http://www.
techrepublic.com/article/the-great-primary-key-debate/. visited on
2014-04-29.

[29] M. Welsh, D. Culler, and E. Brewer. Seda: an architecture for well-
conditioned, scalable internet services. In ACM SIGOPS Operating
Systems Review, volume 35, pages 230–243. ACM, 2001.

[30] W. G. Yee. Orbitz: Technical challenges and opportunities in
a leading online travel business. https://sites.google.com/site/

12

