## ISWS-78-RI86

REPORT OF INVESTIGATION 86
STATE OF ILLINOIS
DEPARTMENT OF REGISTRATION AND EDUCATION


## Algae in Selected Illinois Streams, 1971-1976

by S. D. LIN, R. L. EVANS, and D. B. BEUSCHER



## Algae in Selected Illinois Streams, 1971-1976

by S. D. LIN, R. L EVANS, and D. B. BEUSCHER

Title: Algae in Selected Illinois Streams, 1971-1976.
Abstract: During the 5-year period, October 1971 through September 1976, samples of water from 21 Illinois streams at 26 locations were collected monthly and examined to determine the concentration and genera of algae. Data have been evaluated for algal composition, density, diversity indices, and seasonal succession for each stream location. At most sampling locations, algal densities ranged from 500 to $2000 \mathrm{cts} / \mathrm{ml}$. The 5 -year geometric means extended from 880 to $1500 \mathrm{cts} / \mathrm{ml}$. From 24 to 30 different algal genera were recovered from each station and, in all, 56 genera were detected. The average diversity index for each station ranged from 1.11 to 1.36 bits per individual. The highest density of $60,000 \mathrm{cts} / \mathrm{ml}$ occurred on July 11, 1975, in the Fox River at Algonquin. The diatoms Navicula and Cyclotella were the most frequently observed algae. In addition to these, the green algae Scenedesmus and Crucigenia and the diatom Melosira were often dominant. From sample to sample, season to season, and year to year, the genera found at any sampling station varied considerably. Generally, the annual maximum population occurred in the spring. However, the experience gained from this study supports the conclusion that it is impossible to predict algal density, composition, or succession in the flowing streams of Illinois.

Reference: Lin, S. D., R. L. Evans, and D. B. Beuscher. Algae in Selected Illinois Streams, 1971-1976. Illinois State Water Survey, Urbana, Report of Investigation 86, 1978.

Indexing Terms: Algae, algal composition, algal density, algal succession, diversity index, Illinois streams, water quality.

## STATE OF ILLINOIS

HON. JAMES R. THOMPSON, Governor
DEPARTMENT OF REGISTRATION AND EDUCATION JOAN G. ANDERSON, B.S., Director

BOARD OF NATURAL RESOURCES AND CONSERVATION<br>Joan G. Anderson, B.S., Chairman<br>Thomas Park, Ph.D., Biology<br>H. S. Gutowsky, Ph.D., Chemistry<br>Stanley K. Shapiro, Ph.D., Forestry<br>Laurence L. Sloss, Ph.D., Geology<br>John C. Guyon, Ph.D.,<br>Southern Illinois University<br>William L. Everitt, E.E., Ph.D., University of Illinois

STATE WATER SURVEY DIVISION WILLIAM C. ACKERMANN, D.Sc, Chief

URBANA
1978

## CONTENTS

Page
Summary .....  1
Introduction .....  1
Acknowledgments. ..... 4
Part 1. Field and laboratory procedures. ..... 4
Collection and preservation ..... 4
Identification ..... 5
Data evaluation and discussion ..... 6
Algal composition ..... 6
Algal density. ..... 8
Diversity index. ..... 12
Part 2. Data summaries ..... 14

1. Coon Creek at Riley. ..... 14
2. Fox River at Algonquin ..... 15
3. Des Plaines River near Des Plaines ..... 16
4. Du Page River at Shorewood. ..... 17
5. Kankakee River at Momence ..... 18
6. Vermilion River at Pontiac. ..... 19
7. Mackinaw River near Congerville. ..... 20
8. Edwards River near New Boston. ..... 21
9. Bear Creek near Marcelline ..... 22
10. Vermilion River near Danville ..... 23
11. Sangamon River at Mahomet. ..... 24
12. Salt Creek near Rowell. ..... 25
13. Salt Creek near Greenview ..... 26
14. South Fork Sangamon River near Rochester ..... 27
15. Sangamon River near Oakford. ..... 28
16. Embarras River near Camargo. ..... 29
17. Kaskaskia River at Cooks Mills ..... 30
18. Kaskaskia River at Shelbyville. ..... 31
19. Shoal Creek near Breese ..... 32
20. Kaskaskia River at New Athens ..... 33
21. Little Wabash River near Effingham ..... 34
22. Little Wabash River below Clay City. ..... 35
23. Skillet Fork at Wayne City. ..... 36
24. Little Wabash River at Carmi ..... 37
25. South Fork Saline River near Carrier Mills. ..... 38
26. Big Muddy River at Murphysboro ..... 39
References ..... 40

# Algae in Selected Illinois Streams, 1971-1976 

by S. D. Lin, R. L. Evans, and D. B. Beuscher

## SUMMARY

During the 5 -year period, October 1971 through September 1976, 56 algal genera were recovered from 1459 samples collected from 21 Illinois streams at 26 locations. The genera included 15 blue-greens, 17 greens, 25 diatoms, 6 flagellates, and 3 desmids. Diatoms were the dominant type of algae ( 64 to 80 percent) in Illinois streams. The most common diatoms observed were Navicula and Cyclotella. Other than diatoms Scenedesmus, a green algae, and Euglena, a flagellate, were the most frequently observed types. Most streams supported between 24 and 30 different algal genera during the 5 -year period. There were no significant differences in algal composition among the sampling locations.

High algal densities were found in the Fox River. On eight occasions, densities exceeded $10,000 \mathrm{cts} / \mathrm{ml}$ with a maximum of $60,000 \mathrm{cts} / \mathrm{ml}$ occurring because of a Diogenes bloom. Most stations had algal densities of 500 to $2000 \mathrm{cts} / \mathrm{ml}$ and had geometric means between $880 \mathrm{cts} / \mathrm{ml}$ and $1500 \mathrm{cts} / \mathrm{ml}$. Thirty-eight samples collected from 15 locations had algal densities greater than $5000 \mathrm{cts} / \mathrm{ml}$. Of these, 13 samples were from the Fox River.

Both Shannon's and Brillouin's formulas were used for the computation of diversity indices for two stations. It was determined that the more precise Brillouin's formula was not necessary. Thus Shannon's formula was employed for results at all stations. It was also determined that there was no advantage in using 'sits' over bits. The largest index was 3.44 bits per individual for the Fox River at Algonquin. Most stations had 5-year mean indices of 1.11 to 1.36 bits per individual and had maxima of 2.11 to 2.70 bits per individual.

Algal succession in any given location changed greatly from sample to sample, from season to season, and from year to year. This presumably was due to drastic changes in the environment. The annual maximum generally occurred in spring. No genus was consistently dominant throughout the season or the year. Those genera most dominant were Cyclotella, Navicula, Melosira, Ulothrix, Scenedesmus, and Crucigenia. When Crucigenia occurred, it became dominant in the community. It is concluded that there is no way to predict the algal density, the algal composition, nor the dominant genera in Illinois stream waters.

## INTRODUCTION

Since 1945 the Illinois State Water Survey, in cooperation with the Champaign District office of the U. S. Geological Survey, has maintained a program designed to assess the mineral quality of selected surface waters in Illinois. The results of this continuing program have been reported in Water Survey Bulletins 45, 54, and 56. ${ }^{1,2,3}$

A new dimension was added to the program in October 1971. Samples were collected at monthly intervals from the waters of 35 streams at 41 locations and were examined for algal

Table 1. Sampling Station Locations and Drainage Areas

| Map number (figure 1) | Sampling station | USGS station number | Drainage area (sqmi) |
| :---: | :---: | :---: | :---: |
| 1 | Coon Creek - Riley | 5-4382.50 | 85.3 |
| 2 | Fox River - Algonquin | 5-5500.00 | 1402 |
| 3 | Des Plaines River - Des Plaines | 5-5290.00 | 359 |
| 4 | Du Page River - Shorewood | 5-5405.00 | 325 |
| 7 | Kankakee River - Momence | 5-5205.00 | 2340 |
| 8 | Vermilion River - Pontiac | 5-5545.00 | 568 |
| 10 | Mackinaw River - Congerville | 5-5675.00 | 764 |
| 14 | Edwards River - New Boston | 5-4665.00 | 434 |
| 15 | Bear Creek - Marcelline | 5-4955.00 | 348 |
| 17 | Vermilion River - Danville | 3-3390.00 | 1279 |
| 18 | Sangamon River - Mahomet | 5-5710.00 | 356 |
| 19 | Salt Creek - Rowell | 5-5785.00 | 334 |
| 20 | Salt Creek - Greenview | 5-5820.00 | 1800 |
| 21 | South Fork Sangamon River - Rochester | 5-5760.00 | 869 |
| 22 | Sangamon River - Oakford | 5-5830.00 | 5120 |
| 25 | Embarras River - Camargo | 3-3434.00 | 185 |
| 27 | Kaskaskia River - Cooks Mills | 5-5912.00 | 473 |
| 28 | Kaskaskia River - Shelbyville | 5-5920.00 | 1030 |
| 29 | Shoal Creek - Breese | 5-5940.00 | 760 |
| 31 | Kaskaskia River - New Athens | 5-5950.00 | 5220 |
| 32 | Little Wabash River - Effingham | 3-3786.35 | 240 |
| 33 | Little Wabash River - Clay City | 3-3795.00 | 1134 |
| 36 | Skillet Ford - Wayne City | 3-3805.00 | 464 |
| 37 | Little Wabash River - Carmi | 3-3815.00 | 3111 |
| 39 | South Fork Saline River - Carrier Mills | 3-3821.00 | 148 |
| 40 | Big Muddy River - Murphysboro | 5-5995.00 | 2154 |

density and type as well as mineral quality. The 15 low flow partial-record sites were terminatec at the end of a 2 -year period because of lack of funds. The 26 locations that continued to be a part of the water quality sampling network are shown on figure 1 and identified by map number on table 1. Algae sample collections were terminated in October 1976.

Algae are part of the first trophic level in the aquatic ecosystem and are a principal food source for protozoa, rotifers, worms, crustaceans, fish, and other consumers. ${ }^{4}$ Although it is difficult to establish a definitive relationship between algal density and/or types with mineral quality in running water, it is well known that changes in mineral quality are stimulated by algal activity. It is the preeminence of algae to the biotic balance of stream waters together with the need to incorporate other diagnostic procedures for assessing the trend of water quality in Illinoi streams that has led to the assembly of data on algal populations and distribution.

Algal data for the first two years for 41 stations were published in Water Survey Report of Investigation $80 .{ }^{5}$ This report includes 5 -year (October 1971 through September 1976) results for only 26 sampling locations and covers the identification and enumeration techniques used and the procedures followed in evaluating the data. Data summaries for each sampling station are included. The information should be useful to the individuals, companies, and agenci who have some responsibility for developing, regulating, or managing water resources in Illinois.


Figure 1. Sampling station locations and watersheds

## Acknowledgments

This report was prepared under the general administrative direction of Dr. William C. Ackermann, Chief of the Illinois State Water Survey. We are grateful to the staff of the U.S. Geological Survey, and especially to Mr. Charlie Sieber, for collecting the stream samples. We also are grateful to Rebecca L. Phillips, Randall L. Rohman, Robert A. Grabel, and Michael Toohill for their assistance in data handling; to Miss Rebecca L. Phillips for typing the original manuscript; to Mrs. Patricia A. Motherway and Mrs. J. Loreena Ivens for editing the manuscript; to Mr. John Brother, Jr., for the graphic preparation; and to Mrs. Marilyn J. Innes for composing the camera-ready copy.

## Part 1. Field and Laboratory Procedures

The Illinois State Water Survey, in cooperation with the Champaign District Office of the U.S. Geological Survey and others, has maintained a continuous program of sampling and analysis of surface water quality since 1945 . The program has been so arranged that consecutive monthly samples are collected from several locations throughout the state and analyzed for 5 -year periods. The selection of sampling locations for this study was governed by the requirement of the water quality program. Some locations have been sampling sites during several 5 -year periods. Algal samples were collected at 26 locations for the 5-year period, October 1971 through September 1976.

## Collection and Preservation

Samples were collected at monthly intervals at mid-stream and, when possible, 12 inches below the water surface. A volume of 380 milliliters ( ml ) of water was obtained as a grab sample in a small-mouth pint glass bottle. Experience has shown that collection in this manner, in contrast to the use of a plankton net, provides samples containing a natural dispersion of aquatic organisms. The method of collection in midwestern streams is quite critical because small organisms generally predominate and care must be taken that sampling procedures do not favor one size over another. An interval of 30 days between collections is excessive simply because algal populations can change rapidly, especially during seasons of active biological growth. Sample frequency during this study was dictated by other considerations including the fact that the period of sampling was to extend over 5 years.

For the identification and enumeration of phytoplankton, a 40 percent aqueous solution of formaldehyde ( 10 ml formaldehyde to a 390 ml sample of water) was used by the Water Survey for many years and was satisfactory. When this study was started a change in preservative was undertaken because experience by others had shown that better color retention and less contraction of cells were possible with Lugol's solution ( 8 g iodine, 12 g potassium iodide, and 20 ml acetic acid in 200 ml distilled water). The preservative was used for the first part of this study (about 3 years), but it was not as good at eliminating cell breakdown as the formaldehyde solution, which was then used for preservation during the last 2 years of the study. Samples were stored at room temperature before examination.

## Identification

A 50 ml portion of the preserved samples was passed through a Millipore HA filter ( 0.45 $\mu \mathrm{m}$ pore diameter). Residues were scraped off with a rubber policeman and flushed from the filter by the filtrate into a test tube to a volume of 10 ml . A 1-ml portion from the test tube was pipetted into a Sedgwick-Rafter counting cell for microscopic examination. An inverted phase contrast microscope equipped with 10X eye-pieces and 20X objectives with a Whipple disc was used for identification and counting. Counts were made from 10 fields. Generally, the procedures outlined in Standard Methods ${ }^{6}$ were followed.

Algae were identified to genus by employing several keys ${ }^{7{ }^{712}}$ and were grouped in 5 main types, i. e., blue-greens, greens, diatoms, flagellates, and desmids. The algae are grouped, in part, according to their colors.

Algae of the blue-green type, belonging to the class Myxophyceae, are usually characterized by a bluish-green color caused by a blue pigment of phycocyanin in addition to the green pigment of chlorophyll. A red pigment is sometimes present also. This group is also characterized by simplicity of structure and reproduction, with cells in a slimy matrix and containing no starch, nucleus, or platids. These forms may be either autotrophic or heterotrophic. There are about 1500 species. Most blue-green algae grow in nonfilamentous colonies or in branched or unbranched filaments. They are widely distributed and occur in varied habitats, but when they are present in massive numbers (a bloom) they are found at the water surface. They are more frequently found in ponds or lakes rather than in the running water of streams.

Green algae, the class nonmotile Chlorophyceae, etc., usually contain one major group of pigments, the chlorophylls, and most are autotrophic. The storage food is starch. The green algae group includes about 7000 species. Although a number live in salt water, the group as a whole is more characteristic of fresh water. They may be either free-floating or attached, and are usually either single cells or filamentous colonies that, if numerous, display a green cast to water.

Somewhat intermediate between the blue-green and green algae are a group known as diatoms, the class of Bacillariophyceae. Diatoms are characterized by the presence of silica in the cell walls, which are sculptured with striae and other markings, and by the presence of a brown pigment associated with the chlorophyll. Also, cells may contain green, yellow, or brown pigments depending on the stage of their life. The number of species is about 16,000 and they vary in color from brown to green. Although there is variation in shape, generally the cell is oblong to circular. The cell wall is composed of two halves (valves) one overlapping the other like the top and bottom of a pill box. Diatoms are generally unicellular and free-floating; however, some live attached to plants or inert objects.

In several classes (Chrysophyceae, Euglenophyceae, etc.) of algae, including green, there are numerous flagellated forms that are unicellular and equipped with flagella which are whiplike organs that make mobility possible. These are flagellates. The flagellate may also be either autotrophic or heterotrophic. Depending upon the species, the cells range from spherical to ovoid. They are frequently found in organically enriched waters.

Desmids are aquatic free-floating green algae of the subgroup Desmidiaceae. Most desmids are characterized by a median constriction that divides the cell into two halves equal in shape, size, and contents. There are numerous species of desmids and they are usually associated with ponds and lakes.

For enumeration, blue-green algae were counted by the number of trichomes. Green algae were counted by individual cells, except Actinastrum, Coelastrum, and Pediastrum which were counted by each colony observed. Scenedesmus was recorded by each cell packet. Diatoms were counted as one organism regardless of their grouping or connections.

## Data Evaluation and Discussion

The data were evaluated solely on the observed algal composition and density. No effort was made to develop causal relationships. In addition to composition and density, the diversity index of each collection station was computed, and the occurrence of various density ranges was noted. These data are presented in tabular form along with a descriptive notation regarding algal succession at each station.

## Algal Composition

During the 5 -year study period, 56 algal genera were recovered from 1459 samples taken at the 26 sampling locations. The genera included 5 blue-greens, 17 greens, 25 diatoms, 6 flagellates, and 3 desmids. The types of algae found and their occurrences are shown in table 2. The number of genera per station ranged from 23 (station 37, Little Wabash River at Carmi) to 39 (station 2, Fox River at Algonquin). Eighteen algal genera were observed at all 26 sampling locations. Table 3 lists some very broad classifications of the frequently recovered algae as related to water quality.

As shown in table 2, the occurrence of desmids was negligible. Also the occurrence of blue-greens was not significant except for the station on the Fox River at Algonquin. Diatoms were clearly the dominant type of algae in Illinois streams. The most common diatoms observed were Navicula and Cyclotella. The diatoms Synedra, Melosira, and Surirella were also recovered frequently, although Melosira was not so important during the first 2 years of the study period. ${ }^{5}$ The predominant green alga was Scenedesmus. The only flagellate of importance was F.uglena. These seven genera were observed at all 26 sampling stations. Similarly, they were the most important algae in the Upper Illinois Waterway ${ }^{13}$ and in the Spoon River. ${ }^{14}$ On the other hand, 15 algal genera were recovered from only one sampling location. Of these, 7 were recovered from the Fox River station. This is the only stream station located downstream of a glacial lake system.

The 5 -year average recovery rates for the 18 most predominant algae at the 26 stream locations are depicted on figure 2. The recovery rate for Navicula in the Kaskaskia River at Cooks Mills was not more than 20 percent of the time during the first 2 years of the study period, ${ }^{5}$ whereas it was recovered about 55 percent of the time during the 5 -year period. From table 2 and figure 2, it can be seen that no algal genera were recovered over 60 percent of the time. For the 2 -year period, ${ }^{5} 15$ out of 39 stations showed recovery rates for Navicula of over 60 percent with the highest recovery at 81 percent. Figure 2 also indicates the relative importance among the algal genera for each station in an array from the top to the bottom, i.e., from Navicula to Fragilaria.

A summary of 5 -year average compositions for each algal group at the 26 sampling locations is included in table 4. Also shown is the maximum percent composition of blue-greens, greens, and flagellates for each station. The maximum for diatoms was 100 percent at each location, i.e., at one time or another all algae in a water sample for each station consisted solely of diatoms.

The samples at 19 of the 26 stations consisted solely of green algae on occasion. For the first 2 years only 9 of these stations produced samples consisting solely of green algae. ${ }^{5}$ Although blue-green algae were recovered from 13 stations, they occurred only once at 10 locations, 2 times in the Mackinaw River near Congerville, and more often at the Fox River at Algonquin. A sample from the Little Wabash River below Clay City on February 8, 1974, consisted only of the blue-green alga Oscillatoria. The flagellates Euglena and Phacus were the only algae observed in a sample collected from the Kaskaskia River at Cooks Mills on August 11, 1975.

Table 2. The Occurrence and Type of Algae at 26 Sampling Stations (Percentage of time present at sampling stations)
$\underset{(\text { figure 1) }}{\text { Station number }} \rightarrow$

## Algal type

Blue-green algae
Anabaena
Anacystis
Aphamzomenon
Cylindrospermum
Oscillatoria

Diatoms
Achnanthes
Astenonella
Caloneis
Cocconeis
Cyclotella
Cymatopleura
Cymbella
Diatoma
Diplonets
Epithemia
Fragilaria
Frustulia
Gomphonema
Gyrostgma
Hantzschia
Melosira
Mendium
Navicula
Neidium
Nitzscbta
Pleurosigma
Stephanodiscus
Sunrella
Synedra
Tabellaria

Flagellates
Cblamydomonas
Dinobryon
Eudonna
Euglena Gymnodinium Pbacus
Desmid Amphiprora
Desmidium Staurastrum

Number of genera
Number of samples
Number

Green algae
Actinastrum
Ankistrodesmus
Chlorella
Cblorococcum
Clostendium
Coelastrum
Crucigenia
Diogenes
Mougeotia
Oocystis
Pediastrum
Phytoconis
Scenedesmus
Tetraedron
Treubaria
Ulothrix
Zygnema

Achnanthes

Caloneis
Cocconeis
cyclotella
Cymbella
Diatoma
Diplonets
Epithemia
Frustulia
Gomphonema
Gyrostgma
Melosira
Mendium
Navicula
Nitzscbta
Pleurosigma
Stephanodiscus
Sunrella
Synedra
Tabellaria

$\begin{array}{lllllllllllllllllllllllllll}\text { al } & 2 & 3 & 4 & 7 & 8 & 10 & 14 & 15 & 17 & 18 & 19 & 20 & 21 & 22 & 25 & 27 & 28 & 29 & 31 & 32 & 33 & 36 & 37 & 39 & 40 & \text { of } \\ \text { stations }\end{array}$


|  |  | 5 |  | 4 |  |  | 4 |  |  |  |  |  | 2 | 2 |  | 3 |  | 2 |  |  |  | 2 |  |  | 2 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 22 | 2 |  | 42 | 22 | 2 | 2 | 4 |  |  |  |  |  |  |  |  | 2 |  | 4 |  | 2 |  |  |  |  | 10 |
| 2 |  |  |  |  | 42 | 2 | 4 |  | 2 | 4 | 2 |  |  |  |  | 2 |  |  |  | 2 |  | 4 |  | 2 |  | 11 |
| 935 | 525 | 5 | 929 | 922 | 216 | 61 | 821 | 30 | 7 | 19 | 9 | 21 | 17 | 22 |  | 1 | 8 | 9 | 5 | 8 | 8 | 2 | 21 | 18 | 14 | 26 |
| 28 | 85 | 5 | 9 | 55 | 5 | 4 | 47 | 79 | 7 | 4 | 4 | 5 |  | 2 |  | 7 | 1 | 7 | 4 | 8 | 4 | 7 | 4 | 4 | 2 | 25 |
|  | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 2 |  |  |  |  |  |  | 1 |
|  | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |

2839302928293129252625243024242929252627242928232428


Table 3. Water Quality Significance of Frequently Observed Algae

| Algae | Attached | Clean water | Filter clogging | Polluted water | Surface water | Taste and odor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Blue-green algae |  |  |  |  |  |  |
| Anabaena |  |  | $X$ | $X$ |  | $X$ |
| Aphanizomenon |  |  |  |  |  | $X$ |
| Green algae |  |  |  |  |  |  |
| Actinastrum |  |  |  |  | $X$ |  |
| Ankistrodesmus |  | $X$ |  |  | $X$ |  |
| Chlorella |  |  | $X$ | $X$ | $X$ |  |
| Coelastrum |  |  |  |  | $X$ |  |
| Crucigenia |  |  |  |  | $X$ |  |
| Oocystis |  |  |  |  | $X$ |  |
| Pediastrum |  |  |  |  | $X$ | X |
| Scenedesmus |  |  |  | $X$ | $X$ | $X$ |
| Ulothrix | $X$ | $X$ | $X$ |  | $X$ |  |
| Zygnema |  |  | $X$ |  | $X$ |  |
| Diatoms |  |  |  |  |  |  |
| Asterionella |  |  | $X$ |  |  | $X$ |
| Caloneis |  |  |  | $X$ |  |  |
| Cyclotella |  | X | $X$ |  | $X$ | $X$ |
| Diatoma |  |  | $X$ |  |  | $X$ |
| Fragilaria |  |  | $X$ |  | $X$ | $X$ |
| Gyrosigma |  |  |  |  | $X$ |  |
| Melosira |  |  | $X$ | $X$ | $X$ |  |
| Navicula |  | X | $X$ | $X$ | X |  |
| Nitzschia |  | X | $X$ | $X$ |  |  |
| Stephanodiscus |  |  |  | $X$ | $X$ | $X$ |
| Surirella |  | X |  | $X$ |  |  |
| Synedra |  | X | $X$ |  | $X$ | $X$ |
| Tabellaria |  |  | $X$ |  |  | $X$ |
| Flagellate |  |  |  |  |  |  |
| Euglena |  | X |  | $X$ | $X$ | X |

With the exception of station 39, the South Fork Saline River near Carrier Mills, as shown in table 4, diatoms accounted for 64 to 80 percent of the total algal population at all stations and green algae made up 15 to 29 percent. At Carrier Mills during each of the 5 years of study diatoms made up $77,46,47,38$, and 76 percent of the population; for the same years, green alga made up $19,48,53,57$, and 17 percent of the algae population. This shifting of predominance of algal types is unusual compared with observations at the other stations. There was no difference in algal compositions between northern and southern watersheds.

## Algal Density

An examination of the algal density data, expressed as cell counts per milliliter (cts/ml), for each station showed them to be generally distributed in a log-normal pattern. Therefore, the central tendency and dispersion of the data have been expressed in geometric terms. These data are summarized in Part 2 of this report.

The geometric mean ( $\mathrm{M}_{\mathrm{g}}$ ) values at most locations were not significantly different from year to year, except when a sample did not contain algae. This happened frequently during winter


Figure 2. Occurrence of abundant algae in Illinois streams

PERCENT OF TIME RECOVERED
$\Delta 10-19$

- 20-29
- 30 - 39
- 40 - 49
- $50-59$

Navicula (d)
Cyclotella (d)
Scenedesmus (g)
Nitzschia (d)
Euglena ( $f$ )
Synedra (d)
Melosira (d)
Surirella (d)
Ulothrix (g)
Gyrosigma (d)
Tabellaria (d)
Actinastrum ( $g$ ) Ankistrodesmus (g)
Caloneis (d)
Pediastmon ( $g$ )
Coelastrum (g)
Diatoma (d)
Eragilaria (d)

Table 4. Summary of Average Composition of the Algal Types

|  |  | 5-year average (\%) |  |  |  | Maximum (\%)* |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sampling location (figure 1) | Bluegreen | Green | Diatom | Flagellate | Bluegreen | Green | Flagellate |
| 1 | Coon Creek - Riley |  | 23.3 | 72.5 | 4.2 |  | 100 | 80.0 |
| 2 | Fox River - Algonquin | 7.2 | 21.3 | 64.9 | 4.6 | 72.7 | 100 | 66.7 |
| 3 | Des Plaines River - Des Plaines | 0.3 | 24.0 | 67.9 | 7.8 | 20.0 | 81.2 | 71.5 |
| 4 | Du Page River - Shorewood | 0.5 | 28.7 | 67.4 | 3.4 | 23.1 | 100 | 37.5 |
| 7 | Kankakee River - Momence | 0.6 | 20.0 | 70.2 | 9.4 | 33.3 | 100 | 71.4 |
| 8 | Vermilion River - Pontiac | 1.3 | 20.0 | 70.5 | 8.2 | 66.7 | 100 | 90.9 |
| 10 | Mackinaw River - Congerville | 1.8 | 27.5 | 65.5 | 5.2 | 50.0 | 100 | 60.0 |
| 14 | Edwards River - New Boston |  | 18.4 | 75.0 | 6.6 |  | 100 | 42.9 |
| 15 | Bear Creek - Marcelline |  | 24.8 | 67.5 | 7.7 |  | 100 | 75.0 |
| 17 | Vermilion River - Danville |  | 22.1 | 68.7 | 9.2 |  | 100 | 61.9 |
| 18 | Sangamon River - Mahomet |  | 24.7 | 71.8 | 3.5 |  | 100 | 75.0 |
| 19 | Salt Creek - Rowell |  | 18.7 | 73.2 | 8.1 |  | 93.7 | 71.4 |
| 20 | Salt Creek - Greenview | 1.2 | 15.3 | 79.9 | 3.6 | 66.7 | 90.9 | 66.7 |
| 21 | South Fork Sangamon River - Rochester |  | 28.6 | 66.1 | 5.3 |  | 100 | 66.7 |
| 22 | Sangamon River - Oakford |  | 21.3 | 74.5 | 4.2 |  | 100 | 63.6 |
| 25 | Embarras River - Camargo | 0.3 | 24.0 | 68.3 | 7.4 | 16.7 | 100 | 85.7 |
| 27 | Kaskaskia River - Cooks Mills | 0.5 | 22.5 | 69.9 | 7.1 |  | 92.3 | 100 |
| 28 | Kaskaskia River - Shelbyville | 0.4 | 18.3 | 75.7 | 5.6 | 23.1 | 90.9 | 42.9 |
| 29 | Shoal Creek - Breese |  | 22.6 | 67.7 | 9.7 |  | 100 | 80.0 |
| 31 | Kaskaskia River - New Athens |  | 21.3 | 71.6 | 7.1 |  | 94.1 | 80.0 |
| 32 | Little Wabash River - Effingham |  | 24.8 | 67.9 | 7.3 |  | 100 | 91.7 |
| 33 | Little Wabash River - Clay City | 2.0 | 20.4 | 70.9 | 6.7 | 100 | 100 | 62.5 |
| 36 | Skillet Fork - Wayne City | 0.5 | 27.2 | 64.2 | 8.1 | 27.3 | 92.3 | 83.4 |
| 37 | Little Wabash River - Carmi |  | 20.6 | 74.5 | 4.9 |  | 100 | 50.0 |
| 39 | South Fork Saline River - Carrier Mills |  | 38.6 | 56.7 | 4.7 |  | 100 | 36.4 |
| 40 | Big Muddy River - Murphysboro | 0.9 | 26.2 | 69.7 | 3.2 | 50.0 | 100 | 33.3 |

months, especially during January and February. Also, the geometric standard deviation $\left(\mathrm{SD}_{\mathrm{g}}\right)$ becomes quite large if samples with no algae are included in the computations.

Table 5 summarizes the statistical data for algal densities at each sampling location. The maximum algal density of $60,000 \mathrm{cts} / \mathrm{ml}$ occurred in the Fox River at Algonquin (station 2) on February 11, 1976. Eight samples collected from the same station (Fox River) had algal densities over $10,000 \mathrm{cts} / \mathrm{ml}$ for the period of 1974 through 1976. Two other stations, Edwards River near New Boston (station 14) and Bear Creek near Marcelline (station 15) also showed densities in excess of $10,000 \mathrm{cts} / \mathrm{ml}$. For the 2 -year data, ${ }^{5}$ the maximum algal density was 7100 $\mathrm{cts} / \mathrm{ml}$ and occurred in the Des Plaines River near Des Plaines (station 3) on May 7, 19.73, and in the Kaskaskia River at New Athens (station 31) on June 6, 1972.

If the samples in which algae were not detected are omitted from computation, the annual geometric mean ranged from 1000 to $2600 \mathrm{cts} / \mathrm{ml}$ for all stations except the Fox River at Algonquin. The 5 -year geometric means for all 26 stations ranged from 600 to $2800 \mathrm{cts} / \mathrm{ml}$ (table 5). The lower algal counts were observed in the southeastern part of the state (stations 32 through 39). The highest geometric mean was for the Fox River. This station is influenced significantly by the upstream Fox Chain of Lakes. ${ }^{15}$ The majority of sampling locations (20 stations) had geometric means between 880 and $1500 \mathrm{cts} / \mathrm{ml}$.

Table 5. Summary of 5-Year Algal Densities

|  | Sampling location (figure 1) | Maximum (cts/ml) | Geometric mean (cts/ml) | Geometric standard deviation |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Cook Creek - Riley | 5000 | 1000 | 4.70 |
| 2 | Fox River - Algonquin | 60,000 | 2800 | 4.83 |
| 3 | Des Plaines River - Des Plaines | 8200 | 1300 | 4.52 |
| 4 | Du Page River - Shorewood | 4700 | 1100 | 7.37 |
| 7 | Kankakee River - Momence | 3300* | 1300 | 1.99 |
| 8 | Vermilion River - Pontiac | 4100 | 1200 | 3.16 |
| 10 | Mackinaw River - Congerville | 7200 | 1200 | 4.64 |
| 14 | Edwards River - New Boston | 13,000 | 1000 | 6.22 |
| 15 | Bear Creek - Marcelline | 11,000 | 880 | 7.30 |
| 17 | Vermilion River - Danville | 6600 | 1000 | 5.85 |
| 18 | Sangamon River - Mahomet | 3500* | 1100 | 1.96 |
| 19 | Salt Creek - Rowell | 4400 | 1200 | 3.21 |
| 20 | Salt Creek - Greenview | 3900 | 1200 | 4.38 |
| 21 | South Fork Sangamon River - Rochester | 6600 | 1200 | 4.77 |
| 22 | Sangamon River - Oakford | 6700 | 1000 | 4.91 |
| 25 | Embarras River - Camargo | 4700 | 1200 | 4.46 |
| 27 | Kaskaskia River - Cooks Mills | 5000 | 1200 | 4.34 |
| 28 | Kaskaskia River - Shelbyville | 4400 | 1000 | 5.84 |
| 29 | Shoal Creek - Breese | 5300 | 1100 | 5.73 |
| 31 | Kaskaskia River - New Athens | 7200 | 1500 | 3.33 |
| 32 | Little Wabash River - Effingham | 4900 | 600 | 12.05 |
| 33 | Little Wabash River - Clay City | 4700 | 720 | 9.29 |
| 36 | Skillet Fork - Wayne City | 4900 | 790 | 8.97 |
| 37 | Little Wabash River - Carmi | 6900 | 900 | 5.80 |
| 39 | South Fork Saline River - Carrier Mills | 9700 | 600 | 12.64 |
| 40 | Big Muddy River - Murphysboro | 7100 | 1300 | 3.35 |
| * All Samples contained algae |  |  |  |  |

Wide ranges of annual geometric standard deviations for each station were observed (see Part 2). If samples with no algae were included for computation, the yearly geometric standard deviations were between 8 and 31. The annual geometric standard deviation for all samples containing algae ranged from 1.46 to 3.34 . Two locations, the Kankakee River at Momence (station 7) and the Sangamon River at Mahomet (station 18), had the lowest geometric standard deviations (table 5). All water samples collected from these two locations contained algae. It is interesting to note that the maximum algal densities for these two stations were the lowest among the 26 stations.

Evaluation of the density ranges for each sampling station showed that most of the algal counts were between 500 and $2000 \mathrm{cts} / \mathrm{ml}$. Approximately one-third of the samples have algal densities of 2000 to $5000 \mathrm{cts} / \mathrm{ml}$. About 11 percent of the samples had algal densities less than $500 \mathrm{cts} / \mathrm{ml}$. In 38 of the 1459 samples collected, algal counts exceeded $5000 \mathrm{cts} / \mathrm{ml}$. These 38 samples were obtained from 15 sampling locations and 13 of them were obtained from the Fox River at Algonquin (station 2).

The number and types of algae in running water depend on many factors. ${ }^{16,17,18}$ Among them are size and shape of the stream, water temperature, stream velocity, depth, light penetration, nutrient availability, grazing animals, and human activity. Thus, it is extremely difficult to reasonably predict the population and composition of algae in streams. ${ }^{13,14}$ No attempt was made to correlate algal density or composition with environmental factors.

## Diversity Index

There have been many methods suggested for defining the structure of a biological community. The most widely used procedure is the diversity index and the one most commonly used is Shannon's diversity index ${ }^{19}$ which was derived from information theory. For the purposes of this report the diversity index for each station on each day of collection was calculated by formula ${ }^{20}$ as follows:

$$
D=-\sum_{t=1}^{m} p_{t} \log _{2} p_{t}
$$

where $p_{i}=N_{i} / N_{s}$ is the probability of the occurrence of the $i$ th genus, $N_{i}$ is the density of the $i$ genus, $N_{s}$ is the total algal density of the sample, and $m$ is the number of genera per sample. For convenience $\log _{2} p_{i}$ may be expressed as $1.44 \ln p_{i}$. The index $D$ has a minimum value when $m=1$ and a maximum value when $m=N_{s}$.

Recently, Zand ${ }^{21}$ demonstrated the differences between Shannon's and Brillouin's formulas with 16 hypothetical biological samples. He suggested that the diversity index be expressed in 'sits' (s-ary digit) per individual unit rather than the presently used bits (binary digit) per individual. Also the redundancy $R$ or evenness $E$ should be replaced by a relative evenness ratio $e$. The diversity index in 'bits per individual' is equal to the diversity index in 'sits per individual' multiplied by $\log _{2} s$. Logan, ${ }^{22}$ in a follow-up discussion, argued that changes in terminology are not necessary.

Ninety-six samples collected from Coon Creek and Fox River, which respectively represent average and relatively high algal densities, were subjected to the two formulas for determining diversity indices. Diversity indices calculated by both Brillouin's and Shannon's formulas were almost identical. However, computer (Wang 720 series) time for Brillouin's formula is approximately 10 to 20 times longer than that for Shannon's formula. Also, as expected, diversity in 'sits' is numerically close to the relative evenness ratio. The diversity index in bits per individual is high when the number of biological species and the number of individuals are high. The diversity index in sits per individual is a normalized number and ranges from 1 to 0 . On the basis of the data obtained, there is no advantage in using sits per individual calculated by Brillouin's formula. Thus the bits per individual calculated by Shannon's formula were used in this report.

The computed diversity indices are given in Part 2 of this report. The maximum, mean, and standard deviation for each sampling location are summarized in table 6. The largest index was 3.44 bits per individual for the Fox River at Algonquin on July 11, 1974. Twenty-one algal genera with a density of $24,000 \mathrm{cts} / \mathrm{ml}$ were in the sample. At the same location, in contrast, the diversity index was zero for the February 11,1976 , sample which had a density of 60,000 $\mathrm{cts} / \mathrm{ml}$. This was caused by a uniculture situation. The diversity index has a minimum value of zero when $m=1$ and a maximum value when $m=N$. In general, the greater the number of species, with a higher proportion of rare varieties, the greater the diversity value. Inspection of table 6 shows that the highest average index of 1.57 occurred at the Fox River. Most stations had a mean diversity index between 1.11 and 1.36 bits per individual and had a maximum between 2.11 and 2.70 bits per individual. Standard deviations for all locations were from 0.46 for the Kaskaskia River at Cooks Mills to 0.68 for the Fox River at Algonquin.

Wilhm and Dorris ${ }^{23}$ suggested the use of the diversity index for assessing water quality. They proposed that an index of greater than 3.0 is indicative of 'clean' water, from 1.0 to 3.0 of 'moderately polluted' water, and less than 1.0 of 'heavily polluted' water. Based solely on these criteria and the average indices, the water quality of the Illinois streams could classify as moderately polluted. This is only a broad assumption without any regard to chemical, physical, or other biological considerations of the stream waters.

Table 6. Summary of 5-Year Algal Diversity Indices*


Mitchell and Buzzell ${ }^{24}$ reported that the use of the algal genera diversity index was the best parameter for assessing the effects of various chemicals and wastewater on an algal population in laboratory microcosms. Nevertheless, the use of the diversity index did not have any more advantage than the use of algal composition and algal density on the streams studied. Also the application of diversity indices to stream waters based only on genera, in contrast to species identification, may be questionable. Similar results were found in the upper Illinois waterway ${ }^{13}$ and in the Spoon River. ${ }^{14}$ Hurlbert ${ }^{25}$ states that the diversity index has two shortcomings: 1) the formula is inadequate because it is "insensitive to the rare species which may play a substantial role in the ecosystem," and 2) the index does not assume that "the more abundant a particular species, the more important it is to the community."

## Part 2. Data Summaries

## 1. COON CREEK AT RILEY

During 1972 the initial algal maximum occurred in May. The ratios of diatoms:greens:flagellates at that time were $2: 2: 1$. Algal densities subsequently decreased during the summer. The next maximum occurred on August 10 with the diatoms Navicula and Fragilaria representing about 81 percent of the population. Algal densities decreased from that date and reached a winter low of $470 \mathrm{cts} / \mathrm{ml}$ on January 12, 1973.

Two pulses also occurred during May and August 1973. In May the predominant genera were Ulothrix and Scenedesmus, both greens. In August the predominant alga was the diatom Melosira.

Four samples collected from April through July 1974 contained only diatoms. Navicula was dominant in the May sample. Surirella was important in the April and May samples. The dominant alga for the April and July samples was Tabellaria. The 1974 annual maximum occurred on November 18 and consisted solely of diatoms with Navicula the dominant one.

In 1975, high algal counts occurred from February through April. The greens, Chlorella and Ankistrodesmus dominated the February sample. Diatoms made up 96 percent of the algal count on March 19 and Cyclotella was the prevailing alga. Another green alga, Ulothrix was abundant (19 percent) in the March sample.

A spring maximum was observed on March 30, 1976, consisting mainly of the diatom Melosira ( 63 percent) and the green alga Scenedesmus ( 33 percent). In 1976 another high algal density occurred on August 2 and consisted mostly of the diatom Tabellaria and the green alga Ulothrix.

| Statistical Summary of Algal Data |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Number of samples | Algal density |  |  |  |  |  | Algal density occurrence (\% of time) |  |  |  |
| Study |  |  |  |  | Diversity | ' index |  |  | 500 to | 2001 to |  |
| period |  | Range | $M_{g}$ | $S D{ }_{g}$ | Range | M | SD | <500 | 2000 | 5000 | >5000 |
| 11/71-9/72 | 11 | 470-5000 | 1600 | 200 | 0 72-2 19 | 143 | 050 | 91 | 545 | 273 | 91 |
| 10/72-9/73 | 12 | 470-4600 | 1300 | 198 | $081-141$ | 113 | 019 | 91 | 636 | 273 |  |
| 10/73-9/74 | 12 | 160-3100 | 1300 | 2.24 | 0-2 19 | 122 | 061 | 83 | 667 | 250 |  |
| 10/74-9/75 | 11 | ND -3500 | 400 | 2052 | 0-1 72 | 097 | 053 | 18.2 | 455 | 364 |  |
| 10/75-8/76 | 10 | 160-4200 | 1000 | 261 | 0-1 66 | 105 | 050 | 20 | 600 | 200 |  |
| 5-year | 56 | ND -5000 | 1000 | 470 | 0-2 19 | 117 | 050 | 129 | 581 | 272 | 18 |
| - ND = Alga | ected |  |  |  |  |  |  |  |  |  |  |


| Summary of Data |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | Algal density (cls/ml) | Diversity index | Date | Algal density (cts/ml) | Diversity index | Date | Algal density (cts/ml) | Diversity index |
| 1971 |  |  | 5/8 | 4600 | 120 | 1975 |  |  |
| 11/5 | 2400 | 1.29 | 6/9 | 1400 | 1.39 | 2/21 | 2200 | 172 |
| 12/6 | 790 | 0.72 | 7/11 | 1700 | 1.10 | 3/19 | 3500 | 146 |
| 1972 |  |  | 8/14 | 3000 | 119 | 4/14 | 2700 | 067 |
| 1/5 | 470 | 0.92 | 9/10 | 940 | 125 | 5/21 | 1600 | 072 |
| 2/10 | 1700 | 132 | 10/6 | 1400 | 122 | 6/16 | ND | 0 |
| 3/24 | 940 | 159 | 11/14 | 790 | 0.72 | 7/21 | 940 | 065 |
| 4/26 | 1900 | 209 | 12/14 | 1400 | 139 | 8/21 | 790 | 072 |
| 5/31 | 3000 | 219 | 1974 |  |  | 9/16 | 630 | 150 |
| 6/27 | 2200 | 172 | 1/15 | 790 | 137 | 10/14 | 1100 | 115 |
| 7/12 | 790 | 072 | 2/12 | 160 | 0 | 12/23 | 160 | 0 |
| 8/10 | 5000 | 163 | 3/13 | 1900 | 183 | 1976 |  |  |
| 9/18 | 1900 | 156 | 4/16 | 3000 | 219 | 1/15 | 1400 | 122 |
| 10/19 | 790 | 097 | 5/15 | 3100 | 141 | 2/27 | 1700 | 149 |
| 11/9 | -630 | 0.81 | 6/12 | 940 | 065 | 3/30 | 4200 | 112 |
| 12/5 | 1100 | 099 | 7/11 | 1900 | 065 | 4/9 | 1100 | 059 |
| 1973 |  |  | 8/13 | 1400 | 158 | 5/21 | 790 | 072 |
| 1/12 | 470 | 092 | 9/11 | 2500 | 162 | 6/30 | 310 | 10 |
| 3/15 | 2400 | 123 | 10/8 | ND | 0 | 7/22 | 1100 | 166 |
| 4/11 | 1300 | 141 | 11/18 | 3300 | 086 | 8/2 | 2800 | 150 |
|  |  |  | 12/18 | 790 | 137 |  |  |  |

Summary of Data

## 2. FOX RIVER AT ALGONQUIN

This location was the most productive one among the studied streams. Algal genera and densities are influenced by the Fox Chain of Lakes. During the winter of 1971-1972 the diatom Cyclotella was dominant. In June 1972 a Euglena bloom developed followed by the blue-green Anabaena in July. A combination of bluegreens and the diatom Melosira made up about 97 percent of the $4700 \mathrm{cts} / \mathrm{ml}$ on July 10. An autumn pulse did not materialize.

In February 1973 densities of about $3100 \mathrm{cts} / \mathrm{ml}$ occurred consisting principally of the green alga Crucigenia. The diatom Fragilaria was predominant in April. The annual maximum density of $5000 \mathrm{cts} / \mathrm{ml}$ occurred in May and Cyclotella made up 50 percent of the population. The green alga Coelastrum was dominant among the greens.

The algal counts and the number of the genera (7-21) were consistently high from April through December 1974. In the April and May samples, diatoms were dominant and consisted mainly of Cyclotella, Melosira, Nitzschia, and Navicula. Navicula with 6 other diatoms made up 93 percent of algal population on June 12. The highest number (21) of algal genera was found in the July 11 sample. The ratio of diatoms:greens: blue-greens in that sample was approximately $4: 5: 1$. The diversity index at the time was the highest, i.e., 3.44 .

The bloom of the blue-green alga, Oscillatoria, occurred on October 9, 1974, and made up more than one-half of the algal count. The diatoms Melosira and Cyclotella were also important in that sample. The 1974 annual maximum occurred on November 12 consisting mainly of Cyclotella (72 percent) and Oscillatoria (15 percent). Cyclotella was the dominant alga ( 88 percent) in the December sample.

The annual peak for 1975 occurred on April 11. Cyclotella and Melosira were the dominant genera at that time. During the summer of 1975 there was no significant algal peak. A pulse was observed on November 11 consisting mainly of Cyclotella and the blue-green Aphanizomenon.

It is interesting to note that the green alga Diogenes was detected only once. On February 11, 1976, a sample containing solely Diogenes had an algal density of $60,000 \mathrm{cts} / \mathrm{ml}$. On May 11,1976 , the diatoms Cyclotella and Melosira again were responsible for another algal pulse. Similar to the previous years, the summer of 1976 was not a productive period.

| Statistical Summary of Algal Data |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Number |  |  |  |  |  |  | Algal density occurrence (\% of time) |  |  |  |
| Study | of | Algal | density |  | Diversity | index |  |  | 500 to | 2001 to |  |
| period | samples | Range | $M_{g}$ | $S D_{g}$ | Range | M | SD | <500 | 2000 | 5000 | >5000 |
| 11/71-9/72 | 11 | 630-4700 | 1900 | 1.79 | 0.44-2 29 | 1.54 | 0.59 |  | 364 | 63.6 |  |
| 10/72-9/73 | 12 | 310-5000 | 1700 | 2.16 | 0.65-1 77 | 126 | 043 | 16.7 | 417 | 33.3 | 8.3 |
| 10/73-7/74 | 10 | ND -24,000 | 1500 | 16.98 | 0-3 44 | 1.64 | 0.10 | 10.0 | 500 | 10.0 | 30.0 |
| 10/74-9/75 | 11 | 1400-32,000 | 6500 | 298 | 0 88-2 74 | 1.74 | 0.54 |  | 91 | 45.5 | 455 |
| 11/75-8/76 | 8 | 1400-60,000 | 6700 | 334 | 0-2 32 | 1.74 | 0.79 |  | 125 | 375 | 500 |
| 5-year | 52 | ND-60,000 | 2800 | 483 | 0-3.44 | 1.57 | 068 | 53 | 299 | 380 | 268 |


| Summary of Data |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dale | Algal d.enstty (cts/ml) (cts/ml) | Diversity ${ }_{i}$ index | Date |  | Diversity index | Date |  | Diversity index |
| 1971 |  |  | 4/10 | 2700 | 0.79 | 1975 |  |  |
| 11/5 | 3000 | 229 | 5/8 | 5000 | 1.77 | 2/11 | 3800 | 1.18 |
| 12/6 | 2000 | 188 | 6/8 | 1300 | 130 | 3/13 | 1400 | 1.75 |
|  |  |  | 7/10 | 2800 | 1.50 | 4/11 | 19,000 | 195 |
| 1972 |  |  | 8/15 | 2800 | 171 | 5/15 | 6700 | 274 |
| 1/3 | 630 | 081 | 9/10 | 1900 | 082 | 6/9 | 2000 | 2.08 |
| 2/7 | 1700 | 0.44 | 10/15 | 1400 | 1.75 | 7/15 | 2800 | 1.22 |
| $3 / 20$ | 2200 | 212 | 11/13 | 1600 | 072 | 8/12 | 4900 | 231 |
| 4/26 | 2400 | 1.86 | 12/17 | 790 | 1.37 | 9/10 | 3100 | 1.68 |
| 5/31 | 940 | 1.92 |  |  |  | 11/19 | 8800 | 202 |
| 6/27 | 3000 | 1.72 | 1974 |  |  |  |  |  |
| 7/10 | 4700 | 160 | 1/14 | ND | 0 | 1976 |  |  |
| 8/7 | 2500 | 0.87 | 2/14 | 1400 | 1.22 | 1/6 | 1400 | 1.22 |
| 9/21 | 1100 | 138 | 3/11 | 1900 | 104 | 2/11 | 60,000 | 0 |
| 10/19 | 630 | 081 | 4/15 | 21,000 | 1.87 | 4/2 | 6300 | 2.24 |
| 11/9 | 310 | 100 | 5/15 | 6900 | 239 | 5/11 | 22,000 | 2.27 |
| 12/11 | 1700 | 169 | 6/12 | 4600 | 260 | 6/23 | 2800 | 2.32 |
|  |  |  | 7/11 | 24,000 | 344 | 7/13 | 3500 | 205 |
| 1973 |  |  | 10/9 | 17,000 | 188 | 8/4 | 4100 | 182 |
| 1/15 | 940 | 0.65 | 11/12 | 32,000 | 152 |  |  |  |
| 2/12 | 3000 | 1.76 | 12/11 | 26,000 | 0.88 |  |  |  |
| 3/12 | 1900 | 133 |  |  |  |  |  |  |

## 3. DES PLAINES RIVER NEAR DES PLAINES

On November 3, 1971, algal counts were high ( $3300 \mathrm{cts} / \mathrm{ml}$ ) because of Cyclotella development. From that date through all of 1972 there were no significant pulses. There were no spring or autumn maxima and the population consisted mostly of diatoms.

On April 5, 1973, another Cyclotella bloom occurred with the peak at $6400 \mathrm{cts} / \mathrm{ml}$. A spring maximum of $7100 \mathrm{cts} / \mathrm{ml}$ occurred in May with the diatoms Cyclotella and Asterionella and the blue-green Anabaena dominating. Algal populations were sharply reduced during the summer and there was no autumn maximum.

A spring pulse was observed on May 8, 1974, made up only of the diatom Fragilaria and the green alga Zygnema. Following the low summer algal densities, the 1974 maximum of $8200 \mathrm{cts} / \mathrm{ml}$ occurred on November 15. This consisted mainly of the green alga Scenedesmus ( $3100 \mathrm{cts} / \mathrm{ml}$ ), the flagellate Euglena ( $2400 \mathrm{cts} / \mathrm{ml}$ ), and the diatom Melosira ( $2000 \mathrm{cts} / \mathrm{ml}$ ).

The years 1975 and 1976 were without significant algal pulses at this location. For 18 samples collected during this period, the highest algal count was of $2700 \mathrm{cts} / \mathrm{ml}$, dominated by the diatom Tabellaria, on February 5, 1975.

| Study period |  | Number <br> of <br> samples |  |  |  |  |  |  | Algal density occurrence (\% of time) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & 1 \text { density } \\ & M g \end{aligned}$ | SDg | Diversity Range | $\begin{aligned} & \text { index } \end{aligned}$ | SD | <SOO | $\begin{aligned} & 500 \text { to } \\ & 2000 \end{aligned}$ | $\begin{gathered} 2001 \\ 5000 \end{gathered}$ |  | >5000 |
| 11/71-9/72 |  | 11 | 470-3300 | 1700 | 172 | 0 92-1.95 | 148 | 030 | 9.1 | 364 | 545 |  |  |
| 10/72-9/73 |  | 12 | 790-7100 | 1800 | 2.07 | 0 37-1 98 | 098 | 045 |  | 58.3 | 250 |  | 16.7 |
| 10/73-9/74 |  | 12 | 630-3500 | 1700 | 165 | 0 50-2 11 | 131 | 040 |  | 50.0 | 500 |  |  |
| 10/74-9/75 |  | 12 | 630-8200 | 1600 | 2.02 | 0.67-1 90 | 135 | 043 |  | 667 | 25.0 |  | 83 |
| 10/75-9/76 |  | 9 | ND-2500 | 330 | 2765 | 0-1 98 | 1.15 | 072 | 222 | 333 | 444 |  |  |
| 5-year |  | 56 | ND -8200 | 1300 | 452 | 0-2.11 | 126 | 048 | 63 | 489 | 39.8 |  | 50 |
| - ND = Alga not detected |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Summary of Data |  |  |  |  |  |  |  |  |  |  |  |  |  |
| DateAlgal <br> density <br> (cts/ml) |  | Diversity index |  | Date | $\begin{gathered} \text { Algal } \\ \text { density } \\ \text { (cts/ml) } \end{gathered}$ | Diversity index |  |  | Date | Algal density (cts/ml) | Diversity index |  |  |
| 1971 |  |  |  | 5/7 | 7100 | 1.98 |  |  | 1975 |  |  |  |  |
| 11/3 | 3300 | 1.12 |  | 6/5 | 1100 | 115 |  |  | 1/8 | 1300 |  | 130 |  |
| 12/9 | 470 | 0.92 |  | $7 / 5$ | 2500 | 081 |  |  | 2/5 | 2700 |  | 067 |  |
| 1972 |  |  |  | 8/9 | 1400 | 135 |  |  | 3/4 | 940 |  | 179 |  |
| 1/11 | 940 | 1.46 |  | $9 / 5$ | 1600 | 097 |  |  | 4/7 | 2000 |  | 142 |  |
| 2/2 | 1400 | 1.44 |  | 10/10 | 3000 | 1.24 |  |  | 5/5 | 790 |  | 072 |  |
| 3/15 | 1400 | 135 |  | 11/12 | 2700 | 1.61 |  |  | 6/3 | 940 |  | 100 |  |
| 4/26 | 1700 | 1.82 |  | 12/12 | 2400 | 211 |  |  | 7/10 | 1900 |  | 173 |  |
| 5/31 | 2200 | 1.95 |  | 1974 |  |  |  |  | 8/5 | 1300 |  | 130 |  |
| 6/27 | 2000 | 1.35 |  | 1/9 | 1100 | 099 |  |  | 9/3 | 630 |  | 1.50 |  |
| 7/12 | 2400 | 164 |  | 2/6 | 630 | 1.50 |  |  | 10/8 | 630 |  | 150 |  |
| 8/3 | 2700 | 166 |  | 3/7 | 1400 | 153 |  |  | 11/12 | 2500 |  | 087 |  |
| 9/6 | 2000 | 1.58 |  | 4/11 | 2000 | 120 |  |  | 12/3 | 2000 |  | 157 |  |
| 10/4 | 790 | 072 |  | 5/8 | 3500 | 095 |  |  | 1976 |  |  |  |  |
| 11/9 | 2200 | 0.37 |  | 6/15 | 1400 | 050 |  |  | 2/12 | ND |  | 0 |  |
| 12/11 | 790 | 072 |  | 7/3 | 1100 | 138 |  |  | 3/23 | 1900 |  | 178 |  |
| 1973 |  |  |  | 8/7 | 1400 | 1.35 |  |  | 5/4 | 1300 |  | 1.41 |  |
| 1/15 | 2000 | 039 |  | $9 / 5$ | 2200 | 1.38 |  |  | 6/16 | 2500 |  | 125 |  |
| 2/12 | 940 | 125 |  | 10/3 | 1400 | 0.99 |  |  | 7/30 | 2500 |  | 1.98 |  |
| 3/6 | 1600 | 1.30 |  | 11/15 | 8200 | 190 |  |  | 9/14 | ND |  | 0 |  |
| 4/5 | 6400 | 0.77 |  | 12/5 | 3000 | 189 |  |  |  |  |  |  |  |

## 4. DU PAGE RIVER AT SHOREWOOD

Algal pulses were poorly developed during 1972. Cyclotella and Navicula were the predominant diatoms and Actinastrum was the dominant green alga. In 1973 a maximum count of $4100 \mathrm{cts} / \mathrm{ml}$ unexpectedly occurred in February. It consisted principally of the diatom Melosira. The second pulse of about $3500 \mathrm{cts} / \mathrm{ml}$ which occurred on June 18 also consisted mainly of Melosira. The dominant green alga during 1973 was Scenedesmus. Blue-green algae were not a significant factor in the river.

Algae detected during February through May 1974 were mostly diatoms with a diverse genera. Fragilaria was important in April and May. On August 10, 1974, the green alga Pediastrum represented 50 percent of the algal population.

The green alga Crucigenia ( $2500 \mathrm{cts} / \mathrm{ml}$ ) accounted for most of the algal density on January 27, 1975. A spring peak as well as a 1975 maximum was found on April 24. Most of the algae were the diatoms Cyclotella, Asterionella, and Melosira. In 1976, algal densities were not high. With exception of the growth of Ulothrix in May and June, most of algae were diatoms during 1976.


- $\mathrm{ND}=$ Alga n ot detected

Summary of Data

| Date | Algal density (cts/ml) | Diversity index | Date | $\begin{gathered} \text { Algal } \\ \text { density } \\ \text { (cts/ml) } \end{gathered}$ | Diversity index | Date | Algal density (cts/ml) | Diversity index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1971 |  |  | 5/14 | 2500 | 176 | 1975 |  |  |
| 11/2 | 2200 | 1.69 | 6/18 | 3500 | 102 | 1/27 | 3500 | 124 |
| 12/7 | 1100 | 115 | 7/16 | 3000 | 202 | 2/24 | 1300 | 156 |
| 1972 |  |  | 8/21 | 2700 | 150 | 3/24 | 2500 | 159 |
| 1/6 | 940 | 146 | 9/18 | 2500 | 185 | 4/24 | 4700 | 207 |
| 2/15 | 310 | 100 | 10/16 | 1100 | 115 | 5/27 | ND | 0 |
| 3/28 | 1700 | 1.32 | 11/13 | 2500 | 235 | 6/23 | 1300 | 095 |
| 4/28 | 1400 | 153 | 12/17 | 2200 | 175 | 7/28 | 2400 | 193 |
| 5/31 | 2400 | 124 | 1974 |  |  | 8/26 | 1400 | 099 |
| 6/29 | 1600 | 1.85 | 1/21 | 1900 | 163 | 9/22 | 1700 | 132 |
| 7/25 | 2000 | 1.78 | 2/19 | 3000 | 255 | 10/21 | 1100 | 138 |
| 8/15 | 790 | 0.97 | 3/12 | 3100 | 182 | 11/19 | 1600 | 136 |
| 9/14 | 2000 | 158 | 4/23 | 3800 | 1.55 | 1976 |  |  |
| 10/12 | 470 | 0 | 5/20 | 2800 | 139 | 1/26 | ND | 0 |
| 11/20 | 790 | 0.72 | 6/10 | 790 | 0 | 2/17 | 2000 | 089 |
| 12/19 | 1600 | 1.16 | 7/15 | 1300 | 106 | 3/9 | 1700 | 068 |
| 1973 |  |  | 8/10 | 3100 | 179 | 4/21 | 1900 | 178 |
| 1/17 | ND | 0 | 9/16 | 1600 | 092 | 5/18 | 2400 | 1.24 |
| $2 / 7$ | 4100 | 121 | 10/8 | 1700 | 068 | 6/16 | 2000 | 115 |
| 3/19 | 790 | 0.72 | 11/18 | 1600 | 097 | 7/12 | ND | 0 |
| 4/17 | 2800 | 146 | 12/26 | 1400 | 166 | 8/26 | 2400 | 218 |

## 7. KANKAKEE RIVER AT MOMENCE

During 1972, maxima occurred on June 2 and September 8. In both instances diatoms made up more than 80 percent of the algal population and Navicula was the principal genus on each date. Although the bluegreen Anacystis was detected in the July sample, neither blue-green nor green algae were in significant densities during 1972.

In 1973 a maximum population occurred on June 14 consisting mainly of diatoms with Caloneis being the predominant genus. With the exception of the green alga Crucigenia that occurred in relatively large numbers ( $1300 \mathrm{cts} / \mathrm{ml}$ ) in March, only diatoms were significant during 1973.

During the spring of 1974 , relatively high algal counts (2000-3000 cts $/ \mathrm{ml}$ ) were found consisting mostly of diatoms. A small algal pulse occurred on October 10, 1974; the green alga Pediastrum was dominant. It is difficult to determine algal pulses in 1975 because of the poor sampling schedule. Algae were not abundant in the river in 1975 nor in 1976. As mentioned earlier this station was one of the least productive locations.


Summary of Data

| Date | Algal density (cts/ml) | Diversity index | Date |  | Diversity index | Date | Algal density (cts/ml) | Diversity index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1971 |  |  | 4/3 | 1100 | 138 | 1975 |  |  |
| 10/7 | 1700 | 2.19 | 5/15 | 1100 | 1.66 | 1/13 | 1700 | 132 |
| 11/15 | 1700 | 131 | 6/14 | 3300 | 136 | 3/26 | 3000 | 147 |
| 12/6 | 1600 | 176 | 7/3 | 1700 | 144 | 5/8 | 1100 | 086 |
| 1972 |  |  | 8/16 | 790 | 1.37 | 6/11 | 3000 | 190 |
| 1/18 | 470 | 0.92 | 9/20 | 1400 | 1.39 | 8/28 | 310 | 00 |
| 2/7 | 940 | 146 | 10/3 | 160 | 0 | 9/12 | 790 | 097 |
| 3/2 | 2000 | 247 | 11/5 | 1300 | 100 | 10/21 | 940 | 146 |
| 4/13 | 790 | 072 | 12/6 | 1700 | 124 | 11/26 | 940 | 099 |
| 5/4 | 1400 | 153 | 1974 |  |  | 12/2 | 1300 | 175 |
| 6/2 | 2500 | 178 | 1/6 | 940 | 0 | 1976 |  |  |
| 7/11 | 2400 | 169 | 2/14 | 310 | 100 | 1/13 | 310 | 100 |
| 8/1 | 2700 | 173 | 3/18 | 2000 | 135 | 2/27 | 1300 | 191 |
| 9/8 | 3100 | 152 | 4/10 | 3100 | 271 | $3 / 2$ | 790 | 137 |
| 10/13 | 1100 | 059 | 5/15 | 2200 | 138 | 4/6 | 2000 | 039 |
| 11/17 | 940 | 146 | 6/13 | 940 | 1.79 | 5/25 | 1600 | 2.05 |
| 12/7 | 1600 | 136 | 7/16 | 1600 | 172 | 6/29 | 1100 | 138 |
| 1973 |  |  | 8/13 | 1600 | 1.16 | 7/16 | 1400 | 188 |
| 1/2 | 2000 | 114 | 10/10 | 3100 | 154 | 8/11 | 1700 | 168 |
| 2/8 | 1400 | 122 | 11/6 | 2500 | 158 | 9/29 | 1300 | 130 |
| 3/8 | 2400 | 100 | 12/12 | 790 | 072 |  |  |  |

## 8. VERMILION RIVER AT PONTIAC

The maximum density observed in 1972 was $3300 \mathrm{cts} / \mathrm{ml}$ on August 3. The diatom Navicula and the green alga Actinastrum were dominant. There were no other significant pulses during the year, and the diatoms Navicula, Cyclotella, and Surirella were the main genera. However, on December 1 a bloom ( $2700 \mathrm{cts} / \mathrm{ml}$ ) of the green alga Ulothrix occurred and it was the only genus detected in the sample.

In January 1973 diatoms once again made up most of the population and generally prevailed during the year. However, Actinastrum pulsed again on April 2 along with Ulothrix making up 92 percent of the population. On May 8, at the time of the annual maximum, the diatoms Cyclotella and Caloneis made up 74 percent of the total algal density.

Four genera of diatoms were detected from the March 18, 1974, sample in which Cyclotella and Navicula were dominant. The diatoms Navicula, Synedra, and Diatoma contributed the major ( 85 percent) portion of the annual maximum on June 10, 1974. Another pulse occurred on November 4, 1974, in which two-thirds of the algae were Melosira.

In 1975, algal densities at this location were low and continued to be until March 1976, when a density of $3100 \mathrm{cts} / \mathrm{ml}$ occurred consisting mostly of Cyclotella. Diatoms dominated during 1975 and 1976.


## 10. MACKINAW RIVER NEAR CONGERVILLE

A significant number of algae were detected on December 14, 1971. They consisted of the blue-green Aphanizomenon ( $1400 \mathrm{cts} / \mathrm{ml}$ ), the flagellate Euglena ( $630 \mathrm{cts} / \mathrm{ml}$ ), and 4 genera of diatoms. The blue-green algae originated from a newly formed impoundment upstream of the sampling location. In May and June 1972, Ulothrix was abundant. Algal densities were recorded at $3800 \mathrm{cts} / \mathrm{ml}$ on August 9 and at $3900 \mathrm{cts} / \mathrm{ml}$ on September 6, 1972. The dominant genus in August was Navicula; in September it was Cyclotella.

The highest densities for 1973 occurred during April and May and Cyclotella once again prevailed. There were no significant pulses or changes in population makeup during the rest of the year.

A spring pulse occurred on March 27, 1974, and contained six diatoms with Asterionella dominating. Cyclotella and Navicula were prevalent in April and June, with an annual maximum of $7200 \mathrm{cts} / \mathrm{ml}$ accruing in June. Green algae were dominant for the next two collections Crucigenia (71 percent) dominated in July and Chlorella in August.

In 1975, the highest densities occurred in March and May. The green algae Ulothrix (58 percent) and the diatom Fragilaria (23 percent) were the major algae in March. The dominant alga in May was Surirella. Algal pulses did not develop in 1976. Samples collected in 1976 contained mainly diatoms at relatively low algal densities.


| Date | Altai density (cts/ml) | Diversity index | Date | Algal density (cts/ml) | Diversity index | Date | Algal density (cts/ml) | Diversity index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1971 |  |  | 4/20 | 2500 | 170 | 1975 |  |  |
| 10/8 | 1100 | 1.84 | 5/8 | 3000 | 166 | 1/17 | 1900 | 081 |
| 11/18 | 1300 | 1.41 | 6/12 | 2000 | 1.46 | 3/26 | 4900 | 164 |
| 12/14 | 3100 | 216 | 7/27 | 790 | 137 | 4/23 | 1300 | 141 |
| 1972 |  |  | 8/23 | 1600 | 1.69 | $5 / 29$ $6 / 13$ | 3500 1300 | 201 141 |
| 1/31 | 790 | 072 | 9/6 | 1700 | 187 | 7/30 | 470 | 092 |
| 2/24 | ND | 0 | 10/3 | 940 | 065 | 8/29 | 790 | 072 |
| 4/6 | 790 | 097 | 11/2 | 310 | 1.00 | 9/4 | ND | 0 |
| 5/10 | 2400 | 138 | 12/27 | 1700 | 1.82 | 10/31 | 2200 | 120 |
| 6/6 | 2500 | 159 | 1974 |  |  | 11/22 | 2000 | 158 |
| 7/7 | 2000 | 1.20 | 1/3 | 1700 | 2.12 | 12/5 | 1700 | 128 |
| 8/9 | 3800 | 174 | 2/27 | 1300 | 250 | 1976 |  |  |
| 9/6 | 3900 | 141 | 3/27 | 2800 | 2.26 | $1 / 5$ $1 / 2$ |  |  |
| 10/13 | 940 | 146 | 4/26 | 2400 | 1.00 | 2/24 | 1100 | 145 |
| 11/27 | 790 | 097 | 6/8 | 7200 | 1.42 | $2 / 24$ $3 / 5$ | 1100 | 145 150 |
| 12/29 | 1300 | 130 | 7/7 | 4400 | 131 | $3 / 5$ $4 / 9$ | 630 1700 | 150 132 |
| 1973 |  |  | 8/26 | 3500 | 1.84 | 5/20 | 1700 | 095 |
| 1/4 | 2200 | 1.49 | 10/9 | 160 | 0 | 6/8 | 940 | 1.25 |
| 2/7 | 940 | 065 | 11/19 | 790 | 137 | 7/12 | 470 | 159 |
| 3/8 | 1300 | 106 | 12/9 | 1700 | 1.57 | 8/13 | 1100 | 0.59 |
|  |  |  |  |  |  | 9/24 | 2200 | 179 |

## 14. EDWARDS RIVER NEAR NEW BOSTON

The main diatoms observed in the stream were Cyclotella and Navicula, and the main greens were Ulothrix and Ankistrodesmus. During the 8 months from October 1971 through May 1972 only diatoms and Euglena were detected. A pulse on November 10, 1971, was made up mostly of the diatom Cocconeis. On April 20, 1972, Navicula predominated with the algal denisty of $4200 \mathrm{cts} / \mathrm{ml}$. On July 18, 1972, an immense growth was detected at $13,000 \mathrm{cts} / \mathrm{ml}$ made up mainly of Cyclotella and Gyrosigma and the green alga Ankistrodesmus.

In 1973, algal growth was not as prolific. During winter and spring the diatoms Cyclotella, Navicula, and Nitzscbia were dominant. There were no significant pulses until September when Asterionella ( $2200 \mathrm{cts} / \mathrm{ml}$ ) was the prominent alga in a total density of $3900 \mathrm{cts} / \mathrm{ml}$.

The maximum algal density in 1974 was observed on June 24 with a composition mainly of the diatom Cyclotella (48 percent) and two greens Ulotbrix ( 26 percent) and Scenedesmus ( 17 percent). On December 4, 1974, Cyclotella made up 50 percent of the algal count.

The growth of algae in 1975 and 1976 was not as prolific. The 1975 maximum occurred on May 6. The flagellate Euglena was prevalent and the green alga Ulotbrix was second in numbers. Relatively higher counts were observed in April and May 1976. The dominant alga in April was Ulotbrix (95 percent) and in May they were Cyclotella (54 percent) and Navicula (29 percent).


## 15. BEAR CREEK NEAR MARCELLINE

Two population pulses occurred in 1972. On June 15 ( $3300 \mathrm{cts} / \mathrm{ml}$ ) the major types were Navicula (48 percent) and Cyclotella ( 24 percent). On December 20 ( $3300 \mathrm{cts} / \mathrm{ml}$ ) the population consisted mainly of Ulothrix, Melosira, and Navicula.

In 1973 the vernal maximum occurred on May 16 (3000 cts $/ \mathrm{ml}$ ) and consisted principally of Ulothrix and Euglena. The green alga Chlorella ( 53 percent) dominated during a pulse on September 13.

A large population was detected on June 22, 1974. The principal algae were Cyclotella ( $5000 \mathrm{cts} / \mathrm{ml}$ ), Navicula ( $2500 \mathrm{cts} / \mathrm{ml}$ ), and the green alga Scenedesmus ( $2500 \mathrm{cts} / \mathrm{ml}$ ). For the period of July 1974 to February 1975, the algal densities generally exceeded $2000 \mathrm{cts} / \mathrm{ml}$. Navicula, Crucigenia, and Surirella were dominant during August, October, and November, respectively. The green alga Ulothrix was the major type in December through February. The diatom Melosira was the second highest in December 1974. Unexpectedly, the maximum algal population in 1976 occurred in January.

Algal densities were not high in nine samples collected in 1976. They contained mostly diatoms. Melosira was the principal type in July and August while Synedra ( $1600 \mathrm{cts} / \mathrm{ml}$ ) was important in September.


## 17. VERMILION RIVER NEAR DANVILLE

Melosira and Cyclotella were the major genera in a population of $2500 \mathrm{cts} / \mathrm{ml}$ that occurred on November 2, 1971. In 1972 the spring maximum occurred on April 11 at which time a density of $4700 \mathrm{cts} / \mathrm{ml}$ was about equally divided between Ulothrix and the diatoms Cyclotella and Navicula. In November, the diatom Tabellaria accounted for 84 percent of the density.

During 1973 a spring maximum consisting of the diatoms Navicula and Nitzschia along with the green alga Scenedesmus made up most of the density of $2700 \mathrm{cts} / \mathrm{ml}$ that occurred on April 17. A summer pulse of 2800 cts $/ \mathrm{ml}$ occurred on July 13 with Chlorella and Cyclotella predominant.

Only diatoms were recovered in samples collected from October 1973 through April 1974. The April sample contained 3 diatoms Nitzschia (43 percent), Surirella (33 percent), and Navicula ( 24 percent). A peak occurred on June 7, 1974, and Cyclotella was one-half of the algal population. On December 2, 1974, the green alga Crucigenia ( $2800 \mathrm{cts} / \mathrm{ml}$ ) and the diatom Nitzschia ( $1300 \mathrm{cts} / \mathrm{ml}$ ) made up the annual maximum density.

No samples were collected in February or March 1975. The 1975 maximum occurred on April 4. Its principal constituents were the diatom Navicula ( $2500 \mathrm{cts} / \mathrm{ml}$ ) and the flagellates Dinobryon ( $2200 \mathrm{cts} / \mathrm{ml}$ ) and Euglena ( $1600 \mathrm{cts} / \mathrm{ml}$ ). Thereafter no high algal densities were observed until May 18, 1976. At that time a pulse developed consisting mainly of the diatoms Melosira ( $2800 \mathrm{cts} / \mathrm{ml}$ ) and Cyclotella ( $1100 \mathrm{cts} / \mathrm{ml}$ ).


## 18. SANGAMON RIVER AT MAHOMET

In 1972 the spring maximum ( $2200 \mathrm{cts} / \mathrm{ml}$ ) was made up of Cyclotella and Stephanodiscus and occurred on April 11. The summer maximum on July 7 consisted principally of Navicula and Ulothrix.

The algal densities during the winter and spring of 1973 were low and a significant pulse did not occur until July. The diatom Cyclotella was the major genus of the population at that time. The high densities persisted in August at which time Navicula made up 78 percent of the population.

The algal densities at the river were generally low during the three water years 1973, 1974, and 1975. No significant algal pulses were observed. Most of the algae found were diatoms except for the sample collected on May 14,1975 , in which the green alga Crucigenia ( $2000 \mathrm{cts} / \mathrm{ml}$ ) was most abundant.

| Study period | Number of samples | Statistical Summary of Algal Data |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Algal density |  |  | Dtverstty index |  |  | Algal density occurrence (\% of time) |  |  |  |
|  |  |  |  |  |  | 500 to | 2001 |  |
|  |  | Range | $M_{g}$ | $S D_{g}$ |  |  |  | Range | M | SD | <500 | 2000 | 5000 | >5000 |
| 10/71-9/72 | 12 | 310-3500 | 1200 | 234 | 0-2.26 | 132 | 0.60 | 250 | 333 | 417 |  |
| 10/72-9/73 | 12 | 630-3300 | 1100 | 1.74 | 0-1.90 | 1.10 | 0.48 |  | 833 | 167 |  |
| 10/73-8/74 | 11 | 160-2500 | 990 | 210 | 0-1 92 | 091 | 064 | 91 | 81.8 | 91 |  |
| 10/74-9/75 | 11 | 470-2400 | 1300 | 1.70 | $070-215$ | 112 | 0.43 | 91 | 636 | 273 |  |
| 10/75-9/76 | 12 | 160-2200 | 1000 | 1.99 | 0-1.78 | 1.07 | 0.57 | 83 | 750 | 167 |  |
| 5-year | 58 | 160-3500 | 1100 | 196 | 0-2 26 | 111 | 055 | 103 | 67.4 | 223 |  |
| Summary of Data |  |  |  |  |  |  |  |  |  |  |  |


| Date |  | Diversity index | Date | Algal density (cts/ml) | Diversity index | Date | Algal density (cts/ml) | Diversity index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1971 |  |  | 4/11 | 1100 | 099 | 1975 |  |  |
| 10/7 | 1100 | 138 | 5/15 | 1100 | 115 | 1/8 | 1700 | 1.50 |
| 11/3 | 1300 | 150 | 6/4 | 1400 | 145 | 3/31 | 940 | 092 |
| 12/6 | 1900 | 178 | 7/12 | 3300 | 096 | 5/14 | 2400 | 070 |
| 1972 |  |  | 8/8 | 2800 | 0.94 | 6/10 | 940 | 092 |
| 1/7 | 310 | 00 | 9/13 | 1600 | 1.90 | 7/30 | 2400 | 215 |
| 2/14 | 310 | 00 | 10/2 | 1400 | 1.35 | 8/26 | 470 | 092 |
| 3/23 | 310 | 0 | 11/1 | 2500 | 188 | 9/8 | 790 | 072 |
| 4/11 | 2200 | 094 | 12/11 | 630 | 072 | 10/6 | 790 | 0 |
| 5/9 | 1600 | 136 | 1974 |  |  | $11 / 14$ $12 / 19$ | 1900 160 | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ |
| 6/7 | 2000 | 2.26 | 1/4 | 1100 | 1.15 |  |  |  |
| 7/7 | 3500 | 155 | 2/12 | 630 | 0.81 | 1976 |  |  |
| 8/2 | 2000 | 2.10 | 3/5 | 1900 | 092 | 1/16 | 940 | 125 |
| $9 / 7$ | 2000 | 0.99 | 4/3 | 1700 | 0.44 | 2/4 | 790 | 072 |
| 10/6 | 630 | 150 | 5/1 | 940 | 1.92 | 3/22 | 1100 | 145 |
| 11/21 | 630 | 081 | 6/5 | 1300 | 081 | 4/22 | 1300 | 106 |
| 12/8 | 790 | 072 | 7/1 | 160 | 0 | 5/3 | 2000 | 178 |
| 1973 |  |  | 8/8 | 940 | 0 | 6/14 | 790 | 097 |
| 1/8 | 790 | 137 | 10/9 | 1400 | 0.99 | 7/15 | 790 | 137 |
| $2 / 5$ | 790 | 0 | 11/11 | 2000 | 124 | 8/30 | 1300 | 141 |
| 3/6 | 790 | 1.37 | 12/5 | 1100 | 1.15 | 9/9 | 2200 | 120 |

## 19. SALT CREEK NEAR ROWELL

In November and December of 1971 diatom pulses produced densities of $3300 \mathrm{cts} / \mathrm{ml}$ and $2700 \mathrm{cts} / \mathrm{ml}$, respectively. They consisted mainly of Navicula and Cyclotella. The occurrence of green algae was spotty during 1972 and Euglena counts were generally limited to May, June, and July. A summer maximum occurred on June 5 ( $2800 \mathrm{cts} / \mathrm{ml}$ ) and was made up of Euglena, Navicula, and the green algae Scenedesmus, Pediastrum, and Ankistrodesmus.

During 1973 the only months of significant productivity were April and May. In April, at a density of about $3600 \mathrm{cts} / \mathrm{ml}$, a green alga Actinastrurn was the prominent genus. In May a density of $4400 \mathrm{cts} / \mathrm{ml}$ occurred consisting mainly of Cyclotella. During the months of June through September the only algae detected were diatoms.

In 1974, Melosira appeared in a large number ( $2500 \mathrm{cts} / \mathrm{ml}$ ) on February 11. The algal count persisted high in March and the dominating algae shifted to Surirella and Cyclotella. Two additional algal pulses were observed in October and December. Melosira and the flagellate Eudorina were the dominating algae in October. The annual maximum occurred on December 5 with the green alga Crucigenia prevailing. Crucigenia was also prevalent in June and July 1974.

High algal counts were found on January 21 and March 31, 1975. Both samples consisted mainly of the diatom Melosira. There were no samples collected in February, April, or June.

Algal densities in the creek were low during 1976. The highest one was $2000 \mathrm{cts} / \mathrm{ml}$ in March. Cblorella was the principal alga ( 54 percent) in the sample. On February 9, 1976, only Nitzscbia was recovered.

| Study period |  | Number of samples | Algal density |  |  | Diversity index |  |  | Algal density occurrence (\% of time) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | 500 to | 001 |  |
|  |  | Range | $M_{8}$ | $S D_{8}$ | Range |  |  | M | SD | <500 | 2000 | 5000 | >5000 |
| 10/71-9 |  |  | 12 | 310-3300 | 1300 | 2.20 | 0-2.15 | 1.45 | 0.56 | 16.7 | 500 | 33. |  |
| 10/72-9/7 |  |  | 12 | ND-4400 | 780 | 8.86 | 0-1 91 | 120 | 0.50 | 167 | 667 | 16. |  |
| 10/73-9 |  | 11 | 630-3800 | 1700 | 174 | 0.54-1 92 | 130 | 0.43 | 9.1 | 81.8 | 9.1 |  |
| 10/74-9 |  | 10 | ND -4200 | 890 | 13.62 | 0-1.89 | 116 | 054 | 1.0 | 60.0 | 30. |  |
| 10/75-1 | /76 | 12 | 310-2000 | 960 | 167 | 0-1.46 | 0.81 | 056 | 83 | 750 | 16 |  |
| 5 -year |  | 57 | ND-4400 | 1200 | 321 | 0-2.15 | 1.19 | 0.55 | 122 | 667 | 21 |  |
| * ND = Alga not detected |  |  |  |  |  |  |  |  |  |  |  |  |
| Summary of Data |  |  |  |  |  |  |  |  |  |  |  |  |
| DateAlgal <br> density <br> (cts $/ m l$ ) |  | Diversity index |  |  | Algal density | Diversity |  |  | DateAlgal <br> density <br> (cts/ml) |  | Diversity index |  |
|  |  | Date | (ctss/ml) | index135 |  |  |  |  |  |  |
| 1971 |  |  |  |  | 5/1 | 4400 | 1975 |  |  |  |  |  |
| 10/14 | 630 | 1.50 |  |  |  |  | 6/2 | 1400 | 1.35 |  |  | 1/21 | 4200 |  | 1.40 |
| 11/4 | 3300 | 146 |  | 7/6 | 1600 | 1.36 |  |  | 3/31 | 3000 |  | 1.36 |
| 12/2 | 2700 | 1.28 |  | 8/15 | 1400 | 139 |  |  | 5/12 | 1400 |  | 189 |
| 1972 |  |  |  | 9/12 | 790 | 0.72 |  |  | 7/2 | ND |  | 0 |
| 1/4 | 310 | 1.50 |  | 10/24 | 2200 | 126 |  |  | 8/5 | 1100 |  | 0.86 |
| 2/14 | 630 |  |  | 11/6 | 790 | 137 |  |  | 9/24 | 1100 |  | 156 |
| 3/21 | 1300 | 191 |  | 12/11 | 1300 | 0.54 |  |  | 10/4 | 1300 |  | 130 |
| 4/13 | 1900 | 146 |  | 1974 |  |  |  |  | 11/25 | 790 |  | 0 |
| 5/4 | 1100 | 1.66 |  | 1/16 | 1300 | 1.81 |  |  | 12/18 | 470 |  | 0.92 |
| $6 / 5$ | 2800 | 215 |  | 2/11 | 3100 | 088 |  |  | 1976 |  |  |  |
| $7 / 5$ | 2500 | 170 |  | 3/6 | 3800 | 1.92 |  |  | 1/21 | 940 |  | 0.65 |
| 8/3 | 1900 | 190 |  | 4/3 | 630 | 150 |  |  | 2/9 | 1600 |  | 0 |
| $9 / 5$ | 470 | 092 |  | 5/7 | 940 | 146 |  |  | 3/5 | 2000 |  | 130 |
| 10/2 | 1100 | 138 |  | 6/13 | 2500 | 0.67 |  |  | 4/21 | 310 |  | 0 |
| 11/6 | 1400 | 1.53 |  | 7/9 | 2200 | 110 |  |  | 5/27 | 1300 |  | 141 |
| 12/15 | 1100 | 0.86 |  | 8/19 | 2000 | 1.53 |  |  | 6/30 | 940 |  | 065 |
| 1973 |  |  |  | 9/1 | 1900 | 1.56 |  |  | 7/9 | 940 |  | 1.46 |
| 1/10 | 470 | 092 |  | 10/25 | 3500 | 1.22 |  |  | 8/11 | 1300 |  | 0.81 |
| 2/8 | 1900 | 1.56 |  | 11/15 | 1100 | 0.86 |  |  | 10/4 | 940 |  | 1.25 |
| 3/1 | ND | 0 |  | 12/5 | 4100 | 1.29 |  |  |  |  |  |  |
| 4/3 | 3600 | 191 |  |  |  |  |  |  |  |  |  |  |

## 20. SALT CREEK NEAR GREENVIEW

With the exception of Ulothrix blooms in October and November of 1972, practically all of the algal types detected were diatoms during the first 2-year study. During the maxima of June, July, and August, diatoms represented 96,80 , and 95 percent, respectively, of the population. The principal diatoms during this 3-month period were Cyclotella, Melosira, and Navicula.

In 1973 Cyclotella and Navicula generally prevailed. A spring maximum of $2500 \mathrm{cts} / \mathrm{ml}$ occurred on April 3. On August 21 a maximum density of about $3800 \mathrm{cts} / \mathrm{ml}$ occurred consisting mainly of Cyclotella and Asterionella. A pulse on December 7 was mainly made up of Melosira ( 81 percent).

From December 1973 through June 1974, only diatoms were detected in the creek. The spring pulses occurred in May and June 1974. The dominating algae were Synedra and Nitzschia in May and Cyclotella in June. The green alga Ulothrix was the principal contributor to the annual maximum occurring on September 5, 1974. The creek became much less productive without significant pulses during the last 2 years of the study period.


## 21. SOUTH FORK SANGAMON RIVER NEAR ROCHESTER

Diatoms were the prevalent type of algae and Scenedesmus and Actinastrum were the predominant green types. There were no significant pulses during 1972. Euglena was detected only during June, July, and August 1972.

In 1973 a spring maximum of about $4900 \mathrm{cts} / \mathrm{ml}$ occurred on May 1 and about 97 percent of the population were diatoms. The principal ones were Cyclotella and Navicula. Cyclotella persisted in the June 6 collection making up about 60 percent of the total, and accounted for 70 percent of the algal density on December 6, 1973.

In 1974, algal densities were high during March through June. The dominant diatom genus for each collection was: Cyclotella during March (56 percent) and June (38 percent), Surirella during April (50 percent), and Nitzschia during May ( 63 percent). Surirella persisted with high densities ( 1300 to $2500 \mathrm{cts} / \mathrm{ml}$ ) for 3 months from April through June. The green alga Ulothrix and the diatom Tabellaria were also important in April (25 percent) and in June (31 percent), respectively. Algae did not grow well in the summer of 1974. Later a pulse occurred on October 4 containing mostly Cyclotella ( $2400 \mathrm{cts} / \mathrm{ml}$ ) and the flagellate Euglena ( $1300 \mathrm{cts} / \mathrm{ml}$ ).

Similarly, algal counts were high from February through May 1975. Both diatoms Nitzschia and Synedra made up 42 percent of the total in February. Scenedesmus ( 48 percent) and Cyclotella ( 38 percent) were the principal type in March. In the April sample, the dominant algae were Cyclotella (40 percent) and Melosira (32 percent). Melosira was also the preminent alga ( $3500 \mathrm{cts} / \mathrm{ml}$ ) on May 28.

From July 1975 through September 1976, the algal densities were generally low. Algal pulses were poorly developed except on August 17, 1976, when one-half of the population was made up of Ulothrix. Although Navicula occurred most frequently in the river, it was never the dominant genus.


## 22. SANGAMON RIVER NEAR OAKFORD

The stream site was not a particularly productive one. During the period October 1971 to April 1972 only diatoms were detected. They were principally Cyclotella and Navicula. On April 4, 1972, Euglena represented 64 percent of the population. The major pulses occurred during the period June through August and the diatoms Navicula and Synedra were dominant during June, Cyclotella during July, and Melosira and Tabellaria during August.

In 1973 diatoms continued to dominate and only the green algae Scenedesmus and Ulotbrix provided some diversity. There were no singular pulses until June 2 when Melosira and Ulothrix were dominant. The green alga Crucigenia was abundant during November and December 1973.

During the spring of 1974, algal counts were relatively high. Cyclotella accounted for one-half of the totals during both March and April. Surirella was also important during March. The dominant alga on May 13 was Melosira ( 72 percent). The 1974 annual maximum occurred on July 9 and consisted mostly of Fragilaria (37 percent), Melosira ( 32 percent), and Navicula (19 percent). On August 22, 1974, Crucigenia bloomed with a density of $4100 \mathrm{cts} / \mathrm{ml}$. Melosira again was the major type in the November 13 sample.

There were no samples collected during the first 5 months of 1975. The algal pulses were poorly developed from June 1975 through July 1976. A peak was detected on August 25, 1976, and Melosira ( $3300 \mathrm{cts} / \mathrm{ml}$ ) was the abundant type. Navicula was recovered only six times during the last 3 years of sampling.

| Study period |  | Statistical Summary of Algal Data |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Number of samples | Algal density |  |  | Diversity index |  |  | Algal density occurrence (\% of time) |  |  |  |
|  |  |  |  |  |  | 500 to | 001 |  |
|  |  | Range | $M_{g}$ | $S D_{g}$ | Range |  |  |  | M | SD | <500 | 2000 | 5000 | 5000 |
| 10/71-9/72 |  |  | 11 | 630-2800 | 1600 | 1.57 | 0 94-2.11 | 159 | 035 | 9.1 | 545 | 36.4 |  |
| 10/72-9/73 |  |  | 12 | 160-3300 | 1200 | 213 | 0-1 79 | 128 | 0.47 | 8.3 | 750 | 167 |  |
| 10/73-9/74 |  | 12 | 160-6700 | 1900 | 255 | 0-1 98 | 102 | 0.56 | 83 | 41.7 | 41 | 83 |
| 10/74-9/75 |  | 7 | ND-2700 | 320 | 1487 | 0-1.96 | 0.81 | 0.70 | 428 | 42.8 | 14 |  |
| 10/75-9/76 |  | 12 | ND-3900 | 560 | 875 | 0-1 53 | 0.80 | 053 | 33.3 | 50 | 16.7 |  |
| 5-year |  | 54 | ND-6700 | 1000 | 491 | 0-2 11 | 111 | 058 | 20.4 | 528 | 25.1 | 17 |
| - $\mathrm{ND}=$ Alga not detected |  |  |  |  |  |  |  |  |  |  |  |  |
| Summary of Data |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Algal density | Diversity index |  |  | Algal density |  |  |  | DateAlgal <br> density <br> (cts/ml) |  | Diversity index |  |
| Date (ct | (cts/ml) |  |  | Date | (cts/ml) | index |  |  |  |  |  |  |
| 1971 |  |  |  | 5/9 | 1100 | 1.45 |  |  | 1975 |  |  |  |
| 10/7 | 1400 | 166 |  | 6/2 | 3300 | 146 |  |  | 6/19 | 160 | 0 |  |
| 11/8 | 1900 | 128 |  | 7/3 | 940 | 1.00 |  |  | 7/31 | 1600 | 1.96 |  |
| 12/1 | 2200 | 0.94 |  | 8/31 | 2200 | 179 |  |  | 8/29 | 470 | 092 |  |
| 1972 |  |  |  | 9/13 | 1300 | 130 |  |  | 9/18 | 1100 | 059 |  |
| 1/11 | 630 | 150 |  | 10/16 | 1100 | 145 |  |  | 10/2 | 940 | 125 |  |
| 2/14 | 1100 | 1.38 |  | 11/8 | 2700 | 0.98 |  |  | 11/10 | 1100 | 138 |  |
| 4/4 | 1700 | 149 |  | 12/6 | 1400 | 0.50 |  |  | 12/10 | 2400 | 153 |  |
| 5/1 | 1300 | 191 |  | 1974 |  |  |  |  | 1976 |  |  |  |
| 6/14 | 2500 | 2.11 |  | 1/8 | 1600 | 100 |  |  | 1/28 | ND | 0 |  |
| 7/13 | 2400 | 189 |  | 2/12 | 160 | 0 |  |  | 2/11 | 470 | 092 |  |
| 8/7 | 2800 | 191 |  | 3/12 | 3100 | 136 |  |  | $3 / 5$ | 1400 | 0 |  |
| 9/14 | 1100 | 138 |  | 4/10 | 3100 | 169 |  |  | 4/1 | 1900 | 0.81 |  |
| 10/4 | 790 | 1.37 |  | 5/13 | 2800 | 1.23 |  |  | 5/24 | 1600 | 116 |  |
| 11/15 | 1600 | 136 |  | 6/4 | 1600 | 072 |  |  | 6/11 | 470 | 092 |  |
| 12/7 | 1400 | 099 |  | 7/9 | 6700 | 1.98 |  |  | 7/7 | 160 | 0 |  |
| 1973 |  |  |  | 8/22 | 4400 | 044 |  |  | $\begin{aligned} & 8 / 25 \\ & 9 / 29 \end{aligned}$ | $\begin{array}{r} 3900 \\ 630 \end{array}$ | 076 |  |
| 1/3 | 790 | 137 |  | 9/10 | 1700 | 0.87 |  |  |  |  | 081 |  |
| 2/12 | 160 | 0 |  | 10/3 | ND | 0 |  |  | 9/29 | 630 |  |  |
| 3/1 | 1600 | 1.77 |  | 11/3 | 2700 | 0.98125 |  |  |  |  |  |  |
| 4/3 | 1900 | 1.46 |  | 12/4 | 940 |  |  |  |  |  |  |  |

## 25. EMBARRAS RIVER NEAR CAMARGO

Comparatively, the stream site is a very productive one. With seven exceptions, algal densities of 800 $\mathrm{cts} / \mathrm{ml}$ were equaled or exceeded during every sample collection. Although diatoms were the dominant algal type, green algae were present in significant numbers during spring and summer. The major greens generally included Scenedesmus, Ulothrix, and Actinastrum.

The major peak during 1972 occurred on August 16 ( $4700 \mathrm{cts} / \mathrm{ml}$ ). It consisted mainly of Cyclotella, Ulothrix, and Scenedesmus. The high counts persisted in the September sample, but were made up mostly of Navicula and Ulothrix.

During 1973 a Melosira bloom was detected in the January sample. Algal peaks occurred in April, July, and September. The April population ( $3900 \mathrm{cts} / \mathrm{ml}$ ) was made up of Navicula, Surirella, and Ulothrix. In July ( $3500 \mathrm{cts} / \mathrm{ml}$ ) the greens Oocystis, Crucigenia, and Actinastrum were in greater numbers than the diatoms, but in September ( $2800 \mathrm{cts} / \mathrm{ml}$ ) the diatom Cyclotella prevailed. Ulothrix was abundant in the November 1973 sample.

There were no algal pulses of significance until May and June of 1974. Nitzschia ( 80 percent) was the dominant type during May. The June sample consisted mainly of Melosira, Euglena, and Actinastrum. The 1974 maximum occurred on October 2 mainly consisting of Melosira ( $2700 \mathrm{cts} / \mathrm{ml}$ ) and Cyclotella ( $1300 \mathrm{cts} / \mathrm{ml}$ ). Only two greens, Crucigenia ( $2800 \mathrm{cts} / \mathrm{ml}$ ) and Ankistrodesmus ( $700 \mathrm{cts} / \mathrm{ml}$ ) were recovered on November 5, 1974.

Two algal pulses were detected on January 6 and March 18, 1975. The dominant algae were Melosira (81 percent) and Ulothrix (72 percent) during January and March, respectively. During the period of May 1975 to August 1976, algal population peaks were poorly developed.

| $\begin{gathered} \text { Study } \\ \text { period } \end{gathered}$ |  | Statistical Summary of Algal Data |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Number <br> of samples | Range | Algal density | $S D_{g}$ | Diversity <br> Range | $\begin{aligned} & \text { index } \\ & \hline \end{aligned}$ | SD | Algal density occurrence (\% of time) |  |  |
|  |  |  |  |  |  |  |  |  | $\begin{aligned} & 500 \text { to } \\ & 2000 \end{aligned}$ | $\begin{gathered} 2001 \text { to } \\ \text { So00 } \end{gathered}>5000$ |
|  |  | $<500$ |  |  |  |  |  |  | $2000$ | S000 >5000 |
| 10/71-9/72 |  |  | 12 | ND-4700 | - 1100 | 1071 | 0-2 48 | 155 | 070 | 83 | 333 | 583 |
| 10/72-9/73 |  |  | 12 | 470-3900 | 01700 | 196 | 0-2.23 | 110 | 061 | 83 | 417 | 500 |
| 10/73-9/74 |  | 12 | ND-3500 | 0870 | 882 | 0-2 20 | 117 | 067 | 83 | 58.3 | 333 |
| 10/74-9/75 |  | 11 | 160-4200 | - 1500 | 258 | 0-1 78 | 096 | 052 | 91 | 545 | 364 |
| 10/75-9/76 |  | 12 | 630-2500 | - 1200 | 156 | 0-1 90 | 101 | 056 |  | 917 | 83 |
| 5-year |  | 59 | ND-4700 | 01200 | 4.46 | 0-2 48 | 1.16 | 0.63 | 68 | 55.9 | 373 |
| - ND = Alga not detected |  |  |  |  |  |  |  |  |  |  |  |
| Summary of Data |  |  |  |  |  |  |  |  |  |  |  |
| DateAlgal <br> density <br> (cts/ml) |  | Diversity index |  |  | Algal density | Diversity index |  | Date |  | Algal density | Diversity index |
|  |  |  | Date | (cts/ml) |  |  | (cts/ml) |  |  |  |
| 1971 |  |  | 248 |  | 5/14 | 1900 | 148 |  |  | 1975 |  |  |
| 10/5 | 2800 |  |  | 6/6 | 2500 | 101 |  |  | 1/6 | 3300 | 086 |
| 11/10 | 2000 | 213 |  | 7/11 | 3500 | 223 |  |  | 2/10 | 940 | 065 |
| 12/1 | 1300 | 130 |  | 8/7 | 1100 | 115 |  |  | 3/18 | 3900 | 102 |
|  |  |  |  | 9/11 | 2800 | 146 |  |  | 5/1 | 1400 | 1.75 |
| 1972 |  | 0 |  | 10/9 | ND | 0 |  |  | 6/23 | 160 | 0 |
| 1/12 | ND |  |  | 11/1 | 2000 | 0.39 |  |  | 7/24 | 940 | 092 |
| 2/9 | 2500 | 0.87 | 12/10 |  | 790 | 0.390 |  |  | 8/13 | 1100 | 099 |
| 4/4 | 1300 | 155 |  |  |  |  |  | 9/30 | 1900 | 178 |  |
| 5/15 | 1100 | 115 |  | 1974 |  |  |  |  |  | 10/30 | 1700 | 132 |
| 6/1 | 2700 | 212 |  | 1/3 | 1400 | 0.50 |  |  | 11/14 | 790 | 0 |
| 7/13 | 2000 | 1.57 |  | 2/8 | 1100 | 166 |  |  | 12/22 | 1700 | 149 |
| 8/16 | 4700 | 188 |  | 3/8 | 1400 | 220 |  |  |  |  |  |
| 9/8 | 4400 | 200 |  | 4/5 | 1100 | 138 |  |  | 1976 |  |  |
| 10/6 | 790 | 072 |  | 5/8 | 3100 | 092 |  |  | 1/19 | 630 | 081 |
| 11/3 | 470 | 0 |  | 6/6 | 3500 | 187 |  |  | 2/11 | 630 | 100 |
| 12/14 | 940 | 065 |  | 7/3 | 2400 | 143 |  |  | 3/23 | 1900 | 0 |
|  |  |  |  | 8/6 | 1400 | 122 |  |  | 4/5 | 1300 | 100 |
| 1973 |  | 039 |  | 9/12 | 1400 | 175 |  |  | 5/6 | 1100 | 115 |
| 1/9 | 2000 |  |  | 10/2 | 4200 | 129 |  |  | 6/18 | 940 | 0.92 |
| 2/6 | 1100 | 099 |  | 11/5 | 3500 | 068 |  |  | 7/12 | 1300 | 150 |
| 3/19 | 3000 | 172143 |  | 12/4 | 1100 | 059 |  |  | 8/30 | 2500 | 101 |
| 4/11 | 3900 |  |  |  |  |  |  |  | $9 / 7$ | 1600 | 190 |

## 27. KASKASKIA RIVER AT COOKS MILLS

The maximum density at this site during the first 2-year study period occurred on December 8, 1971, when a bloom of the diatom Fragilaria made up 72 percent of the $5000 \mathrm{cts} / \mathrm{ml}$. Cyclotella and Navicula were generally the dominant genera. During 1972 peaks persisted in June and July. Navicula was most numerous in June and Cyclotella prevailed in July. In December another pulse occurred consisting mainly of the diatom Melosira.

In 1973 there were no significant pulses until August when Cyclotella and Navicula accounted for most of the $2800 \mathrm{cts} / \mathrm{ml}$. Although greens were detected, their diversity was limited and Scenedesmus and Actinastrum prevailed in April and May, respectively.

The three diatoms Cyclotella (50 percent), Navicula (25 percent), and Synedra ( 25 percent) were solely responsible for $5000 \mathrm{cts} / \mathrm{ml}$ on April 8, 1974. This density was equivalent to the maximum occurrence on December 8, 1971. In 1974, two other pulses occurred during July and September consisting mainly of Cyclotella and Crucigenia, respectively.

The 1975 maximum ( $3300 \mathrm{cts} / \mathrm{ml}$ ) occurred on March 17 when the green alga Chlorella ( 62 percent) and the blue-green Anabaena ( 29 percent) dominated. Another pulse was detected on December 17. It consisted principally of Melosira.

The algal densities for the fifth study year were much less than those for other years. In 1976, an algal peak developed by Navicula (61 percent) and Oocystis (39 percent) occurred on May 10.

| Statistical Summary of Algal Data |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Study period |  | Algal density |  |  | Diversity index |  |  |  | Algal density occurrence (\% of time) |  |  |  |
|  |  |  |  |  |  | 500 to | 2001 to |  |
|  |  | Range | $M_{g}$ | $S D_{g}$ |  |  |  |  |  | Range | M | $S D$ | <500 | 2000 | 5000 | >5000 |
| 10/71-9/72 | 11 | 630-5000 | 1800 | 209 |  | 12-2 46 | 1.66 | 041 |  | 545 | 364 | 9 |
| 10/72-9/73 | 12 | 470-4400 | 1200 | 194 |  | 50-1.74 | 122 | 041 | 167 | 583 | 250 |  |
| 10/73-9/74 | 13 | 630-5000 | 1900 | 186 |  | 65-1 79 | 147 | 029 |  | 538 | 385 | 77 |
| 10/74-9/75 | 12 | 470-3300 | 1400 | 198 |  | 72-2 11 | 123 | 041 | 167 | 417 | 417 |  |
| 10/75-9/76 | 12 | ND -3000 | 430 | 1746 |  | 0-1 84 | 124 | 065 | 167 | 667 | 167 |  |
| 5-year | 60 | ND -5000 | 1200 | 434 |  | 0-2 46 | 136 | 046 | 100 | 550 | 317 | 34 |


| Date | Algal density (cts/ml) | Diversity index | Date | Algal density (cts/ml) | Diversity index | Date | Algal density (cts/ml) | Diversity index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1971 |  |  | 6/14 | 1100 | 115 | 1975 |  |  |
| 10/6 | 4100 | 145 | 7/5 | 1100 | 145 | 1/13 | 790 | 072 |
| 11/5 | 2500 | 213 | 8/14 | 2800 | 1.57 | 2/10 | 2500 | 211 |
| 12/8 | 5000 | 112 | 9/10 | 1400 | 0.50 | 3/17 | 3300 | 136 |
|  |  |  | 10/9 | 2800 | 1.62 | 4/1 | 1700 | 182 |
| 1972 |  |  | 11/6 | 1600 | 152 | 5/7 | 1900 | 128 |
| 1/7 | 790 | 1.37 | 12/10 | 1400 | 161 | 6/24 | 470 | 092 |
| 2/23 | 630 | 150 | 1974 |  |  | 7/28 | 730 | 081 |
| 4/13 | 940 | 146 | 1974 |  |  | 8/11 | 470 | 092 |
| 5/16 | 1900 | 195 | 1/7 | 3100 | 1.65 | 9/29 | 1400 | 135 |
| 6/5 | 3100 | 202 | 2/8 | 630 | 150 | 10/30 | 940 | 179 |
| 7/17 | 3300 | 141 | 3/11 | 1400 | 175 | 11/11 | 1700 | 099 |
| 8/21 | 1900 | 246 | 3/27 | 940 | 065 | 12/17 | 3000 | 164 |
| 9/13 | 790 | 137 | 4/8 | 5000 | 150 |  |  |  |
| 10/17 | 790 | 097 | 5/8 | 1700 | 179 | 1976 |  |  |
| 11/8 | 1100 | 059 | 6/12 | 1600 | 130 | 1/19 | ND | 0 |
| 12/6 | 4400 | 158 | 7/10 | 4100 | 134 | 2/11 | 1400 | 175 |
|  |  |  | 8/8 | 1100 | 1.45 | 3/25 | 1100 | 166 |
| 1973 |  |  | 9/11 | 3600 | 147 | 4/5 | 1100 | 184 |
| 1/11 | 470 | 092 | 10/2 | 2400 | 105 | 5/10 | 2800 | 096 |
| 2/12 | 470 | 159 | 11/6 | 2000 | 131 | 6/21 | 1400 | 135 |
| 3/5 | 940 | 146 | 12/9 | 2200 | 115 | 7/15 | 1100 | 138 |
| 4/4 | 1600 | 116 |  |  |  | 8/2 | 1300 | 155 |
| 5/4 | 2000 | 174 |  |  |  | 9/7 | ND | 0 |

## 28. KASKASKIA RIVER AT SHELBYVILLE

The diatoms Cyclotella, Navicula, and Melosira were the most numerous algae at the site. On January 6, 1972, a population of $3000 \mathrm{cts} / \mathrm{ml}$ developed solely from Melosira and Cyclotella. The spring maximum of 2800 cts $/ \mathrm{ml}$ occurred in May and was made up mainly of Fragilaria. A summer pulse in August of $3000 \mathrm{cts} / \mathrm{ml}$ was caused mainly by Cyclotella. Green algae were more numerous during summer months, but there were no significant densities of them.

In January 1973 the diatoms Cyclotella, Navicula, and Surirella were solely responsible for $2500 \mathrm{cts} / \mathrm{ml}$. A pulse consisting mainly of Navicula occurred in March. Cyclotella and Diatoma prevailed in the population densities that occurred on July 9. Another pulse developed on November 9, 1973, when Melosira ( $2800 \mathrm{cts} / \mathrm{ml}$ ) prevailed.

In May 1974, the diatoms Tabellaria, Nitzschia, and Navicula prevailed. Algal densities during the summer months were high. The prominent algae were Melosira during July and August ( 75 and 72 percent) and Crucigenia ( 70 percent) during September 1974. A winter peak was observed on December 10, 1974, when Navicula was prevalent.

Samples collected during 1975 and 1976 showed algal densities equal to or less than $2400 \mathrm{cts} / \mathrm{ml}$ except in the April 28, 1976, sample. On that date an algal density of $3600 \mathrm{cts} / \mathrm{ml}$ was observed.


- $\mathrm{ND}=$ Alga not detected

Summary of Data

| Date | Algal density (cts/ml) | Diversity index | Date |  | Diversity index | Date | Algal density (cts/ml) | Diversity index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1971 |  |  | 5/15 | 1900 | 146 | 1975 |  |  |
| 10/7 | 1400 | 1.66 | 6/20 | 1700 | 132 | 1/17 | 1300 | 141 |
| 11/5 | 2000 | 1.46 | 7/9 | 2700 | 1.93 | 3/20 | 1900 | 138 |
| 12/3 | 470 | 092 | 8/21 | 1600 | 1.72 | 5/5 | 1700 | 110 |
| 1972 |  |  | 9/13 | 2000 | 1.46 | 7/1 | 630 | 1.50 |
| 1/6 | 3000 | 098 | 10/11 | 1300 | 141 | 7/22 | 470 | 0.92 |
| 2/21 | 310 | 0 | 11/9 | 4400 | 130 | 8/22 | 790 | 192 |
| 4/13 | 1400 | 153 | 12/11 | 2400 | 177 | 9/16 | 940 | 092 |
| 5/11 | 2800 | 179 | 1974 |  |  | 10/9 | 1400 | 1.59 |
| 6/5 | 1900 | 212 | 1/24 | 310 | 0 | 11/17 | 2200 | 0.74 |
| 7/13 | 2400 | 226 | 2/12 | ND | 0 | 12/8 | 1300 | 1.06 |
| 8/21 | 3000 | 130 | 3/15 | 2500 | 2.25 | 1976 |  |  |
| 9/20 | 470 | 159 | 4/10 | 1700 | 110 | 1/15 | 1100 | 1.15 |
| 10/13 | 940 | 1.59 | 5/10 | 3300 | 2.17 | 2/13 | 940 | 125 |
| 11/7 | 470 | 0.92 | 6/14 | 630 | 1.50 | 3/17 | 790 | 192 |
| 12/11 | 1600 | 0.88 | 7/12 | 3100 | 099 | 4/28 | 3600 | 1.90 |
| 1973 |  |  | 8/15 | 3900 | 132 | 5/20 | ND | 0 |
| 1/15 | 2500 | 148 | 9/17 | 3100 | 1.26 | 6/15 | 1100 | 145 |
| 2/13 | ND | 0 | 10/9 | 1100 | 1.45 | 7/14 | 790 | 1.37 |
| 3/15 | 2500 | 1.59 | 11/12 | 1300 | 141 | 8/24 | 2400 | 1.04 |
| 4/18 | 2000 | 1.83 | 12/10 | 3000 | 0.63 | 9/24 | 1700 | 0.44 |

## 29. SHOAL CREEK NEAR BREESE

Cyclotella showed up in most of the samples during 1971 and 1972, but appeared only once in 1973. Euglena and Melosira were responsible for the 1972 summer maximum of $5200 \mathrm{cts} / \mathrm{ml}$ on July 20. Ulothrix dominated the autumnal peak on October 5.

Algal densities during 1973 ranged from 1300 to $2000 \mathrm{cts} / \mathrm{ml}$ from January through August. There were no significant pulses during this period. A relatively high count of $2800 \mathrm{cts} / \mathrm{ml}$ occurred in September consisting mainly of Asterionella, Fragilaria, and Nitzscbia.

There were several pulses detected during 1974. Melosira (48 percent), the flagellate Euglena ( 50 percent), the green Crucigenia ( 47 percent), and the diatom Nitzschia ( 35 percent) were the prevailing algae, respectively, in pulses observed during January, April, June, and August.

Only diatoms were recovered during January, March, April, and May of 1975. However, only green algae were detected in the June sample. Caloneis ( 50 percent) and Gyrosigma ( 40 percent) were the principal algae recovered from the 1975 maximum on March 13. Thereafter and through the end of the study period in 1976, no algal pulse was observed. The highest algal count for these 18 samples was $1700 \mathrm{cts} / \mathrm{ml}$. The majority were diatoms.

Statistical Summary of Algal Data

| Study period | Number ofsamples | Algal density |  |  | Diversity index |  |  |  |  | Algal density occurrence (\% of time) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 500 to |  | 001 to |  |
|  |  | Range | $M_{g}$ | $S D_{g}$ |  |  |  |  |  |  | Range |  | M | $S D$ | <SOO | 2000 |  | 1000 | >5000 |
| 11/71-9/72 | 10 | 310-5200 | 1600 | 2.34 |  | 0-2 20 | 1 | 34 | 064 | 200 | 20 | 0 | 500 | 100 |
| 10/72-9/73 | 12 | 1100-2800 | 1800 | 1.35 | 0 | 78-1.86 | 1 | 40 | 035 |  | 66 | 7 | 33.3 |  |
| 10/73-9/74 | 12 | 310-5300 | 1800 | 245 |  | 0-2.38 | 1 | 40 | 0.70 | 167 | 25 | 0 | 583 |  |
| 10/74-9/75 | 12 | ND -3100 | 420 | 1739 |  | 0-1 75 | 1 | 01 | 061 | 167 | 58 | 3 | 250 |  |
| 10/75-9/76 | 12 | ND-1700 | 710 | 799 |  | 0-1.79 | 1 | 09 | 061 | 167 | 83 |  |  |  |
| 5-year | 58 | ND -5300 | 1100 | 573 |  | 0-2.38 | 1 | 24 | 0.60 | 14.0 | 50 | 7 | 33.3 | 20 |

$\left.\begin{array}{lrl} & \begin{array}{c}\text { Algol } \\ \text { Date }\end{array} & \begin{array}{c}\text { Density } \\ (\text { cts } / \text { ml })\end{array}\end{array} \begin{array}{c}\text { Diversity } \\ \text { index }\end{array}\right]$

Summary of Data

## 31. KASKASKIA RIVER AT NEW ATHENS

Productivity was generally stable during November and December 1971 and the early months of 1972. During June, July, and August, however, algal densities were 7100, 3100, and $6400 \mathrm{cts} / \mathrm{ml}$, respectively. The June maximum consisted solely of diatoms, principally Cyclotella and Navicula. In July Navicula and Scenedesmus prevailed. In August Ulotbrix coupled with Navicula were the dominant algae. Algal densities did not exceed $1400 \mathrm{cts} / \mathrm{ml}$ during the remainder of the year. In 1973, there was a single pulse of Melosira in January; thereafter, Cyclotella and Navicula were the principal diatoms. The annual maximum of $5500 \mathrm{cts} / \mathrm{ml}$ occurred in April and consisted mostly of Cyclotella.

In 1974, the algal maximum developed on May 23. It contained two greens Scenedesmus and Ulothrix (both 39 percent) and the diatom Cyclotella. In a pulse on September 9, 1974, Cyclotella accounted for 95 percent of the total.

A maximum density of $10,000 \mathrm{cts} / \mathrm{ml}$ occurred on April 3, 1975. The sample consisted of Cyclotella ( $6300 \mathrm{cts} / \mathrm{ml}$ ) and two greens Ankistrodesmus and Crucigenia (both $1900 \mathrm{cts} / \mathrm{ml}$ ). There were no significant pulses detected from the summer of 1975 through the summer of 1976. However, five of the nine samples collected in 1976 had algal densities equal to or greater than $200 \mathrm{cts} / \mathrm{ml}$.

Statistical Summary of Algal Data

| Study period | Number of samples | Algal density |  |  | Diversity index |  |  | Algal density occurrence (\% of time) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | 500 to | 2001 to |  |
|  |  | Range | $M_{g}$ | SDg |  |  | Range | M | SD | <500 | 2000 | 5000 | >5000 |
| 11/71-9/72 | 10 | 1400-7100 | 2600 | 175 | 0 72-2 31 | 151 | 0.51 |  | 300 | 50.0 | 200 |
| 10/72-9/73 | 12 | 630-5500 | 1900 | 192 | 0 54-1.79 | 124 | 042 |  | 417 | 500 | 83 |
| 10/73-9/74 | 12 | 470-7200 | 1600 | 203 | 0 31-1 59 | 1.23 | 0.42 | 8-3 | 58.3 | 250 | 83 |
| 10/74-9/75 | 11 | ND-10,000 | 800 | 1155 | 0-1.81 | 100 | 061 | 18.2 | 455 | 273 | 9.1 |
| 10/75-9/76 | 12 | 790-2700 | 1600 | 159 | 0.72-2 12 | 124 | 042 |  | 500 | 500 |  |
| 5-year | 57 | ND-10,000 | 1600 | 338 | 0-2.31 | 1.24 | 049 | 5.3 | 451 | 405 | 91 |

- ND = Alga not detected

Summary of Data

| Date | Algal density (cts/ml) | Diversity index | Date | Algal density (cts/ml) | Diversity index | Date | Algal density (cts/ml) | Diversity index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1971 |  |  | 6/18 | 2700 | 098 | 1975 |  |  |
| 11/19 | 1600 | 1.49 | 7/10 | 2200 | 1.58 | 2/10 | 1400 | 1.59 |
| 12/10 | 2000 | 1.83 | 8/16 | 1700 | 1.50 | 3/10 | 4100 | 1.14 |
| 1972 |  |  | 9/11 | 2700 | 1.71 | 4/3 | 10,000 | 133 |
| 1/26 | 2400 | 2.31 | 10/25 | 1100 | 0.99 | 5/28 | 160 | 0 |
| 3/8 | 1600 | 0.72 | 11/6 | 1400 | 1.27 | 6/9 | ND | 0 |
| 4/12 | 2400 | 189 | 12/6 | 470 | 1.59 | 7/18 | 2200 | 095 |
| 5/24 | 2500 | 1.92 | 1974 |  |  | 8/14 | 940 | 065 |
| 6/6 | 7100 | 0.91 | 1/23 | 1700 | 132 | 9/16 | 1300 | 181 |
| 7/10 | 3100 | 168 | $2 / 26$ | 940 | 1.46 | 10/1 | 1300 | 156 |
| 8/11 | 6400 | 1.00 | 3/20 | 1300 | 1.30 | 11/5 | 2000 | 099 |
| 9/11 | 1400 | 1.39 | 4/15 | 1300 | 150 | 12/4 | 790 | 072 |
| 10/6 | 940 | 0.92 | 5/23 | 7200 | 154 | 1976 |  |  |
| 11/29 | 790 | 1.52 | 6/4 | 2500 | 095 | 1/20 | 790 | 137 |
| 12/11 | 630 | 0.81 | 7/15 | 2500 | 095 | 2/10 | 2400 | 072 |
| 1973 |  |  | 8/8 | 790 | 0.72 | 3/16 | 940 | 100 |
| 1/9 | 3300 | 152 | 9/9 | 2800 | 031 | 4/13 | 2400 | 156 |
| 2/2 | 1300 | 0.54 | 10/14 | 2400 | 1.53 | 5/18 | 2200 | 074 |
| 3/7 | 3300 | 0.82 | 11/20 | 1900 | 1.33 | 6/8 | 1100 | 145 |
| 4/4 | 5500 | 1.13 | 12/13 | 790 | 0.72 | 7/13 | 2700 | 122 |
| 5/1 | 2200 | 1.79 |  |  |  | 8/10 | 2400 | 138 |
|  |  |  |  |  |  | 9/14 | 1700 | 212 |

## 32. LITTLE WABASH RIVER NEAR EFFINGHAM

Sample collection was limited to only eight samples during 1972. Two pulses were detected during the year. Navicula was primarily responsible for $2800 \mathrm{cts} / \mathrm{ml}$ in July and Cyclotella accounted for most of the population in November.

In 1973, two peaks also occurred. Cyclotella, Synedra, and the green alga Coelastrum were prevalent during the March pulse. On September 11, Melosira and Navicula were prevalent. The occurrence of green algae and flagellates was generally sporadic.

Algal pulses were poorly developed in 1974. The prevailing algae were Navicula, Cyclotella, Ulothrix, and Crucigenia, respectively, occurring in the samples of March, May, July, and October.

The maximum for 1975 was found on March 26 when Ulothrix ( $2700 \mathrm{cts} / \mathrm{ml}$ ) dominated. A small pulse which occurred on June 11, 1975, consisted mostly of Melosira (87 percent).

In the March 15, 1976, sample no alga was detected. However, the maximum algal count of 3900 cts/ ml was recovered on April 19. It contained mainly Crucigenia ( 48 percent) and Tabellaria ( 36 percent).

| Statistical Summary of Algal Data |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Study period |  | Number of samples | Algal density |  |  |  |  |  | Algal density occurrence (\% of time) |  |  |
|  |  | Diversity |  |  |  | index |  |  | 500 to | 2001 to |
|  |  | Range $\quad M_{g}$ | Range | M | SD | <500 | 2000 | $5000>5000$ |
| 12/71-7/72 |  |  | 7 | ND -3000 | 500 | 1699 | 0-2 50 | 123 | 104 | 286 | 428 | 286 |
| 11/72-9/73 |  |  | 10 | 630-4900 | 1800 | 185 | 0-2 06 | 1.19 | 059 |  | 600 | 400 |
| 10/73-9/74 |  | 12 | ND -2700 | 780 | 895 | 0-1 38 | 089 | 043 | 167 | 417 | 417 |
| 10/74-9/75 |  | 11 | ND -3500 | 330 | 1882 | 0-1 95 | 102 | 066 | 273 | 455 | 273 |
| 10/75-6/76 |  | 9 | ND -3900 | 310 | 2661 | 0-1 46 | 085 | 060 | 222 | 556 | 222 |
| 5 -year |  | 49 | ND -4900 | 600 | 1205 | 0-2 50 | 102 | 064 | 190 | 491 | 320 |
| - ND = Alga not detected |  |  |  |  |  |  |  |  |  |  |  |
| Summary of Data |  |  |  |  |  |  |  |  |  |  |  |
| Date | Algal density (cts/ml) | Diversity index |  | Dale | Algal density (cts/ml) | Diversity index |  |  | 告 $\begin{gathered}\text { Algal } \\ \text { Date } \\ \text { density } \\ \text { (cts/ml) }\end{gathered}$ |  | Diversity index |
| 1971 |  |  |  | 8/7 | 630 | 0 |  |  |  |  | 184 |
| 12/8 | 310 | 0 |  | 9/11 | 4900 | 136 |  |  | 1975 |  |  |
| 1972 |  |  |  | 10/15 | 1600 | 130 |  |  | 3/26 | 3500 | 0.94 |
| 1/12 | 1400 |  |  | 11/21 | 2700 | 130100 |  |  | 4/22 | 1100 | 115 |
| 2/29 | ND | 1.66 |  | 12/6 | 310 |  |  |  | 5/27 | ND2400 | 0 |
| 4/4 | 2400 | 2.50 |  | 1974 |  | 115 |  |  | 6/11 |  | 150 |
| 5/16 | 1900 | 196 |  | 1/8 | 1100 |  |  |  | 7/22 | 630 |  |
| $6 / 5$ | 1400 | 198 |  | 2/6 | ND | 0 |  |  | 8/13 | 470 | 092 |
| 7/7 | 2800 | 0.50 |  | 3/6 | 2500 | 130 |  |  | 9/16 | 790 | 072 |
| 11/3 | 3000 | 059 |  | 4/11 | 630 | 081 |  |  | 10/1 | 940 | 146 |
| 12/5 | 1400 | 092 |  | 5/7 | 2000 | 0.39 |  |  | $\begin{aligned} & 11 / 10 \\ & 12 / 8 \end{aligned}$ | $\begin{aligned} & 1300 \\ & 1400 \end{aligned}$ | $\begin{aligned} & 0.54 \\ & 099 \end{aligned}$ |
| 1973 |  |  |  | 6/6 | 1100 |  |  |  |  |  |  |
| 1/9 | 1100 | 1.56 |  | 7/24 | 2500 | 067 |  |  | 1976 |  |  |
| 3/7 | 3500 | 1.5611 |  | 8/14 | 2000 | 1.31 |  |  | 1/6 | ND | 0 |
| 4/4 | 2200 | 095 |  | 9/16 | 1900 | 082 |  |  | $\begin{aligned} & 2 / 22 \\ & 3 / 15 \end{aligned}$ | $\begin{array}{r} 1300 \\ \text { ND } \end{array}$ | 0.54 |
| 5/9 | 1400 | 206 |  | 10/11 | 2500 | 1.95 |  |  |  |  | 0146 |
| 6/6 | 1100 | 138 |  | 11/8 | ND | 0 |  |  | $\begin{aligned} & 3 / 15 \\ & 4 / 19 \end{aligned}$ | 3900 |  |
| 7/11 | 1700 | 150 |  | 12/6 | 630 | 1.50 |  |  | $\begin{aligned} & 5 / 20 \\ & 6 / 15 \end{aligned}$ | $\begin{aligned} & 1100 \\ & 2700 \end{aligned}$ | $\begin{aligned} & 1.45 \\ & 1 \quad 22 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |

## 33. LITTLE WABASH RIVER BELOW CLAY CITY

There were no significant peaks during 1972 and the diatom Navicula generally was the dominant genus. On two occasions during 1972, green algae prevailed in samples. On August 8, Scenedesmus was most abundant, and on November 10, Ulothrix prevailed.

Diatoms, generally Navicula or Cyclotella, were dominant in all 1973 samples. In February the diatom Melosira made up about 88 percent of the $2500 \mathrm{cts} / \mathrm{ml}$. A sample in which diatoms were not the major algae was collected in July when the green alga Ankistrodesmus was dominant. The maximum for 1973 ( $3300 \mathrm{cts} / \mathrm{ml}$ ) occurred on October 1 consisting mainly of the diatoms Asterionella and Melosira.

In 1974, there were several algal peaks and no-alga samples. The dominant algae were Scenedesmus and Asterionella in May, Euglena in June, Cyclotella in July, Cyclotella and Euglena in October, and Melosira and Ulothrix in November. Algae were not recovered in the samples collected on August 14 and September 19, 1974.

Blooms of the diatom Nitzschia and the flagellate Dinobryon were responsible for the March 18, 1975, maximum. During the rest of the year, algal recoveries were generally very low.

The sample collected on January 26 had the highest algal density ( $2800 \mathrm{cts} / \mathrm{ml}$ ) among the nine collections in 1976. Cyclotella prevailed in the January sample. Although Navicula was not abundant, it was detected in seven of the nine collections.


## 36. SKILLET FORK AT WAYNE CITY

The 1972 maxima were poorly marked and diatoms, as usual, generally prevailed. Scenedesmus was the prominent green alga. The highest population detected for total algae was $2400 \mathrm{cts} / \mathrm{ml}$ on August 11.

After the winter low counts, a significant Cyclotella bloom ( $2400 \mathrm{cts} / \mathrm{ml}$ ) and an Ulothrix bloom ( $2200 \mathrm{cts} / \mathrm{ml}$ ) occurred on March 6, 1973. A summer maximum of $3500 \mathrm{cts} / \mathrm{ml}$ consisting mostly of Navicula occurred on June 20. The highest algal count for the 24 -month period occurred on September 28, 1973. It was composed mainly of Scenedesmus ( $2400 \mathrm{cts} / \mathrm{ml}$ ) and Asterionella ( $1400 \mathrm{cts} / \mathrm{ml}$ ).

The green alga Crucigenia contributed 57 percent of the total $3300 \mathrm{cts} / \mathrm{ml}$ during the autumn pulse on September 13, 1974.

The 1975 spring pulses occurred in March and April. In March Cyclotella prevailed; in April Navicula and Synedra dominated. During the period of May 1975 through August 1976, algal growths were generally sporadic and densities were low. An Ulothrix bloom ( $2700 \mathrm{cts} / \mathrm{ml}$ ) in combination with Cyclotella was the cause for a peak on September 24, 1976. About 83 percent of the algae recovered in the stream during the fifth year of study were diatoms.


## 37. LITTLE WABASH RIVER AT CARMI

This is a typical diatom-dominated site. However, on three separate occasions green algae were a significant portion of the total algal population. On August 7, 1972, Scenedesmus constituted a major portion of the $2700 \mathrm{cts} / \mathrm{ml}$ total. On April 12, 1973, Ulothrix represented about 41 percent of the $4200 \mathrm{cts} / \mathrm{ml}$. This was the annual maximum for 1973. On September 13, the green alga Pediastrum, an alga occurring infrequently in Illinois streams, bloomed and represented about 67 percent of the $2400 \mathrm{cts} / \mathrm{ml}$ detected.

Algae were not productive during 1974 at this site. Only a small peak occurred in July. The two samples taken in February 1975 had high algal counts. Navicula was most numerous ( $1700 \mathrm{cts} / \mathrm{ml}$ ) on February 13. The three diatoms Surirella (46 percent), Melosira, and Navicula (both 27 percent) accounted for the 1975 maximum on February 28. A Crucigenia bloom on October 6, 1975, made up 55 percent of the total algal count.

Melosira was responsible for high counts on March 19 and April 28, 1976. Ulotbrix ( $1600 \mathrm{cts} / \mathrm{ml}$ ) and Cyclotella ( $940 \mathrm{cts} / \mathrm{ml}$ ) made up the rest of the total during April.

Statistical Summary of Algal Data

| Study period | Number of samples | Algal density |  |  | Diversity index |  |  | Algal density occurrence (\% of time) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | 500 to | 2001 to |  |
|  |  | Range | $M_{g}$ | $S D_{g}$ |  |  | Range | $M$ | SD | <500 | 2000 | 5000 | >5000 |
| 11/71-9/72 | 11 | 790-2800 | 1700 | 146 | 097-1 85 | 158 | 027 |  | 636 | 364 |  |
| 10/72-9/73 | 12 | ND-4200 | 810 | 888 | 0-1 82 | 112 | 060 | 16.7 | 500 | 333 |  |
| 10/73-9/74 | 12 | ND-2500 | 470 | 851 | 0-1 89 | 080 | 066 | 333 | 58.3 | 83 |  |
| 10/74-9/75 | 11 | ND -6900 | 660 | 10.98 | 0-1 81 | 1.08 | 077 | 273 | 545 | 91 | 9.1 |
| 10/75-9/76 | 12 | 630-4400 | 1400 | 1.85 | 0-1 53 | 1.12 | 043 |  | 818 | 27.3 |  |
| 5-year | 58 | ND-6900 | 900 | 580 | 0-1 89 | 1.14 | 060 | 155 | 616 | 22.9 | 1.8 |

- ND = Alga not detected

Summary of Data

| Date | Algal density (cts/ml) | Diversity index | Date | $\begin{array}{r} \text { Algal } \\ \text { density } \\ (c t s / m l) \end{array}$ | Diversity index | Date | Algal <br> density (cts/ml) | Diversity index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1971 |  |  | 5/16 | 1600 | 097 | 1975 |  |  |
| 11/10 | 790 | 097 | 6/26 | 2500 | 1.63 | 2/13 | 3000 | 157 |
| 12/1 | 2200 | 1.48 | 7/18 | 1400 | 175 | 2/28 | 6900 | 154 |
|  |  |  | 8/10 | 1300 | 131 | 5/29 | 1300 | 130 |
| 1972 |  |  | 9/13 | 2400 | 116 | 6/6 | 1100 | 145 |
| 1/6 | 1600 | 1.85 | 10/17 | 1300 | 100 | 7/9 | ND | 0 |
| 2/14 | 1900 | 173 | 11/28 | 160 | 0 | 8/15 | 790 | 137 |
| 3/28 | 1700 | 1.68 | 12/21 | 1400 | 0.99 | 9/18 | 470 | 0 |
| 4/20 | 1400 | 175 |  |  |  | 10/6 | 3300 | 131 |
| 5/26 | 2200 | 178 | 1974 |  |  | 11/14 | 1300 | 141 |
| 6/6 | 2800 | 1.22 | 1/18 | 1400 | 189 | 12/10 | 790 | 1.37 |
| 7/17 | 1300 | 156 | 2/13 | ND | 0 |  |  |  |
| 8/7 | 2700 | 157 | 3/14 | 1100 | 115 | 1976 |  |  |
| 9/15 | 1300 | 175 | 4/17 | 1600 | 0.72 | 1/14 | 940 | 092 |
| 10/6 | 940 | 0 | 5/13 | 1400 | 135 | 2/12 | 1600 | 092 |
| 11/9 | 470 | 0.92 | 6/7 | 310 | 100 | 3/19 | 2200 | 143 |
| 12/7 | 1100 | 099 | 7/22 | 2500 | 155 | 4/28 | 4400 | 153 |
|  |  |  | 8/16 | 160 | 0 | 5/25 | 630 | 0 |
| 1973 |  |  | 9/12 | 940 | 0 | 6/11 | 630 | 081 |
| 1/12 | ND | 0 | 10/10 | 1100 | 0 | 7/23 | 1100 | 1.15 |
| 2/8 | 1100 | 145 | 11/25 | 1300 | 181 | 8/26 | 1700 | 110 |
| 3/21 | 2200 | 148 | 12/13 | 940 | 179 | 9/30 | 1100 | 145 |
| 4/12 | 4200 | 182 |  |  |  |  |  |  |

## 39. SOUTH FORK SALINE RIVER NEAR CARRIER MILLS

Two high population peaks occurred in 1972 and in each case green algae were not present. The density ( $2800 \mathrm{cts} / \mathrm{ml}$ ) on June 5 was made up mainly of Navicula and Melosira. On July 5 ( $1600 \mathrm{cts} / \mathrm{ml}$ ) the same diatoms were prevalent.

In 1973, the spring maximum on March 12 was composed mainly of the green algae Scenedesmus and Actinastrum. Ulothrix was responsible for the three pulses on July $24(2200 \mathrm{cts} / \mathrm{ml})$, October 5 ( $2500 \mathrm{cts} / \mathrm{ml}$ ), and November 21, 1973 ( $2800 \mathrm{cts} / \mathrm{ml}$ ).

High algal densities were also found in the spring of 1974. Melosira accounted for 75 percent of the total on March 6. An abundant growth of the green Chlorella ( $9100 \mathrm{cts} / \mathrm{ml}$ ) was detected on April 1. In the August 6 collection, the diatom Fragilaria made up 75 percent of the total count. Another pulse on September 3, 1974, was principally composed of Ulothrix ( $2200 \mathrm{cts} / \mathrm{ml}$ ) and Cyclotella ( $1600 \mathrm{cts} / \mathrm{ml}$ ).

Ulothrix was also prevalent (63 percent) on February 14, 1975. The maximum for 1975 occurred on April 16 and Crucigenia ( $3500 \mathrm{cts} / \mathrm{ml}$ ) and Cyclotella ( $2700 \mathrm{cts} / \mathrm{ml}$ ) prevailed. Algal densities were very low during the summer of 1975.

During the fifth study year, the highest density was $2200 \mathrm{cts} / \mathrm{ml}$. The algal peaks were poorly developed. During this period, the diatoms accounted for 76 percent of the total population. Cyclotella and Navicula appeared most frequently.

Statistical Summary of Algal Data

| Study period | Number of samples | Algal density |  |  | Diversity index |  |  | Algal density occurrence (\% of time) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 500 to | 2001 to |  |
|  |  | Range | $M_{g}$ | $S D_{g}$ |  |  |  | Range | M | $S D$ | <500 | 2000 | 5000 | >5000 |
| 11/71-9/72 | 10 | ND-4400 | 330 | 2411 | 0-1 85 | 1.07 | 085 | 300 | 400 | 300 |  |
| 10/72-9/73 | 11 | 790-2700 | 1600 | 1.67 | $072-171$ | 122 | 033 |  | 636 | 36.4 |  |
| 10/73-9/74 | 12 | ND -9700 | 500 | 2167 | 0-1.46 | 062 | 055 | 250 | 250 | 41.9 | 8.3 |
| 10/74-9/75 | 12 | ND -6900 | 250 | 3106 | 0-1 68 | 078 | 065 | 333 | 333 | 250 | 83 |
| 10/75-9/76 | 12 | 160-2200 | 1100 | 201 | 0-2.16 | 146 | 052 | 83 | 833 | 8.3 |  |
| 5-year | 57 | ND -9700 | 600 | 1264 | 0-2 16 | 101 | 0.66 | 193 | 490 | 28.3 | 3.3 |


| Summary of Data |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | Algal density (cts/ml) | Diversity index | Date | Algal density (cts/ml) | Diversity index | Date | Algal density (cts/ml) | Diversity index |
| 1971 |  |  | 6/5 | 1900 | 082 | 1975 |  |  |
| 11/12 | 160 | 0 | 7/24 | 3100 | 118 | 1/7 | 310 | 1.00 |
| 12/2 | ND | 0 | 8/7 | 1300 | 1.30 | 2/14 | 4200 | 150 |
| 1972 |  |  | 9/12 | 2500 | 1.50 | 3/4 | 2700 | 094 |
| 1972 |  |  | 10/5 | 2700 | 032 | 4/16 | 6900 | 154 |
| 1/13 | ND | 0 | 11/21 | 3000 | 0.30 | 5/28 | 940 | 125 |
| 3/3 | 1100 | 138 | 12/6 | 940 | 146 | 6/20 | ND | 0 |
| 4/14 | 2000 | 178 |  |  |  | 7/15 | 630 | 0 |
| 5/24 | 4400 | 185 | 1974 |  |  | 8/12 | ND | 0 |
| 6/5 | 2800 | 1.66 | 1/23 | 160 | 0 | 9/17 | ND | 0 |
| 7/5 | 1600 | 1.85 | 2/12 | ND | 0 | 10/1 | 1900 | 133 |
| 8/9 | 1400 | 175 | 3/6 | 2500 | 1.06 | 11/11 | 790 | 1.37 |
| 9/15 | 1700 | 044 | 4/1 | 9700 | 0.35 | 12/9 | 1700 | 2.01 |
| 10/3 | 790 | 137 | 5/13 | 1100 | 0.59 | 1976 |  |  |
| 11/1 | 1600 | 130 | 6/11 | ND | 0 | 1976 |  |  |
| 12/6 | 1600 | 130 | 7/15 | 940 | 146 | 1/8 | 160 | 0 |
| 1973 |  |  | 8/6 | 2400 | 072 | 2/10 | 1300 | 216 |
| 1/9 | 790 | 0.72 | 9/3 | 3900 | 118 | 3/22 | 1900 | 155 |
| 2/12 | 790 | 0.72 | 10/1 | 1300 | 0.81 | 4/15 | 1700 1100 | 150 |
| 3/12 | 2500 | 150 | 11/6 | 2200 | 0.59 | 6/14 | 2200 | 173 |
| 4/20 | 2400 | 171 | 12/13 | 1700 | 1.68 | 7/26 | 940 | 146 |
|  |  |  |  |  |  | 8/24 | 940 | 1.46 |
|  |  |  |  |  |  | 9/24 | 940 | 146 |

## 40. BIG MUDDY RIVER AT MURPHYSBORO

The site is quite productive and from the standpoint of diatom genera, more diversified than other collection sites. In addition to the prevalent algae Cyclotella and Navicula, occasional blooms of Nitzschia, Melosira, and Fragilaria were detected. The predominant green algae were Scenedesmus, Ulothrix, and Ankistrodesmus.

The annual maximum for 1972 occurred on August 7 and was composed mostly of Navicula. About 30 days earlier the predominant genus was Cyclotella. In 1973, the spring maximum was detected on March 16 ( $3600 \mathrm{cts} / \mathrm{ml}$ ) and Ulothrix was the prevailing alga followed by Scenedesmus and Euglena. There were no diatoms in the sample. Another pulse occurred in May and the diatoms Nitzschia and Cyclotella were the major contributors.

In 1974, a winter maximum was detected on February 14 and Cyclotella ( $3000 \mathrm{cts} / \mathrm{ml}$ ) prevailed. Another pulse occurring on May 16 was composed mostly of Crucigenia ( $2500 \mathrm{cts} / \mathrm{ml}$ ) and Navicula ( $1300 \mathrm{cts} / \mathrm{ml}$ ). The algal densities were low during the summer of 1974. During the fall of 1974, the abundant algae were Nitzschia in October and Navicula and Cyclotella in November.

A Navicula ( 3800 cts $/ \mathrm{ml}$ ) bloom in combination with Cyclotella and Ulothrix (both $1600 \mathrm{cts} / \mathrm{ml}$ ) was the cause for the 1975 maximum on March 17. Thereafter, and until the end of the study period in 1976, the only significant algal growth developed on November 11, 1975. In that sample, Melosira and Euglena were abundant.

| Study period | Number of samples | Statistical Summary of Algal Data |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Algal density |  |  | Diversity index |  |  | Algal density occurrence (\% of time) |  |  |  |
|  |  |  |  |  |  | 500 to | 2001 to |  |
|  |  | Range | $M_{g}$ | $S D_{g}$ |  |  |  | Range | M | SD | <500 | 2000 | 5000 | >5000 |
| 11/71-9/72 | 10 | 940-4600 | 2300 | 170 | 1 14-2.22 | 1.64 | 0.37 |  | 30.0 | 700 |  |
| 10/72-9/73 | 12 | 790-3600 | 1700 | 168 | 0 72-2 05 | 135 | 042 |  | 66.7 | 333 |  |
| 10/73-9/74 | 12 | 310-4400 | 1300 | 215 | 0-1.58 | 106 | 0.58 | 83 | 583 | 333 |  |
| 10/74-9/7: | 10 | 310-7100 | 1500 | 243 | 0 70-194 | 131 | 0.41 | 200 | 400 | 300 | 10.0 |
| 10/75-9/76 | 12 | ND -2200 | 600 | 853 | 0-2.10 | 099 | 064 | 167 | 583 | 250 |  |
| 5-year | 56 | ND -7100 | 1300 | 335 | 0-2.22 | 1.25 | 0.54 | 90 | 507 | 383 | 20 |


| Summary of Data |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Algal |  |  | Algal |  |  | Algal |  |
| Dale | density (cts/ml) | Diversity index | Date | density <br> (cts/ml) | Diversity index | Date | density <br> (cts/ml) | Diversity index |
| 1971 |  |  | 5/21 | 3500 | 169 | 1975 |  |  |
| 11/11 | 3000 | 171 | 6/15 | 1600 | 205 | 2/13 | 1600 | 097 |
| 12/9 | 2200 | 192 | 7/9 | 790 | 097 | 3/17 | 7100 | 157 |
| 1972 |  |  | 8/15 | 1100 | 184 | 5/2 | 2200 | 181 |
| 1/10 | 1100 | 138 | 9/10 | 1700 | 087 | 6/6 | 470 | 0.92 |
| 3/7 | 940 | 125 | 10/15 | 1400 | 153 | 7/11 | 1700 | 1.94 |
| 4/20 | 3000 | 175 | 11/27 | 2000 | 1.58 | 8/19 | 310 | 1.00 |
| 5/24 | 2000 | 213 | 12/12 | 310 | 0 | 9/15 | 1400 | -139 |
| 6/5 | 2800 | 222 | 1974 |  |  | 10/1 | 940 | 065 |
| 7/5 | 4200 | 151 | 1/25 | 1400 | 1.35 | 11/11 | 2700 | 2.10 |
| 8/7 | 4600 | 114 | 2/14 | 3900 | 110 | 12/15 | 1400 | 1.35 |
| 9/8 | 1600 | 136 | 3/18 | 2200 | 1.20 | 1976 |  |  |
| 10/2 | 2700 | 122 | 4/17 | 1100 | 059 | 1/19 | 160 | 0 |
| 11/13 | 1900 | 104 | 5/16 | 4400 | 152 | 2/9 | 2200 | 152 |
| 12/20 | 1300 | 130 | 6/14 | 940 | 146 | 3/15 | 2000 | 039 |
| 1973 |  |  | 7/18 | 1400 | 153 | 4/12 | 1100 | 1.15 |
| 1/20 | 790 | 072 | 8/6 | 630 | 081 | 5/17 | 1300 | 1.06 |
| 2/14 | 1300 | 1.81 | 9/10 | 630 | 0 | 6/7 | 940 | 125 |
| 3/16 | 3600 | 1.35 | 10/8 | 2500 | 070 | 7/12 | 1100 | 156 |
| 4/3 | 2400 | 124 | 11/26 | 2400 | 153 | 8/9 | 630 | 081 |
|  |  |  | 12/10 | 940 | 125 | 9/13 | ND | 0 |

## REFERENCES

Larson, T. E., and B. O. Larson. 1957. Quality of surface waters in Illinois. Illinois State Water Survey Bulletin 45, 145 p.

Harmeson, R. H., and T. E. Larson. 1969. Quality of surface waters in Illinois. Illinois State Water Survey Bulletin 54, 184 p.
Harmeson, R. H.,T. E. Larson, L. M. Henley, R. A. Sinclair, and J. C. Neill. 1973. Quality of surface water in Illinois, 1966-1971. Illinois State Water Survey Bulletin 56, 100 p.

Lackey, J. B. 1964. The ecology of plankton algae. In Algae and Man, D. F. Jackson [Ed.], Plenum Press, New York, p. 205-220.

Lin, S. D., R. L. Evans, and D. B. Beuscher. 1975. Concentration and genera of algae in selected Illinois streams, 1971-1973. Illinois State Water Survey Report of Investigation 80, 50 p.
American Public Health Association. 1971. Standard methods for the examination of water and wastewater. 13th Edition, New York, 874 p.

Palmer, C. M. 1959. Algae in water supplies. U.S. Public Health Service Publication 657, 88 p.
Patrick, R., and C. W. Reimer. 1966. The diatoms of the United States, Volume 1. The Academy of Natural Sciences of Philadelphia, 688 p.

Prescott, G. W. 1962. Algae of the western Great Lakes area. Wm. C. Brown Co. Publishers, Dubuque, Iowa, 977 p .

Prescott, G. W. 1970. How to know the freshwater algae. Wm. C. Brown Co. Publishers, Dubuque, Iowa, 348 p .

Smith, G. M. 1950. The fresh-water algae of the United States. McGraw-Hill Book Co., Inc., New York, 2nd Edition, 719 p.
Tiffany, L. H., and M. E. Britton. 1951. The algae of Illinois. University of Chicago Press, 407 p.
Lin, S. D., R. L. Evans, and D. B. Beuscher. 1972. Algae in the upper Illinois waterway. Paper presented at 65th annual meeting, Illinois State Academy of Science, Western Illinois University, Macomb.
Lin, S. D., R. L. Evans, and D. B. Beuscher. 1973. Algae in the Spoon River, 1971-1972 Water Resources Bulletin v. 9(6):1112-1124.

Kothandaraman, V., R. L. Evans, N. G. Bhowmik, J. B. Stall, D. L. Gross, J. A. Lineback, and G. B. Dreher. 1977. Fox Chain of Lakes investigation and water quality management plan Illinois State Water Survey and Illinois State Geological Survey Cooperative Resources Report 5, 200 p.
Greenberg, A. E. 1964. Plankton of Sacramento River. Ecology v. 45(1):40-49.
Blum, J. L. 1956. The ecology of river algae Botanical Review v. 22(5):291-341.
Hynes, H. B. N. 1970. The ecology of running waters University of Toronto Press, Toronto, Canada, p. 53-111.

Shannon, C. E., and W. Weaver. 1949. The mathematical theory of communication. University of Illinois Press, Urbana, 117 p.
Hutchinson, G. E. 1967. A treatise on limnology. Volume II Introduction to lake biology and the limnoplankton. John Wiley \& Sons, Inc., New York, 1115 p.

Zand, S. M. 1976. Indexes associated with information theory in water quality. Journal of Water Pollution Control Federation v. 48(8):2026-2031.
Logan, D. T. 1977. Discussion on "Indexes associated with information theory in water quality" by S. M. Zand, Journal of Water Pollution Control Federation v. 49(5):879-880.

Wilhm, J. L., and T. C. Dorris. 1968. Biological parameters for water quality criteria. Bioscience v. 18(6): 477-481.

Mitchell, D., and J. C. Buzzell, Jr. 1971. Estimating eutrophic potential pollutants. Journal of Sanitary Engineering Division, Proceedings of American Society of Civil Engineers v. 97(SA4):45 3-465.

Hurlbert, S. H. 1971. The nonconcept of species diversity. a critique, and alternative parameters. Ecology v. 52(4):577-586.

