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ABSTRACT

Communication systems always suffer time distortion. At the physical layer

asynchrony between clocks and motion-induced Doppler effects warp the time

scale, while at higher layers there are packet delays.

Current wireless underwater modems suffer a significant performance degra-

dation when communication platforms are mobile and Doppler effects cor-

rupt the transmitted signals. They are advertised with data rates of a few

kbps, but the oil and gas industry has found them useful only to around 100

bps. In our work, time-varying Doppler is explicitly modeled, tracked and

compensated. Integrated into an iterative turbo equalization based receiver,

this novel Doppler compensation technique has demonstrated unprecedented

communication performance in US Navy sponsored field tests and simula-

tions. We achieved a data rate of 39kbps at a distance of 2.7km and a data

rate of 1.2Mbps at a distance of 12m. The latter link is capable of streaming

video in real-time, a first in wireless underwater communication.

Time distortion can also be intentional and be used for communication.

We explore how much information can be conveyed by controlling the timing

of packets when sent from their source towards their destination in a packet-

switched network. By using Markov chain analysis, we prove a lower bound

on the maximal channel coding rate achievable at a given blocklength and

error probability.

Finally, we propose an easy-to-deploy censorship-resistant infrastructure,

called FreeWave. FreeWave modulates a client’s Internet traffic into acous-

tic signals that are carried over VoIP connections. The use of actual VoIP

connections allows FreeWave to relay its VoIP connections through oblivious

VoIP nodes, hence keeping the FreeWave server(s) unobservable and unblock-

able. When the VoIP channel suffers packet transfer delays, the transmitted

acoustic signals are time distorted. We address this challenge and prototype

FreeWave over Skype, the most popular VoIP system.
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CHAPTER 1

OVERVIEW

Communication systems always suffer time distortion. At the physical layer

asynchrony between clocks and motion-induced Doppler effects warp the time

scale, while at higher layers there are packet delays. Particularly in acoustic

communication channels, Doppler can be catastrophic if not compensated

dynamically. This is mainly due to the higher Mach numbers experienced in

these channels. Our research in acoustic communications tries to understand

the fundamental causes of this effect and uses the gained insight towards the

implementation of more robust and faster acoustic communication systems.

Acoustic communication is still in its infancy and the research community has

yet to agree on a standard channel model. Chapter 2 gives a comprehensive

overview of current acoustic research and methods and derives a new channel

model from first principles. Perhaps a fatal flaw of previous works is that

they borrow the channel model from the radio communication community.

Our model builds upon the established physical principles of acoustic wave

propagation. We unveil the close relationship between acoustic positioning

and communications. This opens the door for inertial sensors to enhance sig-

nal detection. We derive an efficient receiver algorithm based upon this new

channel model and show its superior performance in simulations, laboratory

experiments and at-sea field-tests.

In Chapter 3 we explore how much information can be conveyed by con-

trolling the timing of packets when sent from their source towards their des-

tination in a packet-switched network. The aggregate effect of the involved

forwarding nodes can be modeled as a queuing timing channel. The expo-

nential server timing channel is known to be the simplest, and in some sense

canonical, queuing timing channel. The capacity, C, of this infinite-memory

channel is known. We discuss practical finite-length restrictions on the code-

words and attempt to understand the maximal rate that can be achieved for

a target error probability. By using Markov chain analysis, we prove a lower
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bound on the maximal channel coding rate achievable at blocklength n and

error probability ε. The bound is approximated by C−n−1/2σQ−1(ε), where

Q denotes the Q-function and σ2 is the asymptotic variance of the underlying

Markov chain. A closed form expression for σ2 is given.

Open communication over the Internet poses a serious threat to countries

with repressive regimes, leading them to develop and deploy censorship mech-

anisms within their networks. Unfortunately, existing censorship circumven-

tion systems face difficulties in providing unobservable communication with

their clients; this highly limits their availability as censors can easily block

access to circumvention systems that make observable communication pat-

terns. Moreover, the lack of unobservability may pose serious threats to

their users. Recent research takes various approaches to tackle this problem;

however, they introduce new challenges, and the provided unobservability

is breakable. In Chapter 4 we propose an easy-to-deploy and unobserv-

able censorship-resistant infrastructure, called FreeWave. FreeWave works

by modulating a client’s Internet traffic into acoustic signals that are carried

over VoIP connections. Such VoIP connections are targeted to a server, the

FreeWave server, that extracts the tunneled traffic and proxies them to the

uncensored Internet. The use of actual VoIP connections, as opposed to traf-

fic morphing, allows FreeWave to relay its VoIP connections through oblivious

VoIP nodes (e.g., Skype supernodes), hence keeping the FreeWave server(s)

unobservable and unblockable. In addition, the use of end-to-end encryption,

which is supported/mandated by most VoIP providers like Skype, prevents

censors from distinguishing FreeWave’s VoIP connections from regular VoIP

connections. To utilize a VoIP connection’s throughput efficiently we design

communications encoders tailored specifically for VoIP’s lossy channel. We

prototype FreeWave over Skype, the most popular VoIP system. A major

challenge is the time distortion that the acoustic signal experiences when

sent over the Skype channel. This distortion is caused by packet transfer

delays and its intensity depends on the level of network congestion and the

number of routers along the way of transmission. We show that FreeWave is

able to reliably achieve communication bandwidths that are sufficient for web

browsing, even when clients and the FreeWave server are thousands of miles

apart. We also validate FreeWave’s communication unobservability against

traffic analysis and standard censorship techniques.
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CHAPTER 2

ACOUSTIC POSITIONING AND
COMMUNICATION

2.1 Introduction

Imagine that you are in the midst of events that are about to

trigger the largest accidental marine oil spill in history, and you

do not even know it is happening. What is worse, even if you

know what is happening, miles beneath the ocean surface, you

have no way to stop it.

An explosion at the surface causes massive structural failure.

Communication wires are cut. Control of the subsea infrastruc-

ture is lost.

The ensuing collapse of the column destroys the blowout preven-

ter, eliminating the last remaining safety mechanism that could

have prevented an uncontrolled oil flow from the Deepwater Hori-

zon site into the ocean in April 2010.

During this process, according to the US Government Macondo

Expert Report [1], a reliable underwater wireless communication

backup link was unavailable, but could have prevented the result-

ing unimaginable environmental disaster.

Days passed before the fire on the surface was sufficiently un-

der control for a ship to be brought to the location safely. This

enabled a remotely operated vehicle, tethered by cabled commu-

nications, to begin subsea repair. Immediate remote vehicle op-

eration via wireless control, enabling operation at a safe distance,

was (and still is) unavailable.

This is but one scenario illustrating the need for a dramatic improvement

in the wireless communications and control capabilities within our world’s
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oceans. Imagine life today without GPS, WIFI, or mobile phones. The

transition from wired to wireless communication over the past 20 years has

fundamentally changed how people interact and how industries operate. Un-

fortunately, this technological revolution has had little impact on communi-

cation undersea. Radio waves - used to carry information wirelessly above

land - propagate poorly in seawater. As a result, revolutionizing wireless

communication technologies such as GPS, WIFI or cellular communication

do not work below the ocean surface: Industries and organizations that oper-

ate underwater are still in the digital dark ages. Communication underwater

is still almost entirely done through wired links; literally a wire or a cable

connects the sender to the receiver.

Underwater operations that rely on divers are expensive, restricted to shal-

low waters, and put a human life at risk. The subsea industry relies on re-

motely operated vehicles (ROVs) for virtually all work performed in the deep

ocean. An operator on the surface communicates with the machine through

a bulky cable that usually is about 3.5km long [2]. A massive surface ship

is required to safely deploy such a vehicle and handle its heavy cable to the

sea floor. Even when winds are strong and waves are high, the surface ship

needs to be capable to hold its position right above the vehicle. Mooring

or anchoring is not practical in deep water or above dense infrastructure at

the sea bottom. So instead these ROV support ships are outfitted with ex-

pensive dynamic positioning systems that use GPS, inertial sensor and gyro

compass readings to automatically control position and heading exclusively

by means of active thrust. Such ships cost about $120k per day [3, 4]. If,

instead of a cable, a wireless carrier is used to communicate with the ROV,

the heavy cables can be cut and these expensive surface ships are no longer

needed. Subsea missions could be accomplished quicker, cheaper and with

fewer personnel. The surface vessel is the main cost driver in underwater

vehicle operations. In 2013, the subsea industry demanded more than 123k

ROV days [5, 6] and these are expected to increase to at least 140k days

in 2017. Since each ROV support ship only carries 1 − 2 ROVs, the total

expenditure on these ships is over $7B. Wireless links could eliminate the

surface vessel and associated cost.

There is a clear need for reliable, high-speed wireless underwater com-

munications for remote-control of subsea machinery. A data rate of 1Mbps

and a range of 100m are the minimum communication requirements for this
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application [3]. Existing wireless solutions are far from satisfying these re-

quirements. They are based on acoustic modem technology developed in the

late 1980s. Their vendors advertise them with data rates of a few kbps, but

the oil and gas industry has found them useful only to around 100bps [3],

relegating this technology to only the most rudimentary of low data rate ap-

plications if not completely unusable. Uploading a simple 100 kilobyte image

takes hours. Video and real-time control is impossible.

The ocean covers 71% of the Earth’s surface. It holds the vast majority of

its mineral and fossil resources, it is home to over 95% of the world’s living

biomass and it carries 90% of international trade. The exploration, utiliza-

tion, and protection of this space is of utmost importance to society, but

they require deployment of subsea machinery and an effective way of com-

municating with it. Leading energy firm Douglas-Westwood [7] and the US

Navy underline the importance of underwater communications. The Navy

Unmanned Undersea Vehicle (UUV) Master Plan [8], for example, repeat-

edly highlights communications as a severe limitation in today’s undersea

missions, and “particularly in the area of acoustic communications, advance-

ments are desirable in bandwidth, data rates, range, security, and reliability.”

The acoustic communication technology described in this thesis is capable

of meeting these needs. It has the potential to completely revolutionize un-

derwater environmental monitoring, scientific exploration, resource discovery

and harvesting, and national defense. For example, this technology would

allow the collection of data from underwater sensors in real-time. Compre-

hensive environmental monitoring is essential to effective climate modeling

and the assessment of climate change.

2.2 Alternative Wireless Communication Technologies

There are two types of waves that can be used to carry information wirelessly

subsea: Electromagnetic (EM) waves and acoustic waves. We argue that

acoustic waves are the superior carrier and have the potential to meet the

wireless communication needs of the subsea industry. We start by reviewing

some of the properties of EM wave propagation underwater.

Salt water has a significantly higher electrical conductivity than air and

attenuates EM waves substantially as they propagate. The level of attenu-
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Figure 2.1: Attenuation of a plane electromagnetic wave in sea water as a
function of frequency.

ation depends on frequency. Figure 2.1 sketches the attenuation of an EM

plane wave in seawater for frequencies up to about 1016Hz [9–12]. Only at

frequencies below about 100Hz and in the visible spectrum is the attenua-

tion low enough to allow useful penetration into the water column [9]. Note

that the attenuation is greater than 30dB/m for all radio frequencies above

1MHz. Inside the visible spectrum, blue-green light, around 480nm in wave-

length, propagates with the least attenuation [13]. So-called extremely low

frequency (ELF) waves are EM waves with frequencies below 100Hz. These

waves are still the only practical means to communicate wirelessly with a

submerged vessel from land. The main drawback of ELF communication is

the low bandwidth available and hence low achievable data rate of less than

1bps [14]. In typical seawater, a 100Hz EM wave is attenuated by 100dB

after 323m and a 100kHz EM wave is attenuated by 100dB after only 8.8m.

At a range of 50m, data rates of only about 300bps have been reached [14].

The company WFS sells RF underwater modems with an advertised data

rate of 156kbps at a 3m range using 27 watts of power.

Free-space optical communication underwater has received renewed inter-

est from researchers due to recent improvement in laser and LED technol-

ogy [15, 16]. LEDs are low-cost and power-efficient light sources and their

light intensity and switching speed have been shown to accommodate wire-

less underwater communication at 1Mbps over 100m [15]. The authors of

this work report that transmissions were error free for ranges up to 100m,
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but their data also shows that the error rate increases sharply at ranges

beyond 100m. The error rate reaches 0.5 at about 140m making reliable

communication impossible. This is still a significant step up from RF com-

munication. Several serious issues, however, limit the applicability of free-

space optical communication in practice: First and perhaps most impor-

tantly, communication range is highly dependent upon water turbidity. The

above values for light attenuation in water only hold for operation in pristine

and transparent water. But near-shore and estuarine waters are typically

highly turbid because of inorganic particles or dissolved organic matter from

land drainage [17]. Light attenuation is exponential in distance. If, for a

given wavelength λ, I0(λ) is the light intensity at the source, the light inten-

sity I(λ, z) at distance z from the source is described by the Beer-Lambert

law [18]

I(λ, z) = I0e
−c(λ)z (2.1)

The wavelength-dependent factor c(λ) is the extinction coefficient of the

water through which the optical system operates. For the type of light

best suited for optical communication, blue-green light with a wavelength

of 480nm, the extinction factor is about 0.16m−1 for pristine ocean water

and about 2.8m−1 for typical coastal waters [17]. The above mentioned ex-

periment that proved the feasibility of error free optical underwater commu-

nication at 1Mbps over 100m was conducted in the clearest water - near the

seafloor in the deep ocean [15], for which the authors measured the extinc-

tion coefficient to be 0.05m−1. According to Equation 2.1, the attenuation

would have been 21.7dB at 100m distance in this clear-water environment.

This suggests that in typical coastal water with an extinction coefficient of

about 2.8m−1, this system would likely only manage a range of about 1.8m.

Note that the waters of most commercial interest, such as in the Gulf of

Mexico or in the Irish sea, are highly turbid. Measurements in the Gulf

of Mexico indicate that the extinction factor exceeds 3m−1 at many sites

and can be as high as 5.1m−1 [19]. Turbidity is also high near underwa-

ter work and construction sites because sand and other particles are stirred

up by operations. These are the spaces in which most underwater vehicles

operate, and in which the need for wireless communication is greatest. An-

other issue of underwater optical communication is that different hardware
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Figure 2.2: 100dB attenuation of an electromagnetic plane wave vs. an
acoustic plane wave in sea water.

is needed for the emission and reception of light - LEDs for emission and a

photo-multiplier tube for reception, for example. This roughly doubles the

footprint of the complete system. Further, available light emission hardware

such as LEDs and lasers are highly directional and require the transmitter

and receiver to be aligned with each other. This is a major issue in mobile

applications where the emitter would need to be constantly reaimed as the

mobile platform moves through the water. In summary, high sensitivity to

water turbidity, bulkiness and tight alignment requirements are major issues

in free-space underwater optical communication and limit its applicability to

cases where a clear line-of-sight path is available and alignment of transmitter

and receiver is simple.

The only practical method of carrying information wirelessly undersea over

distances greater than a couple of meters is through acoustic wave propaga-

tion. In seawater, acoustic waves are significantly less attenuated than radio

waves. Figure 2.2 compares how far acoustic and radio waves can propagate
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Figure 2.3: Information theoretic channel capacity of the underwater
acoustic channel as a function of distance and source power.

through seawater until total attenuation reaches 100dB. At a frequency of

1MHz, radio waves are attenuated by 100dB at only about 3m of distance.

At the same frequency, acoustic waves propagate for 200m until this level

of attenuation is observed. These lower levels of attenuation allow acoustic

communication systems to achieve much higher data rates than would be

possible with underwater radio communication. Figure 2.3 shows the infor-

mation theoretic capacity of the underwater acoustic channel for different

levels of transmit power. The transmit power is given as sound pressure level

(SPL) at one meter distance from the sound source. This plot does not in-

clude the frequency limitations imposed by commercially available acoustic

sources but shows the potential of acoustic communication in general without

the restrictions imposed by the limitations of today’s hardware. At an SPL of

160dB, a data rate greater than 4Mbps can be achieved at a range of 100m.

At an SPL of 210dB the data rate increases to more than 20Mbps for the

same range. If the characteristics of available acoustic sources and sensors
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are taken into account data rates will drop, but they remain above 1Mbps

at a range of 100m. If an off-the-shelf transducer such as the ITC-1089D

is used to emit and sense the acoustic signal, the channel capacity is about

1.75Mbps at 100m distance. Figure 2.4 illustrates the data rates that can

be achieved with this transducer model at various ranges. These data rates

are significantly higher than the achievable subsea radio communication data

rates mentioned above.

Acoustic communication does not suffer from any of the issues of free-space

optical communication and has significantly more range. Acoustic waves do

attenuate more in turbid water than they do in clear seawater, but only

marginally so. Acoustic attenuation depends on the concentration of parti-

cles suspended in the water. A mass concentration of 1kgm−3 is the extreme

case for estuarine and coastal waters [20]. This level of concentration can, for

example, be observed in shallow estuarine waters with strong turbulent tidal
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currents and a bed consisting of fine sand. At peak flow, mass concentrations

close to 1kgm−3 have been measured [21]. For this level of concentration the

attenuation of a 100kHz acoustic wave increases from 0.03dB/m for clear

saltwater to 0.04dB/m [22]. Acoustic communication further does not re-

quire that the transmitter and receiver be aligned. Omnidirectional acoustic

sources, such as the ITC-1089D transducer, are commercially available and

remove the need for alignment. Also note that the same hardware - a ceramic

electro-mechanical transducer - can be used for signal emission and recep-

tion. Because of these reasons, we view acoustic communication as strictly

superior to EM wave-based communication underwater and hence focus on

this technology in the remainder of this chapter.

The above capacity calculations ignored multi-path effects and assumed

line-of-sight communication between stationary platforms. In this case, the

underwater acoustic channel is well understood and can be modeled as a lin-

ear time-invariant (LTI) system with additive white Gaussian noise (AWGN)

[23]. A line-of-sight between transmitter and receiver is often available under-

water, but in a mobile communication scenario the assumption of stationary

communication platforms is clearly invalid. There is no consensus on the

statistical characterization of this type of time variability [23] and, “in the

absence of good statistical models for simulation, experimental demonstra-

tion of candidate communication schemes remains a de facto standard.” In

this chapter we shall introduce a novel channel model for mobile acoustic

communication that builds upon the established physical principles of acous-

tic wave propagation and also derive communication algorithms from it that

outperform all existing acoustic modems by several orders of magnitude.

Unlike in mobile radio systems on land, motion-induced Doppler effects

cannot be neglected in acoustic communication systems. Remotely operated

underwater vehicles (ROVs) typically move at speeds up to about 1.5m/s

[24], autonomous underwater vehicles (AUVs) can run at speeds greater than

3m/s [25], modern submarines reach speeds greater than 20m/s [26,27], and

supercavitating torpedoes propel to speeds of up to 100 m/s [27]. This leads

to underwater acoustic Mach numbers v/c (v = vehicle velocity projected

onto the signal path between transmitter and receiver, c = wave propagation

speed in the medium) on the order of 10−2 and higher. In comparison, the

world’s fastest train in regular commercial service - the Transrapid magnetic

levitation train - operates at a top speed of 430km/h [28]. At this speed,
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the radio communication channel experiences a Mach number of only 4 ∗
10−7, i.e., five orders of magnitude smaller. Relative motion between the

transmitter and receiver always manifests as time-varying temporal scaling

of the received waveform. In radio channels, such Doppler effects are minimal

and are easily correctable under the popular narrowband assumption, while

in acoustic communications, they can be catastrophic if not compensated

dynamically. Further, when acoustic communication signals have multiple

interactions with scatterers underwater, such as the surface or the ocean

bottom, harsh multi-path arises. There are several acoustic modems on the

market that provide a transparent data link and can reach a net data rate

of about 2.5kbps over 1km distance, but when they are mobile or multiple

signal paths to the receiver exist due to reflective boundaries nearby, these

modems perform poorly and only achieve a net data rate of about 100bps

[29, 30]. Multi-path effects are typically most severe when communication

signals propagate through a wave guide or in shallow water where both the

surface and the bottom reflect the acoustic signal multiple times. Note that

horizontal long range communication basically always occurs in a waveguide

because waves are always refracted towards the horizontal layer of water at

which the speed of sound is lowest. This phenomenon has been described as

the Sound Fixing and Ranging (SOFAR) channel and was first discovered in

the 1940s [31].

2.3 Related Work

The first underwater acoustic modems employed frequency-shift keying (FSK)

which maps digital information to a sequence of discrete tones. Guard inter-

vals between consecutive tones ensure that reverberation does not correlate

them and guard bands guarantee that Doppler shifts do not cause misinter-

pretation at the receiver. FSK is relatively easy to implement and can be

made to be robust but then uses the available time and frequency resources

rather inefficiently. Underwater modems using this technique typically have a

data rate less than 1kbps [32]. In the 1990s, it was shown that acoustic wave

propagation allows phase-coherent digital communication underwater [33].

The authors combined an adaptive linear decision feedback equalizer (DFE)

and a phase locked loop (PLL) to combat the channel distortion due to re-
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verberation and Doppler effects. This system was then evaluated on data

from at-sea experiments and the authors demonstrated a data rate of 10kbps

in shallow water over 3.7km distance using 5kHz of acoustic bandwidth, a

stationary 183dB SPL source and a stationary directional receiving element

(hydrophone). This work indicated that coherent communication had the

potential to significantly improve data rate and bandwidth efficiency. Note,

however, that the directional hydrophone required alignment with the source

and that no platform mobility was allowed. The directional hydrophone

helped reject the noise generated at the surface due to wind and wave mo-

tion and also limited reverberation since the multi-path components with

most delay generally impinge on the hydrophone at the widest angle. In

practice, neither hydrophone alignment nor platform stability can be guar-

anteed. In a later follow-up paper researchers including the author of [33]

recognize that the communication system devised in [33] cannot handle the

level of Doppler introduced by standard mobile platforms such as autonomous

underwater vehicles (AUVs) and that “its performance has been unsatisfac-

tory under realistic field conditions” [29]. They extend the original approach

and propose a two-step detection algorithm. For each received data block,

the detector first obtains an estimate of the average Doppler factor over the

entire transmission and then resamples (interpolates) and phase corrects the

demodulated base-band signal based on this factor. In the second step, the

original method from [33] is used to estimate the sent data symbols. The

phase-locked loop (PLL) is employed to remove any residual Doppler distor-

tion from the demodulated signal and the adaptive equalizer estimates the

transmitted symbols from the Doppler compensated signal. They claimed

to achieve a data rate of 2.5kbps on data from moving platforms at relative

speeds up to 6 knots but did not specify over what distance. Even this ex-

tended approach, however, only works if the Doppler variation is sufficiently

small and roughly constant for the duration of a block. The ‘micromodem’ of

the Woods Hole Oceanographic Institution (WHOI), like most state-of-the-

art systems, implements this algorithm for coherent communication and also

offers a robust low data rate frequency-shift keying with frequency-hopping

(FH-FSK) mode [29, 30, 34, 35]. The WHOI micromodem was the basis for

a US Navy submarine deployment in the mid 1990s and the technology in

the research and commercial community have not changed substantially in

the interim. In a more recent paper, WHOI reports that for communication
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with AUVs the micromodem relies on its “robust FH-FSK modulation and

error correction coding (ECC) scheme to communicate at long ranges (2− 4

kilometers), in the very shallow water zone” at a data rate of 80bps using

4kHz of bandwidth and a powerful 190dB SPL source [30]. This performance

corresponds to a bandwidth efficiency of only 0.02bps/Hz.

There are many other research papers discussing extensions of the algo-

rithm proposed in [33] and the data rates that these extensions achieve in

at-sea field-tests. In [36], multiple transmitters and space-time trellis codes

are used to capitalize on the benefits of the transmit diversity available in

the reverberant horizontal shallow water acoustic communication channel.

The highest data rate the authors could reliably achieve is 40kbps at a bit

error rate (BER) of about 10−2 using four transmitters and 23kHz of band-

width. The transmit and receive array were stationary and 2km apart. The

source power level was set to 190dB. The system suggested in [36] uses com-

plex hardware and heavy software but only gives a bandwidth efficiency of

0.375bps/Hz per transmitter. In [37], two transducers were mounted onto

the ends of a 10m pole which was then vertically submerged. The authors

achieved a data rate of 150kbps using 25kHz bandwidth with an unspecified

transmit power. This translates to a bandwidth efficiency of 6bps/Hz. Note,

though, that in both of these works the transmitter and the receiver were

stationary which considerably simplified the conducted experiments. Motion-

induced Doppler effects would have severely degraded the performance of the

proposed algorithms.

There is another line of underwater acoustic communication research that

investigates the use of orthogonal frequency-division multiplexing (OFDM).

OFDM fundamentally assumes that the channel is linear and time invariant

for the length of each ODFM symbol. Platform motion and environmen-

tal fluctuations make the underwater acoustic channel highly time-variant

and the application of standard OFDM leads to communication algorithms

that break down when transmitter or receiver are mobile. Several ad hoc

modifications to the original OFDM receiver algorithm have been suggested

and tested in at-sea field-tests [38–42]. One OFDM modification [39] essen-

tially precedes the regular OFDM receiver with the first step of the receiver

algorithm proposed in [29]. But again, this type of Doppler compensation

assumes that Doppler variation is sufficiently small and roughly constant for

the duration of an OFDM symbol. Since this approximation improves with
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shorter OFDM symbols, short OFDM symbols of a length of only 512 to

2048 carriers are used. At the same time the underwater acoustic channel

is highly reverberant and long cyclic prefixes or zero padding is necessary

between consecutive OFDM symbols to eliminate intersymbol interference.

This means that, during a significant fraction of time, no information can be

sent, leading to low achievable data rates. In [39], a data rate of 9.7kbps is

achieved at a BER of 10−2 using a bandwidth of 12kHz and 2048 carriers

over a distance somewhere between 50m and 800m. Taking into account

the additional layer of channel coding necessary to reduce the BER to below

10−9, the bandwidth efficiency of this system is 0.7275bps/Hz at best, as-

suming a capacity achieving code. Some of the authors of this paper tried to

commercialize this technology (AquaSeNT) but were unable to turn its SBIR

funding into a commercial product. This likely failed due to motion-induced

Doppler effects under which the OFDM carriers are no longer orthogonal and

severe inter-carrier-inference (ICI) arises. Another team out of the Univer-

sity of Florida ran into similar troubles with an STTR joint with EdgeTech,

citing motion-induced Doppler effects as the fundamental stumbling block.

The fatal flaw of many of these works is that the channel model is borrowed

from the radio communication community and only slightly modified, if at all,

and hence does not properly respect the physics of acoustic wave propagation.

A popular assumption is that the Doppler is constant over the time of a data

block and the remaining channel effect is linear and time-invariant, but in

reality the Doppler can be highly time-varying and different wave propagation

paths can experience different Doppler.

In our work, we have developed a sample-by-sample, recursive resampling

technique, in which time-varying Doppler is explicitly modeled, tracked and

compensated. Integrated into an iterative turbo equalization based receiver,

this novel Doppler compensation technique has demonstrated unprecedented

communication performance in US Navy sponsored field tests and simula-

tions. Some of our field data stems from the MACE10 experiment conducted

in the waters 100 km south of Martha’s Vineyard, MA. Under challenging

conditions (harsh multi-path, ranges up to 7.2 km, SNRs down to 2 dB

and relative speeds up to 3 knots) our algorithms sustained error-free com-

munication over the period of three days at a data rate of 39kbps at 2.7km

distance and a data rate of 23.4kbps at 7.2km distance using a 185dB source.

In this experiment we had used only 9.76kHz of acoustic bandwidth lead-
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ing to bandwidth efficiencies of 3.99bps/Hz and 2.40bps/Hz, respectively.

Compared to frequency-shift keying with frequency-hopping (FH-FSK) with

a bandwidth efficiency of 0.02bps/Hz, which is the only existing acoustic

communication method robust enough to handle these conditions, this im-

plies an improvement of two orders of magnitude in data rate and bandwidth

efficiency.

Since our interaction and discussions with the subsea oil and gas industry,

we have begun to focus on communication over shorter distances while scaling

up bandwidth and data rate. In a 1.22m x 1.83m x 49m wave-tank, we have

begun to experiment with a set of ITC-1089D transducers, which have around

200kHz of bandwidth at a center frequency of around 300kHz. We recently

achieved 1.2Mbps over a distance of 12m using this experimental setup. In

a smaller tank, we reached rates of 120Mbps over distances of less than 1m.

These are to the best of our knowledge by far the highest data rates ever

recorded for acoustic underwater communication.

The underwater acoustic channel remains one of the most difficult com-

munication channels [23,43] and our understanding of it is still in its infancy.

The Sections 2.5, 2.6, 2.7, 2.8 and 2.9 will review the physical properties of

acoustic wave propagation and introduce a novel channel model derived from

the acoustic wave equation. Section 2.10 discusses the interesting connection

between underwater acoustic positioning and underwater acoustic commu-

nication. Finally, in Section 2.11 we derive an efficient receiver algorithm

based upon the introduced new channel model and we show its superior

performance in simulations, laboratory experiments and at-sea field-tests in

Section 2.12.

2.4 Notation

We will typeset vectors and sequences bold-face. The set of integers is de-

noted by Z and Z+ = {z ∈ Z : z ≥ 0}. The sets of real and complex numbers

are denoted by R and C, respectively. The set R> = {x ∈ R : x > 0} and

R≥ = {x ∈ R : x ≥ 0}. The sets R< and R≤ are defined analogously. The

set [j : n] denotes {z ∈ Z : j ≤ z ≤ n} with [n] ≡ [1 : n]. For any complex

number x, x? denotes the conjugate of x. For any function x : R → R, the

function ẋ(t) denotes its first derivative and x(k)(t) its k-th derivative. The
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real number ‖x‖ denotes the Euclidean norm of the vector x. When A is a

matrix of dimension n×m, then A[i:j],[l:k] denotes the matrix B of dimension

1 + j − i× 1 + k − l where Bp,q = Ai−1+p,l−1+q.

2.5 Physical Modeling of the Problem

By definition, acoustic communication uses acoustic waves to carry informa-

tion. To communicate digital information acoustically, a digitized waveform

is converted into an electrical signal by a suitable waveform generator cir-

cuit and this electrical signal is then amplified and delivered to an acoustic

transducer. The electrical signal stimulates the transducer to vibrate. The

resulting pressure fluctuations in the medium create an acoustic signal that

radiates off the transducer and propagates through the water. The trans-

ducer is typically a piezo-electric ceramic encapsulated in plastic. This type

of transducer can be used for both the transmission and the reception of

acoustic signals. It converts electrical signals into acoustic signals and vice

versa. When a transducer is used for transmission, it is often referred to as

a projector. When it is used as a receiver, it is usually called a hydrophone.

At some distance from projector, the hydrophone is stimulated by the inci-

dent pressure fluctuations and generates an electrical signal. The measured

electrical signal is amplified and digitized by another suitable circuit.

Given a point of reference, the position and orientation of a transducer

array are uniquely determined by a six dimensional vector describing the

translation in three perpendicular axes combined with the rotation about

three perpendicular axes, the six degrees of freedom (6DoF). We propose a

channel model that explicitly models these states for the transmit and the

receive array. Figure 2.5 sketches a transmit array at position xi with ori-

entation θi and a receive array at position xl with orientation θl. When

there are multiple acoustic signal paths from the transmitting array to the

receive array due to reflection off nearby boundaries, each propagation path

is modeled as a line of sight path from a phantom source with its own po-

sition and orientation. Figure 2.6 illustrates this idea. The p-th phantom

source appears to be at position xi;p(t) with orientation θi;p(t). Along each

path, some dispersion is induced due to the frequency dependent absorption

loss. Each 6DoF vector, as well as the attenuations along each path, will
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Figure 2.5: A transmit array at position xi with orientation θi and a
receive array at position xl with orientation θl.

be modeled as a continuous time random process. These states are observed

through the acoustic pressure measurements of the receive hydrophone ar-

rays and also possibly through inertial sensors mounted onto the transmit

and receive array. Inference based on this model yields position estimates

and if the sent signals are used for communication and are unknown at the

receiver, they can be modeled as random processes and be estimated as well.

The receiver then performs positioning and data detection jointly. There is

also an interesting connection with beam-forming. Emitted wavefronts may

arrive at different times on the elements of the receiver array. The receiver

algorithm we shall propose essentially obtains estimates of these arrival times

and then compensates the received signals such that they add constructively

- a technique similar to broadband receive beam-forming. Another interest-

ing idea is to perform transmit beam-forming based upon the known location

of the receiver. This has the potential to mitigate multi-path in short range

channels.

Our goal is to establish a model of the acoustic channel that is sophisti-

cated enough to capture the dominant physical effects but simple enough to

allow computationally tractable inference. We begin from first principles of

acoustic wave propagation.

As a first step, let us consider the acoustic signal path starting at the

projector array and ending at the receive hydrophone array as our commu-

nication channel. We will also assume for a moment that there is only one

transducer element on the transmit and receive array and that their positions

are x1(t) and x2(t), respectively, which depend on the time t. The trans-

mitter emits the acoustic signal s̃1(t) and the receiver senses the acoustic
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signal r̃2(t). If these elements were operating in an ideal fluid, where energy

was conserved and there was no absorption loss and no ambient noise, the

acoustic wave equation completely describes the channel:

1

c2

∂2p

∂t2
−4p = 4π

∂

∂t

{
δ(x− x1(t))

∫ t

−∞
s̃1(τ)dτ

}
(2.2)

where p(x, t) is the sound pressure at position x and time t, c is speed of

sound and 4 denotes the Laplace operator [44, 45]. Assuming there are no

reflective boundaries and both transmitter and receiver move subsonically,

the far field solution to this equation at position x2(t) is

pFF (x2(t), t) =

(
∂te
∂t

)2

||x2(t)− x1(te)||
s̃1(te) (2.3)

where te is the unique solution to the implicit equation

t− te −
||x2(t)− x1(te)||

c
= 0 (2.4)

[45]. The time te is often called the emission time or retarded time. Neglect-

ing the near field component of the solution, we set r̃2(t) = pFF (x2(t), t).

This relationship completely describes the communication channel under the

mentioned assumptions. We can write

r̃2(t) = h(t)s̃1(te) (2.5)

and consider h(t) a time dependent channel gain factor. Taking a close look

at Equation 2.3, we notice that the gain h(t) is inversely proportional to the

communication distance. Further the “Doppler factor” ∂te
∂t

is always positive,

equal to unity when there is no motion, greater than unity when the source

and receiver are moving towards each other and smaller than unity otherwise.

The solution te to Equation 2.4 can be interpreted as a fixed-point and can

be computed by a fixed-point iteration algorithm.

Theorem 1. Assume there are two functions ẋ1(t) : R → R3 and ẋ2(t) :

R → R3, and that ẋ1(t) is continuously differentiable and ||ẋ1(t)|| < c.
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Define the function

Ft(te) = t− 1

c
||x2(t)− x1(te)|| (2.6)

Then for any t and te[0], the sequence te[n], n = 0, 1, 2, ... with

te[n+ 1] = Ft(te[n]), n = 0, 1, 2, ... (2.7)

converges to a real number te(t). This number is the unique solution to the

implicit equation te = Ft(te), which is equivalent to Equation 2.4.

Proof. We know f(x) = ||x|| is a continuous function and derive

d

dt
||x1(t)|| = lim

δ→0

||x1(t+ δ)|| − ||x1(t)||
δ

(2.8)

≤ lim
δ→0

∥∥∥∥x1(t+ δ)− x1(t)

δ

∥∥∥∥ (2.9)

=

∥∥∥∥lim
δ→0

x1(t+ δ)− x1(t)

δ

∥∥∥∥ (2.10)

= ‖ẋ1(t)‖ (2.11)

and

− d

dt
||x1(t)|| = lim

δ→0

−||x1(t+ δ)||+ ||x1(t)||
δ

(2.12)

≤ lim
δ→0

∥∥∥∥x1(t+ δ)− x1(t)

δ

∥∥∥∥ (2.13)

= ‖ẋ1(t)‖ (2.14)

for any t ∈ R. The inequalities follow from the triangle inequality. So

| d
dt
‖x1(t)‖ | ≤ ‖ẋ1(t)‖. Further,∣∣∣∣ ddteFt(te)

∣∣∣∣ =
1

c

∣∣∣∣ ddte ‖x2(t)− x1(te)‖
∣∣∣∣ (2.15)

≤ 1

c
‖ẋ1(te)‖ < 1 (2.16)

The function Ft(te) is hence a contraction mapping in te. By the Banach

fixed-point theorem [46], there exists an unique te that solves the equation

Ft(te) = te and the sequence te[n], n = 0, 1, 2, ... converges to this solution.

Obviously, the implicit equation Ft(te) = te is equivalent to Equation 2.4.
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We had assumed the absence of absorption in the derivation of Equa-

tion 2.5. In reality, however, emitted acoustic signals experience attenuation

due to spreading and absorption, i.e., thermal consumption of energy. The

absorption loss of acoustic signals in sea water increases exponentially in dis-

tance and super exponentially in frequency. The loss due to spreading is in

principle the same as in electromagnetics. The total attenuation of the signal

power is given by

A(l, f) =
|S̃1(f)|2

|R̃2(f)|2
= lka(f)l−1 (2.17)

where f is the signal frequency, l is the transmission distance and S̃1(f) and

R̃2(f) are the Fourier transforms of the signals s̃1(t) and r̃2(t), respectively.

The exponent k models the spreading loss. If the spreading is cylindrical

or spherical, k is equal to 1 or 2, respectively. Several empirical formulas

for the absorption coefficient a(f) have been suggested [47–52]. Marsh and

Schulkin [47] conducted extensive field experiments and derived the following

empirical formula to approximate 10 log10 a(f) in sea water at frequencies

between 3kHz and 0.5MHz:

10 log10 a(f) ≈ 8.68 · 103

(
SAfTf

2

f 2
T + f 2

+
Bf 2

fT

)
(1− 6.54 · 10−4P ) [dB/km]

(2.18)

where A = 2.34 · 10−6, B = 3.38 · 10−6, S is salinity in promille, P is

hydrostatic pressure [kg/cm2], f is frequency in kHz and

fT = 2.19 · 106−1520/(T+273) (2.19)

is a relaxation frequency [kHz], with T the temperature [◦C] [53]. Figure

2.7 is a composite plot using the formulas from [47] and [52] and illustrates

the dependency of 10 log10 a(f) on frequency for a salinity of 35 promille, a

temperature of 5◦C and a depth of 1000m. It becomes evident that the band-

width available for communication is severely limited at longer distances. For

shorter distances, the bandwidth of the transducer becomes the limiting fac-

tor. A 1MHz sine wave experiences a 31.89dB absorption loss over 100m

distance and a 318.9dB absorption loss over 1km distance. From Equation

2.17, we see that for a fixed transmission distance l, signal attenuation is
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Figure 2.7: Absorption coefficient, 10 log10 a(f) in dB/m.
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linear and time-invariant. When the transmitter or the receiver move, sig-

nal attenuation is still a linear effect, but it varies with time. The received

acoustic signal can hence be related to the emitted acoustic signal by a time-

varying convolution integral with kernel h(t, τ). We suggest the following

extension to the channel model from Equation 2.5 to take this time-varying

signal attenuation into account:

r̃2(t) =

∫
τ

h(t, τ)s̃1(te(t)− τ)dτ (2.20)

Acoustic channel observations in reality also always contain some noise.

There is ambient noise and site-specific noise. Site-specific noise is for exam-

ple caused by underwater machines or biologics. Ambient noise arises from

wind, turbulence, breaking waves, rain and distant shipping. The ambient

noise can be modeled as a Gaussian process but has a colored spectrum [54].

At low frequencies (0.1 − 10Hz), the main sources are earthquakes, under-

water volcanic eruptions, distant storms and turbulence in the ocean and

atmosphere. In the frequency band 50 − 300Hz, distant ship traffic is the

dominant noise source. In the frequency band 0.5−50kHz the ambient noise

is mainly dependent upon the state of the ocean surface (breaking waves,

wind, cavitation noise). Above 100kHz, molecular thermal noise starts to

dominate [53]. The power spectral density of the ambient noise has been

measured and modeled by many researchers [55–58]. Coates [56] breaks the

overall noise spectrum N(f) up into a sum of four components: The turbu-

lence noise Nt(f), the shipping noise Ns(f), surface agitation noise Nw(f)

and the thermal noise Nth(f). These noise spectra are given in µPa2/Hz as

a function of frequency in kHz

10 log10Nt(f) = 17− 30 log10(f) (2.21)

10 log10Ns(f) = 40 + 20(s− 0.5) + 26 log10(f)− 60 log10(f + 0.03) (2.22)

10 log10Nw(f) = 50 + 7.5w1/2 + 20 log10(f)− 40 log10(f + 0.4) (2.23)

10 log10Nth(f) = −15 + 20 log10(f) (2.24)

and sum up to give the total ambient noise N(f)

N(f) = Nt(f) +Ns(f) +Nw(f) +Nth(f) (2.25)
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In this empirical expression, s is the shipping activity factor taking values

between 0 and 1 and w is the wind speed in m/s. Figure 2.8 is reproduced

from [59] and plots N(f) for different values of s and w. The ambient noise

and the signal originating from the transmitter add at the receiver. Defining

ṽ(t) to be an independent Gaussian random process with power spectral

density given by N(f), the channel model from Equation 2.20 can be further

refined to

r̃2(t) =

∫
τ

h(t, τ)s̃1(te(t)− τ)dτ + ṽ(t) (2.26)

So far we considered the acoustic signal path starting at the projector and

ending at the receive hydrophone as our channel. But in reality, the involved

transducers and amplifiers also shape the signal and introduce noise. We will

hence now extend our notion of the communication channel to encompass the

distortion effects of the involved amplifiers and transducers as well. The effect

of any frequency response shaping can readily be absorbed into the kernel
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h(t, τ). But at the receiver also significant electronic noise is added. The

voltage generated by a hydrophone in response to an incident acoustic signal

is small and needs to be preamplified to better match the voltage range of the

digitizer. The electronic noise produced at the input stage of the preamplifier

depends upon the capacitance of the hydrophone, but is usually so high that

it dominates the acoustic ambient noise picked up by the hydrophone. The

most sensitive high frequency hydrophones by market leading companies ITC

and RESON introduce self-noise of at least 45dB re µPa/
√
Hz referred to

input. Figure 2.9 shows the typical self-noise referred to input of the Reson

TC4014 broadband spherical hydrophone and compares it to seastate zero

ambient noise, i.e. the ambient noise when wind waves and swell levels are

minimal. Comparing Figures 2.8 and 2.9, we notice that even for high levels

of wind, the hydrophone self-noise dominates the ambient noise at frequencies

above about 20kHz. Since the acoustic projectors most suited for broadband

communication do not cover frequencies below about 10kHz, we will assume

that the electronic noise dominates the ambient noise in our further analysis.

The electronic noise is well approximated by an independent Gaussian noise

process with flat power spectral density in the band of interest and we will

hence now assume that ṽ(t) is such a process.

Next, we will model transmission involving transmit and receive arrays

with multiple transducers and consider multi-path effects arising from reflec-

tions off nearby scatterers.
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We fix a Cartesian frame of reference at a known location in space. All

positions and angles are given with respect to this reference system. Assume

xi(t) and θi(t) are the three-dimensional position and orientation vectors of

the i-th transducer array. The total number of available arrays depends on

the scenario, but we will always start indexing them with the integer 1. We

will have two types of arrays: A trivial array with only one element and a

non-trivial array with K elements and fixed geometry. There is a function

T : R6 → R3×K that maps the position xi(t) and orientation θi(t) of the

i-th array to the positions xi,j(t), j ∈ [K], of its omnidirectional elements.

Figure 2.5 applies this notation.

The j-th transducer of the i-th array sends the signal s̃i,j(t) and receives

r̃i,j(t). We assume there is no multiple access interference (MAI). So, in case

there is no multi-path but only a line of sight, the received signals can be

expressed as

r̃l,m(t) =
∑
j

∫
τ

hi,j;l,m(t, τ)s̃i,j(ti,j;l,m(t)− τ)dτ + ṽl,m(t) (2.27)

where hi,j;l,m(t, τ) denotes the time-varying signal attenuation kernel along

the path from the j-th transducer of the i-th array to the m-th transducer

of the l-th array, ti,j;l,m(t) is the unique solution to the implicit equation

t− ti,j;l,m −
||xl,m(t)− xi,j(ti,j;l,m)||

c
= 0 (2.28)

and the ṽl,m(t) are independent Gaussian noise processes with flat power

spectral density in the band of interest. When there is multi-path, we in-

terpret each path as the line of sight path from a phantom source array at

position xi;p(t) and orientation θi;p(t), p ∈ [Pi;l], that sends out the same

signals. The integer Pi;l counts the number of paths present between array i

and l. Figure 2.6 shows the real source and three phantom sources, one for

each reflection. In the multi-path case, the received signals read

r̃l,m(t) =
∑

j∈[K],p∈Pi;l

∫
τ

hi,j;p;l,m(t, τ)s̃i,j(ti,j;p;l,m(t)− τ)dτ + ṽl,m(t) (2.29)
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where ti,j;p;l,m(t) is the unique solution to the implicit equation

t− ti,j;p;l,m −
||xl,m(t)− xi,j;p(ti,j;p;l,m)||

c
= 0 (2.30)

xi,j;p(t), j ∈ [K], are the positions of the transducer elements on the p-th

phantom array and hi,j;p;l,m(t, τ) denotes the time-varying signal attenuation

kernel along the path from the j-th transducer of the p-th phantom of the

i-th array to the m-th transducer of the l-th array.

2.6 Signal Design and Sampling

We wish to design waveforms that are suitable for bandwidth efficient data

communication and channel estimation. Standard single carrier source sig-

nals are well-suited for this task. It is possible to detect and track motion

from the phase margin or lag with respect to the carrier (center frequency).

Furthermore, modulation of the phase can be used to embed data.

A common approach to construction of such a communication signal is

through varying the amplitude and phase of a collection of basis functions

with limited bandwidth. Suppose the j-th transducer of the i-th array is to

transmit length N + 1 sequences of symbols si,j[n], n ∈ [0 : N ], from a finite

set of signal constellation points A ⊂ C. To this end, the sequence si,j[n] is

mapped to a waveform si,j(t) : R→ C

si,j(t) =
∑
l∈[0:N ]

si,j[l]p(t− lT ) (2.31)

by use of a basic pulse p(t) time shifted by multiples of the symbol period T .

The pulse p(t) is typically assumed to have a bandwidth of no more than 1/T .

If some of the these symbols are unknown, they can usually be assumed to be

i.i.d., either because the underlying symbols have been optimally compressed

or randomly interleaved. This signal is then modulated to passband

s̃i,j(t) = 2 Re{si,j(t)e2π
√
−1fCit} (2.32)

at carrier frequency fCi. These frequencies are chosen such that there is no

multiple access interference (MAI), i.e., |fCi − fCi′| > 1/T for all i 6= i′.
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At the receiving array, the signal r̃l,m(t) from Equation 2.29 is demodulated

by fCi and low-pass filtered, which yields

rl,m(t) =
∑
j,p

∫
τ

hi,j;p;l,m(t, τ)e2π
√
−1fCi(ti,j;p;l,m(t)−τ−t)si,j(ti,j;p;l,m(t)− τ)dτ

+vl,m(t)

(2.33)

where vl,m(t) denotes the demodulated and filtered noise processes. Motion-

induced Doppler shifts might widen the bandwidth of the received signal. If

the low-pass filter had only a bandwidth of 1/T , a significant fraction of the

signal could be lost. We assume that vmax is the maximal experienced speed.

The maximum frequency of the emitted signal is designed to be fCi + 1/2T

and a sinusoid with that frequency would then experience a Doppler shift

of at most fdi = (fCi + 1/2T )vmax
c

. We hence increase the cut-off frequency

of the low-pass filter by fdi and sample the filtered signal at the increased

frequency 1/Ti = 1/T + 2fdi. The sampled output equations read

rl,m[n] =
∑
j,p,k

hi,j;p;l,m[n, k]e2π
√
−1fCi(ti,j;p;l,m[n]−nTi)si,j(ti,j;p;l,m[n]− kTi)

+vl,m[n]

(2.34)

where ti,j;p;l,m[n] = ti,j;p;l,m(nTi), vl,m[n] is the sampled noise process and

hi,j;p;l,m[n, k] = Tihi,j;p;l,m(nTi, kTi)e
−2π
√
−1fCikTi (2.35)

is the demodulated and sampled kernel. The original noise process vl,m(t)

was Gaussian and white in the band of interest and hence the noise samples

vl,m[n] are i.i.d. Gaussian.

Our objective is to communicate data sequences to the receiver. That

is, parts of the sequences si,j[l] are unknown and we would like to esti-

mate them from the available observations rl,m[n]. Unfortunately, the kernels

hi,j;p;l,m[n, k] as well as the position and orientation vectors of the transmit

and receive arrays are unknown as well. A possible approach to this prob-

lem is to model all these states probabilistically and then perform Bayesian

estimation and estimate all these states jointly. We will propose suitable
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probabilistic models next.

2.7 Probabilistic Modeling of Attenuation

The channel gains hi,j;p;l,m[n] are random and we assume their evolution is

described by the following state equations

hi,j;p;l,m[n+ 1, k] = λhi,j;p;l,m[n, k] + ui,j;p;l,m[n, k] (2.36)

where, for each choice of the indices i, j, p, l,m and k, the random variables

ui,j;p;l,m[n, k] form an independent white Gaussian noise process in n with

variance σ2
u. The parameter λ ∈ (0, 1) is the forgetting factor. More sophis-

ticated a priori models for the evolution of these gains could be used but we

will start off with this simple model. We, hence, neglect the clear dependence

of the length and the attenuation of the involved signal propagation paths.

2.8 Probabilistic Modeling of Receiver Motion

Various motion models have been considered in the position tracking litera-

ture [61]. There are discrete time and continuous time models. The channel

observations rl,m[n] depend on transmitter and receiver motion only through

the emission time ti,j;p;l,m[n] which, by definition, is the solution to the im-

plicit Equation 2.30 for t = nTi. Clearly, the emission time is only influenced

by the values of the functions xl(t) and θl(t) where t = nTi, n = 0, 1, 2, . . .,

and we hence model the evolution of the receiver position and orientation in

discrete time. Among the commonly used discrete time motion models, the

discrete d-th order white noise model is among the simplest. In this model,

each coordinate xl;k(t) of the vector xl(t) is uncoupled and for each coordi-

nate, k, the d-th derivative x
(d)
l;k (t) is right-continuous and constant between

sampling instants and x
(d)
l;k [n] = x

(d)
l;k (nTi), n = 0, 1, 2, . . . , is a white Gaussian

noise process with variance σ2
a. Iterated integration of x

(d)
l;k (t) and sampling

with period Ti yields the following linear discrete time state equations with
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Toeplitz transition matrix:
xl;k[n+ 1]

x
(1)
l;k [n+ 1]

...

x
(d−1)
l;k [n+ 1]

 =

 1 Ti . . .
T d−1
i

(d−1)

0
. . . . . .




xl;k[n]

x
(1)
l;k [n]

...

x
(d−1)
l;k [n]

+


T di
d
...

Ti

 an

(2.37)

where an is an independent white Gaussian noise process with variance σ2
a

and d > 1. Other more sophisticated motion models for example allow corre-

lation across coordinates and take into account on-line information about the

maneuver, but we postpone a more detailed modeling. Further, the orienta-

tion and position of an array are often correlated. Vehicles typically move

in the direction of the orientation vector. For simplicity, we postpone the

modeling of this effect as well and assume orientation and position to evolve

independently but to share the same probabilistic model.

2.9 Probabilistic Modeling of Transmitter Motion

Again, the channel observations rl,m[n] depend on transmitter motion only

through the emission time ti,j;p;l,m[n]. If both the position xi;p(t) and the

orientation θi;p(t) of the (phantom) transmit array are modeled by random

processes with continuous sample paths and their speed is bounded by a

sufficiently small value, then the positions xi,j;p(t), j ∈ [K], p ∈ [Pi;l], of its

array elements also have continuous sample paths and their speed is less than

the speed of sound. In that case, by Theorem 1, there is a unique solution

ti,j;p;l,m[n] to the implicit Equation 2.30 for t = nTi and each array element

j ∈ [K] and path p ∈ [Pi;l]. Note that the emission times ti,j;p;l,m[n], j ∈
[K], p ∈ [Pi;l] can be viewed as hitting times

ti,j;p;l,m[n] = inf

{
te :
||xl,m(nTi)− xi,j;p(te)||

c
+ te = nTi

}
(2.38)

We propose to model each coordinate of the transmitter position xi;p(t) and

orientation θi;p(t) as independent strong Markov processes [62]. More specif-

ically, we propose to model the evolution of each coordinate by a bidimen-
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sional random process; the first dimension is a speed process, modeled as a

Brownian motion reflected off a symmetric two-sided boundary, and the sec-

ond dimension is the position process, which is the integral of the first dimen-

sion. For this setup, we conjecture that the vector (xi;p(t), ẋi;p(t),θi;p(t), θ̇i;p(t))

describes a Feller process [62] and that the set of states

{(xi;p(t), ẋi;p(t),θi;p(t), θ̇i;p(t)), t = ti,j;p;l,m[n], j ∈ [K]} (2.39)

indexed by the discrete time variable n, form a Markov chain of order R for

each p ∈ [Pi;l] given the receiver motion. The order R depends on the array

geometry and the maximal speed of the above mentioned Brownian motion

speed processes. We prove this conjecture for some special cases and discuss

our thoughts on how these proofs could be extended to cover the general

case. The first special case we will look at is that of one-dimensional motion

on a line with one element transmit and receive arrays.

Let the random processes xi(t) and xl(t) denote the position of the trans-

mitter and receiver on the real line at time t, respectively. Unfortunately, the

simple model presented in Section 2.8 and Equation 2.37 is insufficient when

transmitter motion is allowed. It would allow the transmitter and receiver

to get arbitrarily high velocities with non-zero probability, leading to super-

sonic speed and non-unique emission times. Transmitter speed needs to be

bounded in order for Theorem 1 to guarantee unique emission times. Fur-

ther, receiver speed needs to be bounded in order for the emission times te[n]

to form a strictly increasing sequence. This is a necessary condition for the

bidimensional process (xi(te[n]), ẋi(te[n])) to be Markov in n. The following

definitions and theorems will make these points more precise and give an ap-

proximation of the transition kernel of the Markov chain (xi(te[n]), ẋi(te[n])).

We will drive our motion model by a Brownian motion.

Definition 1. A stochastic process B(t), t ∈ R≥0, is called a Brownian

motion if

1. B(0) = 0

2. B(t) is continuous almost surely

3. B(t) has independent increments
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4. B(t)−B(s) ∼ N(0, t−s) for 0 ≤ s < t, where N(0, t−s) is the normal

distribution with zero mean and variance t− s.

The following motion model uses Brownian motion as the speed process,

gives continuous sample paths, is strongly Markov, has Gaussian distributed

independent increments and its hitting time distribution is well studied [63–

66].

Definition 2. (Integrated Brownian motion (IBM) model) For any non-

negative time t ∈ R≥0, the position of the transmitter is given by

x(t) = x0 +

∫ t

0

ẋ(τ)dτ (2.40)

where the speed process ẋ(t) is given by

ẋ(t) = ẋ0 + αB(t) (2.41)

the values x0, ẋ0 ∈ R and α ∈ R>0 are model parameters and B(t) is a

Brownian motion as in Definition 1. For any negative time t, x(t) = x0 + ẋ0 t

and ẋ(t) = ẋ0. The bidimensional process ξ(t) = (x(t), ẋ(t)) defines the

integrated Brownian motion (IBM) model.

The problem with this motion model is that speed is unbounded and hence

emission times can become non-unique. We propose a motion model that is

similar to the one above but gives position sample paths whose speed is

bounded by some value smaller than the speed of sound so that there is

a unique emission time. We simply reflect the above speed process off a

symmetric two sided boundary to ensure it is bounded almost surely.

Definition 3. (Integrated reflected Brownian motion (IRBM) model) For

any non-negative time t ∈ R≥0, the position of the transmitter is given by

x(t) = x0 +

∫ t

0

ẋ(τ)dτ (2.42)

where the speed process ẋ(t) is given by

ẋ(t) = g(ẋ0 + αB(t)) (2.43)
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Figure 2.10: The operation of the function g(ẋ) from Definition 3 for
ẋmax = 1.

the values x0, ẋ0 ∈ R and α ∈ R>0 are model parameters and B(t) is a

Brownian motion as in Definition 1. We have that

g(ẋ) = (−1)n(ẋ)(ẋ− 2ẋmaxn(ẋ)) (2.44)

where n(ẋ) =
⌊

ẋ
2ẋmax

⌉
, the operator b·e denotes rounding to the nearest inte-

ger and ẋmax ∈ R>0 bounds |ẋ(t)|. Both |ẋ0| and ẋmax are always chosen to be

smaller than the speed of sound c. For any negative time t, x(t) = x0 + ẋ0 t

and ẋ(t) = ẋ0. The bidimensional process ξ(t) = (x(t), ẋ(t)) defines the

integrated reflected Brownian motion (IRBM) model.

For any function ẋ(t), the function g(ẋ(t)) reflects values greater than ẋmax

inwards. The operation of the function g(ẋ) is illustrated in Figure 2.10 for

ẋmax = 1. The function g(ẋ) has an interesting property that we will exploit

in Theorem 2 below.

Lemma 1. If g(ẋ) and n(ẋ) are the functions defined in Equation 2.44 in

Definition 3 for some ẋmax > 0, then

g((−1)mẋ+ 2ẋmaxm) = g(ẋ) (2.45)

for any integer m.

Proof. We have

n((−1)mẋ+ 2ẋmaxm) =

⌊
(−1)mẋ+ 2ẋmaxm

2ẋmax

⌉
(2.46)

= m+ (−1)m
⌊

ẋ

2ẋmax

⌉
(2.47)

34



and hence

g((−1)mẋ+ 2ẋmaxm) (2.48)

= (−1)m+(−1)mb ẋ
2ẋmax

e
(

(−1)mẋ+ 2ẋmaxm− 2ẋmax

(
m+ (−1)m

⌊
ẋ

2ẋmax

⌉))
(2.49)

= (−1)m+(−1)mb ẋ
2ẋmax

e
(

(−1)mẋ− 2ẋmax(−1)m
⌊

ẋ

2ẋmax

⌉)
(2.50)

= (−1)(−1)mb ẋ
2ẋmax

e
(
ẋ− 2ẋmax

⌊
ẋ

2ẋmax

⌉)
(2.51)

= (−1)b
ẋ

2ẋmax
e
(
ẋ− 2ẋmax

⌊
ẋ

2ẋmax

⌉)
(2.52)

= g(ẋ) (2.53)

Remark 1. For the applications of interest in this thesis, the maximum

platform speed and acceleration of the underwater vehicle is about 2m/s and

0.3m/s2, respectively [67]. The parameter α in the above motion models

determines the level of acceleration and is chosen such that the standard

deviation of αB(Ti) is a third of 0.3Ti, i.e. α = 0.1
√
Ti. Further we choose

ẋmax = 5m/s.

The integrated reflected Brownian motion (IRBM) model ξ(t) defined in

Definition 3 is no longer an independent increment process, but its sample

paths are continuous and we can prove that it is a Feller process. We prove

this property so that we may exploit the strong Markov property that follows

from it [62].

Definition 4. (Markov Process) Let (Ω,F , P ) be a probability space and let

(S,S) be a measurable space. The S-valued stochastic process ξ = (ξ(t), t ∈
R≥0) with natural filtration (Ft, t ∈ R≥0) is said to be a strong Markov

process, if for each A ∈ S, s > 0 and any stopping time τ ,

P (ξ(τ + s) ∈ A|Fτ ) = P (ξ(τ + s) ∈ A|ξ(τ)) (2.54)

where

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft for all t ≥ 0} (2.55)
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is the sigma algebra at the stopping time τ . If Equation 2.54 only holds for

the trivial stopping times τ = t for any t ≥ 0, then the process is just called

a Markov process. The Markov transition kernel µt,t+s(ξ0, A) : R≥0 × R≥0 ×
S × S) → [0, 1] is a probability measure given any initial state ξ0 ∈ S and

any t, s > 0 and further

µt,t+s(ξ(t), A) = P (ξ(t+ s) ∈ A|ξ(t)) (2.56)

almost surely for any A ∈ S and any t, s > 0. A Markov process is homoge-

neous if for any initial state ξ0 ∈ S, any A ∈ S and any t, s > 0

µt,t+s(ξ0, A) = µ0,s(ξ0, A) (2.57)

For homogeneous Markov processes, we use the notation

Pξ0(ξ(s) ∈ A) ≡ µ0,s(ξ0, A) (2.58)

When the expected value of some random variable G is computed with respect

to this probability measure, we write Eξ0 [G].

Definition 5. (Feller Process) Let ξ = (ξ(t), t ∈ R≥0) be a homogeneous

Markov process as defined in Definition 4. Then this process is called a Feller

process, when, for all initial states ξ0,

1. for any t ≥ 0, any event A ∈ S and any sequence of states ξn ∈ S,

limn→∞ ξn = ξ0 implies limn→∞ Pξn(ξ(t) ∈ A) = Pξ0(ξ(t) ∈ A)

2. for any ε > 0, limt→0 P (‖ξ(t)− ξ0‖ > ε|ξ(0) = ξ0) = 0

Theorem 2. The bidimensional random process ξ(t) from Definition 3 is a

Feller process.

Proof. The sample paths of the process ξ(t) are continuous and hence Prop-

erty 2 in Definition 5 holds. We will now prove that ξ(t) is a homogeneous

Markov process and that Property 1 in Definition 5 holds as well. Let Fxt
and F ẋt be the natural filtrations of the processes x(t) and ẋ(t), respectively.

We immediately establish from the definition of the function g(ẋ) in Equa-

tion 2.44 that

αB(t) + ẋ0 = g(αB(t) + ẋ0)(−1)n + 2ẋmaxn (2.59)
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where we abbreviated the notation n(αB(t) + ẋ0) by n.

Further, we note that

ẋ(t+ τ) = g(αB(t+ τ) + ẋ0) (2.60)

= g(α(B(t+ τ)−B(t)) + αB(t) + ẋ0) (2.61)

= g(α(B(t+ τ)−B(t)) + g(αB(t) + ẋ0)(−1)n + 2ẋmaxn) (2.62)

= g((−1)n(αB′(τ) + g(αB(t) + ẋ0)) + 2ẋmaxn) (2.63)

= g(αB′(τ) + g(αB(t) + ẋ0)) (2.64)

= g(αB′(τ) + ẋ(t)) (2.65)

Equation 2.62 follows from Equation 2.59. Equation 2.64 follows from Lemma

1. The weighted difference B′(τ) = (−1)n(B(t+τ)−B(t)) is itself a Brownian

motion and independent of Fxt and F ẋt .

Next, we take a look at the conditional moment-generating function [62]

of the bidimensional process ξ(t).

Ex0,ẋ0 [eux(t+τ)+vẋ(t+τ)|Fxt ,F ẋt ] (2.66)

= Ex0,ẋ0 [eu(x(t)+
∫ τ
0 ẋ(t+τ)dτ)+vẋ(t+τ)|Fxt ,F ẋt ] (2.67)

= Ex0,ẋ0 [eu(x(t)+
∫ τ
0 g(αB′(τ)+ẋ(t))dτ)+vg(αB′(τ)+ẋ(t))|Fxt ,F ẋt ] (2.68)

= Ex0,ẋ0 [eu(x(t)+
∫ τ
0 g(αB′(τ)+ẋ(t))dτ)+vg(αB′(τ)+ẋ(t))|x(t), ẋ(t)] (2.69)

= Ex(t),ẋ(t)[e
u(x(0)+

∫ τ
0 g(αB(τ)+ẋ(0))dτ)+vg(αB(τ)+ẋ(0))] (2.70)

= Ex(t),ẋ(t)[e
ux(τ)+vẋ(τ)] (2.71)

Equation 2.68 follows from Equation 2.65. Equation 2.69 follows from the

Markov property of Brownian motion. Equation 2.71 follows from the fun-

damental theorem of calculus and Equation 2.43. So ξ(t) is a homogeneous

Markov process. Now assume there are two sequences xn : Z+ → R and

ẋm : Z+ → R such that limn→∞ xn = x0 and limm→∞ ẋm = ẋ0. Then

lim
n,m→∞

Exn,ẋm [eux(τ)+vẋ(τ)] (2.72)

= lim
n,m→∞

E[eu(xn+
∫ τ
0 g(αB(τ)+ẋm)dτ)+vg(αB(τ)+ẋm)] (2.73)

= E[eu(limn→∞ xn+
∫ τ
0 g(αB(τ)+limm→∞ ẋm)dτ)+vg(αB(τ)+limm→∞ ẋm)] (2.74)

= E[eu(x0+
∫ τ
0 g(αB(τ)+ẋ0)dτ)+vg(αB(τ)+ẋ0)] (2.75)
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Equation 2.74 follows from the dominated convergence theorem [62]. Con-

vergence of the moment-generating function implies convergence of the corre-

sponding distribution and hence Property 1 in Definition 5 holds as well.

Now assuming that the motion model for the transmitter and receiver is as

defined in Definition 3, transmitter speed is bounded and there is a unique

solution te to the implicit equation

t− te −
|xl(t)− xi(te)|

c
= 0 (2.76)

for any t by Theorem 1. We can show that the sequence te[n], the solutions

of the implicit Equation 2.76 for t = nTi, is strictly increasing in n.

Theorem 3. Assume both transmitter and receiver motion, ξi(t) and ξl(t),

are as defined in Definition 3. If te[n] denotes the solution of the implicit

Equation 2.76 for t = nTi, then

te[n+ 1] > te[n], ∀n (2.77)

Further,

Ti

(
1 + ẋmax

c

1− ẋmax
c

)
≥ |te[n+ 1]− te[n]| ≥ Ti

(
1− ẋmax

c

1 + ẋmax
c

)
(2.78)

Proof. Evaluating the implicit Equation 2.76 for t = nTi and t = (n + 1)Ti

gives

nTi − te[n]− |xl(nTi)− xi(te[n])|
c

= 0 (2.79)

and

(n+ 1)Ti − te[n+ 1]− |xl((n+ 1)Ti)− xi(te[n+ 1])|
c

= 0 (2.80)

The theorem essentially follows from iterated application of the triangle
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inequality. By a suitable zero-sum expansion,

|xl((n+ 1)Ti)− xi(te[n+ 1])|

=|xl((n+ 1)Ti)− xl(nTi) + xl(nTi)− xi(te[n]) + xi(te[n])− xi(te[n+ 1])|

≤|xl((n+ 1)Ti)− xl(nTi)|+ |xl(nTi)− xi(te[n])|+ |xi(te[n])− xi(te[n+ 1])|
(2.81)

Subtracting Equation 2.80 from Equation 2.79, yields

− Ti + (te[n+ 1]− te[n]) (2.82)

=
1

c
(|xl(nTi)− xi(te[n])| − |xl((n+ 1)Ti)− xi(te[n+ 1])|) (2.83)

≥ −1

c
(|xi(te[n+ 1])− xi(te[n])|+ |xl((n+ 1)Ti)− xl(nTi)|) (2.84)

≥ −1

c
(ẋmax|te[n+ 1]− te[n]|+ ẋmaxTi) (2.85)

The first inequality follows from Inequality 2.81. The second inequality fol-

lows from the fact that the involved motion processes have bounded speed.

We can hence write

te[n+ 1]− te[n] ≥ Ti −
ẋmax
c

(|te[n+ 1]− te[n]|+ Ti) (2.86)

and conclude

(te[n+ 1]− te[n])

(
1 + sgn(te[n+ 1]− te[n])

ẋmax
c

)
︸ ︷︷ ︸

>0

≥ Ti

(
1− ẋmax

c

)
> 0 (2.87)

and

|te[n+ 1]− te[n]| ≥ Ti

(
1− ẋmax

c

1 + ẋmax
c

)
(2.88)

This proves Inequality 2.77 and the right-hand side inequality in Equation

2.78. If instead of expanding the argument of the right-hand side norm of

Equation 2.83, the argument of the left-hand side norm of Equation 2.83 is
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expanded, we get the inequality

te[n+ 1]− te[n] ≤ Ti +
ẋmax
c

(|te[n+ 1]− te[n]|+ Ti) (2.89)

and we conclude

|te[n+ 1]− te[n]| ≤ Ti

(
1 + ẋmax

c

1− ẋmax
c

)
(2.90)

The fact that the emission times te[n] are strictly increasing allows us to

prove that ξi(te[n]) is Markov.

Theorem 4. Assume both transmitter and receiver motion, ξi(t) and ξl(t),

are as defined in Definition 3, but that the receiver motion ξl(t) is given at

the times nTi. Also, let the time te[n] denote the solution of the implicit

Equation 2.76 for t = nTi. Then the sequence ξi(te[n]) is Markov, i.e., for

any A ∈ B(R2),

Pξi(0)(ξi(te[n+ 1]) ∈ A|ξi(te[k − 1]), k ≤ n)

= Pξi(0)(ξi(te[n+ 1]) ∈ A|ξi(te[n])) (2.91)

Further,

Pξi(0)(ξi(te[n+ 1]) ∈ A|ξi(te[n]))

= Pξi(te[n])(ξi(δte) ∈ A) (2.92)

where

δte = inf

{
δte : Ti − δte =

1

c

(
|xl((n+ 1)Ti)− xi(0)−

∫ δte

0

ẋi(τ)dτ | . . .

−|xl(nTi)− xi(0)|)}
(2.93)

Proof. The sequence of σ-algebras Fξit = σ{ξi(τ)−1(B(R2)), 0 ≤ τ ≤ t} is

the natural filtration of the process ξi(t). Let s and τ be some non-negative

real numbers. The emission times te[n] are stopping times and Fξite[n]+s is

the stopping time σ-algebra for the stopping time te[n] + s. Since ξi(t) is a
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time-homogeneous strong Markov process, by Theorem 2, we have for any

s, τ ≥ 0 and A ∈ B(R2) that

Pξi(0)(ξi(te[n] + s+ τ) ∈ A|Fξite[n]+s)

= Pξi(0)(ξi(te[n] + s+ τ) ∈ A|ξi(te[n] + s)) (2.94)

= Pξi(te[n]+s)(ξi(τ) ∈ A) (2.95)

For any two σ-algebras Y and Z of subsets ofΩ, σ{Y ,Z} denotes the smallest

σ-algebra that contains both Y and Z. We define

F̆ξite[n]+s = σ{
(
ξi(te[n] + γ)−1(B(R2)), 0 ≤ γ ≤ s

)
,(

ξi(te((k − 1)Ti))
−1(B(R2)), k ≤ n

)
} (2.96)

The stopping times te[n] form a strictly increasing sequence in n by Theorem

3 and hence

F̆ξite[n]+s ⊂ F
ξi
te[n]+s (2.97)

By the tower property of conditional expectation and Equations 2.94, 2.95

and 2.97, for any A ∈ B(R2),

Pξi(0)(ξi(te[n] + s+ τ) ∈ A|F̆ξite[n]+s)

= Pξi(0)(ξi(te[n] + s+ τ) ∈ A|ξi(te[n] + s)) (2.98)

= Pξi(te[n]+s)(ξi(τ) ∈ A) (2.99)

So the process ξi(t) renews itself after any stopping time te[n].

Let δte[n + 1] = te[n + 1] − te[n]. By the definition of the emission times

te[n],

δte[n+ 1] = inf {δte : Ti − δte = . . .

1

c
(|xl((n+ 1)Ti)− xi(te[n] + δte)| − |xl(nTi)− xi(te[n])|)

}
(2.100)
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or equivalently

δte[n+ 1] = inf {δte : Ti − δte = . . .

1

c

(
|xl((n+ 1)Ti)− xi(te[n])−

∫ δte

0

ẋi(te[n] + τ)dτ | . . .

−|xl(nTi)− xi(te[n])|)} (2.101)

Note that δte[n+ 1] is independent of Fξite[n] given ξi(te[n]) and hence

Pξi(0)(ξi(te[n] + δte[n+ 1]) ∈ A|ξi(te((k − 1)Ti)), k ≤ n)

= Pξi(0)(ξi(te[n] + δte[n+ 1]) ∈ A|ξi(te[n])) (2.102)

= Pξi(te[n])(ξi(δte) ∈ A) (2.103)

where δte is as defined in Equation 2.93.

We do not have an exact solution to the kernel Pξi(te[n])(ξi(δte) ∈ A) from

the previous theorem, but we can find a damn good approximation.

Theorem 5. Assume both transmitter and receiver motion, ξi(t) and ξl(t),

are as defined in Definition 3, but that the receiver motion ξl(t) is given at the

times nTi. Further assume that the motion ξ′i(t) is as defined in Definition

2. The value ξi(0) is given, it is the initial condition for the motion processes

ξi(t) and ξ′i(t) and it is such that

|xl((n+ 1)Ti)− xi(0)| > ẋmaxδtmax (2.104)

where

δtmax ≡ Ti

(
1 + ẋmax

c

1− ẋmax
c

)
(2.105)

Then, for any A ∈ B(R2),

|Pξi(0)(ξi(δte[n+ 1]) ∈ A)− Pξi(0)(ξ
′
i(δt

′
e[n+ 1]) ∈ A)|

≤ 2 erfc (η)− erfc (3η) (2.106)

42



where

δte[n+ 1] = inf

{
δte : Ti − δte =

1

c

(
|xl((n+ 1)Ti)− xi(0)−

∫ δte

0

ẋi(τ)dτ | . . .

−|xl(nTi)− xi(0)|)} (2.107)

δt′e[n+ 1] = inf

{
δt′e : Ti − δt′e =

1

c
(|xl((n+ 1)Ti)− x′i(0)| . . .

− sgn(xl((n+ 1)Ti)− x′i(0))

∫ δt′e

0

ẋ′i(τ)dτ − |xl(nTi)− x′i(0)|

)}
(2.108)

and

η =
ẋmax − |ẋi(0)|
α
√

2δtmax
. (2.109)

Proof. For all δte ≤ δtmax, Inequality 2.104 ensures∣∣∣∣∫ δte

0

ẋi(τ)dτ

∣∣∣∣ ≤ ẋmaxδtmax < |xl((n+ 1)Ti)− xi(0)| (2.110)

and hence

|xl((n+ 1)Ti)− xi(0)−
∫ δte

0

ẋi(τ)dτ |

= |xl((n+ 1)Ti)− xi(0)| − sgn(xl((n+ 1)Ti)− xi(0))

∫ δte

0

ẋi(τ)dτ (2.111)

Note that by Theorem 3 the inequality δte[n+1] ≤ δtmax holds almost surely.

We can thus write

δte[n+ 1] = inf

{
δte : Ti − δte =

1

c
(|xl((n+ 1)Ti)− xi(0)| . . .

− sgn(xl((n+ 1)Ti)− xi(0))

∫ δte

0

ẋi(τ)dτ − |xl(nTi)− xi(0)|
)}

(2.112)
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By the law of total probability,

Pξi(0)(ξi(δte[n+ 1]) ∈ A)

= Pξi(0)({ξi(δte[n+ 1]) ∈ A} ∩ {|ẋi(δt)| < ẋmax, 0 ≤ δt ≤ δtmax}) + . . .

+ Pξi(0)({ξi(δte[n+ 1]) ∈ A} ∩ {|ẋi(δt)| < ẋmax, 0 ≤ δt ≤ δtmax}C)

(2.113)

By Definition 2 and 3 and Equation 2.111,

Pξi(0)({ξi(δte[n+ 1]) ∈ A} ∩ {|ẋi(δt)| < ẋmax, 0 ≤ δt ≤ δtmax})

= Pξi(0)({ξ′i(δt′e[n+ 1]) ∈ A} ∩ {|ẋ′i(δt)| < ẋmax, 0 ≤ δt ≤ δtmax}) (2.114)

because given {|ẋi(δt)| < ẋmax, 0 ≤ δt ≤ δtmax}, the integrated Brownian mo-

tion model and the integrated reflected Brownian motion model coincide.

Further by monotonicity

0 ≤ Pξi(0)({ξi(δte[n+ 1]) ∈ A} ∩ {|ẋi(δt)| < ẋmax, 0 ≤ δt ≤ δtmax}C)

(2.115)

≤ Pξi(0)({|ẋi(δt)| < ẋmax, 0 ≤ δt ≤ δtmax}C) (2.116)

And by the Fréchet inequalities [68,69],

max
(
0, Pξi(0)(ξ

′
i(δt

′
e[n+ 1]) ∈ A) + Pξi(0)(|ẋ′i(δt)| < ẋmax, 0 ≤ δt ≤ δtmax)− 1

)
≤ Pξi(0)({ξ′i(δt′e[n+ 1]) ∈ A} ∩ {|ẋ′i(δt)| < ẋmax, 0 ≤ δt ≤ δtmax}) (2.117)

≤ Pξi(0)(ξ
′
i(δt

′
e[n+ 1]) ∈ A) (2.118)

We conclude

|Pξi(0)(ξi(δte[n+ 1]) ∈ A)− Pξi(0)(ξ
′
i(δt

′
e[n+ 1]) ∈ A)|

≤ Pξi(0)({|ẋi(δt)| < ẋmax, 0 ≤ δt ≤ δtmax}C) (2.119)

≤ P

({
|B(δt)| < ẋmax − |ẋi(0)|

α
, 0 ≤ δt ≤ δtmax

}C)
(2.120)

We are now going to give an expression and an upper bound for the last
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term. We define the square wave

sBmax(b) =
∞∑

n=−∞

(−1)n1{2n−1<b/Bmax<2n+1}. (2.121)

for Bmax = ẋmax−|ẋi(0)|
α

> 0. This function is antisymmetric around Bmax and

−Bmax. Let τ be the first time the Brownian motion B(t) hits either of those

values. Then, by the reflection principle,

B′(t) = B(t) + 1{t≥τ}2(B(τ)−B(t)) (2.122)

is also a Brownian motion. We have

1{τ>δtmax} =
1

2
(sBmax(B(δtmax)) + sBmax(B

′(δtmax))) (2.123)

Applying the expectation operator on both sides gives

P (|B(δt)| < Bmax, 0 ≤ δt ≤ δtmax)

= E[(sBmax(B(δtmax))] (2.124)

=

∫ ∞
−∞

sBmax(b)pδtmax(b)db (2.125)

where pδtmax(b) is the density of the N(0, δtmax) Gaussian distribution. This

integral can easily be bounded by truncating the sum sBmax(b), because

|sBmax(b)| = 1 and the density pδtmax(b) is decreasing in |b|:∫ ∞
−∞

sBmax(b)pδtmax(b)db ≥
∫ Bmax

−Bmax
pδtmax(b)db− 2

∫ 3Bmax

Bmax

pδtmax(b)db

(2.126)

= 2 erf

(
Bmax√
2δtmax

)
− erf

(
3Bmax√
2δtmax

)
(2.127)

And hence

|Pξi(0)(ξi(δte[n+ 1]) ∈ A)− Pξi(0)(ξ
′
i(δt

′
e[n+ 1]) ∈ A)|

≤ 1− 2 erf

(
Bmax√
2δtmax

)
+ erf

(
3Bmax√
2δtmax

)
(2.128)
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For large real η, the following asymptotic expansion of the complementary

error function exists [70]:

erfc(η) =
e−η

2

η
√
π

∞∑
n=0

(−1)n
(2n− 1)!!

(2η2)n
(2.129)

The realistic values ẋmax = 5, Ti = 10−5, |ẋi(0)| = 2 and α = 0.1
√
Ti, yield

a η = 2.1143× 106. The corresponding error

2 erfc(η)− erfc(3η) < 10−1012 (2.130)

and is negligible.

We will now give an expression for the approximate transition probability

Pξi(0)(ξ
′
i(δt

′
e[n+ 1]) ∈ A) from the previous theorem.

Theorem 6. Assume the transmitter motion ξ′i(t) is as defined in Definition

2, the receiver motion ξl(t) is given at the times nTi and ξ′i(0) is the initial

condition for the motion process ξ′i(t). Let

δt′e[n+ 1] = inf

{
δt′e : Ti − δt′e =

1

c
(|xl((n+ 1)Ti)− x′i(0)| . . .

− sgn(xl((n+ 1)Ti)− x′i(0))

∫ δt′e

0

ẋ′i(τ)dτ − |xl(nTi)− x′i(0)|

)}
(2.131)

Then

x′i(δt
′
e[n+ 1]) = x′i(0) + δt′e[n+ 1]ẋ′i(0)− α sgn(xl((n+ 1)Ti)− x′i(0))I ′

(2.132)

with

I ′ = −β − δt′e[n+ 1]γ (2.133)

β =
1

α
(−cTi + |xl((n+ 1)Ti)− x′i(0)| − |xl(nTi)− x′i(0)|) (2.134)

γ =
1

α
(c− sgn(xl((n+ 1)Ti)− x′i(0))ẋ′i(0)) (2.135)
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and

ẋ′i(δt
′
e[n+ 1]) = ẋ′i(0)− α sgn(xl((n+ 1)Ti)− x′i(0))B′ (2.136)

The random variables δt′e[n+ 1] and B′ have the joint distribution

Pβ,γ(δt
′
e[n+ 1] ∈ dt;B′ ∈ dz) = |z| [pt(β, γ; 0, z)−∫ t

0

∫ ∞
0

m(s,−|z|, µ)pt−s(β, γ; 0,−εµ)dµds

]
1R(z)dzdt (2.137)

where R = [0,∞] if β < 0, R = (−∞, 0] if β > 0, ε = sgn(−β), the function

m(t, y, z) =
3z

π
√

2t2
e−(2/t)(y2−|y|z+z2)

(∫ 4|y|z/t

0

e−3θ/2 dθ√
πθ

)
1[0,∞](z)dzdt

(2.138)

and

pt(u, v;x, y) =

√
3

πt2
exp

[
− 6

t3
(u− x− ty)2

+
6

t2
(u− x− ty)(v − y)− 2

t
(v − y)2

]
(2.139)

Proof. First, we manipulate the equation in the definition of the hitting time

δte[n+ 1] in the theorem statement. This equation reads

Ti − δt′e =
1

c
(|xl((n+ 1)Ti)− x′i(0)| . . .

− sgn(xl((n+ 1)Ti)− x′i(0))

∫ δt′e

0

ẋ′i(τ)dτ − |xl(nTi)− x′i(0)|

)
(2.140)

Note that

ẋ′i(τ) = ẋ′i(0) + αB(τ) (2.141)

and that

B′(τ) = − sgn(xl((n+ 1)Ti)− x′i(0))B(τ) (2.142)
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is again a Brownian motion. Equation 2.140 is hence equivalent to

0 = β + δt′eγ +

∫ δt′e

0

B′(τ)dτ (2.143)

and we have

δt′e[n+ 1] = inf

{
δt′e : 0 = β + δt′eγ +

∫ δt′e

0

B′(τ)dτ

}
(2.144)

We define the random variable B′ = B′(δte[n + 1]). The joint distribution

of the random variables δte[n+ 1] and B′ is known [63,64,66]. The function

pt(u, v;x, y) in Equation 2.139 is the transition density of the bidimensional

process (
∫ t

0
B′(τ)dτ,B′(t)), i.e.,

P (

∫ t+s

0

B′(τ)dτ ∈ du,B′(t+ s) ∈ dv|
∫ s

0

B′(τ)dτ = x,B′(s) = y)

=pt(u, v;x, y) (2.145)

for any t, s > 0.

In summary, the above theorems show that the sampled bidimensional

process (xi(te[n]), ẋi(te[n])) is Markov in n and Theorem 6 gives an excellent

approximation of the transition kernel of this Markov chain.

The above derivations hold for the case of one-dimensional motion. We will

now discuss how these ideas can be extended to the case of three-dimensional

motion. Assume xi(t) and xl(t) denote the position of the transmitter and

receiver in three-dimensional space at time t, respectively. We associate

each coordinate of the transmitter and receiver position with an independent

integrated reflected Brownian motion (IRBM) model as defined in Definition

3. We set ẋmax in this definition to be smaller than c/
√

3, so that ‖ẋi(t)‖ < c

and ‖ẋl(t)‖ < c. Then by Theorem 1, the emission times te[n] are unique and,

by a trivial extension of Theorem 3, they form a strictly increasing sequence

of stopping times. The six-dimensional processes ξi(t) = (xi(t); ẋi(t)) and

ξl(t) = (xl(t); ẋl(t)) are both Feller processes and sampling ξi(t) at t = te[n]

yields a homogeneous Markov chain assuming the receiver motion ξl(t) is

given at all times nTi. We have some ideas on how the transition kernel of

this Markov chain could be approximated but have not established bounds to
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quantify the quality of our approximations. The remainder of this section will

elaborate on these ideas. We will derive an approximation of the transition

kernel P (ξi(te[n + 1])|ξi(te[n])) given the receiver motion ξl(t) at all times

nTi.

Let again δte[n + 1] = te[n + 1] − te[n]. By the definition of the emission

times te[n],

δte[n+ 1] = inf {δte : Ti − δte = . . .

1

c
(‖xl((n+ 1)Ti)− xi(te[n] + δte)‖ − ‖xl(nTi)− xi(te[n])‖)

}
(2.146)

or equivalently

δte[n+ 1] = inf {δte : Ti − δte = . . .

1

c

(∥∥∥∥xl((n+ 1)Ti)− xi(te[n])−
∫ δte

0

ẋi(te[n] + τ)dτ

∥∥∥∥ . . .
−‖xl(nTi)− xi(te[n])‖)} (2.147)

Assume V is a rotation matrix such that V (xl((n + 1)Ti) − xi(te[n])) =

e1 ‖xl((n+ 1)Ti)− xi(te[n])‖, where e1 is the unit vector that has all coor-

dinates set equal zero other than the first one. We denote the q-th component

of the vector V ẋi(te[n] + τ) by ẋvi;q(te[n] + τ). Similarly to the assumption

in Equation 2.104 in Theorem 5, we will assume that

‖xl((n+ 1)Ti)− xi(te[n])‖ >
√

3ẋmaxδtmax (2.148)

where

δtmax = Ti

(
1 +

√
3ẋmax
c

1−
√

3ẋmax
c

)
(2.149)

can be shown to upper bound δte[n+ 1] by the same arguments made in the

proof of Theorem 3 for the one dimensional case. This implies that

‖xl((n+ 1)Ti)− xi(te[n])‖ >
∫ δte

0

ẋvi;1(te[n] + τ)dτ (2.150)

For the one-dimensional case, the proof of Theorem 5 shows that the
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transition kernel is essentially unaffected when we condition on the event

{|ẋi(te[n] + τ)| < ẋmax, 0 ≤ τ ≤ δtmax}. We conjecture that an analogous

statement holds for the three-dimensional case, i.e., we conjecture that the

transition kernel P (ξi(te[n + 1])|ξi(te[n])) is essentially unaffected when we

condition on the event {|ẋi;q(te[n] + τ)| < ẋmax, 0 ≤ τ ≤ δtmax, q ∈ [3]} where

we denoted the q-th component of the vector ẋi(te[n] + τ) by ẋi;q(te[n] + τ).

We will assume this condition for our derivations below. Note that we can

then write

ẋi(te[n] + τ) = ẋi(te[n]) + αB(τ) (2.151)

for some three-dimensional Brownian motion B(τ), τ ≥ 0, that is indepen-

dent of ẋi(te[n] + τ), τ ≤ 0. Due to the spherical symmetry of Brownian

motion, B′(t) = V B(t) is again a three dimensional Brownian motion.

We then have∥∥∥∥xl((n+ 1)Ti)− xi(te[n])−
∫ δte

0

ẋi(te[n] + τ)dτ

∥∥∥∥
=

∥∥∥∥V (xl((n+ 1)Ti)− xi(te[n]))−
∫ δte

0

V ẋi(te[n] + τ)dτ

∥∥∥∥ (2.152)

=

∥∥∥∥e1 ‖xl((n+ 1)Ti)− xi(te[n])‖ −
∫ δte

0

V ẋi(te[n] + τ)dτ

∥∥∥∥ (2.153)

≈
∣∣∣∣‖xl((n+ 1)Ti)− xi(te[n])‖ −

∫ δte

0

ẋvi;1(te[n] + τ)dτ

∣∣∣∣ (2.154)

= ‖xl((n+ 1)Ti)− xi(te[n])‖ −
∫ δte

0

ẋvi;1(te[n] + τ)dτ (2.155)

= ‖xl((n+ 1)Ti)− xi(te[n])‖ − ẋvi;1(te[n])δte − α
∫ δte

0

B′1(dτ) (2.156)

Equation 2.152 holds because V TV = I. By the far-field approximation,

we can neglect the contribution of the second and third vector component in

the argument of the norm in Equation 2.153. Equation 2.155 follows from

Inequality 2.150 and Equation 2.156 follows from Equation 2.151.

Substituting
∥∥∥xl((n+ 1)Ti)− xi(te[n])−

∫ δte
0
ẋi(te[n] + τ)dτ

∥∥∥ in the defi-

nition of the hitting time δte[n+ 1] in Equation 2.147 by the approximation
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in Equation 2.156 gives the hitting time

δt′e[n+ 1] = inf

{
δte : Ti − δte =

1

c
(‖xl((n+ 1)Ti)− xi(te[n])‖ . . .

−ẋvi;1(te[n])δte − α
∫ δte

0

B′1(dτ)dτ − ‖xl(nTi)− xi(te[n])‖
)}

(2.157)

The far-field approximation above allows us to approximate δte[n + 1] by

δt′e[n + 1]. This simplifies the problem significantly and allows us to use

the machinery we have developed for the case of one-dimensional motion.

The joint distribution of δt′e[n+ 1] and B′1(δt′e[n+ 1]) is identical to the joint

distribution of δt′e[n+1] and B′ given in Theorem 6 when xl((n+1)Ti)−x′i(0)

is set to ‖xl((n+ 1)Ti)− xi(te[n])‖, ẋ′i(0) is set to ẋvi;1(te[n]) and |xl(nTi)−
x′i(0)| is set to ‖xl(nTi)− xi(te[n])‖. Further, by the definition of δt′e[n + 1]

in Equation 2.157,∫ δt′e[n+1]

0

B′1(dτ)dτ = α−1 (−c(Ti − δt′e[n+ 1]) + ‖xl((n+ 1)Ti)− xi(te[n])‖

. . .− ẋvi;1(te[n])δt′e[n+ 1]− ‖xl(nTi)− xi(te[n])‖
)

(2.158)

The far-field approximation we made above essentially renders the second

and third coordinate of the three-dimensional Brownian motion B′(t) inde-

pendent of δt′e[n + 1]. Given δt′e[n + 1], the bidimensional random vectors

(
∫ δt′e[n+1]

0
B′2(τ)dτ,B′2(δt′e[n+1])) and (

∫ δt′e[n+1]

0
B′3(τ)dτ,B′3(δt′e[n+1])) are

hence independent and distributed like (
∫ δt′e[n+1]

0
B′(τ)dτ,B′(δt′e[n + 1])) for

some independent Brownian motion B′(t). The transition probability of the

bidimensional process (
∫ t

0
B′(τ)dτ,B′(t)) is known and given in Equation

2.145 [64]. Multiplying the joint densities of these bidimensional random

vectors, we can compute the distribution

P

(∫ δt′e[n+1]

0

B′(τ)dτ ∈ du,B′(δt′e[n+ 1]) ∈ dv

)
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Since

xi(te[n+ 1]) = xi(te[n]) +

∫ δt′e[n+1]

0

ẋi(te[n] + τ)dτ (2.159)

= xi(te[n]) + ẋi(te[n])δt′e[n+ 1] + αV T

∫ δt′e[n+1]

0

B′(dτ)dτ

(2.160)

and

ẋi(te[n+ 1]) = ẋi(te[n]) + αV TB′(δt′e[n+ 1]) (2.161)

the random vector (xi(te[n + 1]); ẋi(te[n + 1])) can be obtained from the

random vector (
∫ δt′e[n+1]

0
B′(τ)dτ ;B′(δt′e[n+ 1])) by a simple affine transfor-

mation.

2.10 Bayesian State Inference

On a high level, the above sections introduced a prior distribution on all rel-

evant system states: the transmitted symbols (Equation 2.31), the channel

gains (Equation 2.36), the receiver motion (Equation 2.37) and the trans-

mitter motion (Theorem 4 and 6). Further, we defined likelihood functions

of the observable data given these states (Equation 2.34). Theoretically, this

is sufficient to deduce the a posteriori distribution of the states and hence

obtain estimates according to any given cost function. But we have found

inference to be tractable only in some special cases, where we abstain from

trying to jointly estimate all states, but instead assume that some of the

states are known. We will first look at the case of a stationary transmitter.

2.10.1 Stationary Transmitter

We assume array i rests in the origin and transmits and array l is mobile and

receives. If the transmit array has only one element, assuming our isotropic

spreading model the generated acoustic field is spherically symmetric and

the receiver cannot uniquely determine its position and orientation. In fact,

the locus of possible positions is a sphere. However, if there are at least
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three elements on the receive array and the receiver has access to a compass

and a tilt sensor, this symmetry can be broken. Accelerometers are inexpen-

sive and can determine tilt reliably. The accuracy of magnetic compasses is

compromised by a submarine’s shielding ferric hull, but gyro-compasses do

not have this problem and are well suited for this task, because they rely on

the effect of gyroscopic precession instead of the Earth’s magnetic field [71].

Measurements from inertial sensors can easily be included for state inference

as we will explain below. But for now we will assume that the transmitter

has more than three elements and hence circumvent this problem. We will

further assume that there is no multi-path and that the transmitted signals

are known.

Given these assumptions, the sampled output equations from Equation

2.34 specialize to

rl,m[n] =
∑
j,k

hi,j;l,m[n, k]e2π
√
−1fCi(ti,j;l,m[n]−nTi)si,j(ti,j;l,m[n]− kTi) + vl,m[n]

(2.162)

where ti,j;l,m[n] can now be solved for explicitly

ti,j;l,m[n] = nTi −
||xl,m(nTi)− xi,j||

c
(2.163)

and the noise vl,m[n] is i.i.d.. We model the channel gains hi,j;l,m[n, k] as

described in Section 2.7 and model the receiver position xl(nTi) and orien-

tation θl(nTi) as described in Section 2.8. The signals si,j(t) are assumed to

be known.

Equations 2.36 and 2.37 define a linear state space system driven by Gaus-

sian noise and Equations 2.162 define non-linear output equations. Several

inference methods have been developed for such systems. The extended

Kalman filter (EKF) is popular and basically linearizes the equations around

the current estimate in each step and then applies the standard Kalman filter

equations. This algorithm is considered the de facto standard in navigation

systems and GPS [72]. When the state equations or the output equations

are highly non-linear as in Equation 2.162, the EKF can, however, give poor

performance [73].

The application of the Kalman filter to a nonlinear system requires the

computation of the first two moments of the state vector and the obser-
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vations. This problem can be viewed as a specific case of a more general

problem: the calculation of the statistics of a random vector after a non-

linear transformation. The unscented transformation attacks this problem

with a deterministic sampling technique. It determines a set of points (called

sigma points) that accurately capture the true mean and covariance of the

sampled random vector. The nonlinear transformation is then applied on

each of these points, which results in samples of the transformed random

vector and a new sample mean and covariance can be computed. It can be

shown analytically that the resulting unscented Kalman filter (UKF) is supe-

rior to the EKF but has the same computational complexity [73]. Developing

the Taylor series expansions of the posterior mean and covariance shows that

sigma points capture these moments accurately to the second order for any

nonlinearity. For the EKF, only the accuracy of the first order terms can be

guaranteed [74].

We implemented an UKF for inference on the model presented here. We

played a known signal (a 100Hz wide pulse at a center frequency of 25kHz)

from a speaker and fed the UKF with the measurements from a moving

microphone. For this simple one-dimensional setup, we verified that this

approach yields position estimates with a precision of less than a millimeter.

Inertial sensors provide additional information about the trajectory to be

tracked. Accelerometers, for example, provide noisy observations of the ac-

celeration that the sensor experiences and gyroscopes measure experienced

angular velocity. When we use such sensors on the mobile receiver, the

generated observations and measurements are easily taken into account by

adding additional output equations to the state space system describing the

position and orientation of the receiver array. This combination of sensory

data is called sensor fusion. Measurements al;k[n] of the acceleration values

x
(2)
l;k (nTi) could for example be incorporated by adding the output equations

al;k[n] = x
(2)
l;k (nTi) + uk[n] (2.164)

where uk[n] is assumed to be white Gaussian noise.

Ideally, we would like to not only track the receiver position and orienta-

tion, but also communicate data. As described in Section 2.6 we use broad-
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band transmission signals si,j(t) of the form

si,j(t) =
∑
l∈[0:N ]

si,j[l]p(t− lT ) (2.165)

In order to communicate information from the transmitter to the receiver,

we could assume some of the symbols si,j[l] to be unknown, i.i.d. random

variables with a uniform distribution over the possible constellation points

and then estimate those unknown symbols jointly with the channel attenua-

tion and motion states. However, we find joint estimation of all these states

difficult and hard to implement for several reasons.

We want the pulse p(t) to be band-limited because as discussed in Section

2.5 the channel is band-limited. But in order for p(t) to have most of its

energy in a finite band, the pulse length needs to be large and hence, for

any time t , the value of si,j(t) depends on many symbols si,j[l]. The signals

si,j(t) are sampled at the random times ti,j;l,m[n]−kTi in Equation 2.162 and

si,j(ti,j;l,m[n]− kTi) =
∑
l∈[N ]0

si,j[l]p(ti,j;l,m[n]− kTi − lT ) (2.166)

The computational complexity of the EKF or the UKF is quadratic in the

dimension of the state vector and both methods require that a state space

model for the states to be estimated is available. The only state space system

for the unknown symbols in the sequence, si,j[l], we could find is a trivial one

with very large dimensionality:

si,j[l] = si,j[l], ∀j ∈ [K] and l ∈ Su (2.167)

where the set Su contains the indices of the unknown symbols. This would

make the complexity of each EKF or UKF step quadratic in the size of Su,

which is impractical. Another idea would be to run a particle filter on this

high dimensional state space system and then to only update those indices in

Su in each step, which are in the vicinity of bti,j;l,m[n]/Ti − ke. We have not

investigated this approach further but instead focused on a low complexity

deterministic approach for joint data and channel estimation.
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2.11 Deterministic Inference

This section will describe a method that facilitates reliable communication

over the underwater acoustic channel and at the same time is computation-

ally tractable enough to allow for an implementation on modern embedded

computing platforms. For a moment we will assume that array i is mobile

and transmits while array l is stationary and receives. Array i is trivial and

only carries one transducer. Array l carries K transducers. We account for

multi-path effects but assume that the Doppler is the same on all paths.

This is a good approximation when all phantom sources are near each other,

as is the case in the long range shallow water channel for example. Since

the transmit array is assumed trivial, no index is needed to enumerate its

elements. Without loss of generality we can assume the parameters i and

l fixed. In what follows there will be no ambiguity as to which of the two

arrays we are referring to and we hence drop the indices i and j for the sake

of notational simplicity.

We send a signal s(t) of the form described in Section 2.6 and choose

the symbols s[l] from an q-ary QAM constellation. Some of these symbols

are known and used for training. Some are unknown and used for data

communication.

Under the above assumptions the demodulated received signals from Equa-

tion 2.33 simplify to

rm(t) =

∫
τ

hm(t, τ)e2π
√
−1fC(tm(t)−τ−t)s(tm(t)− τ)dτ + vm(t) (2.168)

where m indexes the receiving transducers and the emission time tm(t) solves

the implicit equation

t− tm(t)− ||xm(t)− x(tm(t))||
c

= 0 (2.169)

The sent signal s(t) has a bandwidth of 1/T and we can hence represent the

integral in Equation 2.168 as a sum:

rm(t) =
∑
k

hm;k(t)e
2π
√
−1fC(tm(t)−t)s(tm(t)− kT ) + vm(t) (2.170)
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where

hm;k(t) = Thm(t, kT )e−2π
√
−1fCkT (2.171)

is the demodulated and sampled kernel.

We define the sequence of arrival times t−1
m [n] as the solutions to the im-

plicit equation

t−1
m [n]− nT − ||xm(t−1

m [n])− x(nT )||
c

= 0 (2.172)

We abbreviate x(nT ) by x[n] and the derivative of x(t) at time nT by ẋ[n].

Since the receiver was assumed stationary, we can solve for t−1
m (nT ) explicitly

t−1
m [n] = nT +

||xm − x(nT )||
c

(2.173)

The arrival times t−1
m [n] are the inverse of the function tm(t) evaluated at

the times nT . They specify when a hypothetical impulse sent from the

transmitter at time nT , would arrive at the m-th receiving transducer.

If we sample the signal from Equation 2.170 at t = t−1
m [n], we get

rm(t−1
m [n]) =

∑
k

hm;k(t
−1
m [n])e2π

√
−1fC(nT−t−1

m [n])s[n− k] + vm(t−1
m [n])

(2.174)

And if we further multiply both sides of this equation by e−2π
√
−1fC(nT−t−1

m [n]),

we obtain

e−2π
√
−1fC(nT−t−1

m [n])rm(t−1
m [n]) =

∑
k

hm[n, k]s[n− k] + vm[n] (2.175)

where hm[n, k] = hm;k(t
−1
m [n]) and vm[n] is some noise sequence.

These equations motivate a direct equalization estimator for the symbols

s[n] of the following form:

s[n] ≈ ŝn =
∑
m,k

w[n,m, k]rm(t−1
m [n− k])e−2π

√
−1fC((n−k)T−t−1

m [n−k]) (2.176)

where w[n,m, k] are the complex-valued equalizer weights. We will assume

that k ranges from −MA to MC for some positive integers MA and MC
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and that M = MA + MC + 1. To reduce the number of parameters of this

estimator, we define the function

t−1
m;n,k(x[n], ẋ[n]) = (n− k)T +

||xm − x[n] + kT ẋ[n]||
c

(2.177)

and substitute t−1
m [n−k] by t−1

m;n,k(x[n], ẋ[n]) in Equation 2.176. The resulting

estimator is ŝn(θ[n]), where the parameter vector θ[n] ∈ R2MK+6 is such that

its components θz[n] satisfy

θz[n] =


Re(w[n,m, k −MA]); z = 2kK + 2m− 1, k ∈ [0 :M−1],m ∈ [K]

Im(w[n,m, k −MA]); z = 2kK + 2m, k ∈ [0 :M−1],m ∈ [K]

xq[n]; z = 2MK + q, q ∈ [3]

ẋq[n]; z = 2MK + 3 + q, q ∈ [3]

(2.178)

This notation formalizes that the equalizer weights w[n,m, k −MA], k ∈ [0 :

M − 1],m ∈ [K], the position x[n] and the velocity ẋ[n] are concatenated

into one real-valued parameter vector, the vector θ[n]. The function ŝn(θ)

reads

ŝn(θ) =
∑

k∈[0:M−1],m∈[K]

(
θ2kK+2m−1 +

√
−1 θ2kK+2m

)
· . . .

rm(t−1
m;n,k−MA

(θ2MK+[3], θ2MK+3+[3])) · . . .

e
−2π
√
−1fC((n−k+MA)T−t−1

m;n,k−MA
(θ2MK+[3],θ2MK+3+[3])) (2.179)

We define the objective function

Ln =
1

2
(θ[0]− θ̂)TC−1(θ[0]− θ̂) +

n∑
l=0

|s[l]− ŝl(θ[l])|2σ−2
s

+
1

2

n−1∑
l=0

(θ[l + 1]− Tθ[l])TQ−1(θ[l + 1]− Tθ[l]) (2.180)

for some number of known training symbols s[l], l = 0, . . . , n and choose the

parameter vector θ[n] such that

θ[n] = argmin
θ[n]

min
θ[l],l∈[0,n−1]

Ln (2.181)
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The vector θ̂ is the initial guess we have about the parameter vector θ[0]

and C is a covariance matrix specifying how much confidence we have in

this guess. The scalar σ−2
s is a weighting factor and the matrix Q−1 is a

weighting matrix. The matrix T is a transition matrix with Tθ[n] specifying

an estimate of θ[n+1]. Note that we allow for some error (θ[n+1]−Tθ[n]) in

this plant model. We choose a simple transition matrix T with components

Tz,u such that

Tz,u =


1; z = u, u ∈ [2MK + 6]

T ; z = 2MK + q, u = 2MK + 3 + q, q ∈ [3]

0; otherwise

(2.182)

The 6×6 submatrix on the bottom right of T is the transition matrix for the

position x[n] and the velocity ẋ[n] according to the motion model presented

in Section 2.8 for d = 2.

The extended Kalman filter is known to find an approximate solution to

the least squares problem in Equation 2.180 when run on the state space

system

θ[n+ 1] = Tθ[n] + νn+1 (2.183)

and the output equations

s[n] = ŝn(θ[n]) + vn (2.184)

for n ≥ 0 [75]. The noise values vn are independent, mean-zero, circular

symmetric complex Gaussian random variables with variance σ2
s . We denote

the estimate of θ[n + 1] given the symbols {s[l], l ∈ [0 : n]} by θ̂[n + 1, n].

The initial state estimate θ̂[0,−1] is a Gaussian random vector with mean θ̂

and covariance C. The random vectors νn are independent and mean-zero.

Each vector νn is Gaussian with covariance Q. The covariance matrix Q is
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chosen such that its components Qz,u satisfy

Qz,u =



σ2
w; z = u, u ∈ [2MK]

σ2
a
T 4

4
; z = u, u ∈ 2MK + [3]

σ2
aT

2; z = u, u ∈ 2MK + 3 + [3]

σ2
a
T 3

2
; z = 2MK + q, u = 2MK + 3 + q, q ∈ [3]

σ2
a
T 3

2
; z = 2MK + 3 + q, u = 2MK + q, q ∈ [3]

0; otherwise

(2.185)

for some variances σ2
w and σ2

a. The 6×6 submatrix on the bottom right of Q

is the covariance matrix for the position x[n] and the velocity ẋ[n] according

to the motion model presented in Section 2.8 for d = 2. The 2MK × 2MK

submatrix on the top left of Q is diagonal and hence renders the evolution

of all equalizer weights independent. The equalizer weights are assumed to

be independent of the position and velocity of the transmitter.

We perform a method akin to decision directed equalization to obtain

estimates of the symbols s[n] that are unknown and used for communication.

In total N + 1 symbols s[n] are sent. We assume the first Npre symbols

{s[l], l ∈ [0 : Npre − 1]} and also a fraction of the subsequent symbols to

be known. Let the set Su ⊂ [0 : N ] contain the indices of the unknown

symbols. We first run the extended Kalman filter on the known first Npre

symbols {s[l], l ∈ [0 : Npre − 1]} and obtain θ̂[Npre, Npre − 1]. Now if Npre ∈
Su, then we find the point in the symbol constellation A that is closest to

ŝn(θ̂[Npre, Npre − 1]) and declare that point to be s[Npre]. The operation of

mapping a complex number to its nearest constellation point is called slicing.

Now regardless of whether Npre ∈ Su, the symbol s[Npre] is available. So the

extended Kalman filter can be updated and the next prediction θ̂[Npre +

1, Npre] can be computed. Now we check again if Npre + 1 ∈ Su and, if so,

we slice ŝn(θ̂[Npre + 1, Npre]) and declare the slicer output to be the symbol

s[Npre + 1]. We iterate the Kalman update and prediction steps and the

conditional slicing operation until the last symbol s[N ] is reached. At a high

level, the estimator ŝn(θ) first resamples the received waveforms to undo

any timing distortions and then filters the resampled signal to remove any

frequency selectivity present in the channel. We hence call this estimator

a resampling equalizer (RE). Algorithm 1 describes the operation of this

equalizer in pseudocode. The function slice(·) performs the slicing operation.
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Data: The transition matrix T , the covariance matrices Q and C, the
variance σ2

s and the initial estimate θ̂ are given. Further, the set
Su ⊂ [0 : N ] and the values of s[n] for n /∈ Su are given.

Result: The sequence of symbol estimates ŝn, n ∈ [0, N ], and the sequence
of hard decisions s̄n, n ∈ [0, N ].

% initialization:
P = C;
for n = [0 : N ] do

ŝn = ŝn(θ̂);
if n ∈ Su then

s̄n = slice(ŝn);
else

s̄n = s[n];
end
compute g ∈ C1×2MK+6, the numerical approximation to the gradient
∂ŝn(θ)
∂θ

∣∣∣
θ̂
;

% perform Kalman update step:
e = s̄n − ŝn;
S = [Re(g); Im(g)]P [Re(g); Im(g)]T + 1

2
σ2
sI;

K = P [Re(g); Im(g)]TS−1;
θ̂ = θ̂ +K[Re(e); Im(e)];
P = (I −K[Re(g); Im(g)])P ;
% perform Kalman prediction step:
θ̂ = T θ̂;
P = TPT T +Q;

end

Algorithm 1: The operation of the resampling equalizer (RE).

The extended Kalman filter requires the values of the partial derivatives ∂ŝn(θ)
∂θ

evaluated at θ̂[n, n − 1], n ∈ [0 : N ]. We approximate these numerically as

shown in Algorithm 2.

Of course, it is not guaranteed that the slicer actually recovers the original

symbol each time. The rate at which the slicer misses is called the symbol

error rate (SER). We have found in our experiments that as long as the

SER is below 20%, the Kalman filter remains stable. Each of the unknown

QAM symbols {s[l], l ∈ Su} corresponds to a bit pattern. The receiver maps

the sliced symbols back to their corresponding bit pattern and ideally the

resulting bit sequence agrees with the bit sequence that was sent originally. In

most cases, however, there will be bit errors and the rate at which these occur

is called the bit error rate (BER). If the BER at the equalizer output is too
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Data: The state vector θ̂ is given. The constants ε, δ > 0 are some small
real numbers.

Result: The vector g ∈ C1×2MK+6 which approximates the gradient ∂ŝn(θ)
∂θ

∣∣∣
θ̂
.

% initialization:
g = 01×2MK+6;
for k = [0 : M − 1] do

for m = [K] do
g2kK+2m−1 = rm(t−1

m;n,k−MA
(θ2MK+[3], θ2MK+3+[3])) · . . .

e
−2π
√
−1fC((n−k+MA)T−t−1

m;n,k−MA
(θ2MK+[3],θ2MK+3+[3]));

g2kK+2m =
√
−1 g2kK+2m−1;

end

end

θ̂
+

= θ̂;
for q = [3] do

θ̂+
2MK+q = θ̂+

2MK+q + ε;

g2MK+q = (ŝn(θ̂
+

)− ŝn(θ̂))/ε;

θ̂+
2MK+q = θ̂2MK+q;

θ̂+
2MK+3+q = θ̂+

2MK+3+q + δ;

g2MK+3+q = (ŝn(θ̂
+

)− ŝn(θ̂))/δ;

θ̂+
2MK+3+q = θ̂2MK+3+q;

end

Algorithm 2: Numerical approximation of ∂ŝn(θ)
∂θ

∣∣∣
θ̂
.

high for a given application, channel coding can be used at the transmitter to

reduce the BER at the expense of the rate the sequence of information bits

is transmitted [76–78]. Channel coding adds redundancy to the sequence of

information bits that is to be communicated. The enlarged bit sequence is

mapped to QAM symbols. These symbols are unknown at the receiver and

we call them information symbols. Our equalizer needs training, before any

unknown symbols can be estimated, and we hence add in some known QAM

symbols into this stream of information symbols. The resulting sequence

carries information symbols at the indices n ∈ Su and known symbols at the

other indices. At the receiver, the bit stream from the slicer output is fed

into a channel decoder that uses the added redundancy to reduce the BER on

the sequence of sent information bits. The required amount of redundancy

depends on the equalizer output BER and the maximal permissible BER
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on the sequence of information bits. BER performance can be improved

significantly if the equalizer and the channel decoder collaborate. There

is vast literature on the field of iterative equalization and decoding (also

known as turbo equalization) that describes how this collaboration should

be furnished [79–84]. For these results to apply, the equalizer needs to be

capable of leveraging soft information from the decoder and further needs

to produce soft output instead of sliced hard decisions. There are standard

methods available to extend direct equalizers like the one we introduced in

this section so they fit this bill [81,82,85] and we refer to the given references

for the details. When used in the setting of turbo equalization, we refer to

our equalizer as a turbo resampling equalizer (TRE).

Let x[n+1, n] and ẋ[n+1, n] denote the position estimate θ̂2MK+[3][n+1, n]

and the velocity estimate θ̂2MK+3+[3][n+1, n], respectively. In our simulations

and experiments, we found that, in order for the Kalman filter to converge,

the initial estimates of the transmitter position x[0,−1] and velocity ẋ[0,−1]

must be accurate enough such that t−1
m;0,0(x[0,−1], ẋ[0,−1]) deviates from

t−1
m;0,0(x[0], ẋ[0]) by at most about one symbol period T , for all m ∈ [K]. The

trilateration method can be used to obtain estimates of x[0] and ẋ[0] [86].

We transmit two chirps before any QAM symbols are sent and then measure

when each of these two chirps arrives at the receive transducers. Trilateration

computes two estimates of the transmitter position from these arrival time

measurements - one estimate for each transmitted chirp [86]. If we assume

that the first chirp was sent at time t = tC1 and that the second chirp was sent

at a later time t = tC2, then this method obtains estimates of the positions

x(tC1) and x(tC2). The difference quotient (x(tC2)− x(tC1)) /(tC2 − tC1)

gives the average velocity between the two times t = tC1 and t = tC2. We set

ẋ[0,−1] equal to this average velocity and further set x[0,−1] = x(tC2) −
tC2ẋ[0,−1].

For the derivation above we had assumed that the receiver array is station-

ary. If this assumption does not hold, we still use the introduced equalizer

for communication and accept that the states x[n] and ẋ[n] no longer corre-

spond to the position and velocity of the transmitter with respect to a fixed

Cartesian frame of reference.
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Figure 2.11: MACE10 Transmission Map Day 177.

2.12 Experimental Results

Our turbo resampling equalizer (TRE) has demonstrated unprecedented com-

munication performance in US Navy sponsored field tests and simulations.

Some of our real data stems from the Mobile Acoustic Communications Ex-

periment (MACE) conducted in June 2010 about 100 km south of Martha’s

Vineyard, MA. The depth at the site is approximately 100 m. A mobile V-fin

with an array of transmit projectors attached was towed along a “race track”

course approximately 3.8 km long and 600m wide. The maximum tow speed

was 3 knot (1.5 m/s) and the tow depth varied between 30 and 60 m. The

receive hydrophone array was moored at a depth of 50 m. Figure 2.11 shows

a map centered around the location of the hydrophone array.

The red stars indicate the location of the projector array during the trans-

missions on day 177. The range between the transmit and receive array

varied between 2.7km and 7.2km. The weather was good throughout the 4

day experiment. Wednesday, June 23, was foggy and warm. The winds were

calm. The signal transmission started on Thursday (day 175). The winds

picked up to 10.6 m/s that day but laid down again Friday and Saturday.

One projector was used for signal emission and 2 hydrophones were used

for reception. We employed a rate 1/2, (131, 171) RSC code and puncturing

to obtain an effective code rate of 2/3. Blocks of 19800 bits were generated,

interleaved, and mapped to 16-QAM symbols. The carrier frequency was 13

kHz. The receive sampling rate was 39.0625 k samples/second. Data was

transmitted at a symbol rate of 9.765625 k symbols/second. Taking into

account the 10% overhead from equalizer training, we achieved a net data
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rate of 23.438kbps. At a distance of 2.7km the equalizer output BER was

below 10−6 and the overhead from equalizer training was 1%. The net data

rate hence increased to about 39kbps A raised cosine filter with a roll-off

factor 0.2 was used in both the transmitter and the receiver. Two chirps at

the beginning of the data transmission and the measurement of their time

dilation are used to find initial values for the transmitter velocity.

Figures 2.12, 2.13 and 2.14 summarize the bit error rate (BER) perfor-

mance of our receiver on the MACE 2010 data set. Zero is displayed as

10−10 in the BER plots. For all transmissions our receiver converged to the

right code word after two or less cycles. Figure 2.15 shows that the projected

speed between transmitter and receiver fluctuated significantly giving rise to

highly time-varying Doppler. Due to the shallow water at the experiment

site, the channel exhibited severe multi-path as illustrated in Figure 2.16.

Since our interaction and discussions with the subsea oil and gas industry,

we have begun to focus on communication over shorter distances while scaling

up bandwidth and data rate. On our campus, in a 1.22m×1.83m×49m wave-

tank, we have begun to experiment with a set of ITC-1089D transducers,

which have around 200kHz of bandwidth at a center frequency of around

300kHz. We recently achieved 1.2Mbps over a distance of 12m using this

experimental setup. A 64-QAM constellation was employed and the equalizer

output BER was about 10−3. In a smaller tank, we reached rates of 100Mbps

over distances of less than 1m. For this experiment, we repurposed high

frequency ultrasound transducers with a bandwidth of 20MHz and a center

frequency of 20MHz and again transmitted 64-QAM symbols. The BER at

the equalizer output was about 2× 10−2.

Table 2.1 compares the performance of our TRE method with compet-

ing approaches both from academia and industry. Speed values are maxi-

mum values with BER < 10−9. The LinkQuest modem is representative of

commercially available acoustic modems. The LinkQuest modem uses some

proprietary spread spectrum (SS) method for communication. The WHOI

modem uses frequency shift keying (FSK) for its robust 80bps mode. Both

of these methods handle motion well but only provide damn low data rates.

For their high data rate experiments, WHOI uses a combination of a phase-

locked loop and standard linear decision feedback equalization (DFE) as de-

vised in [33]. This method yields higher data rates than their FSK method

but requires both transmitter and receiver to be near stationary. The at-sea
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Figure 2.12: MACE10 Evaluation Day 175.
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Figure 2.15: Speed as estimated by our Doppler compensator during an
example MACE10 transmission.

Table 2.1: Performance of different underwater communication methods in
past field-tests.

Team Data Rate Range Speed Power Method
LinkQuest 80bps 4km > 1.5m/s 48W SS
MIT/WHOI 80bps 4km > 1.5m/s 50W FH-FSK
MIT/WHOI 2.5kbps 1km < 0.05m/s 50W DFE
MIT/WHOI 150kbps 9m 0m/s ∼ 10W DFE
Our Team 23.4kbps > 7.2km > 1.5m/s 15W TRE
Our Team 39kbps 2.7km > 1.5m/s 15W TRE
Our Team 1.2Mbps 12m > 1.5m/s 0.33W TRE
Our Team 100Mbps < 1m 0m/s 1W TRE
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experiments in [33] show that at a carrier frequency of 15kHz this method

tolerates phase variations up to about 2rad/s which corresponds to a speed

of only 0.0318m/s. Our TRE method is robust to all levels of Doppler that

we were able to simulate in laboratory experiments and at-sea tests so far

(> 1.5m/s) and still reliably obtains the highest data rates ever recorded for

acoustic underwater communication. The ultrasound equipment we used for

our 100Mbps experiment did not allow the transmitter or receiver to move

so only the stationary case could be tested.

2.13 Conclusions

Current wireless underwater modems suffer a significant performance degra-

dation when communication platforms are mobile and Doppler effects corrupt

the transmitted signals. FSK can be made to be robust to Doppler effects but

then uses the available time and frequency resources rather inefficiently and

typically only obtains a data rate of 80bps. Coherent communication has

the potential to significantly improve data rate and bandwidth efficiency.

Existing approaches, however, only work if the Doppler variation is suffi-

ciently small and roughly constant for the duration of a block. In our work,

time-varying Doppler is explicitly modeled, tracked and compensated. We

propose to resample the received waveforms non-uniformly and adapt the

sampling rate on-the-fly. The resulting signals are then filtered to remove

any intersymbol interference caused by time dispersion and multi-path ef-

fects. Integrated into an iterative turbo equalization based receiver, this

novel resampling equalizer has demonstrated unprecedented communication

performance in US Navy sponsored field tests and simulations. We achieved

a data rate of 39kbps at a distance of 2.7km and a data rate of 1.2Mbps at

a distance of 12m. The latter link is capable of streaming video in real-time,

a first in wireless underwater communication.
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CHAPTER 3

FINITE BLOCK-LENGTH ACHIEVABLE
RATES FOR QUEUING TIMING

CHANNELS

3.1 Introduction

While most communication systems convey information by controlling the

amplitudes of signals at each time instant, information can also be sent by

controlling the timing at which events occur. For example it is widely believed

that neurons exchange information by sending spike trains [87], where infor-

mation is contained in the random lengths of the interspike intervals. Another

example is packet switching networks, where forwarding moves packets from

their source toward their ultimate destination. The sources can choose when

to send packets, but a queuing mechanism in the forwarding nodes obscures

the timing information.

The landmark paper “Bits through Queues” [88] characterizes such chan-

nels. Suppose the “packets” are identical and only their arrival time carries

information. The times at which the sender puts packets on the network

Enc Queue Dec

Figure 3.1: Conveying information through packet timings in a queueing
system.

encodes a message as illustrated in Figure 3.1. The packets go through a

first-come, first-serve single-server queue with exponential service times. The

decoder observes when the packets depart from the queue and then chooses

one of the possible messages. For an arrival process constrained to be of

rate λ packets per second, it was demonstrated [88] that for an exponential

service time distribution of rate µ > λ the capacity C(λ) is given by

C(λ) = λ log2

µ

λ
nats/s
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A point process viewpoint version of the problem with the same fundamental

limits was considered in [89, 90]. Rather than considering n inter-arrival

times and n inter-departure times of the queue, the time axis was fixed to be

[0, Tn] at the encoder and [0, Tn] at the decoder. In [91], Bedekar and Azizoglu

considered a discrete time analog to the continuous-time model studied in [88]

where packets arrive to and depart from a discrete-time single-server queue

with i.i.d. geometrically distributed service times. For an arrival process

constrained to be of rate λ packets per time slot, it was demonstrated [91]

that for a queue with service times of rate µ > λ the capacity C(λ) is given

by

C(λ) = H(λ)− λ

µ
H(µ) nats/slot

where H(·) denotes the binary entropy function.

The timing channels with memoryless service times (i.e. exponential in

the continuous case and geometric in the discrete case) are known to be

the simplest, and in some sense canonical, queuing timing channels. This

chapter focuses on the discrete time model with memoryless service times

and discusses the maximal achievable rate of communication when there is

a practical finite-length restriction on the codewords.

When each codeword corresponds to the timing of packets in n time units

and the probability of error may not exceed ε, the maximal achievable rate

can be substantially less than capacity. By using Markov chain analysis,

we prove a lower bound on the maximal channel coding rate achievable at

blocklength n and error probability ε. We shall show that the maximal

channel coding rate is lower bounded by

C(λ)− n−1/2σQ−1(ε)− log n

2n
+O(n−1)

where C(λ) is the channel capacity whose closed form expression is given

above, Q(·) denotes the Q-function and σ2 is the asymptotic variance of the

underlying Markov chain for which we give a closed form expression below.

Dropping the last two terms in this expression yields a good approximation

which in turn can be used to anticipate the achievable rate on this channel

in the finite block length regime.

Asymptotic bounds on the maximal channel coding rate were studied ex-
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tensively in the 1960s for the case of memoryless channels [92–94]. Wolfowitz

introduced hypothesis testing to information theory in [95]. Strassen built on

his results in [94], where he combined hypothesis testing arguments (Neyman-

Pearson lemma), Feinstein’s lemma [96] and bounds on the convergence rate

of the central limit theorem [97, 98] to give the strongest result to date. At

the time non-asymptotic bounds were constructed in [95, 96, 99]. Recently,

this research has been readdressed for memoryless channels [100] and new

non-asymptotic bounds were derived in [101]. Strassen’s asymptotic expan-

sion gives very accurate estimates when compared to the tightest bounds

available [101].

The queuing timing channel considered here has memory and previous

results therefore do not apply. We show that the bound provided by the

Berry-Esseen theorem in the memoryless channel case still holds and then

prove the asymptotic result above by use of Feinstein’s lemma. Further,

as mentioned before, we obtain a closed form expression for the asymptotic

variance σ2. Finding such an expression for a given Markov chain is generally

hard and significant research in the area of steady-state stochastic simulation

[102, 103] yields a closed form solution only for the class of homogeneous

birth-death processes.

3.2 Basic Definitions and Conventions

• For x ∈ [0, 1], denote x̄ , 1− x.

• Denote Bern(p) to be the Bernoulli distribution with parameter p.

• Denote the binary entropy function H(p) = −p log p− p̄ log p̄.

• X denotes a random variable, E[X] denotes an expectation, and x

denotes a realization.

• x denotes a vector (x1, x2, ..., xn).

• A random process Φ = (Φ1, Φ2, . . .) on a probability space (Ω,F , P ) is
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a Markov process if for any n,

P (Φ1 ∈ A1, Φ2 ∈ A2, . . . , Φn ∈ An)

= P (Φ1 ∈ A1)
n∏
i=2

P (Φi ∈ Ai|Φi−1 ∈ Ai−1).

• Z is the set of all integers and Z+ = {z ∈ Z : z ≥ 0}.

• Denote [n]j = {j, . . . , n} with [n] ≡ [n]1.

• Denote Xn to be the sequence of counting functions on [n]0, i.e. the set

of functions x0, . . . , xn for which xi ∈ Z+ and xi ≥ xi−1. Denote Yn to

be the set of counting functions y on [n]0 for which y0 = 0.

• For a sequence of input sets and output sets {Xn,Yn : n ≥ 1}, a channel

is a a sequence of conditional distributions {PY n|Xn(·|xn) : xn ∈ Xn, n ≥
1}.

• Given a distribution PXn on Xn and channel PY n|Xn(·|xn), denote PY n

as the induced output distribution.

• Denote the information density as i(xn,yn) , log
PY n|Xn (yn|xn)

PY n (yn)
.

• For any ε ∈ (0, 1), an (M,n, ε) code is a sequence {(x(i),D(i)), i =

1, . . . ,M} where x(i) ∈ Xn and {D(i)} are mutually disjoint with

P (D(i)|x(i)) > 1− ε ∀i.

• The rate of an (M,n, ε) code is denoted by R = logM
n

.

• Borrowing notation from [94, 95], N(ε, n, λ) denotes the supremum of

the integers M such that an (M,n, ε)-code exists and E[Xn/n] = λ.

• Denote the rate-constrained capacity as

C(λ) , limε→0 limn→∞
logN(ε,n,λ)

n
.

• We drop subscripts whenever they are clear from the context. For

example PY n|Xn(yn|xn) = P (yn|xn).
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3.3 System Description and Preliminaries

Throughout this document, we consider a discrete-time point process version

of the problem, analogous to [89, 90]. The communication channel we con-

sider is an interesting example of a channel with memory. It is essentially a

probabilistic single server queuing system with the length of the queue being

the memory of channel. At each discrete time instance i, the random variable

X̃i, i ∈ [n − 1], indicates if there was an arrival at the back of the queue at

time i, and Ỹi indicates if there was a departure from the front of the queue at

time i. Further, Xi (Yi) counts the total number of arrivals (departures), Qi

denotes the length of the queue at time i, and the initial length of the queue

Q0 ≡ X0 is a non-negative integer-valued random variable with distribution

PQ0 = PX0 . Then note that we have

Xi = Q0 +
i∑
l=1

X̃l (3.1)

Yi = 0 +
i∑
l=1

Ỹl (3.2)

Qi = Q0 +Xi − Yi−1 = Qi−1 + X̃i − Ỹi−1 (3.3)

This is illustrated in Figure 3.2. Note that there is a bijection between

(Q0, X̃1, . . . , X̃n) and the channel input, Xn , (X0, X1, . . . , Xn). For ge-

ometrically distributed service times, the binary random variables Ỹi are

conditionally independent given Qi and are distributed according to the con-

ditional law pertaining to a Z channel

PỸi|Qi(Ỹi|Qi) =


1; Ỹi = 0, Qi = 0

µ̄; Ỹi = 0, Qi > 0

0; Ỹi = 1, Qi = 0

µ; Ỹi = 1, Qi > 0

(3.4)

The vector Y n ∈ Yn is the channel output vector and there is a bijection

between Y n ∈ Yn and (Ỹi : i ∈ [n]). With this the channel law reads

P (yn|xn) =
n−1∏
i=0

P (ỹi|qi) (3.5)
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Ỹi accumul.
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Figure 3.2: A simple time-invariant description of the queuing timing
channel.

We assume the queue to be stable and hence the arrival rate λ = E[Xn]
n

to

be smaller than the serving rate µ. We now state the following theorem:

Theorem 7. [91]: For the queueing timing channel of rate µ given by (3.5),

C(λ) = H(λ)− λ

µ
H(µ) (3.6)

The optimal P ∗Xn is given by X̃i drawn i.i.d. with Bern(λ) distribution and

Q0 independently drawn with πQ given by

πQ(q) =

{
λ̄µ−λµ̄
µ

; q = 0
λ̄µ−λµ̄
µ̄µ

ρq; q > 0
(3.7)

where ρ , λµ̄
λ̄µ

.

Note that ρ < 1 if and only if λ < µ. We will also exploit how under P ∗Xn ,

the output Ỹi’s are i.i.d.:

Theorem 8. (Burke’s Theorem) For any n, for the channel given by (3.5)

and PXn = P ∗Xn given in Theorem 7, the outputs Ỹi’s are i.i.d. with Bern(λ)

distribution.

Proof. The proof is similar to the one for continuous time queues and can be

found in [104].

Throughout the remainder of this chapter, we assume that PXn = P ∗Xn .
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By the above theorem

P (yn) =
n−1∏
i=0

P (ỹi) (3.8)

It is also well-known from Burke’s theorem that under P ∗Xn , the (Qi : i ≥ 0)

form a Markov chain and likewise for the random process
(

(Qi, Ỹi) : i ≥ 0
)

.

The transition probabilities for the Markov chain pertaining to (Qi : i ≥ 0)

are given by

PQi+1|Qi(qi+1|qi) =



λ; qi+1 = qi + 1, qi = 0

λ̄; qi+1 = qi, qi = 0

λ̄µ; qi+1 = qi − 1, qi > 0

λµ̄; qi+1 = qi + 1, qi > 0

1− λµ̄− λ̄µ; qi+1 = qi, qi > 0

(3.9)

If and only if λ < µ, there exists a probability measure πQ on N0 that solves

the system of equations∑
qi∈N0

πQ(qi)PQi+1|Qi(qi+1|qi) = πQ(qi+1) (3.10)

for all qi+1 ∈ N0 and this measure is called the invariant measure. Note that

for irreducible Markov chains the existence of such a probability measure is

equivalent to positive recurrence. For the transition probabilities given it can

be checked that πQ(qi) as defined in Theorem 7 is the solution.

The following lemma uses arguments introduced by Feinstein [96] to give

a lower bound on N(ε, n, λ).

Lemma 2. (Feinstein) For any distribution PXn and any θ ∈ R there exists

an (M,n, ε) code such that

M ≥ eθ {ε− P (i(xn,yn) ≤ θ)} (3.11)
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3.4 Finite-Length Scaling

Recall that by (3.5) and (3.8) the distributions P (yn|xn) and P (yn) factor

and hence

i(xn,yn) =
n−1∑
i=0

log
P (ỹi|qi)
P (ỹi)

=
n−1∑
i=0

f(ỹi, qi) (3.12)

where

f(ỹi, qi) , log
P (ỹi|qi)
P (ỹi)

(3.13)

The composed state ψi = (ỹi, qi) again forms a positive recurrent Markov

chain whose transition probabilities are illustrated in Figure 3.3. The invari-

q= 0, ỹ = 0

q= 1, ỹ = 0

q= 2, ỹ = 0

q= 1, ỹ = 1

q= 2, ỹ = 1

λ̄µ̄

λ̄µ̄

λ̄µ̄

λ̄µ̄

λµ̄

λµ̄

λµ̄

λµ̄

λµ̄

λ̄

λ̄

λµ

λµ

λµ

λµ

λµ

λ̄µ

λ̄µ

λ̄µ

λ̄µ

Figure 3.3: Possible transitions in the Markov chain (Ỹ , Q).

ant measure πΨ for this chain is only a slight extension to πQ:

πΨ (ỹ, q) = PỸi|Qi(ỹ|q)πQ(q) (3.14)

The proof of the following theorem is one of the main contributions of this

chapter because it can be used to proof an asymptotic expansion of the

quantity N(ε, n, λ).

Theorem 9. The asymptotic variance

σ2 = lim
n→∞

1

n
Var(i(xn,yn)) (3.15)
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is well defined, positive and finite, and

σ2 = Var(f(Ψ0)) + 2
∞∑
i=1

Cov(f(Ψ0), f(Ψi)) (3.16)

Further the following Berry-Esseen type bound holds:

sup
ξ∈R

∣∣∣∣P (i(xn,yn)− nC(λ)

σ
√
n

≤ ξ

)
− Φ(ξ)

∣∣∣∣ ≤ O(n−1/2) (3.17)

Proof. A detailed proof can be found in the appendix. We only give a sketch

here. The Markov chain Ψ is aperiodic and irreducible. The state space of

Ψi can be chosen to be X = {0, 1} × N ∪ {(0, 0)}. First we verify that there

exists a Lyapunov function V : X → (0,∞], finite at some ψ0 ∈ X, a finite

set S ⊂ X, and b <∞ such that

E[V (Ψi+1)− V (Ψi)|Ψi = ψ] ≤ −1 + b1S(ψ), ψ ∈ X (3.18)

The chain is skip-free and the found Lyapunov function is linear and hence

also Lipschitz. These properties imply that the chain is geometric ergodic

[105, 106] and the bound in (3.17) hence holds by arguments made in [107].

Another approach towards proofing Berry-Esseen type bounds for Markov

chains is to verify a mixing condition but the resulting bounds are weaker

[108].

Remark 2. An explicit solution to the asymptotic variance of a general

irreducible positive recurrent Markov chain is not available.

Significant research in the area of steady-state stochastic simulation has

focused on obtaining an expression for the asymptotic variance [102,103] and

has yielded a closed form solution only for the class of homogeneous birth-

death processes when f(ψi) simply returns the integer valued state itself.

We build upon an idea introduced in [109] to give an explicit closed form

solution to the asymptotic variance in (3.15).

Theorem 10. The asymptotic variance defined in (3.15) has a closed form
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solution:

σ2 = −Var(f(Ψ0)) + 2
∞∑
i=0

Cov(f(Ψ0), f(Ψi)) (3.19)

where

Var(f(Ψ0)) = log2(
1

λ̄
)πQ(0) + log2(

µ

λ
)µπQ(0)

+ log2(
µ̄

λ̄
)µ̄πQ(0)− C2 (3.20)

∞∑
i=0

Cov(f(Ψ0), f(Ψi)) = log
1

λ̄
(−cM̃

ρ

1− ρ
− cM0ρ)

+ log
µ

λ
cM0

ρ

1− ρ
+ log

µ̄

λ̄

ρ

1− ρ
(cM̃ − ρcM0) (3.21)

and we define

cM0 =
λ̄

µ̄

(
µ log(

µ

λ
) + µ̄ log(

µ̄

λ̄
)− C

)
(3.22)

cM̃ =

{
cM0

µ
+ (C − log

µ

λ
)
πQ(0)

µ̄

}
(3.23)

Proof. Again we only sketch the proof here and refer to the appendix for a

detailed version. For the computation of the sum
∑∞

i=0 Cov(f(Ψ0), f(Ψi)) we

will setup and solve a recursion.

We define

r(ψ, i) =
∑
ψ′∈X

(f(ψ′)− C)πΨ (ψ′)pΨi|Ψ0(ψ|ψ′) (3.24)

Clearly

r(ψ, 0) = (f(ψ)− C)πΨ (ψ) (3.25)

and

Cov(f(Ψ0), f(Ψi)) =
∑
ψ∈X

(f(ψ)− C)r(ψ, i) (3.26)

=
∑
ψ∈X

f(ψ)r(ψ, i) (3.27)
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Note, however, that for the computation of the asymptotic variance we ac-

tually do not even need to know this covariance for each i. It is sufficient to

know its sum. So we define

R(ψ) =
∞∑
i=0

r(ψ, i) (3.28)

exchange limits

∞∑
i=0

Cov(f(Ψ0), f(Ψi)) =
∑
ψ∈X

f(ψ)R(ψ) (3.29)

and derive and solve a recursion for the sequence R(ψ).

Using the result stated in Theorem 9 we can prove the final contribution

of this chapter:

Theorem 11.

logN(n, ε, λ) ≥ nC(λ)−
√
nσQ−1(ε)− 1

2
log n+O(1) (3.30)

where C(λ) is given by (3.6) and σ is defined as in Theorem 9.

Proof. By Theorem 9 ∃A > 0 :

|P ((i(x,y)− nC)/
√
nσ2 ≤ ξ1)− Φ(ξ1)| ≤ A√

n
∀ξ1 ∈ R (3.31)

Let B > A and ξ1 = Φ−1(ε − B√
n
) < Φ−1(ε) = ξ0. Set θ =

√
nσξ1 + nC and

the application of Feinstein’s Lemma [96,110] yields

logN(n, ε, λ)− nC −
√
nσξ0

≥ log

(
ε− P

(
i(x,y)− nC√

nσ
≤ ξ1

))
+
√
nσ(ξ1 − ξ0) (3.32)

≥ log

(
ε− Φ(ξ1)− A√

n

)
+
√
nσO(

1√
n

) (3.33)

Remark 3. We believe that the above result can be strengthened by dropping

the term 1
2

log n from the right hand side of the inequality. By use of hypothe-

sis testing arguments Strassen [94] was able to prove the above bound without

82



the 1
2

log n term for the class of discrete memoryless channels. The used ar-

guments can probably be extended to hold for the non-memoryless channel

considered here as well since the information density factors and by Theorem

9 a Berry-Esseen type bound holds.

Theorem 11 confirms that C(λ) is the operational capacity of the chan-

nel and any rate R < C(λ) is achievable. For illustration we plotted the

approximation

C(λ)− n−1/2σQ−1(ε) (3.34)

to the achievable coding rate for blocklengths ranging between 50 and 3000,

various values for ε and the example values λ = 0.2, µ = 0.8 in Figure 3.4.
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Figure 3.4: Channel coding rate in the finite block-length regime.
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CHAPTER 4

CAN YOU HEAR MY VOICE NOW? IP
OVER VOICE-OVER-IP FOR

CENSORSHIP CIRCUMVENTION

4.1 Introduction

The Internet is playing an ever-increasing role in connecting people from

across the world, facilitating the free circulation of speech, ideas and infor-

mation. This poses serious threats to repressive regimes as it elevates their

citizens’ awareness and provides them a powerful medium to arrange coor-

dinated opposition movements. The recent unrest in the Middle East [111]

demonstrates the very strong power of the Internet in arranging nation-wide

protests that, in several cases, resulted in revolutionizing or even overthrow-

ing repressive regimes. In response to such threats, repressive regimes make

use of different technologies to restrict and monitor their citizens’ access to

the Internet; i.e., they censor the Internet. Censorship devices leverage var-

ious techniques [112,113] ranging from simple IP address blocking and DNS

hijacking to the more complicated and resource-intensive deep packet inspec-

tion (DPI) in order to enforce their blocking and monitoring. Citizens iden-

tified as non-complying with the censors’ restrictions can face different con-

sequences ranging from Internet service disruption to severe life-threatening

punishments [114].

To help censored users gain open access to the Internet, different systems

and technologies have been designed and developed [115–121], generally re-

ferred to as censorship circumvention tools. These systems are composed

of computer and networking technologies that allow Internet users to evade

monitoring, blocking, and tracing of their activities. We observe that the

biggest challenge facing the existing circumvention systems is the lack of “un-

observability”: while these systems can, under certain conditions, circumvent

censorship they are not effectively able to hide the fact that their users are

making use of them [115–119]. For instance, the Tor [118] anonymity net-
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work is not able to effectively evade censorship as a censor can block all

of the publicly advertised IP addresses of Tor relays. This has two major

consequences: first, users caught (by censors) leveraging these circumvention

systems may face various punishments such as imprisoning. Second, and

even more catastrophic, this lack of unobservability usually leads to the lack

of availability ; i.e., circumvention systems with observable communication

are easily blocked by censors. Censors proactively [122] look for Internet ser-

vices that help with censorship circumvention and either block any access to

them by their citizens, or leave them (partially) open to identify their users.

In particular, censors rigorously look for IP addresses belonging to circum-

vention technologies (e.g., HTTP/SOCKS proxies) and add them to the IP

blacklists maintained by their censoring firewalls [112, 123]. Consequently,

citizens under repressive regimes often find it difficult to access the existing

circumvention systems. For instance, the popular Tor network has frequently

been/is blocked by several repressive regimes [122,124].

To provide unobservable circumvention, different approaches have been

taken by the research community. Several systems [115, 117, 125] provide

unobservability by pre-sharing secrets with their intended clients. The Tor

system, for instance, has recently deployed Tor bridges [125], which are volun-

teer proxies whose IP addresses are distributed among Tor users in a selective

manner. This makes Tor bridges less prone to be identified by censors, as

compared to the publicly-advertised Tor entry nodes; however, there are se-

rious challenges in distributing their IP addresses among users [126,127]. In

a similar manner, Infranet [115] and Collage [117] aim for unobservability

by pre-sharing some secret information with their users. This, however, is

neither scalable nor effective as it is challenging to share secrets with a large

number of real users, while keeping them secret from censors at the same

time [128–130].

As another approach to provide unobservability, several systems use vari-

ous obfuscation techniques. For instance, Ultrasurf [131] and Psiphon [132]

try to confuse content filtering tools by obfuscating their design and traffic

patterns. Such obfuscation, however, jeopardizes users’ security, as analyzed

in a recent study [133]. Appelbaum et al. propose pluggable transports [134]

for Tor, a platform that allows one to build protocol-level obfuscation plugins

for Tor traffic. These plugins obfuscate a Tor client’s traffic to Tor bridges

by shaping it to look like another protocol that is allowed by censors. Obf-
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sproxy [135] is the first Tor pluggable transport. It adds an additional layer

of encryption to Tor traffic to obfuscate Tor’s content identifiers, like the

TLS parameters; however, it does not remove Tor’s statistical patterns like

packet timings and sizes. Murdoch et al. [136] mention several weaknesses

for obfsproxy, including being susceptible to either an active or passive at-

tacker who has recorded the initial key exchange. StegoTorus [137] provides

better unblockability, but comes with a much higher overhead [136]. Skype-

Morph [138] morphs Tor traffic into Skype video calls in order to make it

undetectable against deep-packet inspection and statistical analysis. The

common issue with the aforementioned traffic obfuscation techniques is that

they only obfuscate communication patterns, but not the end-hosts. In other

words, while a censor may find it hard to detect the obfuscated traffic using

traffic analysis, it will be able to identify the end-hosts that obfuscate the traf-

fic through other active/passive attacks, e.g., SkypeMorph and StegoTorus

relays can be enumerated using prevalent port knocking techniques [122,139],

zig-zag [140] attack, and insider attack [141]. Once the identity of a circum-

venting end-host is known to a censor, the unobservability is completely lost

and the end-host is easily blocked by the censor. CensorSpoofer [141] is an-

other recent proposal that performs traffic obfuscation by mimicking VoIP

traffic. Like most of the other designs noted above, CensorSpoofer needs to

pre-share some secret information with the clients, posing a scalability chal-

lenge. In addition, it requires a usable upstream channel for its operation

since its circumvented traffic is unidirectional.

As another recent trend, several proposals have sought unobservability by

integrating circumvention into the Internet infrastructure [120, 121]. For in-

stance Telex [120] and Cirripede [121] conceal the circumvented traffic inside

the regular HTTPS traffic thanks to friendly ISPs that deflect/manipulate

the intercepted connections. The real-world deployment of such circumven-

tion systems requires collaboration of several trusted ISPs that make software

and/or hardware modifications to their infrastructure; this does not seem to

be realized in short-time until there are enough financial/political motives for

the ISPs. Moreover, a recent study [142] shows that an adversary capable of

changing routing decisions is able to block these systems.

In this chapter we propose FreeWave, a censorship circumvention infras-

tructure that is highly unobservable (hence, highly available). The main

idea of FreeWave, as shown in Figure 4.1, is to tunnel Internet traffic inside
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Figure 4.1: The main architecture of FreeWave.

non-blocked VoIP communications by modulating them into acoustic signals

that are carried over VoIP connections. For a censored user to use FreeWave

for circumvention, she needs to setup a VoIP account with a public VoIP

provider, and also to install FreeWave’s client software on her machine. Part

of the FreeWave system is a FreeWave server that listens on several publicly

advertised VoIP IDs to serve FreeWave clients. To make a FreeWave connec-

tion, a user’s FreeWave client software makes VoIP connections to FreeWave

server’s VoIP IDs. The client and server, then, tunnel the circumvented In-

ternet traffic inside the established VoIP connections, by modulating network

packets into acoustic signals carried by the established VoIP connections.

We claim that FreeWave provides strong unobservability by performing

two kinds of obfuscations: traffic obfuscation and server obfuscation. First, as

FreeWave tunnels Internet traffic inside actual, encrypted VoIP connections,

its traffic patterns are very hard to distinguish from benign VoIP connections.

Traffic obfuscation is also aimed for by recent morphing-based techniques

like SkypeMorph [138] and StegoTorus [137]; however, FreeWave provides

stronger traffic obfuscation as it completely runs the target protocol instead

of partially imitating it. The second obfuscation performed by FreeWave,

which is unique to FreeWave, is server obfuscation, which prevents censors

from detecting circumvented traffic by matching the destination addresses of

traffic. Server obfuscation is an important feature that similar circumvention

systems such as SkypeMorph [138] and StegoTorus [137] fail to provide. As

we describe later in this chapter, the way the FreeWave server is connected

to the Internet results in getting FreeWave’s VoIP traffic relayed by various,

oblivious VoIP peers, preventing a censor from blocking/identifying Free-

Wave’s VoIP traffic based on IP addresses (see Figure 4.1). For instance,

FreeWave connections made through Skype get relayed by Skype supern-
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odes [143], which are oblivious Skype users residing outside1 the censorship

region. As another example, if FreeWave uses Google Voice, FreeWave con-

nections will get relayed by Google servers that are oblivious to the cir-

cumvention process. Server obfuscation, as defined above, is missing in all

previous designs except CensorSpoofer [141]. For instance, in the case of Tor

pluggable transports like SkypeMorph [138] and StegoTorus [137], once the

IP address of the deploying Tor bridge is revealed to a censor (e.g., using port

knocking [122, 126, 127, 139]), the unobservability is lost and the censor will

be able to identify/block users connecting to that Tor bridge. In FreeWave,

on the other hand, even if a censor identifies the IP address belonging to a

FreeWave server it will not be able to block connections to it since users’ con-

nections to that FreeWave server are not direct connections, but are relayed

through varying, oblivious VoIP nodes. We provide a thorough comparison

of FreeWave with similar obfuscation-based techniques in Section 4.9.

The strong unobservability of FreeWave makes it highly unblockable (i.e.,

available). FreeWave’s availability is tied to the availability of the VoIP ser-

vice: Since the operation of FreeWave is not bound to a specific VoIP provider,

in order to block FreeWave a censor needs to block all VoIP connections with

the outside world. This is not desirable by the censoring ISPs due to differ-

ent business and political implications. VoIP constitutes an important part

of today’s Internet communications [146–148]; a recent report [147] shows

that about one-third of U.S. businesses use VoIP solutions to reduce their

telecommunications expenses, and the report predicts the VoIP penetration

to reach 79% by 2013, a 50% increase compared to 2009.

We implement a prototype of FreeWave over the popular VoIP service of

Skype and measure its performance. To achieve reliable communication over

VoIP connections we design a communication encoder/decoder tailored for

the VoIP’s lossy communication channel. Specifically, we take advantage of

Turbo codes and QAM modulation techniques [84, 149] in order to reliably

encode the circumvented traffic inside the VoIP connections. Our evalua-

tions show that FreeWave provides connection bit rates that are suitable for

regular web browsing. We validate FreeWave’s usability by clients that are

1The supernodes assigned to a particular Skype client by the Skype protocol are ge-
ographically close to that client for better quality of service; hence a FreeWave server is
expected to use nearby supernodes. In addition, a FreeWave server can adjust the list of
its Skype supernodes [144,145], as described later.

88



geographically far away from the FreeWave server.

Contributions: In this chapter we make the following main contributions:

1. We propose FreeWave, a novel infrastructure for censorship circumven-

tion that works by modulating Internet traffic into the acoustic signals

carried over VoIP connections. The use of actual VoIP connections,

as well as being relayed by oblivious VoIP nodes, provides promising

unobservability for FreeWave.

2. We design communication encoders and decoders to efficiently modu-

late Internet traffic into acoustic signals.

3. We prototype FreeWave on the popular VoIP service of Skype and

evaluate its performance and security.

The rest of this chapter is organized as follows: In Section 4.2 we review

our threat model and the goals in designing our circumvention system. We

describe the design of our proposed circumvention system, FreeWave, in Sec-

tion 4.3, and Section 4.4 discusses our design details. In Section 4.5, we

discuss the features of our designed circumvention system. We thoroughly

analyze the security of FreeWave in Section 4.6. In Section 4.7 we describe

the design of MoDem, the communication block of FreeWave software. We

describe our prototype implementation in Section 4.8 along with the evalua-

tion results. In Section 4.9 we compare FreeWave with two recent proposals

of SkypeMorph [138] and CensorSpoofer [141]; this is followed by additional

related work in Section 4.10. In Section 4.11 we discuss FreeWave’s limi-

tations and several recommendations. Finally, the chapter is concluded in

Section 4.12.

4.2 Preliminaries

4.2.1 Threat Model

We assume that a FreeWave client is connected to the Internet through a

censoring ISP, e.g., an ISP that is controlled and regulated by a repressive

regime. Based on the regulations of the censoring ISP its users are not
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allowed to connect to certain Internet destinations, called the censored desti-

nations. The users are also prohibited from using censorship circumvention

technologies that would help them to evade the censoring regulations. The

censoring ISP uses a set of advanced technologies to enforce its censoring

regulations, including IP address blocking, DNS hijacking, and deep packet

inspection [112,113]. The censoring ISP also monitors its users’ network traf-

fic to identify and block any usage of censorship circumvention tools; traffic

analysis can be used by the censor as a powerful technique for this purpose.

We assume that the censoring ISP enforces its regulations such that it does

not compromise the usability of the Internet for its users, due to different

political and economic reasons. In other words, the enforced censorship does

not disable/disrupt key Internet services. In particular, we consider VoIP

as a key Internet service in today’s Internet [146, 148, 150], and we assume

that, even though a censor may block certain VoIP providers, the censor will

not block all VoIP services. VoIP constitutes a key part in the design of

FreeWave.

4.2.2 Design Goals

We consider the following goals in the design and evaluation of FreeWave.

Later in Section 4.5, we discuss these features for the FreeWave circumvention

system proposed in this chapter and compare FreeWave with related work.

Unblockability: The main goal of a censorship circumvention system is

to help censored users gain access to censored Internet destinations. As a

result, the most trivial property of a circumvention system is being accessible

by censored users, i.e., it should be unblockable by censors.

Unobservability: Unobservability is to hide users’ utilization of a circum-

vention system from censorship authorities, which is a challenging feature

to achieve due to the recent advances in censorship technologies [112]. The

importance of unobservability is two-fold; first, an observable circumvention

can jeopardize the safety of a user who has been caught by the censor while

using the circumvention system. Second, a weak unobservability commonly

results in a weak unblockability, as it allows censors to more easily identify,

hence block, traffic generated by the circumvention system.

Security: Several security considerations should be made once analyzing a
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circumvention system. These considerations include users’ anonymity, con-

fidentiality, and privacy against various parties including the censors, the

circumvention system, and third parties.

Deployment feasibility: An important feature of a circumvention system

is the amount of resources (e.g., hardware, network bandwidth, etc.) required

for it to be deployed in the real world. A circumvention system is also desired

to have few dependencies on other systems and entities in order to make it

more reliable, secure, and cost-effective.

Quality of service: A key feature in making a circumvention system

popular in practice is the quality of service provided by it in establishing

circumvented connections. Two important factors are connection bandwidth

and browsing latency.

4.3 FreeWave Scheme

In this section, we describe the design of FreeWave censorship circumven-

tion. Figure 4.1 shows the main architecture of FreeWave. In order to get

connected through FreeWave, a user installs a FreeWave client on her ma-

chine, which can be obtained from an out-of-band channel, similar to other

circumvention systems. The user sets up the installed FreeWave client by en-

tering her own VoIP ID and also the publicly advertised VoIP ID of FreeWave

server. Once the FreeWave client starts up, it makes a VoIP audio/video call

to FreeWave server’s VoIP ID. As discussed in Section 4.4.2, the FreeWave

server is configured such that VoIP connections initiated by clients are relayed

through various oblivious VoIP peers, e.g., Skype supernodes; this is a key

security feature of FreeWave as it prevents a censor from blocking FreeWave’s

VoIP connections using IP address blocking. Also, since FreeWave’s VoIP

connections are end-to-end encrypted, a censor will not be able to identify

FreeWave’s VoIP connections by analyzing traffic contents, e.g., by looking

for the VoIP IDs. Using the established VoIP connection, a FreeWave client

circumvents censorship by modulating its user’s Internet traffic into acoustic

signals that are carried over by such VoIP connections. FreeWave server de-

modulates a client’s Internet traffic from the received acoustic signals, and

proxies the demodulated traffic to the requested Internet destinations.

Next, we introduce the main components used in FreeWave and describe
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how these components are used in the design of FreeWave’s client and server.

4.3.1 Components of FreeWave

In this section, we introduce the main elements used in the design of Free-

Wave client and server software. The first three components are used by

both FreeWave client and FreeWave server, while the fourth element is only

used by FreeWave server.

VoIP client VoIP client is a Voice-over-IP (VoIP) client software that al-

lows VoIP users to connect to one (or more) specific VoIP service(s). In

Section 4.4.2, we discuss the choices of the VoIP service being used by Free-

Wave.

Virtual sound card (VSC) A virtual sound card is a software application

that uses a physical sound card installed on a machine to generate one (or

more) isolated, virtual sound card interfaces on that machine. A virtual

sound card interface can be used by any application running on the host

machine exactly the same way a physical sound card is utilized. Also, the

audio captured or played by a virtual sound card does not interfere with that

of other physical/virtual sound interfaces installed on the same machine. We

use virtual sound cards in the design of FreeWave to isolate the audio signals

generated by FreeWave from the audio belonging to other applications.

MoDem FreeWave client and server software use a modulator/demodulator

(MoDem) application that translates network traffic into acoustic signals and

vice versa. This allows FreeWave to tunnel the network traffic of its clients

over VoIP connections by modulating them into acoustic signals. We provide

a detailed description of our MoDem design in Section 4.7.

Proxy FreeWave server uses an ordinary network proxy application that

proxies the network traffic of FreeWave clients, received over VoIP connec-

tions, to their final Internet destinations. Two popular choices for FreeWave’s

proxy are the HTTP proxy [151] and the SOCKS proxy [152]; a SOCKS

proxy supports proxying of a wide range of IP protocols, while an HTTP

proxy only supports proxying of HTTP/HTTPS traffic, but it can perform

HTTP-layer optimizations like pre-fetching of web contents. Several proxy

solutions support both protocols.

92



Web 
Browser MoDem VSC VoIP

client

HTTP 
traffic Audio Audio VoIP

traffic VoIP
peer

The 
Internet

FreeWave Client

Figure 4.2: The main components of FreeWave client.

4.3.2 Client Design

The FreeWave client software, installed by a FreeWave user, consists of three

main components described above: a VoIP client application, a virtual sound

card (VSC), and the MoDem software. Figure 4.2 shows the block diagram

of the FreeWave client design. MoDem transforms the data of the network

connections sent by the web browser into acoustic signals and sends them

over to the VSC component. The FreeWave MoDem also listens on the

VSC sound card to receive specially formatted acoustic signals that carry

modulated Internet traffic; MoDem extracts the modulated Internet traffic

from such acoustic signals and sends them to the web browser. In a sense,

the client web browser uses the MoDem component as a network proxy, i.e.,

the listening port of MoDem is entered in the HTTP/SOCKS proxy settings

of the browser.

The VSC sound card acts as a bridge between MoDem and the VoIP client

component, i.e., it transfers audio signals between them. More specifically,

the VoIP client is set up to use the VSC sound card as its “speaker” and “mi-

crophone” devices (VoIP applications allow a user to select physical/virtual

sound cards). This allows MoDem and the VoIP client to exchange audio

signals that contain the modulated network traffic, isolated from the audio

generated/recorded by other applications on the client machine.

For the FreeWave client to connect to a particular FreeWave server it only

needs to know the VoIP ID belonging to that FreeWave server, but not the IP

address of the FreeWave server. Every time the user starts up the FreeWave

client application on her machine, the VoIP application of FreeWave client

initiates an audio/video VoIP call to the known VoIP ID of the FreeWave

server.
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Figure 4.3: The main components of FreeWave server.

4.3.3 Server Design

Figure 4.3 shows the design of FreeWave server, which consists of four main

elements. FreeWave server uses a VoIP client application to communicate

with its clients through VoIP connections. A FreeWave server chooses one

or more VoIP IDs, which are provided to its clients, e.g., through public

advertisement.

The VOIP client of the FreeWave server uses one (or more) virtual sound

cards (VSC) as its “speaker” and “microphone” devices. The number of

VSCs used by the server depends on the deployment scenario, as discussed

in Section 4.4.1. The VSC(s) are also used by the MoDem component, which

transforms network traffic into acoustic signals and vice versa. More specif-

ically, MoDem extracts the Internet traffic modulated by FreeWave clients

into audio signals from the incoming VoIP connections and forwards them to

the last element of the FreeWave server, FreeWave proxy. MoDem also mod-

ulates the Internet traffic received from the proxy component into acoustic

signals and sends them to the VoIP client software through the VSC in-

terface. The FreeWave proxy is a regular network proxy, e.g., an HTTP

proxy, that is used by the FreeWave server to connect FreeWave clients to

the open Internet. As mentioned above in Section 4.3.2, the web browser of

a FreeWave client targets its traffic to a network proxy; such proxied traffic

is received and handled by FreeWave server’s proxy server (through the VoIP

connections, as described).
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4.4 Other Design Details

4.4.1 Deployment Scenarios

The FreeWave system proposed in this chapter can be deployed by “good”

entities that run FreeWave servers to help censored users gain an uncensored

access to the Internet. We consider the following scenarios for a real-world

deployment of FreeWave. In Section 4.6, we discuss the security considera-

tions for each of these scenarios.

Personal deployment: A person having an open access to the Internet

can set up a personal FreeWave server on her personal machine, anonymously

helping censored users evade censorship. Such a person can, then, advertise

her VoIP ID (used with her FreeWave server) publicly (e.g., through social

networks) and anyone learning this ID would be able to connect to the In-

ternet by running FreeWave client software. To save bandwidth, she can

configure her FreeWave server to enforce restrictions on the quality of service

provided to clients.

Central VoIP-center: FreeWave service can be deployed and maintained

by a central authority, e.g., a for-profit or non-profit organization. The de-

ploying organization can build and run FreeWave servers that are a capable

of serving large numbers of FreeWave clients. To do so, the deployed Free-

Wave servers should utilize several physical/virtual sound cards in parallel.

Also, by creating VoIP accounts on several different VoIP service providers,

such a central FreeWave system will be able to service FreeWave clients who

use various VoIP services. Such a central deployment of FreeWave can oper-

ate for commercial profit, e.g., by charging clients for the used bandwidth,

or can be established as a non-profit system, e.g., being funded by NGOs or

pro-freedom governments.

Central phone-center: As an alternative approach, FreeWave can be

deployed using an automated telephone center. More specifically, instead of

VoIP IDs, FreeWave will publicize several phone numbers, which are used by

clients to connect to the FreeWave server. FreeWave users need to use the

exact same FreeWave client software, except that instead of making VoIP

calls to a VoIP IDs they will make VoIP calls to FreeWave server’s phone

numbers. Compared to the “central VoIP-center” scenario, this has the big
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advantage that clients can arbitrarily choose any VoIP service provider for

the client software, while in the “central service” design users need to choose

from the VoIP systems supported by FreeWave server (though a powerful

FreeWave server can support many VoIP systems).

Distributed service: FreeWave service can also be deployed in a dis-

tributed architecture, similar to that of Tor [118] anonymity network. More

specifically, a FreeWave network can be built consisting of a number of vol-

unteer computers that run instances of FreeWave server software on their

machines. A central authority can manage the addition of new volunteer

nodes to the system and also the advertisement (or distribution) of their

VoIP IDs to the clients.

4.4.2 The Choice of VoIP Systems

There are numerous free/paid VoIP service providers that can be utilized

by the FreeWave system, e.g., Skype2, Vonage3, iCal4, etc. A VoIP service

provider usually supplies its VoIP client software to its users, but there are

also some VoIP software that can be used for different VoIP accounts, e.g.,

PhonerLite5. In this section, we mention some candidate VoIP services that

can be used by FreeWave.

Skype

Skype is a peer-to-peer VoIP system that provides voice calls, instant messag-

ing, and video calls to its clients over the Internet. Skype is one of the most

popular VoIP service providers with over 663 million users as of September

2011 [153].

Skype uses an undisclosed proprietary design, which has been partly reverse-

engineered in some previous research [144, 145, 154]. These studies find that

Skype uses a peer-to-peer overlay network with the Skype users as its peers.

There are two types of nodes on Skype: ordinary nodes, and supernodes (SN).

Any Skype client with a public IP address, having sufficient CPU, memory,

2http://www.skype.com
3http://www.vonage.com
4http://www.icall.com/
5http://www.phonerlite.de/index_en.htm
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and network bandwidth serves as a supernode, and all the other nodes are or-

dinary nodes. In addition, Skype uses a central login server that keeps users’

login credentials and is used by Skype users to register into Skype’s overlay

network. Apart from the login server, all Skype communications work in a

peer-to-peer manner, including the user search queries and online/offline user

information.

A key feature that makes Skype an ideal choice for FreeWave is its peer-

to-peer network. Depending on its network setting [143], an ordinary Skype

user deploys some supernodes as her proxies to connect to the Skype net-

work, to make/receive calls, and to update her status. In particular, a Skype

call made toward an ordinary Skype node gets relayed to her by her su-

pernodes [144, 145]. Each ordinary node maintains a supernode-cache [145]

table that keeps a list of reachable (usually nearby) supernodes, discovered

by the Skype protocol. We use this feature to provide server obfuscation for

FreeWave: By having our FreeWave server act as an ordinary Skype node,

the VoIP connections that it receives will be relayed by alternative supern-

odes, rendering IP address blocking impossible. We discuss this further in

Section 4.6. Also note that a censor cannot map a FreeWave server to its

supernodes since the supernode-cache table is a large, dynamic list; further, a

Skype client can change its supernodes more frequently by flushing [144,145]

its supernode-cache.

Based on the criteria mentioned for a supernode, an easy way to be treated

as an ordinary node by Skype is to reside in a firewalled, NATed network

subnet [143, 145]. As another interesting feature of Skype for FreeWave is

that all Skype connections are secured by end-to-end encryption [144,145].

SIP-Based VoIP

Session Initiation Protocol (SIP) [155] is a lightweight, popular signaling

protocol and is widely used by VoIP providers, e.g., SFLphone6, Zfone7,

and Blink8, to establish calls between clients. A SIP-based VoIP system

consists of three main elements [155]: 1) user agents that try to establish

SIP connections on behalf of users, 2) a location service that is a database

6http://sflphone.org/
7http://zfoneproject.com/
8http://icanblink.com/
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keeping information about the users, and 3) a number of servers that help

users in establishing SIP connections. In particular, there are two types of

SIP servers; registrar servers receive registration requests sent by user agents

and update the location service database. The second types of SIP servers

are proxy servers that receive SIP requests from user agents and other SIP

proxies and help in establishing the SIP connections.

Once a SIP connection is established between two user agents a media

delivery protocol is used to transfer media between the users. Most of the

SIP-based VoIP systems use the Real-time Transport Protocol (RTP) [156]

to exchange audio data, and the Real-Time Transport Control Protocol

(RTCP) [156] protocol to control the established RTP connections. User

agents in a SIP-based VoIP system are allowed to use an encryption-enabled

version of RTP, called Secure Real-time Transport Protocol (SRTP) [157],

in order to secure their VoIP calls. Note that the encryption supported by

SRTP is performed end-to-end by SIP agents and VoIP servers are not re-

quired to support encryption. We mandate the SIP-based design of FreeWave

to use SRTP for media transfer.

Similar to Skype, if a user agent is behind NAT or a firewall, it will use an

intermediate node to establish its VoIP connections. In particular, two pop-

ular techniques used by VoIP service providers to bypass NAT and firewalls

are session border controller (SBC) [158] and RTP bridge servers [159]. As

in the case of the Skype-based FreeWave, putting a FreeWave server behind

a firewall masks its IP address from censors, as the VoIP calls to it will be

relayed through oblivious intermediate nodes. However, better care needs to

be taken in this case since, unlike Skype, SIP-based VoIP systems are not

peer-to-peer.

Centralized VoIP

Several VoIP providers use their own servers to relay VoIP connections, in

order to improve connectivity, regardless of the VoIP protocol that they use.

One interesting example is the Google Voice9, which relays all of its calls

through Google servers, hence disguising a callee’s IP address from a censor.

Also note that the calls in Google Voice are encrypted.

9https://www.google.com/voice
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4.5 Evaluation of the Design Goals

In Section 4.2.2, we listed several features that we consider in designing an

effective circumvention system. Here, we discuss the extent to which our

proposed system, FreeWave, achieves such requirements.

Unblockability: In order to use FreeWave, a client only needs to know the

VoIP ID of the FreeWave server, i.e., server-id, but no other secret/public

information like the server’s IP address. server-id is distributed in a public

manner to the users, so we assume that it is also known to censors. Con-

sidering the use of encrypted VoIP connections by FreeWave, this public

knowledge of server-id does not allow censors to identify (and block) the

VoIP connections to the FreeWave server. In addition, a censor will not be

able to identify FreeWave’s VoIP connections from their IP addresses since,

as discussed in Section 4.4.2, the encrypted VoIP connections to the Free-

Wave server are relayed through oblivious, intermediate nodes (given the

FreeWave server is set up appropriately). For instance, in Skype-based Free-

Wave the VoIP connections to the FreeWave server are relayed by oblivious

Skype supernodes. Also, FreeWave server is not mapped to a particular set

of supernodes, i.e., its VoIP connections are relayed through a varying set of

super nodes. In all of the above arguments, we assume that the VoIP service

provider used by FreeWave is not colluding with the censors; otherwise, the

unobservability is lost. Such collusion could happen if a centralized VoIP

service, e.g., Google Voice, informs censors of the clients calling FreeWave’s

Google Voice ID, or if the censors control the supernodes used by a FreeWave

server.

Another point in making FreeWave unblockable is that it does not depend

on a particular VoIP system, and can select from a wide range of VoIP

providers. As a result, in order to block FreeWave, censors will need to block

all VoIP services, which is very unlikely due to several political and economic

considerations.

Note that unblockability is a serious challenge with many existing circum-

vention systems, as the very same information that they advertise for their

connectivity can be used by censors to block them. For example, the Tor [118]

system requires its clients to connect to a public set of IP addresses, which

can be IP-filtered by censors. More recently, Tor has adopted the use of

Tor bridges [125], which are volunteer proxies with semi-public IP addresses.
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Unfortunately, there are different challenges [122, 126, 127, 130, 139] in dis-

tributing the IP addresses of Tor bridges only to real clients, but not to the

censors.

Unobservability: The arguments made above for FreeWave’s unblocka-

bility can also be used to justify its unobservability. As mentioned above,

even though FreeWave server’s VoIP ID (server-id) is assumed to be known

to censors, the end-to-end encryption of VoIP connections prevents a censor

from observing users making VoIP connections to server-id. In addition,

VoIP relays sitting between FreeWave clients and a FreeWave server, e.g.,

Skype supernodes, foil the identification of FreeWave connections through

IP address filtering.

Deployment feasibility: The real-world deployment of FreeWave does not

rely on other entities. This is in contrast to some recent designs that need col-

laboration from third parties for their operation. For instance, Infranet [115]

requires support from some web destinations that host the circumvention

servers. As another example, several recent proposals [120, 121, 160] rely on

the collaboration from friendly ISPs for their operation.

Quality of service: In Section 4.8, we discuss the connection performance

provided by our prototype implementation of FreeWave. Our results show

that FreeWave provides reliable connections that are good for normal web

browsing.

4.6 Security Analysis

In this section, we discuss the security of FreeWave clients to the threats

imposed by different entities.

4.6.1 Security Against Censors

The end-to-end encryption of VoIP connections protects the confidentiality

of the data sent by FreeWave clients against a monitoring censor, even if

the censor is able to identify VoIP connections targeted to FreeWave. Such

end-to-end encryption also ensures the web browsing privacy of FreeWave

clients. As mentioned in Section 4.4.2, Skype calls are encrypted end-to-end,
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and SIP-based VoIPs also provide end-to-end encryption using the SRTP

protocol. In the case of centralized VoIP services, like the Google Voice, the

encryptions are usually client-to-server; hence the FreeWave client should

ensure that its VoIP provider is not colluding with the censors.

Even though FreeWave uses encrypted VoIP connections, a censor may still

try to identify FreeWave-generated VoIP connections by performing traffic

analysis, i.e., by analyzing communication patterns. The use of actual VoIP

connections by FreeWave (instead of shaped connections as in [137, 138])

makes traffic analysis particularly hard. We show this in Section 4.8.3 by

analyzing FreeWave’s VoIP connections and comparing them with regular

VoIP connections. As discussed in Section 4.8.3, the choice of the VoIP

system affects the feasibility of traffic analysis. Please see Section 4.8.3 for

more discussion on FreeWave traffic analysis.

4.6.2 Security Against FreeWave Servers

A FreeWave server only knows the VoIP IDs of its client, but not their IP

addresses since the VoIP connections are being relayed through intermediate

VoIP nodes. As a result, unless the VoIP service (e.g., the Google Voice

server, or a Skype supernode owned by a FreeWave server) is colluding with

the FreeWave server, the FreeWave server will not be able to link VoIP IDs to

IP addresses, i.e., the client is anonymous to the server. Note that anonymity

against circumvention systems is not demanded by typical censored users who

are only willing to access non-sensitive censored information like the news,

and in fact some popular circumvention mechanisms do not provide such

anonymity, e.g., the single-proxy based systems such as the Anonymizer [119].

A FreeWave client can strengthen its anonymity against the FreeWave server

in different ways. For instance, she can enforce its VoIP traffic to be relayed

by additional intermediate VoIP relays, e.g., by the client’s Skype supernodes.

In the basic design of FreeWave mentioned above, a FreeWave server can

observe the traffic contents exchanged by a FreeWave client, since the tun-

neled traffic is not always encrypted. However, a client can easily ensure

security and privacy from the server by using an extra layer of encryption.

For instance, a client can use FreeWave to get connected to an anonymity

system like Anonymizer [119], and then use the tunneled connection with this
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anonymity system to browse the Internet. This secures this client’s traffic

from the FreeWave server, as well as making it confidential. Note that con-

sidering the fact that FreeWave clients are anonymous to FreeWave servers,

clients may opt not to use such an additional protection for low-sensitive

activities like web browsing.

4.6.3 Security Against VoIP Providers

Except for the centralized VoIP services, the VoIP connections between Free-

Wave clients and servers are encrypted end-to-end using the keys shared

through the VoIP protocol. In the case of a centralized VoIP service, like

the Google Voice, FreeWave parties can exchange a key using a key sharing

mechanism, like the Diffie-Hellman key exchange [161], over the established

FreeWave VoIP. As a result, the VoIP provider will not be able to observe

the data being communicated or the web destinations being browsed. How-

ever, the VoIP service provider might be able to identify VoIP IDs that have

made VoIP calls to a FreeWave server. As a result, in order to ensure its

unobservability FreeWave needs to use VoIP providers that are not colluding

with the censors. Note that FreeWave does not rely on a particular VoIP

system and any VoIP provider can be used for its operation.

4.7 FreeWave MoDem

The MoDem component is one of the main components of both FreeWave

client and FreeWave server application, which translates Internet traffic into

acoustic signals and vice versa. MoDem consists of a modulator and a demod-

ulator. MoDem’s modulator modulates data (IP bits) into acoustic signals,

and MoDem’s demodulator extracts the encoded data from a received acous-

tic signal. In the following, we describe the design of MoDem’s modulator

and demodulator.

4.7.1 Modulator Description

We design a bit-interleaved coded modulation (BICM) [149] for MoDem’s

modulator, which is shown in Figure 4.4. First, the modulator encodes the
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Figure 4.4: The modulator block of FreeWave’s MoDem. The modulated
data is wrapped by a wrapper protocol before being transformed into
acoustic waveforms.

information bits, {ai}, i.e., IP traffic, using a channel encoder with rate Rc.

The encoded stream, {bi}, is permuted using a random interleaver [149],

and the interleaved sequence is then partitioned into subsequences cn =

{c1
n, . . . , c

Q
n } of length-Q (n is the partition index and Q is a parameter of our

modulator). Finally, a QAM mapper [149] generates the modulated data by

mapping each subsequence cn to a 2Q-ary quadrature amplitude modulation

symbol.

We design a wrapper protocol to carry the modulated data. This wrapper

performs three important tasks: 1) it allows a demodulator to synchronize

itself with the modulator in order to correctly identify the starting points of

the received data; 2) it lets the sender and receiver negotiate the modulation

parameters; and, 3) it lets the demodulator adapt itself to the time-varying

channel. Figure 4.4 shows the modulated data being wrapped by our wrapper

protocol. As can be seen, the modulated bit stream is converted into data

frames that are sent over the VoIP channel. Each data frame starts with

a known preamble block, which is needed for synchronization as well as for

receiver initialization purposes. The frame preamble is followed by a signal

block that is used to communicate the modulation and coding parameters

used for this particular frame. The signal block is followed by N blocks of

training and data symbols. The data symbols are the output of the QAM

modulator. The training blocks are needed to adapt the demodulator to the

time-varying channel.

The data frames, as generated above, are sent over the VoIP channel using

acoustic signals. In particular, for xn being the n-th symbol in a frame, the
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frame is mapped to a waveform x(t) : R→ C as follows:

x(t) =
∑
l

xlp(t− lT ) (4.1)

where p(t) is a basic pulse shifted by multiples of the symbol period T . This

signal is then transformed to a passband [84] signal with the center frequency

of fC :

xPB(t) = 2 Re{x(t)e2πifCt} (4.2)

which is then sent over the VoIP channel (by getting sent to the virtual sound

card). Re{} returns the real component of a complex number, and i is the

imaginary unit.

4.7.2 Demodulator Description

Figure 4.5 shows MoDem’s demodulator, which is designed to effectively

extract the data that the modulator embedded into an audio signal. For an

audio waveform, r(t), received from the virtual sound card, the demodulator

shifts its spectrum by the center frequency fC , passes it through a low-

pass filter and then samples the resulting signal at symbol rate (equal to

1/T ). The synchronizer correlates the preamble block with the obtained

samples, declares the point of maximum correlation as the starting point of

the received frame, discards all samples before this point, and enumerates

the remaining samples by rn(n = 1, 2, ...). We assume the voice channel to

be linear and can hence write [84]:

rn =

Kp∑
k=−Kf

hn,kxn−k + wn (4.3)

where n and k are time and delay indices, respectively. Also, wn is a complex

white Gaussian noise process, which models the noise added to the modu-

lated data as a result of the noisy channel (e.g., due to VoIP codec’s lossy

compression). Moreover, hn,k is the channel gain [84], which may vary in

time. The channel length is assumed to be at most Kf +Kp+ 1, where Kf is
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Figure 4.5: Block diagram of MoDem’s demodulator.

the length of the precursor and Kp is the length of the postcursor response.

The demodulator passes the discrete stream of {r} through a Turbo equal-

izer [84]. The goal of this equalizer is to obtain an estimation of {x}, i.e.,

the discrete modulated data. The estimated data is passed to a channel

decoder, which is the equivalent decoder for the encoder used by MoDem’s

modulator. We also put an interleaver and a de-interleaver block between

the Turbo equalizer and the channel decoder modules; this is to uniformly

distribute burst bit errors, generated in the channel, across the stream in

order to improve the decoding process. This is because our channel decoder

performs well with distributed errors, but poorly with bursty errors.

4.8 Prototype and Evaluation

In this section, we describe our prototype implementation and discuss its

connection performance.

4.8.1 Implementation Setup

We have built a prototype implementation of FreeWave over Skype. Our

MoDem component uses Matlab’s libraries for acoustic signal processing,

and we use Virtual Audio Card 10 as our virtual sound card (VSC) software.

We also use the free version of Skype client software11 provided by Skype Inc.

as our VoIP client component. Our MoDem software, as well as the Skype

client, is set up to use the Virtual Audio Card as its audio interface. We

have built our FreeWave client and FreeWave server using the components

mentioned above. In order to emulate a real-world experience, i.e., a long

distance between a FreeWave client and a FreeWave server, we connect our

10http://software.muzychenko.net/eng/vac.htm
11http://www.skype.com/intl/en-us/get-skype/
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FreeWave client to the Internet though a VPN connection. In particular,

we use the SecurityKISS12 VPN solution that allows us to pick VPN servers

located in different geographical locations around the world. Note that this

identifies the location of our FreeWave clients; our FreeWave server is located

in Champaign, IL, USA.

MoDem specifications: Our evaluations show that the data rates that

can be achieved with our system clearly depend on the bandwidth of the

Internet connection and the distance between the client and server. The

minimum bandwidth required for a voice call is 6 kbps for both upload and

download speeds, according to Skype. For the pulse function of MoDem’s

modulator, p(t) (Section 4.7), we use a square-root raised cosine filter with

a roll-off factor 0.2 and a bandwidth of 1/T . The carrier frequency fC is

chosen such that the spectrum of the voiceband is always covered. At the

demodulator, the same square-root raised cosine filter is used for low-pass

filtering. Our communication system automatically adjusts the symbol con-

stellation size Q, the channel coding rate Rc, and the symbol period T such

that the best possible data rate is achieved. The receiver knows how well

the training symbols were received, and based on this feedback the modu-

lator can optimize the data rate. The relationship between the data rate R

and the above parameters is R = (QRc)/T . Our designed demodulator is

iterative [84]. The number of iterations needed for convergence depends on

the channel condition, which is typically measured by means of the signal to

noise power ratio, the SNR.

4.8.2 Connection Performance

Connection data rates: Table 4.1 shows the bit rates achieved by Free-

Wave clients connecting from different geographic locations to our FreeWave

server, located in Champaign, IL, USA. At the beginning of each FreeWave

connection, our client runs an assessment subprotocol to identify the best

codecs and the reliable data rate. The table lists the best compromise be-

tween data rates and packet drop rates, for different clients. As can be seen,

clients in different parts of Europe are reliably able to get connection bit

rates of 16kbps by using FreeWave over Skype. Users within the US are

12http://www.securitykiss.com/
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Figure 4.6: BER versus SNR for FreeWave.

Table 4.1: Evaluation results of FreeWave.

Client location
MoDem parameters

Data rate
Packet

Q 1/T RC drop rate
Berlin, Germany 4 8 kHz 0.5 16000 bps 0

Frankfurt, Germany 4 8 kHz 0.5 16000 bps 0
Paris, France 4 8 kHz 0.5 16000 bps 0

Maidenhead, UK 4 8 kHz 0.5 16000 bps 0
Manchester, UK 4 8 kHz 0.5 16000 bps 0

Lodz, Poland 4 8 kHz 0.5 16000 bps 0.06
Chicago, IL 4 9.6 kHz 0.5 19200 bps 0.01

San Diego, CA 4 9.6 kHz 0.469 18000 bps 0

able to achieve higher data rates, e.g., 19.2kbps for a client in Chicago, IL.

Note that the distance between a FreeWave client and the FreeWave server

slightly affects the achievable data rates. To illustrate this, Figure 4.6 shows

the bit error rate (BER) performance of our designed demodulator for differ-

ent SNRs in the log-scale for a 19kbps FreeWave connection. As can be seen,

for SNRs larger than 5.4dB the BER tends to zero (the zero value cannot

be shown in the log-scale figure). A distributed deployment of FreeWave can

provide users from many different geographic locations with the same reliable

data rate speeds; for instance, FreeWave servers running in Europe can assist

FreeWave users from the Middle East better than the FreeWave servers that

are located in the US.

Maximum achievable data rates: As illustrated above, our FreeWave

prototype is able to reliably achieve bit rates of up to 19kbps, using the

MoDem component designed in this chapter. It is possible to design more

complicated MoDems that can achieve higher bit rates; however, a MoDem
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will not be able to achieve arbitrarily large data rates. This is due to the fact

that each VoIP codec samples speech at a particular rate (or at a given range

of rates) [162] and FreeWave cannot achieve data rates higher than a codec’s

bit-rate. For instance, Skype generates a bit-rate between 6 and 40kbps [162]

(depending on the distance between the end-hosts, Internet bandwidth and

few other factors), resulting in a “maximum” achievable rate of 40kbps for

FreeWave (the actual rate achieved depends on the efficiency of MoDem).

The “L16” codec generates a 128kbps data rate, resulting in a maximum

FreeWave bit-rate of up to 128kbps. As another instance, the widely used

codec of “G.711” produces a 64kbps data rate [162], leading to a maximum

FreeWave bit rate of 64kbps.

We believe that the bit rates achievable by the current design of FreeWave

are enough for normal web browsing, especially for a user under a repressive

regime who aims to do normal web browsing. On the other hand, a trivial

approach to achieve much higher rates is to encode Internet traffic into the

video signals carried over VoIP connections. This requires designing efficient

modulator/demodulators for encoding data into video, which we leave for

future research.

4.8.3 Traffic Analysis

In order to resist traffic analysis, FreeWave VoIP connections should have

communication patterns similar to that of regular VoIP connections. Note

that FreeWave uses encrypted VoIP connections, so a censor will not be

able to analyze packet contents (popular VoIP providers like Skype pro-

vide/mandate encrypted VoIP connections). The two traffic patterns that

may be used for traffic analysis in this case are packet rates and packet sizes.

Most of the standard VoIP codecs, like the widely used G.7 series [162],

use fixed bit rates and fixed packet sizes during a given connections, or even

across all connections [162]. This prevents any kind of traffic analysis against

FreeWave connections that use these codecs. In fact, these codecs are widely

used by different VoIP providers, e.g., the Google Voice service [163]. On the

other hand, several VoIP codecs use variable bit-rates, most notably Skype’s

proprietary SILK [164] codec. When FreeWave uses a VoIP service that uses

variable-bit-rate codecs, special care needs to be taken to prevent traffic anal-
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ysis. We have analyzed the FreeWave traffic sent over Skype in our prototype

implementation, and have compared its traffic patterns with regular Skype

traffic. We observe that there are two states in a regular Skype call: “Skype-

Speak”, in which the callee is speaking over Skype, and “Skype-Silence”, in

which the callee is silent (e.g., she is listening to the person on the other side

of the line).

Table 4.2 shows the average communication statistics for the three different

types of Skype traffic, i.e., Skype in the Skype-Speak state, Skype in the

Skype-Silent, and Skype tunneling FreeWave. All the analysis is done for

the same pair of Skype peers. As can be seen from the table, FreeWave over

Skype generates communication patterns very similar to regular Skype in the

Skype-Speak state, while the Skype-Silent state generate lower packet rates

and smaller packet sizes. This is because in order to conserve bandwidth

Skype’s SILK [164] codec reduces its packet rate and uses smaller packets

when the audio signal captured by the Skype client is weak. We observe that,

based on this analysis, a FreeWave over Skype call makes communication

patterns very similar to a typical Skype call: In a typical Skype call, when

one side of the connection is in the Skype-Speak state, the other side is usually

in the Skype-Silent state (i.e., listening to the other side). In a FreeWave

over Skype call, also, when one side of the connection is sending data the

other side is usually idle, e.g., a web traffic is a serious of HTTP GET and

HTTP RESPONSE messages that appear in a sequence. Furthermore, simple

modifications can be made to FreeWave client and server software in order

to better hide its traffic pattern; for instance, one side can stop sending data

if the other side is sending data, or a dummy audio can be sent if both sides

have been silent for a long time. Once again, note that this is only required

if FreeWave is deployed on a VoIP system that uses a variable-length audio

codec.

4.9 Comparison with Similar Systems

Recently, there have been two proposals for censorship circumvention that,

similar to FreeWave, use the openness of VoIP to evade censorship. Due to

their similarity with FreeWave we describe the advantages of FreeWave over

them in this section.
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Table 4.2: Comparing communication patterns of regular Skype with
FreeWave-over-Skype.

Pattern
FreeWave

Skype-Speak Skype-Silent
over Skype

Average packet rate (pps) 49.91 50.31 49.57
Average packet size 148.64 146.50 103.97

Minimum packet size 64 64 64
Maximum packet size 175 171 133

4.9.1 SkypeMorph

SkypeMorph [138] is a pluggable transport [134] for Tor. SkypeMorph is de-

signed to obfuscate the connections between Tor [118] users and Tor bridges [125]

so that they look like legitimate Skype traffic. The main goal of SkypeMorph

is to make it hard for a censor to distinguish between obfuscated Tor bridge

connections and actual Skype calls using deep-packet inspection and statis-

tical traffic analysis. A big implementation-wise difference with our proposal

is that SkypeMorph does not completely run, but mimics, Skype, whereas

FreeWave runs the target VoIP protocol in its entirety. FreeWave has the

following main advantages over SkypeMorph:

Server obfuscation: Similar to the most of existing obfuscation-based

techniques, SkypeMorph only provides traffic obfuscation, but it does not

provide server obfuscation. A censor may not be able to identify SkypeMorph

traffic through statistical analysis, since SkypeMorph shapes it to look like

a regular Skype traffic. However, if a censor discovers the IP address of a

SkypeMorph Tor bridge, e.g., through bridge enumeration [126,127], Skype-

Morph’s obfuscations do not provide any protection since the censor can eas-

ily block its traffic by IP addresses matching. As an indication to the severity

of this problem, the Chinese censors were able to enumerate all bridges in

under a month [140]. Once a Tor bridge is known to a censor, SkypeMorph

is not able to provide any protection.

On the other hand, FreeWave provides server obfuscation in addition to

traffic obfuscation. Instead of morphing the traffic into VoIP, FreeWave uses

the overlay network of VoIP systems to route the connections among users

and servers. As a result, FreeWave’s VoIP traffic gets relayed by “oblivi-

ous” VoIP nodes, hiding the identity (e.g., the IP address) of the FreeWave

server. Even a censor who knows the IP address of a FreeWave server will
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not be able to identify and/or block client connections to that server, since

these connections do not go directly to the server. For instance, if Skype is

used by FreeWave, the FreeWave connections get relayed by Skype supern-

odes, which are oblivious Skype users residing “outside” the censoring ISP

(please see Section 4.4.2 for further discussion). Note that there is not a

one-to-one correspondence between supernodes and FreeWave servers, i.e.,

various supernodes relay traffic to a particular FreeWave server for different

connections. As another example, if Google Voice is used by FreeWave, all

the FreeWave connections get relayed by Google servers, hiding FreeWave

servers’ IP addresses. Note that we assume that VoIP connections are also

encrypted.

Comprehensive traffic obfuscation SkypeMorph shapes Tor traffic into

Skype calls, but it does not run the actual Skype protocol (except for the

Skype login process) [138]. This can enable sophisticated attacks that can

discriminate SkypeMorph from Skype by finding protocol details that are not

properly imitated by SkypeMorph. For instance, SkypeMorph fails to mimic

Skype’s TCP handshake [165], which is essential to every genuine Skype call.

Also, Skype protocol may evolve over time and SkypeMorph would need to

follow the evolution. FreeWave, on the other hand, runs the actual VoIP

protocol in its entirety, providing a more comprehensive traffic obfuscation.

No need to pre-share secret information: SkypeMorph needs to se-

cretly share its Skype ID with its clients, as well as its IP address and port

number (this can be done using Tor’s BridgeDB [166] as suggested by the

authors). Once this secret information is disclosed to a censor (e.g., through

bridge enumeration) the identified Tor bridge will need to change both its IP

address and its Skype ID, as suggested in [138], to reclaim its accessibility by

clients. FreeWave, however, does not need to share any information with its

clients: even the VoIP IDs of the FreeWave servers are publicly advertised

without compromising the provided unobservability.

Obfuscation diversity: SkypeMorph is designed to morph traffic only

into Skype. As a result, if a censor decides to block Skype entirely, Skype-

Morph will be blocked as well. FreeWave, on the other hand, is a general

infrastructure and can be realized using a wide selection of VoIP services.

Needless to say, SkypeMorph may also be modified to mimic other popular

VoIP services, but it requires substantial effort in understanding and analyz-
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ing the candidate VoIP system. FreeWave, however, can be used with any

VoIP service without the need for substantial modifications.

4.9.2 CensorSpoofer

A key goal in the design of CensorSpoofer [141] is to provide unobservability,

as is the case in FreeWave. CensorSpoofer decouples upstream and down-

stream flows of a connection; the upstream flow, which is supposed to be

low-volume, is steganographically hidden inside instant messages (IM) or

email messages that are sent towards the secret IM or email addresses of

the CensorSpoofer server. The IM IDs or the email addresses of the Censor-

Spoofer server need to be shared securely with clients through out-of-band

channels. The CensorSpoofer server sends the downstream flow of a connec-

tion by spoofing a randomly chosen IP address, in order to obfuscate its own

IP address. This spoofed flow is morphed into an encrypted VoIP protocol

to obfuscate traffic patterns as well. A CensorSpoofer client also needs to

generate “dummy” packets towards the spoofed IP address to make the con-

nection look bidirectional. FreeWave makes the following contributions over

CensorSpoofer:

No invitation-based bootstrapping: A new CensorSpoofer client needs

to know a trusted CensorSpoofer client in order to bootstrap [141]. The

trusted client helps the new client to send her personalized upstream ID

and SIP ID to the CensorSpoofer server. Finding an existing, trusted Cen-

sorSpoofer client might be challenging for many new clients unless Censor-

Spoofer is widely deployed. Also note that even an existing CensorSpoofer

client needs to re-bootstrap its CensorSpoofer connectivity if her personal-

ized CensorSpoofer IDs are discovered by the censors. FreeWave, on the

other hand, does not require an invitation-based bootstrapping.

Comprehensive traffic obfuscation Unlike FreeWave and similar to

SkypeMorph, CensorSpoofer does not entirely run the VoIP protocol. This

can enable sophisticated attacks that are able to find protocol discrepancies

between CensorSpoofer and genuine VoIP traffic. Also, the use of IP spoofing

by CensorSpoofer may enable active traffic analysis attacks that manipulate

its downstream VoIP connection and watch the server’s reaction.

Bidirectional circumvention: In CensorSpoofer VoIP connections only
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carry the downstream part of a circumvented connection. The upstream

data are sent through low-capacity steganographic channels inside email or

instant messages [141]. FreeWave, however, provides a high-capacity channel

for both directions of a circumvented connection.

4.10 Related Work

Censorship circumvention systems have been evolving continuously to keep

up with the advances in censorship technologies. Early circumventions sys-

tems simply used network proxies [167] residing outside censorship territories,

trying to evade the simple IP address blocking and DNS hijacking techniques

enforced by pioneer censorship systems. Examples of such proxy-based cir-

cumvention tools are DynaWeb [116], Anonymizer [119], and Freenet [168].

Proxy-based circumvention tools lost their effectiveness with the advent

of more sophisticated censorship technologies such as deep-packet inspec-

tion [112, 113]. Deep-packet inspection analyzes packet contents and statis-

tics looking for deviations from the censor’s regulations. This has led to

correspondingly more sophisticated circumvention tools that remain accessi-

ble to their users. Many circumvention designs seek availability by sharing

some secret information with their users so that their utilization is unobserv-

able to the censors agnostic to this secret information. In Infranet [115], for

instance, a user needs to make a special, secret sequence of HTTP requests

to an Infranet server to request censored web contents, which are then sent to

him using image steganography. Collage [117] similarly bases its unobserv-

ability on sharing secrets with its clients. A Collage client and the Collage

server secretly agree on some user-generated content sharing websites, e.g.,

flickr.com, and use image steganography to communicate through these web-

sites. The main challenge for these systems, which rely on pre-sharing secret

information, is to be able to share secret information with a large set of actual

users while keeping them secret from censors; this is a big challenge to solve

as indicated in several researches [128–130]. Sharing secret information with

users has also been adopted by the popular Tor [118] anonymity network.

The secret pieces of information here are the IP addresses of volunteer Tor

relays, known as Tor bridges [125], that proxy the connections of Tor clients

to the Tor network. This suffers from the same limitation as censors can
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pretend to be real Tor users and gradually identify a large fraction of Tor

bridges [126,127,139].

More recently, several researches propose to build circumvention into the

Internet infrastructure [120,121,160]. Being built into the Internet infrastruc-

ture makes such circumvention highly unobservable: a client’s covert com-

munication with a censored destination appears to the censor to be a benign

connection to a non-prohibited destination. Telex [120], Cirripede [121] and

Decoy Routing [160] are example designs using such infrastructure-embedded

approach. Decoy Routing needs to share secrets with its clients using out-

of-band channels, whereas Telex and Cirripede share the secret informa-

tion needed to initialize their connections using covert channels inside Inter-

net traffic. Cirripede uses an additional client registration stage performed

steganographically, distinguishing it from the other designs. Even though

these systems are a large step forward in providing unobservable censorship

circumvention, their practical deployment is not trivial as they need to be

deployed by a number of real-world ISPs that will make software/hardware

modifications to their network infrastructures, posing a substantial deploy-

ment challenge.

Another research trend uses traffic obfuscation to make circumvented traf-

fic unobservable. Appelbaum et al. propose a platform that allows one

to build protocol-level obfuscation plugins for Tor, called pluggable trans-

ports [134]. These plugins obfuscate a Tor client’s traffic to Tor bridges by

trying to remove any statistical/content pattern that identifies Tor’s traffic.

Obfsproxy [135], the pioneer pluggable transport, removes all content iden-

tifiers by passing a Tor client’s traffic through an additional layer of stream

cipher encryption. Obfsproxy, however, does not disguise the statistical pat-

terns of Tor’s traffic. SkypeMorph [138] and StegoTorus [137] attempt to

remove Tor’s statistical patterns as well by morphing it into popular, un-

censored Internet protocols such as Skype and HTTP. Flashproxy [169] is

another recently designed pluggable transport that separates a Tor client’s

traffic into multiple connections, which are proxied by web browsers render-

ing volunteer websites.

CensorSpoofer [141] is another recent proposal that, similar to Skype-

Morph [138], shapes Tor traffic into VoIP protocols. CensorSpoofer is unique

in separating the upstream and downstream flows of a circumvented connec-

tion, and in using IP spoofing to obfuscate its server’s identity. A security

114



concern with morphing approaches [137,138,141,170] is that they do not pro-

vide a provable indistinguishability; censors may be able to devise advanced

statistical classifiers and/or protocol identifiers to find discrepancies between

a morphed traffic and genuine connections. Another approach that similarly

uses VoIP traffic is TranSteg [171]; it re-encodes a VoIP call packets using a

different, lower-rate codec in order to free a portion of VoIP packet payloads,

which are then used to send a low-bandwidth hidden traffic.

4.11 Limitations and Recommendations

Server location In order to achieve server obfuscation, special care needs

to be taken in setting up a FreeWave server. In the case of Skype, for

instance, the FreeWave server should be completely firewalled such that its

Skype traffic is completely handled by Skype supernodes. Also, a FreeWave

server should use a large, dynamic set of supernodes (i.e., by flushing its

supernode cache [144,145]) so that one cannot map a FreeWave server to its

supernodes. A corrupt supernode (e.g., controlled by the censors) used by

a FreeWave server can identify the clients that used FreeWave through that

supernode. The mechanisms to protect server obfuscation vary depending

on the utilized VoIP system.

Traffic analysis If the VoIP service deployed by FreeWave uses a variable-

length audio codec, like SILK [164], FreeWave’s traffic might be subject to

traffic analysis. In Section 4.8.3, we showed that the current deployment of

FreeWave over Skype performs well against simple traffic analysis, yet more

sophisticated traffic analysis [172] may be able to distinguish FreeWave’s

current prototype from Skype. A trivial countermeasure is to add some pre-

recorded human speech to FreeWave’s audio, which would further reduce

FreeWave’s data rate. A better approach is to encode FreeWave’s traffic into

video, instead of audio, which is more robust to traffic analysis and provides

much higher throughputs.

Trusting the VoIP provider A VoIP provider colluding with censors can

significantly degrade FreeWave’s obfuscation promises if FreeWave deploys it.

On the bright side, FreeWave can choose from a wide range of VoIP providers.
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In the case of Skype, in particular, Chinese Skype users get provided with

a special implementation of Skype, TOM-Skype, which is suspected [173]

to have built-in surveillance functionalities such as text message filtering

[174–177].

Denial of service Since FreeWave’s VoIP IDs are public, censors can ex-

haust FreeWave servers by making many FreeWave connections. Different

approaches can be taken to limit the effect of such attempts, such as the ex-

isting sybil defense mechanisms [178], as well as usage limitation enforcement

per VoIP caller.

4.12 Conclusions

In this chapter, we presented FreeWave, a censorship circumvention system

that is highly unblockable by censors. FreeWave works by modulating a

client’s Internet traffic inside the acoustic signals that are carried over VoIP

connections. Being modulated into acoustic signals, as well as the use of

encryption, makes FreeWave’s VoIP connections unobservable by a censor.

By building a prototype implementation of FreeWave we show that FreeWave

can be used to achieve connection bit rates that are suitable for normal web

browsing.
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APPENDIX A

PROOFS

A.1 Proof of Lemma 2

Proof. Assume N is the maximal size of an ε-Code such that D(i) ⊂ F (x(i)),

where

F (x) = {y : i(x,y) > θ} (A.1)

Then we have

P (D(i)) =

∫
D(i)

P (dy) <

∫
D(i)

e−θP (dy|x) ≤ e−θ (A.2)

and

P (∪iD(i)) ≤
∑
i

P (D(i)) ≤ Ne−θ (A.3)

Let D = ∪iD(i). By the maximality of N it follows that

P (Dc ∩ F (x)|x) < 1− ε (A.4)

Or equivalently

ε < P (D ∪ F c(x)|x) ≤ P (D|x) + P (F c(x)|x) (A.5)

Multiplying this inequality with P (dy) and integrating it over x then yields

ε ≤ P (D) + P (i(x,y) ≤ θ) (A.6)

117



Putting everything together we obtain the result

ε− P (i(x,y) ≤ θ) ≤ P (D) ≤ Ne−θ (A.7)

A.2 Proof of Theorem 9

The Markov chain Ψ is aperiodic and irreducible. The state space of Ψi can

be chosen to be X = 2× N ∪ {(0, 0)}. First we verify that Foster’s criterion

holds

Lemma 3. There exists a Lyapunov function V : X→ (0,∞], finite at some

ψ0 ∈ X, a finite set S ⊂ X, and b <∞ such that

E[V (Ψi+1)− V (Ψi)|Ψi = ψ] ≤ −1 + b1S(ψ), ψ ∈ X (A.8)

Further this function V is Lipschitz, i.e., for some α > 0

|V (y)− V (x)| ≤ α||y − x|| ∀y, x ∈ X (A.9)

and for some β > 0 and

sup
x∈X

E[eβ||Ψi+1−Ψi|||Ψi = x] <∞ (A.10)

Proof. We need to find a function V such that E[V (Ψi+1)− V (Ψi)|Ψi = ψ] ≤
−1 for all but a finite number of ψ ∈ X. If we simply choose V (ỹ, q) = cq for

some sufficiently large constant c > 0, then the requirement is clearly satisfied

for all ψ ∈ X such that ỹ = 1, but it fails to hold otherwise. To fix this

shortcoming we reward the transitions to a state with ỹ = 1 by a decreasing

difference V (Ψi+1)−V (Ψi). In particular we choose V (ỹ, q) = (q− ỹ)/(µ−λ).

Standard calculations reveal that for that choice E[V (Ψi+1) − V (Ψi)|Ψi =

ψ] = −1 for all ψ ∈ X with q > 1. Linear functions are always Lipschitz and

||Ψi+1 − Ψi|| is bounded almost surely.

By the results in [105] or Proposition A.5.7 in [106], the chain Ψ is then

geometrically ergodic.
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By Theorem A.5.8 in [106], the asymptotic variance σ2 is well defined,

non-negative and finite, and

σ2 = Var(f(Ψ0)) + 2
∞∑
i=1

Cov(f(Ψ0), f(Ψi)) (A.11)

Finally, f(ỹ, q) is a bounded, nonlattice, real-valued functional on the state

space X and hence

Pψ0

(∑n−1
i=0 f(ỹi, qi)− nπΨ (f)

σ
√
n

≤ ξ

)
− Φ(ξ) (A.12)

=
pΦ(ξ)

σ
√
n

[ η

6σ2
(1− ξ2)− f̂(ψ0)

]
+ o(n−1/2) (A.13)

where pΦ(ξ) denotes the density of the standard Normal distribution Φ, f̂ is

the solution to Poissons equation and η is a constant [107]. The solution f̂

can be chosen such that πΨ (f̂) = 0 and the claim follows by averaging out

ψ0.

A.3 Proof of Theorem 10

Using the representation of σ2 in Equation 3.16, it remains to find explicit

expressions for Var(f(Ψ0)) and the sum
∑∞

i=0 Cov(f(Ψ0), f(Ψi)).

The term Var(f(Ψ0)) is easy to compute

Var(f(Ψ0)) = log2(
1

λ̄
)πQ(0) + log2(

µ

λ
)µπQ(0)

+ log2(
µ̄

λ̄
)µ̄πQ(0)− C2 (A.14)

Equation 3.21 holds true.

Proof. For the computation of the sum
∑∞

i=0 Cov(f(Ψ0), f(Ψi)) we will set up

and solve a recursion. Grassmann proposed this approach in [109] to obtain

the asymptotic variance of a continuous time finite state birth-death process.

We define

r(ψ, i) =
∑
ψ′∈X

(f(ψ′)− C)πΨ (ψ′)pΨi|Ψ0(ψ|ψ′) (A.15)
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Clearly

r(ψ, 0) = (f(ψ)− C)πΨ (ψ) (A.16)

and

Cov(f(Ψ0), f(Ψi)) =
∑
ψ∈X

(f(ψ)− C)r(ψ, i) =
∑
ψ∈X

f(ψ)r(ψ, i) (A.17)

Note however that for the computation of the asymptotic variance we actually

do not even need to know this covariance for each i. It is sufficient to know

its sum. So we define

R(ψ) =
∞∑
i=0

r(ψ, i) (A.18)

write

∞∑
i=0

Cov(f(Ψ0), f(Ψi)) =
∑
ψ∈X

f(ψ)R(ψ) (A.19)

and derive a recursion for R(ψ).

For mean ergodic Markov processes pΨi|Ψ0(ψ|ψ′) → πΨ (ψ) as i → ∞ and

hence

lim
i→∞

r(ψ, i) = 0 (A.20)

Summing r(ψ, i + 1) − r(ψ, i) in i from zero to infinity then clearly yields

(C − f(ψ))πΨ (ψ). By the Chapman-Kolmogorov equations

pΨi+1|Ψ0(ψ|ψ′)− pΨi|Ψ0(ψ|ψ′)

=
∑
ψ′′∈X

pΨi|Ψ0(ψ
′′|ψ′)

{
pΨi+1|Ψi(ψ|ψ′′)− δψ,ψ′′

}
(A.21)
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and thus

r(ψ, i+ 1)− r(ψ, i)

=
∑
ψ′∈X

(f(ψ′)− C)πΨ (ψ′)
{
pΨi+1|Ψ0(ψ|ψ′)− pΨi|Ψ0(ψ|ψ′)

}
=
∑
ψ′′∈X

{
pΨi+1|Ψi(ψ|ψ′′)− δψ,ψ′′

}
r(ψ′′, i) (A.22)

If this expression for r(ψ, i + 1) − r(ψ, i) is also summed in i from zero to

infinity and then compared to the above result of the same sum, we obtain

(C − f(ψ))πΨ (ψ) =
∑
ψ′′∈X

{
pΨi+1|Ψi(ψ|ψ′′)− δψ,ψ′′

}
R(ψ′′) (A.23)

For notational convenience we abbreviate the right-hand side of Equation

A.23 by D(ψ).

For ψ with q > 0 and ỹ = 0

D(ψ) =(λ̄µ̄− 1)R(q, 0) + λ̄µ̄R(q + 1, 1) + λµ̄R(q, 1)

+ λµ̄R(q − 1, 0) (A.24)

For ψ with q > 0 and ỹ = 1

D(ψ) =(λµ− 1)R(q, 1) + λ̄µR(q + 1, 1) + λ̄µR(q, 0)

+ λµR(q − 1, 0) (A.25)

And for ψ with q = 0 and ỹ = 0

D(ψ) = −λR(0, 0) + λ̄R(1, 1) (A.26)

Adding Equations A.24 and A.25 yields

λ̄R(q + 1, 1)− λR(q, 0)− λ̄R(q, 1) + λR(q − 1, 0) (A.27)

We now sum Equation A.23 in two ways:∑
ψ′∈X:q′≤q

D(ψ) = λ̄R(q + 1, 1)− λR(q, 0) = M(q, 0) (A.28)
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for q ≥ 0 where we defined

M(q, 0) =
∑

ψ′∈X:q′≤q

(C − f(ψ))πΨ (ψ) (A.29)

and ∑
ψ′∈X:q′<q||q′=q,ỹ=1

D(ψ) = −λµ̄R(q − 1, 0)− λµ̄R(q, 1)

+λ̄µR(q, 0) + λ̄µR(q + 1, 1) = M(q, 1) (A.30)

for q ≥ 1 where we defined

M(q, 1) =
∑

ψ∈X:q′<q||q′=q,ỹ=1

(C − f(ψ))πΨ (ψ) (A.31)

We can combine Equations A.28 and A.30 to obtain the first-order recurrence

R(q + 1, 0) =
λµ̄

λ̄µ
R(q, 0) + M̃(q) (A.32)

for q ≥ 0 where

M̃(q) =
1

µ
M(q + 1, 1)−M(q + 1, 0) +

λµ̄

λ̄µ
M(q, 0) (A.33)

Note that

M(q, 0) = C

1− πQ(0)

µ̄

(
λµ̄
λ̄µ

)q+1

1− λµ̄
λ̄µ

− ∑
ψ∈X:q′≤q

f(ψ)πΨ (ψ)

=
πQ(0)

µ̄

(
λµ̄
λ̄µ

)q+1

1− λµ̄
λ̄µ

(
µ log(

µ

λ
) + µ̄ log(

µ̄

λ̄
)− C

)
=
λ̄

µ̄

(
λµ̄

λ̄µ

)q+1 (
µ log(

µ

λ
) + µ̄ log(

µ̄

λ̄
)− C

)
= cM0

(
λµ̄

λ̄µ

)q+1

(A.34)
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and with this Equation A.33 becomes

M̃(q) =
1

µ
M(q + 1, 1) (A.35)

But

M(q + 1, 1) = M(q, 0) + (C − log
µ

λ
)πQ(0)

µ

µ̄

(
λµ̄

λ̄µ

)q+1

=

(
λµ̄

λ̄µ

)q+1{
cM0 + (C − log

µ

λ
)πQ(0)

µ

µ̄

}
So we obtain

M̃(q) =

(
λµ̄

λ̄µ

)q+1{
cM0

µ
+ (C − log

µ

λ
)
πQ(0)

µ̄

}
= cM̃

(
λµ̄

λ̄µ

)q+1

(A.36)

and the generating function

M̃(z) =
∑
q≥0

M̃(q)zq =
cM̃

λµ̄
λ̄µ

1− z λµ̄
λ̄µ

(A.37)

We now define two new sequences aq and bq such that

R(q, 0) = aq + bqR(0, 0) (A.38)

Clearly, a0 = 0 and b0 = 1. By substituting Equation A.38 into Equation

A.32 we find that

aq+1 =
λµ̄

λ̄µ
aq + M̃(q) (A.39)

and

bq+1 =
λµ̄

λ̄µ
bq (A.40)

The solution to the recurrence bq is obvious:

bq =

(
λµ̄

λ̄µ

)q
(A.41)
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In order to obtain the solution to the recurrence bq we employ the generating

function method ∑
q≥0

aq+1z
q =

λµ̄

λ̄µ

∑
q≥0

aqz
q +

∑
q≥0

M̃(q)zq (A.42)

and therefore

z−1A(z) =
λµ̄

λ̄µ
A(z) + M̃(z) (A.43)

We can now solve this equation for A(z) to obtain

A(z) =
M̃(z)

z−1 − λµ̄
λ̄µ

= cM̃

λµ̄
λ̄µ
z(

1− λµ̄
λ̄µ
z
)2 (A.44)

and the corresponding sequence

aq = cM̃q

(
λµ̄

λ̄µ

)q
(A.45)

Finally

R(q, 0) = aq + bqR(0, 0) = cM̃q

(
λµ̄

λ̄µ

)q
+

(
λµ̄

λ̄µ

)q
R(0, 0) (A.46)

Further∑
ψ∈X

r(ψ, i) =
∑
ψ′∈X

(f(ψ′)− C)πΨ (ψ′)
∑
ψ∈X

pΨi|Ψ0(ψ|ψ′) = 0 (A.47)

and summing this equation in i yields∑
ψ∈X

R(ψ) = 0 (A.48)

This result now allows us to compute R(0, 0): Using Equation A.28 we can

124



write ∑
ψ∈X

R(ψ) =
∑
q≥0

R(q, 0) +
∑
q≥0

(
λ

λ̄
R(q, 0) +

1

λ̄
M(q, 0)

)
=

1

λ̄

∑
q≥0

(R(q, 0) +M(q, 0)) (A.49)

Combining Equations A.38, A.48 and A.49 then yields

R(0, 0) = −
∑

q≥0 aq +
∑

q≥0M(q, 0)∑
q≥0 bq

= −cM̃
λµ̄
λ̄µ

1− λµ̄
λ̄µ

− cM0
λµ̄

λ̄µ
(A.50)

Using the expressions for R(j + 1, 1), R(j, 0) and M(j, 0) from Equations

A.28, A.46 and A.34, respectively, we are eventually in a position to simplify

the expression in Equation A.19:

∞∑
i=0

Cov(f(Ψ0), f(Ψi)) = log
1

λ̄
R(0, 0)

+ log
µ

λ

(
λ

λ̄

∑
q≥0

R(q, 0) +
1

λ̄

∑
q≥0

M(q, 0)

)
+ log

µ̄

λ̄

∑
q>0

R(q, 0) (A.51)

where

∑
q≥0

R(q, 0) = cM̃

λµ̄
λ̄µ(

1− λµ̄
λ̄µ

)2 +
R(0, 0)

1− λµ̄
λ̄µ

= −cM0

λµ̄
λ̄µ

1− λµ̄
λ̄µ

(A.52)

and

∑
q≥0

M(q, 0) = cM0

λµ̄
λ̄µ

1− λµ̄
λ̄µ

(A.53)

The claim then follows.
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[68] M. Fréchet, “Généralisation du théorème des probabilités totales,” Fun-
damenta mathematicae, vol. 25, no. 1, pp. 379–387, 1935.
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