
Equational Formulas and Pattern Operations
in Initial Order-Sorted Algebras

José Meseguer and Stephen Skeirik

Department of Computer Science
University of Illinois at Urbana-Champaign

Abstract. A pattern t, i.e., a term possibly with variables, denotes the
set (language) JtK of all its ground instances. In an untyped setting,
symbolic operations on finite sets of patterns can represent Boolean op-
erations on languages. But for the more expressive patterns needed in
declarative languages supporting rich type disciplines such as subtype
polymorphism untyped pattern operations and algorithms break down.
We show how they can be properly defined by means of a signature trans-
formation Σ 7→ Σ# that enriches the types of Σ. We also show that this
transformation allows a systematic reduction of the first-order logic prop-
erties of an initial order-sorted algebra supporting subtype-polymorphic
functions to equivalent properties of an initial many-sorted (i.e., simply
typed) algebra. This yields a new, simple proof of the known decidability
of the first-order theory of an initial order-sorted algebra.
Keywords: pattern operations, initial decidability, order-sorted logic.

1 Introduction

Term patterns are used everywhere in functional and logic programming: to de-
fine predicates and functions, to perform automated deduction tasks like rewrit-
ing, matching, unification, resolution, and Knuth-Bendix completion, and also as
a symbolic notation to describe languages as sets of term instances, and language
operations by corresponding symbolic operations on the term patterns defining
them. Such pattern operations, first systematically studied by Lassez and Mar-
riott in [13] and further studied in, e.g., [12,19,18,7] have many applications to,
e.g., machine learning, negation in logic programming, sufficient completeness of
function definitions, inductive theorem proving, and automated model building.

For greater expressiveness many declarative languages support rich type dis-
ciplines. This holds true for both higher-order functional languages and rule-
based languages. For example, OBJ [11], CafeOBJ [8], and Maude [2] all sup-
port types, subtypes, subtype polymorphism, and —through their parameterized
types— polymorphic and dependent types. Obviously, all the above-mentioned
applications of pattern operations are also needed for these languages. What is
not at all obvious —and to the best of our knowledge does not seem to have
been investigated so far— is whether the algorithms defining the Boolean al-
gebra of pattern operations for the untyped case in, e.g., [13,12,19,18,7] extend
in a straightforward way to the more expressive patterns now available in these
richer type disciplines. The example below clearly shows that they do not.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158301598?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 J. Meseguer and S. Skeirik

The graph on the left describes an order-sorted signature [10] with two types, A
and B, and a subtype inclusion A < B depicted by the vertical bar. f is subtype
polymorphic, with two typings: f : A → A, and f : B → B. We have constants
a, b of respective types A, B. A pattern t, i.e., a term possibly with variables,
denotes the set (language) JtK = {tσ | σ ground} of all its ground instances. The
symbolic pattern difference t− t′ denotes the language Jt− t′K = JtK− Jt′K. In the
untyped case, it is well-known [13] that when t and t′ are linear patterns (have
no repeated variables), the symbolic difference t− t′ always denotes a language
expressible as Ju1K∪. . .∪JukK, for {u1, . . . , uk} a finite set of patterns. If this were
to hold in the order-sorted case, it should hold, in particular, for Jx:B − y:AK,
with x:B, y:A variables of sorts A,B. Adopting the convention f0(x) = x, we
have, Jy:AK = {fn(a) | n ≥ 0}, and Jx:BK = Jy:AK ∪ {fn(b) | n ≥ 0}. Therefore,
Jx:B− y:AK = {fn(b) | n ≥ 0}. But there is no finite set of patterns {u1, . . . , uk}
such that Ju1K∪ . . .∪ JukK = {fn(b) | n ≥ 0}. Indeed, the only possible choice for
a ui is ui = b. All other choices: ui = a, ui = x′:B, ui = y′:A, ui = fn+1(x′:B),
or ui = fn+1(y′:A), n ≥ 0, are impossible.

Is all lost? Not if we make our signature more expressive: the graph on
the right adds a new subtype B# < B, lowers the typing of b to B#, and
adds the typing f : B# → B#. Now Jz :B#K = {fn(b) | n ≥ 0}. and we
can symbolically compute the difference x :B − y :A = z :B#. This example
shows that the problem is insoluble as formulated, but it can be solved by a
signature transformation extending the original signature Σ. In Section 3 we
formally define such a transformation Σ 7→ Σ# that enriches a finite order-
sorted signature Σ with additional sorts like the sort B# above. This is a key
step for obtaining a Boolean algebra of order-sorted patterns in Section 5.

But the Σ 7→ Σ# transformation has other far-reaching consequences. Since
it is well-known that pattern operations are intimately connected with first-order
logic formulas and with negation elimination in such formulas [12,19,18,7], we
should first of all ask what light can the Σ 7→ Σ# transformation shed on the
validity of formulas in initial order-sorted algebras. As we show in Section 4, it
sheds a lot of light: it makes the validity of a first-order formula in an initial
order-sorted algebra equivalent to the validity of an associated formula in an
associated many-sorted initial algebra. Since the first-order theory of a many-
sorted initial algebra is well-known to be decidable [14,15,3], this proves the
decidability of the first-order theory of an initial order-sorted algebra. This result
goes back to [4,5], but the proof obtained through the Σ 7→ Σ# transformation is
considerably simpler. Furthermore, it provides a new, general transfer principle
to reduce certain order-sorted algebra problems to many-sorted algebra ones.

Equational Formulas and Pattern Operations in Initial OS Algebras 3

We put this transfer principle to work for order-sorted pattern operations in
Section 5, where we show that they can be reduced to operations on many-sorted
Σ#-patterns. Furthermore, we develop an intrinsically order-sorted algorithm
for pattern operations based on the signature Σ ∪ Σ# that enjoys important
advantages. As reported in Section 6, we have implemented this algebra of order-
sorted pattern operations in Maude using reflection. Proofs and some additional
details are included in appendices.

Acknowledgements. Partially supported by NSF Grant CNS 13-19109. We
thank the referees for their excellent suggestions to improve the paper.

2 Preliminaries on Order-Sorted Algebra

The following material is adapted from [16], which generalizes [10]. It summarizes
the basic notions of order-sorted algebra needed in the rest of the paper. It
assumes the notions of many-sorted signature and many-sorted algebra, e.g., [6].

Definition 1. An order-sorted signature is a triple Σ = (S,≤, Σ) with (S,≤)
a poset and (S,Σ) a many-sorted signature.

Ŝ = S/≡≤, called the set of connected components of (S,≤), is the quotient
of S under the smallest equivalence relation ≡≤ = (≤ ∪ ≥)+. The order ≤ and
equivalence ≡≤ are extended to sequences of the same length in the usual way,
e.g., s′1 . . . s

′
n ≤ s1 . . . sn iff s′i ≤ si, 1 ≤ i ≤ n.

Σ is called sensible (resp. monotonic) if for any two operators f : w → s, f :
w′ → s′ ∈ Σ, with w and w′ of same length, we have w ≡≤ w′ ⇒ s ≡≤ s′.
(resp. w ≥ w′ ⇒ s ≥ s′). Note that a many-sorted signature Σ is the special
case in which the poset (S,≤) is discrete, i.e., s ≤ s′ iff s = s′.

For connected components [s1], . . . , [sn], [s] ∈ Ŝ

f
[s1]...[sn]
[s] = {f : s′1 . . . s

′
n → s′ ∈ Σ | s′i ∈ [si] 1 ≤ i ≤ n, s′ ∈ [s]}

is the family of “subsort polymorphic” operators f for those components. 2

We will assume throughout that each connected component [s] ∈ Ŝ contains
a top element >[s] ∈ [s] such that for each s′ ∈ [s], >[s] ≥ s′.

Definition 2. For Σ = (S,≤, Σ) an OS signature, an order-sorted Σ-algebra
A is a many-sorted (S,Σ)-algebra A such that:

– whenever s ≤ s′, then we have As ⊆ As′ , and

– whenever f : w → s, f : w′ → s′ ∈ f [s1]...[sn][s] and a ∈ Aw ∩Aw′
, then we have

Af :w→s(a) = Af :w′→s′(a), where As1...sn = As1 × . . .×Asn .

An order-sortedΣ-homomorphism h : A→ B is a many-sorted (S,Σ)-homomorphism
such that whenever [s] = [s′] and a ∈ As∩As′ , then we have hs(a) = hs′(a). h is
injective, resp. surjective, resp. bijective, iff for each s ∈ S hs is injective, resp.
surjective, resp. bijective. We call h an isomorphism if there is another order-
sorted Σ-homomorphism g : B → A such that for each s ∈ S, hs ◦ gs = 1Bs ,

4 J. Meseguer and S. Skeirik

and gs ◦hs = 1As , with 1As , 1Bs the identity functions on As, Bs. If each [s] ∈ Ŝ
has a top element >[s], one can show that f is an isomorphism iff f is bijective.
Σ-algebras and homomorphisms define a category OSAlgΣ. 2

Theorem 1. [16] The category OSAlgΣ has an initial algebra. Furthermore, if
Σ is sensible, then the term algebra TΣ with:

– if a : ε→ s then a ∈ TΣ,s, (ε denotes the empty string),
– if t ∈ TΣ,s and s ≤ s′ then t ∈ TΣ,s′ ,
– if f : s1 . . . sn → s and ti ∈ TΣ,si 1 ≤ i ≤ n, then f(t1, . . . , tn) ∈ TΣ,s,

is initial, i.e., there is a unique Σ-homomorphism to each Σ-algebra.

Say Σ has non-empty sorts iff for each s ∈ S, TΣ,s 6= ∅. To ensure JtK 6= ∅
for any term t we will assume throughout that Σ has non-empty sorts.

An S-sorted set X = {Xs}s∈S of variables, satisfies s 6= s′ ⇒ Xs ∩Xs′ = ∅,
and the variables in X are always assumed disjoint from all constants in Σ. The
Σ-term algebra with variables inX, TΣ(X), is the initial algebra for the signature
Σ(X) obtained by adding to Σ the variables in X as extra constants. Since a
Σ(X)-algebra is just a pair (A,α), with A a Σ-algebra, and α an interpretation
of the constants in X, i.e., an S-sorted function α ∈ [X→A], the Σ(X)-initiality
of TΣ(X) can be expressed as the following corollary of Theorem 1:

Theorem 2. (Freeness Theorem). If Σ is sensible, for each A ∈ OSAlgΣ and
α ∈ [X→A], there exists a unique Σ-homomorphim, α : TΣ(X) −→ A extending
α, i.e., such that for each s ∈ S and x ∈ Xs we have xαs = αs(x).

The first-order language of equational Σ-formulas is defined in the usual
way: its atoms are Σ-equations t = t′, where t, t′ ∈ TΣ(X)>[s]

for some [s] ∈ Ŝ
and each Xs is assumed countably infinite. The set Form(Σ) of equational Σ-
formulas is then inductively built from atoms by: conjunction (∧), disjunction
(∨) negation (¬), and universal (∀x:s) and existential (∃x:s) quantification with
sorted variables x:s ∈ Xs for some s ∈ S. The literal ¬(t = t′) is denoted t 6= t′.

The satisfaction relation between Σ-algebras and formulas is defined in the
usual way: given a Σ-algebra A, a formula ϕ ∈ Form(Σ), and an assignment
α ∈ [Y→A], with Y = fvars(ϕ) the free variables of ϕ, we define the satisfaction
relation A,α |= ϕ inductively as usual: for atoms, A,α |= t = t′ iff tα = t′α;
for Boolean connectives it is the corresponding Boolean combination of the sat-
isfaction relations for subformulas; and for quantifiers: A,α |= (∀x:s) ϕ (resp.
A,α |= (∃x :s) ϕ) holds iff for all a ∈ As (resp. there is an a ∈ As) we have
A,α]{(x:s, a)} |= ϕ, where the assignment α]{(x:s, a)} extends α by mapping
x:s to a. Finally, A |= ϕ holds iff A,α |= ϕ holds for each α ∈ [Y→A], where
Y = fvars(ϕ). We say that ϕ is valid (or true) in A iff A |= ϕ.

Definition 3. A signature morphism H : Σ → Σ′ (called a view in Maude
[2]) is a monotonic function H : (S,≤) → (S′,≤′) of the underlying posets
of sorts, together with a mapping H sending each f : s1 . . . sn → s in Σ to
a term H(f) ∈ TΣ′({x1 :H(s1), . . . , xn :H(sn)})H(s). H defines a well-typed

Equational Formulas and Pattern Operations in Initial OS Algebras 5

translation of the syntax of Σ into that of Σ′. It inductively maps each Σ-
term t to a Σ′-term H(t) by mapping x : s to x :H(s), and H(f(t1, . . . , tn))
to H(f){x1 :H(s1) 7→ H(t1), . . . , xn :H(sn) 7→ H(tn)}, where {x1 :H(s1) 7→
H(t1), . . . , xn :H(sn) 7→ H(tn)} denotes the obvious substitution. H extends
naturally to a translation of equational formulas H : Form(Σ) → Form(Σ′) by
mapping atoms according to H, respecting Boolean connectives, and mapping
each quantifier ∀x:s (resp. ∃x:s) to ∀x:H(s) (resp. ∃x:H(s)).

A signature inclusion, denoted Σ ↪→ Σ′, is a signature morphism that is a
poset inclusion (S,≤) ↪→ (S′,≤′) on sorts and maps each f : s1 . . . sn → s to
itself: more precisely, to the term f(x1:s1, . . . , xn:sn). 2

A signature morphism H : Σ → Σ′ induces a functor in the opposite direction
|H : OSAlgΣ′ → OSAlgΣ , where for each B ∈ OSAlgΣ′ , the algebra B |H∈

OSAlgΣ , called its H-reduct, is defined using H as follows: (i) for each s ∈ S,
(B |H)s = BH(s); and (ii) for each f : s1 . . . sn → s in Σ, (B |H)f is the function
λ(x1 ∈ BH(s1), . . . , xn ∈ BH(sn)). H(f) : BH(s1) × . . .×BH(sn) → BH(s) defined
by the term H(f) in the Σ′-algebra B.

In Goguen and Burstall’s sense, the key point about order-sorted signature
morphisms is that they make order-sorted logic an institution [9], so that truth
is preserved along translations. That is, for any B ∈ OSAlgΣ′ and any sentence
(i.e., fvars(ϕ) = ∅) ϕ ∈ Form(Σ) we have the equivalence:

(†) B |= H(ϕ) ⇔ B |H |= ϕ.

This equivalence can be checked in several ways. For example, one can use the
embedding of order-sorted logic in membership equational logic, itself embedded
in many-sorted first-order logic, as detailed in [16]. This reduces the issue to the
same well-known equivalence for many-sorted first-order logic.

An important requirement on a sensible and monotonic signature is regularity
[10]. It requires for each f ∈ Σ and u ∈ S∗ that, if the set {ws ∈ S∗ | f : w →
s ∈ Σ ∧ w ≥ u} is non-empty, then it has a smallest element. Regularity (or just
preregularity [2]) ensures that each Σ-term t ∈ TΣ(X) has a least sort, denoted
lsΣ(t), with t ∈ TΣ(X)lsΣ(t). This makes order-sorted automated deduction tasks
like term rewriting or unification much easier: the matching of a term t to a
variable x:s will succeed iff lsΣ(t) ≤ s. Without regularity, or preregularity, a
costly determination of all possible sorts of t is needed.

3 The Σ 7→ Σ# Signature Transformation

We define a signature transformation Σ 7→ Σ# that will give us the key to
study validity of equational formulas in initial order-sorted algebras in Section 4
and pattern operations in Section 5. Σ is a regular order-sorted finite signature
with poset of sorts (S,≤). As first remarked by H. Comon-Lundh in [4], an
order-sorted signature Σ is just a Σu-tree automaton, with Σu the unsorted
version of Σ, set of states S, and transitions rules: (i) f(s1, . . . , sn)→ s for each
f : s1 . . . sn → s in Σ, and (ii) ε-rules s → s′ for each s < s′ in (S,≤). TΣ,s is

6 J. Meseguer and S. Skeirik

the language accepted by the accepting state s. This means that the problem of
whether TΣ,s = ∅, or whether any Boolean combination of sets TΣ,s1 , . . . , TΣ,sn is
empty, are problems decidable by an emptiness check on a regular tree language.

To construct Σ# we must first define its set S# of sorts. Call s ∈ S atomic iff
s is a minimal element in the poset (S,≤). The key idea is to add to S new atomic
sorts s# characterizing all terms whose least sort is exactly s, where s is non-
atomic. But we want s# to be non-empty. Let ↓ s = {s′ ∈ S | s′ < s}, and glbs(s)
the maximal elements of ↓ s. Call s ∈ S redundant iff TΣ,s−

⋃
s′∈glbs(s) TΣ,s′ = ∅.

We only add s# to S# if s is non-atomic and irredundant. Since non-emptiness
is decidable, we can effectively construct S# as the set containing all atomic
sorts in S and all new sorts s# with s ∈ S non-atomic and irredundant.

We want a many-sorted signature Σ# on sorts S# such that: (i) for s an
atomic sort in Σ, we have TΣ#,s = TΣ,s, (ii) for each s# ∈ S# we have TΣ#,s# =
TΣ,s −

⋃
s′∈glbs(s) TΣ,s′ ; and (iii) if s, s′ ∈ S# and s 6= s′, then TΣ#,s ∩ TΣ#,s′ =

∅. Thus, we will be able to represent each sort s ∈ S as a disjoint union of
sorts in S#. That is, define the function atoms : S → P(S#) inductively as
follows: atoms(s) = if s is atomic then {s} else if s is irredundant then {s#}∪
atoms(s1) ∪ . . . atoms(sn) else atoms(s1) ∪ . . . atoms(sn) fi fi, where glbs(s) =
{s1, . . . , sn}. It then follows from (i)–(iii) above that for any s ∈ S we will have:

TΣ,s =
⊎

s′∈atoms(s)

TΣ#,s′

This is what we want. We still have to define Σ#. For this, it is useful to de-
compose Σ as a “telescope” Σ0 ⊂ Σ1 ⊂ . . . Σk−1 ⊂ Σ. We assume that each
constant a : ε → s in Σ has a single declaration of the specified sort s. To sim-
plify the Σ# construction we also assume, without real loss of generality, that
Σ can have “subsort overloading” but does not have any “ad-hoc overloading;”
that is, if (f : s1 . . . sn → s), (f : s′1 . . . s

′
n → s′) ∈ Σ then [si] = [s′i] 1 ≤ i ≤ n,

and [s] = [s′]. Recall the notation f
[s1]...[sn]
[s] for the set of all subsort-overloaded

operators f for these components. Given (f : s1 . . . sn → s) ∈ f [s1]...[sn][s] define:

(f : s1 . . . sn → s)↓= {(f : s′1 . . . s
′
n → s′) ∈ f

[s1]...[sn]

[s] | s′1 . . . s′ns′ < s1 . . . sns}.

as its set of strictly smaller typings. Define: Σ0 = {(f : s1 . . . sn → s) ∈ Σ | (f :
s1 . . . sn → s) ↓= ∅}, and, inductively, Σn+1 = {(f : s1 . . . sn → s) ∈ Σ | (f :
s1 . . . sn → s) ↓⊆ Σn}. Because of the finiteness of Σ, we get a fixpoint Σk =
Σk+1 = Σ, giving us the above-mentioned telescope. Note that regularity of Σn,
n ≥ 0, follows easily by construction from the regularity of Σ. Furthermore, for
any t ∈ TΣn(X) we have lsΣn(t) = lsΣ(t). We will define a telescope Σ#

0 ⊆
Σ#

1 ⊆ . . . Σ#
k−1 ⊆ Σ# that closely mirrors that of Σ. First of all, note that the

map atoms : S → P(S#) naturally extends to a map on strings, atoms : S∗ →
P((S#)∗) by defining: atoms(ε) = {ε}, and atoms(sw) = {s′w′ | s′ ∈ atoms(s) ∧
w′ ∈ atoms(w)}. Note also that the mapping (f : s1 . . . sn → s) 7→ s1 . . . sn
defines a function arity : Σ → S∗. Define Σ#

0 = {(f : w → s•) | (f : s1 . . . sn →
s) ∈ Σ0, w ∈ atoms(s1 . . . sn)}, where s• = if s atomic then s else s# fi. Then

Equational Formulas and Pattern Operations in Initial OS Algebras 7

define Σ#
n+1 inductively as follows: Σ#

n+1 = Σ#
n ∪{(f : w → s#) | (f : s1 . . . sn →

s) ∈ Σn+1 − Σn, s irredundant , w ∈ atoms(s1 . . . sn) − {arity(f : w′ → s′) |
(f : w′ → s′) ∈ Σ#

n }}. If Σk = Σ, we define Σ#
k = Σ# and obtain a telescope

Σ#
0 ⊆ Σ

#
1 ⊆ . . . Σ

#
k−1 ⊆ Σ# as claimed.

The main properties of the Σ 7→ Σ# transformation are as follows:

Theorem 3. Let Σ satisfy the above assumptions. Then:

1. Σ# is sensible

2. for s, s′ ∈ S#, s 6= s′ ⇒ TΣ#,s ∩ TΣ#,s′ = ∅
3. for each s ∈ S, TΣ,s =

⊎
s′∈atoms(s) TΣ#,s′

4. t ∈ TΣ ∧ lsΣ(t) = s ⇔ t ∈ TΣ# ∧ lsΣ#(t) = s•.

3.1 Variations on the Σ# Theme

Several signatures closely related to Σ and Σ# are also very useful. The most
obvious is their union Σ ∪ Σ#, with set of operators the set-theoretic union
Σ ∪Σ# and poset of sorts (S ∪S#, (≤ ∪ <#)∗), with ≤ the order in (S,≤), and
<#= {(s#, s) | s nonatomic and irredundant}. Σ ∪ Σ# is even more intuitive
than Σ#, because it refines Σ into a richer semantics-preserving signature by
just adding to it the new atoms s#, so that now the least sort of any ground term
t will always be an atomic sort. This means that we have sharpened the typing
of any such t as much as possible, which is the reason for the Σ# notation. Note
that we have subsignature inclusions J : Σ ↪→ Σ ∪Σ# and J ′ : Σ# ↪→ Σ ∪Σ#.
Furthermore, Σ ∪ Σ# enjoys very good properties, which make it an initial-
semantics-preserving enrichment of both Σ and Σ#:

Lemma 1. Σ ∪Σ# is regular, TΣ∪Σ# |J = TΣ, and TΣ∪Σ# |J′ = TΣ# .

Two other useful signatures are Σ#
> and Σ#

c . Σ#
> is an order-sorted signature

with operations those in Σ# and with sorts S>∪S#, where S> = {>[s] | [s] ∈ Ŝ}
is the set of top sorts of each connected component in (S,≤). Its order is defined
as the identity relation on S# ∪ S>, plus the subsort inclusions s′ ≤ >[s] for

each s′ ∈ atoms(>[s]). We have a subsignature inclusion K : Σ#
> ↪→ Σ ∪ Σ#.

Reasoning as in Lemma 1 it is easy to show that TΣ∪Σ# |K = TΣ#
>

.

Σ#
c is a many-sorted version of Σ#

> . Its set of sorts is S>∪S#, but now s ≤ s′
iff s = s′. The operations of Σ#

c are those of Σ# plus the coercion operators
{c : s′ → >[s] | [s] ∈ Ŝ, s′ ∈ atoms(>[s]) − {>[s]}}, which mimic the subsort

inclusions s′ < >[s] in Σ#
> . We then have a signature morphism H : Σ#

c → Σ#
>

that is the identity on sorts and on the operators in Σ# and maps each coercion
c : s′ → >[s] to the term x1:s

′. The following diagram summarizes this section:

(‡) Σ
J
↪→ Σ ∪Σ# K←↩ Σ#

>
H← Σ#

c

8 J. Meseguer and S. Skeirik

4 Equational Formulas in Initial Order-Sorted Algebras

The main goal of this section is to reduce the validity of equational first-order for-
mulas in an initial order-sorted algebra to the validity of semantically equivalent
formulas in an initial many-sorted algebra. The main idea of this reduction is to
exploit diagram (‡) at the end of Section 3.1, which begins with an order-sorted
signature Σ and ends with a many-sorted signature Σ#

c . Like Alice in Wonder-
land’s Cheshire cat’s smile, all order-sorted features vanish in the passage from
Σ to Σ#

c . This reduction seems useful for at least two reasons:

1. Its provides a new, very simple proof of the decidability of first-order formu-
las in initial order-sorted algebras. A non-trivial proof of such a decidability
result goes back to [4,5], but it requires quite complex formulas and for-
mula transformations involving sort constraints based on quite general sort
expressions, whose semantics is defined using tree automata.

2. The reduction-based proof given here provides a useful new transfer princi-
ple, by which problems with a perhaps unclear solution at the order-sorted
level can be reduced to problems having a clear solution at the many-sorted
level. For example, as further explained in Section 5, the puzzling anomaly
about pattern operations in initial order-sorted algebras discussed in the
Introduction has a systematic solution thanks to this transfer principle.

The main idea of the reduction is to assign to each first-order sentence ϕ in
the language of a finite and regular order-sorted signature Σ a corresponding
sentence ϕ#

c in the language of the many-sorted signature Σ#
c , and then prove

that we have an equivalence TΣ |= ϕ ⇔ TΣ#
c
|= ϕ#

c . To obtain such an

equivalence we make our way from TΣ and ϕ to TΣ#
c

and ϕ#
c by moving from

left to right along the diagram (‡). Since some of the steps in this sequence of
signature morphisms are easy consequences of the equivalence (†) at the end of
Section 2, we can quickly get such easy equivalences out of the way. Indeed, since
J is a subsignature inclusion, it is the identity on formulas, and since by Lemma
1 we have the equality TΣ∪Σ# |J = TΣ , (†) applied to J gives us the equivalence
TΣ |= ϕ ⇔ TΣ∪Σ# |= ϕ. On the leftmost side, (†) gives us the equivalence
TΣ#

>
|= H(ϕ#

c) ⇔ TΣ#
>
|H |= ϕ#

c . The interesting twist, however, in that the

unique Σ#
c -homomorphism h : TΣ#

c
→ TΣ#

>
|H from the initial Σ#

c -algebra TΣ#
c

is obviously the identity on the sorts S# and maps each term c(t) ∈ TΣ#
c ,>[s]

to

the term t ∈ TΣ#
> ,>[s]

. That is, h is bijective, and therefore a Σ#
c -isomorphism

h : TΣ#
c

∼= TΣ#
>
|H , which gives us the equivalence TΣ#

>
|H |= ϕ#

c ⇔ TΣ#
c
|= ϕ#

c .

Therefore, stringing these last two equivalences together, we get the equivalence
TΣ#

>
|= H(ϕ#

c) ⇔ TΣ#
c
|= ϕ#

c . We will then be done proving our desired

equivalence TΣ |= ϕ ⇔ TΣ#
c
|= ϕ#

c if we can define a mapping ϕ 7→ ϕ# such

that H(ϕ#
c) = ϕ# and we show an equivalence TΣ∪Σ# |= ϕ ⇔ TΣ#

>
|= ϕ#.

What makes the mapping ϕ 7→ ϕ# not entirely obvious is that Σ#
> has

considerably fewer sorts than the plentiful Σ ∪ Σ#. In particular, we have to

Equational Formulas and Pattern Operations in Initial OS Algebras 9

find a way to express equations and quantifiers involving variables with sorts
of Σ ∪ Σ# not present in Σ#

> in the poorer language of Σ#
> . The key idea for

this is to observe that every ground Σ ∪ Σ#-term has an atomic least sort in
S#, and that, by Theorem 3–(3) and Lemma 1, we have the equality TΣ∪Σ#,s =⊎
s′∈atoms(s) TΣ#,s′ . Therefore, abbreviating t ∈ TΣ∪Σ#,s to t : s, we have, t :

s ⇔
∨
s′∈atoms(s) t : s′, which is a property expressible in the language of Σ#

> .

Here is now the detailed mapping ϕ 7→ ϕ# using these ideas. Without loss of
generality we may assume ϕ in prenex form, that is, ϕ = Qϕ0, with Q a sequence
of quantifiers and ϕ0 quantifier-free. The mapping ϕ 7→ ϕ# decomposes into a
mapping ϕ0 7→ ϕ#

0 for the quantifier-free part and a mapping for the quantifiers.
We first need some notation. x:s abbreviates a sequence of variables x1 :

s1, . . . , xn:sn. We can always decompose the free variables of ϕ0 as fvars(ϕ0) =
x:s, y:p, with x:s variables having non-atomic sorts, and y:p variables having
atomic sorts. Also, if x:s = x1 :s1, . . . , xn :sn, then x:s> denotes the variables
x:s> = x1 :>[s1], . . . , xn :>[sn]. In the same spirit, x:s = t abbreviates the con-
junction of equations x1:s1 = t1 ∧ . . . ∧ xn:sn = tn, and {x:s = t} abbreviates
the substitution {x1 :s1 7→ t1, . . . , xn :sn 7→ tn}. Given variables x:s with sorts
in S, let Spec(x:s, S#), called the set of S#-specializations of x:s, be the set
Spec(x:s, S#) = {x:s = z:q | |x:s| = |z:q| ∧ qi ∈ atoms(si), 1 ≤ i ≤ |x:s|}, where
|x:s| denotes the length of the sequence of variables x:s. To avoid variable cap-
ture we will always assume that the variables z:q are fresh variables, different for
each (x:s = z:q) ∈ Spec(x:s, S#) and not appearing anywhere else. Viewed as a
substitution {x:s = z:q}, each specialization x:s = z:q is just a variable mapping
lowering the sort si of each xi to a sort qi ∈ atoms(si) for zi. We can now define

the mapping ϕ0 7→ ϕ#
0 —where fvars(ϕ0) = x:s, y:p, with x:s variables having

non-atomic sorts, and y:p variables having atomic sorts— as follows:

ϕ#
0 =

∨
(x:s=z:q)∈Spec(x:s,S#)

(∃z:q) (x:s> = z:q ∧ (ϕ0{x:s = z:q})).

Note that fvars(ϕ#
0) = x:s>, y:p. The semantic equivalence between ϕ0 and ϕ#

0

can then be expressed as follows:

Lemma 2. For ϕ0 as above, α ∈ [x:s>, y:p→TΣ#
>

] satisfies TΣ#
>
, α |= ϕ#

0 iff

there exists β ∈ [x:s, y:p→TΣ] such that α = β ◦ {x:s> = x:s} and TΣ , β |= ϕ0.

Since ϕ = Qϕ0, to define ϕ# we still need to deal with the quantifiers Q. This
is done inductively for each individual quantifier as follows. If s ∈ S∩ (S#∪S>),
then ((∀x:s) ϕ)# = (∀x:s) ϕ#, and ((∃x:s) ϕ)# = (∃x:s) ϕ#. Otherwise, let

atoms(s) = {q1, . . . , qk}, then, ((∀x:s) ϕ)# = (∀x:>[s]) (((∃z:q)
∨k
i=1 x:>[s] = zi:

qi) ⇒ ϕ#), and ((∃x:s) ϕ)# = (∃x:>[s], z:q) (
∨k
i=1 x:>[s] = zi:qi) ∧ ϕ#).

The key syntactic invariant maintained by this translation is of course that if
fvars(ϕ) = x:s, y:p, then fvars(ϕ#) = x:s>, y:p. And the key semantic invariant
is that for each α ∈ [x:s>, y:p→TΣ#

>
] we have TΣ#

>
, α |= ϕ# iff there exists

β ∈ [x:s, y:p→TΣ] such that α = β ◦ {x:s> = x:s} and TΣ , β |= ϕ. For quantifier-
free formulas this has already been proved in Lemma 2. That this remains true

10 J. Meseguer and S. Skeirik

after each quantification step is easy to check and left to the reader: indeed,
the above treatment of quantifiers is analogous to how in set theory we restrict
quantifiers ranging over all sets to quantifiers ranging over a given set A by
defining (∀x ∈ A) ϕ = (∀x) (x ∈ A ⇒ ϕ), and (∃x ∈ A) ϕ = (∃x) (x ∈ A ∧ ϕ).
Our treatment is not just analogous, but in fact a special case: we have just
captured x ∈ TΣ,s by the formula (∃z:q)

∨k
i=1 x = zi : qi. Therefore, for any

sentence ϕ (i.e., fvars(ϕ) = ∅) we get TΣ |= ϕ ⇔ TΣ#
>
|= ϕ#.

To close all the proof steps along the Cheshire cat’s sequence (‡) we need
to define the formula ϕ#

c such that H(ϕ#
c) = ϕ#. We can get ϕ#

c from ϕ# as

follows. Since Σ#
> and Σ#

c have the same sorts, the variables and quantifiers
in ϕ# and ϕ#

c stay the same. We just replace each equation u = v appearing
somewhere in ϕ# by the equation c(u) = c(v) at the same position in ϕ#

c , unless:
(i) >[s] is atomic (then u = v is left unchanged), or (ii) >[s] is non-atomic and
either u or v are variables of sort >[s], which are then left unchanged. This gives

us the desired semantic equivalence TΣ |= ϕ ⇔ TΣ#
c
|= ϕ#

c .

Since both the technical report version [15] of Maher’s paper [14], and the
disunification paper by Comon and Lescanne [3] prove that the first-order theory
of a many-sorted initial algebra TΩ is decidable —i.e., that there is an algorithm
to decide for any formula φ whether TΩ |= φ holds or not— we then get as a
corollary of the above equivalence the following theorem,1 already known since
[4,5], but now obtained in a different way and with a considerably simpler proof:

Theorem 4. Let Σ be a finite and regular order-sorted signature. For any first-
order formula ϕ ∈ Form(Σ) the validity problem TΣ |= ϕ is decidable. 2

5 Pattern Operations in Initial Order-Sorted Algebras

Given an order-sorted signature Σ, by a Σ-pattern we just mean a term t ∈
TΣ(X), where we assume Xs countably infinite for each sort s ∈ S. We call t
a pattern to emphasize that t is a symbolic description of a language, namely
the set JtK = {tσ | σ ∈ [X→TΣ]} of its ground instances. Similarly, a finite set
of patterns {t1, . . . , tn} is a symbolic description of the language Jt1, . . . , tnK =
Jt1K∪ . . .∪ JtnK. A language need not be a set of strings. Since strings are just a
special case of trees, it can be a tree language, that is, a subset L ⊆ TΣ for some
Σ. Therefore, P(TΣ) is the set of all Σ-tree languages, and we have a function

J K : Pfin(TΣ(X)) −→ P(TΣ) : {t1, . . . , tn} 7→ Jt1, . . . , tnK

sending each finite set of patterns to its associated language. Call a language
L ⊆ TΣ a pattern language iff L = Jt1, . . . , tnK for some finite set of patterns
{t1, . . . , tn}. The most obvious question is that of representability : which lan-
guages L ⊆ TΣ are pattern languages, i.e., can be symbolically represented by

1 Theorem 4 holds for Σ finite and regular because any such Σ can be transformed into
a semantically equivalent signature with no ad-hoc overloading (by symbol renaming)
and with each connected component having a top sort (added when missing).

Equational Formulas and Pattern Operations in Initial OS Algebras 11

some {t1, . . . , tn}? Pattern languages are closed under finite unions by construc-
tion. Are they closed under finite intersections? Obviously yes, since, by distribu-
tivity we can reduce the problem to the intersection of two patterns JuK ∩ JvK,
and we have JuK∩ JvK = Juσ1K∪ . . .∪ JuσnK, where {σ1, . . . , σn} = DUnif Σ(u, v),
the set of most general disjoint order-sorted unifiers of u and v in Σ [17]; that
is, before unifying u and v, we rename v if necessary to make its variables dis-
joint from those of u. Are TΣ and ∅ pattern languages? Yes: ∅ = J∅K, and
TΣ = Jx1 :>[s1], . . . , xk :>[sk]K, where Ŝ = {[s1], . . . , [sk]}. So, the ony missing
Boolean operation is complement. But since complement and difference are ex-
pressible in terms of each other: A = > − A, and A − B = A ∩ B, we can
rephrase the question thus: are pattern languages closed under differences? In
general they are not. For example, for Σ unsorted and having a constant a and
a binary f , the language Jf(x, y)K − Jf(z, z)K is not a pattern language (see
Prop. 4.5 in [13]). However, in the unsorted case (see Corollary in pg. 314, [13])
Jt1, . . . , tnK− Jt′1, . . . , t′mK is a pattern language when the ti and the t′j are linear
terms —have no repeated variables— and more general cases than just sets of
linear patterns also yield differences that are pattern languages [13,12,19,18,7].

Since all other Boolean operations are already taken care of, all we need is
a way of symbolically defining the difference {t1, . . . , tn} − {t′1, . . . , t′m} of two
finite sets of order-sorted patterns whenever this represents a pattern language.
As illustrated by the example in the Introduction, if we insist on remaining in the
given signature Σ this cannot be done, even for sets of linear patterns. However,
we can use the Σ 7→ Σ# transformation and the transfer principle from order-
sorted problems to many-sorted ones discussed in Section 4 to obtain a solution
based on the following two simple observations:

1. As sets (not as algebras) we have TΣ = TΣ# .
2. For any order-sorted pattern t ∈ TΣ(X) we have the language equality JtK =⋃

(x:s=z:q)∈Spec(x:s,S#)Jt{x : s = z : q}K, where x : s = fvars(t).

where both (1) and (2) are simple corollaries of Theorem 3. This then yields a
straightforward way of representing a difference of finite sets of order-sorted
Σ-patterns {t1, . . . , tn} − {t′1, . . . , t′m} as a difference of finite sets of many-
sorted Σ#-patterns: we just replace each ti (resp t′j) by the finite set of many-

sorted Σ#-patterns {ti{x : s = z : q} | (x : s = z : q) ∈ Spec(x : s, S#)}, where
x : s = fvars(ti). For the example in the Introduction, this method transforms
the order-sorted symbolic difference {x:B}−{y:A} into the many-sorted symbolic
difference: {x:A, z:B#} − {y:A}.

Since —with the possible exception of the treatment of finite sorts (see be-
low), which warrants an extension of the unsorted algorithms— the unsorted
algorithms for computing the symbolic difference of two sets of patterns have
a straightforward generalization to the many-sorted case, we can just use the
above reduction to the many-sorted case and many-sorted versions of the differ-
ence algorithms in [13,19,18,7] to solve the problem of computing when possible
the symbolic difference of order-sorted patterns {t1, . . . , tn} − {t′1, . . . , t′m} as a
finite set of (many-sorted) patterns.

12 J. Meseguer and S. Skeirik

But is this the best we can do? There can be some practical limitations, both
in performance and at the representational level. For order-sorted signatures
with rich type structures a set atoms(s) may have a considerable number of
sorts in S#, so that the sets {ti{x : s = z : q} | (x : s = z : q) ∈ Spec(x : s, S#)}
for each ti (resp. t′i) can become quite big, affecting performance. It also means
that the representation of the solutions to symbolic difference problems, besides
being possibly quite big, may also be more verbose than necessary. For example,
in the signature of the Introduction, we can compute the order-sorted symbolic
difference {x:B} − {b} = {f(y:B), a}, which is shorter and more intuitive than
the equivalent many-sorted representation {x:B} − {b} = {f(z:B#), f(z′:A), a}.

We present below an attractive alternative, namely, an order-sorted algorithm
for computing symbolic differences {t1, . . . , tn} − {t′1, . . . , t′m} in the extended
order-sorted signature Σ ∪Σ# that does not require any transformation of the
original problem and can significantly overcome the above limitations by yielding
simpler and shorter representations and better performance (see Appendix C).

Let us describe this algorithm. First of all, thanks to the Boolean equation
(A∪B)−C = (A−C)∪(B−C), we can decompose {t1, . . . , tn}−{t′1, . . . , t′m} as a
union {t1}−{t′1, . . . , t′m}∪. . .∪{tn}−{t′1, . . . , t′m}. Second, thanks to the Boolean
equation A−B = A− (A∩B) we can reduce {t}−{t1, . . . , tn} to the equivalent
symbolic expression {t} − {tσ | σ ∈ DUnif Σ(t, t1) ∪ . . . ∪DUnif Σ(t, tn)}. Thus,
all our symbolic difference problems can be reduced to unions of problems of
the form {t} − {tσ1, . . . , tσn} with σ1, . . . , σn substitutions instantiating t. Our
algorithm gives priority to the easier and frequently occurring cases, using the
order-sorted extension of the more general algorithm of Lassez and Marriott [13]
only when the simpler algorithms cannot be applied. We also exploit the fact
that a sort s may be finite —i.e., TΣ∪Σ#,s is a finite set— plus the decidability
of sort finiteness to increase the successful difference cases. Specifically:

1. If t, tσ1, . . . , tσn are all linear terms, we apply the inference rules below.
2. Otherwise, when σ1, . . . , σn are all linear, i.e., σi(x), σi(y) are linear terms

not sharing any variables when x 6= y, we reduce to case (1) (Appendix B).
3. Otherwise, if σi is non-linear and y:s occurs more than once either in σi(x) or

in σi(x), σi(z), x 6= z, with s finite, TΣ∪Σ#,s = {u1, . . . , uk}, then we replace
the problem {t} − {tσ1, . . . , tσn} by the problem {t} − {tσ1, . . . , tσi{y 7→
u1}, . . . , tσi{y 7→ uk}, . . . , tσn} and check again the new problem.

4. Outside cases (1)–(3) above, we invoke the order-sorted version of the algo-
rithm in [13], which is more efficient than those in [19,18,7] and gives a full
answer to difference problems {t} − {t1, . . . , tn}, whereas those in [19,18,7]
give a full answer to arbitrary Boolean combinations (see Appendix B).

In case all terms t, tσ1, . . . , tσn are linear, the following rewrite rules are applied:

1. {t} − {tσ1, . . . , tσn} → ({t} − {tσ1}) ∩ . . . ∩ ({t} − {tσn})
2. {t} − ∅ → {t}
3. {f(t1, . . . , tn)} − {f(t1σ, . . . , tnσ)} → {f(t1, . . . , u, . . . , tn) | u ∈ ({ti} −
{tiσ}), 1 ≤ i ≤ n}, where fvars(u) are fresh variables.

4. {x:s}−{y:s′} → {z1:q1, . . . , zk:qk}, where {q1, . . . , qk} = atoms(s)−atoms(s′)

Equational Formulas and Pattern Operations in Initial OS Algebras 13

5. {x : s} − {f(t1, . . . , tn)} → {z:q} ∪
⋃
{{xp : p} − {f(t1, . . . , tn){ρ} | ρ ∈

Spec(Y, S#), p = lsΣ#(f(t1, . . . , tn){ρ})} | p ∈ atoms(s)∩atoms(f(t1, . . . , tn))} if s 6∈
S#, where Y = fvars(f(t1, . . . , tn)), z:q = z1 :q1, . . . , zk :qk, {q1, . . . , qk} =
atoms(s)−atoms(f(t1, . . . , tn)), and atoms(f(t1, . . . , tn)) = {lsΣ#(f(t1, . . . , tn){ρ}) |
ρ ∈ Spec(Y, S#)}.

6. {x:s}−{f(t1, . . . , tn)} → {u | u ∈ Pat(s)−{f(x:s)}}∪{f(x:s)}−{f(t1, . . . , tn)} if s =
lsΣ#(f(t1, . . . , tn)) ∈ S#, where x:s = x1 :s1, . . . , xn :sn, si = lsΣ#(ti), and
Pat(s) = {g(x1:s1, . . . , xn:sn) | g : s1 . . . sn → s ∈ Σ#}.

The correctness of these rules and of the algorithm is proved in Appendix B.
What advantages do we gain from this algorithm? Quite substantial ones

to reason effectively about languages. Let LTΣ(X) ⊆ TΣ(X) denote the set
of linear terms in TΣ(X). Note that if u ∈ LTΣ(X) then JuK is a regular
tree language. This follows from order-sorted signatures being tree automata,
plus the regular expression fact that if L1, . . . , Ln are regular languages, then
f(L1, . . . , Ln) is a regular language. Also, Pfin(LTΣ∪Σ#(X)) is closed under
symbolic: (i) unions; (ii) intersections, because disjoint unifiers of linear terms
are linear; and (iii) differences, since rules (1)–(6) preserve linearity of terms.
Furthermore, given {t1, . . . , tn}, {t′1, . . . , t′m} ∈ Pfin(LTΣ∪Σ#(X)) we can use
pattern differences to decide whether J{t1, . . . , tn}K = J{t′1, . . . , t′m}K. Indeed,
J{t1, . . . , tn}K = J{t′1, . . . , t′m}K ⇔ {t1, . . . , tn} ≡ {t′1, . . . , t′m}, where, by defini-
tion, {t1, . . . , tn} ≡ {t′1, . . . , t′m} iff {t1, . . . , tn}−{t′1, . . . , t′m} = ∅ and {t′1, . . . , t′m}−
{t1, . . . , tn} = ∅. By the homomorphism theorem for Boolean algebras, this
means that J K defines an injective homomorphism of Boolean algebras J K :
Pfin(LTΣ∪Σ#(X))/≡ → P(TΣ). This is as good as it gets, since Pfin(LTΣ∪Σ#(X))/≡
is a computable Boolean algebra, where all operations become effective. This of-
fers an attractive, simpler alternative to tree automata to effectively compute
Boolean operations on linear pattern languages in a symbolic way.

6 Implementation and Experiments

The algorithms described in this paper are highly reflective. That is, they are
parametric on signatures Σ and perform meta-level operations on signatures
and Σ-terms, such as order-sorted unification, matching, sort comparisons, and
so on, to ultimately compute pattern operations. Fortunately, many of these
auxiliary meta-level operations are available, or can be easily programmed, in
the Maude language through its reflective features using its META-LEVEL module
[2]. In META-LEVEL, a signatureΣ is meta-represented as a termΣ of sort Module,
and a Σ-term t is meta-represented as a so-called meta-term t of sort Term.

Since: (i) Maude syntax at the meta-level essentially mirrors the syntax at the
object level; and (ii) inference rules such as above rules (1)–(6) can be directly
expressed as rewrite rules operating on meta-terms, the representational distance
between the theoretical description of the algorithm in Section 5 and its actual
meta-level implementation in Maude is relatively short.

We have implemented in Maude the signature transformation Σ 7→ Σ# de-
scribed in Section 3. The implementation essentially coincides with the tele-

14 J. Meseguer and S. Skeirik

scoping procedure described therein. The procedure takes a reflected signature
Σ as an argument and proceeds by non-deterministically selecting an opera-
tor f in Σ which has not been processed and whose strictly smaller typings
have all been processed. Using the signature transformation procedure we have
also implemented the order-sorted pattern operation algorithms described in
Section 5. The overall algorithm takes as arguments a reflected signature Σ,
a set of pre-computed ground meta-term sets inhabiting each finite sort, and
a symbolic Boolean expression composed of meta-terms t representing Σ-term
patterns using a mixfix syntax where U represents union, & represents inter-
section, and - represents difference. A set of Boolean equations first reduces
each Boolean symbolic pattern expression to a normal form (essentially push-
ing conjunctions/differences down the expression tree). A normal form is then
solved using an algorithm that, with some additional optimizations and small
variations, deals with each symbolic difference problem according to the steps
described in Section 5: the problem is first classified according to cases (1)–(4),
iterating over the finite-sort transformation of case (3) if needed. Then, either
the simpler algorithm for case (1) (essentially rules (1)–(6)), or its case (2) ex-
tension (see Appendix B), or the more general order-sorted extension of the
Lassez-Marriott algorithm [13] are invoked. Finally, symbolic union and inter-
section operations are performed to obtain either: (i) a finite set of patterns if the
algorithm computed a pattern language, or (ii) a Boolean expression containing
some symbolic differences that do not denote pattern languages otherwise.

Additionally, we conducted experiments comparing our order-sorted pattern
operations algorithm to its many-sorted reduction. To ground our discussion,
we work in a module COMPLEX-RAT adapted from [10] that defines the complex
numbers. We also fix a term set T by randomly selecting operators to generate
terms upto depth 2. Then, given (t1, t2) ∈ T 2, we generate the pattern opera-
tion Jt1K− Jt2K, which we compute by both our order-sorted algorithm and the
many-sorted reduction. Our experiments show that, on average, the many-sorted
reduction requires about a 1,000 times as many rewrites as the order-sorted algo-
rithm, with the median being 55 times as many rewrites. While not a proof, this
presents a strong case that for (non-toy) examples, the order-sorted algorithm
is more expressive (no input encoding, shorter output) and performant than its
many-sorted cousin. For more details on our experiments see Appendix C.

7 Related Work and Conclusions

On pattern operations the most closely related work is [13,12,19,18,7] and refer-
ences there. On equational formulas in initial algebras the most closely related
work is [14,15,3,4,5] and references there. The relationships to work in both these
areas have been discussed in detail in previous sections (see also Appendix B).

To conclude, we have shown that the untyped algorithms break down when
performing the order-sorted pattern operations needed in current declarative
languages, and shown that such operations can be defined using a signature
transformation Σ 7→ Σ#. We have also shown that this transformation yields

Equational Formulas and Pattern Operations in Initial OS Algebras 15

new insights and a new, quite simple proof of the known decidability of the
first-order theory of an initial order-sorted algebra. The Introduction mentioned
many applications of pattern operations. We illustrate a sufficient completeness
one in Appendix D, but plan to work on many others and to further advance the
current implementation to make it part of the Maude formal tool environment.

References

1. Alpuente, M., Escobar, S., Espert, J., Meseguer, J.: A modular order-sorted equa-
tional generalization algorithm. Inf. Comput. 235, 98–136 (2014)

2. Clavel, M., Durán, F., Eker, S., Meseguer, J., Lincoln, P., Mart́ı-Oliet, N., Talcott,
C.: All About Maude. Springer LNCS 4350 (2007)

3. Comon, H., Lescanne, P.: Equational problems and disunification. Journal of Sym-
bolic Computation 7, 371–425 (1989)

4. Comon, H.: Equational formulas in order-sorted algebras. In: Proc. ICALP’90.
LNCS, vol. 443, pp. 674–688. Springer (1990)

5. Comon, H., Delor, C.: Equational formulae with membership constraints. Inf. Com-
put. 112(2), 167–216 (1994)

6. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1. Springer (1985)

7. Fernández, M.: Negation elimination in empty or permutative theories. J. Symb.
Comput. 26(1), 97–133 (1998)

8. Futatsugi, K., Diaconescu, R.: CafeOBJ Report. World Scientific (1998)

9. Goguen, J., Burstall, R.: Institutions: Abstract model theory for specification and
programming. Journal of the ACM 39(1), 95–146 (1992)

10. Goguen, J., Meseguer, J.: Order-sorted algebra I: Equational deduction for multiple
inheritance, overloading, exceptions and partial operations. Theoretical Computer
Science 105, 217–273 (1992)

11. Goguen, J., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.P.: Introducing
OBJ. In: Software Engineering with OBJ: Algebraic Specification in Action, pp.
3–167. Kluwer (2000)

12. l. Lassez, J., Maher, M., Marriott, K.: Elimination of negation in term algebras.
In: In Mathematical Foundations of Computer Science. pp. 1–16. Springer (1991)

13. Lassez, J.L., Marriott, K.: Explicit representation of terms defined by counter
examples. J. Autom. Reasoning 3(3), 301–317 (1987)

14. Maher, M.J.: Complete axiomatizations of the algebras of finite, rational and infi-
nite trees. In: Proc. LICS ’88. pp. 348–357. IEEE Computer Society (1988)

15. Maher, M.J.: Complete axiomatizations of the algebras of finite, rational and infi-
nite trees. Tech. rep., IBM T. J. Watson Research Center (1988)

16. Meseguer, J.: Membership algebra as a logical framework for equational specifica-
tion. In: Proc. WADT’97. pp. 18–61. Springer LNCS 1376 (1998)

17. Meseguer, J., Goguen, J., Smolka, G.: Order-sorted unification, Journal of Symbolic
Computation, 8, 383–413 (1989)

18. Pichler, R.: Explicit versus implicit representations of subsets of the Herbrand
universe. Theor. Comput. Sci. 290(1), 1021–1056 (2003)

19. Tajine, M.: The negation elimination from syntactic equational formula is decid-
able. In: Proc. RTA-93. LNCS, vol. 690, pp. 316–327. Springer (1993)

16 J. Meseguer and S. Skeirik

A Proofs of Theorems and Lemmas in Sections 3–4

Proof of Theorem 3.

Proof. It is easy to prove by structural induction that any term in a sensible
many-sorted signature has a unique sort, so that (2) follows from (1). For the
same reason, (1) makes Σ# trivially regular. Furthermore, from the definition of
the function atoms and (4), we can easily obtain (3). So, we only need to prove
(1) and (4). Since Σ# is sensible iff each Σ#

n is sensible, we can prove (1) by
proving that Σ#

n is sensible for each n by induction on n.

Base case: n = 0. We can prove Σ#
0 sensible by contradiction. Suppose that

we have two typings f : w• → s• and f : w• → s′• in Σ#
0 with s 6= s′. By

the definition of Σ0, this can only happen if f is not a constant and we have
two different subsort-overloaded typings f : u → s, f : u′ → s′ ∈ Σ0 and
w• ∈ atoms(u) ∩ atoms(u′). By the definition of the function atoms this can
only happen if we have w ≤ u, u′. By regularity this requires the existence of
f : w′ −→ s′′ in Σ with w ≤ w′ ≤ u, u′ and w′s′′ ≤ ws,ws′. By the definition of
Σ0 this can only happen if either w′s′′ = ws and ws < ws′, or w′s′′ = ws′ and
ws′ < ws; but in either case we cannot have f : u→ s, f : u′ → s′ ∈ Σ0.

Induction Step. We assume that Σ#
n is sensible and prove Σ#

n+1 sensible. Note

that, by the definition of Σ#
n+1, f : w• → s# ∈ Σ#

n+1 − Σ#
n iff there is an

f : u → s ∈ Σn+1 − Σn with s irredundant and w• ∈ atoms(u) − {arity(f :
w′′ → s′′) | (f : w′′ → s′′) ∈ Σ#

n }. Therefore, since Σ#
n is sensible, a failure

of Σ#
n+1 being sensible can only happen with two different typings f : w• →

s#, f : w• → s′# ∈ Σ#
n+1 −Σ#

n . This means that we have two different subsort-
overloaded f : u→ s, f : u′ → s′ ∈ Σn+1 −Σn with w• ∈ atoms(u)∩ atoms(u′).
By the definition of the function atoms this can only happen if we have w ≤ u, u′.
But then regularity requires the existence of f : w′ → s′′′ with w ≤ w′ ≤ u, u′

and w′s′′′ ≤ us, u′s′, which forces w• ∈ atoms(w′). Since w• 6∈ {arity(f : w′′ →
s′′) | (f : w′′ → s′′) ∈ Σ#

n }} and w′s′′′ ≤ us, u′s′, we must have f : w′ → s′′′ ∈
Σn+1 −Σn. But this then forces either w′s′′ = us and us < u′s′, or w′s′′ = u′s′

and u′s′ < us, both contradicting f : u→ s, f : u′ → s′ ∈ Σn+1 −Σn.

The proof of (4) essentially reduces to proving the following lemma:

Lemma 3. Let u ≤ w be words of equal length in S∗ such that f : w → s′ ∈ Σ,
and let f : v → s be the smallest possible typing in Σ with u ≤ v ≤ w and
vs ≤ ws′. Then, f : u• → s• ∈ Σ#.

Proof. If f : v → s ∈ Σ0, this follows from the definition of Σ#
0 . Suppose

f : v → s ∈ Σn+1−Σn. Since Σ has non-empty sorts, there must then be terms
of smallest sort s, so that s is irredundant. Therefore, the only way in which we
can fail to have f : u• → s• ∈ Σ#

n+1 is by having some f : u• → s′′• ∈ Σ#
n .

But this can only happen if there is an f : v′ → s′′ ∈ Σn with u ≤ v′, which by
regularity forces v′s′′ ≥ vs, and, since v′s′′ 6= vs makes v′s′′ > vs, which forces
f : v → s ∈ Σn−1, contradicting f : v → s ∈ Σn+1 −Σn. 2

Equational Formulas and Pattern Operations in Initial OS Algebras 17

Using (1), which ensures that lsΣ#(t) is a well-defined function, we can now
prove (4) by structural induction. To see the (⇒) implication, note that the
result is trivial if t is a constant, so let f(t1, . . . , tn) ∈ TΣ ∧ lsΣ(f(t1, . . . , tn)) =
s, with lsΣ(ti) = si, 1 ≤ i ≤ n. By the induction hypothesis we then have
ti ∈ TΣ# ∧ lsΣ#(ti) = s•i , 1 ≤ i ≤ n. Furthermore, lsΣ(f(t1, . . . , tn)) = s and
regularity imply that we have an f : v → s ∈ Σ with u = s1 . . . sn ≤ v and vs
smallest possible with this property. But then Lemma 3 ensures the existence
of f : u• → s• ∈ Σ#, proving f(t1, . . . , tn) ∈ TΣ# ∧ lsΣ#(f(t1, . . . , tn)) = s, as
desired.
For the (⇐) implication, constants are again trivial. So let f(t1, . . . , tn) ∈ TΣ# ∧
lsΣ#(f(t1, . . . , tn)) = s•, with lsΣ#(ti) = s•i , 1 ≤ i ≤ n. The induction hypothe-
sis then gives us ti ∈ TΣ ∧ lsΣ(ti) = si, 1 ≤ i ≤ n. Since for u = s1 . . . sn we have
f : u• → s• ∈ Σ#, by the construction of Σ# we must have some f : w → s′ ∈ Σ
with u ≤ w, and if f : v → s′′ is the smallest possible typing in Σ with u ≤ v ≤ w
and vs′′ ≤ ws′, then Lemma 3 ensures the existence of f : u• → s′′• ∈ Σ#, and
Σ# sensible forces s = s′′. Therefore, f(t1, . . . , tn) ∈ TΣ ∧ lsΣ(f(t1, . . . , tn)) = s,
as desired. 2

Proof of Lemma 1

Proof. Let u ∈ (S∪S#)∗ be such that there is an f : w → s′ inΣ∪Σ# and u ≤ w.
If u = u′•, then the construction of Σ#, Lemma 3, and the order (≤ ∪ <#)∗

ensure that there is a smallest possible typing of the form f : u′bullet → s•.
Otherwise, u 6∈ (S#)∗, say, u = s1 . . . s

•
i1
. . . s•ik . . . sn, with 0 ≤ k < n. But then

the only f : w → s′ in Σ ∪ Σ# with u ≤ w and those f : w → s′ in Σ with
s1 . . . si1 . . . sik . . . sn ≤ w, for which there is one with smallest possible typing
by the regularity of Σ. The identity TΣ∪Σ# |J′ = TΣ# follows easily from the
fact that the atomic sorts of Σ ∪Σ# are precisely the sorts in S#, and the only
operators relating those sorts are exactly those in Σ#. Note also that it follows
easily from Theorem 3 that, as sets of terms, we have TΣ∪Σ# = TΣ = TΣ# ,
and that for any term in that set we have lsΣ∪Σ#(t) = lsΣ#(t). Therefore,
to prove TΣ∪Σ# |J = TΣ we just have to show that for each s ∈ S we have
TΣ∪Σ#,s = TΣ,s. But since in the order (≤ ∪ <#)∗ the atoms below any s ∈ S
are precisely the set of sorts atoms(s), the equality lsΣ∪Σ#(t) = lsΣ#(t) and (3)
in Theorem 3 give us TΣ∪Σ#,s = TΣ,s, as desired. 2

Proof of Lemma 2

Proof. To see the (⇒) implication, note that TΣ#
>
, α |= ϕ#

0 iff there is an (x : s =

z : q) ∈ Spec(x : s, S#) such that TΣ#
>
, α |= (∃z:q) (x:s> = z:q ∧ (ϕ0{x:s = z:q})).

For each 1 ≤ i ≤ |x : s| this forces α(xi:>[si]) ∈ TΣ#,qi , and, since qi ∈ atoms(si),
by Theorem 3–(3) we must have α(xi:>[si]) ∈ TΣ,si . This means that there is a
β ∈ [x:s, y:p→TΣ] with β |y:p= α |y:p, and β(xi:si) = α(xi:>[si]), 1 ≤ i ≤ |x : s|,
such that α = β ◦ {x:s> = x:s}. To see that TΣ , β |= ϕ0 it is enough to reason
by structural induction on the Boolean structure of ϕ0 and show that for each
equation u = v appearing in ϕ0, assuming k = |z:q|, we have the equivalence:
TΣ#

>
, α |y:p ∪{z1 :q1 7→ α(x1 :>[s1]), . . . , zk :qk 7→ α(xk :>[sk])} |= (u = v){x:s =

18 J. Meseguer and S. Skeirik

z:q} ⇔ TΣ , β |= u = v. But this is trivial, since by the definition of β we have
u{x:s = z:q}(α |y:p ∪{z1:q1 7→ α(x1:>[s1]), . . . , zk:qk 7→ α(xk:>[sk])}) = uβ, and
v{x:s = z:q}(α |y:p ∪{z1:q1 7→ α(x1:>[s1]), . . . , zk:qk 7→ α(xk:>[sk])}) = vβ.

The (⇐) implication can also be reduced to the case ϕ0 = u = v, with
fvars(u = v) = x:s, y:p. For any β ∈ [x:s, y:p→TΣ] such that TΣ , β |= u = v,
let qi = lsΣ(β(xi :si))

•, and let α = β ◦ {x:s> = x:s}. Then we have u{x:s =
z:q}(α |y:p ∪{z1 :q1 7→ α(x1 :>[s1]), . . . , zk :qk 7→ α(xk :>[sk])}) = uβ = vβ =
v{x:s = z:q}(α |y:p ∪{z1 : q1 7→ α(x1 :>[s1]), . . . , zk : qk 7→ α(xk :>[sk])}), and
therefore TΣ#

>
, α |= (∃z:q) (x:s> = z:q ∧ (ϕ0{x:s = z:q})), which proves TΣ#

>
, α |=

ϕ#
0 , as desired. 2

B The Order-Sorted Symbolic Difference Algorithm

We can show the correctness of rules (1)–(6) for the linear patterns case by
showing that each rule exp → exp′ is language-preserving, i.e., that JexpK =
Jexp′K. For rule (1) this follows from the Boolean equation A − (B ∪ C) =
(A − B) ∩ (A − C). For rule (2) this is trivial. For rule (3) this follows from
the following set equalities: Jf(t1, . . . , tn)K− Jf(t1σ, . . . , tnσ)K = {f(t1, . . . , tn)γ |
γ ∈ [Y→TΣ]} − {f(t1, . . . , tn)γ | γ ∈ [Y→TΣ] ∧ t1γ ∈ Jt1σK ∧ . . . ∧ tnγ ∈
JtnσK} = {f(t1, . . . , tn)γ | γ ∈ [Y→TΣ] ∧ ¬(t1γ ∈ Jt1σK ∧ . . . ∧ tnγ ∈ JtnσK)} =
{f(t1, . . . , tn)γ | γ ∈ [Y→TΣ]∧ (t1γ 6∈ Jt1σK∨ . . .∨ tnγ 6∈ JtnσK)} = {f(t1, . . . , tn)γ |
γ ∈ [Y→TΣ] ∧ t1γ ∈ Jt1−t1σK}∪. . .∪{f(t1, . . . , tn)γ | γ ∈ [Y→TΣ] ∧ tnγ ∈ Jtn−
tnσK} =

⋃
u1∈({t1}−{t1σ})Jf(u1, . . . , tn)K ∪ . . . ∪

⋃
un∈({tn}−{tnσ})Jf(t1, . . . , un)K.

For rule (4) it follows easily from (2)–(3) in Theorem 3. For rule (5) this fol-
lows again from (2)–(3) in Theorem 3, the fact that if

⊎
pAp is a disjoint

union and Bp ⊆ Ap, then
⊎
pAp −

⊎
pBp =

⊎
p(Ap − Bp), and the fact that

Jf(t1, . . . , tn)K =
⊎
ρ∈Spec(Y,S#)Jf(t1, . . . , tn){ρ}K. In this case Ap = Jxp : pK,

and Bp = J{f(t1, . . . , tn){ρ} | ρ ∈ Spec(Y, S#), p = lsΣ#(f(t1, . . . , tn){ρ})}K.
The correctness of rule (6) follows for each s ∈ S# from the language equality
Jx:sK =

⊎
v∈Pat(s)JvK.

It is easy to prove that rules (1)–(6) terminate on any input of the form
{t} − {tσ1, . . . , tσn} with all terms linear, resulting in a combination of unions
and intersections of finite sets of patterns which, by systematic application of
distributivity of ∩ over ∪ and computation of symbolic ∩ operations, results in a
finite set of Σ∪Σ#-patterns denoting the same language as {t}−{tσ1, . . . , tσn}.

Case (2), i.e., a problem {t} − {tσ1, . . . , tσn} where some terms are non-
linear but the σi are linear can be reduced to an intersection of cases of the form
{t} − {tσ} where σ = {x:s = v} is linear. Then we can apply the single rewrite
rule {t} − {tσ} → {t{xi :si 7→ w} | xi :si ∈ x:s, w ∈ {xi :si} − {vi}}, which,
since σ is linear, reduces the problem to computing the differences {xi:si}−{vi}
between linear terms. The proof of correctness of this rule is entirely analogous
to that for rule (3) of the linear case above and is left to the reader.

The correctness of the transformation in case (3) reduces to the observation
that if σ(x) is non-linear but the sort s of one the variables y occurring more

Equational Formulas and Pattern Operations in Initial OS Algebras 19

than once in σi(x) is finite with TΣ∪Σ#,s = {u1, . . . , uk}, then JtσK = Jtσ{y 7→
u1}K ∪ . . . ∪ Jtσ{y 7→ uk}K.

The correctness of the Lassez-Marriott algorithm is proved in detail in [13] for
the unsorted case and has a straightforward extension to the order-sorted case
when the signature is Σ ∪Σ#. For references on the complexity analysis of this
algorithm and a discussion of why it is considerably more efficient than similar
algorithms in [19,18,7], we refer the reader to the detailed discussion by Pichler
[18], where a more general —but computationally more costly— algorithm is
given which can successfully compute pattern solutions whenever they exist for
disjunctions of difference problems of the form {t1} − {t1σ1

1 , . . . , t1σ
1
n1
} ∪ . . . ∪

{tk}−{tkσ1
k, . . . , tkσ

k
nk
}. This is a key part of more general, but also more costly,

algorithms that, given any Boolean expression Bexp involving term patterns, can
decide whether JBexpK is a pattern language and in the affirmative case can com-
pute its pattern representation [19,18,7]. Instead, our algorithm —which gener-
alizes that of Lassez and Marriott to order-sorted patterns— can only decide if
JtK− Jt1, . . . , tnK is an order-sorted pattern language and in the affirmative case
can construct its explicit representation (see Thm. 4.1 in [13]). Since in practice
many application problems can be expressed in the form {t} − {t1, . . . , tn}, we
consciously trade off the extra generality of the algorithms in [19,18,7] for the
considerably greater efficiency of the Lassez-Marriott one [13].

A last practical issue is reducing the size of solutions of Boolean operations
on finite sets of order-sorted patterns. That is, the resulting solution {t1, . . . , tn}
may be bigger than necessary. This problem can be addressed by the application
of two size-reducing and language-preserving rewrite rules, namely:

1. {t1, . . . , tn} → {t2, . . . , tn} if t2 < t1, where we use associativity commu-
tativity of set union to make the order of t1, t2 in the set immaterial, and
where, by definition,2 t < t′ iff t′ = tσ for some substitution σ.

2. {t1, . . . , tn} → {u, t3, . . . , tn} if {u} = lggΣ∪Σ#(t1, t2) ∧ {u} − {t1, t2} = ∅,
where we require that the order-sorted least general generalization of t1, t2,
denoted lggΣ∪Σ#(t1, t2) [1], which could be a set of terms, is actually a
singleton set, and is furthermore “tight,” i.e., JuK = Jt1, t2K.

For example, the result of the difference {x:B}− {b} = {f(z:B#), f(z′:A), a} for
the signature Σ ∪Σ# in the Introduction is reduced to {f(y:B), a} by rule (2).

C Order-Sorted Difference Algorithm Evaluation

In this section we compare our order-sorted algorithm to solve a symbolic differ-
ence problem to the many-sorted algorithm into which —as explained in Section
5— such an order-sorted difference problem can be transformed. In general, a
complete experimental comparison is impossible, since there are infinitely many
signatures, each typically generating an infinite set of term patterns up to re-
naming. Thus, our goal with these experiments is not any kind of “proof,” but

2 We use the order in the same direction as in, e.g., [13], so that < is the “more or
equally general than” relation. Other authors use 4 for the same relation.

20 J. Meseguer and S. Skeirik

rather to provide evidence that in non-toy examples our order-sorted algorithm
is both more expressive and more performant.

fmod NAT-SIG is

sorts Nat NzNat Zero .

subsorts Zero NzNat < Nat .

op 0 : -> Zero .

op s_ : Nat -> NzNat .

op _+_ : Nat Nat -> Nat .

op _+_ : NzNat Nat -> NzNat .

op _+_ : Nat NzNat -> NzNat .

op _*_ : Nat Nat -> Nat .

op _*_ : NzNat NzNat -> NzNat .

endfm

fmod INT-SIG is

protecting NAT-SIG .

sorts Int NzInt .

subsort Nat < Int .

subsorts NzNat < NzInt < Int .

op -_ : Int -> Int .

op -_ : NzInt -> NzInt .

op _+_ : Int Int -> Int .

op _*_ : Int Int -> Int .

op _*_ : NzInt NzInt -> NzInt .

endfm

fmod RAT-SIG is

protecting INT-SIG .

sorts Rat NzRat .

subsort Int < Rat .

subsorts NzInt < NzRat < Rat .

op _/_ : Rat NzRat -> Rat .

op _/_ : NzRat NzRat -> NzRat .

op -_ : Rat -> Rat .

op -_ : NzRat -> NzRat .

op _+_ : Rat Rat -> Rat .

op _*_ : Rat Rat -> Rat .

op _*_ : NzRat NzRat -> NzRat .

endfm

fmod COMPLEX-RAT is

protecting RAT-SIG .

sorts Cpx Imag NzImag NzCpx .

subsort Rat < Cpx .

subsort NzRat NzImag < NzCpx .

subsorts NzCpx < Imag < Cpx .

subsorts Zero < Imag .

op _i : Rat -> Imag .

op _i : NzRat -> NzImag .

op -_ : Cpx -> Cpx .

op -_ : NzCpx -> NzCpx .

op _+_ : Cpx Cpx -> Cpx .

op _+_ : NzRat NzImag -> NzCpx .

op _*_ : Cpx Cpx -> Cpx .

op _*_ : NzCpx NzCpx -> NzCpx .

op _/_ : Cpx NzCpx -> Cpx .

op _# : Cpx -> Cpx .

op |_|^2 : Cpx -> Rat .

op |_|^2 : NzCpx -> NzRat .

endfm

COMPLEX-RAT Signature

For greater generality in comparing these two algorithms, we might have
randomly generated signatures from the space of all order-sorted signatures and
further randomly generated terms in each signature. While this might seem more
convincing, the majority of random signatures would never be used for any prac-
tical purpose. Thus, in our experiments we have favored practicality of examples
over generality. To ground the discussion, we fixed a signature COMPLEX-RAT

Equational Formulas and Pattern Operations in Initial OS Algebras 21

which is part of an algebraic specification of the complex rational numbers. This
signature —adapted from [10]— or very similar ones have been used in actual
programming and verification tasks. Furthermore, it displays a substantial de-
gree of subsorting, which will let us usefully compare the two algorithms (since
they are essentially the same in the many-sorted case).

After fixing a signature, there is still the matter of generating terms to be
inputs to the difference algorithms. In COMPLEX-RAT, we generated a set T of
random terms via the following process: Given a desired term depth n >= 0, let
a counter i be set to 0. While i < n, randomly select a non-constant operator
for each open node in the term tree (the empty tree is open by default) and
increment i. For each open node where i = n, randomly select a variable with
70% probability or a constant operator with 30% probability. For the experiments
in this appendix, we set 0 ≤ n ≤ 2.

Given a set of terms T randomly generated as above, we computed all pairs
(t1, t2) ∈ T 2 and further generated the pattern operations Jt1K − Jt2K. Finally,
these pattern operations can be input into our order-sorted algorithm as well as
their many-sorted transformed versions. The metric used for comparison is the
number of rewrites as counted by the Maude rewrite engine used to implement
these two algorithms. This metric is useful because it is invariant across different
computers and lets us abstract away from implementation differences.

The many-sorted transformed version of a problem was obtained by applying
the sharpening transformation of Section 4 to the signature COMPLEX-RAT and
to the pattern operation to be solved. Since many-sorted signatures are just a
special case of order-sorted signatures, we can plug the transformed inputs into
our order-sorted algorithm and it will compute results in a strictly many-sorted
way. In general, since the transformation of an order-sorted difference problem
into a many-sorted one described in Section 5 causes each order-sorted term to
be expanded into a set of many-sorted ones, we can expect that the order-sorted
difference algorithm will perform better, especially in cases with deep subsorting
and multiple variables. Another side effect of this transformation is that answer
sizes will likely be larger, since each order-sorted term may expand into several
many-sorted ones.

In all, we computed roughly a thousand term difference problems using both
our order-sorted algorithm and the many-sorted transformed problem and algo-
rithm. On the whole, in the signature COMPLEX-RAT, with a thousand difference
problems containing terms ranging from size zero to two, the many-sorted algo-
rithm on average needed about 1,000 times as many rewrites as our order-sorted
algorithm, with the median being 55 times as many rewrites.

Each dot in the figure below represents a randomly chosen difference problem
among the roughly a thousand ones we generated. The dot’s x-coordinate gives
the number of rewrites needed to solve the problem using the order-sorted algo-
rithm, while its y-coordinate gives the corresponding number of rewrites when
the problem is reduced to a many-sorted one and the many-sorted algorithm
is used. Note the difference in scale: the x-axis continues until 70,000 rewrites
while the y-axis goes all the way to 800,000 rewrites.

22 J. Meseguer and S. Skeirik

Fig. 1. Rewrites Used by Order-Sorted Vs. Many-Sorted Algorithm

OS Rewrites MS Rewrites

23103 35811474
24937 49010016
53823 1233545932
69359 12619028
69765 14073907001
76389 21151931
78891 23954195214
86061 29805843801
91952 155444847
98377 5105671052
125465 12175065031
152156 152431926
192685 479356113
233652 713057516
340468 15062845092
664733 2618219

Fig. 2. Experimental Data Outliers

Equational Formulas and Pattern Operations in Initial OS Algebras 23

Actually, the full graph of the data would scale the axes even further, so for
formatting purposes, some of points were removed and included in the table in
Figure 2. If included in Figure 1, the difference in scale would become so great
that the graph would become almost useless as a visual representation of the
data. To better understand what is happening with these outlier points, we con-
sider two examples: the outlier with the maximum x-value and the corresponding
one with the maximum y-value.

The maximum x-value reported in our data set is 664733, with 2618219
the corresponding y-value and 2618219/664733 ≈ 4 the smallest y/x ratio in
Figure 2. The operation in question is {-C:Cpx}−{-(R:Rat*0)}. Here, because
of the deep sorting and unifiability of the terms, the order-sorted algorithm
must consider many possible operators that C could instantiate into that do not
unify with R:Rat*0. On the other hand, since there are only two variables, the
many-sorted expansion does not generate as many patterns as when the problem
contains many variables.

Alternatively, we may consider the maximum y-value: 29805843801, with
86061 its corresponding x-value and 29805843801/86061 ≈ 346334 the largest
y/x ratio in Figure 2. In this case, the pattern operation is given by:

{R1:Rat*R2:Rat} −
{((N1:Nat+N2:Nat)*(N3:Nat+N4:Nat))*((N5:Nat+N6:Nat)+s(0))}

As predicted above, this particular operation with eight variables expands into a
huge number of cases—1,323 separate cases in fact. Furthermore, each case may
require several levels of descent to verify how the terms overlap.

In summary, the data collected from our experiments show that for real sig-
natures of interest even small input terms may create a huge difference in per-
formance when choosing between the many-sorted and order-sorted algorithms.

D Case Study

We use the pattern operation algorithms presented in this paper to analyze the
sufficient completeness of a specification of addition and multiplication in the
natural numbers and integers. We first explain the notion of sufficient complete-
ness and how term differences can settle sufficient completeness problems. We
assume acquaintance with the following notions: (i) order-sorted rewrite rule
l→ r, and rewrite relation →R associated to a set R of such rules; (ii) termina-
tion of the →R relation. For more details about these notions see, e.g., [2].

The sufficient completeness problem arose as the question of whether in an
equational program (Σ,E) defining several recursive functions each such function
has been fully defined by the equations E, where for execution purposes each
equation t = t′ in E is oriented from left to right as a rewrite rule t → t′.
More generally, this problem can be posed for a terminating rewrite-rule-based
program (Σ,R) as follows: we split the order-sorted signature Σ as a disjoint
union Ω]∆, where ∆ are the so-called defined symbols, and Ω the constructor
symbols. To simplify the exposition we assume that each subsort-polymorphic

24 J. Meseguer and S. Skeirik

family of function symbols f
[s1]...[sn]
[s] in Σ is fully included in either Ω or ∆. Let

IrrR ⊂ TΣ denote the subset of those ground Σ-terms that are irreducible by
the rules R, i.e., t ∈ IrrR iff (6 ∃) u s.t. t→R u. The we call (Σ,R) sufficiently
complete with respect to Ω iff IrrR ⊆ TΩ . Since (Σ,R) is assumed terminating,
this means that each ground Σ-term t always evaluates to a constructor term,
capturing the idea that the symbols in ∆ have been fully defined by the rules R.

Sufficient completeness can then be boiled down to the following equivalent
property, expressed in the lemma below, whose easy proof is left to the reader:

Lemma 4. Let (Σ,R) be a terminating rewrite rule program with Σ = Ω]∆ a
decomposition into constructors and defined symbols. Then (Σ,R) is sufficiently
complete with respect to Ω iff for each f : s1 . . . sn → s in ∆ and each ui ∈
TΩ,si ∩ IrrR, 1 ≤ i ≤ n, f(u1 . . . un) 6∈ IrrR.

To cast the sufficient completeness problem as a symbolic term difference
problem we use Lemma 4 above and define a simple signature transformation
Σ 7→ Σ∆ as follows: the poset of sorts of Σ∆ extends the poset (S,≤) of Σ by
adding to each connected component [s] of Σ a new sort d[s] with d[s] > >[s].

The operators of Σ∆ are those of Ω plus for each f
[s1]...[sn]
[s] ⊆ ∆ an operator

f : d[s1] . . . d[sn] → d[s]. Note that for each s ∈ S we then have TΣ∆,s = TΩ,s.
What this achieves, is that for any f : s1 . . . sn → s in ∆ the ground instances of
the Σ∆-term f(x1:s1, . . . , xn:sn) always instantiate the variables x1:s1, . . . , xn:sn
by constructor terms. To simplify the exposition let us assume —this assumption
can be omitted but a somewhat more complex formulation is then needed— that
for each defined symbol f there is an f : s1 . . . sn → s with s1 . . . sns biggest

possible among the typings of operators in f
[s1]...[sn]
[s] ⊆ ∆. Define Rf = {l→ r ∈

R | l = f(u1 . . . un) s.t. ui ∈ TΩ(X), 1 ≤ i ≤ n}.
Then, it is immediate that if we can show that the symbolic difference of

Σ∆-patterns {f(x1 :s1, . . . , xn :sn)} − {l | l → r ∈ Rf} equals ∅, then for each
ui ∈ TΩ,si ∩ IrrR, 1 ≤ i ≤ n, f(u1 . . . un) 6∈ IrrR and therefore, by Lemma 4,
assuming R terminating, (Σ,R) is sufficiently complete with respect to Ω. Note
that if IrrR = TΩ , the emptiness of this symbolic difference is a necessary and
sufficient condition for the sufficient completeness of a terminating (Σ,R).

Let us see some examples. Consider the following Maude specification of the
natural numbers:

fmod NATS is

sorts Nat NzNat Zero .

subsorts Zero NzNat < Nat .

op 0 : -> Zero [ctor] .

op s_ : Nat -> NzNat [ctor] .

op _+_ : Nat Nat -> Nat .

op _*_ : Nat Nat -> Nat .

vars N M : Nat .

eq N + 0 = N .

eq (s N) + (s M) = s s (N + M) .

Equational Formulas and Pattern Operations in Initial OS Algebras 25

eq N * 0 = 0 .

eq (s N) * (s M) = s (N + (M + (N * M))) .

endfm

In a Maude specification each operator is preceded by the keyword op, and
each operator which is a constructor is declared with the ctor attribute. In all,
there are two defined operators and two constructors.

To achieve the Σ 7→ Σ∆ transformation, in the above signature NATS, we
would add the sort and subsort declarations:

sort dNat .

subsort Nat < dNat .

and change the declarations for defined operators + and * to:

op _+_ : dNat dNat -> dNat .

op _*_ : dNat dNat -> dNat .

To check that + is sufficiently complete we perform the query:

{N + M} − ({N + 0} ∪ {s N + s M})

in the transformed signature Σ∆ (of course itself internally transformed into

Σ∆ ∪Σ#
∆), which yields the solution set:

{0 + s K}

This pattern represents an infinite set of constructor instances of the + operator
for which + is not defined. Indeed, if we check the function definition:

eq N + 0 = N .

eq (s N) + (s M) = s s (N + M) .

we have covered the cases where the second input is a zero and where both inputs
are non-zero, but not the case where the first input is zero and second non-zero!
Using the above information, one additional equation solves the issue:

eq 0 + s N = s N .

We can now compute in the transformed signature the symbolic difference:
{N + M} − ({N + 0} ∪ {s N + s M} ∪ {0 + s N}) which is indeed empty.

In the same way, we can check the sufficient completeness of * by performing
in Σ∆ the symbolic difference:

{N * M} − ({N * 0} ∪ {s N * s M})

which yields the result set:

{0 * s K}

Going back to our multiplication definition:

26 J. Meseguer and S. Skeirik

eq N * 0 = 0 .

eq (s N) * (s M) = s (N + (M + (N * M))) .

we see that we have made the same mistake we did before when defining addition.
Again, a single new equation completes the definition:

eq 0 * s N = 0 .

Happily, the symbolic difference below is also now empty:

{N * M} − ({N * 0} ∪ {s N * s M} ∪ {0 * s N})

Let NATS-FIXED be the modified module which extends NATS by adding these
additional equations. The above check means that we have now reduced the
sufficient completeness of NATS-FIXED to proving that its equations, oriented as
rewrite rules, are terminating.

As an additional example, let us check the sufficient completeness of the
following Maude specification of integer addition and multiplication:

fmod INTS is

protecting NATS-FIXED .

sorts Int NzNeg .

subsort Nat NzNeg < Int .

op -_ : NzNeg -> NzInt [ctor] .

op _+_ : Int Int -> Int .

op _*_ : Int Int -> Int .

vars I J : Int .

vars N M : Nat .

vars N’ M’ : NzNat .

eq 0 + I = I .

eq s N + - s 0 = N .

eq s N + - s M’ = N + - M’ .

eq - N’ + - M’ = - (N’ + M’) .

eq 0 * I = 0 .

eq - N’ * - M’ = N’ * M’ .

eq - N’ * M’ = - (N’ * M’) .

eq M’ * - N’ = - (M’ * N’) .

endfm

Note the import declaration on the second line: protecting NATS-FIXED.
Here we are importing all the definitions and declarations from our newly suf-
ficiently complete natural number specification. A modular approach to spec-
ification building not only saves time but allows us to verify each part of our
specification incrementally.

As before, we must first transform our signature by adding an additional sort
dInt, an additional subsort relation: Int < dInt, and giving sort dInt to the
arguments and result of the two defined operators + and * .

Equational Formulas and Pattern Operations in Initial OS Algebras 27

For integer addition we now generate the pattern:

{I + J} − ({0 + I} ∪ {s N + - 0} ∪ {s N + - M’} ∪ {- N + - M} ∪
{N + 0} ∪ {s N + s M} ∪ {0 + s N})

yielding the result:

{- s N + M}

A cursory examination of the definition of integer addition reveals a mistake:

eq 0 + I = I .

eq s N + - s 0 = N .

eq s N + - s M’ = N + - M’ .

eq - N’ + - M’ = - (N’ + M’) .

Here we see that a case for a negative integer in the first position is missing.
However, a simple new equation suffices to complete the definition:

eq - N’ + M = M + - N’ .

We can then check that the resulting pattern difference expression associated to
the new definition is indeed empty.

Checking the sufficient completeness of integer multiplication is also straight-
forward. We just check that the symbolic difference:

{I * J} − ({0 * I} ∪ {- N’ * M’} ∪ {N’ * - M’} ∪ {- N’ * - M’} ∪
{N * 0} ∪ {s N * s M} ∪ {0 * s N})

is empty. However, in this case, the algorithm returns the pattern:

{- N’ * 0}

From the definition of multiplication we can see that no equation applies if the
first term is negative and the second is zero. Thus, we need to add the equation:

eq - N’ * 0 = 0 .

Finally, we can check that the solution for the new definition of multiplication
is empty. Thus, the check of sufficient completeness for this corrected definition
of integer operations reduces to proving the termination of its rewrite rules.

