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Introduction 

Oaks (Quercus sp.) have been a significant component offorests in the Midwestern 

and Eastern United States for the last 10,000 years (Abrams 1992); however, recent 

studies have found reason to be concerned about the future of oaks as a dominant canopy 

species (Beck 1992, Lorimer 1992, McCune 1985, Pallardry 1988, Reich 1990). Despite 

oaks remaining a prominent canopy species and no evidence that acorn production has 

decreased, the proportion of oak seedlings and saplings in the understory and mid story of 

many hardwood forests does not seem adequate to maintain oaks as a dominant canopy 

species (Abrams 2003, Abrams 1992, Christensen 1977). Oak-regeneration seems to be 

least successful on mesic sites where fast-growing, shade-tolerant species such as maples 

(Acer sp.) dominate the understory (Abrams 1998). 

Some researchers predict that slow-growing, mast-producing trees such as oaks and 

hickories (Carya sp.) will, in large part, be replaced in the canopy by mesophytes within 

the next 50 years (Fralish 1997, Shotola 1992). Research supporting these predictions 

has focused mainly on the recruitment of saplings into the canopy. These studies have 

produced considerable evidence that fire suppression and increased herbivory by white­

tailed deer (Odocoileus virginianus) can play major roles in decreasing the abundance of 

oak seedlings and saplings in the understory (Abrams 1992, Healy 1997). 

Fire suppression allows forest canopies to close, which confers an advantage on 

shade-tolerant species such as maples (Lorimer 1989, McCune et al1985 and Reich et al 

1990). In addition, oaks invest more in the establishment of a large root system early in 

development compared to a greater investment in vertical growth by maples and other 
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mesophytes (Hodges 1992, Crow 1994 and Reich 1990). Thus, oaks can resprout 

following fires, but maples and other mesophytic tree species that grow vertically at a 

more rapid rate are able to escape the detrimental impacts of deer herbivory earlier 

(Lorimer 1992). 

Fire suppression and deer herbivory have received more attention as factors 

influencing oak regeneration failure than have the earlier stages of oak recruitment (acorn 

survival and establishment of oak seedlings). However, both early and late stage factors 

potentially limiting oak regeneration must be examined if we are to appropriately manage 

oak forests, particularly because some acorn consumers such as deer have increased 

greatly in abundance in recent decades (Russell 2001). 

Oak trees are much longer-lived than their seed predators (200-400 years versus 1 to a 

few years); therefore, the density of seed predators is driven by fluctuations in acorn 

production rather than trees and mast consumers coexisting in a predator-prey mediated 

balance. The short-term fluctuations of many mast consumers in response to pulses of 

acorn production, and the cascading effects throughout the forest ecosystem, are 

becoming better known (e.g., Wolf 1996, Ostfeld et al. 1996). However, sustained 

increases in the populations of important mast consumers such as deer and small 

mammals could result in low rates of acorn survival even during years of abundant mast 

production. It has been suggested that high mast production by oaks is a strategy to 

swamp acorn consumers and allow higher rates of acorn survival (McShea 2000 and 

Schnurr et al2002). If the number of oaks in the canopy decreases while acorn 

consumers increase in abundance then mast years will not be as effective at increasing 

acorn survival. 



A decrease in the abundance ofoaks in the canopy ofNorth American deciduous 

forests is of great concern to wildlife ecologists because acorns are one of the most 

important foods to wildlife in the deciduous forest during fall and winter (Rodewald 

2002). Martin et aI. (1951) listed 96 North American vertebrate species that consume 

acorns. Large mammals (e.g. deer), sciurid rodents (e.g. tree squirrels, Sciurus sp. and 

eastern chipmunks, Tamias striatus), and insects (e.g., acorn weevils, Curculio sp.) are 

important acorn predators in many Midwestern oak forests. Deer, chipmunks, and mice 

consume acorns on the ground, while tree squirrels may harvest them both on the ground 

'and before they fall. Estimates of the amount of the acorn crop consumed by these 

species are few, coarse, and varied. McShea and Schwede (1993) noted that deer moved 

into acorn production areas during acorn fall, and consumed 70% of the marked acorns 

set out by these researchers at that time. After leaf fall, consumption of acorns by deer 

decreased, but 61 % ofthe marked acorns set out by McShea and Schwede (1993) was 

consumed by sciurid rodents. About 90% of the acorns not consumed by mammals were 

infested by weevils. Steiner (1996) estimated that 49% ofthe crop of northern red oak 

acorns on the ground was consumed by deer. Infestation rates of acorns by weevils may 

reach 100% in some years, but is often about 50% (Beck 1992). Thus, in most years, 

almost the entire acorn crop may be consumed; about a 90% loss may be typical (Lorimer 

1992). Seed availability clearly could limit seedling establishment under some 

conditions. 

The replacement of oaks by mesophytes is geographically widespread with many 

reports coming from lllinois (e.g. Ebinger 1986, Edgington 1991, Shotola et al. 1992, 

Strole and Anderson 1992). Therefore, hardwood forests ofIllinois present a good 



opportunity for research on this subject. Our study is the first to use four different types 

of experimental treatments to determine the effect of three different groups of mammals 

on acorn survival over winter and oak seedling establishment. Our study was specifically 

designed to determine if deer, tree squirrels, and mice have additive or compensatory 

effects on acorn survival and if the burial of acorns by squirrels increases acorn survival 

and germination. 

Methods and Materials 

Study sites and experimental treatments: 

We conducted our study in four upland hardwood forest remnants in central Illinois, 

USA. Four study sites were used in this project. Two study sites, Allerton Park, Piatt Co. 

(600 ha), and Vermillion River Observatory (VRO), Vermillion Co. (184 ha) are among 

the largest tracts ofupland hardwood forest remaining in central Illinois. The other two 

study sites, Brownfield Woods (24 ha) and Hart Woods (16 ha), Champaign Co., are 

smaller forest remnants, although Hart Woods is set in a larger tract of forested land. 

Three sets of experimental treatments (4 experimental plots per set of treatments) were 

constructed at each of the four sites (48 plots total). Sets of treatments were located at 

least 150 m apart and plots within each set of treatments were located no more than 10 m 

from one another. All sets of treatments were constructed in suitable areas of hardwood 

forest (e.g., level topography, good representation of oaks in the canopy). 

Experimental plots were each 2 m x 2m and comprised one of four treatments. Total 

exclosures (-mice, -squirrels, and -deer) consisted of wooden frames covered on the top 



and four sides with 0.63-cm (V.") mesh galvanized steel hardware cloth. Exclosure walls 

were 1. 5 m tall and buried 20 cm under the soil surface with an additional 10 cm of 

hardware cloth bent outwards to discourage small mammals from burrowing under the 

walls. Deer and squirrel exclosures (-squirrels and -deer) were similar to Total 

exclosures, but had 2.5-cm holes cut in the hardware cloth at ground level. Eight holes 

were cut on each side of each exclosure to allow access by white-footed mice. Deer 

exclosures (-deer) also were similar to Total exclosures, but the hardware cloth covering 

the walls began 30 cm above the soil surface to allow access by all small mammals. The 

final treatment was an Open plot consisting of a 2m by 2m area marked only by four steel 

fence posts, one at each corner. 

We conducted our study from fall 2001 to fall 2003. In November of2001 and 2002, 

after natural acorn fall had ended, we temporarily removed allleaflitter from each 

experimental plot and all acorns and tree seedlings were removed and discarded. A 1.5 m 

by 0.75 m sampling frame was then placed on the bare ground within each plot. The 

frame was aligned so that two of the length-wise corners lie along the center of the plot. 

The location of the centered corners were marked with small metal stakes that were left 

in place throughout the experiment so that the sampling frame could be replaced in the 

same location. Cord attached to the frame at 25 em intervals was used to provide a grid­

like spatial reference. A single northern red oak acorn (Quercus rubra) was buried about 

2 em deep at each intersection of the cords and where the cords intersect the centered side 

of the frame. The frame was then moved to the other half of the exclosure (placing two 

corners ofthe sampling frame on the centered stakes) and one northern red oak acorn was 

buried 2 cm deep at each intersection of the cords (total n = 25). The sampling frame was 
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then removed and the leaflitter was replaced. After replacing the leaflitter, the sampling 

frame was set back in place and a single northern red oak acorn was then dropped onto 

the center of each square formed by the cord. This allowed surface acorns to be mixed 

with the leaf litter. The frame was then moved to the other half of the plot and a single 

northern red oak acorn was placed in the center of each square except those squares in the 

row farthest from the center (n = 25). Each plot thus received 50 acorns, 25 buried to 

imitate caching by rodents and 25 on the surface. The acorns were obtained from a 

commercial distributor (F. W. Schumacher Co., Inc., Sandwich, MA) and only intact 

acorns free of damage and insect infestation were set out. 

We used northern red oak acorns for two reasons. First, the large size of red oak 

acorns precludes interference by gape-limited birds such as blue jays and small 

woodpeckers on the control plots (Darley-Hill and Johnson 1981). Second, red oak 

acorns germinate in the spring after remaining dormant all winter in contrast to acorns 

from the white oak group that begin germination in fall shortly after they reach the 

ground. Our experiment was designed to evaluate over -winter survival of acorns and 

germination the following spring. 

In late April - early May 2002 and 2003 we gently removed the leaf litter from each 

plot and recorded number, condition (rotten or otherwise damaged, intact but not 

germinating, germinating) of all acorns on the surface. We then set the sampling frame 

in place and gently excavated the soil beneath each intersection of the cords on the 

sampling frame. The number, location, and condition of all buried acorns were recorded. 

Germinating acorns were disturbed as little as possible and all other acorns were returned 

to their original locations (buried or on surface) after examination and before the leaf 



litter was replaced. We visited each site the following September and recorded the 

number of oak seedlings in each plot. This sampling procedure allowed us to monitor 

acorn survival from fall to spring of each year, germination of acorns remaining in the 

spring, and establishment of oak seedlings. 

Along with the experimental manipulations described above, we monitored acorn fall 

and background densities of acorns at each study site. Beginning in early September of 

each year, we counted the number of acorns of each species in 12 l-m2 plots at each set of 

experimental treatments within each site. The acorn sampling plots were located at 10-m 

intervals along two 50-m transects, one transect on each side of the set of experimental 

plots. A random direction and distance (1-5 m) from each 10-m interval determined the 

location of each plot. The number of acorns at each experimental plot was sampled bi­

monthly during peak acorn fall (mid-September to mid-November) and monthly 

thereafter through April 2003. These data provide information on the density of acorns in 

the areas around each set of experimental plots, as well as spatial variation in acorn 

abundance at each site. These data also describe rates of accumulation and depletion of 

acorns at each site over the years in which the study was conducted. 

Small mammals were live trapped for two consecutive nights in the autumn and spring 

of each year. Twenty-four Sherman live traps (HB Sherman Co., Tallahassee, FL) were 

placed at 10-m intervals around each set of experimental plots. Three additional Sherman 

live traps also were set around the deer and sciurid exclosures. Live trapping was not 

extensive enough to estimate population densities, but provided confirmation of the 

occurrence of small mammals at each site. Sherman traps were baited with mixed 

birdseed and the number and species of all small mammals captured at each site was 



recorded. To confirm the presence of squirrels at each set of experimental plots, at least 

one squirrel nest was located within 30m of each set ofplots. Deer activity was noted 

near each set oftreatments by identifying deer browse along our 50-m transects. 

We used analysis of variance (ANOVA) blocking for site (study site), placement 

(buried or surface), and treatment (exclosure type) to compare effects of our experimental 

treatments on acorn survival. The site variable was entered into the model as a random 

variable to examine differences among our four study sites on acorn fate (depredated, 

intact but not germinated, germinated). In addition, we used a chi-squared test to 

compare germination rates of surface acorns and buried acorns that remained to spring. 

Results 

Background acorn counts and presence of mammals 

Acorns typically began appearing on the ground at our study sites in late September, 

but almost all acorns except rotten or damaged ones were gone by February. In the fall of 

2001, acorns were least abundant at Brownfield Woods and most abundant at the two 

larger sites (Allerton Park and VRO, Fig. 1). In the fall of2002, few acorns were 

detected during our sampling at any site (Fig. 2). Qualitatively, we would characterize 

fall 2001 as a season of moderate acorn production and fall 2002 as a season of poor 

acorn production. 

White-footed mice were the only small mammals captured. We captured 1-6 white­

footed mice near each set of treatments in each trapping survey. Because of extensive 

disturbance of traps by raccoons and squirrels at many sites, especially Brownfield 



Woods and Hart Woods, trap success could not be compared among sites. Browsing of 

saplings or shrubs by deer was recorded each spring at each site, and deer and tree 

squirrels were regularly seen during visits to all sites. 

Survival of acorns 

Acorn survival (surface and buried acorns pooled) differed among treatments for both 

spring of2002 and 2003 (P < 0.0001). A posteriori pairwise comparisons using the LSD 

procedure indicated that Total exclosures differed significantly from all other treatments, 

Deer and squirrel exclosures differed significantly from all other treatments, but Deer 

exclosures and Open plots did not differ significantly from each other in both 2002 and 

2003. 

No surface acorns were detected on the Open plots or on the Deer exclosures in spring 

of either year. In spring 2002, only four of 12 deer and sciurid exclosures had acorns 

remaining on the surface, and:S 4 acorns were detected per plot (Fig. 3). In spring 2003, 

Brownfield Woods was the only site with any acorns detected on the surface in Deer and 

squirrel exclosures. One of these plots had 1 surviving acorn, another had 4 surviving 

acorns, and the third had 22 surviving acorns (Fig. 4). In contrast, we recovered 22-25 

intact or germinating acorns from each Total exclusion plot except one plot in VRO in 

2002 (Fig. 3 and 4). 

Buried acorns had significantly higher survival rates than acorns on the surface in both 

2002 (P <0.0001) and 2003 (P <0 .01). In spring 2002, few buried acorns were recovered 

from plots that allowed access by squirrels at our smaller sites (Brownfield Woods and 
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Hart Woods). The number of acorns recovered from Deer exclosures and Open plots at 

the two larger sites (Allerton Park and VRO) ranged from 5 - 23 (Fig. 5). The number of 

buried acorns recovered from plots where squirrels were excluded varied from 14 - 23 in 

spring 2002. The loss ofburied acorns from several Total exclusion plots was puzzling, 

particularly where most acorns were recovered on the surface. These plots invariably had 

extensive tunneling by eastern moles (Sea/opus aquaticus). Moles do not eat acorns but 

as they burrowed under our exclosures it is likely that buried acorns fell into their 

burrows and were displaced. In spring 2003, we recovered few if any buried acorns from 

plots where squirrels had access at all four study sites (Fig. 6). In contrast to 2002, only 3 

- 10 buried acorns were recovered from Deer and squirrel exclosures, except for one plot 

at Brownfield Woods where 25 were recovered. Mole activity was not as apparent in 

2003 and 20 - 25 buried acorns were recovered from Total exclusion plots (Fig. 6). 

Germination rates 

Of all the acorns recovered in 2002 and 2003, a greater proportion of buried acorns 

were germinating than surface acorns (years pooled: X2 = 793; df= 3; P < 0.001). In 

2002,53 out of281 (18.9%) acorns surviving on the surface were germinating by early 

May. In contrast, 514 out of 670 (76.7%) surviving buried acorns, were germinating. In 

2003, only lout of324 (0.3%) acorns surviving on the surface were germinating, 

whereas 349 out of 405 surviving buried acorns were germinating by early May (Fig. 7). 

Seedling establishment 



In September 2002, 6 - 17 oak seedlings were present on plots from which deer 

and squirrels were excluded, whereas 0 - 6 seedlings were present on Open plots and 

Deer exclosures (Fig. 8). In September 2003, no oak seedlings were present on any Open 

plots or Deer exclosures , whereas the number of oak seedlings present on Total 

exclosures and Deer and squirrel exclosures varied from 1 - 33 (Fig. 9). 

Discussion 

This study has demonstrated that the primary Midwestern mammalian mast consumers 

(White-tailed deer, sciurids, and white-footed mice) have a compensatory effect on the 

survival of surface acorns. Even in plots that deer and squirrels were excluded from mice 

consumed 98% of all surface acorns in 2002 and 92% of all surface acorns in 2003. It 

has been well documented that deer consume a high proportion of the acorn crop 

produced each year in the Midwest (McShea 1993, Steiner 1996); however, previous to 

this study there had been little documentation on the impact that acorn consumption by 

mice and sciurids has on over-winter survival of acorns. While it is clear that sciurids 

and mice play an important role in acorn survival on a small scale (2m x 2m) exclosures, 

future studies done on a larger scale would help to determine if these small mammals can 

impact acorn survival in a larger area. 

It is well known to ecologists that squirrels not only consume acorns upon finding 

them, but they also cache acorns for later consumption. It has been shown that caching of 

acorns by squirrels increases the survival of acorns (Barnett 1977). Our data showed a 

similar increased survival ofburied acorns in comparison to surface acorns. No surface 

acorns survived in plots that squirrels had access to in 2002 or 2003. In contrast, in 2002 



squirrels consumed about % of the buried acorns in they had access to (Fig. 5) and in 

2003 they consumed nearly all buried acorns accessible to them (Fig. 6). A similar year 

to year trend was seen with mice and buried acorn consumption. On average, mice 

consumed fewer than 10 buried acorns per plot in 2002 and consumed more than 15 

buried acorns per plot in 2003. When considering the much higher natural production of 

acorns in the fall of 200 1 in comparison to fall 2002 it seems that both mice and squirrels 

are more likely to forage for buried acorns when fewer surface acorns are available. 

These data support the idea that buried acorns have higher survival rates then surface 

acorns, and the concept that several years oflow mast production followed by a year of 

very high mast production is a strategy used by oaks to swamp acorn consumers and 

increase acorn survival. 

While our data on buried acorn survival agreed with Barnett (1977), we found 

different results for germination rates between buried and surface acorns. Barnett did not 

find an increased rate of germination for buried acorns in comparison to surface acorns. 

The data we collected using buried and surface acorns suggests that buried acorns 

experience greatly increased rates of germination (Fig. 7). Given the much higher rate of 

germination that we recorded for buried acorns compared to acorns on the surface, the 

importance of a mast year may not only be directly due to the high number of acorns 

produced, but also due to more cached acorns not being rediscovered by squirrels. 

The number of oak seedlings that we observed the following fall at each plot reflected 

the number ofburied acorns we had recorded the previous spring. These data further 

exemplify the important role that caching of acorns by squirrels plays in the early stages 

of oak regeneration. However, it remains to be determined how great an impact this 



behavior has in a completely natural setting. Steele et al (2001) found that only 18.2% of 

286 acorns cached by squirrels were not recovered. Further studies showing the survival 

and germination rate of acorns naturally cached by squirrels will help to confirm the 

importance squirrels and their caching behavior have on early stages of oak regeneration. 

The replacement of oaks by maple in Midwestern hardwood forests will be 

detrimental to wildlife in many ways. The most significant impact will be the loss of 

acorns as a major part of many wildlife species diets in the fall and winter months. 

Acorns have many beneficial characteristics that maple seeds do not. First of all, acorns 

are very digestible and much larger than maple seeds; therefore, acorns can provide more 

energy than maple seeds (Kirkpatrik and Penkins 2002). In addition, acorns have a hard 

outer coat that allows them to exist for longer periods of time without decomposing. This 

allows animals such as squirrels to cache acorns and c.onsume them at a later date. Other 

wildlife species that don't cache acorns also benefit from this characteristic because 

during years of high mast production acorns may remain available in winter months when 

food is scarce. In addition to the advantages acorns provide over maple seeds, it has been 

suggested that the leaves and bark of oaks provide many benefits to wildlife that maples 

are not able to compensate for (Rodewald 2003). 

In addition to the many mammal species that will be negatively affected by the 

transition of oak dominated to maple dominated forests many bird species will also suffer 

as this transition takes place. These species include, but are far from limited to, the red­

bellied woodpecker (Melanerpes gallopavo), blue jay (Cyanocitta cristata), and wild 

turkey (Meleagris gallop avo) (McShea and Healy 2002, McShea and Schwede 1993). 

The large number of bird and mammal species that will be affected by the transition from 



oak dominated to maple dominated forests is reason for concern that cascading effects 

may bring about major shifts in wildlife communities. This could have dramatic impacts 

on the Midwestern forests as we know them today and have for the last several centuries. 

While fire suppression and deer herbivory currently seem to be the most important 

factors in oak regeneration failure, as oaks become less abundant in the canopy and 

acorns consequently become more rare, the early stages of oak regeneration (acorn 

survival and germination) will become increasingly limiting factors. 
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Fig. 1 - Background acorn counts at our four sites in the winter of 200 1 to 2002 
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Fig.2 - Background acorn counts at our four sites in the winter of 2002 to 2003 
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Fig. 3 - The average number of acorns recovered on the surface in each experimental 

treatment plot during spring 2002 
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Fig, 4 - The average number of acorns recovered on the surface in each experimental 

treatment plot during spring 2003 
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Fig.5 - The average number ofburied acorns recovered in each experimental treatment 

plot during spring 2002 


25 

20 

15 

10 

5 

o 
open deer d & sq all 


ImBrownfield III Hart 0 Allerton 0 VRO I 




-, 

Fig.6 - The average number of buried acorns recovered in each experimental treatment 
plot during spring 2003 
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Fig. 7 - Germination rates of surface and buried acorns recovered in 2002 and 2003 
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Fig. 8 - The number of oak seedlings observed in experimental treatments in September 

2002 
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Fig. 9 - The number of oak seedlings observed in experimental treatments in September 
2003 
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