
Systematic Concurrency Testing with Maximal Causality

Qingzhou Luo
University of Illinois at

Urbana-Champaign
qluo2@illionis.edu

Jeff Huang
Texas A&M University

jeff@cse.tamu.edu

Grigore Rosu
University of Illinois at

Urbana-Champaign
grosu@illionis.edu

Abstract
We propose the first systematic concurrent program testing
approach that is able to cover the entire scheduling space
with a provably minimal number of test runs. Each run cor-
responds to a distinct maximal causal model extracted from a
given execution trace, which captures the largest possible set
of causally equivalent legal executions. The maximal causal
models can be represented using first-order logic constraints,
and testing all the executions comprised by a maximal causal
model reduces to offline constraint solving. Based on the
same constraint model, we also develop a schedule genera-
tion algorithm that iteratively generates new casually differ-
ent schedules. The core idea is to systematically force pre-
vious read operations to read different values, thus enumer-
ating all the causal models. We have implemented our ap-
proach in an explicit stateless model checker, and our eval-
uation showed that our technique is able to 1) find concur-
rency bugs faster; 2) finish state space exploration with much
fewer schedules than previous techniques.

1. Introduction
Concurrent programs are becoming more and more popular
with the advent of multi-processors era. Well designed con-
current programs can greatly increase the overall throughput
of the system. However, it is also very hard to verify the cor-
rectness of concurrent programs because their inherent non-
determinism. Bugs in concurrent programs could be caused
by interaction between multiple threads; such bugs are hard
to be found and reproduced because (1) the number of all the
possible thread interleavings is huge and (2) thread schedul-
ing is usually non-deterministic.

Therefore, a fundamental challenge in testing concur-
rent programs is how to effectively cover the astronomical
thread interleaving or scheduling space to either find out the
buggy thread interleaving or prove the program is correct.
In theory, a bug may be hidden anywhere in the state space
and finding it is as hard as finding a needle in a haystack.
Worse, the diversity of the exercised interleavings tends to be
highly correlated with the execution environments [18, 24].
Naively executing the program on the same platform re-
peatedly (such as stress testing) results in redundant explo-

ration of similar interleavings, keeping the buggy interleav-
ing space still uncovered.

Systematic testing approaches [6, 14, 17, 18, 22, 24] offer
a more promising solution for testing concurrent programs.
It avoids testing repeated interleavings by actively control-
ling the thread scheduler to systematically explore all legal
but distinct interleavings. If a buggy interleaving is hit during
the exploration, then that interleaving can be used to repro-
duce the bug. If no buggy interleaving is found after the ex-
ploration finishes, then the concurrent program is proven to
be correct. Systematic testing is more effective than blindly
repeated executing the concurrent program because it guar-
antees that each test execution covers a different interleav-
ing. However, the core challenge still remains: to cover the
astronomical scheduling space, the same astronomical num-
ber of test executions must be done.

Researchers have proposed various methods to reduce the
exploration space for systematic testing approaches. For ex-
ample, context bounding techniques [14, 17] limit the num-
ber of preemptions each explored interleaving could have
and coverage-driven techniques [22, 24] and priority-based
techniques [6, 11, 18] prioritize schedules during explo-
ration. Those techniques have been proven to be effective for
finding certain bugs in concurrent programs. However they
only try to select or prioritize schedules in exploration space,
so those techniques cannot prove the program is correct and
may also miss bugs.

Several researchers have also proposed partial-order re-
duction techniques [7, 8] to reduce the cost of state space
exploration. The idea is to only explore schedules that lead to
different program states. For example, dynamic partial order
reduction (DPOR) techniques [7] prune state space by look-
ing at all the currently active transitions and only explore one
of them if they do not interfere with each other. This tech-
nique could indeed greatly reduce state space exploration
cost. However, it is based on happens-before casaulity and
thus it does not prune the possible maximal number of in-
terleavings. In other words, many interleavings explored by
DPOR could possibly belong to the same maximal causal
model [19].

We propose a new approach that systematically explores
the interleaving space with significantly less number of test

1 2015/5/27

T1

initially x=y=0

 lock(l)
 x=1
 y=1
 unlock(l);

1:
2:
3:
4:

T2

 lock(l)
 x=0
 unlock(l);
 if(x>0){
 y++
 x=2
 }

T3

 if(x>1){
 if(y==3){
 Error
 else
 y=2
 }
 }

loop twice: loop twice: loop twice:
5:
6:
7:
8:
9:
10:

11:
12:
13:

14:

: lock/unlock

/ : read/write

/

error-triggering schedule

x y

1 1 0 0 2 2 1 1 2 3 2 2

Figure 2: Example

s0s1 s2 s3 ...s3.1s1.1...s1.1.2.2

whole scheduling space a schedule

a set of schedules
captured by MCM

Schedule 1

Schedule 2

Schedule 3

…

Scheduler and Monitor

RVCausal

Execution
Trace 1

Figure 1: Overview

executions. Our key insight is to look at the state space ex-
ploration problem from the perspective of the causal model
(instead of interleavings), which characterizes a set of legal
interleavings that are causally equivalent and can be derived
from each other. These causal sets have the important prop-
erty that if any single interleaving is tested then there is no
need to test any other interleaving in the same causal set.

Moreover, the checking of each causal set can be done of-
fline and in parallel, so our technique is particularly suitable
when online testing is more expensive than offline checking.

Generally speaking, the classical happens-before rela-
tionship [13] (HB) yields such a causal model. HB charac-
terizes the set of interleavings in which the order between
operations can be altered if they have no HB relation. How-
ever, HB is rather strict, in that its power of characterizing
causality is quite limited. Instead, our approach builds upon
the maximal causal model [19] (MCM) technique, which
yields the largest possible causal equivalence classes. In
other words, from any single execution trace, MCM is able
to derive the largest causal set of legal interleavings w.r.t. that
trace. Underpinned by this property, our approach minimizes
the number of executions that are needed to run in order to
cover the entire scheduling space w.r.t. a given input.

Figure 1 shows an overview of our approach. Given a cer-
tain input, starting with any schedule, our approach system-
atically covers the entire interleaving space w.r.t. the input by
iteratively generating and executing new schedules. In each
iteration, our core component, RV-CAUSAL, takes the trace
(an ordered sequence of events) emitted from executing a
schedule on the program with our scheduler and monitor,
computes a causal set of interleavings corresponding to the
schedule according to MCM, and generates new schedules
that are not in this causal set. Each causal set is distinct and
accounts for a different subspace of the whole scheduling
space. To enable checking runtime properties (i.e., safety and
liveness properties) over this causal set offline, we encode
MCM as a formula of first order logical constraints over a
set of order variables (denoting the possible order of each
event in the execution), such that any solution to the formula
corresponds to a legal interleaving represented by the value
of order variables. By encoding the runtime properties as ad-
ditional constraints and solving a conjunction of the formula
and the property constraints with an SMT solver, we can de-
termine whether a property holds or not for all the interleav-
ings in the causal set.

2 2015/5/27

A main technical challenge here is how to systematically
generate new schedules such that: 1) no two subspaces (cor-
responding to two different traces) overlap, and 2) all the
subspaces together cover the entire scheduling space. Our
approach works by pivoting around the value of reads in
the trace. Specifically, we ensure that each generated new
schedule has at least one new event: a read event that reads a
new data (i.e., a different value from that in other schedules).
All such new events are considered and their correspond-
ing schedules are generated, as long as the schedule is legal
(permitted by MCM). In this way, we guarantee that no two
schedules are redundant in terms of MCM, i.e., the corre-
sponding trace of each schedule contains at least one distinct
event compared to others. Moreover, because the generated
schedules consider all possible legal combinations of read
values, it guarantees that our approach would cover all state
space eventually.

We make following contributions in this paper:

• A new systematic concurrency testing approach that
leverages the maximal causal model to minimize the
number of executions needed to execute, and shifts the
runtime computation cost to offline inference and prop-
erty checking through constraint solving.

• A schedule generation technique that systematically gen-
erates new schedules that cover distinct thread interleav-
ings until the whole scheduling space is covered.

• A set of evaluation shows that our technique is able to
find concurrency bugs and explore the entire state space
more efficient and effective than existing techniques.

2. Motivating Example
We illustrate our approach using the example in Figure 2.
Three threads T1, T2 and T3 are started concurrently, each
one has an outer loop with two iterations. x and y are shared
variables among those threads. An error will be triggered in
T3 if (1) y == 3 and (2) x > 1 are both satisfied, as shown
at line 12. For (1) to be true, line 9 must be executed after line
14; for (2) to be true, line 2 must be executed between line 7
and line 8. The exact buggy schedule is described in Figure 2
with four different types of events: R (Read), W (Write), L
(Lock) andU (Unlock), and each event is annotated with line
number and loop iteration number. For example, R2

8 means
the read event at line 8 in the second loop iteration.

This bug is hard to find by existing state space exploration
tools. The reason is that there is a large number of schedules
in this program and the bug is hidden deeply with complex
thread interleavings. We ran this program with a stateless
exploration tool similar to CHESS [17] and used the same
iterative context bounding exploration strategy, which is usu-
ally the most efficient for finding concurrency bugs. It took
58478 schedules until it hit the bug.

Our approach differs from existing techniques by cover-
ing a set of schedules from one single execution. With the

maximal causal model [19] as the foundation, our approach
is able to analyze an exponential and provably maximal num-
ber of schedules derived from one single execution trace.
From a high level view, our approach works in an iterative
manner. In each iteration, we work on one schedule and gen-
erate more new schedules, which consists of three functional
steps:

Record trace from one execution: We record in this
step the necessary information for constructing the maximal
causal model. All the reads and writes to shared data will be
recorded as well as their value operands. Note that the trace
collected here is not required to hit the bug. For example, in
the second iteration of T2, at line 9 we may read the value 1
for y. This will not trigger the error in line 13.

Generate causally different schedules: We use the trace
collected in the previous step to construct a maximal causal
model. Each maximal causal model contains a set of sched-
ules and our approach will analyze those schedules offline.
However, this is still not enough to cover the entire state
space. A key novelty of our approach is to systematically
generating causally different schedules by forcing reads in
the program to read different values. For example, suppose
we have a traceR2

9 reads value 1 andW 1
14 writes value 2, and

R2
9 happens before W 1

14. Our approach will try to force R2
9

to read a different value, 2 in this case, written by W 1
14. All

the corresponding constraints will be generated and solved
by an SMT solver. If they are satisfiable, such a schedule
will be generated.

Note that there may be multiple read operations in the
program, so our approach will generate multiple schedules
from one input trace. In each generated schedule there will
be at least one read operation that reads a different value
from the original trace, thus guaranteeing that each gener-
ated schedule falls into a different causal model.

Figure 3 illustrates the schedule generation for our ex-
ample. S0 is the schedule in the initial trace. In the first it-
eration, we generate four new schedules (S1, S2, S3, S4),
which enforce the four reads (R1

8, R2
8 R

1
11, and R2

11), re-
spectively, to read value 1. In the second iteration, we con-
tinue to work on the traces corresponding to Si (i=1,2,3,4
in parallel), and generate S1.1, S1.2,. . . ,S2.1, S2.2, etc.
All schedules form a hierarchy, with each child schedule
enforcing a different read value. Again, each new schedule
may produce a trace containing new read events and/or write
values, which can generate new children schedules. For ex-
ample, our approach will eventually generate the schedule
S1.1.2.2, which enforces R2

12 to read 3 and triggers the
error.

Re-execute program following generated schedules:
our generated schedules contain the execution order of
threads so they can be used as input for our scheduler to
re-execute the program. All the generated schedules will be
place into a priority queue. After executing a new sched-
ule in the queue, more causally different schedules may be

3 2015/5/27

generated and put in the queue. Our approach will terminate
when the queue becomes empty, meaning that there is no
more causally different schedule. This is the indication that
the entire state space is covered.

3. Approach
3.1 Maximal Causal Model
Our approach builds upon the maximal causal model (MCM)
foundation, first presented in [19] (for sequential consis-
tency). We briefly review it below.

Multithreaded programs P are abstracted as the prefix-
closed sets of finite traces that they can produce when com-
pletely or partially executed, called P-feasible traces. A
trace is abstracted as a sequence of events. Events are opera-
tions performed by threads on concurrent objects, abstracted
as tuples of attribute-value pairs. For example, (thread =
t1, op= read, target=x, data=1) is a read event by thread
t1 to memory location x with value 1. We consider the fol-
lowing common event types:

• begin(t)/end(t): the first/last event of thread t;
• read(t, x, v)/write(t, x, v): read/write a value v on a vari-

able x;
• lock(t, l)/unlock(t, l): acquire/release a lock l;
• fork(t, t′): fork a new thread t′;
• join(t, t′): block until thread t′ terminates;

The sets of P-feasible traces must obey some basic con-
sistency axioms. We proposed two axioms: prefix closedness
and local determinism. The former says that the prefixes of
a P-feasible trace are also P-feasible. The latter says that
each thread has a deterministic behavior, that is, only the
previous events of a thread (and not other events of other
threads) determine the next event of the thread, although if
that event is a read then it is allowed to get its value from
the latest write. These two axioms allow us to associate a
causal model feasible(τ) to any consistent trace τ , which
comprises precisely the traces that can be generated by any
program that can generate τ . As shown in [19], feasible(τ)
is both sound and maximal: any program which can gener-
ate τ can also generate all traces in feasible(τ), and for any
trace τ ′ not in feasible(τ) there exists a program generat-
ing τ which cannot generate τ ′. Comparatively, conventional
happens-before causal models consisting of all the legal in-
terleavings of τ and their prefixes are not maximal [19].

In our approach, we realize MCM using constraints and
represent feasible(τ) by a formula Φ of first order logic
clauses over a set of order variables, each of which cor-
responds to an event in τ . Any solution to Φ denotes a
legal schedule that can produce a corresponding trace in
feasible(τ). We next describe our constraint modeling.

s0

s1 s2 s3 s4

s1.1 s1.2 s1.3
...

... ... s4.1 s4.2 s4.3

s1.1.2.1 s1.1.2.2

... ...

s4.3.1.1 s4.3.1.2... ...

S0
1 1 0 0

x y

1 1 0 0 2 2 1 1 2 3 2 2

empty

S1.1.2.2

S1 1 1 0 0 2

1 1 2

...

Figure 3: Technical overview of schedule generation

3.2 Constraint Modeling
From a high level view, Φ contains only variables of the
form Oe corresponding to events e, which denote the order
of the events in a trace in feasible(τ). Φ is constructed by
a conjunction of three sub-formulas: Φ = Φmhb ∧ Φlock ∧
Φrw.

Must happen-before constraints (Φmhb) The must
happen-before (MHB) constraints requires that (1) the to-
tal orders of the events in each thread are always the same;
(2) a begin event can happen only as a first event in a thread
and only after the thread is forked by another thread; (3) an
end event can happen only as the last event in a thread, and a
join event can happen only after the end event of the joined
thread. MHB yield an obvious partial order ≺ on the events
of τ which must be respected by any trace in feasible(τ).
We can specify ≺ easily as constraints over the O variables:
we start with Φmhb ≡ true and conjunct it with a constraint
Oe1 < Oe2 whenever e1 and e2 are events by the same
thread and e1 occurs before e2, or when e1 is an event of
the form fork(t, t′) and e2 of the form begin(t′), etc.

Locking Constraints (Φlock) Lock mutual exclusion se-
mantics requires that two sequences of events protected by
the same lock do not interleave. Φlock captures the ordering
constraints over the lock lock and unlock events. For each
lock l, we extract the set Sl of all the corresponding pairs
(a, r) of lock/unlock events on l, following the program or-
der locking semantics: the unlock is paired with the most
recent lock on the same lock by the same thread. Then we

4 2015/5/27

conjunct Φlock with the formula∧
(a,r),(a′,r′)∈Sl

(Or < Oa′ ∨ Or′ < Oa)

Read-write constraints (Φrw) The read-write constraints en-
sure that every event in the trace is feasible. For an event to
be feasible, all the events that must happen-before it should
also be feasible. Moreover, any read event that must happen-
before it should read the same value as that in the original
trace. Consider a read event r, say read(t, x, v), we let W r

be the set of write(, x,) events in τ (here ‘-’ denotes any
value), and W r

v the set of write(, x, v) events in τ , then we
have the formula defining its feasibility as following:

Φrw(r) =
∨

w∈W r
v

(Φrw(w) ∧ Ow<Or

∧
w 6=w′∈W r

(Ow′<Ow ∨ Or<Ow′))

The above states that the read event r = read(t, x, v) may
read the value v on x written by any write event w =
write(, x, v) in W r

v (the top disjunction), subject to the con-
dition that the order of w is smaller than that of r and there
is no interfering write(, x,) in between. Moreover, w itself
must be concretely feasible, which is ensured by Φrw(w).
Similarly, Φrw(w) is defined by requiring all the reads that
must happen-before it are feasible. Φrw is a conjunction of
Φrw(r) for all reads in the considered trace.

3.3 Schedule Generation
The goal of schedule generation is to generate schedules that
produce traces not in feasible(τ). Intuitively, this problem
is the opposite of constraint modeling in Section 3.2 which
encodes feasible(τ). Hence, we can directly leverage the
constructed formulae in Φ and negate those that can be
negated. Clearly, the only type of such constraints is Φrw,
in which the mapping from read to write may be changed:
rather than enforcing a read to read the same value as that in
τ , we can instead enforce it to read a different value. The new
formula Φ′ then encodes a feasible schedule that can produce
a different trace (with at least one new event: the read event
with a different value). When being re-executed, this new
event might change the control flow of the thread, producing
more new events. A caveat of this process is that when
enforcing a read to read a different value, we must make
sure all the reads that must happen before it are matched with
writes that write the same values as that in τ . Otherwise, this
read event may not be feasible.

Therefore, our algorithm enumerates each read event in τ
on the set of all values by the writes on the same variable.
For each value that is different from what it reads in τ , we
construct Φ′ that constrains the read to read the value. We
then invoke a constraint solver (such as Z3) to solve Φ′. If
the solver returns a solution, the solution represents a new
schedule which is feasible and in which the read will read
that new value. Note that each read only concerns about the
distinct values but not distinct writes. If there are multiple

writes writing the same value, it suffices to generate only
one new schedule for all of them. This is another salient
advantage of our approach: it avoids generating redundant
schedules that have the same effect on the program state.

An important property of our algorithm is that it would
eventually cover the entire scheduling space.

PROOF. (Sketch) For each read, for each new value it can
read, our approach generates a new schedule. Suppose there
exists a schedule s not covered, then it must be the case that
s contains a new event. There could only be two possibilities
for this new event: (1) it is a previously observed event, but
reads a new value; (2) it is a previously unseen event. The
case (1) is actually impossible, because our algorithm guar-
antees generating a new schedule for each such read. For (2),
it must be the case that the event depends on a branch, the
condition of which none of our generated schedules satisfies.
However, this means that the branch condition depends on at
least one previous read reading a new value, which contra-
dicts to the fact that we already generated one schedule for
each read with a different value.

4. Implementation
4.1 Overflow
Our implementation is on top of ReEx [11], a stateless state
space exploration tool. ReEx is a Java framework used to
re-execute multithreaded Java programs based on different
exploration strategies. It already has a set of exploration
strategies, such as iterative context bounding exploration
strategy (Chess) and depth first exploration strategy. We
implement our technique as another strategy in ReEx. We
use ASM to instrument Java bytecode, such that after each
execution all the necessary information is stored in a trace
object. In our implemented exploration strategy that trace
object serves as input to build constraint model. We solve
all the constraints (using Z3) to generate new schedules
such that read operation will read a different value. All the
new generated schedules will be put in a queue and our
exploration strategy will pick the next schedule in the queue
to re-execute the program and generate new trace objects.
After the queue becomes empty, no new schedule will be
generated and the exploration will finish.

4.2 Generation of Read Write Matching Pairs
The main part of our implementation is to generate all the
possible read write matching pairs, such that the only one
read will read a different value, while all other preceding
reads read the same values. The algorithm is described in
Figure 4.

The basic idea of the algorithm is to find all the val-
ues a specific read could possible read of, and then recur-
sively generate matching pairs for all those values. Line 5,
getDependentNodes returns all the nodes that should hap-
pen before the input node. Those nodes need to appear if
the input node will appear in the new schedule. Figure 5 de-

5 2015/5/27

1 // Global variables
2 boolean foundSchedule = false;
3
4 // Get dependent nodes
5 Set〈AbstractNode〉 getDependentNodes(Trace trace, AbstractNode node) {
6 // return all the nodes that should happen before the current node
7 }
8
9 // Construct read write pairs

10 void constructAllReadWritePairs(Trace trace, ReadNode targetReadNode) {
11 Set〈AbstractNode〉 dependentNodes = getDependentNodes(trace, targetReadNode);
12 Set〈String〉 allValues = trace.getAllWriteValuesOnAddr(targetReadNode);
13 for (value ∈ allValues) {
14 if (value == targetReadNode.value) {
15 // match targetReadNode with a different value than the previous trace
16 continue;
17 }
18 foundSchedule = false;
19 constructReadWritePairs(trace, getReadNodes(dependentNodes), dependentNodes,
20 targetReadNode, value, new HashMap〈ReadNode, AbstractNode〉());
21 }
22 }
23
24 void constructReadWritePairs(Trace trace, List〈AbstractNode〉 readNodes,
25 Set〈AbstractNode〉 dependentNodes, ReadNode targetReadNode, String value,
26 Map〈ReadNode, AbstractNode〉 readWriteMapping) {
27 if (foundSchedule) {
28 return;
29 }
30 if (readNodes == ∅) {
31 if (readWriteMapping != ∅) {
32 if (canGenerateSchedule(readWriteMapping, targetReadNode, value)) {
33 generateSchedule(readWriteMapping, targetReadNode, value);
34 foundSchedule = true;
35 }
36 }
37 return;
38 }
39
40 ReadNode currentReadNode = removeFirst(readNodes);
41
42 // Already matched or impossible to match currentReadNode
43 while (currentReadNode ∈ readWriteMapping.keySet() || (currentReadNode != targetReadNode
44 && trace.getWriteNodesWithSameValue(currentReadNode) == ∅) {
45 if (readNodes == ∅) {
46 currentReadNode = removeFirst(readNodes);
47 } else {
48 if (readWriteMapping != ∅) {
49 if (canGenerateSchedule(readWriteMapping, targetReadNode, value)) {
50 generateSchedule(readWriteMapping, targetReadNode, value);
51 foundSchedule = true;
52 }
53 }
54 return;
55 }
56 }
57
58 Set〈WriteNode〉 writeNodes = trace.getWriteNodesWithSameValue(currentReadNode);
59 for (writeNode ∈ writeNodes) {
60 // Optimizations to prune impossible cases
61 readWriteMapping.put(currentReadNode, writeNode);
62 readNodes.addAll(getReadNodes(getDepedentNodes(trace, writeNode)));
63 dependentNodes.addAll(getDepedentNodes(trace, writeNode));
64 constructReadWritePairs(trace, readNodes, dependentNodes, targetReadNode, value,

readWriteMapping);
65 }
66
67 // Handle matching with initial values
68 }

Figure 4: Generate Read Write Matching Pairs

scribes how we compute dependency nodes. The first case is
that two nodes are in the same thread following the program
order, then the later node must happen after the early node. In
the second case the first thread starts the second thread, then
the start node should happen before the very first node from
the second thread. In the third case one thread joins on an-
other thread, which means the last node of the joined thread
should happen before the join node. In the last case we han-
dle the semantics of wait-notify by modeling wait oper-
ation as wait followed by unlock and lock. Therefore, the
wait node should happen before notify node, and notify node
should happen before the next node (lock node) following
wait node in that thread. By taking into consideration of all
the possible should happen before relationships in the pro-
gram, we transitively compute all the dependency nodes for
a given node and use that result in the main algorithm.

On line 10, constructAllReadWritePairs gets all
the values that were written to the same address in previ-
ous trace, and calls constructReadWritePairs to get the

Node 1

Node 2

T2.start

First Node

T1.join

Last Node

T1 T2

T2T1T1

wait

T1 T2

notify

node

Intra -
thread

Start
thread

Join
thread

Wait -
notify

Figure 5: Compute dependency nodes

mappings between a read to a specific write node. On line 24,
constructReadWritePairs takes as input a list of read
nodes to be matched, and recursively generates and stores
the result in a map. This algorithm will terminate on line 37
and 54 when the list of read nodes is empty. Note that for
each read node paired with each possible value it could read,
we only need to generate one valid schedule. So we use the
global variable foundSchedule to terminate the execution
earlier in that case for optimization purpose. When the list of
read nodes is not empty, the algorithm will get the first read
node and pair it with a write node with the same value, put
this information in the result map, and recursively execute
the algorithm.

Handling matching with initial values:
One problem we encountered during implementation is

that for uninitialized variables, JVM will use default values
for their data types. Those values are not written by any
write nodes, therefore they are not captured in the trace.
We handle those nodes in a specific way by using a map
to store its initial values. When accessing those variables,
we will not only look for existing write nodes in the trace,
but also search for the map to find its initial values. For the
simplicity purpose, the details of this part is not included in
the presented algorithm here.

Optimization:
If we naively pair all the read nodes with possible write

nodes in the trace, we may end up with too many possible
pairings. Many of those pairings are impossible because of
program order constraints. However, we also do not want
to check and prune too many impossible pairings in our
algorithm, because SMT solver is used to check validity
and generate valid schedule. In our implementation, we have
done some simple Optimization to quickly check and prune
some cases. For example, if there is a cycle between two read
write pairs from two different threads, then it is impossible
because we are using sequential consistent memory model.
Also, if another write nodes that writes a different value to
the same address and it should happen before the paired

6 2015/5/27

Table 1: Subject Faults and Programs Statistics

Source Error
Airline [20] Assertion Violation
Account [20] Assertion Violation
Allocation [20] Assertion Violation
BubbleSort [20] Assertion Violation
Lang [1] Assertion Violation
Pool [4] Assertion Violation
Log4J1 [3] NullPointer Exception
Log4J2 [2] NullPointer Exception
Logger [12] NullPointer Exception

read node and after the paired write node, then it is also
impossible for the read node to read the value from the
paired write node. The details of those optimization are also
omitted on line 60. In practice, those simple optimization
give us good performance improvement without losing the
benefits of using SMT solver.

4.3 Evaluation
4.3.1 Methodology and Subjects
In order to evaluate our technique, we have performed two
sets of experiments. First we want to see how RV-CAUSAL
would help detecting concurrency bugs. Second, we want to
see how RV-CAUSAL would reduce the cost of state-space
exploration.

Our subject programs are described in table 1. We col-
lected several concurrency programs from SIR [20] and also
from several large open source systems. Each program has
a concurrency bug caused by thread scheduling, associated
with a multithreaded unit test which will expose the bug.
However, those unit tests will only fail under certain thread
schedules. We clarify those bugs into two categories. The
first one is Assertion Violation, caused by test oracles
being violated at the end of the test execution; the second
one is NullPointer Exception, caused by dereferencing
null pointer in test execution.

RV-CAUSAL explores only one schedule in each
causal model, and it is useful to find those concurrency
bugs because Assertion Violation and NullPointer

Exception are both caused by a read operation matched
with a “wrong” operation in one execution. Therefore, it suf-
fices to explore only one schedule in each causal model to
reveal those bugs. We think most concurrency bugs fall in
those categories except Deadlock. We leave that to future
work for RV-CAUSAL.

The main objective of our evaluation is to first see how
many thread schedules it would take for RV-CAUSAL to
hit those bugs, compared with other existing techniques and
tools. We then fix those bugs and see how many schedules
RV-CAUSAL would take to finish exploring the entire state
space. This shows how much state space reduction we can
gain by using the maximal causal model.

Table 2: Num of Schedules to Find Bugs

DEPTH FIRST SEARCH CHESS RV-CAUSAL
Airline 7 42 3
Account 196 14 4
Allocation TIMEOUT 15 2
BubbleSort TIMEOUT 166 9
Lang TIMEOUT 18 20
Pool TIMEOUT 128 164
Log4J1 123 8 3
Log4J2 20 29 5
Logger 20 9 3

During our experiments, we compare RV-CAUSAL with
DepthFirst Strategy (DFS) and Iterative Context Bounding
Strategy [15] (Chess) implemented in ReEx [11]. We choose
number of schedules as the metric in our experiments be-
cause it was proven to be effective for evaluating state-space
exploration techniques in previous work [10].

4.3.2 State-Space Exploration Results
Find concurrency bugs

Table 2 summarizes our results of using RV-CAUSAL to
find concurrency bugs, compared with DFS and Chess. We
set the time limit to be 15 minutes for each subject program,
if the exploration does not terminate within that time limit
we mark it as TIMEOUT.

Overall RV-CAUSAL takes significantly fewer schedules
to find bugs than using DFS or Chess exploration strategies.
DFS is the basic exploration strategy, which exhaustively
enumerates all possible thread schedules one by one until
it hits the bugs. Because of the potential large number of
possible thread interleavings, DFS cannot finish in time for
5 out of 9 subject programs. Chess is using iterative con-
text bounding approach [15] with bound 2. It only explores
schedules with preemptions less or equal to 2, so it does not
guarantee to find the bug. However in practice it works very
well, as it finds all the bugs in the 9 subject programs. RV-
CAUSAL takes even fewer schedules to find those bugs in 7
out of 9 subject programs. That is because many schedules
DFS and Chess explores fall into the same causal model, so
that RV-CAUSAL will only execute one of them. By forc-
ing a read operation to read a different value in each newly
generated schedule, RV-CAUSAL is more likely to lead the
program into a new state (e.g., executing a new branch or
writing a different value to a shared memory location), thus
easier to hit concurrency bugs.

For example, consider the code snippet used in
Allocation example in Figure 6. A few threads are ac-
cessing the shared resultBuf array concurrently in run

method. Using DFS or Chess strategy, many context switch
points will be created inside those for loops on line 2 and
7, even if threads are accessing different elements of the
array. RV-CAUSAL will look for the actual dynamic mem-
ory locations in each trace and only generate new schedules
which lead to different values written to resultBuf array,

7 2015/5/27

1 void run () {
2 f o r (i n t i = 0 ; i < r e s u l t B u f . l e n g t h ; i ++) {
3 r e s u l t B u f [i] =
4 v e c t o r . ge tF reeBlockAndMarkAsAl loca ted () ;
5 }
6
7 f o r (i n t i = 0 ; i < r e s u l t B u f . l e n g t h ; i ++) {
8 i f (r e s u l t B u f [i] != −1) {
9 v e c t o r . markAsFreeBlock (r e s u l t B u f [i]) ;

10 }
11 }
12 }
13
14 p u b l i c i n t ge tF reeBlockAndMarkAsAl loca ted () {
15 / / bug f i x : s y n c h r o n i z e d (t h i s) {
16 i n t f r e e B l o c k I n d e x = g e t F r e e B l o c k I n d e x () ;
17 i f (f r e e B l o c k I n d e x != −1) {
18 markAsAl loca t edBlock (f r e e B l o c k I n d e x) ;
19 }
20 re turn f r e e B l o c k I n d e x ;
21 / / }
22 }

Figure 6: Allocation example

therefore it will not create those unnecessary context switch
points.

Explore entire state space
Table 3 summarizes our results of using RV-CAUSAL to

explore the entire state space on the fixed subject programs.
Since all the concurrency bugs are fixed in those subject pro-
grams, ReEx will finish exploration only when all the pos-
sible thread interleavings are enumerated. Because of the
exponential number of thread schedules for multithreaded
programs, the naive DFS approach would not be able to fin-
ish exploration for 8 out of 9 subject programs. Chess, as a
contrast, is able to finish exploration for most subject pro-
grams. However, that is due to the fact that Chess only ex-
plores thread schedules with preemptions less than 3 among
all the possible thread schedules. Therefore, using the Chess
approach could possibly miss concurrency bugs (although
it was proven to be effective in practice and in our experi-
ments).

RV-CAUSAL takes significantly less schedules to fin-
ish exploration in most subject programs, except in
POOL where all three approaches could not finish ex-
ploration within the time limit. The improvement also
comes from the fact that RV-CAUSAL only explores one
schedule from each causal model. Consider the exam-
ple in Figure 6 again. The bug was fixed by lock-
ing getFreeBlockAndMarkAsAllocated method. How-
ever Chess and DFS will still explore many alternate inter-
leavings in other methods, resulting in a much larger number
of schedules to finish exploration.

Note in some of our subject programs, RV-CAUSAL takes
very few schedules to finish exploration. In those programs,
developers fixed the bugs by wrapping accesses to shared
variables with common locks, or using thread local variables
instead of shared variables. In those cases, the total num-

Table 3: Num of Schedules to Finish Exploration

DEPTH FIRST SEARCH CHESS RV-CAUSAL
Airline TIMEOUT 8309 17
Account TIMEOUT 819 5
Allocation TIMEOUT 16311 22
BubbleSort TIMEOUT 115827 103
Lang TIMEOUT 9990 334
Pool TIMEOUT TIMEOUT TIMEOUT
Log4J1 329 329 3
Log4J2 TIMEOUT TIMEOUT 9
Logger 577 138 2

ber of causal models decreased significantly compared with
those programs before applying their fixes.

4.4 Discussion
4.4.1 Comparison with Dynamic Partial-Order

Reduction
Dynamic Partial-Order Reduction (DPOR) is a well known
technique for reducing the cost of state-space explo-
ration [7]. The main idea behind DPOR is to look for con-
flicting and co-enabled transition when program executes.
Two transitions are conflicting with each other if at least one
of them is a write operation. Whenever two transactions that
are accessing the same memory location and are both en-
abled, a backtrack point will be created to explore the alter-
native path.

In [7], the authors presented the following example:

T1 : x = 1;x = 2;

T2 : y = 1;x = 3;

T1 and T2 are two different threads executing concurrently.
Suppose the first interleaving is < T1 − T1 − T2 − T2 >.
A backtrack point will be created after executing the first
instruction in T1, resulting in interleaving< T1−T2−T2−
T1 >. Similarly, a backtrack point will be created before
executing the first instruction in T1, resulting in interleaving
< T2− T2− T1− T1 >.

The rationale behind DPOR is that if two transitions are
conflicting with each other, then executing them in different
orders will lead the program into different states. However,
the main difference between DPOR and RV-CAUSAL is that
DPOR only looks at all the currently enabled transitions. In
other words, it does not take into account the “causal effects”
of those transitions. Back into the above example, DPOR
would not consider whether there are any read operation
that will read those values that being written earlier. Even
if there is such a read operation, DPOR would also not
consider whether it will read the same value or not. If there is
another write operation writes to the same location but with
a different value, then all the above interleavings would not
show any causally difference.

RV-CAUSAL, on the other hand, looks for interleavings
that will result the program fall into another different causal
model. Therefore, for a write operation to be considered as

8 2015/5/27

a backtrack point, there must be a read operation that reads
its value; moreover, it must read a different value than in the
previous execution. For example, executing the above pro-
gram in RV-CAUSAL would only exercise one interleaving,
since there is no read operation following those write opera-
tions. RV-CAUSAL achieves this goal by modeling the entire
program execution and find a viable solution for its causal
model. Therefore, RV-CAUSAL is able to further reduce the
state space for exploration compared to DPOR.

4.4.2 Deadlock Bugs
Currently our technique tracks each read and write values
in the trace and generates different traces such that at least
one read will read a new value, due to the definition of the
maximal causal model.

Consider a simple example with nested locks: thread T1
acquires lock L1 first and then lock L2, and then it releases
L2 followed by L1; thread T2 acquires lock L2 first then lock
L1, and then releases L1 followed by L2. After the program
finishes executing the first trace (suppose the program does
not deadlock in the first trace), RV-CAUSAL will finish ex-
ploration because it could not find any new causally different
trace. However this program could potentially deadlock if a
context switch happens after each thread acquires their first
lock.

The reason for our technique to miss this deadlock bug
is that when constructing constraints, we only generate syn-
chronization consistent traces. That is, we only generate
traces in which each lock operation will successfully get the
lock. The same goes for wait/notify operations in the pro-
gram. We currently cannot generate schedules that manifest
deadlocks caused by missing notification.

To solve this problem, we need to model lock/unlock and
wait/notify operations differently. We will need to model
those operations as special kinds of read/write operations
and match them with different values in each execution. By
doing this our technique will be able to explore schedules
that could lead to deadlocks.

5. Related Work
Many work have been proposed for state space exploration
of multithreaded programs. There are typically two ways to
explore the state space: stateful search and stateless search.
Stateless search [9, 21] models the state of the program when
it executes and use the modeled states to check for errors. For
example, Java PathFinder [21] is an explicit state space ex-
ploration tool for checking Java programs. It uses state com-
parison to do backtracking in its search process. Stateless
search [11, 16] does not model the state of the program. In-
stead, it re-executes the program at all the possible choice
points to enumerate all the possible output of program exe-
cution. Our work here is built on top of a stateless state space
exploration tool ReEx, however it is possible to extend our
work for stateful state space exploration tools.

Since the entire state space for a multithreaded program
is large, it is usually infeasible to explore the whole state
space. Researchers have proposed different heuristics to find
concurrency bug faster when doing exploration. Chess [16]
is built on top of the fact that most concurrency bugs can
be found within a small number of preemptions. It then pro-
poses an iterative preemption bounding approach to first ex-
plore schedules with a smaller number of preemptions. Fol-
low up work of preemption sealing [5] limits preemptions in
a set of selected methods to further improve the efficiency
of finding concurrency bugs. Wang et el. proposes another
heuristic which uses PSet coverage information as a guide-
line when exploring state space [23]. Our earlier work [11]
employs a set of heuristics to utilize the change informa-
tion between program revisions to find concurrency bugs
faster. Compared to existing heuristic based work, we do not
sacrifice coverage for efficiency when exploring state space.
Since our approach is based on maximal causality model, we
are able to find bugs faster while being guaranteed to cover
all the possible behaviors of multithreaded programs.

Dynamic partial-order reduction [7] explores the relation-
ship between enabled transitions during each step of state
space exploration. If switching the order of two co-enabled
transitions does not result in new program state, then it is
safer to pick one instead of trying both of them. Our ap-
proach tracks the value of each read and write instructions
and also takes into account all the constraints when building
maximal causality model, which makes our approach sub-
sumes previous partial-order reduction work.

6. Conclusion
In this paper we have presented RV-CAUSAL, a novel ap-
proach to systematically testing concurrent programs. Our
approach differs from existing techniques by building upon
the maximal causal model foundation in its state space ex-
ploration. Our technique is efficient because Only one sched-
ule is analyzed from each maximal causal space; our tech-
nique is also effective because the entire scheduling space
can be covered incrementally. Our implementation and eval-
uation have shown that RV-CAUSAL is able to find concur-
rency bugs and explore the entire state space much faster
than existing techniques.

7. Acknowledgement
This work was supported in part by the NSF grant CCF-
1218605, the NSA grant H98230-10-C-0294, the DARPA
HACMS program as SRI subcontract 19-000222 and the
Rockwell Collins contract 4504813093.

References
[1] Apache Software Foundation. LANG-481. https://

issues.apache.org/jira/browse/LANG-481.

9 2015/5/27

[2] Apache Software Foundation. LOG4J-44032.
https://issues.apache.org/bugzilla/show_bug.

cgi?id=44032.

[3] Apache Software Foundation. LOG4J-509. https://

issues.apache.org/bugzilla/show_bug.cgi?id=509.

[4] Apache Software Foundation. POOL-120. https://

issues.apache.org/jira/browse/POOL-120.

[5] T. Ball, S. Burckhardt, K. Coons, M. Musuvathi, and
S. Qadeer. Preemption sealing for efficient concurrency test-
ing. In TACAS, 2010.

[6] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte.
A randomized scheduler with probabilistic guarantees of find-
ing bugs. In ASPLOS, 2010.

[7] C. Flanagan and P. Godefroid. Dynamic partial-order reduc-
tion for model checking software. In POPL, 2005.

[8] P. Godefroid. Partial-Order Methods for the Verification of
Concurrent Systems - An Approach to the State-Explosion
Problem. Lecture Notes in Computer Science.

[9] G. Holzmann. The model checker SPIN. IEEE Transactions
on Software Engineering, 23(5), May 1997.

[10] V. Jagannath, M. Kirn, Y. Lin, and D. Marinov. Evaluating
machine-independent metrics for state-space exploration. In
ICST, 2012.

[11] V. Jagannath, Q. Luo, and D. Marinov. Change-aware pre-
emption prioritization. In ISSTA, 2011.

[12] JDK. LOGGER-4779253. http://bugs.sun.com/

bugdatabase/view_bug.do?bug_id=4779253.

[13] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. CACM, 1978.

[14] M. Musuvathi and S. Qadeer. Chess: systematic stress testing
of concurrent software. In LOPSTR, 2006.

[15] M. Musuvathi and S. Qadeer. Iterative context bounding for
systematic testing of multithreaded programs. In PLDI, 2007.

[16] M. Musuvathi and S. Qadeer. Iterative context bounding for
systematic testing of multithreaded programs. In PLDI, 2007.

[17] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu. Finding and reproducing heisenbugs in concurrent
programs. In OSDI, 2008.

[18] S. Nagarakatte, S. Burckhardt, M. M. Martin, and M. Musu-
vathi. Multicore acceleration of priority-based schedulers for
concurrency bug detection. In PLDI, 2012.

[19] T. F. Serbanuta, F. Chen, and G. Rosu. Maximal causal models
for sequentially consistent systems. In RV, 2012.

[20] University of Nebraska Lincoln. Software-artifact Infrastruc-
ture Repository. http://sir.unl.edu.

[21] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda.
Model checking programs. Springer ASE, 2003.

[22] C. Wang, M. Said, and A. Gupta. Coverage guided systematic
concurrency testing. In ICSE, 2011.

[23] C. Wang, M. Said, and A. Gupta. Coverage guided systematic
concurrency testing. In ICSE, 2011.

[24] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam. Maple: A
coverage-driven testing tool for multithreaded programs. In
OOPSLA, 2012.

10 2015/5/27

