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Abstract. Order-sorted type systems supporting inheritance hierarchies
and subtype polymorphism are used in theorem proving, AI, and declar-
ative programming. The satisfiability problems for the theories of: (i)
order-sorted uninterpreted function symbols, and (ii) of such symbols
modulo a subset ∆ of associative-commutative ones are reduced to the
unsorted versions of such problems at no extra computational cost. New
results on order-sorted rewriting are needed to achieve this reduction.
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1 Introduction

For greater expressiveness and efficiency, type systems supporting inheritance hi-
erarchies and subtype polymorphism are used in many areas such as resolution
theorem proving, e.g., [26,22], declarative logic and rule-based languages, e.g.,
[24,12,11,5], and artificial intelligence, e.g., [24,10]. Order-sorted (OS) equational
logic, e.g., [16,20], is a logical framework supporting inheritance hierarchies and
subtype polymorphism widely used for these purposes. Therefore, the devel-
opment of decision procedures for OS theories is of interest in all these areas.
However, except for, e.g., [13,6,25] this matter seems to have received relatively
little attention. I focus here on decision procedures for the OS theory of uninter-
preted function symbols, which in an unsorted setting is decided by congruence
closure algorithms [23,21,8]. However, for greater expressiveness one can allow
some of the function symbols, say in a subsignature ∆ ⊆ Σ, to be interpreted by
some axioms B∆. For example, for an unsorted subsignature ∆ ⊆ Σ of binary
function symbols, Bachmair, Tiwari and Vigneron [2] have given a congruence
closure algorithm modulo the axioms AC∆, asserting the associativity and com-
mutativity of all symbols in ∆. Therefore, I also study satisfiability in the OS
theory (Σ,AC∆) of uninterpreted function symbols Σ modulo AC∆.

The most obvious approach would be to develop an order-sorted congruence
closure algorithm along the lines of [13] and then extended it to the modulo AC
case. However, the main, somewhat surprising message of this paper is that such
OS congruence closure algorithms are not needed at all : the already existing
and efficient unsorted congruence closure algorithms in [23,21,8] and congruence
closure modulo AC∆ in [2] and tools supporting them can be reused without
change and at no extra cost to solve the corresponding OS satisfiability problems.

A Simple Example. Consider the following order-sorted signature Σ
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with sorts A,B,C, subsorts A,C < B, f subsort-polymorphic with typings
f : A → A and f : C → C, and a binary + with typing + : AA → A. Its so-
called theory of uninterpreted function symbols is just the order-sorted equational
theory (Σ, ∅) with empty set of equations, whose class of models, OSAlgΣ , is
that of all order-sorted Σ-algebras detailed in Section 2. Is the formula

([) a = b ∧ b = c ∧ f(f(a)) = f(a) ∧ a+ f(f(a)) 6= f(a) + a

(Σ, ∅)-satisfiable? The standard way to answer this question if Σ were unsorted
would be to: (1) compute the congruence closure of the first three equations; and
(2) test the last inequality using such a congruence closure. Since, as pointed
out in [17,2], unsorted congruence closure algorithms are ground Knuth-Bendix
completion algorithms [19], an obvious way to try to answer this question would
be to try to complete the first three equations into an equivalent set of confluent
and terminating rewrite rules. But this runs into serious trouble. An order-
sorted Knuth-Bendix completion algorithm such as [14] will orient a = b and
b = c as b → a and b → c because rules must be sort-decreasing, i.e., rewrite
to a term of equal or lower sort. This then generates the critical pair a = c,
which is unorientable, so completion fails. Notice also that replacement of equals
by equals does not hold in an order-sorted setting: from a = b we cannot derive
f(a) = f(b), because f(b) doesn’t type. These difficulties were clearly felt by the
authors of [13], the only order-sorted congruence closure algorithm I am aware
of, which is quite complex and is not a Knuth-Bendix completion. They say:

An approach using rewriting [. . .] fails due to the well-known problem
that rewriting with order-sorted rewrite rules may create ill-typed terms.

Let us now widen the problem into one of satisfiability modulo AC by making
the + symbol associative-commutative. That is, we consider the axioms AC+ =
{x + y = y + x, (x + y) + z = x + (y + z)}, with x, y, z of sort A, and ask: is
the formula ([) (Σ,AC+)-satisfiable? For this case, I am not aware of any order-
sorted AC-congruence closure algorithm, but un unsorted one based on ground
AC-completion exists [2]. The trouble, again, is that order-sorted AC-completion
as in [14] fails miserably in the same way (a = c cannot be oriented).

Wouldn’t it be nice if we could completely ignore all sort information in the
above two OS satisfiability problems and solve them as unsorted problems using
standard (and efficient!) congruence closure [23,21,8] and congruence closure
modulo AC [2] algorithms? If this reduction method were sound, we could easily
settle the (Σ, ∅)- and (Σ,AC+)-satisfiability of ([): the rules R = {a → b, c →
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b, f(f(b)) → f(b)} are confluent and terminating and therefore a congruence
closure for the first three equations. They are also an AC+-congruence closure.
Since the disequality a+ f(f(a)) 6= f(a) + a reduces to b+ f(b) 6= f(b) + b, the
formula ([) is (Σ, ∅)-satisfiable. However, since b + f(b) =AC+

f(b) + b, ([) is
(Σ,AC+)-unsatisfiable. But is this reduction to unsorted satisfiability sound?

Initial Algebra Semantics to the Rescue! Ignoring the sort information of
an OS signature Σ is captured by a signature map u : Σ 3 (f : s1 . . . sn → s) 7→
(f : U n. . . U → U) ∈ Σu, where U is the single “universe” sort in the unsorted
signature Σu. As further detailed at the end of Section 2, u induces a reduct
map of algebras in the opposite direction, |u : AlgΣu 3 A 7→ A|u ∈ OSAlgΣ ,
making each unsorted algebra A into and order-sorted one A|u, and such that for
E a set of ground OS Σ-equations we have the equivalence: A|u |= E ⇔ A |= E.
In particular, the E-initial unsorted Σu-algebra TΣu/E is mapped to the OS Σ-
algebra TΣu/E |u and, since TΣu/E |u |= E, there is a unique OS homomorphism
h : TΣ/E → TΣu/E |u from the E-initial OS Σ-algebra TΣ/E .

But the poof of Theorem 5 shows that, for equations E and disequations
D, the conjunction

∧
E ∧

∧
D is satisfiable iff TΣ(C)/E |=

∧
E ∧

∧
D, where

the variables C of E ∪ D are seen as fresh new constants added to Σ to get
a supersignature Σ(C) ⊇ Σ, so that

∧
E ∧

∧
D becomes a ground formula.

This gives us, in model-theoretic terms, the key to verify the soundness of
the hoped-for reduction of the satisfiability for the theory of OS uninterpreted
function symbols to that of the unsorted theory of uninterpreted function sym-
bols: this reduction method will be sound if and only if the OS homomorphism
h : TΣ(C)/E → TΣu(C)/E |u is injective. In proof-theoretic terms this injectivity
will hold if and only if for all ground Σ-equation u = v we have the equivalence:
(Σ,E) ` u = v ⇔ (Σu, E) ` u = v. The (⇒) direction is obvious, but the
(⇐) direction is a non-trivial new result that follows from several conservativ-
ity theorems that I prove in Sections 3.2 and 4.1 by factorizign the signature
map u : Σ → Σu through a sequence Σ ↪→ Σ2 → Σ̂ → Σu of increasingly
simpler order-sorted, many-sorted and finally unsorted signatures and relating
equational and rewriting deductions at all these levels.

The Plot Thickens. The soundness of the hoped-for reduction to the un-
sorted case is considerably thornier for satisfiability modulo AC∆. As before,
the reduction will be sound if and only if for ground Σ-equations E the unique
Σ-homomorphism h : TΣ/E∪AC∆ → TΣu/E∪AC∆u |u from the initial E ∪ AC∆-
algebra TΣ/E∪AC∆ is injective. But some of the conservativity theorems along

the above sequence of signature maps Σ ↪→ Σ2 → Σ̂ → Σu needed to make
h injective actually break down in the AC∆ case. The problem has to do with
the translation of the equations AC∆ along these signature maps. At the un-
sorted level of Σu the translated equations AC∆u , are more general and therefore
identify more terms than the original OS equations AC∆. Consider a simple ex-
ample: the equation a + b = b + a does not type in our example signature
Σ, but it types in the supersignature Σ2 ⊇ Σ, which for our running exam-
ple is depicted in Section 3.1. The AC equations AC∆ in our example are just
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associativity and commutativity of + : A A → A and therefore apply only
to terms of sort A. Instead, the AC equations AC∆u are unsorted, and apply
to all terms. This means that a + b =AC∆u b + a, but since b does not have
sort A, we have a + b 6=AC∆ b + a. It also means that the homomorphism
h′ : TΣ2/E∪AC∆ → TΣu/E∪AC∆u |u in general is not injective. However, all hope
is not lost. As a direct consequence of Corollary 2 in Section 3.2, there is an
isomorphism α : TΣ/E∪AC∆

∼= TΣ2/E∪AC∆ |Σ to the Σ-reduct of TΣ2/E∪AC∆
and this shows that the homomorphism h : TΣ/E∪AC∆ → TΣu/E∪AC∆u |u that
we need to prove injective for the reduction to be sound is up to isomorphism a
restriction of h′ to TΣ/E∪AC∆ , which could be injective even if h′ is not. Lemma
3 in Section 4.1 and the highly non-trivial Theorem 8 in Section 5 save the day:
it follows from them that h is indeed injective and the reduction is also sound for
the AC case. To the best of my knowledge the results on reducing order-sorted
to unsorted satisfiability and on order-sorted rewriting and equality are new.

2 Preliminaries on Order-Sorted Algebra

The following material is adapted from [20], which generalizes [16]. It summarizes
the basic notions of order-sorted algebra needed in the rest of the paper. It
assumes the notions of many-sorted signature and many-sorted algebra, e.g., [9].

Definition 1. An order-sorted (OS) signature is a triple Σ = (S,≤, Σ) with

(S,≤) a poset and (S,Σ) a many-sorted signature. Ŝ = S/≡≤, the quotient of
S under the equivalence relation ≡≤ = (≤ ∪ ≥)+, is called the set of connected
components of (S,≤). The order ≤ and equivalence ≡≤ are extended to sequences
of same length in the usual way, e.g., s′1 . . . s

′
n ≤ s1 . . . sn iff s′i ≤ si, 1 ≤ i ≤ n.

Σ is called sensible if for any two f : w → s, f : w′ → s′ ∈ Σ, with w and w′ of
same length, we have w ≡≤ w′ ⇒ s ≡≤ s′. A many-sorted signature Σ is the
special case where the poset (S,≤) is discrete, i.e., s ≤ s′ iff s = s′.

For connected components [s1], . . . , [sn], [s] ∈ Ŝ

f
[s1]...[sn]
[s] = {f : s′1 . . . s

′
n → s′ | s′i ∈ [si] 1 ≤ i ≤ n, s′ ∈ [s]}

denotes the family of “subsort polymorphic” operators f . 2

Definition 2. For Σ = (S,≤, Σ) an OS signature, an order-sorted Σ-algebra
A is a many-sorted (S,Σ)-algebra A such that:

– whenever s ≤ s′, then we have As ⊆ As′ , and

– whenever f : w → s, f : w′ → s′ in f
[s1]...[sn]
[s] (with w = s1 . . . sn), and

a ∈ Aw ∩Aw′
, then we have Af :w→s(a) = Af :w′→s′(a).

An order-sorted Σ-homomorphism h : A → B is a many-sorted (S,Σ)-
homomorphism such that whenever [s] = [s′] and a ∈ As ∩ As′ , then we have
hs(a) = hs′(a). h is injective, resp. surjective, resp. bijective, iff for each s ∈ S
hs is injective, resp. surjective, resp. bijective. We call h an isomorphism if there
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is another order-sorted Σ-homomorphism g : B → A such that for each s ∈ S,
hs; gs = 1As , and gs;hs = 1Bs , with 1As , 1Bs the identity functions on As, Bs.
This defines a category OSAlgΣ. 2

Theorem 1. [20] The category OSAlgΣ has an initial algebra. Furthermore, if
Σ is sensible, then the term algebra TΣ with:

– if a : λ→ s then a ∈ TΣ,s,
– if t ∈ TΣ,s and s ≤ s′ then t ∈ TΣ,s′ ,
– if f : s1 . . . sn → s and ti ∈ TΣ,si 1 ≤ i ≤ n, then f(t1, . . . , tn) ∈ TΣ,s,

is initial, i.e., has a unique Σ-homomorphism to each Σ-algebra.

For [s] ∈ Ŝ, TΣ,[s] denotes the set TΣ,[s] =
⋃
s′∈[s] TΣ,s′ . Similarly, TΣ will

(ambiguously) denote both the above-defined S-sorted set and the set TΣ =⋃
s∈S TΣ,s. We say that an OS signature Σ has non-empty sorts iff for each

s ∈ S, TΣ,s 6= ∅. We will assume throughout that Σ has non-empty sorts.
An S-sorted set X = {Xs}s∈S of variables, satisfies s 6= s′ ⇒ Xs ∩Xs′ = ∅,

and the variables X are always assumed disjoint from all constants in Σ. The
Σ-term algebra on variables X, TΣ(X), is the initial algebra for the signature
Σ(X) obtained by adding to Σ the variables X as extra constants. Since a Σ(X)-
algebra is just a pair (A,α), with A a Σ-algebra, and α an interpretation of the
constants in X, i.e., an S-sorted function α ∈ [X→A], the Σ(X)-initiality of
TΣ(X) can be expressed as the following corollary of Theorem 1:

Theorem 2. (Freeness Theorem). If Σ is sensible, for each A ∈ OSAlgΣ,
α ∈ [X→A] there exists a unique Σ-homomorphim, denoted α : TΣ(X) −→ A,
such that for each s ∈ S, and each x ∈ Xs we have xαs = αs(x).

The first-order language of equational Σ-formulas1 is defined in the usual
way: its atoms are Σ-equations t = t′, where t, t′ ∈ TΣ(X)[s] for some [s] ∈ Ŝ
and each Xs is assumed countably infinite. The set Form(Σ) of equational Σ-
formulas is then inductively built from atoms by: conjunction (∧), disjunction
(∨) negation (¬), and universal (∀x:s) and existential (∃x:s) quantification with
sorted variables x:s ∈ Xs for some s ∈ S. The literal ¬(t = t′) is denoted t 6= t′.

The satisfaction relation between Σ-algebras and formulas is defined in the
usual way: given a Σ-algebra A, a formula ϕ ∈ Form(Σ), and an assignment
α ∈ [Y→A], with Y = fvars(ϕ) the free variables of ϕ, we define the satisfaction
relation A,α |= ϕ inductively as usual: for atoms, A,α |= t = t′ iff tα = t′α;
for Boolean connectives it is the corresponding Boolean combination of the sat-
isfaction relations for subformulas; and for quantifiers: A,α |= (∀x:s) ϕ (resp.
A,α |= (∃x :s) ϕ) holds iff for all a ∈ As (resp. there is an a ∈ As) we have
A,α]{(x:s, a)} |= ϕ, where the assignment α]{(x:s, a)} extends α by mapping
x:s to a. Finally, A |= ϕ holds iff A,α |= ϕ holds for each α ∈ [Y→A], where

1 There is only an apparent lack of predicate symbols. To express a predicate p(x1 :
s1, . . . , xn:sn), add a new sort Truth with a constant tt , and with {Truth} a separate
connected component, and view p as a function symbol p : s1, . . . , sn → Truth. An
atomic formula p(t1, . . . , tn) is then expressed as the equation p(t1, . . . , tn) = tt .
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Y = fvars(ϕ). We say that ϕ is valid (or true) in A iff A |= ϕ. We say that ϕ is
satisfiable in A iff ∃α ∈ [Y→A] such that A,α |= ϕ, where Y = fvars(ϕ).

An order-sorted equational theory is a pair T = (Σ,E), with E a set of Σ-
equations. OSAlg(Σ,E) denotes the full subcategory of OSAlgΣ with objects
those A ∈ OSAlgΣ such that A |= E, called the (Σ,E)-algebras. OSAlg(Σ,E)

has an initial algebra TΣ/E [20], further discussed in Section 3. Given T = (Σ,E)
and ϕ ∈ Form(Σ), we call ϕ T -valid, written E |= ϕ, iff A |= ϕ for each
A ∈ OSAlg(Σ,E). We call ϕ T -satisfiable iff there exists A ∈ OSAlg(Σ,E) with
ϕ satisfiable in A. Note that ϕ is T -valid iff ¬ϕ is T -unsatisfiable.

Σ = ((S,≤), Σ) is a subsignature of Σ′ = ((S′,≤′), Σ′), denoted Σ ⊆ Σ′,
iff (S,≤) ⊆ (S′,≤′) is a subposet inclusion, and Σ ⊆ Σ′. A signature map
H : Σ → Σ′ is a monotonic function H : (S,≤) → (S′,≤′) of the underlying
posets of sorts together with a mapping H : Σ 3 (f : s1 . . . sn → s) 7→ (H(f) :
H(s1) . . . H(sn)→ H(s)) ∈ Σ′. H induces a map H : Form(Σ)→ Form(Σ′). A
signature inclusion Σ ⊆ Σ′ is a simple signature map Σ ↪→ Σ′ : f 7→ f .

A signature map H : Σ → Σ′ induces a functor in the opposite direction
|H : OSAlgΣ′ 3 B 7→ B |H ∈ OSAlgΣ , where the H-reduct B |H has: (i)

for each s ∈ S, (B |H)s = BH(s); and (ii) for each f : s1 . . . sn → s in Σ,
(B |H)f = BH(f). For H : Σ ↪→ Σ′ a signature inclusion, B |H is denoted B |Σ .
For B ∈ OSAlgΣ′ and ϕ ∈ Form(Σ) with fvars(ϕ) = ∅ we have [20]:

(†) B |= H(ϕ) ⇔ B |H |= ϕ.

3 Order-Sorted Rewriting and Equality

Given an OS signature Σ = ((S,≤), Σ), a Σ-rewrite rule2 is a sequent l → r

with l, r ∈ TΣ(X)[s] for some [s] ∈ Ŝ. An order-sorted term rewriting system
(OSTRS) is then a pair (Σ,R) with R a set of Σ-rewrite rules.

Since, as shown in the Introduction, replacement of equals for equals and
standard rewriting break down in the order-sorted case, we should define rewrit-
ing deductions with an OSTRS not by means of the reflexive-transitive closure
→∗R of the rewrite relation →R, but by means of an inference system with two

kinds of sequents: sequents t→ t′, where t, t′ ∈ TΣ(X)[s], [s] ∈ Ŝ, corresponding
to one-step application of rules, and sequents t →~ t′, where t, t′ ∈ TΣ(X)[s],

[s] ∈ Ŝ, corresponding to more complex rewriting deductions. The symbol →~

is close enough to →∗ to suggest that: (i) it plays a role similar to a reflex-
ive transitive-closure in the unsorted case, but (ii) in general it is different
for such a closure. For example, for Σ the signature in the Introduction and
R = {a → b, b → c}, we can derive f(a) →~ f(c), but there is no sequence of
one-step rewrites from f(a) to f(c). We then define two kinds of rewriting de-
ductions: (Σ,R) ` t→ t′ and (Σ,R) ` t→~ t′, as those sequents derivable from
(Σ,R) by a finite application of the following inference rules, where σ denotes
an S-sorted substitution, i.e., an S-sorted function σ ∈ [X→TΣ(X)]:

2 For greater generality no restriction is placed on the variables of l and r.
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Reflexivity
t→~ t

Subsumption t→ t′

t→~ t′

Transitivity t→~ t′ t′ →~ t′′

t→~ t′′

Congruence
u1 →~ u′1 . . . un →~ u′n

f(u1, . . . , un)→~ f(u′1, . . . , u
′
n)

where f(u1, . . . , un), f(u′1, . . . , u
′
n) ∈ TΣ(X)

Replacement
tσ → t′σ

where t→ t′ ∈ R

The first three and the last inference rule are standard, but the Congru-
ence rule is more subtle. We can better understand these rules by means of
our running example (Σ,R). The sequent f(a) →~ f(b) is not derivable: the
attempt to obtain it by applying Replacement with rule a → b, Subsump-
tion to get a→~ b, and then Congruence fails, because of the side condition,
since f(b) 6∈ TΣ(X). To see what can be derived, consider the derivation of the
sequent f(a) →~ f(c). Since we have rules a → b and b → c, we can obviously
derive a→~ c by two applications of Replacement followed by Subsumption
and one application of Transitivity. Then Congruence gives us:

a→~ c

f(a)→~ f(c)

Note the interesting fact that f(a) is typed with f : A → A, and f(c) is typed
with f : C → C. We can think of Congruence as a “tunneling rule.” f(a)→~

f(c) cannot be obtained by composing one-step rewrites: failed attempts such as
that for deriving f(a)→~ f(b) make it impossible; but we can “tunnel through”
such failed attempts and obtain a more complex sequent like f(a)→~ f(c) when
the left- and right-hand sides are well-formed terms in TΣ(X).

The above inference system yields as a special case a sound and complete
inference system for order-sorted equational logic: we just view an order-sorted
equational theory (Σ,E) as the OSTRS (Σ,R(E)), where R(E) = {t→ t′ | t =
t′ ∈ E ∨ t′ = t ∈ E}. That is, equality steps are viewed as either left-to-right
or right-to-left rewrite steps. We then have:

Definition 3. Given an order-sorted equational theory (Σ,E) with Σ sensible,
its equational deduction relation, denoted (Σ,E) ` u = v, or just E ` u = v, is
defined by the equivalence:

(Σ,E) ` u = v ⇔ (Σ,R(E)) ` u→~ v.

Theorem 3. (Soundeness and Completeness). For Σ sensible and E ∪{u = v}
a set of Σ-equations we have the equivalence:

(Σ,E) ` u = v ⇔ (Σ,E) |= u = v



8 J. Meseguer

The above theorem has as a corollary the construction of the initial algebra
TΣ/E for the category OSAlg(Σ,E) of (Σ,E)-algebras. Assuming Σ sensible,
TΣ/E , has an easy definition. Note that the relation E ` u = v induces an

equivalence relation =E on each set TΣ,[s], [s] ∈ Ŝ. We then define for each s′ ∈ [s]
the set TΣ/E,s′ = {[t]=E ∈ TΣ,[s] | [t]=E ∩ TΣ,s′ 6= ∅}, and define each operation
f : s1 . . . sn → s ∈ Σ by the map ([t1]=E , . . . , [t1]=E ) 7→ [f(t′1, . . . , t

′
n)]=E , where

t′i ∈ [ti]=E ∩ TΣ,si , 1 ≤ i ≤ n, showing it does not depend on the choice of t′i’s.

3.1 Kind-Complete OS-Rewriting and Equational Deduction

The order-sorted rewrite relation t→~ t′ is obviously quite impractical and hard
to implement. For this reason, given an OSTRS (Σ,R) several conditions on
either Σ or R have been sought to be able to perform rewriting computations in
essentially the standard and efficient way in which it is performed in an unsorted
or many-sorted TRS. Two such conditions, going back to [15], are to either: (i)
require that the rules R are sort-decreasing, i.e., for each l→ r ∈ R, if lσ ∈ TΣ,s
then rσ ∈ TΣ,s; or (ii) if R is not sort-decreasing, extend Σ with new “retract
operators” rs,s′ : s → s′, s, s′ ∈ [s], s 6≤ s′, to catch typing errors, add to R
“error recovery” rules of the form rs,s′(x:s)→ x:s, and force sort-decreasingness
of R by replacing each not sort-decreasing u → v ∈ R by suitable rules of the
form uσ → rs,s′(vσ), where σ may lower the sorts of some variables.

Conditions (i) or in its defect (ii) work and can be shown to be conservative in
a certain sense [15]. However, they have serious limitations. Sort decreasingness
is a strong condition that may be impossible to achieve for some OSTRS arising
in practice. If the solution with retracts is adopted, an unpleasant consequence
is that we change the models, including the initial ones, since retracts add new
operations and new error terms to the original sorts.

All these limitations can be avoided —while allowing rewriting with rules
R and equational deduction with equations E to be performed in the stan-
dard way— by using a faithful embedding of order-sorted equational logic into
membership equational logic (MEL) [20,4]. MEL introduces a typing distinction
between sorts s ∈ S, which may be related by subsort relations just as in the
order-sorted way, and the kind >[s] associated to each connected component

[s] ∈ Ŝ, which is above all sorts in [s]. An ill-formed term like f(b) in the OS
signature of the Introduction has no sort, but has kind >[B]. In this way, the
earlier side condition in the Congruence rule in Section 3 can be avoided.

That this embedding of logics is faithful means in particular that both initial
models and equational deduction are preserved ([20], Corollary 28). However: (i)
the proof in [20] is model-theoretic; (ii) it focuses on the equational logic level,
and does not deal with the more general rewriting logic level; and (iii) it as-
sumes that the entire MEL framework is adopted. Can the essential advantages
of this embedding be still obtained while remaining at the order-sorted level?
The answer is yes! Since: (i) this solution plays a key role in the treatment of
satisfiability for the theory of OS uninterpreted function symbols in Section 4,
and (ii) having a much simpler theory of OS rewriting is useful in its own right,
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I give a detailed treatment of it below. The key idea is to use a signature trans-
formation Σ 7→ Σ2 extending any OS signature Σ into one whose components
have a top sort, understood as the kind of that component. The essential point is
that Σ2 belongs to a class of order-sorted signatures called kind complete where
both rewriting and equational deduction can be performed in the standard way.

Definition 4. An OS signature Σ = ((S,≤), Σ) is called kind-complete iff each

connected component [s] ∈ Ŝ has a top sort >[s], called its kind, with >[s] ≥ s′

for each s′ ∈ [s], and any subsort-polymorphic family f
[s1]...[sn]
[s] ⊆ Σ includes

the typing f : >[s1], . . . ,>[sn] → >[s]. Note that any many-sorted Σ —and in
particular any unsorted (i.e., single-sorted) Σ— is trivially kind-complete.

Any OS signature Σ can be extended to a kind-complete one by a transfor-
mation Σ 7→ Σ2. Σ2 is constructed in two-steps: (i) we first associate to the

order-sorted signature ((S,≤), Σ) the many-sorted signature Σ̂ = (Ŝ>, Σ̂), where

Ŝ> = {>[s] | [s] ∈ Ŝ}, and with f : >[s1] . . .>[sn] → >[s] ∈ Σ̂ iff f
[s1]...[sn]
[s] ⊆ Σ;

and (ii) we then define Σ2 = ((S ] Ŝ>,≤2), Σ ∪ Σ̂), where ≤2 ∩S2 = ≤, and

for each >[s] ∈ Ŝ> we have s′ < >[s] for each s′ ∈ [s]. That is, we add >[s] as a
top sort above each s′ ∈ [s] and add the new typing f : >[s1] . . .>[sn] → >[s] for

each f
[s1]...[sn]
[s] ⊆ Σ. For Σ the signature in the Introduction, Σ2 is as follows:

We then have subsignature inclusions: Σ ⊆ Σ2 and Σ̂ ⊆ Σ2. Note that, by
construction, if Σ is sensible, both Σ̂ and Σ2 are also sensible; and that the
initial algebra TΣ2 is preserved by reducts, i.e., we have:

TΣ2 |Σ = TΣ and TΣ2 |Σ̂ = TΣ̂ .

For kind-complete signatures, rewriting, and in particular equational deduc-
tion, can be performed in the standard way. Recall the usual notation to denote
term positions, subterms, decompositions and term replacement from [7]: (i) po-
sitions in a term viewed as a tree are marked by strings p ∈ N∗, (ii) t|p denotes
the subterm of term t at position p, (iii) t = t[t|p]p denotes a decomposition
of t into a context t[]p and its subterm t|p, and (iv) t[u]p denotes the result of
replacing subterm t|p at position p by u.

Definition 5. Let (Σ,R) be an OSTRS with Σ sensible and kind-complete. The

one-step R-rewrite relation u →R v, holds between u, v ∈ TΣ(X)[s], [s] ∈ Ŝ, iff
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there is a rewrite rule t → t′ ∈ R, a substitution σ ∈ [X→TΣ(X)], and a term
position p in u such that u = u[tσ]p and v = u[t′σ]p.

We denote by →+
R the transitive closure of →R, and by →∗R the reflexive-

transitive closure of →R, and write (Σ,R) ` u→∗R v to make Σ explicit.
(Σ,R) is called terminating iff →R is a well-founded relation; and is called

confluent iff whenever t→∗R u and t→∗R v there exists w such that u→∗R w and
v →∗R w. (Σ,R) is called convergent iff it is both confluent and terminating. If
(Σ,R) is convergent, each Σ-term t rewrites by some t→∗R t!R to a unique term
t!R, called its R-canonical form, that cannot be further rewritten.

Note that, since Σ is kind-complete, if u ∈ TΣ(X)[s], t → t′ ∈ R, and u =
u[tσ]p ∈ TΣ(X)[s], then we always have u[t′σ]p ∈ TΣ(X)[s]. That is, →R never
produces ill-formed terms, so that in the above definition of→R the requirement
the v ∈ TΣ(X)[s] is unnecessary and does not have to be checked. Indeed, for
kind-complete signatures order-sorted rewriting becomes standard rewriting :

Lemma 1. Let (Σ,R) be an OSTRS with Σ sensible and kind-complete. Then
we have the equivalence:

(Σ,R) ` u→~ v ⇔ (Σ,R) ` u→∗R v.

Corollary 1. Let Σ be a sensible and kind-complete OS signature, and E∪{u =
v} a set of Σ-equations. Then we have the equivalence:

(Σ,E) ` u = v ⇔ (Σ,R(E)) ` u→∗R(E) v.

3.2 Conservativity Results

The whole point of the signature transformation Σ 7→ Σ2 is to replace complex
deductions of the form (Σ,R) ` u→~ v by simple rewrite sequences u→∗R v in
the extended OSTRS (Σ2, R). But is this sound?

Theorem 4. Let (Σ,R) be an OSTRS with Σ sensible. Then for any u, v ∈
TΣ(X)[s], [s] ∈ Ŝ we have the equivalence:

(Σ,R) ` u→~ v ⇔ (Σ2, R) ` u→∗R v.

Corollary 2. Let Σ be a sensible OS signature and E ∪ {u = v} a set of Σ-
equations. Then we have the equivalences:

(Σ,E) ` u = v ⇔ (Σ2, E) ` u = v ⇔ (Σ2, R(E)) ` u→∗R(E) v.

Since, besides the subsignature inclusion Σ ⊆ Σ2, we also have the inclusion
Σ̂ ⊆ Σ2, we have a further conservativity result:

Lemma 2. Let Σ be a sensible OS signature and (Σ̂, R) a many-sorted TRS.

Then for any u, v ∈ TΣ̂(X)>[s]
, >[s] ∈ Ŝ>, where X = {X>[s]}>[s]∈Ŝ>

, we have

(Σ̂, R) ` u →∗R v iff (Σ2, R) ` u →∗R v. As an immediate consequence, for

E ∪ {u = v} a set of Σ̂-equations, we have the equivalence:

(Σ̂, E) ` u = v ⇔ (Σ2, E) ` u = v.
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4 Order-Sorted (Σ, ∅)-QF-Satisfiability

In theorem proving the theory (Σ, ∅), whose category of algebras is OSAlgΣ , is
called the theory of uninterpreted function symbols Σ. As remarked in Definition
1, a many-sorted signature Σ is a special case of an order-sorted signature, and
an unsorted signature is a many-sorted signature where S = {U} is a singleton
set. Let QFForm(Σ) ⊆ Form(Σ) denote the set of quantifier-free Σ-formulas,
i.e., formulas with no quantifiers. When Σ is unsorted, (Σ, ∅)-QF-satisfiability,
i.e., (Σ, ∅)-satisfiability for any ϕ ∈ QFForm(Σ) is decidable [1]. The goal of
this section is to show that the same holds for any sensible OS signature Σ by
a reduction method. This can be done by two reductions. The first reduces this
decidability problem to that of the OS word problem, which is the problem of
whether, given a sensible OS signature Σ and a finite set E ∪ {u = v} of ground
Σ-equations, E ` u = v holds or not. The desired first reduction is as follows:

Theorem 5. (Σ, ∅)-QF-satisfiability is decidable for any sensible order-sorted
signature Σ iff the OS word problem is decidable.

The proof follows from the more general Theorem 7 in Section 5, which deals
with the OS word problem modulo equations B. The theorem’s algorithmic con-
tent mirrors its proof: ϕ =

∨
1≤i≤n(

∧
Ei ∧

∧
Di) in DNF with the Ei equalities

and the Di disequalities is satisfiable iff, when we view the variables in ϕ as
fresh new constants C, there is an i, 1 ≤ i ≤ n, such that Ei 6` u = v for each
u 6= v ∈ Di. Furthermore,

∧
Ei ∧

∧
Di is satisfiable iff TΣ(C)/Ei |=

∧
Ei ∧

∧
Di.

The second reduction is from the OS word problem to the unsorted word
problem. This is broken into two reductions: (i) of the many-sorted word problem
to the unsorted word problem in Section 4.1, and (ii) of the OS word problem
to the many-sorted word problem in Section 4.2.

For Σ unsorted and E ∪{u = v} a finite set of ground Σ-equations it is well-
known that the word problem E ` u = v can be decided by a congruence closure
algorithm [23,21,8]. What the various such algorithms have in common is that
they are all instances (by applying difference strategies) of the same abstract
congruence closure algorithm in the sense of [2], which is summarized below.

4.1 Abstract Congruence Closure

What the abstract congruence closure algorithm in [2] captures is what all con-
crete congruence closure algorithms have in common: they all are efficient, spe-
cialized ground Knuth-Bendix completion algorithms [19,17,2]: they all begin
with a set E of ground equations, and return a set R of convergent ground
rewrite rules R equivalent to E (on a possibly extended signature). We can then
decide the word problem E ` u = v by checking the syntactic equality u!R = v!R.

The key notion of abstract congruence closure in [2] is then as follows:

Definition 6. [2] For Σ an unsorted signature and E a finite set of ground Σ-
equations, an abstract congruence closure for E is a set R of ground convergent
Σ(K)-rewrite rules, where K is a finite set of new constants, such that: (i) they
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are either of the form c → c′, with c, c′ ∈ K, or of the form f(c1, . . . , cn) → c,
with c1, . . . , cn, c ∈ K, f ∈ Σ with n ≥ 0 arguments; (ii) for each c ∈ K there
is a ground Σ-term t such that t!R = c!R; and (iii) for any ground Σ-equation
u = v we have E ` u = v iff we have the syntactic equality u!R = v!R.

The paper [2] then gives an abstract congruence closure algorithm described
by six inference rules, with an optional seventh, such that: (i) takes as input a
triple (∅, E, ∅) with E is a set of ground Σ-equations; (ii) operates on triples
of the form (K ′, E′, R′) with E′ (resp. R′) the current Σ(K ′)-equations (resp.
Σ(K ′)-rules); and (iii) terminates with a triple of the form (K, ∅, R) such that
R is a congruence closure for E. The name abstract congruence closure is well-
deserved: the algorithms in [23,21,8], and two other ones, are all shown to be
instantiations of the abstract algorithm by applying the inference rules with
different strategies, so that both the operation of each algorithm and its actual
complexity are faithfully captured by the corresponding instantiation [2].

We need to decide the many-sorted word problem as a step for deciding
the more general order-sorted one. But the many-sorted word problem can be
easily reduced to the unsorted one by means of the signature transformation
Σ 3 (f : s1 . . . sn → s) 7→ (f : U n. . . U → U) ∈ Σu, where Σ = (S,Σ) is a
many-sorted signature. Then all boils down to the following lemma:

Lemma 3. For Σ a sensible many-sorted signature and E a set of regular Σ-
equations —i.e., t and t′ have the same variables for each t = t′ ∈ E— we
have (Σ,E) ` u = v iff (Σu, Eu) ` (u = v)u, where for any Σ-equation t = t′,
(t = t′)u leaves the terms unchanged but regards all variables as unsorted.

This lemma has a very practical consequence: we can use an unsorted con-
gruence closure algorithm to solve the many-sorted word problem at no extra
cost : no changes are needed either to the input E or to the unsorted algorithm.

4.2 Deciding OS (Σ, ∅)-QF-Satisfiability

For any sensible OS signature Σ we have reduced the decidability of the (Σ, ∅)-
QF-satisfiability problem to that of the OS word problem in Theorem 5. And
in Lemma 3 we have reduced the many-sorted word problem to the unsorted
word problem, which is decidable by a congruence closure algorithm. To prove
the decidability of the OS (Σ, ∅)-QF-satisfiability problem and obtain a correct
algorithm for it we just need to reduce the OS word problem to the many-sorted
word problem. For this, the conservativity results in Section 3.2 are crucial:

Theorem 6. Let Σ be a sensible OS signature and E ∪{u = v} a set of ground
Σ-equations. Then we have the equivalence:

(Σ,E) ` u = v ⇔ (Σ̂, E) ` u = v.

The decidability of the OS (Σ, ∅)-QF-satisfiability problem goes back to [13];
but the reduction achieved by Theorem 5, Lemma 3 and Theorem 6 yields a new,
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very simple and efficient algorithm for deciding OS (Σ, ∅)-QF-satisfiability. Using
a lazy DPLL(Σu, ∅) solver (see, e.g., [3]), we do not have to assume that ϕ is in
DNF: after working on the Boolean abstraction of ϕ, the DPLL(Σu, ∅) solver will
ask questions about the satisfiability of formulas of the form:

∧
E ∧

∧
D, where

E (resp. D) is a finite set of ground Σ(C)-equations (resp. Σ(C)-inequations).
Satisfiability is then decided by:

1. regarding at no cost
∧
E ∧

∧
D as a ground Σ(C)u-formula;

2. computing a congruence closure R for E in O(|E| log(|E|)); and
3. testing whether u!R 6= v!R for each u 6= v ∈ D.

Therefore we can reuse the same algorithms and tools used in the unsorted
case at no extra cost : the input to such algorithms and the algorithms or tools
themselves need no changes, and the complexity is that of the unsorted case.

5 Order-Sorted (Σ,AC∆)-QF-Satisfiability

Let Σ be a sensible OS signature with ∆ ⊆ Σ made exclusively of binary
function symbols, say, g, h, . . ., each of the form g : s s → s for some sorts
s ∈ S, and with any typing of any such g in Σ necessarily a typing in ∆, i.e., ∆
and (Σ − ∆) share no symbols. Assume that each subsort-polymorphic family

g
[s] [s]
[s] ⊆ ∆ has always a biggest possible typing g : sg sg → sg such that for any

other typing g : s s → s in g
[s] [s]
[s] we have s ≤ sg. We impose the associativity-

commutativity (AC) of the subsort-polymorphic family g
[s] [s]
[s] with the equations:

ACg = {g(x, y) = g(y, x), g(x, g(y, z)) = g(g(x, y), z)} with x, y, z of sort sg. We
furthermore require that the axioms ACg are sort-preserving, that is, that for
each S-sorted substitution σ and each sort s ∈ S we have: g(x, y)σ ∈ TΣ(X)s ⇔
g(y, x)σ ∈ TΣ(X)s, and g(x, g(y, z))σ ∈ TΣ(X)s ⇔ g(g(x, y), z)σ ∈ TΣ(X)s,
which can be easily checked by the method explained in [18]. Let AC∆ denote
the set AC∆ =

⋃
g∈∆ACg requiring all symbols in ∆ to be AC. Call (Σ,AC∆)

satisfying the above requirements the OS theory of Σ uninterpreted function
symbols Σ modulo AC∆. When Σ = ∆ is unsorted and has a single symbol +,
this is called the theory of commutative semigroups.

We can generalize the above setting by replacing (∆,AC∆) by any OS theory
(∆,B) with ∆ sensible and considering any sensible supersignature Σ ⊇ ∆ with
∆ and Σ −∆ not sharing any symbols. Call (Σ,B) the theory of uninterpreted
function symbols Σ modulo B. We can then reduce the decidability of the (Σ,B)-
QF-satisfiabilty problem to that of the OS word problem modulo B, defined as
the problem of whether given any Σ ⊇ ∆ as above, and a set E ∪ {u = v} of
ground Σ-equations, E ∪B ` u = v holds or not. The reduction is as follows:

Theorem 7. For any (∆,B) and Σ ⊇ ∆ as above, (Σ,B)-QF-satisfiability is
decidable iff the OS word problem modulo B is decidable.

For Σ ⊆ ∆ unsorted, Bachmair, Tiwari and Vigneron [2] have developed
an AC congruence closure algorithm for the theory (Σ,AC∆) that decides the
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word problem modulo AC∆ and therefore, by above Theorem 7, the unsorted
(Σ,AC∆)-QF-satisfiability problem. In the spirit of Section 4, the main goal of
this section is to reduce the decidability of the OS (Σ,AC∆)-QF-satisfiability
problem to that of its unsorted version, and to furthermore reuse the same
unsorted AC congruence closure algorithm in [2] to decide at no extra cost and
with the same complexity the OS (Σ,AC∆)-QF-satisfiability problem.

The decidability of OS (Σ,AC∆)-QF-satisfiability has already been reduced
to that of the OS word problem modulo AC∆, now we just need to reduce the
OS word problem modulo AC∆ to the unsorted word problem modulo AC∆u .

This is achieved in two steps. First, we reduce the many-sorted word problem
modulo AC ∆̂ to the unsorted word problem modulo AC∆u using the Σ̂ 7→ Σu

transformation of Section 4.1. This first reduction is easy: the equations AC ∆̂

are regular. Therefore, if E ∪ {u = v} is a finite set of ground many-sorted Σ̂-
equations, the equations E∪AC ∆̂ are also regular and the conditions of Lemma
3 apply. We then reduce the OS word problem modulo AC∆ to the many-sorted
word problem modulo AC ∆̂. The ∆̂-equations AC ∆̂ are obtained from the OS
∆-equations in AC∆ by replacing each variable x:s by the variable x:>[s]. That
is, for E∪{u = v} a finite set of ground Σ-equations must show the equivalence:

(Σ,E ∪AC∆) ` u = v ⇔ (Σ̂, E ∪AC ∆̂) ` u = v

which, by Corollary 2, reduces to proving the equivalence:

(Σ2, E ∪AC∆) ` u = v ⇔ (Σ̂, E ∪AC ∆̂) ` u = v

which, by Lemma 2, follows as a special case from the more general theorem:

Theorem 8. Let Σ ⊇ ∆ be a sensible OS supersignature, R a set of Σ-rewrite
rules, and u, v ∈ TΣ(X). Then we have the equivalence:

(Σ2, R ∪AC∆)u→∗R∪R(AC∆) v ⇔ (Σ2, E ∪AC ∆̂) ` u→∗R∪R(AC
∆̂
) v.

6 Related Work and Conclusions

[13] presents the only order-sorted congruence closure algorithm I am aware of.
It provides a good solution under some extra assumptions on Σ, but it requires a
quite complex congruence generation method and has worse complexity, O(n2),
than the best O(n log(n)) unsorted algorithms. The papers [17,2] present the
view of congruence closure as completion. In particular, the notions of abstract
congruence closure and AC-congruence closure are due to [2]. The first study I
know of satisfiability modulo theories in an order-sorted setting is [25].

The above-mentioned work has influenced and motivated the present one.
The good news is that we get all the benefits of order-sorted (Σ, ∅)- and (Σ,AC∆)-
satisfiability for free, with no added computational cost and being able to reuse
unsorted tools. At a more theoretical level, the order-sorted rewriting and equal-
ity results presented here are also good news and belong to the foundations of
such an area. Future work will focus on exploiting these results at the tool level.
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A Proofs of Theorems and Lemmas

Proof of Theorem 3

Proof. Since we only care about sequents of the form u →~ v, we can simplify
the OSTRS inference system into an equivalent one for such sequents where
Replacement deduces sequents of the form tσ →~ t′σ and Subsumption is
dropped. Identifying then u →~ v with u = v this system coincides with the
order-sorted equational deduction inference system in Section 11 of [20], where
the Replacement rule coincides with rule Modus Ponens there in the case,
as assumed here, when the equations E are unconditional. All other inference
rules have the same name in both systems.

There are however three small differences: (i) the rules in Section 11 of [20]
work on explicitly quantified equations, whereas the rewiting-based ones do not;
this is because we have assumed that Σ always has non-empty sorts, in which
case such explicit quantification can be safely dropped; (ii) the rewriting-based
inference system is missing the Symmetry rule; but that rule is unnecessary,
since it is easy to show by structural induction that (Σ,R(E)) ` u →~ v iff
(Σ,R(E)) ` v →~ u; and (iii) the inference rules in Section 11 of [20] allow
more general sets X̃ of variables, where s 6= s′ ⇒ Xs ∩Xs′ need not hold; but
this is inconsequential: assuming such a restriction throughout does not affect
the derivable equations u = v when u, v ∈ TΣ(X) and X satisfies the restriction.

Since the OS equational inference rules in Section 11 of [20] are sound and
complete (Theorem 24 there), the same holds for the present rewriting-based
system. 2

Proof of Lemma 1

Proof. The proof that u→~ v ⇒ u→∗R v is an easy structural induction on the
structure of proofs for u →~ v. Because of the Reflexivity and Transitivity
rules, to prove that u →∗R v ⇒ u →~ v it is enough to prove that u →R

v ⇒ u →~ v. But this follows by one application of Replacement, followed
by Subsumption, followed by |p| applications on Congruence, where p is the
position at which the rewriting u →R v happens, and |p| is the length of the
string p. 2

Proof of Theorem 4

Proof. Since Σ ⊆ Σ2, obviously, (Σ,R) ` u →~ v ⇒ (Σ2, R) ` u →~ v.
Therefore, Lemma 1 gives us the implication (Σ,R) ` u →~ v ⇒ u →∗R v.
We just have to prove the other direction, i.e., that for any u, v ∈ TΣ(X)[s],

[s] ∈ Ŝ, u→∗R v with OSTRS (Σ2, R) implies (Σ,R) ` u→~ v. The proof is by
contradiction. Suppose the implication does not hold. This means that the set of
pairs {(u, n) ∈ TΣ(X)×N | (∃v ∈ TΣ(X)) (u→n

R v ∧ (Σ,R) 6` u→~ v)} is non-
empty. Since we can define a lexicographic well-founded order (u, n) > (u′,m)
on such pairs by the equivalence: (u, n) > (u′,m) ⇔ ht(u) > ht(u′) ∨ (ht(u) =
ht(u′) ∧ n > m), where ht(u) is the height of u as a tree, there is a minimal
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element, say (u, n), under that order in the above set, and we must have n > 0
and a rewrite sequence:

u→R w1 →R . . . wn−1 →R v

with v ∈ TΣ(X) and (Σ,R) 6` u→~ v. Furthermore, we must have wi 6∈ TΣ(X),
1 ≤ i ≤ n− 1, since otherwise the minimality of (u, n) would be violated.

Now note that, since for X = {Xs}s∈S we have TΣ2(X)|Σ = TΣ(X) and
therefore TΣ2(X)s = TΣ(X)s, s ∈ S, any S-sorted substitution σ ∈ [X→TΣ2(X)]
is actually an S-sorted substitution σ ∈ [X→TΣ(X)]. This means that for all
rules t → t′ ∈ R and all σ ∈ [X→TΣ2(X)] we must have tσ, t′σ ∈ TΣ(X). But
then this forces all positions p1, . . . , pn at which the above n rewrite steps take
place to be different from the empty string. That is, u and v must be of the
form u = f(u1, . . . , uk), v = f(v1, . . . , vk), k > 1, and we must have uj →∗R vj ,
1 ≤ j ≤ k. Furthermore, since we have uj , vj ∈ TΣ(X), 1 ≤ j ≤ k, the minimal-
ity of (u, n) forces (Σ,R) ` uj →~ vj , 1 ≤ j ≤ k. But then the Congruence
rule gives us (Σ,R) ` u→~ v, contradicting (Σ,R) 6` u→~ v. 2

Proof of Lemma 2

Proof. The essential point is that for X = {X>[s]
}>[s]∈Ŝ , we have TΣ2(X)|Σ̂ =

TΣ̂(X). Therefore, again for the same variables X, any well-sorted substitution
σ ∈ [X→TΣ2(X)] is also a well-sorted substitution σ ∈ [X→TΣ̂(X)]. This im-

mediately gives us (Σ̂, R) ` u→∗R v iff (Σ2, R) ` u→∗R v, as desired. 2

Proof of Theorem 5: see that of Theorem 7.

Proof of Lemma 3

Proof. Since many-sorted and unsorted signatures are kind-complete, we can use
the R(E) and R(Eu) rewriting-based inference systems obtained by specializing
to Σ (resp. Σu) that in Corollary 1. An easy induction on the length of the
rewrite sequence reduces everything to showing that for each t → t′ ∈ R(Eu)
and each u ∈ TΣ(X)s and v ∈ TΣu(X) —where in the second case X denotes the
single-sorted set X =

⋃
s∈S Xs and all sort information is ignored— if u→R(Eu)

v is obtained by rewriting with t → t′ at position p in the unsorted signature
Σu, we must have v ∈ TΣ(X)s and u→R(E) v.

Let u ∈ TΣ(X)s and suppose that there is an unsorted substitution σ and a
position p such that u = u[tσ]p and we can apply rule t→ t′ ∈ R(Eu) to perform
a rewrite step u→R(Eu) u[t′σ]p. Since all equations in E are regular, if x:s′ is a
variable in t → t′ ∈ R(E), then it belongs to both t and t′. Since u|p = tσ is a
Σ-term and x:s′ occurs in t, σ(x:s′) is a Σ-term. Furthermore, since Σ sensible
implies that s′ 6= s′′ ⇒ TΣ(X)s′∩TΣ(X)s′′ = ∅, the Σ-term σ(x:s′) can only have
sort s′, in spite of the fact that σ was unsorted and disregarded sorts. Therefore,
σ is actually an S-sorted substitution for the variables of t → t′. Therefore, t′σ
is also a Σ-term, u[t′σ]p ∈ TΣ(X)s and u→R(E) u[t′σ]p, as desired. 2

Proof of Theorem 6
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Proof. By Corollary 2 we have the equivalence:

(Σ,E) ` u = v ⇔ (Σ2, E) ` u = v.

But, since the equations E ∪ {u = v} are gound, they are trivially Σ̂-equations,
so that Lemma 2 gives us the equivalence:

(Σ2, E) ` u = v ⇔ (Σ̂, E) ` u = v.

Stringing these two equivalences together we get our desired equivalence:

(Σ,E) ` u = v ⇔ (Σ̂, E) ` u = v.

2

Proof of Theorem 7

Proof. Let us first prove a lemma:

Lemma 4. Let Σ be sensible, and B∪E∪G be Σ-equations with E∪G a finite
set of ground equations. The following are equivalent:

1. E ∪B 6` u = v for each u = v ∈ G
2. TΣ/E∪B |= u 6= v for each u = v ∈ G
3.

∧
E ∧

∧
u=v∈G u 6= v is (Σ,B)-satisfiable.

Proof. (1) ⇔ (2) follows directly from the definition of TΣ/E∪B , and (2) ⇒ (3)
is trivial. We just need to prove (3) ⇒ (2). But (3) just means that there is
a (Σ,E ∪ B)-algebra A such that for each u = v ∈ G h([u]) 6= h([v]), where
h : TΣ/E∪B → A is the unique Σ-homomorphism guaranteed by the initiality
of TΣ/E∪B , which forces [u] 6= [v] and therefore TΣ/E∪B |= u 6= v for each
u = v ∈ G, as desired. 2

The (⇒) implication is now trivial, since Lemma 4 shows that E∪B ` u = v
holds iff

∧
E ∧ u 6= v is (Σ,B)-unsatisfiable.

To see the (⇐) implication, let ϕ ∈ QFForm(Σ). Without loss of generality
we may assume the ϕ is ground (by replacing Σ by Σ(Y ) for Y the variables of
ϕ viewed as constants) and a DNF formula ϕ =

∨
1≤i≤n(

∧
Ei ∧

∧
Di), where

each Ei is a finite set of ground Σ-equations, and each Di is of the form Di =∧
u=v∈Gi u 6= v for Gi a finite set of ground equations.

But then ϕ is (Σ,B)-satisfiable iff
∧
Ei ∧

∧
u=v∈Gi u 6= v is (Σ,B)-satisfiable

for some i, 1 ≤ i ≤ n, iff, by Lemma 4, Ei ∪B 6` u = v for each u = v ∈ Gi. 2

Proof of Theorem 8

Proof. Since the relations →∗R∪R(AC∆) (resp. →∗R∪R(AC
∆̂
)) just interleave steps

of R-rewriting with AC∆-equality (resp. AC ∆̂-equality) steps, they are com-
monly denoted, more helpfully and at a higher level, as:→∗R/AC∆

(resp.→∗R/AC
∆̂

),

where, by definition,→R/AC∆
= (=AC∆

)◦ →R ◦(=AC∆
), and→R/AC

∆̂
= (=AC

∆̂
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)◦ →R ◦(=AC
∆̂

). Therefore, they define corresponding binary relations (denoted
the same way) on TΣ2/AC∆

(X), resp. TΣ̂/AC
∆̂

(X), by means of the equivalences:

[u] →R/AC∆
[v] ⇔ (∃u′, v′) [u] 3 u′ →R v′ ∈ [v], resp. [u] →R/AC

∆̂
[v] ⇔

(∃u′, v′) [u] 3 u′ →R v′ ∈ [v], where [u], [v] abbreviate AC∆-equivalence (resp.
AC ∆̂-equivalence) classes. Note, furthermore, that by the assumption that each
g ∈ ∆ has a biggest possible typing with a sort sg and that that equations AC∆

are sort-preserving, reasoning as in the proof of Lemma 3 it is easy to show
that for any u ∈ TΣ(X) its AC∆-equivalence class and its AC ∆̂-equivalence
class coincide, so that using [u] for both is unambiguous. Furthermore, since any

t 6∈ TΣ(X) can only have a sort of the form >[s] for some [s] ∈ Ŝ, this also shows
that the equations AC ∆̂ are sort-preserving for all terms in T2

Σ (X). Note, also,
that for some t 6∈ TΣ(X) we may have a strict containment [t]AC∆

⊂ [t]AC
∆̂

, as
the example a+ b 6=AC+

b+ a in the Introduction shows.

In what follows I summarize some basic facts, terminology, and notation
about the relations →R/AC∆

and →∗R/AC
∆̂

. Since all remarks apply to both

cases, I will use →∗R/AC∆
throughout. If + ∈ ∆, call a term u a +-term iff it

has the form u = v+w, and +-alien term otherwise. Then the AC∆-equivalence
class of a +-term u is of the form [q1 + . . . + qn], n ≥ 2, with the q1, . . . , qn
+-alien subterms of u, where, thanks to the associative-commutative nature
of +, we can completely disregard both parentheses and the order among the
q1, . . . , qn. That is, [q1+. . .+qn] is a multiset whose elements are the equivalence
classes [q1], . . . , [qn]. Therefore, the rewrite relation [u] →R/AC∆

[v] should be
understood as a multiset-rewriting relation, but with the proviso that ∆ may
have more than one multiset constructor, for example, +, ∗ ∈ ∆, and rules in R
may change such constructors. For example we may have rules like u+v → u′∗v′,
where u′ ∗ v′ is a +-alien term, but ∗ is another multiset union operator.

Note that if we have rewrites [u1] →R/AC∆
[v1] and [u2] →R/AC∆

[v2], and
u1 + u2 ∈ TΣ2(X), v1 + v2 ∈ TΣ2(X), then we also have a parallel composi-
tion rewrite [u1 + u2] →R/AC∆

[v1 + v2] decomposable as, e.g., the sequential
composition [u1 + u2]→R/AC∆

[v1 + u2]→R/AC∆
[v1 + v2].

Call a rewrite [u] →R/AC∆
[v] with rule l → r a rewrite at the top iff there

is a u′ ∈ [u] and a substitution σ such that u′ = lσ and rσ ∈ [v]; otherwise
call [u] →R/AC∆

[v] a rewrite below the top. Furthermore, if [u] →R/AC∆
[v] is

a rewrite below the top with rule l → r and substitution σ, and u is a +-term
decomposable as [u] = [q1 + . . . + qn], n ≥ 2, with the qi +-alien subterms, the
rewrite [u] 3 u′[lσ]p →R u

′[rσ]p ∈ [v] must satisfy either: (i) [u′|p] = [qi1 + . . .+
qir ], 1 ≤ i1 < . . . < ir ≤ n, n > r ≥ 2, so that: (i).1 if r = n − 1 then [u] =
[qj + (lσ)] and [v] = [qj + (rσ)] for j the only index different from i1 < . . . < ir,
or (i).2 if r < n−1, then [u] = [u′′+ (lσ)] and [v] = [u′′+ (rσ)], with u′′ the sum
of all qj with j different from i1 < . . . < ir; or (ii) p = p1 · p2 and [u′|p1 ] = [qi]
for some 1 ≤ i ≤ n, so that [u] = [q1 + . . .+ qi−1 + u′|p1 [lσ]p2 + qi+1 + . . .+ qn]
and [v] = [q1 + . . . + qi−1 + u′|p1 [rσ]p2 + qi+1 + . . . + qn]. That is, the rewrite
either happens modulo AC∆ at or below one of the qi, or must rewrite modulo
AC∆ several, but not all, of the qi.
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Using the relations→∗R/AC∆
and→∗R/AC

∆̂
we can rephrase the statement of

the theorem as the equivalence:

[u]→∗R/AC∆
[v] ⇔ [u]→∗R/AC

∆̂
[v]

for u, v ∈ TΣ(X), which is a crucial requirement, since the example a+ b 6=AC+

b+a shows that the equivalence does not hold in general for u, v ∈ TΣ2(X). Since
the equations AC ∆̂ are more general than the equations AC∆, the (⇒) implica-
tion is obvious. To see the (⇐) implication we reason by contradiction and as-
sume that the set {([u], n) ∈ TΣ/AC∆

(X)×N | (∃v ∈ TΣ/AC∆
(X)) [u]→n

R/AC
∆̂

[v] ∧ [u] 6→∗R/AC∆
[v]} is non-empty. Since the term size |t|, i.e., the num-

ber of nodes of t as a tree, is the same for all terms in an AC-equivalence
class, we can then give a well-founded lexicographic order to this set by defining
([u], n) > ([u′],m) ⇔ |u| > |u′| ∨ (|u| = |u′| ∧ n > m). Pick a minimal element
([u], n) under this order, so that [u]→n

R/AC
∆̂

[v] but [u] 6→∗R/AC∆
[v]. Let

[u]→R/AC
∆̂

[w1]→R/AC
∆̂

[w2] . . . [wn−1]→R/AC
∆̂

[v]

be any sequence of the form [u]→n
R/AC

∆̂
[v]. Let us analyze it carefully. First of

all, we must have wi 6∈ TΣ/AC∆
(X), 1 ≤ i ≤ n − 1, since otherwise ([u], n)

would not be minimal. Note also that, since for any u ∈ TΣ(X) its AC∆-
equivalence class and its AC ∆̂-equivalence class coincide, [u] →R/AC

∆̂
[v] im-

plies [u] →R/AC∆
[v], so we must have n ≥ 2. Furthermore, wi 6∈ TΣ/AC∆

(X),
1 ≤ i ≤ n − 1, also means that, since R is a set of Σ-rules, all R-rewrite steps
in the sequence for given representatives must happen below the top. This rules
out the possibility of u = f(u1, . . . , uk) with f ∈ (Σ−∆), since this would force
v = f(v1, . . . , vk) and rewrites [ui] →∗R/AC

∆̂
[vi] which, since |ui| < |u|, must

also have [ui] →∗R/AC∆
[vi], violating [u] 6→∗R/AC∆

[v]. Therefore, there must

be a symbol in ∆, say, +, such that [u] is of the form [u] = [q1 + . . . + qk],
k ≥ 2 with q1, . . . , qk +-alien subterms. But then, since all rewrites must hap-
pen below the top, the wi, 1 ≤ i ≤ n − 1 and [v] must all be +-terms. Let us
now look at the last rewrite [wn−1] →R/AC

∆̂
[v]. Let [wn−1] = [q1 + . . . + ql]

be a decomposition into +-alien subterms. It is not only impossible that the
rewrite [wn−1] →R/AC

∆̂
[v] happened at the top; it is also impossible that

it uses a rule in R of the form w + w′ → r with a substitution σ such that
(w + w′)σ =AC

∆̂
qi1 + . . . + qip , 1 ≤ i1 < . . . < ip ≤ l. This is because then

we would have [wn−1] = [qi1 + . . . + qip + w] and [v] = [rσ + w], and since
v ∈ TΣ(X)s+ , this would force rσ, w, (qi1 + . . . + qip) ∈ TΣ(X)s+ and therefore
wn−1 ∈ TΣ(X)s+ . Therefore, the rewrite [wn−1] →R/AC

∆̂
[v] must happen in

one of the +-alien subterms of [wn−1], say q1, so that we have [q1]→R/AC
∆̂

[w′],
and [v] = [w+w′]. That is, the rewrite [wn−1]→R/AC

∆̂
[v] must be of the form

[q1 +w]→R/AC
∆̂

[w+w′] and, furthermore, we must have q1 6∈ TΣ(X)s+ , since
otherwise we would have wn−1 ∈ TΣ(X)s+ . We now need a lemma:

Lemma 5. (Decomposition Lemma) Let

[u]→n
R/AC

∆̂
[q + w],
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be a rewrite sequence with n ≥ 1, u ∈ TΣ(X)s+ , q a +-alien subterm, q 6∈
TΣ(X)s+ , and therefore q + w 6∈ TΣ(X). Then we either have rewrite sequences

[u]→i
R/AC

∆̂
[v]→j

R/AC
∆̂

[q+w] with v ∈ TΣ(X)s+ a +-term, i+j = n, i, j ≥ 1,

or have a decomposition [u] = [u1 + u2], where u1, u2 need not be +-alien, and
rewrite sequences:

1. [u1]→i
R/AC

∆̂
[q]

2. [u2]→j
R/AC

∆̂
[w].

with i+ j = n, i ≥ 1.

Proof. We reason by strong induction on n. Base Case: n = 1, so that we have
[u]→R/AC

∆̂
[q + w], say with a rule l → r and substitution σ. Equivalently, we

have an inverse rewrite [q + w]→R/AC
∆̂

[u] with rule r → l and substitution σ.
Since q + w 6∈ TΣ(X), the equations AC ∆̂ are sort-preserving, and r ∈ TΣ(X),
the inverse rewrite [q+w]→R/AC

∆̂
[u] must happen below the top and therefore

u must be a +-term. Let q = q1 and [w] = [q2 + . . . + qn] with the qi +-alien
subterms and n ≥ 2. (i.e., w could be just q2). That is, the inverse rewrite
[q1 + . . . + qn]] 3 w′ →R w′[lσ]p ∈ [v], with w′ = w′[rσ]p, must satisfy either:
(i) [w′|p] = [qi1 + . . . + qil ], 1 ≤ i1 < . . . < il ≤ n, n > l ≥ 2, and either
(i).1 if l = n − 1 then [u] = [qj + (lσ)] and [q + w] = [qj + (rσ)] for j the only
index different from the i1, . . . , il, which is impossible, since by AC ∆̂-equivalence
being sort-preserving and r ∈ TΣ(X), this would force j = 1 and would make q1
AC ∆̂-equivalent to a +-alien subterm of [u], which, again by AC ∆̂-equivalence
being sort-preserving, is impossible since u is a +-term, u ∈ TΣ(X)s+ , and
q1 6∈ TΣ(X)s+ ; or (i).2 if l < n − 1, then [u] = [w′′ + (lσ)] and [q + w] =
[w′′ + (rσ)], with w′′ the sum of all qj with j different from the i1, . . . , il, which
is again impossible for the same reason: q would be an alien subterm of w′′

and therefore of u; or (ii) p = p1 · p2 and [w′|p1 ] = [qi] for some 1 ≤ i ≤ n,
so that [u] = [q1 + . . . + qi−1 + w′p1 [lσ]p2 + qi+1 + . . . + qn] and [q + w] =
[q1 + . . . + qi−1 + w′p1 [rσ]p2 + qi+1 + . . . + qn], which for the same reasons as
above forces i = 1, giving us the desired decomposition [u] = [w′p1 [lσ]p2 + w]
splitting the direct rewrite [u] →R/AC

∆̂
[q + w] as [w′p1 [lσ]p2 ] →1

R/AC
∆̂

[q] and

[w]→0
R/AC

∆̂
[w], with 1 + 0 = 1.

Induction Step: Suppose the result holds for any 1 ≤ k ≤ n and consider a
sequence of lenght n + 1 of the form: [u] →n

R/AC
∆̂

[v] →R/AC
∆̂

[q + w]. Focus

on the last rewrite step [v] →R/AC
∆̂

[q + w], say with rule l → r in R and
substitution σ or, equivalently, on the inverse rewrite [q + w] →R/AC

∆̂
[u] with

rule r → l and substitution σ. As in the base case, this inverse rewrite must
happen below the top and v must be a +-term. If v ∈ TΣ(X)s+ we are done.
So we may assume v 6∈ TΣ(X)s+ . Let q = q1 and [w] = [q2 + . . . + qn] with the
qi +-alien subterms and n ≥ 2 (i.e., w could be just q2). That is, the inverse
rewrite [q1 + . . . + qn] 3 w′ →R w′[lσ]p ∈ [v], with w′ = w′[rσ]p, must satisfy
either: (i) [w′|p] = [qi1 + . . . + qil ], 1 ≤ i1 < . . . < il ≤ n, n > l ≥ 2, which by
q 6∈ TΣ(X)s+ and sort-preservation in equivalence classes forces q 6= qi1 , . . . , qil
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so that we have either: (i).1 [v] = [q + (lσ)] and [q + w] = [q + (rσ)], or (i).2
[v] = [q + w′′′ + (lσ)] and [q + w] = [q + w′′′ + (rσ)]. In both cases we are done,
because [v] = [q + v′], so that the induction hypothesis applies to the n-step
rewrite [u]→n

R/AC
∆̂

[v], which either factors through a [v′′] with v′′ ∈ TΣ(X)s+

a +-term, so that we are done, or splits into [u1]→i
R/AC

∆̂
[q] and [u2]→j

R/AC
∆̂

[v′], i + j = n, which can each be sequentially composed with the each of the
rewrites [q] →0

R/AC
∆̂

[q] and [v′] →R/AC
∆̂

[w] into which [v] →R/AC
∆̂

[q + w]

splits to give us the desired decomposition. Otherwise we must have case (ii)
with [w′|p1 ] = [qi] and [v] = [q1 + . . . + qi−1 + w′p1 [lσ]p2 + qi+1 + . . . + qn] and
[q+w] = [q1+. . .+qi−1+w′p1 [rσ]p2 +qi+1+. . .+qn] and we have two possibilities:
either qi 6= q, so that we are done by reasoning exactly as in case (i), or qi = q,
so that the direct one-step rewrite [v] →R/AC

∆̂
[q + w] splits as the parallel

composition of [w′p1 [lσ]p2 ]→R/AC
∆̂

[q] and [w]→0
R/AC

∆̂
[w].

Since v 6∈ TΣ(X)s+ , v must have a +-alien subterm q′ with q′ 6∈ TΣ(X)s+ ,
which is either: (1) a +-alien subterm of w′[lσ]p2 , or (2) a +-alien subterm of w.
In case (1), since [w′|p1 ] = [w′|p1 [rσ]p2 ] = [q], if p2 is the empty string, l must be
a +-alien term, so that q′ = lσ, since the case l = l1+l2 is ruled out by R being a
set of Σ-rules, since then (l1+l2)σ ∈ TΣ(X)s+ cannot have q′ 6∈ TΣ(X)s+ as a +-
alien subterm. But if p2 is non-empty, since [w′|p1 [rσ]p2 ] = [q], [w′|p1 [lσ]p2 ] must
be a +-alien subterm with same top function symbol as q, so that q′ = w′|p1 [lσ]p2 .
In either case we have [v] = [q′ + w] with q′ 6∈ TΣ(X)s+ a +-alien subterm, and
[q′] →R/AC

∆̂
[q], so that the induction hypothesis applies to [u] →n

R/AC
∆̂

[v],

which either factors through a +-term v′ ∈ TΣ(X)s+ and we are done, or splits

as the parallel sum of [u1] →i
R/AC

∆̂
[q′] and [u2] →j

R/AC
∆̂

[w], with i + j = n,

giving us the desired splitting of [u]→n
R/AC

∆̂
[v]→R/AC

∆̂
[q+w] as the parallel

composition of [u1]→i
R/AC

∆̂
[q′]→R/AC

∆̂
[q] and [u2]→j

R/AC
∆̂

[w].

In case (2) there are two possibilities: (2.1) [q′] = [q2], w = [q2], [v] = [q2 +
w′p1 [lσ]p2 ], and [q + q2] = [w′p1 [rσ]p2 + q2], so that the induction hypothesis
applies to the n-step rewrite [u] →n

R/AC
∆̂

[v], which either factors through a

+-term in TΣ(X)s+ and we are done, or splits as the parallel composition of

[u1]→i
R/AC

∆̂
[q2] and [u2]→j

R/AC
∆̂

[w′p1 [lσ]p2 ], which gives us the desired split

of [u] →n
R/AC

∆̂
[v] →R/AC

∆̂
[q + q2] as [u1] →i

R/AC
∆̂

[q2] and [u2] →j
R/AC

∆̂

[w′p1 [lσ]p2 ] →R/AC
∆̂

[q] with i + j + 1 = n + 1, or (2.2) [q′] = [qj ], j ≥ 2, w =
[q2+. . .+qn], n > 2, and [v] = [w+w′p1 [lσ]p2 ]. But then the induction hypothesis
applies to the n-step rewrite [u] →n

R/AC
∆̂

[v], which either factors through a

+-term in TΣ(X)s+ and we are done, or splits as the parallel composition of

[u1] →i
R/AC

∆̂
[qj ] and [u2] →j

R/AC
∆̂

[w′′ + w′[lσ]p2 ], with i ≥ 1, i + j = n and

w′′ = [q2 + . . . + qj−1 + . . . + qj+1 + . . . + qn] (w′′ becomes a single +-alient
subterm when n = 3). If w′′ + w′p1 [lσ]p2 ∈ TΣ(X)s+ we are done, since we

get the factorization [u1 + u2] →j
R/AC

∆̂
[u1 + w′′ + w′p1 [lσ]p2 ] →j

R/AC
∆̂

[w +

w′p1 [lσ]p2 ] →R/AC
∆̂

[w + q] with u1 + w′′ + w′p1 [lσ]p2 ∈∈ TΣ(X)s+ , as desired.
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Otherwise, we have a composed rewrite [u2]→j
R/AC

∆̂
[w′′ +w′p1 [lσ]p2 ]→R/AC

∆̂

[q + w′′] of length j + 1 ≤ n to which the induction hypothesis applies, so that,
since w′′+w′p1 [lσ]p2 6∈ TΣ(X)s+ , it either factors through a +-term v′ ∈ TΣ(X)s+
as [u2]→j.1

R/AC
∆̂

[v′]→j.2
R/AC

∆̂
[w′′+w′p1 [lσ]p2 ]→R/AC

∆̂
[q+w′′] with j.1+ j.2 =

j, and we are done, since then the rewrite [u]→n
R/AC

∆̂
[v]→R/AC

∆̂
[q+w] also

factors as [u]→j.1
R/AC

∆̂
[u1 + v]→j.2

R/AC
∆̂

[u1 + w′′ + w′p1 [lσ]p2 ]→R/AC
∆̂

[q + w]

with u1+v′ ∈ TΣ(X)s+ , as desired, or [u2]→j+1
R/AC

∆̂
[q+w′′] splits as the parallel

composition of [u2.1]→i′

R/AC
∆̂

[q] and [u2.2]→j′

R/AC
∆̂

[w′′], with i′+j′ = j+1, so

that, composing [u2.2]→j′

R/AC
∆̂

[w′′] and [u1]→i
R/AC

∆̂
[qj ] in parallel we get our

desired splitting of [u] →n
R/AC

∆̂
[v] →R/AC

∆̂
[q + w] as [u2.1] →i′

R/AC
∆̂

[q] and

[u2.2 +u1]→i+j′

R/AC
∆̂

[qj +w′′], with [w] = [qj +w′′], i′+ j′+ i = i+ j+ 1 = n+ 1.

This exhausts all cases and finishes the proof of the lemma. 2

After this long detour we can finish the proof of Theorem 8. Recall that
we had a minimal sequence [u] →n

R/AC
∆̂

[v] under the lexicographic order

based on pairs (|u|, n) such that [u] 6→∗R/AC∆
[v], n ≥ 2, and [u] →n

R/AC
∆̂

[v]

factored as [u] →n−1
R/AC

∆̂
[q1 + w] →R/AC

∆̂
[v], with [v] = [w + w′], q1 a

+-alien subterm such that q1 6∈ TΣ(X)s+ , and [q1] →R/AC
∆̂

[w′]. We can

then apply the Decomposition Lemma 5 to the sequence [u] →n−1
R/AC

∆̂
[q1 + w]

to get a contradiction. If it factors as [u] →i
R/AC

∆̂
[v′] →j

R/AC
∆̂

[q1 + w]

with i + j = n − 1 and v′ ∈ TΣ(X), we get a contradiction, because then
[u] →n

R/AC
∆̂

[v] factors as [u] →i
R/AC

∆̂
[v′] →j

R/AC
∆̂

[q1 + w] →R/AC
∆̂

[v],

which we have already seen is impossible by the minimality of [u]→n
R/AC

∆̂
[v].

And if [u] →n−1
R/AC

∆̂
[q1 + w] splits as [u1] →i

R/AC
∆̂

[q1] and [u2] →j
R/AC

∆̂
[w],

i + j = n − 1, we get another contradiction, because then [u] →n
R/AC

∆̂
[v]

splits as [u1] →i+1
R/AC

∆̂
[w′] and [u2] →j

R/AC
∆̂

[w], which is impossible since,

by the minimality of [u] →n
R/AC

∆̂
[v], we must have [u1] →n+i

R/AC∆
[w′] and

[u2] →n
R/AC∆

[w], whose parallel composition [u] →n
R/AC∆

[v] violates the as-

sumption [u] 6→∗R/AC∆
[v]. 2


